151
|
Hanert A, Rave J, Granert O, Ziegler M, Pedersen A, Born J, Finke C, Bartsch T. Hippocampal Dentate Gyrus Atrophy Predicts Pattern Separation Impairment in Patients with LGI1 Encephalitis. Neuroscience 2019; 400:120-131. [PMID: 30625332 DOI: 10.1016/j.neuroscience.2018.12.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/18/2018] [Accepted: 12/25/2018] [Indexed: 12/27/2022]
Abstract
Day-to-day life involves the perception of events that resemble one another. For the sufficient encoding and correct retrieval of similar information, the hippocampus provides two essential cognitive processes. Pattern separation refers to the differentiation of similar input information, whereas pattern completion reactivates memory representations based on noisy or degraded stimuli. It has been shown that pattern separation specifically relies on the hippocampal dentate gyrus (DG), whereas pattern completion is performed within CA3 networks. Lesions to these hippocampal networks emerging in the course of neurological disorders may thus affect both processes. In anti-leucine-rich, glioma-inactivated 1 (LGI1) encephalitis it has been shown in animal models and human imaging studies that hippocampal DG and CA3 are preferentially involved in the pathophysiology process. Thus, in order to elucidate the structure-function relationship and contribution of hippocampal subfields to pattern separation, we examined patients (n = 15, age range: 36-77 years) with the rare LGI1 encephalitis showing lesions to hippocampal subfields. Patients were tested 3.53 ± 0.65 years after the acute phase of the disease. Structural sequelae were determined by hippocampal subfield volumetry for the DG, CA1, and CA2/3. Patients showed an overall memory deficit including a significant reduction in pattern separation performance (p = 0.016). In volumetry, we found a global hippocampal volume reduction. The deficits in pattern separation performance were best predicted by the DG (p = 0.029), whereas CA1 was highly predictive of recognition memory deficits (p < 0.001). These results corroborate the framework of a regional specialization of hippocampal functions involved in cognitive processing.
Collapse
Affiliation(s)
- Annika Hanert
- Dept. of Neurology, Memory Disorders and Plasticity Group, University Hospital Schleswig-Holstein, University of Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany.
| | - Julius Rave
- Dept. of Neurology, Memory Disorders and Plasticity Group, University Hospital Schleswig-Holstein, University of Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany.
| | - Oliver Granert
- Dept. of Neurology, Memory Disorders and Plasticity Group, University Hospital Schleswig-Holstein, University of Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany.
| | - Martin Ziegler
- Nanoelectronics, Technical Faculty, University of Kiel, Kaiserstr 2, 24143 Kiel, Germany.
| | - Anya Pedersen
- Dept. of Psychology, Clinical Psychology and Psychotherapy, University of Kiel, Olshausenstr 62, 24118 Kiel, Germany.
| | - Jan Born
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany.
| | - Carsten Finke
- Dept. of Neurology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Thorsten Bartsch
- Dept. of Neurology, Memory Disorders and Plasticity Group, University Hospital Schleswig-Holstein, University of Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany.
| |
Collapse
|
152
|
Reshetnikov VV, Kovner AV, Lepeshko AA, Pavlov KS, Grinkevich LN, Bondar NP. Stress early in life leads to cognitive impairments, reduced numbers of CA3 neurons and altered maternal behavior in adult female mice. GENES BRAIN AND BEHAVIOR 2018; 19:e12541. [DOI: 10.1111/gbb.12541] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Vasiliy V. Reshetnikov
- Laboratory of Gene Expression RegulationInstitute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS) Novosibirsk Russia
| | - Anna V. Kovner
- Laboratory of Molecular Mechanisms of Pathological ProcessesInstitute of Cytology and Genetics, SB RAS Novosibirsk Russia
| | - Arina A. Lepeshko
- Laboratory of Gene Expression RegulationInstitute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS) Novosibirsk Russia
- Novosibirsk National Research State University Novosibirsk Russia
| | - Konstantin S. Pavlov
- Laboratory of Experimental Models of Emotional PathologiesInstitute of Physiology and Basic Medicine Novosibirsk Russia
| | - Larisa N. Grinkevich
- Laboratory of Regulation of Functions of Brain NeuronsPavlov Institute of Physiology, RAS St. Petersburg Russia
| | - Natalya P. Bondar
- Laboratory of Gene Expression RegulationInstitute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS) Novosibirsk Russia
- Novosibirsk National Research State University Novosibirsk Russia
| |
Collapse
|
153
|
Das T, Hwang JJ, Poston KL. Episodic recognition memory and the hippocampus in Parkinson's disease: A review. Cortex 2018; 113:191-209. [PMID: 30660957 DOI: 10.1016/j.cortex.2018.11.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 10/02/2018] [Accepted: 11/15/2018] [Indexed: 01/09/2023]
Abstract
Parkinson's disease is a progressive neurodegenerative disorder of aging. The hallmark pathophysiology includes the development of neuronal Lewy bodies in the substantia nigra of the midbrain with subsequent loss of dopaminergic neurons. These neuronal losses lead to the characteristic motor symptoms of bradykinesia, rigidity, and rest tremor. In addition to these cardinal motor symptoms patients with PD experience a wide range of non-motor symptoms, the most important being cognitive impairments that in many circumstances lead to dementia. People with PD experience a wide range of cognitive impairments; in this review we will focus on memory impairment in PD and specifically episodic memory, which are memories of day-to-day events of life. Importantly, these memory impairments severely impact the lives of patients and caregivers alike. Traditionally episodic memory is considered to be markedly dependent on the hippocampus; therefore, it is important to understand the exact nature of PD episodic memory deficits in relation to hippocampal function and dysfunction. In this review, we discuss an aspect of episodic memory called recognition memory and its subcomponents called recollection and familiarity. Recognition memory is believed to be impaired in PD; thus, we discuss what aspects of the hippocampus are expected to be deficient in function as they relate to these recognition memory impairments. In addition to the hippocampus as a whole, we will discuss the role of hippocampal subfields in recognition memory impairments.
Collapse
Affiliation(s)
- Tanusree Das
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| | - Jaclyn J Hwang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Department of Neuroscience, University of Pittsburgh, USA.
| | - Kathleen L Poston
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
154
|
Xu H, Baracskay P, O'Neill J, Csicsvari J. Assembly Responses of Hippocampal CA1 Place Cells Predict Learned Behavior in Goal-Directed Spatial Tasks on the Radial Eight-Arm Maze. Neuron 2018; 101:119-132.e4. [PMID: 30503645 DOI: 10.1016/j.neuron.2018.11.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 09/19/2018] [Accepted: 11/05/2018] [Indexed: 11/15/2022]
Abstract
Hippocampus is needed for both spatial working and reference memories. Here, using a radial eight-arm maze, we examined how the combined demand on these memories influenced CA1 place cell assemblies while reference memories were partially updated. This was contrasted with control tasks requiring only working memory or the update of reference memory. Reference memory update led to the reward-directed place field shifts at newly rewarded arms and to the gradual strengthening of firing in passes between newly rewarded arms but not between those passes that included a familiar-rewarded arm. At the maze center, transient network synchronization periods preferentially replayed trajectories of the next chosen arm in reference memory tasks but the previously visited arm in the working memory task. Hence, reference memory demand was uniquely associated with a gradual, goal novelty-related reorganization of place cell assemblies and with trajectory replay that reflected the animal's decision of which arm to visit next.
Collapse
Affiliation(s)
- Haibing Xu
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, Klosterneuburg 3400, Austria
| | - Peter Baracskay
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, Klosterneuburg 3400, Austria
| | - Joseph O'Neill
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, Klosterneuburg 3400, Austria.
| | - Jozsef Csicsvari
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, Klosterneuburg 3400, Austria.
| |
Collapse
|
155
|
Ezzyat Y, Inhoff MC, Davachi L. Differentiation of Human Medial Prefrontal Cortex Activity Underlies Long-Term Resistance to Forgetting in Memory. J Neurosci 2018; 38:10244-10254. [PMID: 30012697 PMCID: PMC6262147 DOI: 10.1523/jneurosci.2290-17.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 11/21/2022] Open
Abstract
It is well known that distributing study events over time leads to better memory over long time scales, compared with massing study events together. One explanation for such long-term resistance to forgetting is that distributed study leads to neural differentiation in memory, which supports retrieval of past experiences by disambiguating highly similar memory representations. Neuroanatomical models of episodic memory retrieval propose that the hippocampus and medial prefrontal cortex (MPFC) work together to enable retrieval of behaviorally appropriate memories. However, it is not known how representations in these regions jointly support resistance to forgetting long after initial learning. Using fMRI, we measured differentiation in retrieved memory representations following an extended delay in male and female human participants. After 1 week, word-object associations were better remembered if studied across 2 d (overnight), allowing associations to be learned in distinct temporal contexts, compared with learning within a single day (same day). MPFC retrieval patterns showed differentiation for overnight relative to same day memories, whereas hippocampal patterns reflected associative retrieval success. Overnight memory differentiation in MPFC was higher for associative than item memories and higher than differentiation assessed over a brain-wide set of retrieval-active voxels. The memory-related difference in MPFC pattern differentiation correlated with memory success for overnight learning and with hippocampal-MPFC functional connectivity. These results show that learning information across days leads to differentiated MPFC memory representations, reducing forgetting after 1 week, and suggest this arises from persistent interactions between MPFC and hippocampus.SIGNIFICANCE STATEMENT Neural activity in both the hippocampus and medial prefrontal cortex (MPFC) has been linked to memory-related representations, but prior work has not examined how these representations support episodic memory retrieval over extended time scales that are characteristic of everyday retrieval. We show that differentiation in MPFC activity 1 week after encoding is higher for retrieved information learned across 2 d compared with within a single day. In hippocampus, differentiation was greater for detailed memory retrieval but was not influenced by whether information had been learned over 1 or 2 d. Differentiation in MPFC predicted behavioral robustness to forgetting and was correlated with hippocampal-MPFC connectivity. The results suggest that context-based differentiation supports robust long-term memory via persistent MPFC-hippocampal interactions.
Collapse
Affiliation(s)
- Youssef Ezzyat
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Marika C Inhoff
- Department of Psychology, University of California, Davis, California 95616, and
| | - Lila Davachi
- Department of Psychology, Columbia University, New York, New York 10027
| |
Collapse
|
156
|
Pilly PK, Howard MD, Bhattacharyya R. Modeling Contextual Modulation of Memory Associations in the Hippocampus. Front Hum Neurosci 2018; 12:442. [PMID: 30473660 PMCID: PMC6237880 DOI: 10.3389/fnhum.2018.00442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/12/2018] [Indexed: 11/13/2022] Open
Abstract
We present a computational model of how memories can be contextually acquired and recalled in the hippocampus. Our adaptive contextual memory model comprises the lateral entorhinal cortex (LEC), the dentate gyrus (DG) and areas CA3 and CA1 in the hippocampus, and assumes external inputs about context that originate in the prefrontal cortex (PFC). Specifically, we propose that there is a top-down bias on the excitability of cells in the DG of the hippocampus that recruits a sub-population of cells to differentiate contexts, independent of experienced stimuli, expanding the "pattern separation" role typically attributed to the DG. It has been demonstrated in rats that if PFC is inactivated, both acquisition and recall of memory associations are impaired. However, PFC inactivation during acquisition of one set of memory associations surprisingly leads to subsequent facilitation of the acquisition of a conflicting set of memory associations in the same context under normal PFC operation. We provide here the first computational and algorithmic account of how the absence or presence of the top-down contextual biases on the excitability of DG cells during different learning phases of these experiments explains these data. Our model simulates PFC inactivation as the loss of inhibitory control on DG, which leads to full or partial activation of DG cells related to conflicting memory associations previously acquired in different contexts. This causes context-inappropriate memory traces to become active in the CA3 recurrent network and thereby the output CA1 area within the hippocampus. We show that these incongruous memory patterns proactively interfere with and slow the acquisition of new memory associations. Further, we demonstrate that pattern completion within CA3 in response to a partial cue for the recall of previously acquired memories is also impaired by PFC inactivation for the same reason. Pre-training the model with interfering memories in contexts different from those used in the experiments, simulating a lifetime of experiences, was crucial to reproduce the rat behavioral data. Finally, we made several testable predictions based on the model that suggest future experiments to deepen our understanding of brain-wide memory processes.
Collapse
Affiliation(s)
- Praveen K Pilly
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories Malibu, CA, United States
| | - Michael D Howard
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories Malibu, CA, United States
| | - Rajan Bhattacharyya
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories Malibu, CA, United States
| |
Collapse
|
157
|
Porter BS, Schmidt R, Bilkey DK. Hippocampal place cell encoding of sloping terrain. Hippocampus 2018; 28:767-782. [PMID: 29781093 PMCID: PMC6282778 DOI: 10.1002/hipo.22966] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/30/2018] [Accepted: 05/13/2018] [Indexed: 01/23/2023]
Abstract
Effective navigation relies on knowledge of one's environment. A challenge to effective navigation is accounting for the time and energy costs of routes. Irregular terrain in ecological environments poses a difficult navigational problem as organisms ought to avoid effortful slopes to minimize travel costs. Route planning and navigation have previously been shown to involve hippocampal place cells and their ability to encode and store information about an organism's environment. However, little is known about how place cells may encode the slope of space and associated energy costs as experiments are traditionally carried out in flat, horizontal environments. We set out to investigate how dorsal-CA1 place cells in rats encode systematic changes to the slope of an environment by tilting a shuttle box from flat to 15 ° and 25 ° while minimizing external cue change. Overall, place cell encoding of tilted space was as robust as their encoding of flat ground as measured by traditional place cell metrics such as firing rates, spatial information, coherence, and field size. A large majority of place cells did, however, respond to slope by undergoing partial, complex remapping when the environment was shifted from one tilt angle to another. The propensity for place cells to remap did not, however, depend on the vertical distance the field shifted. Changes in slope also altered the temporal coding of information as measured by the rate of theta phase precession of place cell spikes, which decreased with increasing tilt angles. Together these observations indicate that place cells are sensitive to relatively small changes in terrain slope and that terrain slope may be an important source of information for organizing place cell ensembles. The terrain slope information encoded by place cells could be utilized by efferent regions to determine energetically advantageous routes to goal locations.
Collapse
Affiliation(s)
- Blake S. Porter
- Department of PsychologyUniversity of OtagoDunedin, 9016New Zealand
- Brain Health Research CentreDivision of Sciences, University of OtagoDunedin, 9016New Zealand
| | - Robert Schmidt
- Department of Psychologythe University of SheffieldSheffield, S1 2LTUnited Kingdom
| | - David K. Bilkey
- Department of PsychologyUniversity of OtagoDunedin, 9016New Zealand
- Brain Health Research CentreDivision of Sciences, University of OtagoDunedin, 9016New Zealand
| |
Collapse
|
158
|
Flasbeck V, Atucha E, Nakamura NH, Yoshida M, Sauvage MM. Spatial information is preferentially processed by the distal part of CA3: Implication for memory retrieval. Behav Brain Res 2018; 354:31-38. [DOI: 10.1016/j.bbr.2018.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
159
|
Kinsky NR, Sullivan DW, Mau W, Hasselmo ME, Eichenbaum HB. Hippocampal Place Fields Maintain a Coherent and Flexible Map across Long Timescales. Curr Biol 2018; 28:3578-3588.e6. [PMID: 30393037 DOI: 10.1016/j.cub.2018.09.037] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/29/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022]
Abstract
To provide a substrate for remembering where in space events have occurred, place cells must reliably encode the same positions across long timescales. However, in many cases, place cells exhibit instability by randomly reorganizing their place fields between experiences, challenging this premise. Recent evidence suggests that, in some cases, instability could also arise from coherent rotations of place fields, as well as from random reorganization. To investigate this possibility, we performed in vivo calcium imaging in dorsal hippocampal region CA1 of freely moving mice while they explored two arenas with different geometry and visual cues across 8 days. The two arenas were rotated randomly between sessions and then connected, allowing us to probe how cue rotations, the integration of new information about the environment, and the passage of time concurrently influenced the spatial coherence of place fields. We found that spatially coherent rotations of place-field maps in the same arena predominated, persisting up to 6 days later, and that they frequently rotated in a manner that did not match that of the arena rotation. Furthermore, place-field maps were flexible, as mice frequently employed a similar, coherent configuration of place fields to represent each arena despite their differing geometry and eventual connection. These results highlight the ability of the hippocampus to retain consistent relationships between cells across long timescales and suggest that, in many cases, apparent instability might result from a coherent rotation of place fields.
Collapse
Affiliation(s)
- Nathaniel R Kinsky
- Center for Memory and Brain, Boston University, Commonwealth Avenue, Boston, MA 02215, USA; Graduate Program for Neuroscience, Boston University, Commonwealth Avenue, Boston, MA 02215, USA.
| | - David W Sullivan
- Center for Memory and Brain, Boston University, Commonwealth Avenue, Boston, MA 02215, USA
| | - William Mau
- Center for Memory and Brain, Boston University, Commonwealth Avenue, Boston, MA 02215, USA; Graduate Program for Neuroscience, Boston University, Commonwealth Avenue, Boston, MA 02215, USA
| | - Michael E Hasselmo
- Center for Memory and Brain, Boston University, Commonwealth Avenue, Boston, MA 02215, USA
| | - Howard B Eichenbaum
- Center for Memory and Brain, Boston University, Commonwealth Avenue, Boston, MA 02215, USA
| |
Collapse
|
160
|
Bayati M, Neher T, Melchior J, Diba K, Wiskott L, Cheng S. Storage fidelity for sequence memory in the hippocampal circuit. PLoS One 2018; 13:e0204685. [PMID: 30286147 PMCID: PMC6171846 DOI: 10.1371/journal.pone.0204685] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/11/2018] [Indexed: 12/24/2022] Open
Abstract
Episodic memories have been suggested to be represented by neuronal sequences, which are stored and retrieved from the hippocampal circuit. A special difficulty is that realistic neuronal sequences are strongly correlated with each other since computational memory models generally perform poorly when correlated patterns are stored. Here, we study in a computational model under which conditions the hippocampal circuit can perform this function robustly. During memory encoding, CA3 sequences in our model are driven by intrinsic dynamics, entorhinal inputs, or a combination of both. These CA3 sequences are hetero-associated with the input sequences, so that the network can retrieve entire sequences based on a single cue pattern. We find that overall memory performance depends on two factors: the robustness of sequence retrieval from CA3 and the circuit's ability to perform pattern completion through the feedforward connectivity, including CA3, CA1 and EC. The two factors, in turn, depend on the relative contribution of the external inputs and recurrent drive on CA3 activity. In conclusion, memory performance in our network model critically depends on the network architecture and dynamics in CA3.
Collapse
Affiliation(s)
- Mehdi Bayati
- Institut für Neuroinformatik, Ruhr-University Bochum, Bochum, Germany
| | - Torsten Neher
- Mental Health Research and Treatment Center, Department of Clinical Child and Adolescent Psychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Jan Melchior
- Institut für Neuroinformatik, Ruhr-University Bochum, Bochum, Germany
| | - Kamran Diba
- Department of Anesthesiology, University of Michigan, Ann Arbor, United States of America
| | - Laurenz Wiskott
- Institut für Neuroinformatik, Ruhr-University Bochum, Bochum, Germany
| | - Sen Cheng
- Institut für Neuroinformatik, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
161
|
Lee HW, Lee SM, Lee I. Neural Firing Patterns Are More Schematic and Less Sensitive to Changes in Background Visual Scenes in the Subiculum than in the Hippocampus. J Neurosci 2018; 38:7392-7408. [PMID: 30012689 PMCID: PMC6596140 DOI: 10.1523/jneurosci.0156-18.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 06/28/2018] [Accepted: 06/30/2018] [Indexed: 11/21/2022] Open
Abstract
Literature suggests that the hippocampus is central to processing visual scenes to remember contextual information, but the roles of its downstream structure, subiculum, remain unknown. Here, single units were recorded simultaneously in the dorsal CA1 and subiculum while male rats made spatial choices using visual scenes as cues in a T-maze. The firing fields of subicular neurons were schematically organized following the task structure, largely divided into pre-choice and post-choice epochs, whereas those of CA1 cells were more punctate and bound to specific locations. When the rats were tested with highly familiar scenes, neurons in the CA1 and subiculum were indistinguishable in coding the task-related information (e.g., scene, choice) through rate remapping. However, when the familiar scenes were blurred parametrically, the neurons in the CA1 responded sensitively to the novelty in task demand and changed its representations parametrically following the physical changes of the stimuli, whereas these functional characteristics were absent in the subiculum. These results suggest that the unique function of the hippocampus is to acquire contextual representations in association with discrete positions in space, especially when facing new and ambiguous scenes, whereas the subiculum may translate the position-bound visual contextual information of the hippocampus into schematic codes once learning is established.SIGNIFICANCE STATEMENT Although the potential functional significance has been recognized for decades for the subiculum, its exact roles in a goal-directed memory task still remain elusive. In the current study, we present experimental evidence that may indicate that the neural population in the subiculum could translate the location-bound spatial representations of the hippocampus into more schematic representations of task demands. Our findings also imply that the visual scene-based codes conveyed by the hippocampus and subiculum may be identical in a well learned task, whereas the hippocampus may be more specialized in representing altered visual scenes than the subiculum.
Collapse
Affiliation(s)
- Hyun-Woo Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Gwanak-gu, Seoul, Korea 08826
| | - Su-Min Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Gwanak-gu, Seoul, Korea 08826
| | - Inah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Gwanak-gu, Seoul, Korea 08826
| |
Collapse
|
162
|
Time-resolved neural reinstatement and pattern separation during memory decisions in human hippocampus. Proc Natl Acad Sci U S A 2018; 115:E7418-E7427. [PMID: 30006465 DOI: 10.1073/pnas.1717088115] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mnemonic decision-making has long been hypothesized to rely on hippocampal dynamics that bias memory processing toward the formation of new memories or the retrieval of old ones. Successful memory encoding may be best optimized by pattern separation, whereby two highly similar experiences can be represented by underlying neural populations in an orthogonal manner. By contrast, successful memory retrieval is thought to be supported by a recovery of the same neural pattern laid down during encoding. Here we examined how hippocampal pattern completion and separation emerge over time during memory decisions. We measured electrocorticography activity in the human hippocampus and posterior occipitotemporal cortex (OTC) while participants performed continuous recognition of items that were new, repeated (old), or highly similar to a prior item (similar). During retrieval decisions of old items, both regions exhibited significant reinstatement of multivariate high-frequency activity (HFA) associated with encoding. Further, the extent of reinstatement of encoding patterns during retrieval was correlated with the strength (HFA power) of hippocampal encoding. Evidence for encoding pattern reinstatement was also seen in OTC on trials requiring fine-grained discrimination of similar items. By contrast, hippocampal activity showed evidence for pattern separation during these trials. Together, these results underscore the critical role of the hippocampus in supporting both reinstatement of overlapping information and separation of similar events.
Collapse
|
163
|
Abstract
Memories for events are thought to be represented in sparse, distributed neuronal ensembles (or engrams). In this article, we review how neurons are chosen to become part of a particular engram, via a process of neuronal allocation. Experiments in rodents indicate that eligible neurons compete for allocation to a given engram, with more excitable neurons winning this competition. Moreover, fluctuations in neuronal excitability determine how engrams interact, promoting either memory integration (via coallocation to overlapping engrams) or separation (via disallocation to nonoverlapping engrams). In parallel with rodent studies, recent findings in humans verify the importance of this memory integration process for linking memories that occur close in time or share related content. A deeper understanding of allocation promises to provide insights into the logic underlying how knowledge is normally organized in the brain and the disorders in which this process has gone awry.
Collapse
Affiliation(s)
- Sheena A Josselyn
- Department of Psychology, University of Toronto, Ontario M5S 3G3, Canada; ,
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Department of Physiology, University of Toronto, Ontario M5S 1A8, Canada
- Institute of Medical Sciences, University of Toronto, Ontario M5S 1A8, Canada
- Brain, Mind & Consciousness Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario M5G 1M1, Canada
| | - Paul W Frankland
- Department of Psychology, University of Toronto, Ontario M5S 3G3, Canada; ,
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Department of Physiology, University of Toronto, Ontario M5S 1A8, Canada
- Institute of Medical Sciences, University of Toronto, Ontario M5S 1A8, Canada
- Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
164
|
Brunec IK, Moscovitch M, Barense MD. Boundaries Shape Cognitive Representations of Spaces and Events. Trends Cogn Sci 2018; 22:637-650. [DOI: 10.1016/j.tics.2018.03.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/20/2018] [Accepted: 03/31/2018] [Indexed: 12/14/2022]
|
165
|
Bio-Inspired Robotics: A Spatial Cognition Model integrating Place Cells, Grid Cells and Head Direction Cells. J INTELL ROBOT SYST 2018. [DOI: 10.1007/s10846-018-0852-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
166
|
Xing D, Qian C, Li H, Zhang S, Zhang Q, Hao Y, Zheng X, Wu Z, Wang Y, Pan G. Predicting Spike Trains from PMd to M1 Using Discrete Time Rescaling Targeted GLM. IEEE Trans Cogn Dev Syst 2018. [DOI: 10.1109/tcds.2017.2707466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
167
|
The cognitive nuances of surprising events: exposure to unexpected stimuli elicits firing variations in neurons of the dorsal CA1 hippocampus. Brain Struct Funct 2018; 223:3183-3211. [PMID: 29789932 PMCID: PMC6132666 DOI: 10.1007/s00429-018-1681-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 05/08/2018] [Indexed: 12/02/2022]
Abstract
The ability to recognize novel situations is among the most fascinating and vital of the brain functions. A hypothesis posits that encoding of novelty is prompted by failures in expectancy, according to computation matching incoming information with stored events. Thus, unexpected changes in context are detected within the hippocampus and transferred to downstream structures, eliciting the arousal of the dopamine system. Nevertheless, the precise locus of detection is a matter of debate. The dorsal CA1 hippocampus (dCA1) appears as an ideal candidate for operating a mismatch computation and discriminating the occurrence of diverse stimuli within the same environment. In this study, we sought to determine dCA1 neuronal firing during the experience of novel stimuli embedded in familiar contexts. We performed population recordings while head-fixed mice navigated virtual environments. Three stimuli were employed, namely a novel pattern of visual cues, an odor, and a reward with enhanced valence. The encounter of unexpected events elicited profound variations in dCA1 that were assessed both as opposite rate directions and altered network connectivity. When experienced in sequence, novel stimuli elicited specific responses that often exhibited cross-sensitization. Short-latency, event-triggered responses were in accordance with the detection of novelty being computed within dCA1. We postulate that firing variations trigger neuronal disinhibition, and constitute a fundamental mechanism in the processing of unexpected events and in learning. Elucidating the mechanisms underlying detection and computation of novelty might help in understanding hippocampal-dependent cognitive dysfunctions associated with neuropathologies and psychiatric conditions.
Collapse
|
168
|
Rollins L, Cloude EB. Development of mnemonic discrimination during childhood. ACTA ACUST UNITED AC 2018; 25:294-297. [PMID: 29764975 PMCID: PMC5959226 DOI: 10.1101/lm.047142.117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/05/2018] [Indexed: 11/24/2022]
Abstract
The present study examined mnemonic discrimination in 5- and 6-yr-old children, 8- and 9-yr-old children, 11- and 12-yr-old children, and young adults. Participants incidentally encoded pictorial stimuli and subsequently judged whether targets (i.e., repeated stimuli), lures (i.e., mnemonically related stimuli), and foils (i.e., novel stimuli) were old, similar, or new. Compared to older age groups, younger children were more likely to (1) incorrectly identify lures as “old” (rather than “similar”) and (2) fail to recognize lures altogether, especially when lures were more mnemonically distinct from targets. These results suggest age-related improvements in pattern separation and pattern completion during childhood.
Collapse
Affiliation(s)
- Leslie Rollins
- Department of Psychology, Christopher Newport University, Newport News, Virginia 23606, USA
| | - Elizabeth B Cloude
- Department of Psychology, Christopher Newport University, Newport News, Virginia 23606, USA.,Department of Psychology at North Carolina State University, Raleigh, North Carolina 27607, USA
| |
Collapse
|
169
|
Kumaran D, Hassabis D, McClelland JL. What Learning Systems do Intelligent Agents Need? Complementary Learning Systems Theory Updated. Trends Cogn Sci 2018; 20:512-534. [PMID: 27315762 DOI: 10.1016/j.tics.2016.05.004] [Citation(s) in RCA: 240] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 04/22/2016] [Accepted: 05/03/2016] [Indexed: 12/17/2022]
Abstract
We update complementary learning systems (CLS) theory, which holds that intelligent agents must possess two learning systems, instantiated in mammalians in neocortex and hippocampus. The first gradually acquires structured knowledge representations while the second quickly learns the specifics of individual experiences. We broaden the role of replay of hippocampal memories in the theory, noting that replay allows goal-dependent weighting of experience statistics. We also address recent challenges to the theory and extend it by showing that recurrent activation of hippocampal traces can support some forms of generalization and that neocortical learning can be rapid for information that is consistent with known structure. Finally, we note the relevance of the theory to the design of artificial intelligent agents, highlighting connections between neuroscience and machine learning.
Collapse
Affiliation(s)
- Dharshan Kumaran
- Google DeepMind, 5 New Street Square, London EC4A 3TW, UK; Institute of Cognitive Neuroscience, University College London, 17 Queen Square, WC1N 3AR, UK.
| | - Demis Hassabis
- Google DeepMind, 5 New Street Square, London EC4A 3TW, UK; Gatsby Computational Neuroscience Unit, 17 Queen Square, London WC1N 3AR, UK.
| | - James L McClelland
- Department of Psychology and Center for Mind, Brain, and Computation, Stanford University, 450 Serra Mall, CA 94305, USA.
| |
Collapse
|
170
|
Poli D, Wheeler BC, DeMarse TB, Brewer GJ. Pattern separation and completion of distinct axonal inputs transmitted via micro-tunnels between co-cultured hippocampal dentate, CA3, CA1 and entorhinal cortex networks. J Neural Eng 2018; 15:046009. [PMID: 29623900 DOI: 10.1088/1741-2552/aabc20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Functions ascribed to the hippocampal sub-regions for encoding episodic memories include the separation of activity patterns propagated from the entorhinal cortex (EC) into the dentate gyrus (DG) and pattern completion in CA3 region. Since a direct assessment of these functions is lacking at the level of specific axonal inputs, our goal is to directly measure the separation and completion of distinct axonal inputs in engineered pairs of hippocampal sub-regional circuits. APPROACH We co-cultured EC-DG, DG-CA3, CA3-CA1 or CA1-EC neurons in a two-chamber PDMS device over a micro-electrode array (MEA60), inter-connected via distinct axons that grow through the micro-tunnels between the compartments. Taking advantage of the axonal accessibility, we quantified pattern separation and completion of the evoked activity transmitted through the tunnels from source into target well. Since pattern separation can be inferred when inputs are more correlated than outputs, we first compared the correlations among axonal inputs with those of target somata outputs. We then compared, in an analog approach, the distributions of correlation distances between rate patterns of the axonal inputs inside the tunnels with those of the somata outputs evoked in the target well. Finally, in a digital approach, we measured the spatial population distances between binary patterns of the same axonal inputs and somata outputs. MAIN RESULTS We found the strongest separation of the propagated axonal inputs when EC was axonally connected to DG, with a decline in separation to CA3 and to CA1 for both rate and digital approaches. Furthermore, the digital approach showed stronger pattern completion in CA3, then CA1 and EC. SIGNIFICANCE To the best of our knowledge, these are the first direct measures of pattern separation and completion for axonal transmission to the somata target outputs at the rate and digital population levels in each of four stages of the EC-DG-CA3-CA1 circuit.
Collapse
Affiliation(s)
- Daniele Poli
- Department of Biomedical Engineering, University of California, Irvine, CA, United States of America. Research Center 'Enrico Piaggio', University of Pisa, Pisa, Italy
| | | | | | | |
Collapse
|
171
|
Duncan KD, Schlichting ML. Hippocampal representations as a function of time, subregion, and brain state. Neurobiol Learn Mem 2018. [PMID: 29535044 DOI: 10.1016/j.nlm.2018.03.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
How does the hippocampus represent interrelated experiences in memory? We review prominent yet seemingly contradictory theoretical perspectives, which propose that the hippocampus distorts experiential representations to either emphasize their distinctiveness or highlight common elements. These fundamentally different kinds of memory representations may be instantiated in the brain via conjunctive separated codes and adaptively differentiated codes on the one hand, or integrated relational codes on the other. After reviewing empirical support for these different coding schemes within the hippocampus, we outline two organizing principles which may explain the conflicting findings in the literature. First focusing on where the memories are formed and stored, we argue that distinct hippocampal regions represent experiences at multiple levels of abstraction and may transmit them to distinct cortical networks. Then focusing on when memories are formed, we identify several factors that can open and maintain specialized time windows, during which the very same hippocampal network is biased toward one coding scheme over the others. Specifically, we discuss evidence for (1) excitability-mediated integration windows, maintained by persistently elevated CREB levels following encoding of a specific memory, (2) fleeting cholinergically-mediated windows favoring memory separation, and (3) sustained dopaminergically-mediated windows favoring memory integration. By presenting a broad overview of different hippocampal coding schemes across species, we hope to inspire future empirical and modeling research to consider how factors surrounding memory formation shape the representations in which they are stored.
Collapse
Affiliation(s)
- Katherine D Duncan
- Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada.
| | | |
Collapse
|
172
|
Flasbeck V, Atucha E, Nakamura NH, Yoshida M, Sauvage MM. Spatial information is preferentially processed by the distal part of CA3: implication for memory retrieval. Behav Brain Res 2018. [PMID: 29518437 DOI: 10.1016/j.bbr.2018.02.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For the past decades, CA3 was considered as a single functional entity. However, strong differences between the proximal (close to the dentate gyrus) and the distal (close to CA2) parts of CA3 in terms of connectivity patterns, gene expression and electrophysiological properties suggest that it is not the case. We recently showed that proximal CA3 (together with distal CA1) preferentially deals with non-spatial information [1]. In contrast to proximal CA3, distal CA3 mainly receives and predominantly projects to spatially tuned areas. Here, we tested if distal CA3 preferentially processes spatial information, which would suggest a segregation of the spatial information along the proximodistal axis of CA3. We used a high-resolution imaging technique based on the detection of the expression of the immediate-early gene Arc, commonly used to map activity in the medial temporal lobe. We showed that distal CA3 is strongly recruited in a newly designed delayed nonmatching-to-location task with high memory demands in rats, while proximal CA3 is not. These results indicate a functional segregation of CA3 that mirrors the one reported in CA1, and suggest the existence of a distal CA3- proximal CA1 spatial subnetwork. These findings bring further evidence for the existence of 'specialized' spatial and non-spatial subnetworks segregated along the proximodistal axis of the hippocampus and put forward the 'segregated' view of information processing in the hippocampus as a reasonable alternative to the well-accepted 'integrated' view, according to which spatial and non-spatial information are systematically integrated in the hippocampus to form episodic memory.
Collapse
Affiliation(s)
- Vera Flasbeck
- Mercator Research Group, Functional Architecture of Memory Unit, Ruhr-University, 44780, Bochum, Germany
| | - Erika Atucha
- Mercator Research Group, Functional Architecture of Memory Unit, Ruhr-University, 44780, Bochum, Germany; Leibniz-Institute for Neurobiology, Functional Architecture of Memory Dept., 39118, Magdeburg, Germany
| | - Nozomu H Nakamura
- Department of Physiology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501 Japan
| | - Motoharu Yoshida
- German Center for Neurodegenerative Diseases (DZNE), cognitive neurophysiology laboratory, Magdeburg
| | - Magdalena M Sauvage
- Mercator Research Group, Functional Architecture of Memory Unit, Ruhr-University, 44780, Bochum, Germany; Leibniz-Institute for Neurobiology, Functional Architecture of Memory Dept., 39118, Magdeburg, Germany; Otto von Guericke University, Medical Faculty, Functional Neuroplasticity Dept., 39120, Magdeburg Germany; Otto von Guericke University, Center for Behavioral Brain Sciences, 39106, Magdeburg Germany.
| |
Collapse
|
173
|
von Ziegler LM, Selevsek N, Tweedie-Cullen RY, Kremer E, Mansuy IM. Subregion-Specific Proteomic Signature in the Hippocampus for Recognition Processes in Adult Mice. Cell Rep 2018; 22:3362-3374. [DOI: 10.1016/j.celrep.2018.02.079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 01/05/2018] [Accepted: 02/21/2018] [Indexed: 12/15/2022] Open
|
174
|
Norimoto H, Makino K, Gao M, Shikano Y, Okamoto K, Ishikawa T, Sasaki T, Hioki H, Fujisawa S, Ikegaya Y. Hippocampal ripples down-regulate synapses. Science 2018; 359:1524-1527. [PMID: 29439023 DOI: 10.1126/science.aao0702] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 01/26/2018] [Indexed: 12/24/2022]
Abstract
The specific effects of sleep on synaptic plasticity remain unclear. We report that mouse hippocampal sharp-wave ripple oscillations serve as intrinsic events that trigger long-lasting synaptic depression. Silencing of sharp-wave ripples during slow-wave states prevented the spontaneous down-regulation of net synaptic weights and impaired the learning of new memories. The synaptic down-regulation was dependent on the N-methyl-d-aspartate receptor and selective for a specific input pathway. Thus, our findings are consistent with the role of slow-wave states in refining memory engrams by reducing recent memory-irrelevant neuronal activity and suggest a previously unrecognized function for sharp-wave ripples.
Collapse
Affiliation(s)
- Hiroaki Norimoto
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Laboratory for Systems Neurophysiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako City, Saitama, Japan
| | - Kenichi Makino
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Mengxuan Gao
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yu Shikano
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuki Okamoto
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomoe Ishikawa
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takuya Sasaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Hioki
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigeyoshi Fujisawa
- Laboratory for Systems Neurophysiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako City, Saitama, Japan.
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan. .,Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, Japan
| |
Collapse
|
175
|
Pillai AG, Arp M, Velzing E, Lesuis SL, Schmidt MV, Holsboer F, Joëls M, Krugers HJ. Early life stress determines the effects of glucocorticoids and stress on hippocampal function: Electrophysiological and behavioral evidence respectively. Neuropharmacology 2018; 133:307-318. [PMID: 29412144 DOI: 10.1016/j.neuropharm.2018.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 01/28/2018] [Accepted: 02/01/2018] [Indexed: 10/18/2022]
Abstract
Exposure to early-life adversity may program brain function to prepare individuals for adaptation to matching environmental contexts. In this study we tested this hypothesis in more detail by examining the effects of early-life stress - induced by raising offspring with limited nesting and bedding material from postnatal days 2-9 - in various behavioral tasks and on synaptic function in adult mice. Early-life stress impaired adult performance in the hippocampal dependent low-arousing object-in-context recognition memory task. This effect was absent when animals were exposed to a single stressor before training. Early-life stress did not alter high-arousing context and auditory fear conditioning. Early-life stress-induced behavioral modifications were not associated with alterations in the dendritic architecture of hippocampal CA1 pyramidal neurons or principal neurons of the basolateral amygdala. However, early-life stress reduced the ratio of NMDA to AMPA receptor-mediated excitatory postsynaptic currents and glutamate release probability specifically in hippocampal CA1 neurons, but not in the basolateral amygdala. These ex vivo effects in the hippocampus were abolished by acute glucocorticoid treatment. Our findings support that early-life stress can hamper object-in-context learning via pre- and postsynaptic mechanisms that affect hippocampal function but these effects are counteracted by acute stress or elevated glucocorticoid levels.
Collapse
Affiliation(s)
- Anup G Pillai
- Dept. Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Marit Arp
- SILS-Center for Neuroscience, University of Amsterdam, The Netherlands
| | - Els Velzing
- SILS-Center for Neuroscience, University of Amsterdam, The Netherlands
| | - Sylvie L Lesuis
- SILS-Center for Neuroscience, University of Amsterdam, The Netherlands
| | - Mathias V Schmidt
- Max Planck Institute for Psychiatry, Department Stress Neurobiology and Neurogenetics, Munich, Germany
| | - Florian Holsboer
- Max Planck Institute for Psychiatry, Department Stress Neurobiology and Neurogenetics, Munich, Germany
| | - Marian Joëls
- Dept. Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, The Netherlands; University of Groningen, University Medical Center Groningen, The Netherlands
| | - Harm J Krugers
- SILS-Center for Neuroscience, University of Amsterdam, The Netherlands.
| |
Collapse
|
176
|
Szczurowska E, Ahuja N, Jiruška P, Kelemen E, Stuchlík A. Impairment of neural coordination in hippocampal neuronal ensembles after a psychotomimetic dose of dizocilpine. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:275-283. [PMID: 28935586 DOI: 10.1016/j.pnpbp.2017.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 11/19/2022]
Abstract
The discoordination hypothesis of schizophrenia posits discoordination of neural activity as the central mechanism that underlies some psychotic symptoms (including 'hallmark' cognitive symptoms) of schizophrenia. To test this proposition, we studied the activity of hippocampal neurons in urethane anesthetized Long Evans rats after 0.15mg/kg dizocilpine (MK-801), an N-Methyl-d-aspartate (NMDA) glutamate receptor antagonist, which can cause psychotic symptoms in humans and cognitive control impairments in animals. We observed that MK-801 altered the temporal coordination, but not rate, of neuronal firing. Coactivation between neurons increased, driven primarily by increased coincident firing of cell pairs that did not originally fire together before MK-801 injection. Increased pairwise coactivation manifested as disorganized discharge on the level of neuronal ensembles, which in turn could lead to disorganization in information processing. Disorganization of neuronal activity after a psychotomimetic dose of MK-801 supports the discoordination hypothesis of psychosis.
Collapse
Affiliation(s)
- Ewa Szczurowska
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Nikhil Ahuja
- Department of Neurophysiology of Memory and Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Přemysl Jiruška
- Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Eduard Kelemen
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic.
| | - Aleš Stuchlík
- Department of Neurophysiology of Memory and Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
177
|
Leal SL, Yassa MA. Integrating new findings and examining clinical applications of pattern separation. Nat Neurosci 2018; 21:163-173. [PMID: 29371654 PMCID: PMC5898810 DOI: 10.1038/s41593-017-0065-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 10/28/2017] [Indexed: 11/09/2022]
Abstract
Pattern separation, the ability to independently represent and store similar experiences, is a crucial facet of episodic memory. Growing evidence suggests that the hippocampus possesses unique circuitry that is computationally capable of resolving mnemonic interference by using pattern separation. In this Review, we discuss recent advances in the understanding of this process and evaluate the caveats and limitations of linking across animal and human studies. We summarize clinical and translational studies using methods that are sensitive to pattern separation impairments, an approach that stems from the fact that the hippocampus is a major site of disruption in many brain disorders. We critically evaluate the assumptions that guide fundamental and translational studies in this area. Finally, we suggest guidelines for future research and offer ways to overcome potential interpretational challenges to increase the utility of pattern separation as a construct that can further understanding of both memory processes and brain disease.
Collapse
Affiliation(s)
- Stephanie L Leal
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Michael A Yassa
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
178
|
Abstract
Our location in space is represented by a spectrum of space and direction-responsive cell types in medial entorhinal cortex and hippocampus. Many cells in these areas respond also to running speed. The presence of local speed-tuned cells is considered a requirement for position to be encoded in a self-motion–dependent manner; however, whether and how speed-responsive cells in entorhinal cortex and hippocampus are functionally connected have not been determined. The present study shows that a large proportion of entorhinal speed cells are fast-spiking with properties similar to those of GABAergic interneurons and that outputs from a subset of these cells, particularly the parvalbumin-expressing subset, form a component of the medial entorhinal input to the hippocampus. The mammalian positioning system contains a variety of functionally specialized cells in the medial entorhinal cortex (MEC) and the hippocampus. In order for cells in these systems to dynamically update representations in a way that reflects ongoing movement in the environment, they must be able to read out the current speed of the animal. Speed is encoded by speed-responsive cells in both MEC and hippocampus, but the relationship between the two populations has not been determined. We show here that many entorhinal speed cells are fast-spiking putative GABAergic neurons. Using retrograde viral labeling from the hippocampus, we find that a subset of these fast-spiking MEC speed cells project directly to hippocampal areas. This projection contains parvalbumin (PV) but not somatostatin (SOM)-immunopositive cells. The data point to PV-expressing GABAergic projection neurons in MEC as a source for widespread speed modulation and temporal synchronization in entorhinal–hippocampal circuits for place representation.
Collapse
|
179
|
Chawla MK, Sutherland VL, Olson K, McNaughton BL, Barnes CA. Behavior-driven arc expression is reduced in all ventral hippocampal subfields compared to CA1, CA3, and dentate gyrus in rat dorsal hippocampus. Hippocampus 2018; 28:178-185. [PMID: 29232477 DOI: 10.1002/hipo.22820] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/21/2017] [Accepted: 12/06/2017] [Indexed: 11/10/2022]
Abstract
Anatomical connectivity and lesion studies reveal distinct functional heterogeneity along the dorsal-ventral axis of the hippocampus. The immediate early gene Arc is known to be involved in neural plasticity and memory and can be used as a marker for cell activity that occurs, for example, when hippocampal place cells fire. We report here, that Arc is expressed in a greater proportion of cells in dorsal CA1, CA3, and dentate gyrus (DG), following spatial behavioral experiences compared to ventral hippocampal subregions (dorsal CA1 = 33%; ventral CA1 = 13%; dorsal CA3 = 23%; ventral CA3 = 8%; and dorsal DG = 2.5%; ventral DG = 1.2%). The technique used here to obtain estimates of numbers of behavior-driven cells across the dorsal-ventral axis, however, corresponds quite well with samples from available single unit recording studies. Several explanations for the two- to-threefold reduction in spatial behavior-driven cell activity in the ventral hippocampus can be offered. These include anatomical connectivity differences, differential gain of the self-motion signals that appear to alter the scale of place fields and the proportion of active cells, and possibly variations in the neuronal responses to non-spatial information within the hippocampus along its dorso-ventral axis.
Collapse
Affiliation(s)
- M K Chawla
- ARL Div of Neural Systems, Memory and Aging and Evelyn F. McKnight Brain, Institute, Univ Arizona, Tucson, Arizona
| | - V L Sutherland
- National Toxicology Program, NIEHS, Research Triangle Park, North Carolina
| | - K Olson
- ARL Div of Neural Systems, Memory and Aging and Evelyn F. McKnight Brain, Institute, Univ Arizona, Tucson, Arizona
| | - B L McNaughton
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, T1K 3M4, Alberta.,Department of Neurobiology and Behavior, Center for Neurobiology of Learning and Memory, University California, Irvine, 92697
| | - C A Barnes
- ARL Div of Neural Systems, Memory and Aging and Evelyn F. McKnight Brain, Institute, Univ Arizona, Tucson, Arizona
| |
Collapse
|
180
|
Latuske P, Kornienko O, Kohler L, Allen K. Hippocampal Remapping and Its Entorhinal Origin. Front Behav Neurosci 2018; 11:253. [PMID: 29354038 PMCID: PMC5758554 DOI: 10.3389/fnbeh.2017.00253] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/13/2017] [Indexed: 11/13/2022] Open
Abstract
The activity of hippocampal cell ensembles is an accurate predictor of the position of an animal in its surrounding space. One key property of hippocampal cell ensembles is their ability to change in response to alterations in the surrounding environment, a phenomenon called remapping. In this review article, we present evidence for the distinct types of hippocampal remapping. The progressive divergence over time of cell ensembles active in different environments and the transition dynamics between pre-established maps are discussed. Finally, we review recent work demonstrating that hippocampal remapping can be triggered by neurons located in the entorhinal cortex.
Collapse
Affiliation(s)
- Patrick Latuske
- Department of Clinical Neurobiology, German Cancer Research Center (DKFZ), Medical Faculty of Heidelberg University, Heidelberg University, Heidelberg, Germany
| | - Olga Kornienko
- Department of Clinical Neurobiology, German Cancer Research Center (DKFZ), Medical Faculty of Heidelberg University, Heidelberg University, Heidelberg, Germany
| | - Laura Kohler
- Department of Clinical Neurobiology, German Cancer Research Center (DKFZ), Medical Faculty of Heidelberg University, Heidelberg University, Heidelberg, Germany
| | - Kevin Allen
- Department of Clinical Neurobiology, German Cancer Research Center (DKFZ), Medical Faculty of Heidelberg University, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
181
|
Linking neuronal structure to function in rodent hippocampus: a methodological prospective. Cell Tissue Res 2017; 373:605-618. [PMID: 29181629 DOI: 10.1007/s00441-017-2732-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/27/2017] [Indexed: 10/18/2022]
Abstract
Since the discovery of place cells, hippocampus-dependent spatial navigation has proven to be an ideal model system for resolving the relationship between neural coding and behavior. Electrical recordings from the hippocampal formation in freely moving animals have revealed a rich repertoire of spatial firing patterns and have enormously advanced our understanding of the neural principles of spatial representation. However, limited progress has been achieved in resolving the underlying cellular mechanisms. This is partially attributable to the inability of standard recording techniques to link neuronal structure to function directly. In this review, we summarize recent efforts aimed at filling this gap. We also highlight the development of methodologies that allow functional measurements from identified neuronal elements in behaving rodents. Recent progress in the dentate gyrus serves as a showcase to reveal the potential of such methodologies and the necessity of resolving structure-function relationships in order to access the cellular mechanisms of hippocampal circuit computations.
Collapse
|
182
|
Sensation during Active Behaviors. J Neurosci 2017; 37:10826-10834. [PMID: 29118211 DOI: 10.1523/jneurosci.1828-17.2017] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/05/2017] [Accepted: 10/09/2017] [Indexed: 01/18/2023] Open
Abstract
A substantial portion of our sensory experience happens during active behaviors such as walking around or paying attention. How do sensory systems work during such behaviors? Neural processing in sensory systems can be shaped by behavior in multiple ways ranging from a modulation of responsiveness or sharpening of tuning to a dynamic change of response properties or functional connectivity. Here, we review recent findings on the modulation of sensory processing during active behaviors in different systems: insect vision, rodent thalamus, and rodent sensory cortices. We discuss the circuit-level mechanisms that might lead to these modulations and their potential role in sensory function. Finally, we highlight the open questions and future perspectives of this exciting new field.
Collapse
|
183
|
Collective Behavior of Place and Non-place Neurons in the Hippocampal Network. Neuron 2017; 96:1178-1191.e4. [PMID: 29154129 PMCID: PMC5720931 DOI: 10.1016/j.neuron.2017.10.027] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 09/29/2017] [Accepted: 10/24/2017] [Indexed: 11/20/2022]
Abstract
Discussions of the hippocampus often focus on place cells, but many neurons are not place cells in any given environment. Here we describe the collective activity in such mixed populations, treating place and non-place cells on the same footing. We start with optical imaging experiments on CA1 in mice as they run along a virtual linear track and use maximum entropy methods to approximate the distribution of patterns of activity in the population, matching the correlations between pairs of cells but otherwise assuming as little structure as possible. We find that these simple models accurately predict the activity of each neuron from the state of all the other neurons in the network, regardless of how well that neuron codes for position. Our results suggest that understanding the neural activity may require not only knowledge of the external variables modulating it but also of the internal network state.
Collapse
|
184
|
Sleep in Humans Stabilizes Pattern Separation Performance. J Neurosci 2017; 37:12238-12246. [PMID: 29118106 DOI: 10.1523/jneurosci.1189-17.2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 09/20/2017] [Accepted: 09/27/2017] [Indexed: 12/22/2022] Open
Abstract
Replay of hippocampal neural representations during sleep is thought to promote systems consolidation of declarative memory. How this reprocessing of memory during sleep affects the hippocampal representation itself, is unclear. Here we tested hippocampal stimulus processing (i.e., pattern separation) before and after periods of sleep and wakefulness in humans (female and male participants). Pattern separation deteriorated across the wake period but remained stable across sleep (p = 0.013) with this sleep-wake difference being most pronounced for stimuli with low similarity to targets (p = 0.006). Stimuli with the highest similarity showed a reversed pattern with reduced pattern separation performance after sleep (p = 0.038). Pattern separation performance was positively correlated with sleep spindle density, slow oscillation density, and theta power phase-locked to slow oscillations. Sleep, presumably by neural memory replay, shapes hippocampal representations and enhances computations of pattern separation to subsequent presentation of similar stimuli.SIGNIFICANCE STATEMENT The consolidation of hippocampus-dependent memories is causally related to reactivation during sleep of previously encoded representations. Here, we show that reactivation-based consolidation processes during sleep shape the hippocampal representation itself. We studied the effect of sleep and wakefulness on pattern separation (i.e., orthogonalization of similar representations) and completion performance (i.e., recall of a memory in light of noisy input) that are essential cognitive elements of encoding and retrieval of information by the hippocampus. Our results demonstrate that pattern separation was stabilized after sleep but diminished after wakefulness. We further showed that pattern separation was related to EEG oscillatory parameters of non-REM sleep serving as markers of sleep-dependent memory consolidation and hippocampal reactivation.
Collapse
|
185
|
Abstract
Since the first place cell was recorded and the cognitive-map theory was subsequently formulated, investigation of spatial representation in the hippocampal formation has evolved in stages. Early studies sought to verify the spatial nature of place cell activity and determine its sensory origin. A new epoch started with the discovery of head direction cells and the realization of the importance of angular and linear movement-integration in generating spatial maps. A third epoch began when investigators turned their attention to the entorhinal cortex, which led to the discovery of grid cells and border cells. This review will show how ideas about integration of self-motion cues have shaped our understanding of spatial representation in hippocampal-entorhinal systems from the 1970s until today. It is now possible to investigate how specialized cell types of these systems work together, and spatial mapping may become one of the first cognitive functions to be understood in mechanistic detail.
Collapse
|
186
|
Increased Prevalence of Calcium Transients across the Dendritic Arbor during Place Field Formation. Neuron 2017; 96:490-504.e5. [PMID: 29024668 DOI: 10.1016/j.neuron.2017.09.029] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/09/2017] [Accepted: 09/19/2017] [Indexed: 12/31/2022]
Abstract
Hippocampal place cell ensembles form a cognitive map of space during exposure to novel environments. However, surprisingly little evidence exists to support the idea that synaptic plasticity in place cells is involved in forming new place fields. Here we used high-resolution functional imaging to determine the signaling patterns in CA1 soma, dendrites, and axons associated with place field formation when mice are exposed to novel virtual environments. We found that putative local dendritic spikes often occur prior to somatic place field firing. Subsequently, the first occurrence of somatic place field firing was associated with widespread regenerative dendritic events, which decreased in prevalence with increased novel environment experience. This transient increase in regenerative events was likely facilitated by a reduction in dendritic inhibition. Since regenerative dendritic events can provide the depolarization necessary for Hebbian potentiation, these results suggest that activity-dependent synaptic plasticity underlies the formation of many CA1 place fields.
Collapse
|
187
|
Morton NW, Sherrill KR, Preston AR. Memory integration constructs maps of space, time, and concepts. Curr Opin Behav Sci 2017; 17:161-168. [PMID: 28924579 DOI: 10.1016/j.cobeha.2017.08.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recent evidence demonstrates that new events are learned in the context of their relationships to existing memories. Within the hippocampus and medial prefrontal cortex, related memories are represented by integrated codes that connect events experienced at different times and places. Integrated codes form the basis of spatial, temporal, and conceptual maps of experience. These maps represent information that goes beyond direct experience and support generalization behaviors that require knowledge be used in new ways. The degree to which an individual memory is integrated into a coherent map is determined by its spatial, temporal, and conceptual proximity to existing knowledge. Integration is observed over a wide range of scales, suggesting that memories contain information about both broad and fine-grained contexts.
Collapse
Affiliation(s)
- Neal W Morton
- Center for Learning & Memory, The University of Texas at Austin
| | | | - Alison R Preston
- Center for Learning & Memory, The University of Texas at Austin.,Department of Psychology, The University of Texas at Austin.,Department of Neuroscience, The University of Texas at Austin
| |
Collapse
|
188
|
Grieves RM, Duvelle É, Wood ER, Dudchenko PA. Field repetition and local mapping in the hippocampus and the medial entorhinal cortex. J Neurophysiol 2017; 118:2378-2388. [PMID: 28814638 PMCID: PMC5646201 DOI: 10.1152/jn.00933.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 11/22/2022] Open
Abstract
Hippocampal place cells support spatial cognition and are thought to form the neural substrate of a global "cognitive map." A widely held view is that parts of the hippocampus also underlie the ability to separate patterns or to provide different neural codes for distinct environments. However, a number of studies have shown that in environments composed of multiple, repeating compartments, place cells and other spatially modulated neurons show the same activity in each local area. This repetition of firing fields may reflect pattern completion and may make it difficult for animals to distinguish similar local environments. In this review we 1) highlight some of the navigation difficulties encountered by humans in repetitive environments, 2) summarize literature demonstrating that place and grid cells represent local and not global space, and 3) attempt to explain the origin of these phenomena. We argue that the repetition of firing fields can be a useful tool for understanding the relationship between grid cells in the entorhinal cortex and place cells in the hippocampus, the spatial inputs shared by these cells, and the propagation of spatially related signals through these structures.
Collapse
Affiliation(s)
- Roddy M Grieves
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, United Kingdom
| | - Éléonore Duvelle
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, United Kingdom
| | - Emma R Wood
- Centre for Cognitive and Neural Systems, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom; and
| | - Paul A Dudchenko
- Centre for Cognitive and Neural Systems, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom; and
- Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
189
|
Sun Q, Sotayo A, Cazzulino AS, Snyder AM, Denny CA, Siegelbaum SA. Proximodistal Heterogeneity of Hippocampal CA3 Pyramidal Neuron Intrinsic Properties, Connectivity, and Reactivation during Memory Recall. Neuron 2017; 95:656-672.e3. [PMID: 28772124 DOI: 10.1016/j.neuron.2017.07.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 05/25/2017] [Accepted: 07/12/2017] [Indexed: 12/21/2022]
Abstract
The hippocampal CA3 region is classically viewed as a homogeneous autoassociative network critical for associative memory and pattern completion. However, recent evidence has demonstrated a striking heterogeneity along the transverse, or proximodistal, axis of CA3 in spatial encoding and memory. Here we report the presence of striking proximodistal gradients in intrinsic membrane properties and synaptic connectivity for dorsal CA3. A decreasing gradient of mossy fiber synaptic strength along the proximodistal axis is mirrored by an increasing gradient of direct synaptic excitation from entorhinal cortex. Furthermore, we uncovered a nonuniform pattern of reactivation of fear memory traces, with the most robust reactivation during memory retrieval occurring in mid-CA3 (CA3b), the region showing the strongest net recurrent excitation. Our results suggest that heterogeneity in both intrinsic properties and synaptic connectivity may contribute to the distinct spatial encoding and behavioral role of CA3 subregions along the proximodistal axis.
Collapse
Affiliation(s)
- Qian Sun
- Department of Neuroscience, Columbia University, New York, NY 10032, USA.
| | - Alaba Sotayo
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | - Alejandro S Cazzulino
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute (NYSPI)/Research Foundation for Mental Hygiene, Inc. (RFMH), New York, NY 10032, USA
| | - Anna M Snyder
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | - Christine A Denny
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute (NYSPI)/Research Foundation for Mental Hygiene, Inc. (RFMH), New York, NY 10032, USA
| | - Steven A Siegelbaum
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; Department of Pharmacology, Columbia University, New York, NY 10032, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
190
|
Zutshi I, Leutgeb JK, Leutgeb S. Theta sequences of grid cell populations can provide a movement-direction signal. Curr Opin Behav Sci 2017; 17:147-154. [PMID: 29333481 DOI: 10.1016/j.cobeha.2017.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It has been proposed that path integration in mammals is performed by the convergence of internally generated speed and directional inputs onto grid cells. Although this hypothesis has been supported by the discovery that head direction, speed, and grid cells are intermixed within entorhinal cortex and by the recent finding that head-direction inputs are necessary for grid firing, many details on how grid cells are generated have remained elusive. For example, analysis of recording data suggests that substituting head direction for movement direction accrues errors that preclude the formation of grid patterns. To address this discrepancy, we propose that the organization of grid networks makes it plausible that movement-direction signals are an output from grid cells and that temporally precise grid cell sequences provide a robust directional signal to other spatial and directional cell types.
Collapse
Affiliation(s)
- Ipshita Zutshi
- Neurobiology Section and Center for Neural Circuits and Behavior, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jill K Leutgeb
- Neurobiology Section and Center for Neural Circuits and Behavior, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stefan Leutgeb
- Neurobiology Section and Center for Neural Circuits and Behavior, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
191
|
Dedicated Hippocampal Inhibitory Networks for Locomotion and Immobility. J Neurosci 2017; 37:9222-9238. [PMID: 28842418 DOI: 10.1523/jneurosci.1076-17.2017] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/08/2017] [Accepted: 08/13/2017] [Indexed: 11/21/2022] Open
Abstract
Network activity is strongly tied to animal movement; however, hippocampal circuits selectively engaged during locomotion or immobility remain poorly characterized. Here we examined whether distinct locomotor states are encoded differentially in genetically defined classes of hippocampal interneurons. To characterize the relationship between interneuron activity and movement, we used in vivo, two-photon calcium imaging in CA1 of male and female mice, as animals performed a virtual-reality (VR) track running task. We found that activity in most somatostatin-expressing and parvalbumin-expressing interneurons positively correlated with locomotion. Surprisingly, nearly one in five somatostatin or one in seven parvalbumin interneurons were inhibited during locomotion and activated during periods of immobility. Anatomically, the somata of somatostatin immobility-activated neurons were smaller than those of movement-activated neurons. Furthermore, immobility-activated interneurons were distributed across cell layers, with somatostatin-expressing cells predominantly in stratum oriens and parvalbumin-expressing cells mostly in stratum pyramidale. Importantly, each cell's correlation between activity and movement was stable both over time and across VR environments. Our findings suggest that hippocampal interneuronal microcircuits are preferentially active during either movement or immobility periods. These inhibitory networks may regulate information flow in "labeled lines" within the hippocampus to process information during distinct behavioral states.SIGNIFICANCE STATEMENT The hippocampus is required for learning and memory. Movement controls network activity in the hippocampus but it's unclear how hippocampal neurons encode movement state. We investigated neural circuits active during locomotion and immobility and found interneurons were selectively active during movement or stopped periods, but not both. Each cell's response to locomotion was consistent across time and environments, suggesting there are separate dedicated circuits for processing information during locomotion and immobility. Understanding how the hippocampus switches between different network configurations may lead to therapeutic approaches to hippocampal-dependent dysfunctions, such as Alzheimer's disease or cognitive decline.
Collapse
|
192
|
Myers NE, Chekroud SR, Stokes MG, Nobre AC. Benefits of flexible prioritization in working memory can arise without costs. J Exp Psychol Hum Percept Perform 2017; 44:398-411. [PMID: 28816476 PMCID: PMC5868459 DOI: 10.1037/xhp0000449] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Most recent models conceptualize working memory (WM) as a continuous resource, divided up according to task demands. When an increasing number of items need to be remembered, each item receives a smaller chunk of the memory resource. These models predict that the allocation of attention to high-priority WM items during the retention interval should be a zero-sum game: improvements in remembering cued items come at the expense of uncued items because resources are dynamically transferred from uncued to cued representations. The current study provides empirical data challenging this model. Four precision retrocueing WM experiments assessed cued and uncued items on every trial. This permitted a test for trade-off of the memory resource. We found no evidence for trade-offs in memory across trials. Moreover, robust improvements in WM performance for cued items came at little or no cost to uncued items that were probed afterward, thereby increasing the net capacity of WM relative to neutral cueing conditions. An alternative mechanism of prioritization proposes that cued items are transferred into a privileged state within a response-gating bottleneck, in which an item uniquely controls upcoming behavior. We found evidence consistent with this alternative. When an uncued item was probed first, report of its orientation was biased away from the cued orientation to be subsequently reported. We interpret this bias as competition for behavioral control in the output-driving bottleneck. Other items in WM did not bias each other, making this result difficult to explain with a shared resource model. This study challenges the dominant model for how we remember and prioritize pieces of information over short intervals (working memory). The dominant view is that all items in working memory share a single resource, and that we can prioritize one item by redistributing resources in its favor. This view predicts that nonprioritized memories become lost or impoverished. By testing how well participants remember both prioritized and nonprioritized items, we show that this is not the case. Our findings suggest that memories can be prioritized flexibly without necessarily jeopardizing others that may still become relevant.
Collapse
Affiliation(s)
| | | | - Mark G Stokes
- Department of Experimental Psychology, University of Oxford
| | - Anna C Nobre
- Department of Experimental Psychology, University of Oxford
| |
Collapse
|
193
|
Neher T, Azizi AH, Cheng S. From grid cells to place cells with realistic field sizes. PLoS One 2017; 12:e0181618. [PMID: 28750005 PMCID: PMC5531553 DOI: 10.1371/journal.pone.0181618] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/05/2017] [Indexed: 01/10/2023] Open
Abstract
While grid cells in the medial entorhinal cortex (MEC) of rodents have multiple, regularly arranged firing fields, place cells in the cornu ammonis (CA) regions of the hippocampus mostly have single spatial firing fields. Since there are extensive projections from MEC to the CA regions, many models have suggested that a feedforward network can transform grid cell firing into robust place cell firing. However, these models generate place fields that are consistently too small compared to those recorded in experiments. Here, we argue that it is implausible that grid cell activity alone can be transformed into place cells with robust place fields of realistic size in a feedforward network. We propose two solutions to this problem. Firstly, weakly spatially modulated cells, which are abundant throughout EC, provide input to downstream place cells along with grid cells. This simple model reproduces many place cell characteristics as well as results from lesion studies. Secondly, the recurrent connections between place cells in the CA3 network generate robust and realistic place fields. Both mechanisms could work in parallel in the hippocampal formation and this redundancy might account for the robustness of place cell responses to a range of disruptions of the hippocampal circuitry.
Collapse
Affiliation(s)
- Torsten Neher
- Institute for Neural Computation, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
- Department of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Amir Hossein Azizi
- Institute for Neural Computation, Ruhr University Bochum, Bochum, Germany
| | - Sen Cheng
- Institute for Neural Computation, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
- * E-mail:
| |
Collapse
|
194
|
Cohen JD, Bolstad M, Lee AK. Experience-dependent shaping of hippocampal CA1 intracellular activity in novel and familiar environments. eLife 2017; 6. [PMID: 28742496 PMCID: PMC5526666 DOI: 10.7554/elife.23040] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 04/06/2017] [Indexed: 12/28/2022] Open
Abstract
The hippocampus is critical for producing stable representations of familiar spaces. How these representations arise is poorly understood, largely because changes to hippocampal inputs have not been measured during spatial learning. Here, using intracellular recording, we monitored inputs and plasticity-inducing complex spikes (CSs) in CA1 neurons while mice explored novel and familiar virtual environments. Inputs driving place field spiking increased in amplitude – often suddenly – during novel environment exploration. However, these increases were not sustained in familiar environments. Rather, the spatial tuning of inputs became increasingly similar across repeated traversals of the environment with experience – both within fields and throughout the whole environment. In novel environments, CSs were not necessary for place field formation. Our findings support a model in which initial inhomogeneities in inputs are amplified to produce robust place field activity, then plasticity refines this representation into one with less strongly modulated, but more stable, inputs for long-term storage. DOI:http://dx.doi.org/10.7554/eLife.23040.001
Collapse
Affiliation(s)
- Jeremy D Cohen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Mark Bolstad
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Albert K Lee
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
195
|
Place and Grid Cells in a Loop: Implications for Memory Function and Spatial Coding. J Neurosci 2017; 37:8062-8076. [PMID: 28701481 DOI: 10.1523/jneurosci.3490-16.2017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 05/25/2017] [Accepted: 05/27/2017] [Indexed: 11/21/2022] Open
Abstract
Place cells in the hippocampus and grid cells in the medial entorhinal cortex have different codes for space. However, how one code relates to the other is ill understood. Based on the anatomy of the entorhinal-hippocampal circuitry, we constructed a model of place and grid cells organized in a loop to investigate their mutual influence in the establishment of their codes for space. Using computer simulations, we first replicated experiments in rats that measured place and grid cell activity in different environments, and then assessed which features of the model account for different phenomena observed in neurophysiological data, such as pattern completion and pattern separation, global and rate remapping of place cells, and realignment of grid cells. We found that (1) the interaction between grid and place cells converges quickly; (2) the spatial code of place cells does not require, but is altered by, grid cell input; (3) plasticity in sensory inputs to place cells is key for pattern completion but not pattern separation; (4) grid realignment can be explained in terms of place cell remapping as opposed to the other way around; (5) the switch between global and rate remapping is self-organized; and (6) grid cell input to place cells helps stabilize their code under noisy and/or inconsistent sensory input. We conclude that the hippocampus-entorhinal circuit uses the mutual interaction of place and grid cells to encode the surrounding environment and propose a theory on how such interdependence underlies the formation and use of the cognitive map.SIGNIFICANCE STATEMENT The mammalian brain implements a positional system with two key pieces: place and grid cells. To gain insight into the dynamics of place and grid cell interaction, we built a computational model with the two cell types organized in a loop. The proposed model accounts for differences in how place and grid cells represent different environments and provides a new interpretation in which place and grid cells mutually interact to form a coupled code for space.
Collapse
|
196
|
Abstract
Millions of individuals suffer from age-related cognitive decline, defined by impaired memory precision. Increased understanding of hippocampal circuit mechanisms underlying memory formation suggests a role for computational processes such as pattern separation and pattern completion in memory precision. We describe evidence implicating the dentate gyrus-CA3 circuit in pattern separation and completion, and examine alterations in dentate gyrus-CA3 circuit structure and function with aging. We discuss the role of adult hippocampal neurogenesis in memory precision in adulthood and aging, as well as the circuit mechanisms underlying the integration and encoding functions of adult-born dentate granule cells. We posit that understanding these circuit mechanisms will permit generation of circuit-based endophenotypes that will edify new therapeutic strategies to optimize hippocampal encoding during aging.
Collapse
Affiliation(s)
- Kathleen M McAvoy
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Amar Sahay
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
- BROAD Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
| |
Collapse
|
197
|
Maurer AP, Johnson SA, Hernandez AR, Reasor J, Cossio DM, Fertal KE, Mizell JM, Lubke KN, Clark BJ, Burke SN. Age-related Changes in Lateral Entorhinal and CA3 Neuron Allocation Predict Poor Performance on Object Discrimination. Front Syst Neurosci 2017; 11:49. [PMID: 28713251 PMCID: PMC5491840 DOI: 10.3389/fnsys.2017.00049] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/19/2017] [Indexed: 11/24/2022] Open
Abstract
Age-related memory deficits correlate with dysfunction in the CA3 subregion of the hippocampus, which includes both hyperactivity and overly rigid activity patterns. While changes in intrinsic membrane currents and interneuron alterations are involved in this process, it is not known whether alterations in afferent input to CA3 also contribute. Neurons in layer II of the lateral entorhinal cortex (LEC) project directly to CA3 through the perforant path, but no data are available regarding the effects of advanced age on LEC activity and whether these activity patterns update in response to environmental change. Furthermore, it is not known the extent to which age-related deficits in sensory discrimination relate to the inability of aged CA3 neurons to update in response to new environments. Young and aged rats were pre-characterized on a LEGO© object discrimination task, comparable to behavioral tests in humans in which CA3 hyperactivity has been linked to impairments. The cellular compartment analysis of temporal activity with fluorescence in situ hybridization for the immediate-early gene Arc was then used to identify the principal cell populations that were active during two distinct epochs of random foraging in different environments. This approach enabled the extent to which rats could discriminate two similar objects to be related to the ability of CA3 neurons to update across different environments. In both young and aged rats, there were animals that performed poorly on the LEGO object discrimination task. In the aged rats only, however, the poor performers had a higher percent of CA3 neurons that were active during random foraging in a novel environment, but this is not related to the ability of CA3 neurons to remap when the environment changed. Afferent neurons to CA3 in LEC, as identified with the retrograde tracer choleratoxin B (CTB), also showed a higher percentage of cells that were positive for Arc mRNA in aged poor performing rats. This suggests that LEC contributes to the hyperactivity seen in CA3 of aged animals with object discrimination deficits and age-related cognitive decline may be the consequence of dysfunction endemic to the larger network.
Collapse
Affiliation(s)
- Andrew P Maurer
- Department of Neuroscience, McKnight Brain Institute, University of FloridaGainesville, FL, United States.,Department of Biomedical Engineering, University of FloridaGainesville, FL, United States
| | - Sarah A Johnson
- Department of Neuroscience, McKnight Brain Institute, University of FloridaGainesville, FL, United States
| | - Abbi R Hernandez
- Department of Neuroscience, McKnight Brain Institute, University of FloridaGainesville, FL, United States
| | - Jordan Reasor
- Department of Neuroscience, McKnight Brain Institute, University of FloridaGainesville, FL, United States
| | - Daniela M Cossio
- Department of Neuroscience, McKnight Brain Institute, University of FloridaGainesville, FL, United States.,UF Summer Neuroscience Internship Program, Department of Neuroscience, McKnight Brain Institute, University of FloridaGainesville, FL, United States
| | - Kaeli E Fertal
- Department of Neuroscience, McKnight Brain Institute, University of FloridaGainesville, FL, United States
| | - Jack M Mizell
- Department of Neuroscience, McKnight Brain Institute, University of FloridaGainesville, FL, United States
| | - Katelyn N Lubke
- Department of Neuroscience, McKnight Brain Institute, University of FloridaGainesville, FL, United States.,Department of Biomedical Engineering, University of FloridaGainesville, FL, United States
| | - Benjamin J Clark
- Department of Psychology, University of New MexicoAlburquerque, NM, United States
| | - Sara N Burke
- Department of Neuroscience, McKnight Brain Institute, University of FloridaGainesville, FL, United States.,Department of Aging and Geriatric Research, UF Institute on Aging, University of FloridaGainesville, FL, United States
| |
Collapse
|
198
|
Differential Expression and Cell-Type Specificity of Perineuronal Nets in Hippocampus, Medial Entorhinal Cortex, and Visual Cortex Examined in the Rat and Mouse. eNeuro 2017; 4:eN-NWR-0379-16. [PMID: 28593193 PMCID: PMC5461557 DOI: 10.1523/eneuro.0379-16.2017] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/18/2017] [Accepted: 05/18/2017] [Indexed: 12/21/2022] Open
Abstract
Perineuronal nets (PNNs) are specialized extracellular matrix (ECM) structures that condense around the soma and proximal dendrites of subpopulations of neurons. Emerging evidence suggests that they are involved in regulating brain plasticity. However, the expression of PNNs varies between and within brain areas. A lack of quantitative studies describing the distribution and cell-specificity of PNNs makes it difficult to reveal the functional roles of PNNs. In the current study, we examine the distribution of PNNs and the identity of PNN-enwrapped neurons in three brain areas with different cognitive functions: the dorsal hippocampus, medial entorhinal cortex (mEC) and primary visual cortex (V1). We compared rats and mice as knowledge from these species are often intermingled. The most abundant expression of PNNs was found in the mEC and V1, while dorsal hippocampus showed strikingly low levels of PNNs, apart from dense expression in the CA2 region. In hippocampus we also found apparent species differences in expression of PNNs. While we confirm that the PNNs enwrap parvalbumin-expressing (PV+) neurons in V1, we found that they mainly colocalize with excitatory CamKII-expressing neurons in CA2. In mEC, we demonstrate that in addition to PV+ cells, the PNNs colocalize with reelin-expressing stellate cells. We also show that the maturation of PNNs in mEC coincides with the formation of grid cell pattern, while PV+ cells, unlike in other cortical areas, are present from early postnatal development. Finally, we demonstrate considerable effects on the number of PSD-95-gephyrin puncta after enzymatic removal of PNNs.
Collapse
|
199
|
Camfield DA, Fontana R, Wesnes KA, Mills J, Croft RJ. Effects of aging and depression on mnemonic discrimination ability. AGING NEUROPSYCHOLOGY AND COGNITION 2017; 25:464-483. [PMID: 28506139 DOI: 10.1080/13825585.2017.1325827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Aging and depression have been found to be associated with poorer performance in mnemonic discrimination. In the current study, a two-response format mnemonic similarity test, Cognitive Drug Research MST, was used to compare these effects. Seventy-six participants were tested; with 52 participants in the young group, aged 18-35 years, and 24 participants in the elderly group, aged 55 years or older. Twenty-two young participants and 10 elderly participants met DSM-IV criteria for MDD or dysthymia. Age-related deficits were found for lure identification and speed of response. Differences in speed of responses to lure images were found for younger depressed participants, and depressive symptom severity was found to be negatively associated with lure identification accuracy in the elderly. These findings may be viewed as putative behavioral correlates of decreased pattern separation ability, which may be indicative of altered hippocampal neurogenesis in aging and depression.
Collapse
Affiliation(s)
- D A Camfield
- a School of Psychology , University of Wollongong , Wollongong , Australia.,b Illawarra Health & Medical Research Institute , University of Wollongong , Wollongong , Australia
| | - R Fontana
- a School of Psychology , University of Wollongong , Wollongong , Australia
| | - K A Wesnes
- c Wesnes Cognition Ltd, Little Paddock, Streatley Hill, Streatley on Thames , Reading , UK.,d Centre for Human Psychopharmacology , Swinburne University of Technology , Melbourne , Australia.,e Medicinal Plant Research Group , Newcastle University , Newcastle upon Tyne , UK
| | - J Mills
- a School of Psychology , University of Wollongong , Wollongong , Australia
| | - R J Croft
- a School of Psychology , University of Wollongong , Wollongong , Australia.,b Illawarra Health & Medical Research Institute , University of Wollongong , Wollongong , Australia
| |
Collapse
|
200
|
Mizuseki K, Miyawaki H. Hippocampal information processing across sleep/wake cycles. Neurosci Res 2017; 118:30-47. [DOI: 10.1016/j.neures.2017.04.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/11/2017] [Accepted: 03/27/2017] [Indexed: 01/24/2023]
|