151
|
Arnold S, Kortland J, Maltseva DV, Nersisyan SA, Samatov TR, Lezius S, Tonevitsky AG, Milde-Langosch K, Wicklein D, Schumacher U, Stürken C. Fra-2 overexpression upregulates pro-metastatic cell-adhesion molecules, promotes pulmonary metastasis, and reduces survival in a spontaneous xenograft model of human breast cancer. J Cancer Res Clin Oncol 2021; 148:1525-1542. [PMID: 34693476 PMCID: PMC9114065 DOI: 10.1007/s00432-021-03812-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/22/2021] [Indexed: 11/28/2022]
Abstract
Purpose The transcription factor Fra-2 affects the invasive potential of breast cancer cells by dysregulating adhesion molecules in vitro. Previous results suggested that it upregulates the expression of E- and P-selectin ligands. Such selectin ligands are important members of the leukocyte adhesion cascade, which govern the adhesion and transmigration of cancer cells into the stroma of the host organ of metastasis. As so far, no in vivo data are available, this study was designed to elucidate the role of Fra-2 expression in a spontaneous breast cancer metastasis xenograft model. Methods The effect of Fra-2 overexpression in two stable Fra-2 overexpressing clones of the human breast cancer cell line MDA MB231 on survival and metastatic load was studied after subcutaneous injection into scid and E- and P-selectin-deficient scid mice. Results Fra-2 overexpression leads to a significantly shorter overall survival and a higher amount of spontaneous lung metastases not only in scid mice, but also in E- and P-deficient mice, indicating that it regulates not only selectin ligands, but also selectin-independent adhesion processes. Conclusion Thus, Fra-2 expression influences the metastatic potential of breast cancer cells by changing the expression of adhesion molecules, resulting in increased adherence to endothelial cells in a breast cancer xenograft model. Supplementary Information The online version contains supplementary material available at 10.1007/s00432-021-03812-2.
Collapse
Affiliation(s)
- Sabrina Arnold
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Jan Kortland
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Diana V Maltseva
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Myasnitskaya Str. 13/4, 117997, Moscow, Russia
| | - Stepan A Nersisyan
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Myasnitskaya Str. 13/4, 117997, Moscow, Russia
| | - Timur R Samatov
- Evotec International GmbH, Marie-Curie-Str. 7, 37079, Göttingen, Germany
| | - Susanne Lezius
- Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Alexander G Tonevitsky
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Myasnitskaya Str. 13/4, 117997, Moscow, Russia.,Scientific Research Center Bioclinicum, Ugreshskaya Str. 2/85, 115088, Moscow, Russia
| | - Karin Milde-Langosch
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Daniel Wicklein
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Christine Stürken
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
152
|
Gamma-Aminobutyric Acid (GABA) Promotes Growth in Zebrafish Larvae by Inducing IGF-1 Expression via GABA A and GABA B Receptors. Int J Mol Sci 2021; 22:ijms222011254. [PMID: 34681914 PMCID: PMC8537617 DOI: 10.3390/ijms222011254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 01/08/2023] Open
Abstract
Insulin-like growth factor-1 (IGF-1) primarily increases the release of gamma-aminobutyric acid (GABA) in neurons; moreover, it is responsible for the promotion of longitudinal growth in children and adolescents. Therefore, in this study, we investigated whether exogenous GABA supplementation activates IGF-mediated growth performance. Zebrafish larvae treated with GABA at three days post fertilization (dpf) showed a significant increase in the total body length from 6 to 12 dpf through upregulation of growth-stimulating genes, including IGF-1, growth hormone-1 (GH-1), growth hormone receptor-1 (GHR-1), and cholecystokinin A (CCKA). In particular, at 9 dpf, GABA increased total body length from 3.60 ± 0.02 to 3.79 ± 0.03, 3.89 ± 0.02, and 3.92 ± 0.04 mm at concentrations of 6.25, 12.5, and 25 mM, and the effect of GABA at 25 mM was comparable to 4 mM β-glycerophosphate (GP)-treated larvae (3.98 ± 0.02 mm). Additionally, the highest concentration of GABA (50 mM) -induced death in 50% zebrafish larvae at 12 dpf. GABA also enhanced IGF-1 expression and secretion in preosteoblast MC3T3-E1 cells, concomitant with high levels of the IGF-1 receptor gene (IGF-1R). In zebrafish larvae, the GABA-induced growth rate was remarkably decreased in the presence of an IGF-1R inhibitor, picropodophyllin (PPP), which indicates that GABA-induced IGF-1 enhances growth rate via IGF-1R. Furthermore, we investigated the effect of GABA receptors on growth performance along with IGF-1 activation. Inhibitors of GABAA and GABAB receptors, namely bicuculline and CGP 46381, respectively, considerably inhibited GABA-induced growth rate in zebrafish larvae accompanied by a marked decrease in the expression of growth-stimulating genes, including IGF-1, GH-1, GHR-1, and CCKA, but not with an inhibitor of GABAC receptor, TPMPA. Additionally, IGF-1 and IGF-1R expression was impaired in bicuculline and CGP 46381-treated MC3T3-E1 cells, but not in the cells treated with TPMPA. Furthermore, treatment with bicuculline and CGP 46381 significantly downregulated GABA-induced IGF-1 release in MC3T3-E1 cells. These data indicate that GABA stimulates IGF-1 release via GABAA and GABAB receptors and leads to growth promotion performance via IGF-1R.
Collapse
|
153
|
Soler I, Yun S, Reynolds RP, Whoolery CW, Tran FH, Kumar PL, Rong Y, DeSalle MJ, Gibson AD, Stowe AM, Kiffer FC, Eisch AJ. Multi-Domain Touchscreen-Based Cognitive Assessment of C57BL/6J Female Mice Shows Whole-Body Exposure to 56Fe Particle Space Radiation in Maturity Improves Discrimination Learning Yet Impairs Stimulus-Response Rule-Based Habit Learning. Front Behav Neurosci 2021; 15:722780. [PMID: 34707486 PMCID: PMC8543003 DOI: 10.3389/fnbeh.2021.722780] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/08/2021] [Indexed: 12/23/2022] Open
Abstract
Astronauts during interplanetary missions will be exposed to galactic cosmic radiation, including charged particles like 56Fe. Most preclinical studies with mature, "astronaut-aged" rodents suggest space radiation diminishes performance in classical hippocampal- and prefrontal cortex-dependent tasks. However, a rodent cognitive touchscreen battery unexpectedly revealed 56Fe radiation improves the performance of C57BL/6J male mice in a hippocampal-dependent task (discrimination learning) without changing performance in a striatal-dependent task (rule-based learning). As there are conflicting results on whether the female rodent brain is preferentially injured by or resistant to charged particle exposure, and as the proportion of female vs. male astronauts is increasing, further study on how charged particles influence the touchscreen cognitive performance of female mice is warranted. We hypothesized that, similar to mature male mice, mature female C57BL/6J mice exposed to fractionated whole-body 56Fe irradiation (3 × 6.7cGy 56Fe over 5 days, 600 MeV/n) would improve performance vs. Sham conditions in touchscreen tasks relevant to hippocampal and prefrontal cortical function [e.g., location discrimination reversal (LDR) and extinction, respectively]. In LDR, 56Fe female mice more accurately discriminated two discrete conditioned stimuli relative to Sham mice, suggesting improved hippocampal function. However, 56Fe and Sham female mice acquired a new simple stimulus-response behavior and extinguished this acquired behavior at similar rates, suggesting similar prefrontal cortical function. Based on prior work on multiple memory systems, we next tested whether improved hippocampal-dependent function (discrimination learning) came at the expense of striatal stimulus-response rule-based habit learning (visuomotor conditional learning). Interestingly, 56Fe female mice took more days to reach criteria in this striatal-dependent rule-based test relative to Sham mice. Together, our data support the idea of competition between memory systems, as an 56Fe-induced decrease in striatal-based learning is associated with enhanced hippocampal-based learning. These data emphasize the power of using a touchscreen-based battery to advance our understanding of the effects of space radiation on mission critical cognitive function in females, and underscore the importance of preclinical space radiation risk studies measuring multiple cognitive processes, thereby preventing NASA's risk assessments from being based on a single cognitive domain.
Collapse
Affiliation(s)
- Ivan Soler
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sanghee Yun
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ryan P. Reynolds
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Cody W. Whoolery
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Fionya H. Tran
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Priya L. Kumar
- University of Pennsylvania, Philadelphia, PA, United States
| | - Yuying Rong
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Matthew J. DeSalle
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Adam D. Gibson
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ann M. Stowe
- Department of Neurology and Neurological Therapeutics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Frederico C. Kiffer
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Amelia J. Eisch
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Neuroscience, Perelman School of Medicine, Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
154
|
Renoprotection Induced by Aerobic Training Is Dependent on Nitric Oxide Bioavailability in Obese Zucker Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3683796. [PMID: 34621463 PMCID: PMC8492245 DOI: 10.1155/2021/3683796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/21/2021] [Indexed: 11/21/2022]
Abstract
Aerobic training (AT) promotes several health benefits that may attenuate the progression of obesity associated diabetes. Since AT is an important nitric oxide (NO−) inducer mediating kidney-healthy phenotype, the present study is aimed at investigating the effects of AT on metabolic parameters, morphological, redox balance, inflammatory profile, and vasoactive peptides in the kidney of obese-diabetic Zucker rats receiving L-NAME (N(omega)-nitro-L-arginine methyl ester). Forty male Zucker rats (6 wk old) were assigned into four groups (n = 10, each): sedentary lean rats (CTL-Lean), sedentary obese rats (CTL-Obese), AT trained obese rats without blocking nitric oxide synthase (NOS) (Obese+AT), and obese-trained with NOS block (Obese+AT+L-NAME). AT groups ran 60 min in the maximal lactate steady state (MLSS), five days/wk/8 wk. Obese+AT rats improved glycemic homeostasis, SBP, aerobic capacity, renal mitochondria integrity, redox balance, inflammatory profile (e.g., TNF-α, CRP, IL-10, IL-4, and IL-17a), and molecules related to renal NO− metabolism (klotho/FGF23 axis, vasoactive peptides, renal histology, and reduced proteinuria). However, none of these positive outcomes were observed in CTL-Obese and Obese+AT+L-NAME (p < 0.0001) groups. Although Obese+AT+L-NAME lowered BP (compared with CTL-Obese; p < 0.0001), renal damage was observed after AT intervention. Furthermore, AT training under conditions of low NO− concentration increased signaling pathways associated with ACE-2/ANG1-7/MASr. We conclude that AT represents an important nonpharmacological intervention to improve kidney function in obese Zucker rats. However, these renal and metabolic benefits promoted by AT are dependent on NO− bioavailability and its underlying regulatory mechanisms.
Collapse
|
155
|
The Frequency-Dependence of Pre- and Postganglionic Nerve Stimulation of Pig and Rat Bladder. Int Neurourol J 2021; 25:210-218. [PMID: 34610714 PMCID: PMC8497736 DOI: 10.5213/inj.2142002.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/10/2021] [Indexed: 12/16/2022] Open
Abstract
PURPOSE The urinary bladder generates phasic contractions via action potentials generated in pre- and then postganglionic neurons. Whilst the frequency-dependence of postganglionic neurons to generate contractions has been quantified, the dynamic range of preganglionic neurons is less clear and if intramural ganglia exert frequency-dependent modulation of transmission between pre- and postganglionic neurons. The phosphodiesterase type 5 inhibitor sildenafil reduces neurotransmitter release from postganglionic fibres to detrusor smooth muscle and an additional question was if there was also a preganglionic action. This study aimed to compare the frequency range of bladder contractile activation by pre- and postganglionic stimulation in pig and rat bladders and if sildenafil exerted additional preganglionic actions. METHODS An arterially-perfused ex vivo pig bladder preparation was used for preganglionic (pelvic nerve) and mixed pre-and postganglionic (direct bladder wall) stimulation at 36°C and postganglionic mediated contractions achieved by field-stimulation of in vitro isolated detrusor strips. With rats, pelvic nerve stimulation was carried out in vivo and postganglionic stimulation also with isolated detrusor strips. RESULTS All contractions were abolished by 2% lignocaine indicating they are nerve-mediated. Stimulation targets were verified with hexamethonium that completely abolished pelvic nerve responses by had no effect on detrusor strips; responses to mixed bladder wall stimulation were partially reduced. The frequency-dependence of contractile activation was similar whether by pre- or postganglionic stimulation in both pigs and rats. Sildenafil reduced contractions to preganglionic stimulation significantly more than to postganglionic stimulation. Mixed pre- and postganglionic stimulation were reduced by an intermediate extent. CONCLUSION Intramural ganglia offer no frequency-dependent modulation under the experimental conditions used here and the sildenafil data are consistent with multiple sites of action underlying generation of bladder contractions. A translational aspect of these findings is discussed in terms of setting stimulation parameters for neuromodulation protocols.
Collapse
|
156
|
Host response transcriptomic analysis of Crimean-Congo hemorrhagic fever pathogenesis in the cynomolgus macaque model. Sci Rep 2021; 11:19807. [PMID: 34615921 PMCID: PMC8494817 DOI: 10.1038/s41598-021-99130-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/14/2021] [Indexed: 11/09/2022] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a highly pathogenic tick-borne RNA virus prevalent in Asia, Europe, and Africa, and can cause a hemorrhagic disease (CCHF) in humans with mortality rates as high as 60%. A general lack of both effective medical countermeasures and a comprehensive understanding of disease pathogenesis is partly driven by an historical lack of viable CCHF animal models. Recently, a cynomolgous macaque model of CCHF disease was developed. Here, we document the targeted transcriptomic response of non-human primates (NHP) to two different CCHFV strains; Afghan09-2990 and Kosova Hoti that both yielded a mild CCHF disease state. We utilized a targeted gene panel to elucidate the transcriptomic changes occurring in NHP whole blood during CCHFV infection; a first for any primate species. We show numerous upregulated genes starting at 1 day post-challenge through 14 days post-challenge. Early gene changes fell predominantly in the interferon stimulated gene family with later gene changes coinciding with an adaptive immune response to the virus. There are subtle differences between viral strains, namely duration of the differentially expressed gene response and biological pathways enriched. After recovery, NHPs showed no lasting transcriptomic changes at the end of sample collection.
Collapse
|
157
|
The extracellular matrix glycoprotein ADAMTSL2 is increased in heart failure and inhibits TGFβ signalling in cardiac fibroblasts. Sci Rep 2021; 11:19757. [PMID: 34611183 PMCID: PMC8492753 DOI: 10.1038/s41598-021-99032-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/16/2021] [Indexed: 12/21/2022] Open
Abstract
Fibrosis accompanies most heart diseases and is associated with adverse patient outcomes. Transforming growth factor (TGF)β drives extracellular matrix remodelling and fibrosis in the failing heart. Some members of the ADAMTSL (a disintegrin-like and metalloproteinase domain with thrombospondin type 1 motifs-like) family of secreted glycoproteins bind to matrix microfibrils, and although their function in the heart remains largely unknown, they are suggested to regulate TGFβ activity. The aims of this study were to determine ADAMTSL2 levels in failing hearts, and to elucidate the role of ADAMTSL2 in fibrosis using cultured human cardiac fibroblasts (CFBs). Cardiac ADAMTSL2 mRNA was robustly increased in human and experimental heart failure, and mainly expressed by fibroblasts. Over-expression and treatment with extracellular ADAMTSL2 in human CFBs led to reduced TGFβ production and signalling. Increased ADAMTSL2 attenuated myofibroblast differentiation, with reduced expression of the signature molecules α-smooth muscle actin and osteopontin. Finally, ADAMTSL2 mitigated the pro-fibrotic CFB phenotypes, proliferation, migration and contractility. In conclusion, the extracellular matrix-localized glycoprotein ADAMTSL2 was upregulated in fibrotic and failing hearts of patients and mice. We identified ADAMTSL2 as a negative regulator of TGFβ in human cardiac fibroblasts, inhibiting myofibroblast differentiation and pro-fibrotic properties.
Collapse
|
158
|
Paik JW, Cha JK, Song YW, Thoma DS, Jung RE, Jung UW. Effect of Schneiderian membrane integrity on bone formation in sinus augmentation: An experimental study in rabbits. J Clin Periodontol 2021; 49:76-83. [PMID: 34605062 DOI: 10.1111/jcpe.13562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/18/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022]
Abstract
AIM To assess the effect of Schneiderian membrane (SM) perforation on bone formation by applying a particulate deproteinized bovine bone mineral (PBBM). MATERIALS AND METHODS Bilateral sinus augmentation was performed in eight rabbits. The same amount of PBBM was placed at a sinus where the SM was intentionally perforated for the perforation group (standardized to 3 mm diameter) and the other sinus with an intact SM that served as the intact group. At 12 weeks, all animals were euthanized for radiographic and histomorphometric analyses. RESULTS The area of the newly formed bone in the perforation group was significantly less than that in the intact group (18.7% and 25.5%, respectively, p = .028). The newly formed bone in the area close to the perforated SM was significantly less than that in the intact group (18.7% and 26.1%, respectively, p < .05). However, there was no significant difference in the total augmented area (p = .234) and the total augmented volume (p = .382) between the two groups. CONCLUSION SM perforation had an adverse effect on new bone formation, predominantly close to the area of membrane perforation. However, no significant difference was found in the total augmented volume between the SM perforation and the intact groups.
Collapse
Affiliation(s)
- Jeong-Won Paik
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Jae-Kook Cha
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Young-Woo Song
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Republic of Korea.,Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Daniel S Thoma
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Republic of Korea.,Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Ronald E Jung
- Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Ui-Won Jung
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Republic of Korea
| |
Collapse
|
159
|
Righesso LAR, Terekhov M, Götz H, Ackermann M, Emrich T, Schreiber LM, Müller WEG, Jung J, Rojas JP, Al-Nawas B. Dynamic contrast-enhanced magnetic resonance imaging for monitoring neovascularization during bone regeneration-a randomized in vivo study in rabbits. Clin Oral Investig 2021; 25:5843-5854. [PMID: 33786647 PMCID: PMC8443511 DOI: 10.1007/s00784-021-03889-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/12/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Micro-computed tomography (μ-CT) and histology, the current gold standard methods for assessing the formation of new bone and blood vessels, are invasive and/or destructive. With that in mind, a more conservative tool, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), was tested for its accuracy and reproducibility in monitoring neovascularization during bone regeneration. Additionally, the suitability of blood perfusion as a surrogate of the efficacy of osteoplastic materials was evaluated. MATERIALS AND METHODS Sixteen rabbits were used and equally divided into four groups, according to the time of euthanasia (2, 3, 4, and 6 weeks after surgery). The animals were submitted to two 8-mm craniotomies that were filled with blood or autogenous bone. Neovascularization was assessed in vivo through DCE-MRI, and bone regeneration, ex vivo, through μ-CT and histology. RESULTS The defects could be consistently identified, and their blood perfusion measured through DCE-MRI, there being statistically significant differences within the blood clot group between 3 and 6 weeks (p = 0.029), and between the former and autogenous bone at six weeks (p = 0.017). Nonetheless, no significant correlations between DCE-MRI findings on neovascularization and μ-CT (r =-0.101, 95% CI [-0.445; 0.268]) or histology (r = 0.305, 95% CI [-0.133; 0.644]) findings on bone regeneration were observed. CONCLUSIONS These results support the hypothesis that DCE-MRI can be used to monitor neovascularization but contradict the premise that it could predict bone regeneration as well.
Collapse
Affiliation(s)
- L A R Righesso
- Clinic for Oral and Maxillofacial Surgery and Plastic Surgery, University Medical Center of the Johannes Gutenberg University Mainz, Augustusplatz 2, 55131, Mainz, Germany.
| | - M Terekhov
- Molecular and Cellular Imaging, Comprehensive Heart Failure Center, University Hospital Würzburg, Josef-Schneider-Strasse 2, 97080, Würzburg, Germany
| | - H Götz
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - M Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Johann-Joachim-Becher-Weg 13, 55128, Mainz, Germany
| | - T Emrich
- Department of Radiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
- Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC, 29425, USA
- German Center for Cardiovascular Research (DZHK), Partner-Site Rhine-Main, Potsdamer Strasse 58, 10785, Berlin, Germany
| | - L M Schreiber
- Molecular and Cellular Imaging, Comprehensive Heart Failure Center, University Hospital Würzburg, Josef-Schneider-Strasse 2, 97080, Würzburg, Germany
| | - W E G Müller
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - J Jung
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyung Hee University, 23, Kyung Hee Dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - J P Rojas
- Private Practice, Av. La Dehesa, 181, Santiago, Chile
| | - B Al-Nawas
- Clinic for Oral and Maxillofacial Surgery and Plastic Surgery, University Medical Center of the Johannes Gutenberg University Mainz, Augustusplatz 2, 55131, Mainz, Germany
| |
Collapse
|
160
|
Davidson CD, Gibson AL, Gu T, Baxter LL, Deverman BE, Beadle K, Incao AA, Rodriguez-Gil JL, Fujiwara H, Jiang X, Chandler RJ, Ory DS, Gradinaru V, Venditti CP, Pavan WJ. Improved systemic AAV gene therapy with a neurotrophic capsid in Niemann-Pick disease type C1 mice. Life Sci Alliance 2021; 4:e202101040. [PMID: 34407999 PMCID: PMC8380657 DOI: 10.26508/lsa.202101040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 11/24/2022] Open
Abstract
Niemann-Pick C1 disease (NPC1) is a rare, fatal neurodegenerative disease caused by mutations in NPC1, which encodes the lysosomal cholesterol transport protein NPC1. Disease pathology involves lysosomal accumulation of cholesterol and lipids, leading to neurological and visceral complications. Targeting the central nervous system (CNS) from systemic circulation complicates treatment of neurological diseases with gene transfer techniques. Selected and engineered capsids, for example, adeno-associated virus (AAV)-PHP.B facilitate peripheral-to-CNS transfer and hence greater CNS transduction than parental predecessors. We report that systemic delivery to Npc1 m1N/m1N mice using an AAV-PHP.B vector ubiquitously expressing NPC1 led to greater disease amelioration than an otherwise identical AAV9 vector. In addition, viral copy number and biodistribution of GFP-expressing reporters showed that AAV-PHP.B achieved more efficient, albeit variable, CNS transduction than AAV9 in Npc1 m1N/m1N mice. This variability was associated with segregation of two alleles of the putative AAV-PHP.B receptor Ly6a in Npc1 m1N/m1N mice. Our data suggest that robust improvements in NPC1 disease phenotypes occur even with modest CNS transduction and that improved neurotrophic capsids have the potential for superior NPC1 AAV gene therapy vectors.
Collapse
Affiliation(s)
- Cristin D Davidson
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alana L Gibson
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tansy Gu
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Laura L Baxter
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin E Deverman
- Division of Biology and Biological Engineering, California Institutes of Technology, Pasadena, CA, USA
| | - Keith Beadle
- Division of Biology and Biological Engineering, California Institutes of Technology, Pasadena, CA, USA
| | - Arturo A Incao
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jorge L Rodriguez-Gil
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hideji Fujiwara
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xuntian Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Randy J Chandler
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniel S Ory
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institutes of Technology, Pasadena, CA, USA
| | - Charles P Venditti
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
161
|
Karunarathne WAHM, Molagoda IMN, Lee KT, Choi YH, Jin CY, Kim GY. Anthocyanin-enriched polyphenols from Hibiscus syriacus L. (Malvaceae) exert anti-osteoporosis effects by inhibiting GSK-3β and subsequently activating β-catenin. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153721. [PMID: 34461423 DOI: 10.1016/j.phymed.2021.153721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/08/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The bark and petal of Hibiscus syriacus L. (Malvaceae) have been used to relieve pain in traditional Korean medicine. Recently, we identified anthocyanin-enriched polyphenols from the petal of H. syriacus L. (AHs) and determined its anti-melanogenic, anti-inflammatory, and anti-oxidative properties. Nevertheless, the osteogenic potential of AHs remains unknown. PURPOSE This study was aimed to investigating the effect of AHs on osteoblast differentiation and osteogenesis in osteoblastic cell lines and zebrafish larvae. Furthermore, we investigated whether AHs ameliorates prednisolone (PDS)-induced osteoporosis. STUDY DESIGN AND METHODS Cell viability was assessed by cellular morphology, MTT assay, and flow cytometry analysis, and osteoblast differentiation was measured alizarin red staining, alkaline phosphatase (ALP) activity, and osteoblast-specific marker expression. Osteogenic and anti-osteoporotic effects of AHs were determined in zebrafish larvae. RESULTS AHs enhanced calcification and ALP activity concomitant with the increased expression of osterix (OSX), runt-related transcription factor 2 (RUNX2), and ALP in MC3T3-E1 preosteoblast and MG-63 osteosarcoma cells. Additionally, AHs accelerated vertebral formation and mineralization in zebrafish larvae, concurrent with the increased expression of OSX, RUNX2a, and ALP. Furthermore, PDS-induced loss of osteogenic activity and vertebral formation were restored by treatment with AHs, accompanied by a significant recovery of calcification, ALP activity, and osteogenic marker expression. Molecular docking studies showed that 16 components in AHs fit to glucagon synthase kinase-3β (GSK-3β); particularly, isovitexin-4'-O-glucoside most strongly binds to the peptide backbone of GSK-3β at GLY47(O), GLY47(N), and ASN361(O), with a binding score of -7.3. Subsequently, AHs phosphorylated GSK-3β at SER9 (an inactive form) and released β-catenin into the nucleus. Pretreatment with FH535, a Wnt/β-catenin inhibitor, significantly inhibited AH-induced vertebral formation in zebrafish larvae. CONCLUSION AHs stimulate osteogenic activities through the inhibition of GSK-3β and subsequent activation of β-catenin, leading to anti-osteoporosis effects.
Collapse
Affiliation(s)
| | - Ilandarage Menu Neelaka Molagoda
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea; Research Institute for Basic Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Kyoung Tae Lee
- Forest Biomaterials Research Center, National Institute of Forest Science, Jinju 52817, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| | - Cheng-Yun Jin
- Key Laboratory of Advanced Technology for Drug Preparation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea; Research Institute for Basic Sciences, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
162
|
Ariosa-Morejon Y, Santos A, Fischer R, Davis S, Charles P, Thakker R, Wann AK, Vincent TL. Age-dependent changes in protein incorporation into collagen-rich tissues of mice by in vivo pulsed SILAC labelling. eLife 2021; 10:66635. [PMID: 34581667 PMCID: PMC8478409 DOI: 10.7554/elife.66635] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 09/03/2021] [Indexed: 12/11/2022] Open
Abstract
Collagen-rich tissues have poor reparative capacity that predisposes to common age-related disorders such as osteoporosis and osteoarthritis. We used in vivo pulsed SILAC labelling to quantify new protein incorporation into cartilage, bone, and skin of mice across the healthy life course. We report dynamic turnover of the matrisome, the proteins of the extracellular matrix, in bone and cartilage during skeletal maturation, which was markedly reduced after skeletal maturity. Comparing young adult with older adult mice, new protein incorporation was reduced in all tissues. STRING clustering revealed changes in epigenetic modulators across all tissues, a decline in chondroprotective growth factors such as FGF2 and TGFβ in cartilage, and clusters indicating mitochondrial dysregulation and reduced collagen synthesis in bone. Several pathways were implicated in age-related disease. Fewer changes were observed for skin. This methodology provides dynamic protein data at a tissue level, uncovering age-related molecular changes that may predispose to disease.
Collapse
Affiliation(s)
- Yoanna Ariosa-Morejon
- Kennedy Institute of Rheumatology, Arthritis Research UK Centre for OA Pathogenesis, University of Oxford, Oxford, United Kingdom
| | - Alberto Santos
- Big Data Institute, Li-Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom.,Center for Health Data Science, Faculty of Health Sciences, University of Copenhagen, Copenhagen, United Kingdom
| | - Roman Fischer
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Simon Davis
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Philip Charles
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Rajesh Thakker
- Academic Endocrine Unit, OCDEM, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| | - Angus Kt Wann
- Kennedy Institute of Rheumatology, Arthritis Research UK Centre for OA Pathogenesis, University of Oxford, Oxford, United Kingdom
| | - Tonia L Vincent
- Kennedy Institute of Rheumatology, Arthritis Research UK Centre for OA Pathogenesis, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
163
|
Ricci E, Roselletti E, Gentili M, Sabbatini S, Perito S, Riccardi C, Migliorati G, Monari C, Ronchetti S. Glucocorticoid-Induced Leucine Zipper-Mediated TLR2 Downregulation Accounts for Reduced Neutrophil Activity Following Acute DEX Treatment. Cells 2021; 10:2228. [PMID: 34571877 PMCID: PMC8472062 DOI: 10.3390/cells10092228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/03/2022] Open
Abstract
Glucocorticoids are the most powerful anti-inflammatory and immunosuppressive pharmacological drugs available, despite their adverse effects. Glucocorticoid-induced leucine zipper (GILZ) is a glucocorticoid-induced gene that shares several anti-inflammatory properties with glucocorticoids. Although immunosuppressive effects of glucocorticoids on neutrophils remain poorly understood, we previously demonstrated that GILZ suppresses neutrophil activation under glucocorticoid treatment. Here, we sought to explore the regulation of Toll-like receptor 2 (TLR2) by the synthetic glucocorticoid dexamethasone (DEX) on neutrophils and the associated GILZ involvement. Peripheral blood neutrophils were isolated from wild type and GILZ-knock-out (KO) mice. TLR2 was found to be downregulated by the in vivo administration of glucocorticoids in wild type but not in GILZ-KO neutrophils, suggesting the involvement of GILZ in TLR2 downregulation. Accordingly, the TLR2-associated anti-fungal activity of neutrophils was reduced by DEX treatment in wild type but not GILZ-KO neutrophils. Furthermore, GILZ did not interact with NF-κB but was found to bind with STAT5, a pivotal factor in the regulation of TLR2 expression. A similar modulation of TLR2 expression, impaired phagocytosis, and killing activity was observed in circulating human neutrophils treated in vitro with DEX. These results demonstrate that glucocorticoids reduce the ability of neutrophils to respond to infections by downregulating TLR2 via GILZ, thereby reducing critical functions.
Collapse
Affiliation(s)
- Erika Ricci
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy; (E.R.); (M.G.); (C.R.); (G.M.)
| | - Elena Roselletti
- Department of Medicine and Surgery, Medical Microbiology Division, University of Perugia, 06132 Perugia, Italy; (E.R.); (S.S.); (S.P.); (C.M.)
| | - Marco Gentili
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy; (E.R.); (M.G.); (C.R.); (G.M.)
| | - Samuele Sabbatini
- Department of Medicine and Surgery, Medical Microbiology Division, University of Perugia, 06132 Perugia, Italy; (E.R.); (S.S.); (S.P.); (C.M.)
| | - Stefano Perito
- Department of Medicine and Surgery, Medical Microbiology Division, University of Perugia, 06132 Perugia, Italy; (E.R.); (S.S.); (S.P.); (C.M.)
| | - Carlo Riccardi
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy; (E.R.); (M.G.); (C.R.); (G.M.)
| | - Graziella Migliorati
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy; (E.R.); (M.G.); (C.R.); (G.M.)
| | - Claudia Monari
- Department of Medicine and Surgery, Medical Microbiology Division, University of Perugia, 06132 Perugia, Italy; (E.R.); (S.S.); (S.P.); (C.M.)
| | - Simona Ronchetti
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy; (E.R.); (M.G.); (C.R.); (G.M.)
| |
Collapse
|
164
|
Wassink G, Davidson JO, Crisostomo A, Zhou KQ, Galinsky R, Dhillon SK, Lear CA, Bennet L, Gunn AJ. Recombinant erythropoietin does not augment hypothermic white matter protection after global cerebral ischaemia in near-term fetal sheep. Brain Commun 2021; 3:fcab172. [PMID: 34409290 PMCID: PMC8364665 DOI: 10.1093/braincomms/fcab172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2021] [Indexed: 01/07/2023] Open
Abstract
Therapeutic hypothermia for hypoxic-ischaemic encephalopathy provides partial white matter protection. Recombinant erythropoietin reduces demyelination after hypoxia-ischaemia, but it is unclear whether adjunct erythropoietin treatment can further improve outcomes after therapeutic hypothermia. Term-equivalent fetal sheep received sham-ischaemia (n = 9) or cerebral ischaemia for 30 min (ischaemia-vehicle, n = 8), followed by intravenous infusion of recombinant erythropoietin (ischaemia-Epo, n = 8; 5000 IU/kg bolus dose, then 833.3 IU/kg/h), cerebral hypothermia (ischaemia-hypothermia, n = 8), or recombinant erythropoietin plus hypothermia (ischaemia-Epo-hypothermia, n = 8), from 3 to 72 h post-ischaemia. Foetal brains were harvested at 7 days after cerebral ischaemia. Ischaemia was associated with marked loss of total Olig2-positive oligodendrocytes with reduced density of myelin and linearity of the white matter tracts (P < 0.01), and microglial induction and increased caspase-3-positive apoptosis. Cerebral hypothermia improved the total number of oligodendrocytes and restored myelin basic protein (P < 0.01), whereas recombinant erythropoietin partially improved myelin basic protein density and tract linearity. Both interventions suppressed microgliosis and caspase-3 (P < 0.05). Co-treatment improved 2′,3′-cyclic-nucleotide 3′-phosphodiesterase-myelin density compared to hypothermia, but had no other additive effect. These findings suggest that although hypothermia and recombinant erythropoietin independently protect white matter after severe hypoxia-ischaemia, they have partially overlapping anti-inflammatory and anti-apoptotic effects, with little additive benefit of combination therapy.
Collapse
Affiliation(s)
- Guido Wassink
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alyssa Crisostomo
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Kelly Q Zhou
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical Research, Victoria, Australia
| | | | - Christopher A Lear
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
165
|
Bai G, Yu H, Guan X, Zeng F, Liu X, Chen B, Liu J, Tian Y. CpG immunostimulatory oligodeoxynucleotide 1826 as a novel nasal ODN adjuvant enhanced the protective efficacy of the periodontitis gene vaccine in a periodontitis model in SD rats. BMC Oral Health 2021; 21:403. [PMID: 34399747 PMCID: PMC8369760 DOI: 10.1186/s12903-021-01763-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We previously demonstrated that nasal administration of periodontitis gene vaccine (pVAX1-HA2-fimA) or pVAX1-HA2-fimA plus IL-15 as adjuvant provoked protective immunity in the periodontal tissue of SD rats. This study evaluated the immune effect of pVAX1-HA2-fimA plus CpG-ODN 1826 as an adjuvant in the SD rat periodontitis models to improve the efficacy of the previously used vaccine. METHODS Periodontitis was induced in maxillary second molars in SD rats receiving a ligature and infected with Porphyromonas gingivalis. Forty-two SD rats were randomly assigned to six groups: A, control without P. gingivalis; B, P. gingivalis with saline; C, P. gingivalis with pVAX1; D, P. gingivalis with pVAX1-HA2-fimA; E, P. gingivalis with pVAX1-HA2-fimA/IL-15; F, P. gingivalis with pVAX1-HA2-fimA+CpG ODN 1826 (30 µg). The levels of FimA-specific and HA2-specific secretory IgA antibodies in the saliva of rats were measured by ELISA. The levels of COX-2 and RANKL were detected by immunohistochemical assay. Morphometric analysis was used to evaluate alveolar bone loss. Major organs were observed by HE staining. RESULTS 30 μg could be the optimal immunization dose for CpG-ODN 1826 and the levels of SIgA antibody were consistently higher in the pVAX1-HA2-fimA+CpG-ODN 1826 (30 µg) group than in the other groups during weeks 1-8 (P < 0.05, except week 1 or 2). Morphometric analysis demonstrated that pVAX1-HA2-fimA+CpG-ODN 1826 (30 µg) significantly reduced alveolar bone loss in ligated maxillary molars in group F compared with groups B-E (P < 0.05). Immunohistochemical assays revealed that the levels of COX-2 and RANKL were significantly lower in group F compared with groups B-E (P < 0.05). HE staining results of the major organs indicated that pVAX1-HA2-fimA with or without CpG-ODN 1826 was not toxic for in vivo use. CONCLUSIONS These results indicated that CpG-ODN 1826 (30 µg) could be used as an effective and safe mucosal adjuvant for pVAX1-HA2-fimA in SD rats since it could elicit mucosal SIgA responses and modulate COX-2 and RANKL production during weeks 1-8, thereby inhibiting inflammation and decreasing bone loss.
Collapse
Affiliation(s)
- Guohui Bai
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Hang Yu
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Xiaoyan Guan
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China.,Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Fengjiao Zeng
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China.,Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Xia Liu
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Bin Chen
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Jianguo Liu
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China.
| | - Yuan Tian
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China. .,Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
166
|
Almaraz-De-Santiago J, Solis-Torres N, Quintana-Belmares R, Rodríguez-Carlos A, Rivas-Santiago B, Huerta-García J, Mercado-Reyes M, Enciso-Moreno JA, Villagomez-Castro J, González-Curiel I, Osornio-Vargas Á, Rivas-Santiago CE. Long-term exposure to particulate matter from air pollution alters airway β-defensin-3 and -4 and cathelicidin host defense peptides production in a murine model. Peptides 2021; 142:170581. [PMID: 34052349 DOI: 10.1016/j.peptides.2021.170581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/28/2023]
Abstract
Epidemiological studies have associated long-term exposure to environmental air pollution particulate matter (PM) with the development of diverse health problems. They include infectious respiratory diseases related to the deregulation of some innate immune response mechanisms, such as the host defense peptides' expression. Herein, we evaluated in BALB/c mice the effect of long-standing exposure (60 days) to urban-PM from the south of Mexico City, with aerodynamic diameters below 2.5 μm (PM2.5) and 10 μm (PM10) on the lung's gene expression and production of three host defense peptides (HDPs); murine beta-defensin-3, -4 (mBD-3, mBD-4) and cathelin-related antimicrobial peptide (CRAMP). We also evaluated mRNA levels of Il1b and Il10, two cytokines related to the expression of host defense peptides. Exposure to PM2.5 and PM10 differentially induced lung inflammation, being PM2.5, which caused higher inflammation levels, probably associated with a differential deposition on the airways, that facilitate the interaction with alveolar macrophages. Inflammation levels were associated with an early upregulation of the three HDPs assessed and an increment in Il1b mRNA levels. Interestingly, after 28 days of exposure, Il10 mRNA upregulation was observed and was associated with the downregulation of HDPs and Il1b mRNA levels. The upregulation of Il10 mRNA and suppression of HDPs might facilitate microbial colonization and the development of diseases associated with long-term exposure to PM.
Collapse
Affiliation(s)
- Jovany Almaraz-De-Santiago
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Nancy Solis-Torres
- Master's Program in Biological Sciences, Biological Sciences School, University Autonomous of Zacatecas, Zacatecas, Mexico
| | - Raúl Quintana-Belmares
- Subdirección de Investigación Básic, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Adrián Rodríguez-Carlos
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | - Bruno Rivas-Santiago
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | - Josefina Huerta-García
- Laboratory of Molecular and Environmental Biology, Biological Sciences School, University Autonomous of Zacatecas, Zacatecas, Mexico
| | - Marisa Mercado-Reyes
- Laboratory of Conservation Biology, Biological Sciences School, University Autonomous of Zacatecas, Zacatecas, Mexico
| | - Jose A Enciso-Moreno
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | - Julio Villagomez-Castro
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Irma González-Curiel
- Post-graduate Program in Sciences and Chemical Technology, Chemistry Sciences School, University Autonomous of Zacatecas, Zacatecas, Mexico
| | | | - César E Rivas-Santiago
- CONACYT-Academic Unit of Chemical Sciences, University Autonomous of Zacatecas, Zacatecas, Mexico.
| |
Collapse
|
167
|
Alnes IB, Jensen KH, Skorping A, Salvanes AGV. Ontogenetic Change in Behavioral Responses to Structural Enrichment From Fry to Parr in Juvenile Atlantic Salmon ( Salmo salar L.). Front Vet Sci 2021; 8:638888. [PMID: 34381830 PMCID: PMC8350771 DOI: 10.3389/fvets.2021.638888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/17/2021] [Indexed: 11/23/2022] Open
Abstract
Enrichment is widely used as a tool for studying how changes in environment affect animal behavior. Here, we report an experimental study investigating if behaviors shaped by stimuli from environmental enrichment depending on the stage animals are exposed to enrichment. We used juvenile Atlantic salmon (Salmo salar) in their first autumn. This is a species commonly reared for conservation purposes. Previous work has shown that environmental enrichment had no effect on long-term survival when the fry stage (smaller than 70 mm) was released, but that if late parr stages (larger than 70 mm) are released, enrichment is reported to have a positive effect on smolt migration survival. Here, we explored the effect of enrichment at two different stages of development. Both stages were reared and treated for 7 weeks (fry at 11-18 weeks and parr at 24-31 weeks after hatching) before tested for behavior. Responses known to be associated with exploratory behavior, activity, and stress coping were quantified by testing 18-week-old fry and 31-week-old parr in a six-chamber maze on 7 successive days after rearing in structurally enriched (plastic plants and tubes) or plain impoverished rearing environments. The data show that Atlantic salmon are sensitive to stimuli from structural enrichment when they are parr, but not when in the fry stage. Parr deprived of enrichment (control treatment) were reluctant to start exploring the maze, and when they did, they spent a longer time frozen than enriched parr, suggesting that deprivation of enrichment at this life can be stressful. Our data suggest that structural enrichment could have the potential to improve welfare for salmonids in captivity and for survival of released juvenile salmon if structural enrichment is provided at the parr stage and the fish reared for conservation are released at the parr stage.
Collapse
|
168
|
University of Alabama at Birmingham Nathan Shock Center: comparative energetics of aging. GeroScience 2021; 43:2149-2160. [PMID: 34304389 DOI: 10.1007/s11357-021-00414-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/09/2022] Open
Abstract
The UAB Nathan Shock Center focuses on comparative energetics and aging. Energetics, as defined for this purpose, encompasses the causes, mechanisms, and consequences of the acquisition, storage, and use of metabolizable energy. Comparative energetics is the study of metabolic processes at multiple scales and across multiple species as it relates to health and aging. The link between energetics and aging is increasingly understood in terms of dysregulated mitochondrial function, altered metabolic signaling, and aberrant nutrient responsiveness with increasing age. The center offers world-class expertise in comprehensive, integrated energetic assessment and analysis from the level of the organelle to the organism and across species from the size of worms to rats as well as state-of-the-art data analytics. The range of services offered by our three research cores, (1) The Organismal Energetics Core, (2) Mitometabolism Core, and (3) Data Analytics Core, is described herein.
Collapse
|
169
|
Alfonso F, Torp-Pedersen C, Carter RE, Crea F. European Heart Journal quality standards. Eur Heart J 2021; 42:2729-2736. [PMID: 34289494 DOI: 10.1093/eurheartj/ehab324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/17/2021] [Indexed: 12/26/2022] Open
Abstract
The aim of the European Heart Journal (EHJ) is to attract innovative, methodologically sound, and clinically relevant research manuscripts able to change clinical practice and/or substantially advance knowledge on cardiovascular diseases. As the reference journal in cardiovascular medicine, the EHJ is committed to publishing only the best cardiovascular science adhering to the highest ethical principles. EHJ uses highly rigorous peer-review, critical statistical review and the highest quality editorial process, to ensure the novelty, accuracy, quality, and relevance of all accepted manuscripts with the aim of inspiring the clinical practice of EHJ readers and reducing the global burden of cardiovascular diseases. This review article summarizes the quality standards pursued by the EHJ to fulfill its mission.
Collapse
Affiliation(s)
- Fernando Alfonso
- Department of Cardiology, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria IIS-IP, Universidad Autónoma de Madrid, CIBER-CV, C/Diego de León 62, Madrid 28006, Spain
| | - Christian Torp-Pedersen
- Department of Cardiology, Nordsjaelland Hospital and Alborg University Hospital, Department of Public Health, Copenhagen University, Denmark
| | - Rickey E Carter
- Department of Quantitative Health Sciences, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Filipo Crea
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
170
|
Osterkamp J, Strandby RB, Nerup N, Svendsen MBS, Svendsen LB, Achiam MP. Time to maximum indocyanine green fluorescence of gastric sentinel lymph nodes and feasibility of combined indocyanine green/sodium fluorescein gastric lymphography. Langenbecks Arch Surg 2021; 406:2717-2724. [PMID: 34245352 DOI: 10.1007/s00423-021-02265-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/01/2021] [Indexed: 12/23/2022]
Abstract
PURPOSE Indocyanine green (ICG) and sodium fluorescein (SF) are fluorescent dyes used for sentinel lymph node mapping. In oncological gastric surgery, ICG lymphography has increased the number of resected lymph nodes. However, the optimal time to administer ICG is unclear, and both preoperative and intraoperative injections have been practised. As dye spillage will diminish lymphogram visibility, a second dye with different excitation and emission spectra may present a clinical alternative. We measured the time until maximum ICG fluorescence of gastric sentinel lymph nodes and investigated the feasibility of combined lymphography with two fluorescent dyes: ICG and SF. METHODS Ten Danish Landrace/Yorkshire pigs were used in this study. After completion of the laparoscopic setup, ICG and then SF were endoscopically injected into the gastric submucosa. Lymphograms for both dyes were recorded, and the time until maximum ICG sentinel lymph node fluorescence was determined. RESULTS The mean time until maximum ICG fluorescence of gastric sentinel lymph nodes was 50 s (± 12.5), and the fluorescent signal then remained stable until the end of the recorded period (45 min). A lymphogram showing both ICG and SF was acquired for eight of the ten pigs. CONCLUSIONS Because of the short time until maximum ICG fluorescence of sentinel lymph nodes, intraoperative injections could be a sufficient alternative to preoperative injections for oncological gastric surgery. Combined ICG and SF lymphography was feasible and resulted in clear lymphograms with no interference between the two dyes. The ability to use multiple dyes during a surgical procedure offers the exciting prospect of simultaneously assessing perfusion and performing fluorescence lymphography.
Collapse
Affiliation(s)
- Jens Osterkamp
- Oesophago Gastric Cancer Surgery Group (OGCS), Department of Surgical Gastroenterology, Rigshospitalet, University Hospital of Copenhagen, Inge Lehmanns Vej 7, 2100, Copenhagen Ø, Denmark.
| | - Rune B Strandby
- Oesophago Gastric Cancer Surgery Group (OGCS), Department of Surgical Gastroenterology, Rigshospitalet, University Hospital of Copenhagen, Inge Lehmanns Vej 7, 2100, Copenhagen Ø, Denmark
| | - Nikolaj Nerup
- Oesophago Gastric Cancer Surgery Group (OGCS), Department of Surgical Gastroenterology, Rigshospitalet, University Hospital of Copenhagen, Inge Lehmanns Vej 7, 2100, Copenhagen Ø, Denmark
| | - Morten Bo Søndergaard Svendsen
- Copenhagen Academy for Medical Education and Simulation (CAMES) - CAMES Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Lars Bo Svendsen
- Oesophago Gastric Cancer Surgery Group (OGCS), Department of Surgical Gastroenterology, Rigshospitalet, University Hospital of Copenhagen, Inge Lehmanns Vej 7, 2100, Copenhagen Ø, Denmark
| | - Michael Patrick Achiam
- Oesophago Gastric Cancer Surgery Group (OGCS), Department of Surgical Gastroenterology, Rigshospitalet, University Hospital of Copenhagen, Inge Lehmanns Vej 7, 2100, Copenhagen Ø, Denmark
| |
Collapse
|
171
|
Yang S, Yang S, Zhang H, Hua H, Kong Q, Wang J, Jiang Y. Targeting Na + /K + -ATPase by berbamine and ouabain synergizes with sorafenib to inhibit hepatocellular carcinoma. Br J Pharmacol 2021; 178:4389-4407. [PMID: 34233013 DOI: 10.1111/bph.15616] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE The multikinase inhibitor sorafenib is a first-line drug for advanced hepatocellular carcinoma. The response to sorafenib varies among hepatocellular carcinoma patients and many of the responders suffer from reduced sensitivity after long-term treatment. This study aims to explore a novel strategy to potentiate or maximize the anti-hepatocellular carcinoma effects of sorafenib. EXPERIMENTAL APPROACH We used hepatocellular carcinoma cell lines, western blotting, various antagonists, siRNA and tumour xenografts mouse model to determine the anti- hepatocellular carcinoma effects of sorafenib in combination with berbamine or other Na+ /K+ -ATPase ligands. KEY RESULTS Berbamine and the cardiotonic steroid, ouabain, synergize with sorafenib to inhibit hepatocellular carcinoma cells growth. Mechanistically, berbamine induces Src phosphorylation in Na+ /K+ -ATPase-dependent manner, leading to the activation of p38MAPK and EGFR-ERK pathways. The Na+ /K+ -ATPase ligand ouabain also induces Src, EGFR, type I insulin-like growth factor receptor, ERK1/2 and p38MAPK phosphorylation in hepatocellular carcinoma cells. Treatment of hepatocellular carcinoma cells with Src or EGFR inhibitor inhibits the induction of ERK1/2 phosphorylation by berbamine. Moreover, sorafenib inhibits the induction of Src, p38MAPK, EGFR and ERK1/2 phosphorylation by berbamine and ouabain. Importantly, combination of sorafenib with berbamine or ouabain synergistically inhibits both sorafenib-naïve and sorafenib-resistant hepatocellular carcinoma cells growth. Co-treatment of hepatocellular carcinoma cells with berbamine and sorafenib significantly induces cell death and significantly inhibits hepatocellular carcinoma xenografts growth in vivo. CONCLUSION AND IMPLICATIONS Berbamine or other Na+ /K+ -ATPase ligands have a potential for improving sorafenib responsiveness in hepatocellular carcinoma. Targeting Na+ /K+ -ATPase represents a novel strategy to potentiate the anti- hepatocellular carcinoma effects of sorafenib.
Collapse
Affiliation(s)
- Songpeng Yang
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shu Yang
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Zhang
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Hua
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, China
| | - Qingbin Kong
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yangfu Jiang
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
172
|
Chen X, Zhou Y, Sun Y, Ji T, Dai H. Transplantation of decellularized and lyophilized amniotic membrane inhibits endometrial fibrosis by regulating connective tissue growth factor and tissue inhibitor of matrix metalloproteinase-2. Exp Ther Med 2021; 22:968. [PMID: 34335910 PMCID: PMC8290472 DOI: 10.3892/etm.2021.10400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
Intrauterine adhesion (IUA) is a disease characterized by endometrial fibrosis caused by injury to the endometrium. In the present study, decellularized and lyophilized human amniotic membrane (DL-AM) material was transplanted in a rat model to explore the preventive effect against IUA. A total of 24 Sprague Dawley rats were randomly divided into an IUA (n=12) group and an IUA + DL-AM (n=12) group. To establish the model, the endometrium of the left uterus was scraped, while that of the right uterus was used as a control. In the IUA group, scraped uteri were sutured without any other treatment, whereas DL-AM was transplanted onto the scraped uteri in the IUA + DL-AM group. Uteri were resected for histological and immunohistochemical evaluation at 3, 7, 14 and 28 days after surgery. The results confirmed the development of IUA, which was accompanied by an increase in the rate of fibrotic area. Integral optical density (IOD) values of connective tissue growth factor (CTGF) were elevated in the IUA group, while matrix metalloproteinase-2 (MMP-2) decreased relative to the control group (P<0.05). After DL-AM transplantation, the IOD value of CTGF dropped, while MMP-2 increased compared with the IUA group (P<0.05). However, compared with that in the control group, the IOD value of CTGF was still higher, whereas MMP-2 was still lower in the IUA + DL-AM group (P<0.05). Furthermore, no evidence of endometrial regeneration was detected in both the IUA and IUA + DL-AM groups. Overall, these results indicated that in the rat model of IUA, transplantation of DL-AM had the potential to prevent the formation of fibrosis to a certain extent and may thus be an alternative strategy for managing the condition.
Collapse
Affiliation(s)
- Xing Chen
- Department of Gynecology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210036, P.R. China
| | - Yan Zhou
- Department of Obstetrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210036, P.R. China
| | - Ying Sun
- Department of Gynecology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210036, P.R. China
| | - Tonghui Ji
- Department of Gynecology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210036, P.R. China
| | - Huihua Dai
- Department of Gynecology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210036, P.R. China
| |
Collapse
|
173
|
Brown JM, Baker LS, Seroogy KB, Genter MB. Intranasal Carnosine Mitigates α-Synuclein Pathology and Motor Dysfunction in the Thy1-aSyn Mouse Model of Parkinson's Disease. ACS Chem Neurosci 2021; 12:2347-2359. [PMID: 34138535 PMCID: PMC9996643 DOI: 10.1021/acschemneuro.1c00096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disorder. Early symptoms include motor dysfunction and impaired olfaction. Toxic aggregation of α-synuclein (aSyn) in the olfactory bulb (OB) and substantia nigra pars compacta (SNpc) is a hallmark of PD neuropathology. Intranasal (IN) carnosine (2 mg/d for 8 weeks) was previously demonstrated to improve motor behavior and mitochondrial function in Thy1-aSyn mice, a model of PD. The present studies evaluated the efficacy of IN carnosine at a higher dose in slowing progression of motor deficits and aSyn accumulation in Thy1-aSyn mice. After baseline neurobehavioral assessments, IN carnosine was administered (0.0, 2.0, or 4.0 mg/day) to wild-type and Thy1-aSyn mice for 8 weeks. Olfactory and motor behavioral measurements were repeated prior to end point tissue collection. Brain sections were immunostained for aSyn and tyrosine hydroxylase (TH). Immunopositive cells were counted using design-based stereology in the SNpc and OB mitral cell layer (MCL). Behavioral assessments revealed a dose-dependent improvement in motor function with increasing carnosine dose. Thy1-aSyn mice treated with 2.0 or 4.0 mg/d IN carnosine exhibited fewer aSyn-positive (aSyn(+)) cell bodies in the SNpc compared to vehicle-treated mice. Moreover, the number of aSyn(+) cell bodies in carnosine-treated Thy1-aSyn mice was reduced to vehicle-treated wild-type levels in the SNpc. Carnosine treatment did not affect the number of aSyn(+) cell bodies in the OB-MCL or the number of TH(+) cells in the SNpc. In summary, intranasal carnosine treatment decreased aSyn accumulation in the SNpc, which may underlie its mitigation of motor deficits in the Thy1-aSyn mice.
Collapse
Affiliation(s)
- Josephine M Brown
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, 160 Panzeca Way, Cincinnati, Ohio 45267-0056, United States
| | - Lauren S Baker
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, 160 Panzeca Way, Cincinnati, Ohio 45267-0056, United States
| | - Kim B Seroogy
- Department of Neurology and Rehabilitation Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267-0536, United States
| | - Mary Beth Genter
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, 160 Panzeca Way, Cincinnati, Ohio 45267-0056, United States
| |
Collapse
|
174
|
Wenceslau CF, McCarthy CG, Earley S, England SK, Filosa JA, Goulopoulou S, Gutterman DD, Isakson BE, Kanagy NL, Martinez-Lemus LA, Sonkusare SK, Thakore P, Trask AJ, Watts SW, Webb RC. Guidelines for the measurement of vascular function and structure in isolated arteries and veins. Am J Physiol Heart Circ Physiol 2021; 321:H77-H111. [PMID: 33989082 PMCID: PMC8321813 DOI: 10.1152/ajpheart.01021.2020] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022]
Abstract
The measurement of vascular function in isolated vessels has revealed important insights into the structural, functional, and biomechanical features of the normal and diseased cardiovascular system and has provided a molecular understanding of the cells that constitutes arteries and veins and their interaction. Further, this approach has allowed the discovery of vital pharmacological treatments for cardiovascular diseases. However, the expansion of the vascular physiology field has also brought new concerns over scientific rigor and reproducibility. Therefore, it is appropriate to set guidelines for the best practices of evaluating vascular function in isolated vessels. These guidelines are a comprehensive document detailing the best practices and pitfalls for the assessment of function in large and small arteries and veins. Herein, we bring together experts in the field of vascular physiology with the purpose of developing guidelines for evaluating ex vivo vascular function. By using this document, vascular physiologists will have consistency among methodological approaches, producing more reliable and reproducible results.
Collapse
Grants
- R01HL139585 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P20 GM130459 NIGMS NIH HHS
- R01HL121871 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- DK115255 HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
- R61 NS115132 NINDS NIH HHS
- K99HL151889 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL151413 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R00HL116769 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL091905 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL088554 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL139585 NHLBI NIH HHS
- P20GM130459 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 HL135901 NHLBI NIH HHS
- RF1 NS110044 NINDS NIH HHS
- R01ES014639 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- U24 DK076169 NIDDK NIH HHS
- S10OD023438 HHS | NIH | NIH Office of the Director (OD)
- R01HL137112 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL135901 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL146914 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R00 HL116769 NHLBI NIH HHS
- K99 HL151889 NHLBI NIH HHS
- U24 DK115255 NIDDK NIH HHS
- R21 EB026518 NIBIB NIH HHS
- R01 HL149762 NHLBI NIH HHS
- DK076169 HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
- R01NS082521 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- R01 HL146054 NHLBI NIH HHS
- R21EB026518 HHS | NIH | National Institute of Biomedical Imaging and Bioengineering (NIBIB)
- R01 HL123301 NHLBI NIH HHS
- P01 HL134604 NHLBI NIH HHS
- R00GM118885 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 HL091905 NHLBI NIH HHS
- RF1NS110044 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- R01HL142808 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R61NS115132 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- R01HL146562 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL088105 NHLBI NIH HHS
- SB1 HL121871 NHLBI NIH HHS
- R01 HD037831 NICHD NIH HHS
- R01 HL137852 NHLBI NIH HHS
- R35 HL155008 NHLBI NIH HHS
- R01 HL137112 NHLBI NIH HHS
- R01HL149762 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL123301 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL146914 NHLBI NIH HHS
- R01 HL142808 NHLBI NIH HHS
- R01 HL088554 NHLBI NIH HHS
- R01HD037831 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- R01HL146054 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL146562 NHLBI NIH HHS
- R44 HL121871 NHLBI NIH HHS
- R01HL088105 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 ES014639 NIEHS NIH HHS
- P01HL134604 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL137852 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- S10 OD023438 NIH HHS
- R01 HL151413 NHLBI NIH HHS
- R41 HL121871 NHLBI NIH HHS
- R00 GM118885 NIGMS NIH HHS
Collapse
Affiliation(s)
- Camilla F Wenceslau
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Cameron G McCarthy
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Scott Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, Nevada
| | - Sarah K England
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Jessica A Filosa
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Styliani Goulopoulou
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - David D Gutterman
- Department of Medicine, Medical College of Wisconsin Cardiovascular Center, Milwaukee, Wisconsin
| | - Brant E Isakson
- Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Nancy L Kanagy
- Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico
| | - Luis A Martinez-Lemus
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Swapnil K Sonkusare
- Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Pratish Thakore
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, Nevada
| | - Aaron J Trask
- Center for Cardiovascular Research, The Heart Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - R Clinton Webb
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
175
|
Garcia-Bonilla L, Sciortino R, Shahanoor Z, Racchumi G, Janakiraman M, Montaner J, Zhou P, Anrather J, Iadecola C. Role of microglial and endothelial CD36 in post-ischemic inflammasome activation and interleukin-1β-induced endothelial activation. Brain Behav Immun 2021; 95:489-501. [PMID: 33872708 PMCID: PMC8187325 DOI: 10.1016/j.bbi.2021.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Cerebral ischemia is associated with an acute inflammatory response that contributes to the resulting injury. The innate immunity receptor CD36, expressed in microglia and endothelium, and the pro-inflammatory cytokine interleukin-1β (IL-1β) are involved in the mechanisms of ischemic injury. Since CD36 has been implicated in activation of the inflammasome, the main source of IL-1β, we investigated whether CD36 mediates brain injury through the inflammasome and IL-1β. We found that active caspase-1, a key inflammasome component, is decreased in microglia of CD36-deficient mice subjected to transient middle cerebral artery occlusion, an effect associated with a reduction in brain IL-1β. Conditional deletion of CD36 either in microglia or endothelium reduced ischemic injury in mice, attesting to the pathogenic involvement of CD36 in both cell types. Application of an ischemic brain extract to primary brain endothelial cell cultures from wild type (WT) mice induced IL-1β-dependent endothelial activation, reflected by increases in the cytokine colony stimulating factor-3, a response markedly attenuated in CD36-deficient endothelia. Similarly, the increase in colony stimulating factor-3 induced by recombinant IL-1β was attenuated in CD36-deficient compared to WT endothelia. We conclude that microglial CD36 is a key determinant of post-ischemic IL-1β production by regulating caspase-1 activity, whereas endothelial CD36 is required for the full expression of the endothelial activation induced by IL-1β. The data identify microglial and endothelial CD36 as critical upstream components of the acute inflammatory response to cerebral ischemia and viable putative therapeutic targets.
Collapse
Affiliation(s)
- Lidia Garcia-Bonilla
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Rose Sciortino
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ziasmin Shahanoor
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Gianfranco Racchumi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Mathangi Janakiraman
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Joan Montaner
- Neurovascular Lab, Vall d́Hebron Research Institute (VHIR), 08035 Barcelona, Spain
| | - Ping Zhou
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
176
|
Zhang Y, Hu M, Yang F, Zhang Y, Ma S, Zhang D, Wang X, Sferruzzi-Perri AN, Wu X, Brännström M, Shao LR, Billig H. Increased uterine androgen receptor protein abundance results in implantation and mitochondrial defects in pregnant rats with hyperandrogenism and insulin resistance. J Mol Med (Berl) 2021; 99:1427-1446. [PMID: 34180022 PMCID: PMC8455403 DOI: 10.1007/s00109-021-02104-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/20/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022]
Abstract
Abstract In this study, we show that during normal rat pregnancy, there is a gestational stage-dependent decrease in androgen receptor (AR) abundance in the gravid uterus and that this is correlated with the differential expression of endometrial receptivity and decidualization genes during early and mid-gestation. In contrast, exposure to 5α-dihydrotestosterone (DHT) and insulin (INS) or DHT alone significantly increased AR protein levels in the uterus in association with the aberrant expression of endometrial receptivity and decidualization genes, as well as disrupted implantation. Next, we assessed the functional relevance of the androgen-AR axis in the uterus for reproductive outcomes by treating normal pregnant rats and pregnant rats exposed to DHT and INS with the anti-androgen flutamide. We found that AR blockage using flutamide largely attenuated the DHT and INS-induced maternal endocrine, metabolic, and fertility impairments in pregnant rats in association with suppressed induction of uterine AR protein abundance and androgen-regulated response protein and normalized expression of several endometrial receptivity and decidualization genes. Further, blockade of AR normalized the expression of the mitochondrial biogenesis marker Nrf1 and the mitochondrial functional proteins Complexes I and II, VDAC, and PHB1. However, flutamide treatment did not rescue the compromised mitochondrial structure resulting from co-exposure to DHT and INS. These results demonstrate that functional AR protein is an important factor for gravid uterine function. Impairments in the uterine androgen-AR axis are accompanied by decreased endometrial receptivity, decidualization, and mitochondrial dysfunction, which might contribute to abnormal implantation in pregnant PCOS patients with compromised pregnancy outcomes and subfertility. Key messages The proper regulation of uterine androgen receptor (AR) contributes to a
normal pregnancy process, whereas the aberrant regulation of uterine AR might
be linked to polycystic ovary syndrome (PCOS)-induced pregnancy-related
complications. In the current study, we found that during normal rat pregnancy there is
a stage-dependent decrease in AR abundance in the gravid uterus and that this
is correlated with the differential expression of the endometrial receptivity
and decidualization genes Spp1, Prl, Igfbp1,
and Hbegf. Pregnant rats exposed to 5α-dihydrotestosterone (DHT) and insulin (INS)
or to DHT alone show elevated uterine AR protein abundance and implantation
failure related to the aberrant expression of genes involved in endometrial
receptivity and decidualization in early to mid-gestation. Treatment with the anti-androgen flutamide, starting from
pre-implantation, effectively prevents DHT + INS-induced defects in endometrial
receptivity and decidualization gene expression, restores uterine mitochondrial
homeostasis, and increases the pregnancy rate and the numbers of viable
fetuses. This study adds to our understanding of the mechanisms underlying poor
pregnancy outcomes in PCOS patients and the possible therapeutic use of
anti-androgens, including flutamide, after spontaneous conception.
Supplementary Information The online version contains supplementary material available at 10.1007/s00109-021-02104-z.
Collapse
Affiliation(s)
- Yuehui Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.,Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, P. O. Box 434, 40530, Gothenburg, Sweden
| | - Min Hu
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, P. O. Box 434, 40530, Gothenburg, Sweden.,Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, Guangzhou, 510120, China
| | - Fan Yang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yizhuo Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Shuting Ma
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Dongqi Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xu Wang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Amanda Nancy Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Xiaoke Wu
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Linus R Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, P. O. Box 434, 40530, Gothenburg, Sweden.
| | - Håkan Billig
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, P. O. Box 434, 40530, Gothenburg, Sweden
| |
Collapse
|
177
|
Shimoda LA, Bai C, Bartlett NW, Bastarache JA, Feghali-Bostwick C, Kuebler WM, Prakash YS, Schmidt EP, Morty RE. Announcing the Editorial Board Fellowship Program of the American Journal of Physiology-Lung Cellular and Molecular Physiology. Am J Physiol Lung Cell Mol Physiol 2021; 321:L116-L118. [PMID: 34105373 DOI: 10.1152/ajplung.00239.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chunxue Bai
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Nathan W Bartlett
- Viral Immunology and Respiratory Disease Group, University of Newcastle, Newcastle, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Julie A Bastarache
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Carol Feghali-Bostwick
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Eric P Schmidt
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado.,Department of Medicine, Denver Health Medical Center, Denver, Colorado
| | - Rory E Morty
- Department of Translational Pulmonology and Translational Lung Research Center Heidelberg, University Hospital Heidelberg, member of the German Center for Lung Research (DZL), Heidelberg, Germany.,Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, Justus Liebig University Giessen, member of the German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|
178
|
Selective estrogen receptor modulator lasofoxifene suppresses spondyloarthritis manifestation and affects characteristics of gut microbiota in zymosan-induced SKG mice. Sci Rep 2021; 11:11923. [PMID: 34099783 PMCID: PMC8184804 DOI: 10.1038/s41598-021-91320-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/07/2021] [Indexed: 12/22/2022] Open
Abstract
Ankylosing spondylitis is a male-predominant disease and previous study revealed that estrogens have an anti-inflammatory effect on the spondyloarthritis (SpA) manifestations in zymosan-induced SKG mice. This study aimed to evaluate the effect of selective estrogen receptor modulator (SERM) lasofoxifene (Laso) on disease activity of SpA. Mice were randomized into zymosan-treated, zymosan + 17β-estradiol (E2)-treated, and zymosan + Laso-treated groups. Arthritis was assessed by 18F-fluorodeoxyglucose (18F-FDG) small-animal positron emission tomography/computed tomography and bone mineral density (BMD) was measured. Fecal samples were collected and 16S ribosomal RNA gene sequencing was used to determine gut microbiota differences. Both zymosan + E2-treated mice and zymosan + Laso-treated mice showed lower arthritis clinical scores and lower 18F-FDG uptake than zymosan-treated mice. BMD was significantly higher in zymosan + E2-treated mice and zymosan + Laso-treated mice than zymosan-treated mice, respectively. Fecal calprotectin levels were significantly elevated at 8 weeks after zymosan injection in zymosan-treated mice, but it was not significantly changed in zymosan + E2-treated mice and zymosan + Laso-treated mice. Gut microbiota diversity of zymosan-treated mice was significantly different from zymosan + E2-treated mice and zymosan + Laso-treated mice, respectively. There was no significant difference in gut microbiota diversity between zymosan + E2-treated mice and zymosan + Laso -treated mice. Laso inhibited joint inflammation and enhanced BMD in SKG mice, a model of SpA. Laso also affected the composition and biodiversity of gut microbiota. This study provides new knowledge regarding that selected SpA patients could benefit from SERM treatment.
Collapse
|
179
|
Lai WH, Fang CY, Chou MC, Lin MC, Shen CH, Chao CN, Jou YC, Chang D, Wang M. Peptide-guided JC polyomavirus-like particles specifically target bladder cancer cells for gene therapy. Sci Rep 2021; 11:11889. [PMID: 34088940 PMCID: PMC8178405 DOI: 10.1038/s41598-021-91328-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/25/2021] [Indexed: 12/03/2022] Open
Abstract
The ultimate goal of gene delivery vectors is to establish specific and effective treatments for human diseases. We previously demonstrated that human JC polyomavirus (JCPyV) virus-like particles (VLPs) can package and deliver exogenous DNA into susceptible cells for gene expression. For tissue-specific targeting in this study, JCPyV VLPs were conjugated with a specific peptide for bladder cancer (SPB) that specifically binds to bladder cancer cells. The suicide gene thymidine kinase was packaged and delivered by SPB-conjugated VLPs (VLP-SPBs). Expression of the suicide gene was detected only in human bladder cancer cells and not in lung cancer or neuroblastoma cells susceptible to JCPyV VLP infection in vitro and in vivo, demonstrating the target specificity of VLP-SPBs. The gene transduction efficiency of VLP-SPBs was approximately 100 times greater than that of VLPs without the conjugated peptide. JCPyV VLPs can be specifically guided to target particular cell types when tagged with a ligand molecule that binds to a cell surface marker, thereby improving gene therapy.
Collapse
Affiliation(s)
- Wei-Hong Lai
- Department of Urology, Ditmanson Medical Foundation, Chiayi Christian Hospital, Chiayi, Taiwan
| | - Chiung-Yao Fang
- Department of Medical Research, Ditmanson Medical Foundation, Chiayi Christian Hospital, Chiayi, Taiwan
| | - Ming-Chieh Chou
- Institute of Molecular Biology, National Chung Cheng University, 168, University Rd., Min-Hsiung, Chiayi, 621, Taiwan
| | - Mien-Chun Lin
- Department of Urology, Ditmanson Medical Foundation, Chiayi Christian Hospital, Chiayi, Taiwan
| | - Cheng-Huang Shen
- Department of Urology, Ditmanson Medical Foundation, Chiayi Christian Hospital, Chiayi, Taiwan
| | - Chun-Nun Chao
- Department of Pediatrics, Ditmanson Medical Foundation, Chiayi Christian Hospital, Chiayi, Taiwan
| | - Yeong-Chin Jou
- Department of Urology, Ditmanson Medical Foundation, Chiayi Christian Hospital, Chiayi, Taiwan
| | - Deching Chang
- Institute of Molecular Biology, National Chung Cheng University, 168, University Rd., Min-Hsiung, Chiayi, 621, Taiwan.
| | - Meilin Wang
- Department of Microbiology and Immunology, School of Medicine, Chung-Shan Medical University and Clinical Laboratory, Chung-Shan Medical University Hospital, No. 110, Sec. 1, Jianguo N. Rd., Taichung City, 40201, Taiwan.
| |
Collapse
|
180
|
White A, Stremming J, Boehmer BH, Chang EI, Jonker SS, Wesolowski SR, Brown LD, Rozance PJ. Reduced glucose-stimulated insulin secretion following a 1-wk IGF-1 infusion in late gestation fetal sheep is due to an intrinsic islet defect. Am J Physiol Endocrinol Metab 2021; 320:E1138-E1147. [PMID: 33938236 PMCID: PMC8285601 DOI: 10.1152/ajpendo.00623.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Insulin and insulin-like growth factor-1 (IGF-1) are fetal hormones critical to establishing normal fetal growth. Experimentally elevated IGF-1 concentrations during late gestation increase fetal weight but lower fetal plasma insulin concentrations. We therefore hypothesized that infusion of an IGF-1 analog for 1 wk into late gestation fetal sheep would attenuate fetal glucose-stimulated insulin secretion (GSIS) and insulin secretion in islets isolated from these fetuses. Late gestation fetal sheep received infusions with IGF-1 LR3 (IGF-1, n = 8), an analog of IGF-1 with low affinity for the IGF binding proteins and high affinity for the IGF-1 receptor, or vehicle control (CON, n = 9). Fetal GSIS was measured with a hyperglycemic clamp (IGF-1, n = 8; CON, n = 7). Fetal islets were isolated, and insulin secretion was assayed in static incubations (IGF-1, n = 8; CON, n = 7). Plasma insulin and glucose concentrations in IGF-1 fetuses were lower compared with CON (P = 0.0135 and P = 0.0012, respectively). During the GSIS study, IGF-1 fetuses had lower insulin secretion compared with CON (P = 0.0453). In vitro, glucose-stimulated insulin secretion remained lower in islets isolated from IGF-1 fetuses (P = 0.0447). In summary, IGF-1 LR3 infusion for 1 wk into fetal sheep lowers insulin concentrations and reduces fetal GSIS. Impaired insulin secretion persists in isolated fetal islets indicating an intrinsic islet defect in insulin release when exposed to IGF-1 LR3 infusion for 1 wk. We speculate this alteration in the insulin/IGF-1 axis contributes to the long-term reduction in β-cell function in neonates born with elevated IGF-1 concentrations following pregnancies complicated by diabetes or other conditions associated with fetal overgrowth.NEW & NOTEWORTHY After a 1-wk infusion of IGF-1 LR3, late gestation fetal sheep had lower plasma insulin and glucose concentrations, reduced fetal glucose-stimulated insulin secretion, and decreased fractional insulin secretion from isolated fetal islets without differences in pancreatic insulin content.
Collapse
Affiliation(s)
- Alicia White
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jane Stremming
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Brit H Boehmer
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Eileen I Chang
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sonnet S Jonker
- Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health & Science University, Portland, Oregon
| | - Stephanie R Wesolowski
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Laura D Brown
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Paul J Rozance
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
181
|
Milán AF, Rincón OA, Arango LB, Reutovich AA, Smith GL, Giraldo MA, Bou-Abdallah F, Calderón JC. Calibration of mammalian skeletal muscle Ca 2+ transients recorded with the fast Ca 2+ dye Mag-Fluo-4. Biochim Biophys Acta Gen Subj 2021; 1865:129939. [PMID: 34082059 DOI: 10.1016/j.bbagen.2021.129939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/12/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Mag-Fluo-4 is increasingly employed for studying Ca2+ signaling in skeletal muscle; however, the lack of information on the Ca2+-Mag-Fluo-4 reaction limits its wider usage. METHODS Fluorescence and isothermal titration calorimetry (ITC) experiments were performed to determine the binding stoichiometry (n) and thermodynamics (enthalpy (ΔH) and entropy (ΔS) changes), as well as the in vitro and in situ Kd of the Ca2+-Mag-Fluo-4 reaction. Rate constants (kon, koff), fluorescence maximum (Fmax), minimum (Fmin), and the dye compartmentalization were also estimated. Experiments in cells used enzymatically dissociated flexor digitorum brevis fibres of C57BL6, adult mice, loaded at room temperature for 8 min, with 6 μM Mag-Fluo-4, AM, and permeabilized with saponin or ionomycin. All measurements were done at 20 °C. RESULTS The in vitro fluorescence assays showed a binding stoichiometry of 0.5 for the Ca2+/Mag-Fluo-4 (n = 5) reaction. ITC results (n = 3) provided ΔH and ΔS values of 2.3 (0.7) kJ/mol and 97.8 (5.9) J/mol.K, respectively. The in situ Kd was 1.652 × 105μM2(n = 58 fibres, R2 = 0.99). With an Fmax of 150.9 (8.8) A.U. (n = 8), Fmin of 0.14 (0.1) A.U. (n = 10), and ΔF of Ca2+ transients of 8.4 (2.5) A.U. (n = 10), the sarcoplasmic [Ca2+]peak reached 22.5 (7.8) μM. Compartmentalized dye amounted to only 1.1 (0.7)% (n = 10). CONCLUSIONS Two Mag-Fluo-4 molecules coalesce around one Ca2+ ion, in an entropy-driven, very low in situ affinity reaction, making it suitable to reliably track the kinetics of rapid muscle Ca2+ transients. GENERAL SIGNIFICANCE Our results may be relevant to the quantitative study of Ca2+ kinetics in many other cell types.
Collapse
Affiliation(s)
- Andrés F Milán
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Oscar A Rincón
- Biophysics Group, Institute of Physics, University of Antioquia, Medellin, Colombia
| | - Leidy B Arango
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Aliaksandra A Reutovich
- Department of Chemistry, The State University of New York at Potsdam (SUNY Potsdam), New York, NY, USA
| | - Gideon L Smith
- Department of Chemistry, The State University of New York at Potsdam (SUNY Potsdam), New York, NY, USA
| | - Marco A Giraldo
- Biophysics Group, Institute of Physics, University of Antioquia, Medellin, Colombia
| | - Fadi Bou-Abdallah
- Department of Chemistry, The State University of New York at Potsdam (SUNY Potsdam), New York, NY, USA.
| | - Juan C Calderón
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia.
| |
Collapse
|
182
|
Tochitsky I, Jo S, Andrews N, Kotoda M, Doyle B, Shim J, Talbot S, Roberson D, Lee J, Haste L, Jordan SM, Levy BD, Bean BP, Woolf CJ. Inhibition of inflammatory pain and cough by a novel charged sodium channel blocker. Br J Pharmacol 2021; 178:3905-3923. [PMID: 33988876 DOI: 10.1111/bph.15531] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Many pain-triggering nociceptor neurons express TRPV1 or TRPA1, cation-selective channels with large pores that enable permeation of QX-314, a cationic analogue of lidocaine. Co-application of QX-314 with TRPV1 or TRPA1 activators can silence nociceptors. In this study, we describe BW-031, a novel more potent cationic sodium channel inhibitor, and test whether its application alone can inhibit pain associated with tissue inflammation and whether this strategy can also inhibit cough. EXPERIMENTAL APPROACH We tested the ability of BW-031 to inhibit pain in three models of tissue inflammation:- inflammation in rat paws produced by complete Freund's adjuvant or by surgical incision and a mouse ultraviolet (UV) burn model. We tested the ability of BW-031 to inhibit cough induced by inhalation of dilute citric acid in guinea pigs. KEY RESULTS BW-031 inhibited Nav 1.7 and Nav 1.1 channels with approximately sixfold greater potency than QX-314 when introduced inside cells. BW-031 inhibited inflammatory pain in all three models tested, producing more effective and longer-lasting inhibition of pain than QX-314 in the mouse UV burn model. BW-031 was effective in reducing cough counts by 78%-90% when applied intratracheally under isoflurane anaesthesia or by aerosol inhalation in guinea pigs with airway inflammation produced by ovalbumin sensitization. CONCLUSION AND IMPLICATIONS BW-031 is a novel cationic sodium channel inhibitor that can be applied locally as a single agent to inhibit inflammatory pain. BW-031 can also effectively inhibit cough in a guinea pig model of citric acid-induced cough, suggesting a new clinical approach to treating cough.
Collapse
Affiliation(s)
- Ivan Tochitsky
- F.M. Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Sooyeon Jo
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Nick Andrews
- F.M. Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Masakazu Kotoda
- F.M. Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Benjamin Doyle
- F.M. Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jaehoon Shim
- F.M. Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Sebastien Talbot
- F.M. Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, Massachusetts, USA.,Départément de Pharmacologie et Physiologie, Université de Montréal, Montreal, Canada
| | - David Roberson
- F.M. Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jinbo Lee
- Sage Partner International, Andover, Massachusetts, USA
| | - Louise Haste
- Pharmacology Department, Covance Inc., Huntingdon, UK
| | | | - Bruce D Levy
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bruce P Bean
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
183
|
Augestad IL, Dekens D, Karampatsi D, Elabi O, Zabala A, Pintana H, Larsson M, Nyström T, Paul G, Darsalia V, Patrone C. Normalisation of glucose metabolism by exendin-4 in the chronic phase after stroke promotes functional recovery in male diabetic mice. Br J Pharmacol 2021; 179:677-694. [PMID: 33973246 PMCID: PMC8820185 DOI: 10.1111/bph.15524] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/30/2021] [Accepted: 04/27/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND AND PURPOSE Glucagon-like peptide-1 (GLP-1) receptor activation decreases stroke risk in people with Type 2 diabetes (T2D), while animal studies have shown the efficacy of this strategy to counteract stroke-induced acute brain damage. However, whether GLP-1 receptor activation also improves recovery in the chronic phase after stroke is unknown. We investigated whether post-acute, chronic administration of the GLP-1 receptor agonist, exendin-4, improves post-stroke recovery and examined possible underlying mechanisms in T2D and non-T2D mice. EXPERIMENTAL APPROACH We induced stroke via transient middle cerebral artery occlusion (tMCAO) in T2D/obese mice (8 months of high-fat diet) and age-matched controls. Exendin-4 was administered for 8 weeks from Day 3 post-tMCAO. We assessed functional recovery by weekly upper-limb grip strength tests. Insulin sensitivity and glycaemia were evaluated at 4 and 8 weeks post-tMCAO. Neuronal survival, stroke-induced neurogenesis, neuroinflammation, atrophy of GABAergic parvalbumin+ interneurons, post-stroke vascular remodelling and fibrotic scar formation were investigated by immunohistochemistry. KEY RESULTS Exendin-4 normalised T2D-induced impairment of forepaw grip strength recovery in correlation with normalised glycaemia and insulin sensitivity. Moreover, exendin-4 counteracted T2D-induced atrophy of parvalbumin+ interneurons and decreased microglia activation. Finally, exendin-4 normalised density and pericyte coverage of micro-vessels and restored fibrotic scar formation in T2D mice. In non-T2D mice, the exendin-4-mediated recovery was minor. CONCLUSION AND IMPLICATIONS Chronic GLP-1 receptor activation mediates post-stroke functional recovery in T2D mice by normalising glucose metabolism and improving neuroplasticity and vascular remodelling in the recovery phase. The results warrant clinical trial of GLP-1 receptor agonists for rehabilitation after stroke in T2D.
Collapse
Affiliation(s)
- Ingrid Lovise Augestad
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Doortje Dekens
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Dimitra Karampatsi
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Osama Elabi
- Translational Neurology Group, Department of Clinical Sciences, Wallenberg Neuroscience Center, Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Alexander Zabala
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hiranya Pintana
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Martin Larsson
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Nyström
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gesine Paul
- Translational Neurology Group, Department of Clinical Sciences, Wallenberg Neuroscience Center, Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Vladimer Darsalia
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Cesare Patrone
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
184
|
Verhorstert KWJ, Gudde AN, Kortz BS, Limpens J, Roovers JWR, Hooijmans CR, Guler Z. Animal experimental research assessing urogynecologic surgical mesh implants: Outcome measures describing the host response, a systematic review and meta-analysis. Neurourol Urodyn 2021; 40:1107-1119. [PMID: 33951222 PMCID: PMC8359983 DOI: 10.1002/nau.24677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/17/2021] [Accepted: 04/05/2021] [Indexed: 12/27/2022]
Abstract
Aim Before the introduction of new biomaterials for prolapse surgery, animal studies on the host response are required. Unfortunately, large variation in study design hampers obtaining an overview of the safety and efficacy, and translation to clinical practice. Our aim is to systematically review the literature on all outcome measures describing the host response in animal studies assessing the biocompatibility of urogynecologic surgical mesh implants for prolapse surgery. Furthermore, by meta‐analysis, we aim to assess the effect of implantation and compare this to control animals receiving sham surgery or native tissue repair. Methods We performed a systematic search from inception to August 2020. Since this is an explorative study we included original, controlled, and noncontrolled animal studies describing any host response to the implant. Quantitative outcome measures reported ≥10 times in ≥2 articles were eligible for meta‐analysis. Results Fifty articles were included in the qualitative synthesis and 36 articles were eligible for meta‐analysis. In total, 154 outcome measures were defined and classified into (1) histomorphology, (2) biomechanics and, (3) macroscopic morphology. Animals with vaginal implants demonstrated significantly increased M1 and M2 macrophages, MMP‐2, neovascularization, TNF‐α, and stiffness, and lower vaginal contractility compared to control animals. Conclusion The host response significantly differs in animals after vaginal mesh implantation compared to control animals, both pro‐ and anti‐inflammatory. However, we observed a paucity in the uniformity of reported outcomes. For future animal studies, we propose the development of a core outcome set, which ideally predicts the host response in women.
Collapse
Affiliation(s)
- Kim W. J. Verhorstert
- Department of Obstetrics and Gynecology, Amsterdam Reproduction and Development, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Aksel N. Gudde
- Department of Obstetrics and Gynecology, Amsterdam Reproduction and Development, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Brita S. Kortz
- Department of Obstetrics and Gynecology, Amsterdam Reproduction and Development, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Jacqueline Limpens
- Medical Library, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Jan‐Paul W. R. Roovers
- Department of Obstetrics and Gynecology, Amsterdam Reproduction and Development, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Carlijn R. Hooijmans
- Department for Health Evidence unit SYRCLERadboud University Medical CenterNijmegenThe Netherlands
| | - Zeliha Guler
- Department of Obstetrics and Gynecology, Amsterdam Reproduction and Development, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
185
|
Yanni AE, Antoniou N, Kostomitsopoulos N. Improvements needed in reporting the methodology for STZ-induced diabetes in rats. Am J Physiol Endocrinol Metab 2021; 320:E898-E899. [PMID: 33900124 DOI: 10.1152/ajpendo.00045.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Amalia E Yanni
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Nikolaos Antoniou
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | |
Collapse
|
186
|
Cerantola S, Caputi V, Contarini G, Mereu M, Bertazzo A, Bosi A, Banfi D, Mantini D, Giaroni C, Giron MC. Dopamine Transporter Genetic Reduction Induces Morpho-Functional Changes in the Enteric Nervous System. Biomedicines 2021; 9:biomedicines9050465. [PMID: 33923250 PMCID: PMC8146213 DOI: 10.3390/biomedicines9050465] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/23/2022] Open
Abstract
Antidopaminergic gastrointestinal prokinetics are indeed commonly used to treat gastrointestinal motility disorders, although the precise role of dopaminergic transmission in the gut is still unclear. Since dopamine transporter (DAT) is involved in several brain disorders by modulating extracellular dopamine in the central nervous system, this study evaluated the impact of DAT genetic reduction on the morpho-functional integrity of mouse small intestine enteric nervous system (ENS). In DAT heterozygous (DAT+/-) and wild-type (DAT+/+) mice (14 ± 2 weeks) alterations in small intestinal contractility were evaluated by isometrical assessment of neuromuscular responses to receptor and non-receptor-mediated stimuli. Changes in ENS integrity were studied by real-time PCR and confocal immunofluorescence microscopy in longitudinal muscle-myenteric plexus whole-mount preparations (). DAT genetic reduction resulted in a significant increase in dopamine-mediated effects, primarily via D1 receptor activation, as well as in reduced cholinergic response, sustained by tachykininergic and glutamatergic neurotransmission via NMDA receptors. These functional anomalies were associated to architectural changes in the neurochemical coding and S100β immunoreactivity in small intestine myenteric plexus. Our study provides evidence that genetic-driven DAT defective activity determines anomalies in ENS architecture and neurochemical coding together with ileal dysmotility, highlighting the involvement of dopaminergic system in gut disorders, often associated to neurological conditions.
Collapse
Affiliation(s)
- Silvia Cerantola
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (S.C.); (V.C.); (M.M.); (A.B.)
| | - Valentina Caputi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (S.C.); (V.C.); (M.M.); (A.B.)
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72704, USA
| | - Gabriella Contarini
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95131 Catania, Italy;
| | - Maddalena Mereu
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (S.C.); (V.C.); (M.M.); (A.B.)
| | - Antonella Bertazzo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (S.C.); (V.C.); (M.M.); (A.B.)
| | - Annalisa Bosi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (C.G.)
| | - Davide Banfi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (C.G.)
| | - Dante Mantini
- IRCCS San Camillo Hospital, 30126 Venice, Italy; or
- Motor Control and Neuroplasticity Research Group, KU Leuven, 3000 Leuven, Belgium
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (C.G.)
| | - Maria Cecilia Giron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (S.C.); (V.C.); (M.M.); (A.B.)
- IRCCS San Camillo Hospital, 30126 Venice, Italy; or
- Correspondence: ; Tel.: +39-049-827-5091; Fax: +39-049-827-5093
| |
Collapse
|
187
|
Oxygen Therapy Lowers Right Ventricular Afterload in Experimental Acute Pulmonary Embolism. Crit Care Med 2021; 49:e891-e901. [PMID: 33870917 DOI: 10.1097/ccm.0000000000005057] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To investigate if oxygen could unload the right ventricle and improve right ventricle function in a porcine model mimicking intermediate-high risk acute pulmonary embolism. DESIGN Controlled, blinded, animal study. SETTING Tertiary university hospital, animal research laboratory. SUBJECTS Female, Danish pigs (n = 16, approximately 60 kg). INTERVENTIONS Acute autologous pulmonary embolism was induced until doubling of baseline mean pulmonary arterial pressure. Group 1 animals (n = 8) received increasing Fio2 (40%, 60%, and 100%) for time intervals of 15 minutes returning to atmospheric air between each level of Fio2. In group 2 (n = 8), the effects of Fio2 40% maintained over 75 minutes were studied. In both groups, pulmonary vasodilatation from inhaled nitric oxide (40 parts per million) was used as a positive control. MEASUREMENTS AND MAIN RESULTS Effects were evaluated by biventricular pressure-volume loop recordings, right heart catheterization, and arterial and mixed venous blood gasses. Pulmonary embolism increased mean pulmonary arterial pressure from 15 ± 4 to 33 ± 6 mm Hg (p = 0.0002) and caused right ventricle dysfunction (p < 0.05) with troponin release (p < 0.0001). In group 1, increasing Fio2 lowered mean pulmonary arterial pressure (p < 0.0001) and pulmonary vascular resistance (p = 0.0056) and decreased right ventricle volumes (p = 0.0018) and right ventricle mechanical work (p = 0.034). Oxygenation was improved and pulmonary shunt was lowered (p < 0.0001). Maximal hemodynamic effects were seen at Fio2 40% with no additional benefit from higher fractions of oxygen. In group 2, the effects of Fio2 40% were persistent over 75 minutes. Supplemental oxygen showed the same pulmonary vasodilator efficacy as inhaled nitric oxide (40 parts per million). No adverse effects were observed. CONCLUSIONS In a porcine model mimicking intermediate-high risk pulmonary embolism, oxygen therapy reduced right ventricle afterload and lowered right ventricle mechanical work. The effects were immediately present and persistent and were similar to inhaled nitric oxide. The intervention is easy and safe. The study motivates extended clinical evaluation of supplemental oxygen in acute pulmonary embolism.
Collapse
|
188
|
Ye S, Su L, Shan P, Ye B, Wu S, Liang G, Huang W. LCZ696 Attenuated Doxorubicin-Induced Chronic Cardiomyopathy Through the TLR2-MyD88 Complex Formation. Front Cell Dev Biol 2021; 9:654051. [PMID: 33928085 PMCID: PMC8076895 DOI: 10.3389/fcell.2021.654051] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
Background and Purpose The profibrotic and proinflammatory effects induced by doxorubicin (DOX) are key processes in the development of serious heart damage. Lack of effective drugs and the unclear mechanisms of its side effects limit the clinical treatment of DOX-induced cardiac injury. This study aimed to explore the protective role of LCZ696 and the potential mechanism of Toll-like receptor 2 (TLR2) in doxorubicin-induced cardiac failure. Experimental Approach DOX (5 mg/kg/week, three times) was used to establish a chronic cardiomyopathy mouse model. Heart function tests, pathology examinations and molecular biology analyses were used to explore the effects of LCZ696 and TLR2 deficiency in vivo and in vitro. Computational docking was applied to predict the key residues for protein-ligand interaction. Key Results The EF% declined, and the LVIDd, pro-fibrosis marker levels and NF-κB related inflammatory response increased in the chronic cardiomyopathy group induced by DOX. LCZ696 treatment and TLR2 deficiency reversed these heart damage in vivo. In H9C2 cells, pre-treatment with LCZ696 and TLR2 knockdown suppressed the DOX-induced high expression of profibrotic and proinflammatory markers. Moreover, DOX notably increased the TLR2-MyD88 interaction in vivo and in vitro, which was inhibited by LCZ696. Finally, we demonstrated the direct interaction between DOX and TLR2 via hydrogen bonds on Pro-681 and Glu-727 and Pro-681 and Ser-704 may be the key residues by which LCZ696 affects the interaction between DOX and TLR2. Conclusion and Implications LCZ696 prevents DOX-induced cardiac dilation failure, fibrosis and inflammation by reducing the formation of TLR2-MyD88 complexes. LZC696 may be a potential effective drug to treat DOX-induced heart failure.
Collapse
Affiliation(s)
- Shiju Ye
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,The Key Laboratory of Cardiovascular Disease of Wenzhou, Wenzhou, China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lan Su
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,The Key Laboratory of Cardiovascular Disease of Wenzhou, Wenzhou, China
| | - Peiren Shan
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,The Key Laboratory of Cardiovascular Disease of Wenzhou, Wenzhou, China
| | - Bozhi Ye
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,The Key Laboratory of Cardiovascular Disease of Wenzhou, Wenzhou, China
| | - Shengjie Wu
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,The Key Laboratory of Cardiovascular Disease of Wenzhou, Wenzhou, China
| | - Guang Liang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Weijian Huang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,The Key Laboratory of Cardiovascular Disease of Wenzhou, Wenzhou, China
| |
Collapse
|
189
|
Fu D, Li C, Huang Y. Lipid-Polymer Hybrid Nanoparticle-Based Combination Treatment with Cisplatin and EGFR/HER2 Receptor-Targeting Afatinib to Enhance the Treatment of Nasopharyngeal Carcinoma. Onco Targets Ther 2021; 14:2449-2461. [PMID: 33859480 PMCID: PMC8044085 DOI: 10.2147/ott.s286813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/01/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Nasopharyngeal carcinoma (NPC) is one of the most prevalent carcinomas among the Cantonese population of South China and Southeast Asia (responsible for 8% of all cancers in China alone). Although concurrent platinum-based chemotherapy and radiotherapy have been successful, metastatic NPC remains difficult to treat, and the failure rate is high. Methods Thus, we developed stable lipid–polymer hybrid nanoparticles (NPs) containing cisplatin (CDDP) and afatinib (AFT); these drugs act synergistically to counter NPC. The formulated nanoparticles were subjected to detailed in vitro and in vivo analysis. Results We found that CDDP and AFT exhibited synergistic anticancer efficacy at a specific molar ratio. NPs were more effective than a free drug cocktail (a combination) in reducing cell viability, enhancing apoptosis, inhibiting cell migration, and blocking cell cycling. Cell viability after CDDP monotherapy was as high as 85.1%, but CDDP+AFT (1/1 w/w) significantly reduced viability to 39.5%. At 1 µg/mL, AFT/CDDP-loaded lipid–polymer hybrid NPs (ACD-LP) were significantly more cytotoxic than the CDDP+AFT cocktail, indicating the superiority of the NP system. Conclusion The NPs significantly delayed tumor growth compared with either CDDP or AFT monotherapy and were not obviously toxic. Overall, the results suggest that AFT/CDDP-loaded lipid–polymer hybrid NPs exhibit great potential as a treatment for NPC.
Collapse
Affiliation(s)
- Dehui Fu
- Department of Ear-Nose-Throat (ENT), The Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Chao Li
- Department of Ear-Nose-Throat (ENT), The Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Yongwang Huang
- Department of Ear-Nose-Throat (ENT), The Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| |
Collapse
|
190
|
Poppelaars F, Goicoechea de Jorge E, Jongerius I, Baeumner AJ, Steiner MS, Józsi M, Toonen EJM, Pauly D, the SciFiMed consortium. A Family Affair: Addressing the Challenges of Factor H and the Related Proteins. Front Immunol 2021; 12:660194. [PMID: 33868311 PMCID: PMC8044877 DOI: 10.3389/fimmu.2021.660194] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/08/2021] [Indexed: 12/19/2022] Open
Abstract
Inflammation is a common denominator of diseases. The complement system, an intrinsic part of the innate immune system, is a key driver of inflammation in numerous disorders. Recently, a family of proteins has been suggested to be of vital importance in conditions characterized by complement dysregulation: the human Factor H (FH) family. This group of proteins consists of FH, Factor H-like protein 1 and five Factor H-related proteins. The FH family has been linked to infectious, vascular, eye, kidney and autoimmune diseases. In contrast to FH, the functions of the other highly homologous proteins are largely unknown and, hence, their role in the different disease-specific pathogenic mechanisms remains elusive. In this perspective review, we address the major challenges ahead in this emerging area, including 1) the controversies about the functional roles of the FH protein family, 2) the discrepancies in quantification of the FH protein family, 3) the unmet needs for validated tools and 4) limitations of animal models. Next, we also discuss the opportunities that exist for the immunology community. A strong multidisciplinary approach is required to solve these obstacles and is only possible through interdisciplinary collaboration between biologists, chemists, geneticists and physicians. We position this review in light of our own perspective, as principal investigators of the SciFiMed Consortium, a consortium aiming to create a comprehensive analytical system for the quantitative and functional assessment of the entire FH protein family.
Collapse
Affiliation(s)
- Felix Poppelaars
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Elena Goicoechea de Jorge
- Department of Immunology, Faculty of Medicine, Complutense University and Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Ilse Jongerius
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory of the Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
- Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | - Antje J. Baeumner
- Institute of Analytical Chemistry, Chemo-and Biosensors, Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg, Germany
| | | | - Mihály Józsi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | | | - Diana Pauly
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
- Experimental Ophthalmology, University Marburg, Marburg, Germany
| | | |
Collapse
|
191
|
Moreno KL, Scallan EM, Monteiro BP, Steagall PV, Simon BT. The thermal antinociceptive effects of a high-concentration formulation of buprenorphine alone or followed by hydromorphone in conscious cats. Vet Anaesth Analg 2021; 48:570-576. [PMID: 33926823 DOI: 10.1016/j.vaa.2021.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To evaluate the thermal antinociceptive effects of a high-concentration formulation of buprenorphine alone or followed by hydromorphone in conscious cats. STUDY DESIGN Randomized, blinded, placebo-controlled crossover study design. ANIMALS A total of six purpose-bred, adult female ovariohysterectomized Domestic Short Hair cats. METHODS Cats were allocated into three treatments each consisting of two injections, subcutaneous then intravenous (IV) administration, 2 hours apart: treatment SS, two injections of 0.9% saline; treatment BS, buprenorphine (0.24 mg kg-1, 1.8 mg mL-1) and saline; and treatment BH, buprenorphine (0.24 mg kg-1) and hydromorphone (0.1 mg kg-1). Skin temperature (ST) and thermal threshold (TT) were recorded before (baseline) and for 24 hours following first injection. TT data were analyzed using mixed linear models and a Benjamini-Hochberg sequential adjustment procedure (p < 0.05). RESULTS There were no significant differences among treatments for baseline ST and TT values, treatment SS over time and between treatments BS and BH. Compared with baseline, TT was significantly increased at all time points in treatments BH and BS except at 2 hours in treatment BS. TT was significantly higher than SS at 3-18 hours and 4-12 hours for treatments BS and BH, respectively. Maximal increases in TT were 47.5 °C at 2 hours, 53.9 °C at 3 hours and 52.4 °C at 6 hours in treatments SS, BS and BH, respectively. CONCLUSIONS AND CLINICAL RELEVANCE Administration of IV hydromorphone following high-concentration buprenorphine provided no additional antinociception and decreased the duration of effect when compared with high-concentration buprenorphine alone. Alternative analgesics should be considered if additional analgesia is required after administration of high-concentration buprenorphine.
Collapse
Affiliation(s)
- Kara L Moreno
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Elizabeth M Scallan
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Beatriz P Monteiro
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Paulo V Steagall
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Bradley T Simon
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
192
|
Xu Z, Agbigbe O, Nigro N, Yakobi G, Shapiro J, Ginosar Y. Use of high-resolution thermography as a validation measure to confirm epidural anesthesia in mice: a cross-over study. Int J Obstet Anesth 2021; 46:102981. [PMID: 33906822 DOI: 10.1016/j.ijoa.2021.102981] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/17/2021] [Accepted: 03/14/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Effective epidural anesthesia is confirmed in humans by sensory assessments but these tests are not feasible in mice. We hypothesized that, in mice, infrared thermography would demonstrate selective segmental warming of lower extremities following epidural anesthesia. METHODS We anesthetized 10 C57BL/6 mice with isoflurane and then inserted a PU-10 epidural catheter under direct surgical microscopy at T11-12. A thermal camera (thermal sensitivity ±0.05°C, pixel resolution 320x240 pixels, and spatial resolution 200 μm) recorded baseline temperature of front and rear paws, tail and ears. Thermography was assessed at baseline and 2, 5, 10, and 15 min after an epidural bolus dose of 50 μL bupivacaine 0.25% or 50 μL saline (control) using a cross-over design with dose order randomized and investigators blinded to study drug. Thermal images were recorded from video and analyzed using FLIR software. Effect over time and maximal effect (Emax) were assessed by repeated measures ANOVA and paired t-tests. Comparisons were between bupivacaine and control, and between lower vs upper extremities. RESULTS Epidural bupivacaine caused progressive warming of lower compared with upper extremities (P <0.001), typically returning to baseline by 15 min after administration. Mean (±SD) Emax was +3.73 (±1.56) °C for lower extremities compared with 0.56 (±0.68) °C (P=0.03) for upper extremities. Following epidural saline, there was no effect over time (Emax for lower extremities -0.88 (±0.28) °C compared with the upper extremities -0.88 (±0.19) °C (P >0.99). CONCLUSIONS Thermography is a useful tool to confirm epidural catheter placement in animals for which subjective, non-noxious, sensory measures are impossible.
Collapse
Affiliation(s)
- Z Xu
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
| | - O Agbigbe
- Washington University School of Medicine, St Louis, MO, USA
| | - N Nigro
- Washington University School of Medicine, St Louis, MO, USA
| | - G Yakobi
- Department of Anesthesiology, Critical Care and Pain Medicine, Hadassah Hebrew University Medical Center, and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - J Shapiro
- Department of Anesthesiology, Critical Care and Pain Medicine, Hadassah Hebrew University Medical Center, and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Y Ginosar
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA; Department of Anesthesiology, Critical Care and Pain Medicine, Hadassah Hebrew University Medical Center, and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; Wohl Institute of Translational Medicine, Hadassah Hebrew University Medical Center, and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
193
|
CD73 facilitates EMT progression and promotes lung metastases in triple-negative breast cancer. Sci Rep 2021; 11:6035. [PMID: 33727591 PMCID: PMC7966763 DOI: 10.1038/s41598-021-85379-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/24/2021] [Indexed: 12/18/2022] Open
Abstract
CD73 is a cell surface ecto-5′-nucleotidase, which converts extracellular adenosine monophosphate to adenosine. High tumor CD73 expression is associated with poor outcome among triple-negative breast cancer (TNBC) patients. Here we investigated the mechanisms by which CD73 might contribute to TNBC progression. This was done by inhibiting CD73 with adenosine 5′-(α, β-methylene) diphosphate (APCP) in MDA-MB-231 or 4T1 TNBC cells or through shRNA-silencing (sh-CD73). Effects of such inhibition on cell behavior was then studied in normoxia and hypoxia in vitro and in an orthotopic mouse model in vivo. CD73 inhibition, through shRNA or APCP significantly decreased cellular viability and migration in normoxia. Inhibition of CD73 also resulted in suppression of hypoxia-induced increase in viability and prevented cell protrusion elongation in both normoxia and hypoxia in cancer cells. Sh-CD73 4T1 cells formed significantly smaller and less invasive 3D organoids in vitro, and significantly smaller orthotopic tumors and less lung metastases than control shRNA cells in vivo. CD73 suppression increased E-cadherin and decreased vimentin expression in vitro and in vivo, proposing maintenance of a more epithelial phenotype. In conclusion, our results suggest that CD73 may promote early steps of tumor progression, possibly through facilitating epithelial–mesenchymal transition.
Collapse
|
194
|
Zhang Z, Zheng B, Du S, Han G, Zhao H, Wu S, Jia S, Bachmann T, Bekker A, Tao YX. Eukaryotic initiation factor 4 gamma 2 contributes to neuropathic pain through down-regulation of Kv1.2 and the mu opioid receptor in mouse primary sensory neurones. Br J Anaesth 2021; 126:706-719. [PMID: 33303185 PMCID: PMC8014947 DOI: 10.1016/j.bja.2020.10.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/02/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Nerve injury-induced changes in gene expression in the dorsal root ganglion (DRG) contribute to neuropathic pain genesis. Eukaryotic initiation factor 4 gamma 2 (eIF4G2) is a general repressor of cap-dependent mRNA translation. Whether DRG eIF4G2 participates in nerve injury-induced alternations in gene expression and nociceptive hypersensitivity is unknown. METHODS The expression and distribution of eIF4G2 mRNA and protein in mouse DRG after spinal nerve ligation (SNL) were assessed. Effects of eIF4G2 siRNA microinjected through a glass micropipette into the injured DRG on the SNL-induced DRG mu opioid receptor (MOR) and Kv1.2 downregulation and nociceptive hypersensitivity were examined. In addition, effects of DRG microinjection of adeno-associated virus 5-expressing eIF4G2 (AAV5-eIF4G2) on basal DRG MOR and Kv1.2 expression and nociceptive thresholds were analysed. RESULTS eIF4G2 protein co-expressed with Kv1.2 and MOR in DRG neurones. Levels of eIF4G2 mRNA (1.7 [0.24] to 2.3 [0.14]-fold of sham, P<0.01) and protein (1.6 [0.14] to 2.5 [0.22]-fold of sham, P<0.01) in injured DRG were time-dependently increased on days 3-14 after SNL. Blocking increased eIF4G2 through microinjection of eIF4G2 siRNA into the injured DRG attenuated SNL-induced downregulation of DRG MOR and Kv1.2 and development and maintenance of nociceptive hypersensitivities. DRG microinjection of AAV5-eIF4G2 reduced DRG MOR and Kv1.2 expression and elicited hypersensitivities to mechanical, heat and cold stimuli in naïve mice. CONCLUSIONS eIF4G2 contributes to neuropathic pain through participation in downregulation of Kv1.2 and MOR in injured DRG and is a potential target for treatment of this disorder.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Bixin Zheng
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Shibin Du
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Guang Han
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Hui Zhao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Shaogen Wu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Shushan Jia
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Thomas Bachmann
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Alex Bekker
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA; Departments of Cell Biology & Molecular Medicine and Physiology, Pharmacology & Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA.
| |
Collapse
|
195
|
Lankadeva YR, May CN, Cochrane AD, Marino B, Hood SG, McCall PR, Okazaki N, Bellomo R, Evans RG. Influence of blood haemoglobin concentration on renal haemodynamics and oxygenation during experimental cardiopulmonary bypass in sheep. Acta Physiol (Oxf) 2021; 231:e13583. [PMID: 33222404 DOI: 10.1111/apha.13583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/28/2020] [Accepted: 11/17/2020] [Indexed: 12/29/2022]
Abstract
AIM Blood transfusion may improve renal oxygenation during cardiopulmonary bypass (CPB). In an ovine model of experimental CPB, we tested whether increasing blood haemoglobin concentration [Hb] from ~7 g dL-1 to ~9 g dL-1 improves renal tissue oxygenation. METHODS Ten sheep were studied while conscious, under stable isoflurane anaesthesia, and during 3 hours of CPB. In a randomized cross-over design, 5 sheep commenced bypass at a high target [Hb], achieved by adding 600 mL donor blood to the priming solution. After 90 minutes of CPB, PlasmaLyte® was added to the blood reservoir to achieve low target [Hb]. For the other 5 sheep, no blood was added to the prime, but after 90 minutes of CPB, 800-900 mL of donor blood was given to achieve a high target [Hb]. RESULTS Overall, CPB was associated with marked reductions in renal oxygen delivery (-50 ± 12%, mean ± 95% confidence interval) and medullary tissue oxygen tension (PO2 , -54 ± 29%). Renal fractional oxygen extraction was 17 ± 10% less during CPB at high [Hb] than low [Hb] (P = .04). Nevertheless, no increase in tissue PO2 in either the renal medulla (0 ± 6 mmHg change, P > .99) or cortex (-19 ± 13 mmHg change, P = .08) was detected with high [Hb]. CONCLUSIONS In experimental CPB blood transfusion to increase Hb concentration from ~7 g dL-1 to ~9 g dL-1 did not improve renal cortical or medullary tissue PO2 even though it decreased whole kidney oxygen extraction.
Collapse
Affiliation(s)
- Yugeesh R Lankadeva
- Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
- Centre for Integrated Critical Care, Department of Medicine and Radiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Clive N May
- Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
- Centre for Integrated Critical Care, Department of Medicine and Radiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Andrew D Cochrane
- Department of Cardiothoracic Surgery, Monash Health and Department of Surgery (School of Clinical Sciences at Monash Health), Monash University, Melbourne, VIC, Australia
| | - Bruno Marino
- Cellsaving and Perfusion Resources, Melbourne, VIC, Australia
| | - Sally G Hood
- Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Peter R McCall
- Department of Anaesthesia, Austin Health, Heidelberg, VIC, Australia
| | - Nobuki Okazaki
- Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
- Department of Anesthesiology and Resuscitology, Okayama University, Okayama, Japan
| | - Rinaldo Bellomo
- Centre for Integrated Critical Care, Department of Medicine and Radiology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Intensive Care, Austin Health, Heidelberg, VIC, Australia
| | - Roger G Evans
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
196
|
Young KF, Gardner R, Sariana V, Whitman SA, Bartlett MJ, Falk T, Morrison HW. Can quantifying morphology and TMEM119 expression distinguish between microglia and infiltrating macrophages after ischemic stroke and reperfusion in male and female mice? J Neuroinflammation 2021; 18:58. [PMID: 33618737 PMCID: PMC7901206 DOI: 10.1186/s12974-021-02105-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/05/2021] [Indexed: 12/30/2022] Open
Abstract
Background Ischemic stroke is an acquired brain injury with gender-dependent outcomes. A persistent obstacle in understanding the sex-specific neuroinflammatory contributions to ischemic brain injury is distinguishing between resident microglia and infiltrating macrophages—both phagocytes—and determining cell population-specific contributions to injury evolution and recovery processes. Our purpose was to identify microglial and macrophage populations regulated by ischemic stroke using morphology analysis and the presence of microglia transmembrane protein 119 (TMEM119). Second, we examined sex and menopause differences in microglia/macrophage cell populations after an ischemic stroke. Methods Male and female, premenopausal and postmenopausal, mice underwent either 60 min of middle cerebral artery occlusion and 24 h of reperfusion or sham surgery. The accelerated ovarian failure model was used to model postmenopause. Brain tissue was collected to quantify the infarct area and for immunohistochemistry and western blot methods. Ionized calcium-binding adapter molecule, TMEM119, and confocal microscopy were used to analyze the microglia morphology and TMEM119 area in the ipsilateral brain regions. Western blot was used to quantify protein quantity. Results Post-stroke injury is increased in male and postmenopause female mice vs. premenopause female mice (p < 0.05) with differences primarily occurring in the caudal sections. After stroke, the microglia underwent a region, but not sex group, dependent transformation into less ramified cells (p < 0.0001). However, the number of phagocytic microglia was increased in distal ipsilateral regions of postmenopausal mice vs. the other sex groups (p < 0.05). The number of TMEM119-positive cells was decreased in proximity to the infarct (p < 0.0001) but without a sex group effect. Two key findings prevented distinguishing microglia from systemic macrophages. First, morphological data were not congruent with TMEM119 immunofluorescence data. Cells with severely decreased TMEM119 immunofluorescence were ramified, a distinguishing microglia characteristic. Second, whereas the TMEM119 immunofluorescence area decreased in proximity to the infarcted area, the TMEM119 protein quantity was unchanged in the ipsilateral hemisphere regions using western blot methods. Conclusions Our findings suggest that TMEM119 is not a stable microglia marker in male and female mice in the context of ischemic stroke. Until TMEM119 function in the brain is elucidated, its use to distinguish between cell populations following brain injury with cell infiltration is cautioned. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02105-2.
Collapse
Affiliation(s)
- Kimberly F Young
- College of Nursing, University of Arizona, 1305 N. Martin Ave., Tucson, AZ, 85721, USA.,Current affiliation: Department of Psychology, University of Arizona, 1503 E University Blvd., Tucson, AZ, USA.,University of Arizona Evelyn F. McKnight Brain Institute, 1333 N. Martin Ave., Tucson, AZ, USA
| | - Rebeca Gardner
- College of Science, University of Arizona, 1040 4th St., Tucson, AZ, USA
| | - Victoria Sariana
- College of Nursing, University of Arizona, 1305 N. Martin Ave., Tucson, AZ, 85721, USA
| | - Susan A Whitman
- College of Nursing, University of Arizona, 1305 N. Martin Ave., Tucson, AZ, 85721, USA
| | - Mitchell J Bartlett
- College of Medicine, Department of Neurology, University of Arizona, 1501 N. Campbell Ave., Tucson, AZ, USA
| | - Torsten Falk
- College of Medicine, Department of Neurology, University of Arizona, 1501 N. Campbell Ave., Tucson, AZ, USA.,College of Medicine, Department of Pharmacology, University of Arizona, 1501 N. Campbell Ave., Tucson, AZ, USA
| | - Helena W Morrison
- College of Nursing, University of Arizona, 1305 N. Martin Ave., Tucson, AZ, 85721, USA.
| |
Collapse
|
197
|
Investigating an increase in Florida manatee mortalities using a proteomic approach. Sci Rep 2021; 11:4282. [PMID: 33608577 PMCID: PMC7895937 DOI: 10.1038/s41598-021-83687-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 02/05/2021] [Indexed: 12/28/2022] Open
Abstract
Two large-scale Florida manatee (Trichechus manatus latirostris) mortality episodes were reported on separate coasts of Florida in 2013. The east coast mortality episode was associated with an unknown etiology in the Indian River Lagoon (IRL). The west coast mortality episode was attributed to a persistent Karenia brevis algal bloom or 'red tide' centered in Southwest Florida. Manatees from the IRL also had signs of cold stress. To investigate these two mortality episodes, two proteomic experiments were performed, using two-dimensional difference in gel electrophoresis (2D-DIGE) and isobaric tags for relative and absolute quantification (iTRAQ) LC-MS/MS. Manatees from the IRL displayed increased levels of several proteins in their serum samples compared to controls, including kininogen-1 isoform 1, alpha-1-microglobulin/bikunen precursor, histidine-rich glycoprotein, properdin, and complement C4-A isoform 1. In the red tide group, the following proteins were increased: ceruloplasmin, pyruvate kinase isozymes M1/M2 isoform 3, angiotensinogen, complement C4-A isoform 1, and complement C3. These proteins are associated with acute-phase response, amyloid formation and accumulation, copper and iron homeostasis, the complement cascade pathway, and other important cellular functions. The increased level of complement C4 protein observed in the red tide group was confirmed through the use of Western Blot.
Collapse
|
198
|
Cellular correlates of gray matter volume changes in magnetic resonance morphometry identified by two-photon microscopy. Sci Rep 2021; 11:4234. [PMID: 33608622 PMCID: PMC7895945 DOI: 10.1038/s41598-021-83491-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Magnetic resonance imaging (MRI) of the brain combined with voxel-based morphometry (VBM) revealed changes in gray matter volume (GMV) in various disorders. However, the cellular basis of GMV changes has remained largely unclear. We correlated changes in GMV with cellular metrics by imaging mice with MRI and two-photon in vivo microscopy at three time points within 12 weeks, taking advantage of age-dependent changes in brain structure. Imaging fluorescent cell nuclei allowed inferences on (i) physical tissue volume as determined from reference spaces outlined by nuclei, (ii) cell density, (iii) the extent of cell clustering, and (iv) the volume of cell nuclei. Our data indicate that physical tissue volume alterations only account for 13.0% of the variance in GMV change. However, when including comprehensive measurements of nucleus volume and cell density, 35.6% of the GMV variance could be explained, highlighting the influence of distinct cellular mechanisms on VBM results.
Collapse
|
199
|
Almeida MP, Welker JM, Siddiqui S, Luiken J, Ekker SC, Clark KJ, Essner JJ, McGrail M. Endogenous zebrafish proneural Cre drivers generated by CRISPR/Cas9 short homology directed targeted integration. Sci Rep 2021; 11:1732. [PMID: 33462297 PMCID: PMC7813866 DOI: 10.1038/s41598-021-81239-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/04/2021] [Indexed: 01/04/2023] Open
Abstract
We previously reported efficient precision targeted integration of reporter DNA in zebrafish and human cells using CRISPR/Cas9 and short regions of homology. Here, we apply this strategy to isolate zebrafish Cre recombinase drivers whose spatial and temporal restricted expression mimics endogenous genes. A 2A-Cre recombinase transgene with 48 bp homology arms was targeted into proneural genes ascl1b, olig2 and neurod1. We observed high rates of germline transmission ranging from 10 to 100% (2/20 olig2; 1/5 neurod1; 3/3 ascl1b). The transgenic lines Tg(ascl1b-2A-Cre)is75, Tg(olig2-2A-Cre)is76, and Tg(neurod1-2A-Cre)is77 expressed functional Cre recombinase in the expected proneural cell populations. Somatic targeting of 2A-CreERT2 into neurod1 resulted in tamoxifen responsive recombination in the nervous system. The results demonstrate Cre recombinase expression is driven by the native promoter and regulatory elements of the targeted genes. This approach provides a straightforward, efficient, and cost-effective method to generate cell type specific zebrafish Cre and CreERT2 drivers, overcoming challenges associated with promoter-BAC and transposon mediated transgenics.
Collapse
Affiliation(s)
- Maira P Almeida
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.,Genetics and Genomics Interdepartmental Graduate Program, Iowa State University, Ames, IA, USA
| | - Jordan M Welker
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.,Genetics and Genomics Interdepartmental Graduate Program, Iowa State University, Ames, IA, USA.,Department III - Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Sahiba Siddiqui
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.,Genetics and Genomics Interdepartmental Graduate Program, Iowa State University, Ames, IA, USA
| | - Jon Luiken
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Karl J Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.,Genetics and Genomics Interdepartmental Graduate Program, Iowa State University, Ames, IA, USA
| | - Maura McGrail
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA. .,Genetics and Genomics Interdepartmental Graduate Program, Iowa State University, Ames, IA, USA.
| |
Collapse
|
200
|
Pędzińska-Betiuk A, Weresa J, Schlicker E, Harasim-Symbor E, Toczek M, Kasacka I, Gajo B, Malinowska B. Chronic cannabidiol treatment reduces the carbachol-induced coronary constriction and left ventricular cardiomyocyte width of the isolated hypertensive rat heart. Toxicol Appl Pharmacol 2021; 411:115368. [PMID: 33338514 DOI: 10.1016/j.taap.2020.115368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/29/2020] [Accepted: 12/13/2020] [Indexed: 11/29/2022]
Abstract
Cannabidiol (CBD) is suggested to possess cardioprotective properties. We examined the influence of chronic (10 mg/kg once daily for 2 weeks) CBD administration on heart structure (e.g. cardiomyocyte width) and function (e.g. stimulatory and inhibitory responses induced by β-adrenoceptor (isoprenaline) and muscarinic receptor (carbachol) activation, respectively). Experiments were performed on hearts and/or left atria isolated from spontaneously (SHR) and deoxycorticosterone (DOCA-salt) hypertensive rats; Wistar-Kyoto (WKY) and sham-operated rats (SHAM) served as the respective normotensive controls. CBD diminished the width of cardiomyocytes in left ventricle and reduced the carbachol-induced vasoconstriction of coronary arteries both in DOCA-salt and SHR. However, it failed to affect left ventricular hypertrophy and even aggravated the impaired positive and negative lusitropic effects elicited by isoprenaline and carbachol, respectively. In normotensive hearts CBD led to untoward structural and functional effects, which occurred only in WKY or SHAM or, like the decrease in β1-adrenoceptor density, in either control strain. In conclusion, due to its modest beneficial effect in hypertension and its adverse effects in normotensive hearts, caution should be taken when using CBD as a drug in therapy.
Collapse
MESH Headings
- Adrenergic beta-Agonists/pharmacology
- Animals
- Antihypertensive Agents/toxicity
- Cannabidiol/toxicity
- Carbachol/pharmacology
- Cell Size/drug effects
- Coronary Vessels/drug effects
- Coronary Vessels/physiopathology
- Disease Models, Animal
- Hypertension/complications
- Hypertension/drug therapy
- Hypertension/physiopathology
- Hypertrophy, Left Ventricular/etiology
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Isolated Heart Preparation
- Isoproterenol/pharmacology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Adrenergic, beta-2/metabolism
- Vasoconstriction/drug effects
- Vasoconstrictor Agents/pharmacology
- Ventricular Dysfunction, Left/etiology
- Ventricular Dysfunction, Left/pathology
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Function, Left/drug effects
- Rats
Collapse
Affiliation(s)
- Anna Pędzińska-Betiuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland.
| | - Jolanta Weresa
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| | - Eberhard Schlicker
- Department of Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Ewa Harasim-Symbor
- Department of Physiology, Medical University of Białystok, Białystok, Poland
| | - Marek Toczek
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Białystok, Białystok, Poland
| | - Bernadetta Gajo
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| |
Collapse
|