151
|
Estes KC, Rose BT, Speck JJ, Nutter ML, Reitz RC. Effects of omega 3 fatty acids on receptor tyrosine kinase and PLC activities in EMT6 cells. JOURNAL OF LIPID MEDIATORS AND CELL SIGNALLING 1997; 17:81-96. [PMID: 9459135 DOI: 10.1016/s0929-7855(97)00022-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The effects of omega 3 fatty acids and epidermal growth factor (EGF) on the activity of receptor tyrosine kinase (RTK) and phospholipase C (phosphatidylinositol (PI)-specific PLC) were examined in EMT6 cells. The non-omega 3 treated, non-EGF stimulated cells served as controls. Treatment of the EMT6 cells with omega 3 fatty acids resulted in a 62% increase in RTK activity and a 67% increase in PI-specific PLC activity. When EGF was added to incubations for RTK activity, it stimulated the RTK activity 40% in the control cells and 130% in the omega 3-treated cells. When EGF was added to incubations for PI-specific PLC activity, a 54% increase in PI-specific PLC activity was observed in control cells and a 94% increase in the omega 3-treated cells. Thus, treating EMT6 cells with omega 3 fatty acids seems to increase RTK activity and PI-specific PLC activity to a similar extent, but has differential effects on the ability of these enzyme activities to be stimulated by EGF.
Collapse
Affiliation(s)
- K C Estes
- Department of Biochemistry, University of Nevada, Reno 89557, USA
| | | | | | | | | |
Collapse
|
152
|
Flanagan LA, Cunningham CC, Chen J, Prestwich GD, Kosik KS, Janmey PA. The structure of divalent cation-induced aggregates of PIP2 and their alteration by gelsolin and tau. Biophys J 1997; 73:1440-7. [PMID: 9284311 PMCID: PMC1181043 DOI: 10.1016/s0006-3495(97)78176-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Phosphatidylinositol bisphosphate (PIP2) serves as a precursor for diacylglycerol and inositol trisphosphate in signal transduction cascades and regulates the activities of several actin binding proteins that influence the organization of the actin cytoskeleton. Molecules of PIP2 form 6-nm diameter micelles in water, but aggregate into larger, multilamellar structures in physiological concentrations of divalent cations. Electron microscopic analysis of these aggregates reveals that they are clusters of striated filaments, suggesting that PIP2 aggregates form stacks of discoid micelles rather than multilamellar vesicles or inverted hexagonal arrays as previously inferred from indirect observations. The distance between striations within the filaments varies from 4.2 to 5.4 nm and the diameter of the filaments depends on the dehydrated ionic radius of the divalent cation, with average diameters of 19, 12, and 10 nm for filaments formed by Mg2+, Ca2+, and Ba2+, respectively. The structure of the divalent cation-induced aggregates can be altered by PIP2 binding proteins. Gelsolin and the microtubule associated protein tau both affect the formation of aggregates, indicating that tau acts as a PIP2 binding protein in a manner similar to gelsolin. In contrast, another PIP2 binding protein, profilin, does not modify the aggregates.
Collapse
Affiliation(s)
- L A Flanagan
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | |
Collapse
|
153
|
Lin KM, Wenegieme E, Lu PJ, Chen CS, Yin HL. Gelsolin binding to phosphatidylinositol 4,5-bisphosphate is modulated by calcium and pH. J Biol Chem 1997; 272:20443-50. [PMID: 9252353 DOI: 10.1074/jbc.272.33.20443] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The actin cytoskeleton of nonmuscle cells undergoes extensive remodeling during agonist stimulation. Lamellipodial extension is initiated by uncapping of actin nuclei at the cortical cytoplasm to allow filament elongation. Many actin filament capping proteins are regulated by phosphatidylinositol 4,5-bisphosphate (PIP2), which is hydrolyzed by phospholipase C. It is hypothesized that PIP2 dissociates capping proteins from filament ends to promote actin assembly. However, since actin polymerization often occurs at a time when PIP2 concentration is decreased rather than increased, capping protein interactions with PIP2 may not be regulated solely by the bulk PIP2 concentration. We present evidence that PIP2 binding to the gelsolin family of capping proteins is enhanced by Ca2+. Binding was examined by equilibrium and nonequilibrium gel filtration and by monitoring intrinsic tryptophan fluorescence. Gelsolin and CapG affinity for PIP2 were increased 8- and 4-fold, respectively, by microM Ca2+, and the Ca2+ requirement was reduced by lowering the pH from 7.5 to 7.0. Studies with the NH2- and COOH-terminal halves of gelsolin showed that PIP2 binding occurred primarily at the NH2-terminal half, and Ca2+ exposed its PIP2 binding sites through a change in the COOH-terminal half. Mild acidification promotes PIP2 binding by directly affecting the NH2-terminal sites. Our findings can explain increased PIP2-induced uncapping even as the PIP2 concentration drops during cell activation. The change in gelsolin family PIP2 binding affinity during cell activation can impact divergent PIP2-dependent processes by altering PIP2 availability. Cross-talk between these proteins provides a multilayered mechanism for positive and negative modulation of signal transduction from the plasma membrane to the cytoskeleton.
Collapse
Affiliation(s)
- K M Lin
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | | | | | | |
Collapse
|
154
|
James SR, Downes CP. Structural and mechanistic features of phospholipases C: effectors of inositol phospholipid-mediated signal transduction. Cell Signal 1997; 9:329-36. [PMID: 9376212 DOI: 10.1016/s0898-6568(96)00175-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The production of the intracellular second messengers inositol (1,4,5)-trisphosphate (InsP3) and sn 1,2-diacylglycerol (DG) in response to a wide variety of extracellular primary messengers is achieved by an extended family of inositol phospholipid phosphodiesterases termed phospholipases C (PLC, E.C. 3.1.4.11). This family has been the subject of extensive research and it is clear that the different isoenzymes exhibit some common characteristics (e.g., interactions with substrates) and other distinctive features (e.g., modes of regulation). The recent description of the X-ray crystal structure of a mammalian PLC has served to clarify much about the behaviour of the PLCs, emphasising the "modular" structure of these enzymes. The main focus of this review will concern the specific adaptations of PLC molecules which make them efficient lipid-metabolising enzymes. We also describe what is known about how these enzymes interact with their lipid substrates, which will serve as a basis for considering how PLCs may be activated.
Collapse
Affiliation(s)
- S R James
- Department of Biochemistry, Medical Sciences Institute, University of Dundee, Scotland, UK.
| | | |
Collapse
|
155
|
Hájková L, Björkegren Sjögren C, Korenbaum E, Nordberg P, Karlsson R. Characterization of a mutant profilin with reduced actin-binding capacity: effects in vitro and in vivo. Exp Cell Res 1997; 234:66-77. [PMID: 9223371 DOI: 10.1006/excr.1997.3607] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We are investigating structure-function relationships in profilin and actin by site-specific mutagenesis using a yeast, Saccharomyces cerevisiae, expression system to produce wild-type and mutant proteins. This paper shows that deleting proline 96 and threonine 97, which are located close to the major actin binding site on profilin, did not significantly alter the interaction between profilin and phosphatidylinositol 4,5-bisphosphate, nor did it affect the profilin:poly(L-proline) interaction. The mutant protein, however, had a lower capacity to bind to actin in vitro than wild-type profilin, though it showed a slightly increased profilin-enhanced nucleotide exchange on the actin. When microinjected into Swiss 3T3 mouse fibroblasts or porcine aortic endothelial cells, the mutant profilin did not change the organization of the microfilament system like the wild-type profilin did. This provides further evidence that profilin controls microfilament organization in the cell by interacting directly with actin.
Collapse
Affiliation(s)
- L Hájková
- Department of Zoological Cell Biology, WGI, Stockholm University, Sweden
| | | | | | | | | |
Collapse
|
156
|
Cilluffo MC, Farahbakhsh NA, Fain GL. Functional and morphological differentiation of nonpigmented ciliary body epithelial cells grown on collagen rafts. In Vitro Cell Dev Biol Anim 1997; 33:546-52. [PMID: 9282315 DOI: 10.1007/s11626-997-0097-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have examined the effect of alteration in cell shape on promoting differentiated morphology and physiology in cultured nonpigmented epithelial cells from the ciliary body. We have grown pure populations of nonpigmented cells on collagen gels released from the culture dish to create collagen rafts. Shortly after the gels were detached, the cells shrank in diameter and increased in height while they contracted the gel. Concurrently, the actin cytoskeleton reorganized to the cell cortex as found in vivo. After this differentiated morphology developed, large changes in intracellular Ca2+ could be elicited by simultaneous activation of acetylcholine and epinephrine or acetylcholine and somatostatin receptors as seen in intact tissue. Explant cultures of isolated nonpigmented cell layers maintained their actin distribution and also showed synergistic Ca2+ increases. Spread cells, grown on rigid substrates, had a disorganized cytoskeleton and rarely showed synergism. These data suggest that the mechanism underlying synergistic Ca2+ responses in the ciliary body is functional in nonpigmented cells grown on collagen rafts. In addition, this pathway appears to be sensitive to the disposition of the cell's cytoarchitecture.
Collapse
Affiliation(s)
- M C Cilluffo
- Department of Physiological Science, University of California, Los Angeles 90095-1527, USA
| | | | | |
Collapse
|
157
|
Abstract
We have isolated the Candida albicans gene for profilin, PFY1. Degenerate oligonucleotide primers based on regions of high homology were utilized to obtain a polymerase chain reaction-amplified copy of the gene. This was then used as a probe to isolate the gene from a C. albicans genomic library. Our studies indicate that the full-length gene is unstable in Escherichia coli. Several clones were sequenced, and the predicted amino acid sequence demonstrated homology with profilin proteins from other organisms, most notably Saccharomyces cerevisiae. Northern analysis revealed that the gene is expressed in C. albicans. Attempts to express the gene in S. cerevisiae cells were unsuccessful until the C. albicans promoter was replaced with an S. cerevisiae promoter. Functional complementation of the gene was demonstrated in S. cerevisiae profilin-requiring cells. Antibodies raised to isolated C. albicans profilin protein recognized a protein of the predicted molecular weight when the gene was expressed in S. cerevisiae cells.
Collapse
Affiliation(s)
- D B Ostrander
- Department of Microbial Molecular Biology, Pharmaceutical Research Institute, Bristol-Myers Squibb, Princeton, NJ 08543-4000, USA
| | | |
Collapse
|
158
|
Gartzke J, Lange K, Brandt U, Bergmann J. A new concept for risk assessment of the hazards of non-genotoxic chemicals--electronmicroscopic studies of the cell surface. Evidence for the action of lipophilic chemicals on the Ca2+ signaling system. THE SCIENCE OF THE TOTAL ENVIRONMENT 1997; 199:213-226. [PMID: 9200866 DOI: 10.1016/s0048-9697(97)05498-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Recently, we presented evidence for the localization of components of the cellular Ca2+ signaling pathway in microvilli. On stimulation of this pathway, microvilli undergo characteristic morphological changes which can be detected by scanning electron microscopy (SEM) of the cell surface. Here we show that both receptor-mediated (vasopressin) and unspecific stimulation of the Ca2+ signaling system by the lipophilic tumor promoters thapsigargin (TG) and phorbolmyristateacetate (PMA) are accompanied by the same type of morphological changes of the cell surface. Since stimulated cell proliferation accelerates tumor development and sustained elevation of the intracellular Ca2+ concentrations is a precondition for stimulated cell proliferation, activated Ca2+ signaling is one possible mechanism of non-genomic tumor promotion. Using isolated rat hepatocytes we show that all tested lipophilic chemicals with known tumor promoter action, caused characteristic microvillar shape changes. On the other hand, lipophilic solvents that were used as differentiating agents in cell cultures such as dimethylsulfoxide (DMSO) and dimethylformamide also, failed to change the microvillar shapes. Instead DMSO stabilized the original appearance of microvilli. The used technique provides a convenient method for the evaluation of non-genomic carcinogenicity of chemicals prior to their industrial application.
Collapse
Affiliation(s)
- J Gartzke
- Federal Institute for Occupational Safety and Health, Berlin, Germany
| | | | | | | |
Collapse
|
159
|
Bartlett SE, Hendry IA. Identifying the G protein, Gz alpha, and its associated proteins in nervous tissue using mass spectrometry and microsequencing techniques. Int J Dev Neurosci 1997; 15:267-74. [PMID: 9253651 DOI: 10.1016/s0736-5748(97)00012-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The signaling pathway associated with pertussis and cholera toxin sensitive G proteins have been extensively investigated. In contrast, the function and associated signal transduction cascade for the pertussis toxin insensitive G protein, Gz alpha have remained elusive. Therefore, the aim of this study was to identify the signal transduction pathway associated with Gz alpha by using the protein identification techniques of matrix assisted laser desorption ionization-time of flight mass spectroscopy and N-terminal Edman sequencing. We have chosen this technique to identify proteins that Gz alpha associates with and to gain insights into the potential role this G protein plays in cells. As Gz alpha is predominantly localized in neuronal tissues, homogenates of whole brain tissue were used. Gz alpha and its associated proteins were immunoprecipitated from brain tissue and identified. The immunoprecipitation of four proteins (140, 46, 41 and 36 kDa) was shown to be inhibited in the presence of the Gz alpha peptide. These proteins were subsequently identified as phospholipase C (PLC)-gamma, beta or gamma-actin, Gz alpha and G beta, the beta subunit of heterotrimeric G proteins, respectively. These results suggest that Gz alpha exists in a protein complex with the actin cytoskeleton and an important intracellular signalling enzyme, PLC-gamma. These methods are powerful techniques for determining protein-protein interactions, and provide the first step to the identification of signalling proteins that Gz alpha associates with. However further experimentation will be required to determine the biological relevance of these protein interactions.
Collapse
Affiliation(s)
- S E Bartlett
- Division of Neuroscience, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | | |
Collapse
|
160
|
Baldassare JJ, Henderson PA, Tarver A, Fisher GJ. Thrombin activation of human platelets dissociates a complex containing gelsolin and actin from phosphatidylinositide-specific phospholipase Cgamma1. Biochem J 1997; 324 ( Pt 1):283-7. [PMID: 9164868 PMCID: PMC1218428 DOI: 10.1042/bj3240283] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have examined the association of two cytoskeleton proteins, gelsolin and actin, with phosphatidylinositide-specific phospholipase Cgamma1 (PLCgamma1) in resting and thrombin-stimulated human platelets. In unstimulated platelets, gelsolin, actin and PLCgamma1 were immunoprecipitated as a complex by a polyclonal antibody to PLCgamma1. The association of gelsolin and actin was specific for PLCgamma1 because immunoprecipitates of PLCs beta2, beta3, gamma2 and delta1, which are also expressed in human platelets, did not contain detectable gelsolin or actin. Activation with thrombin resulted in platelet aggregation and the dissociation of gelsolin and actin from PLCgamma1. Inhibition of thrombin-induced platelet aggregation blocked the dissociation of gelsolin and actin from PLCgamma1. After stimulation with thrombin, PLCgamma1 activity in immunoprecipitates was increased 2-3-fold. This elevation in PLCgamma1 activity in response to thrombin activation was not observed when platelet aggregation was blocked. Although PLCgamma1 is tyrosine phosphorylated in response to many agonists, we could not detect, by Western analysis with anti-phosphotyrosine antibodies, tyrosine phosphorylation of PLCgamma1 immunoprecipitated from thrombin-stimulated platelets. These results demonstrate that PLCgamma1 is associated with gelsolin and actin in resting platelets, and that thrombin-induced platelet aggregation results in the dissociation of PLCgamma1 from gelsolin and actin, and the stimulation of PLCgamma1 activity.
Collapse
Affiliation(s)
- J J Baldassare
- Department of Pharmacological and Physiological Science, St. Louis Health Science Center, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
161
|
T'Jampens D, Meerschaert K, Constantin B, Bailey J, Cook LJ, De Corte V, De Mol H, Goethals M, Van Damme J, Vandekerckhove J, Gettemans J. Molecular cloning, over-expression, developmental regulation and immunolocalization of fragminP, a gelsolin-related actin-binding protein from Physarum polycephalum plasmodia. J Cell Sci 1997; 110 ( Pt 10):1215-26. [PMID: 9191045 DOI: 10.1242/jcs.110.10.1215] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FragminP is a Ca2+-dependent actin-binding and microfilament regulatory protein of the gelsolin family. We screened a Physarum polycephalum cDNA library with polyclonal fragminP antibodies and isolated a cDNA clone of 1,104 bp encoding 368 amino acids of fragminP, revealing two consensus phosphatidylinositol 4,5 bisphosphate-binding motifs in the central part of the protein. The first methionine is modified by an acetyl group, and three amino acids were missing from the protein coded for by the cDNA clone. Full-length recombinant fragminP was generated by PCR, purified after over-expression from Escherichia coli and displayed identical properties to native Physarum fragminP. Northern blot analysis against RNA, isolated from cultures at various stages of development, indicated that fragminP is absent from amoebae and that expression is initiated at an early stage during apogamic development, in a similar way to that observed for the profilin genes. In situ immunolocalization of fragminP in Physarum microplasmodia revealed that the protein is localized predominantly at the plasma membrane, suggesting a role in the regulation of the subcortical actin meshwork. Our data indicate that we have isolated the plasmodium-specific fragminP cDNA (frgP) and suggest that, in each of its two vegetative cell types, P. polycephalum uses a different fragmin isoform that performs different functions.
Collapse
Affiliation(s)
- D T'Jampens
- Flanders Interuniversity Institute of Biotechnology, Department of Biochemistry, Universiteit Gent, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Affiliation(s)
- B Winsor
- Institut de Biologie Moléculaire et Cellulaire, UPR 9005 du CNRS, Strasbourg, France
| | | |
Collapse
|
163
|
Wilson W, Seebeck T. Identification of a profilin homologue in Trypanosoma brucei by complementation screening. Gene 1997; 187:201-9. [PMID: 9099881 DOI: 10.1016/s0378-1119(96)00749-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Using genetic complementation in Saccharomyces cerevisiae, we have isolated a Trypanosoma brucei gene encoding profilin. Overexpression of trypanosome profilin suppresses defects that are associated with the loss of the C-terminal domain of the adenylyl cyclase-associated protein in S. cerevisiae. Similarly, the T. brucei gene complements a profilin-deletion mutant of S. cerevisiae. The full-length cDNA clone isolated contains an open reading frame of 150 amino acids, with a predicted molecular mass of 16.1 kDa. The gene appears to be present at single copy and is expressed at approximately equal levels in both mammalian and insect forms of the parasite.
Collapse
Affiliation(s)
- W Wilson
- Institut für Allgemeine Mikrobiologie, Universitat Bern, Switzerland.
| | | |
Collapse
|
164
|
Popova JS, Garrison JC, Rhee SG, Rasenick MM. Tubulin, Gq, and phosphatidylinositol 4,5-bisphosphate interact to regulate phospholipase Cbeta1 signaling. J Biol Chem 1997; 272:6760-5. [PMID: 9045709 DOI: 10.1074/jbc.272.10.6760] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The cytoskeletal protein, tubulin, has been shown to regulate adenylyl cyclase activity through its interaction with the specific G protein alpha subunits, Galphas or Galphai1. Tubulin activates these G proteins by transferring GTP and stabilizing the active nucleotide-bound Galpha conformation. To study the possibility of tubulin involvement in Galphaq-mediated phospholipase Cbeta1 (PLCbeta1) signaling, the m1 muscarinic receptor, Galphaq, and PLCbeta1 were expressed in Sf9 cells. A unique ability of tubulin to regulate PLCbeta1 was observed. Low concentrations of tubulin, with guanine nucleotide bound, activated PLCbeta1, whereas higher concentrations inhibited the enzyme. Interaction of tubulin with both Galphaq and PLCbeta1, accompanied by guanine nucleotide transfer from tubulin to Galphaq, is suggested as a mechanism for the enzyme activation. The PLCbeta1 substrate, phosphatidylinositol 4,5-bisphosphate, bound to tubulin and prevented microtubule assembly. This observation suggested a mechanism for the inhibition of PLCbeta1 by tubulin, since high tubulin concentrations might prevent the access of PLCbeta1 to its substrate. Activation of m1 muscarinic receptors by carbachol relaxed this inhibition, probably by increasing the affinity of Galphaq for tubulin. Involvement of tubulin in the articulation between PLCbeta1 signaling and microtubule assembly might prove important for the intracellular governing of a broad range of cellular events.
Collapse
Affiliation(s)
- J S Popova
- Department of Physiology and Biophysics and the Committee on Neuroscience, University of Illinois College of Medicine, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
165
|
Currie RA, MacLeod BM, Downes CP. The lipid transfer activity of phosphatidylinositol transfer protein is sufficient to account for enhanced phospholipase C activity in turkey erythrocyte ghosts. Curr Biol 1997; 7:184-90. [PMID: 9395434 DOI: 10.1016/s0960-9822(97)70089-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The minor membrane phospholipid phosphatidylinositol 4, 5-bisphosphate (PIP2) has been implicated in the control of a number of cellular processes. Efficient synthesis of this lipid from phosphatidylinositol has been proposed to require the presence of a phosphatidylinositol/phosphatidylcholine transfer protein (PITP), which transfers phosphatidylinositol and phosphatidylcholine between membranes, but the mechanism by which PITP exerts its effects is currently unknown. The simplest hypothesis is that PITP replenishes agonist-sensitive pools of inositol lipids by transferring phosphatidylinositol from its site of synthesis to sites of consumption. Recent cellular studies, however, led to the proposal that PITP may play a more active role as a co-factor which stimulates the activity of phosphoinositide kinases and phospholipase C (PLC) by presenting protein-bound lipid substrates to these enzymes. We have exploited turkey erythrocyte membranes as a model system in which it has proved possible to distinguish between the above hypotheses of PITP function. RESULTS In turkey erythrocyte ghosts, agonist-stimulated PIP2 hydrolysis is initially rapid, but it declines and reaches a plateau when approximately 15% of the phosphatidylinositol has been consumed. PITP did not affect the initial rate of PIP2 hydrolysis, but greatly prolonged the linear phase of PLC activity until at least 70% of phosphatidylinositol was consumed. PITP did not enhance the initial rate of phosphatidylinositol 4-kinase activity but did increase the unstimulated steady-state levels of both phosphatidylinositol 4-phosphate and PIP2 by a catalytic mechanism, because the amount of polyphosphoinositides synthesized greatly exceeded the molar amount of PITP in the assay. Furthermore, when polyphosphoinositide synthesis was allowed to proceed in the presence of exogenous PITP, after washing ghosts to remove PITP before activation of PLC, enhanced inositol phosphate production was observed, whether or not PITP was present in the subsequent PLC assay. CONCLUSION PITP acts by catalytically transferring phosphatidylinositol down a chemical gradient which is created as a result of the depletion of phosphatidylinositol at its site of use by the concerted actions of the phosphoinositide kinases and PLC. PITP is therefore not a co-factor for the phosphoinositide-metabolizing enzymes present in turkey erythrocyte ghosts.
Collapse
Affiliation(s)
- R A Currie
- Department of Biochemistry, Medical Sciences Institute, University of Dundee, Dundee, DD1 4HN, UK.
| | | | | |
Collapse
|
166
|
Abstract
A wide variety of messages, in the form of diffusible growth factors, hormones and cytokines, are carried throughout multicellular organisms to coordinate important physiological properties of target cells, such as proliferation, differentiation, migration, apoptosis and metabolism. Most messengers bind to cognate receptors on target cells, which initiate a characteristic cascade of reactions within the cell, ultimately leading to the desired response. The cellular response is defined by the combination of signalling components whose individual activity depends upon the number and type of surface receptors. Consequently the responses of different cell types to one or more stimuli can be quite disparate. A molecular understanding of the signalling pathways employed by each type of receptor therefore underlies the ability to rationalize many cellular functions and to correct disfunctions. As a well studied example of the primary signalling events that take place on the cytoplasmic leaflet of the plasma membrane following receptor activation, we will discuss how the widely expressed receptor for epidermal growth factor (EGF) causes the phosphorylation and hydrolysis of a signalling precursor, the membrane lipid phosphatidylinositol. This paradigm will be used to illustrate certain general principles of signalling, including formation of multienzyme complexes, compartmentation of second messengers and intermediates, and cross-talk between different signalling pathways.
Collapse
Affiliation(s)
- J J Hsuan
- Ludwig Institute for Cancer Research, University college London Medical School, U.K
| | | |
Collapse
|
167
|
Beertsen W, McCulloch CA, Sodek J. The periodontal ligament: a unique, multifunctional connective tissue. Periodontol 2000 1997; 13:20-40. [PMID: 9567922 DOI: 10.1111/j.1600-0757.1997.tb00094.x] [Citation(s) in RCA: 363] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- W Beertsen
- Department of Periodontology, Academic Center for Dentistry Amsterdam (ACTA) University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
168
|
Lu PJ, Chen CS. Selective recognition of phosphatidylinositol 3,4,5-trisphosphate by a synthetic peptide. J Biol Chem 1997; 272:466-72. [PMID: 8995284 DOI: 10.1074/jbc.272.1.466] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The present study takes a novel approach to explore the mode of action of phosphoinositide 3-kinase lipid products by identifying a synthetic peptide W-NG(28-43) (WAAKIQASFRGHMARKK) that displays discriminative affinity with phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3). This PtdIns(3,4,5)P3-binding peptide was discovered by a gel filtration-based binding assay and exhibits a high degree of stereochemical selectivity in phosphoinositide recognition. It forms a 1:1 complex with PtdIns(3,4,5)P3 with Kd of 2 microM, but binds phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) with substantially lower affinity (5- and 40-fold, respectively) despite the largely shared structural motifs with PtdIns(3,4,5)P3. Other phospholipids examined, including phosphatidylserine, phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine, show low or negligible affinity with the peptide. Several lines of evidence indicate that this phosphoinositide-peptide interaction is not due to nonspecific electrostatic interactions or phospholipid aggregation, and requires a cooperative action among the hydrophobic and basic residues to exert the selective recognition. CD data suggest that the peptide acquires an ordered structure upon binding to PtdIns(3,4,5)P3. Further, we demonstrate that PtdIns(3,4,5)P3 enhances the phosphorylation rate of this binding peptide by protein kinase C (PKC)-alpha in a dose-dependent manner. In view of the findings that this stimulatory effect is not noted with other PKC peptide substrates lacking affinity with PtdIns(3,4,5)P3 and that PKC-alpha is not susceptible to PtdIns(3,4,5)P3 activation, the activity enhancement is thought to result from the substrate-concentrating effect of the D-3 phosphoinositide, i.e. the presence of PtdIns(3,4,5)P3 allows the peptide to bind to the same vesicles/micelles to which PKC is bound. Moreover, it is noteworthy that neurogranin, the full-length protein of W-NG(28-43) and a relevant PKC substrate in the forebrain, binds PtdIns(3,4,5)P3 with high affinity. Taken together, it is plausible that, in addition to PKC activation, PtdIns(3,4,5)P3 provides an alternative mechanism to regulate PKC activity in vivo by recruiting and concentrating its target proteins at the interface to facilitate the subsequent PKC phosphorylation.
Collapse
Affiliation(s)
- P J Lu
- Division of Medicinal Chemistry and Pharmaceutics, College of Pharmacy, University of Kentucky, Lexington 40536-0082, USA
| | | |
Collapse
|
169
|
Moldovan NI, Milliken EE, Irani K, Chen J, Sohn RH, Finkel T, Goldschmidt-Clermont PJ. Regulation of endothelial cell adhesion by profilin. Curr Biol 1997; 7:24-30. [PMID: 9024619 DOI: 10.1016/s0960-9822(06)00024-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Although profilin is believed to be an essential regulator of the actin cytoskeleton in most cells, its precise role in mammalian cells remains unknown. We have used replication-incompetent adenovirus carrying the human profilin I cDNA as a means rapidly to increase the concentration of profilin in human aortic endothelial cells 12-31-fold above baseline--levels never before achieved in mammalian cells. RESULTS The concentration of filamentous actin was not detectably affected by profilin overexpression. Actin stress fibers were, however, absent from areas of high profilin content in overexpressing cells, and the bulk of filaments was located at the periphery of the cells. We observed a gradient in the distribution of overexpressed profilin in migrating endothelial cells, with most profilin molecules concentrated near the advancing edge where focal contacts are being formed and focal adhesion proteins are located. Profilin overexpression resulted in increased recruitment of fibronectin receptors to the plasma membrane. Adhesion of endothelial cells to fibronectin was markedly and selectively increased by profilin overexpression. CONCLUSIONS We conclude that an important role for profilin in mammalian cells may be its contribution to the formation of focal contacts, particularly those involving the fibronectin receptor.
Collapse
Affiliation(s)
- N I Moldovan
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, Ohio 44106-4975, USA
| | | | | | | | | | | | | |
Collapse
|
170
|
Yeh J, Haarer BK. Profilin is required for the normal timing of actin polymerization in response to thermal stress. FEBS Lett 1996; 398:303-7. [PMID: 8977127 DOI: 10.1016/s0014-5793(96)01259-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have used a fluorometric assay to determine the relative amounts of polymerized actin (F-actin) in wild-type and profilin mutant yeast cells. Our results indicate that profilin plays a role in maintaining normal F-actin levels in response to shifts to high temperature. Cells lacking profilin display a greater drop in F-actin levels upon such temperature shifts, and are slower to recover to initial F-actin levels than are wild-type cells. Interestingly, shifts to cold temperatures result in rapid increases of F-actin levels in wild-type and profilin null cells. We have further determined that shifting to high-osmolarity growth conditions causes a relatively slow decrease in F-actin levels in wild-type cells, and a small but rapid increase in the F-actin levels in profilin null cells. Profilin null cells contain normal concentrations of F-actin while growing exponentially at room temperature, indicating that profilin is not essential for maintaining F-actin concentrations during steady-state growth. Our data suggest that actin is inherently unstable in vivo at high temperatures, and that profilin helps to maintain actin in its filamentous state at these temperatures, perhaps by stimulating actin polymerization in a proper temporal and spatial fashion.
Collapse
Affiliation(s)
- J Yeh
- Department of Zoology and Institute for Cellular and Molecular Biology, The University of Texas, Austin 78712-1064, USA
| | | |
Collapse
|
171
|
Isenberg G, Niggli V, Pieper U, Kaufmann S, Goldmann WH. Probing phosphatidylinositolphosphates and adenosinenucleotides on talin nucleated actin polymerization. FEBS Lett 1996; 397:316-20. [PMID: 8955371 DOI: 10.1016/s0014-5793(96)01203-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have investigated the binding of PI, PIP and PIP2 to talin and the effect of phosphoinositides and adenosinenucleotides on talin-induced actin polymerization. At physiological salt concentrations, talin coprecipitates with liposomes when containing phosphoinositides but not when containing PI. The nucleating effect of talin as reflected by a twofold increase of fluorescence during the polymerization of actin labelled with NBD is not inhibited by phosphoinositides. The polymerization of ADP-actin versus ATP-actin was investigated in the presence and absence of talin by NBD fluorescence. ADP-actin nucleation induced by talin is comparably efficient as with ATP-actin. These experimental findings in summary have implications when evaluating the role of talin during cell activation.
Collapse
Affiliation(s)
- G Isenberg
- Technical University of Munich, Biophysics, Garching, Germany
| | | | | | | | | |
Collapse
|
172
|
Lange K, Brandt U. Calcium storage and release properties of F-actin: evidence for the involvement of F-actin in cellular calcium signaling. FEBS Lett 1996; 395:137-42. [PMID: 8898081 DOI: 10.1016/0014-5793(96)01025-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Preceding studies have shown that the bulk of the ATP-dependent, inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ store of hamster insulinoma (HIT) cells is located in microvilli on the cell surface. Similar results were obtained with isolated rat hepatocytes. Moreover, in vesicles of microvillar origin, passive fluxes of Ca2+, ATP, and IP3 occur through cation and anion channels, respectively, suggesting that Ca2+ storage is due to ATP-dependent Ca2+ binding to an intravesicular component. Here we demonstrate that F-actin may be a possible candidate for this function. ATP-actin monomers bind Ca2+ with high affinity (Kd = 2-8 nM) to their divalent cation binding sites. Polymerization of actin monomers decreases the rate constant for divalent cation exchange at this binding site by more than 3 orders of magnitude rendering bound cations nearly unavailable. F-actin-bound Ca2+ can be released by depolymerization and dissociation from Ca(2+)-ADP-actin monomers (Kd = 375 nM). We now provide additional evidence for the possible involvement of actin in Ca2+ storage. (1) Preincubation of surface-derived Ca(2+)-storing vesicles from HIT cells with the F-actin stabilizer, phalloidin, strongly inhibited ATP-dependent Ca2+ uptake, reducing the IP3-sensitive Ca2+ pool by 70%. Phalloidin, when added after the loading process, affected neither the amount of stored Ca2+ nor IP3 action on the store. (2) F-actin polymerized in the presence of Mg2+ in nominally Ca(2+)-free buffer still contained about half of the high affinity sites occupied with Ca2+ (Mg/Ca-F-actin). (3) Using the fura-2 technique, we found that in the presence of ATP, Mg/Ca-F-actin incorporated free Ca2+ at a relatively low rate. Short pulses of ultrasound (3-10 s) strongly accelerated Ca2+ uptake, decreasing free Ca2+ from 500 nM to below 100 nM. (4) In the presence of physiological levels of Mg2+ (0.5 mM), sonication liberated large amounts of Ca2+ from Mg/Ca-F-actin. (5) Ca-F-actin released bound Ca2+ at a very slow rate. Short ultrasonic pulses rapidly elevated free Ca2+ from about 50 nM up to 500 nM. (6) Small amounts of profilin, an actin-binding protein, released Ca2+ both from Ca- and Mg/Ca-F-actin and also inhibited uptake of Ca2+ into Mg/Ca-F-actin. (7) Phalloidin completely inhibited Ca-uptake into Mg/Ca-F-actin even during ultrasonic treatment. These findings suggest that Ca2+ storage may occur by addition of Ca-ATP-actin monomers to reactive ends of the polymer and emptying of this store by profilin-stimulated release of Ca-ADP-actin. Thus, receptor-operated Ca2+ signaling, initiated by phospholipase C activation, may proceed via the well-known phosphatidylinositol phosphate-regulated profilin/gelsolin pathway of actin reorganization/depolymerization. The importance of the proposed microvillar Ca2+ signaling system for living cells remains to be established.
Collapse
Affiliation(s)
- K Lange
- Institut für Pharmakologie, Freie Universität Berlin, Germany
| | | |
Collapse
|
173
|
Glaser M, Wanaski S, Buser CA, Boguslavsky V, Rashidzada W, Morris A, Rebecchi M, Scarlata SF, Runnels LW, Prestwich GD, Chen J, Aderem A, Ahn J, McLaughlin S. Myristoylated alanine-rich C kinase substrate (MARCKS) produces reversible inhibition of phospholipase C by sequestering phosphatidylinositol 4,5-bisphosphate in lateral domains. J Biol Chem 1996; 271:26187-93. [PMID: 8824266 DOI: 10.1074/jbc.271.42.26187] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The myristoylated alanine-rich protein kinase C substrate (MARCKS) is a major protein kinase C (PKC) substrate in many different cell types. MARCKS is bound to the plasma membrane, and several recent studies suggest that this binding requires both hydrophobic insertion of its myristate chain into the bilayer and electrostatic interaction of its cluster of basic residues with acidic lipids. Phosphorylation of MARCKS by PKC introduces negative charges into the basic cluster, reducing its electrostatic interaction with acidic lipids and producing translocation of MARCKS from membrane to cytoplasm. The present study shows that physiological concentrations of MARCKS (<10 microM) inhibit phospholipase C (PLC)-catalyzed hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) in phospholipid vesicles. A peptide corresponding to the basic cluster, MARCKS(151-175), produces a similar inhibition, which was observed with both PLC-delta1 and -beta1. Direct fluorescence microscopy observations demonstrate that the MARCKS peptide forms lateral domains enriched in the acidic lipids phosphatidylserine and PIP2 but not PLC, which accounts for the observed inhibition of PIP2 hydrolysis. Phosphorylation of MARCKS(151-175) by PKC releases the inhibition and allows PLC to produce a burst of inositol 1,4, 5-trisphosphate and diacylglycerol.
Collapse
Affiliation(s)
- M Glaser
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Manseau L, Calley J, Phan H. Profilin is required for posterior patterning of the Drosophila oocyte. Development 1996; 122:2109-16. [PMID: 8681792 DOI: 10.1242/dev.122.7.2109] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have investigated the role of the actin cytoskeleton during mid-oogenesis and have found that disrupting the actin cytoskeleton with cytochalasin D induces microtubule bundling and microtubule-based cytoplasmic streaming within the oocyte, similar to that which occurs prematurely in cappuccino and spire mutant oocytes. After examining a number of mutants that affect the actin cytoskeleton, we have found that chickadee, which encodes the actin-binding protein, profilin, shares this phenotype. In addition to the microtubule misregulation, mutants in chickadee resemble cappuccino in that they fail to localize STAUFEN and oskar mRNA to the posterior pole of the developing oocyte. Also, a strong allele of cappuccino has multinucleate nurse cells, similar to those previously described in chickadee. In an independent line of experiments, we have identified profilin as a CAPPUCCINO interactor in a two-hybrid screen for proteins that bind to CAPPUCCINO. This, together with the similarity of mutant phenotypes, suggests that profilin and CAPPUCCINO may interact during development.
Collapse
Affiliation(s)
- L Manseau
- Department of Molecular and Cellular Biology, Universiity of Arizona, Tucson, AZ 85721, USA.
| | | | | |
Collapse
|
175
|
Hutcheson IR, Griffith TM. Mechanotransduction through the endothelial cytoskeleton: mediation of flow- but not agonist-induced EDRF release. Br J Pharmacol 1996; 118:720-6. [PMID: 8762099 PMCID: PMC1909742 DOI: 10.1111/j.1476-5381.1996.tb15459.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. We have used a cascade bioassay system and isolated arterial ring preparations to investigate the contribution of the endothelial microfilament and microtubule cytoskeleton to EDRF release evoked by time-averaged shear stress and by acetylcholine in rabbit abdominal aorta. 2. Cytochalasin B (1 microM) and phalloidin (100 nM) were used to depolymerize and stabilize, respectively, F-actin microfilaments. Colchicine (500 nM) was used to inhibit tubulin dimerization and thus disrupt the microtubule network. Experiments were performed before or 1 h after administration of agents to the donor perfusate or organ bath. 3. In cascade bioassay studies, time-averaged shear stress was manipulated with dextran (1-4% w/v, 80,000 MW), to increase perfusate viscosity. EDRF release induced by increased perfusate viscosity was significantly (P < 0.01) attenuated by cytochalasin B, phalloidin and colchicine. 4. Endothelium-dependent relaxations to acetylcholine (0.01-30 microM) in cascade bioassay and in isolated aortic ring preparations were unaffected by pretreatment with any of these agents both in terms of their EC50 and maximal responses. Endothelium-independent relaxations to sodium nitroprusside (0.001-10 microM) were similarly unaffected. 5. We conclude that the endothelial F-actin microfilament and microtubule networks are involved in the mechanotransduction pathway for flow-evoked EDRF release in rabbit abdominal aorta. However, these cytoskeletal elements appear to play no role in acetylcholine-induced EDRF release in this tissue.
Collapse
Affiliation(s)
- I R Hutcheson
- Department of Diagnostic Radiology, University of Wales College of Medicine, Heath Park, Cardiff
| | | |
Collapse
|
176
|
Martys JL, Wjasow C, Gangi DM, Kielian MC, McGraw TE, Backer JM. Wortmannin-sensitive trafficking pathways in Chinese hamster ovary cells. Differential effects on endocytosis and lysosomal sorting. J Biol Chem 1996; 271:10953-62. [PMID: 8631914 DOI: 10.1074/jbc.271.18.10953] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Phosphatidylinositol (PI) 3'-kinases are a family of lipid kinases implicated in the regulation of cell growth by oncogene products and tyrosine kinase growth factor receptors. The catalytic subunit of the p85/p110 PI 3'-kinase is homologous to VPS-34, a phosphatidylinositol-specific lipid kinase involved in the sorting of newly synthesized hydrolases to the yeast vacuole. This suggests that PI 3'-kinases may play analogous roles in mammalian cells. We have measured a number of secretory and endocytic trafficking events in Chinese hamster ovary cells in the presence of wortmannin, a potent inhibitor of PI 3'-kinase. Wortmannin caused a 40-50% down-regulation of surface transferrin receptors, with a dose dependence identical to that required for maximal inhibition of the p85/p110 PI 3'-kinase in intact cells. The redistribution of transferrin receptors reflected a 60% increase in the internalization rate and a 35% decrease in the recycling rate. Experiments with fluorescent transferrin showed that entry of transferrin receptors into the recycling compartment and efflux of receptors out of the compartment were slowed by wortmannin. Wortmannin altered the morphology of the recycling compartment, which was more vesiculated than in untreated cells. Using Semliki Forest virus as a probe, we also found that delivery of the endocytosed virus to its lysosomal site of degradation was slowed by wortmannin, whereas endosomal acidification was unaffected. In contrast to these effects on endocytosis and recycling, wortmannin did not affect intracellular processing of newly synthesized viral spike proteins. Wortmannin did induce missorting of the lysosomal enzyme cathepsin D to the secretory pathway, but only at a dose 20-fold greater than that required to inhibit p85/p110 PI 3'-kinase activity or to redistribute transferrin receptors. Our data demonstrate the presence of wortmannin-sensitive enzymes at three distinct steps of the endocytic cycle in Chinese hamster ovary cells: internalization, transit from early endosomes to the recycling and degradative compartments, and transit from the recycling compartment back to the cell surface. The wortmannin-sensitive enzymes critical for endocytosis and recycling are distinct from those involved in sorting newly synthesized lysosomal enzymes.
Collapse
Affiliation(s)
- J L Martys
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
177
|
Heldman AW, Kandzari DE, Tucker RW, Crawford LE, Fearon ER, Koblan KS, Goldschmidt-Clermont PJ. EJ-Ras inhibits phospholipase C gamma 1 but not actin polymerization induced by platelet-derived growth factor-BB via phosphatidylinositol 3-kinase. Circ Res 1996; 78:312-21. [PMID: 8575075 DOI: 10.1161/01.res.78.2.312] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Transformation of fibroblast-like cells (NIH 3T3) by a constitutively activated GTP-bound isoform of p21ras (EJ-Ras) produces morphogenic changes characterized by decreased attachment to the substratum, with retraction and rounding of the cell body. Transformed fibroblasts lose their "stressed" conformation and adopt a "relaxed" morphology. The specific molecular mechanisms responsible for these changes remain uncharacterized. We found that EJ-Ras transformation of NIH 3T3 cells decreased the cellular content of polymerized actin, particularly at the expense of actin stress fibers, but induced the accumulation of actin filaments in peripheral ruffling membranes. Polymerization of actin could be induced in EJ-Ras-transformed cells by exposure to platelet-derived growth factor (PDGF)-BB to an extent similar to that observed in wild-type NIH 3T3 cells. In EJ-Ras cells, actin polymerization was independent of phospholipase C gamma 1 (PLC gamma 1) activity, because inositol tris-phosphate (IP3) production observed in control NIH 3T3 cells in response to PDGF-BB was absent. Although PDGF-BB did stimulate tyrosine phosphorylation of PLC gamma 1, the phospholipase was strongly inhibited by an inhibitory factor present in the cytoplasm of EJ-Ras-transformed cells. In addition, cytoplasmic extracts of EJ-Ras, but not of control cells, inhibited phosphatidylinositol 4,5-diphosphate (PIP2) hydrolysis catalyzed by a recombinant PLC gamma 1 in vitro. Although PIP2 hydrolysis could not contribute to the reorganization of the actin cytoskeleton induced by PDGF-BB in EJ-Ras-transformed cells, phosphatidylinositol 3-kinase (PI3-K) was necessary for actin polymerization. Wortmannin, a specific PI3-K inhibitor, not only blocked actin polymerization in both control and EJ-Ras-transformed cells but actually led to rapid actin depolymerization when these cells were exposed to PDGF-BB. Thus, in EJ-Ras-transformed cells, cell morphogenic changes in response to PDGF-BB rely importantly on PI3-K and can occur in the complete absence of IP3 production despite tyrosine phosphorylation of PLC gamma 1.
Collapse
Affiliation(s)
- A W Heldman
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Md, USA
| | | | | | | | | | | | | |
Collapse
|
178
|
Tarachandani A, Wang YL. Site-directed mutagenesis enabled preparation of a functional fluorescent analog of profilin: biochemical characterization and localization in living cells. CELL MOTILITY AND THE CYTOSKELETON 1996; 34:313-23. [PMID: 8871818 DOI: 10.1002/(sici)1097-0169(1996)34:4<313::aid-cm6>3.0.co;2-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The preparation of fluorescent profilin analogs for binding and spectroscopic studies, in vitro and in vivo, has been hampered by the poor chemical reactivity of this protein in its native form. We have addressed this problem by labeling a mutant, chemically reactive form of profilin. Site-directed mutagenesis was first used to replace a serine residue in a non-essential domain with a reactive cysteine residue. The mutant protein was expressed in Escherichia coli and reacted with tetramethylrhodamine iodoacetamide. In vitro assays indicated that the fluorescent profilin maintained its ability to bind actin, polyproline, and PIP2, to inhibit actin polymerization, and to stimulate actin nucleotide exchange. Fluorescence spectroscopy showed that neither the excitation nor the emission of the analog was sensitive to the interaction with actin or polyproline. However, binding of PIP2 caused a 75% quenching of the fluorescent signal, suggesting a dramatic change in the immediate environment of the probe. When the fluorescent profilin was microinjected into living NRK cells, it became localized at cell-cell junctions and discrete sites near the anterior end, where it colocalized with aggregates of unpolymerized actin. Different engineered forms of profilin with fluorophores located at defined sites should greatly facilitate the study of its interactions with various ligands and cellular structures.
Collapse
Affiliation(s)
- A Tarachandani
- Cell Biology Group, Worcester Foundation for Biomedical Research, Shrewsbury, Massachusetts 01545, USA
| | | |
Collapse
|
179
|
Karakesisoglou I, Schleicher M, Gibbon BC, Staiger CJ. Plant profilins rescue the aberrant phenotype of profilin-deficient Dictyostelium cells. CELL MOTILITY AND THE CYTOSKELETON 1996; 34:36-47. [PMID: 8860230 DOI: 10.1002/(sici)1097-0169(1996)34:1<36::aid-cm4>3.0.co;2-g] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To characterize the function of plant profilins in vivo, we expressed two pollen specific Zea mays (maize) profilin isoforms in profilin-minus Dictyostelium discoideum mutants. In maize, profilins exist as a multigene family containing 4 or more members which are highly similar to each other but substantially less similar to profilins from animals and lower eukaryotes. Previously we have shown that D. discoideum profilin-minus cells have an aberrant phenotype due to defects in cell shape, cytokinesis, and development. These defects could be rescued by introducing the pollen-specific profilins 1 or 2 from maize using a newly constructed expression vector. Expression of the heterologous profilins in Dictyostelium clones was assayed by affinity purification of the pollen profilins with poly-proline agarose and by immunoblotting with a polyclonal antiserum raised against maize pollen profilin. In contrast to the profilin-minus mutants, Dictyostelium cells expressing plant profilins showed normal cell shape, contained less F-actin, and were able to form fruiting bodies. These data provide genetic evidence that maize pollen profilins, even though they are specific for a distinct developmental stage, share functional properties with profilin from a lower eukaryote and apparently act as G-actin-sequestering proteins in this system.
Collapse
Affiliation(s)
- I Karakesisoglou
- Institut fur Zellbiologie, Ludwig-Maximilians-Universitat Munchen, Munich, Federal Republic of Germany
| | | | | | | |
Collapse
|
180
|
Coté GG, Yueh YG, Crain RC. Phosphoinositide turnover and its role in plant signal transduction. Subcell Biochem 1996; 26:317-43. [PMID: 8744270 DOI: 10.1007/978-1-4613-0343-5_11] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- G G Coté
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269-3125, USA
| | | | | |
Collapse
|
181
|
Rothkegel M, Mayboroda O, Rohde M, Wucherpfennig C, Valenta R, Jockusch BM. Plant and animal profilins are functionally equivalent and stabilize microfilaments in living animal cells. J Cell Sci 1996; 109 ( Pt 1):83-90. [PMID: 8834793 DOI: 10.1242/jcs.109.1.83] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have analyzed the degree of functional similarity between birth and mammalian profilins, two members of the profilin family which show only a moderate sequence homology (22%) in living animal cells. The plant profilin, derived from birch pollen, was stably expressed in BHK-21 cells. Plant and endogenous profilin synthesis and cellular distribution were monitored by specific monoclonal antibodies. Quantitation of profilin and actin on calibrated immunoblots showed that two stable clones contained in total 1.4 and 2.0 times as much profilin as the parental cells. Using double fluorescence and confocal laser scanning microscopy, it was seen that the endogenous and the plant profilin colocalized with dynamic microfilaments, in particular with F-actin-rich foci and cortical microfilament webs of spreading cells, with dynamic microfilament bundles induced by serum deprival, and with cytochalasin D- and latrunculin-induced transient F-actin aggregates. The increase in the overall profilin concentration correlated with a significantly higher resistance of actin filaments to these drugs. Our data indicate that even profilins of highly distant evolutionary origin can functionally substitute for each other and support the hypothesis that in animal cells, profilins are engaged in regulating either the stability or the kinetic properties of actin filaments.
Collapse
Affiliation(s)
- M Rothkegel
- Zoological Institute, Technical University of Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
182
|
Kandzari DE, Chen J, Goldschmidt-Clermont PJ. Regulation of the actin cytoskeleton by inositol phospholipid pathways. Subcell Biochem 1996; 26:97-114. [PMID: 8744263 DOI: 10.1007/978-1-4613-0343-5_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- D E Kandzari
- Bernard Laboratory, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | |
Collapse
|
183
|
Ostrander DB, Gorman JA, Carman GM. Regulation of profilin localization in Saccharomyces cerevisiae by phosphoinositide metabolism. J Biol Chem 1995; 270:27045-50. [PMID: 7592954 DOI: 10.1074/jbc.270.45.27045] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Profilin is an actin- and phosphatidylinositol 4,5-bisphosphate-binding protein that plays a role in the organization of the cytoskeleton and may be involved in growth factor signaling pathways. The subcellular localization of profilin was examined in the yeast Saccharomyces cerevisiae. Immunoblot analysis showed that profilin was localized in both the plasma membrane and cytosolic fractions of the cell. Actin was bound to the profilin localized in the cytosol. The association of profilin with the membrane was peripheral and mediated through interaction with phospholipid. The phospholipid dependence of profilin for membrane binding was examined in vitro using pure profilin and defined unilamellar phospholipid vesicles. The presence of phosphatidylinositol 4,5-bisphosphate in phospholipid vesicles was required for maximum profilin binding. Moreover, the binding of profilin to phospholipid vesicles was dependent on the surface concentration of phosphatidylinositol 4,5-bisphosphate. The subcellular localization of profilin was examined in vivo under growth conditions (i.e. inositol starvation of ino1 cells and glucose starvation of respiratory deficient cells) where plasma membrane levels of phosphatidylinositol 4,5-bisphosphate were depleted. Depletion of plasma membrane phosphatidylinositol 4,5-bisphosphate levels resulted in a translocation of profilin from the plasma membrane to the cytosolic fraction. Profilin translocated back to the membrane fraction from the cytosol under growth conditions where plasma membrane levels of phosphatidylinositol 4,5-bisphosphate were replenished. These results suggested that phosphoinositide metabolism played a role in the localization of profilin.
Collapse
Affiliation(s)
- D B Ostrander
- Department of Food Science, Cook College, Rutgers University, New Brunswick, New Jersey 08903, USA
| | | | | |
Collapse
|
184
|
Wong AY, Klassen GA. A model of electrical activity and cytosolic calcium dynamics in vascular endothelial cells in response to fluid shear stress. Ann Biomed Eng 1995; 23:822-32. [PMID: 8572432 DOI: 10.1007/bf02584481] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A mathematical model is proposed to describe the intracellular Ca2+ (Cai) transient and electrical activity of vascular endothelial cells (VEC) elicited by fluid shear stress (tau). The intracellular Ca2+ store of the model VEC is comprised of a Cai-sensitive (sc) and an inositol (1,4,5)-trisphosphate (IP3)-sensitive compartment (dc). The dc [Ca2+] is refilled by the sc whose [Ca2+] is the same as extracellular [Ca2+]. IP3 produced by the tau-deformed mechanoreceptors discharges the dc Ca2+ into the cytosol. The increase of cytosolic [Ca2+] induces Ca2+ release (CICR) from the sc. The raised Cai activates a Cai-activated K+ current (IK,Ca) and inhibits IP3 production. The cell membrane potential is determined by IK,Ca, voltage-dependent Na+ and K+ currents. Steady tau > 0.1 dyne/cm2 elicits a Cai transient which reaches peak value at 19-54 sec. The peak Cai varies sigmoidally with Log10(tau) with a maximal peak Cai of 150 nM at tau = 4 dynes/cm2. Step increases of tau fail to elicit a Ca2+ response in cells previously stimulated by a lower shear. The Ca2+ response gradually decreases with repetitive tau stimuli. Pulsatile shear elicits two to three times higher Cai and hyperpolarizes the cell more than steady shear of the same magnitude. The simulated Ca2+ responses to tau are quantitatively and qualitatively similar to those observed in cultured VEC. The model provides a possible explanation of why the vasodilating stimulus is greater for pulsatile flow than for nonpulsatile flow.
Collapse
Affiliation(s)
- A Y Wong
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
185
|
Binder M, Ortner S, Erben H, Scheiner O, Wiedermann G, Valenta R, Duchêne M. The basic isoform of profilin in pathogenic Entamoeba histolytica. cDNA cloning, heterologous expression, and actin-binding properties. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 233:976-81. [PMID: 8521867 DOI: 10.1111/j.1432-1033.1995.976_3.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the human parasite Entamoeba histolytica, components of the cytoskeleton are involved in the pathogenicity by their contribution to immune evasion by antibody capping and shedding. In this study, we focus on profilin as a central regulatory component of the cytoskeleton. Profilin was isolated from trophozoites of the pathogenic E. histolytica strain SFL-3, and partial amino acid sequences were used to devise a probe for isolating a profilin cDNA. The deduced complete primary structure was divergent: plant profilins with amino acid sequence identities in the range 33-38% were more closely related than the mammalian profilins with sequence identities 21-28%. The cDNA was expressed as a nonfusion protein in Escherichia coli. Isoelectric focussing of the natural profilin isolated from E. histolytica showed two isoforms with different isoelectric points; the recombinant profilin migrated with the basic isoform. In a blot overlay experiment, purified 125I-labeled recombinant profilin bound not only to plant actin, but also to mammalian actin, demonstrating that cytoskeletal components from distantly related organisms with divergent primary structures can be compatible.
Collapse
Affiliation(s)
- M Binder
- Institute for Specific Prophylaxis and Tropical Medicine, University of Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
186
|
Plopper GE, McNamee HP, Dike LE, Bojanowski K, Ingber DE. Convergence of integrin and growth factor receptor signaling pathways within the focal adhesion complex. Mol Biol Cell 1995; 6:1349-65. [PMID: 8573791 PMCID: PMC301292 DOI: 10.1091/mbc.6.10.1349] [Citation(s) in RCA: 410] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Extracellular matrix controls capillary endothelial cell sensitivity to soluble mitogens by binding integrin receptors and thereby activating a chemical signaling response that rapidly integrates with growth factor-induced signaling mechanisms. Here we report that in addition to integrins, growth factor receptors and multiple molecules that transduce signals conveyed by both types of receptors are immobilized on the cytoskeleton (CSK) and spatially integrated within the focal adhesion complex (FAC) at the site of integrin binding. FACs were rapidly induced in round cells and physically isolated from the remainder of the CSK after detergent-extraction using magnetic microbeads coated with fibronectin or a synthetic RGD-containing peptide. Immunofluorescence microscopy revealed that multiple signaling molecules (e.g., pp60c-src, pp125FAK, phosphatidylinositol-3-kinase, phospholipase C-gamma, and Na+/H+ antiporter) involved in both integrin and growth factor receptor signaling pathways became associated with the CSK framework of the FAC within 15 min after binding to beads coated with integrin ligands. Recruitment of tyrosine kinases to the FAC was also accompanied by a local increase in tyrosine phosphorylation, as indicated by enhanced phosphotyrosine staining at the site of integrin binding. In contrast, neither recruitment of signaling molecules nor increased phosphotyrosine staining was observed when cells bound to beads coated with a control ligand (acetylated low density lipoprotein) that ligates transmembrane scavenger receptors, but does not induce FAC formation. Western blot analysis confirmed that FACs isolated using RGD-beads were enriched for pp60c-src, pp125FAK, phospholipase C-gamma, and the Na+/H+ antiporter when compared with intact CSK or basal cell surface preparations that retained lipid bilayer. Isolated FACs were also greatly enriched for the high affinity fibroblast growth factor receptor flg. Most importantly, isolated FACs continued to exhibit multiple chemical signaling activities in vitro, including protein tyrosine kinase activities (pp60c-src and pp125FAK) as well as the ability to undergo multiple sequential steps in the inositol lipid synthesis cascade. These data suggest that many of the chemical signaling events that are induced by integrins and growth factor receptors in capillary cells may effectively function in a "solid-state" on insoluble CSK scaffolds within the FAC and that the FAC may represent a major site for signal integration between these two regulatory pathways. Future investigations into the biochemical and biophysical basis of signal transduction may be facilitated by this method, which results in isolation of FACs that retain the CSK framework as well as multiple associated chemical signaling activities.
Collapse
Affiliation(s)
- G E Plopper
- Department of Surgery, Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
187
|
Bagrodia S, Taylor SJ, Creasy CL, Chernoff J, Cerione RA. Identification of a mouse p21Cdc42/Rac activated kinase. J Biol Chem 1995; 270:22731-7. [PMID: 7559398 DOI: 10.1074/jbc.270.39.22731] [Citation(s) in RCA: 358] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have isolated a novel member of the mammalian PAK (p21 activated kinase) and yeast Ste20 serine/threonine kinase family from a mouse fibroblast cDNA library, designated mPAK-3. Expression of mPAK-3 in Saccharomyces cerevisiae partially restores mating function in ste20 null cells. Like other PAKs, mPAK-3 contains a putative Cdc42Hs/Rac binding sequence and when transiently expressed in COS cells, full-length mPAK-3 binds activated (GTP gamma S (guanosine 5'-3-O-(thio-triphosphate)-bound) glutathione S-transferase (GST)-Cdc42Hs and GST-Rac1 but not GST-RhoA. As expected for a putative target molecule, mPAK-3 does not bind to an effector domain mutant of Cdc42Hs. Furthermore, activated His-tagged Cdc42Hs and His-tagged Rac stimulate mPAK-3 autophosphorylation and phosphorylation of myelin basic protein by mPAK-3 in vitro. Interestingly, the amino-terminal region of mPAK-3 contains potential SH3-binding sites and we find that mPAK-3, expressed in vitro and in vivo, shows highly specific binding to the SH3 domain of phospholipase C-gamma and at least one SH3 domain in the adapter protein Nck. These results raise the possibility of an additional level of regulation of the PAK family in vivo.
Collapse
Affiliation(s)
- S Bagrodia
- Department of Pharmacology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
188
|
Sohn RH, Chen J, Koblan KS, Bray PF, Goldschmidt-Clermont PJ. Localization of a binding site for phosphatidylinositol 4,5-bisphosphate on human profilin. J Biol Chem 1995; 270:21114-20. [PMID: 7673143 DOI: 10.1074/jbc.270.36.21114] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Profilin is a small 12-15-kDa actin-binding protein, which in eukaryotic organisms is ubiquitous and necessary for normal cell growth and function. Although profilin's interactions with its three known ligands (actin monomers, phosphatidylinositol 4,5-bisphosphate (PIP2), and poly-L-proline (PLP)) have been well characterized in vitro, its precise role in cells remains largely unknown. By binding to clusters of PIP2, profilin is able to inhibit the hydrolysis of PIP2 by phospholipase C gamma 1 (PLC gamma 1). This ability is the result of profilin's affinity for PIP2, but the specific residues of profilin's amino acid sequence involved in the binding of PIP2 are not known. Using site-directed mutagenesis, we sought to localize regions of profilin important for this interaction by generating the following mutants of human profilin (named according to the wild-type amino acid altered, its position, and the amino acid substituted in its place): Y6F, D8A, L10R, K25Q, K53I, R74L, R88L, R88L/K90E, H119D, G121D, and K125Q. With the exception of L10R, all of the mutants were successfully expressed in Escherichia coli and purified by affinity chromatography on PLP-Sepharose. Only Y6F and K25Q demonstrated moderately less stringent binding to PLP, indicating that most of the mutations did not induce marked alterations of profilin's structure. When tested for their relative abilities to inhibit the hydrolysis of PIP2 by PLC gamma 1, most of the mutants were indistinguishable from wild-type profilin. Exceptions included D8A, which demonstrated increased inhibition of PLC gamma 1, and R88L, which demonstrated decreased inhibition of PLC gamma 1. To assess the importance of the region surrounding residue 88 of human profilin, three synthetic decapeptides selected to correspond to non-overlapping stretches of the human profilin sequence were tested for their abilities to inhibit PLC gamma 1. We found that only te decapeptide that matched the peptide stretch centered around residue 88 was able to inhibit PLC gamma 1 activity substantially and was able to do so at nearly wild-type profilin levels. Taken together with the finding that mutating residue 88 resulted in decreased inhibition of PLC gamma 1 activity, these data provide strong evidence that this region of human profilin represents an important binding site for PIP2.
Collapse
Affiliation(s)
- R H Sohn
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | |
Collapse
|
189
|
Abstract
Mechanical forces associated with blood flow play important roles in the acute control of vascular tone, the regulation of arterial structure and remodeling, and the localization of atherosclerotic lesions. Major regulation of the blood vessel responses occurs by the action of hemodynamic shear stresses on the endothelium. The transmission of hemodynamic forces throughout the endothelium and the mechanotransduction mechanisms that lead to biophysical, biochemical, and gene regulatory responses of endothelial cells to hemodynamic shear stresses are reviewed.
Collapse
Affiliation(s)
- P F Davies
- Department of Pathology, Pritzker School of Medicine, University of Chicago, Illinois, USA
| |
Collapse
|
190
|
Mooney DJ, Langer R, Ingber DE. Cytoskeletal filament assembly and the control of cell spreading and function by extracellular matrix. J Cell Sci 1995; 108 ( Pt 6):2311-20. [PMID: 7673351 DOI: 10.1242/jcs.108.6.2311] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study was undertaken to analyze how cell binding to extracellular matrix produces changes in cell shape. We focused on the initial process of cell spreading that follows cell attachment to matrix and, thus, cell ‘shape’ changes are defined here in terms of alterations in projected cell areas, as determined by computerized image analysis. Cell spreading kinetics and changes in microtubule and actin microfilament mass were simultaneously quantitated in hepatocytes plated on different extracellular matrix substrata. The initial rate of cell spreading was highly dependent on the matrix coating density and decreased from 740 microns 2/h to 50 microns 2/h as the coating density was lowered from 1000 to 1 ng/cm2. At approximately 4 to 6 hours after plating, this initial rapid spreading rate slowed and became independent of the matrix density regardless of whether laminin, fibronectin, type I collagen or type IV collagen was used for cell attachment. Analysis of F-actin mass revealed that cell adhesion to extracellular matrix resulted in a 20-fold increase in polymerized actin within 30 minutes after plating, before any significant change in cell shape was observed. This was followed by a phase of actin microfilament disassembly which correlated with the most rapid phase of cell extension and ended at about 6 hours; F-actin mass remained relatively constant during the slow matrix-independent spreading phase. Microtubule mass increased more slowly in spreading cells, peaking at 4 hours, the time at which the transition between rapid and slow spreading rates was observed. However, inhibition of this early rise in microtubule mass using either nocodazole or cycloheximide did not prevent this transition. Use of cytochalasin D revealed that microfilament integrity was absolutely required for hepatocyte spreading whereas interference with microtubule assembly (using nocodazole or taxol) or protein synthesis (using cycloheximide) only partially suppressed cell extension. In contrast, cell spreading could be completely inhibited by combining suboptimal doses of cytochalasin D and nocodazole, suggesting that intact microtubules can stabilize cell form when the microfilament lattice is partially compromised. The physiological relevance of the cytoskeleton and cell shape in hepatocyte physiology was highlighted by the finding that a short exposure (6 hour) of cells to nocodazole resulted in production of smaller cells 42 hours later that exhibited enhanced production of a liver-specific product (albumin). These data demonstrate that spreading and flattening of the entire cell body is not driven directly by net polymerization of either microfilaments or microtubules.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D J Mooney
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, USA
| | | | | |
Collapse
|
191
|
Caplan S, Baniyash M. Multisubunit receptors in the immune system and their association with the cytoskeleton: in search of functional significance. Immunol Res 1995; 14:98-118. [PMID: 8530880 DOI: 10.1007/bf02918171] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Various multisubunit receptors of the immune system share similarities in structure and induce closely related signal transduction pathways upon ligand binding. Examples include the T cell antigen receptor (TCR), the B cell antigen receptor (BCR), and the high-affinity receptor for immunoglobulin E (Fc epsilon RI). Although these receptors are devoid of intrinsic kinase activity, they can associate with a similar array of intracellular kinases, phosphatases and other signaling molecules. Furthermore, these receptor complexes all form an association with the cytoskeletal matrix. In this review, we compare the structural and functional characteristics of the TCR, BCR and Fc epsilon RI. We examine the role of the cytoskeleton in regulating receptor-mediated signal transduction, as analyzed in other well-characterized receptors, including the epidermal growth factor receptor and integrin receptors. On the basis of this evidence, we review the current data depicting a cytoskeletal association for multisubunit immune system receptors and explore the potential bearing of this interaction on signaling function.
Collapse
Affiliation(s)
- S Caplan
- Lautenberg Center for General and Tumor Immunology, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
192
|
Huguet EL, Smith K, Bicknell R, Harris AL. Regulation of Wnt5a mRNA expression in human mammary epithelial cells by cell shape, confluence, and hepatocyte growth factor. J Biol Chem 1995; 270:12851-6. [PMID: 7759542 DOI: 10.1074/jbc.270.21.12851] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Wnts are a family of genes with a role in cell fate and morphological development in numerous embryonic and adult tissues. In mouse mammary tissue a subset of the Wnts have a function in the normal development of the gland, and aberrant expression of Wnts normally silent in this tissue causes mammary carcinomas. We have previously shown that Wnt5a expression is elevated in the epithelial component of proliferative lesions of human breast and have therefore examined the regulation of Wnt5a mRNA expression in the human mammary epithelial cell line HB2, which has a luminal phenotype and thus represents the most commonly transformed cell type in human breast cancer. Wnt5a was up-regulated 30-fold at confluence. This up-regulation was induced specifically by confluence and not by the growth arrest that accompanied it. In addition, Wnt5a was down-regulated 3-fold by changes in cell shape associated with the transition from growth on a two-dimensional surface (flat cell morphology) to growth in three-dimensional gels (spherical cell morphology). Cytoskeletal disruption with non-toxic doses of colchicine also induced a spherical morphology and brought about a dose-dependent down-regulation of Wnt5a. Wnt5a was also down-regulated 10-fold during the hepatocyte growth factor-induced branching of HB2 cell aggregates in collagen gels. The down-regulation of Wnt5a preceded the branching process. A similar result was obtained with primary human breast epithelial populations and the breast cancer cell line MDA468. We conclude that regulation of Wnt5a expression is a down-stream effect of signaling by hepatocyte growth factor. These results are consistent with a role for Wnt5a in mammary epithelial cell motility and are in accord with Xwnt5a's function in embryonal cell migration. If Wnt5a's function in human mammary epithelial cells is similar to that of Xwnt5a, its up-regulation at confluence may be a mechanism for inhibition of cell migration beyond confluence.
Collapse
Affiliation(s)
- E L Huguet
- Imperial Cancer Research Fund, University of Oxford, Institute of Molecular Medicine, John Radcliffe Hospital, Headington, United Kingdom
| | | | | | | |
Collapse
|
193
|
Zhang X, Jefferson AB, Auethavekiat V, Majerus PW. The protein deficient in Lowe syndrome is a phosphatidylinositol-4,5-bisphosphate 5-phosphatase. Proc Natl Acad Sci U S A 1995; 92:4853-6. [PMID: 7761412 PMCID: PMC41805 DOI: 10.1073/pnas.92.11.4853] [Citation(s) in RCA: 199] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Lowe syndrome, also known as oculocerebrorenal syndrome, is caused by mutations in the X chromosome-encoded OCRL gene. The OCRL protein is 51% identical to inositol polyphosphate 5-phosphatase II (5-phosphatase II) from human platelets over a span of 744 aa, suggesting that OCRL may be a similar enzyme. We engineered a construct of the OCRL cDNA that encodes amino acids homologous to the platelet 5-phosphatase for expression in baculovirus-infected Sf9 insect cells. This cDNA encodes aa 264-968 of the OCRL protein. The recombinant protein was found to catalyze the reactions also carried out by platelet 5-phosphatase II. Thus OCRL converts inositol 1,4,5-trisphosphate to inositol 1,4-bisphosphate, and it converts inositol 1,3,4,5-tetrakisphosphate to inositol 1,3,4-trisphosphate. Most important, the enzyme converts phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 4-phosphate. The relative ability of OCRL to catalyze the three reactions is different from that of 5-phosphatase II and from that of another 5-phosphatase isoenzyme from platelets, 5-phosphatase I. The recombinant OCRL protein hydrolyzes the phospholipid substrate 10- to 30-fold better than 5-phosphatase II, and 5-phosphatase I does not cleave the lipid at all. We also show that OCRL functions as a phosphatidylinositol 4,5-bisphosphate 5-phosphatase in OCRL-expressing Sf9 cells. These results suggest that OCRL is mainly a lipid phosphatase that may control cellular levels of a critical metabolite, phosphatidylinositol 4,5-bisphosphate. Deficiency of this enzyme apparently causes the protean manifestations of Lowe syndrome.
Collapse
Affiliation(s)
- X Zhang
- Division of Hematology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
194
|
Lambrechts A, Damme J, Goethals M, Vandekerckhove J, Ampe C. Purification and Characterization of Bovine Profilin II. Actin, Poly(l-proline) and Inositolphospholipid Binding. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.tb20561.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
195
|
Gieselmann R, Kwiatkowski DJ, Janmey PA, Witke W. Distinct biochemical characteristics of the two human profilin isoforms. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 229:621-8. [PMID: 7758455 DOI: 10.1111/j.1432-1033.1995.tb20506.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The biochemical characteristics of a new human profilin isoform are described. We refer to this recently described isoform as profilin II (isoelectric point 5.9) in comparison to profilin I (pI 8.4). We expressed both isoforms in bacteria and compared their actin-binding properties, binding to poly(L-proline), affinities for phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], and their effects on nucleotide exchange on actin. Profilin I and profilin II have similar affinities for PtdIns(4,5)P2 and poly(L-proline), and both accelerate nucleotide exchange on monomeric actin to the same extent. However, the affinity of profilin I for monomeric actin is about five times higher than the affinity of profilin II for actin. Potential structural differences of profilin I and profilin II that might explain the difference in actin binding are discussed.
Collapse
Affiliation(s)
- R Gieselmann
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
196
|
Hirayama T, Ohto C, Mizoguchi T, Shinozaki K. A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana. Proc Natl Acad Sci U S A 1995; 92:3903-7. [PMID: 7732004 PMCID: PMC42070 DOI: 10.1073/pnas.92.9.3903] [Citation(s) in RCA: 289] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A cDNA corresponding to a putative phosphatidylinositol-specific phospholipase C (PI-PLC) in the higher plant Arabidopsis thaliana was cloned by use of the polymerase chain reaction. The cDNA, designated cAtPLC1, encodes a putative polypeptide of 561 aa with a calculated molecular mass of 64 kDa. The putative product includes so-called X and Y domains found in all PI-PLCs identified to date. In mammalian cells, there are three types of PI-PLC, PLC-beta, -gamma, and -delta. The overall structure of the putative AtPLC1 protein is most similar to that of PLC-delta, although the AtPLC1 protein is much smaller than PLCs from other organisms. The recombinant AtPLC1 protein synthesized in Escherichia coli was able to hydrolyze phosphatidylinositol 4,5-bisphosphate and this activity was completely dependent on Ca2+, as observed also for mammalian PI-PLCs. These results suggest that the AtPLC1 gene encodes a genuine PI-PLC of a higher plant. Northern blot analysis showed that the AtPLC1 gene is expressed at very low levels in the plant under normal conditions but is induced to a significant extent under various environmental stresses, such as dehydration, salinity, and low temperature. These observations suggest that AtPLC1 might be involved in the signal-transduction pathways of environmental stresses and that an increase in the level of AtPLC1 might amplify the signal, in a manner that contributes to the adaptation of the plant to these stresses.
Collapse
Affiliation(s)
- T Hirayama
- Laboratory of Plant Molecular Biology, Tsukuba Life Science Center, Institute of Physical and Chemical Research (RIKEN), Japan
| | | | | | | |
Collapse
|
197
|
Abstract
We have isolated additional cDNA clones encoding type II inositol polyphosphate 5-phosphatase (5-phosphatase II) resulting in a combined cDNA of 3076 nucleotides encoding a protein of 942 amino acids. The 5-phosphatase II hydrolyzed both Ins(1,4,5)P3 to Ins(1,4)P2 and the phospholipid PtdIns(4,5)P2 to PtdIns(4)P both in vitro and in vivo. There are two motifs highly conserved between types I and II 5-phosphatase and several other proteins presumed to be inositol phosphatases suggesting a possible role in catalysis. The type II 5-phosphatase also contains homology to several GTPase activating proteins although no such activity for 5-phosphatase II was found. The predicted protein ends with the sequence CNPL, suggesting that it is isoprenylated as a mechanism for membrane attachment. We found evidence for isoprenylation by demonstrating incorporation of [3H]mevalonate into native but not C939S mutant 5-phosphatase II expressed in Sf9 insect cells. Furthermore, we showed that membrane localization and the activity of 5-phosphatase II toward its lipid substrate PtdIns(4,5)P2 is reduced by eliminating 5-phosphatase II isoprenylation in the mutant C939S relative to the native enzyme.
Collapse
Affiliation(s)
- A B Jefferson
- Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
198
|
Simões AP, Reed J, Schnabel P, Camps M, Gierschik P. Characterization of putative polyphosphoinositide binding motifs from phospholipase C beta 2. Biochemistry 1995; 34:5113-9. [PMID: 7711030 DOI: 10.1021/bi00015a023] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Several phosphatidylinositol 4,5-bisphosphate (PtdInsP2)-regulated actin-binding proteins and most phosphoinositide-specific phospholipases C (PI-PLCs) comprise a basic amino acid motif (KxxxKxKK, where x denotes any amino acid), which was previously suggested to represent a PtdInsP2-binding site commonly present in these proteins. We have shown earlier that a peptide corresponding to amino acids 448-464 of human PLC beta 2 (LPSPEDLRGKILIKNKK, peptide P1) markedly and specifically stimulated the activity of this enzyme [Simões et al. (1993) FEBS Lett. 331, 248]. Here, we present a detailed analysis of the effects of various peptides related to peptide P1 aimed at understanding the mechanisms of peptide-mediated PLC beta 2 stimulation. Peptide KILIKNKK (P2), which comprises only the basic amino acid consensus motif, also stimulated PLC beta 2, although higher concentrations were required to observe this stimulatory effect. The effects of P1 and P2 were not additive, indicating that the two peptides affect PLC beta 2 activity via the same mechanism. Peptide LPSPEDLRG (P3), composed of the amino-terminal half of P1, did not affect the activity of PLC beta 2. Peptide KILIKNKKQFSGPTSS (P4), which includes the nine amino acids flanking the carboxy-terminus of the KILIKNKK motif within the sequence of PLC beta 2, stimulated the enzyme but was indistinguishable in potency from P2. Circular dichroism analysis revealed that peptide P1 changes its conformation in the presence of PtdInsP2 but not in the presence of other phospholipids including phosphatidylinositol 4-phosphate. The results suggest that the basic amino acid sequence physically interacts with PtdInsP2.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A P Simões
- German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
199
|
Sun HQ, Kwiatkowska K, Wooten DC, Yin HL. Effects of CapG overexpression on agonist-induced motility and second messenger generation. J Cell Biol 1995; 129:147-56. [PMID: 7698981 PMCID: PMC2120377 DOI: 10.1083/jcb.129.1.147] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Actin modulating proteins that bind polyphosphoinositides, such as phosphatidylinositol 4, 5-bisphosphate (PIP2), can potentially participate in receptor signaling by restructuring the membrane cytoskeleton and modulating second messenger generation through the phosphoinositide cycle. We examined these possibilities by overexpressing CapG, an actin filament end capping, Ca(2+)- and polyphosphoinositide-binding protein of the gelsolin family. High level transient overexpression decreased actin filament staining in the center of the cells but not in the cell periphery. Moderate overexpression in clonally selected cell lines did not have a detectible effect on actin filament content or organization. Nevertheless, it promoted a dose-dependent increase in rates of wound healing and chemotaxis. The motile phenotype was similar to that observed with gelsolin overexpression, which in addition to capping, also severs and nucleates actin filaments. CapG overexpressing clones are more responsive to platelet-derived growth factor than control-transfected clones. They form more circular dorsal membrane ruffles, have higher phosphoinositide turnover, inositol 1,4,5-trisphosphate generation and Ca2+ signaling. These responses are consistent with enhanced PLC gamma activity. Direct measurements of PIP2 mass showed that the CapG effect on PLC gamma was not due primarily to an increase in the PIP2 substrate concentration. The observed changes in cell motility and membrane signaling are consistent with the hypothesis that PIP(2)-binding actin regulatory proteins modulate phosphoinositide turnover and second messenger generation in vivo. We infer that CapG and related proteins are poised to coordinate membrane signaling with actin filament dynamics following cell stimulation.
Collapse
Affiliation(s)
- H Q Sun
- University of Texas Southwestern Medical Center, Department of Physiology, Dallas 75235-9040
| | | | | | | |
Collapse
|
200
|
Metzler WJ, Farmer BT, Constantine KL, Friedrichs MS, Lavoie T, Mueller L. Refined solution structure of human profilin I. Protein Sci 1995; 4:450-9. [PMID: 7795529 PMCID: PMC2143075 DOI: 10.1002/pro.5560040312] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Profilin is a ubiquitous eukaryotic protein that binds to both cytosolic actin and the phospholipid phosphatidylinositol-4,5-bisphosphate. These dual competitive binding capabilities of profilin suggest that profilin serves as a link between the phosphatidyl inositol cycle and actin polymerization, and thus profilin may be an essential component in the signaling pathway leading to cytoskeletal rearrangement. The refined three-dimensional solution structure of human profilin I has been determined using multidimensional heteronuclear NMR spectroscopy. Twenty structures were selected to represent the solution conformational ensemble. This ensemble of structures has root-mean-square distance deviations from the mean structure of 0.58 A for the backbone atoms and 0.98 A for all non-hydrogen atoms. Comparison of the solution structure of human profilin to the crystal structure of bovine profilin reveals that, although profilin adopts essentially identical conformations in both states, the solution structure is more compact than the crystal structure. Interestingly, the regions that show the most structural diversity are located at or near the actin-binding site of profilin. We suggest that structural differences are reflective of dynamical properties of profilin that facilitate favorable interactions with actin. The global folding pattern of human profilin also closely resembles that of Acanthamoeba profilin I, reflective of the 22% sequence identity and approximately 45% sequence similarity between these two proteins.
Collapse
Affiliation(s)
- W J Metzler
- Department of Macromolecular NMR, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, New Jersey 08543-400, USA
| | | | | | | | | | | |
Collapse
|