151
|
Kitaoka K, Hattori A, Chikahisa S, Miyamoto KI, Nakaya Y, Sei H. Vitamin A deficiency induces a decrease in EEG delta power during sleep in mice. Brain Res 2007; 1150:121-30. [PMID: 17400199 DOI: 10.1016/j.brainres.2007.02.077] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 02/17/2007] [Accepted: 02/28/2007] [Indexed: 11/15/2022]
Abstract
Recent report (Maret, S., Franken, P., Dauvilliers, Y., Ghyselinck, N.B., Chambon, P., Tafti, M., 2005. Retinoic acid signaling affects cortical synchrony during sleep. Science 310, 111-113.) has suggested that vitamin A (retinol and its derivatives) is genetically involved in the electroencephalogram (EEG) delta oscillation during sleep. However, this finding has not yet been confirmed by other studies. In this study, we attempted to record the sleep EEG and behavior, and to quantify striatal monoamines in mice fed a vitamin A-deficient (VAD) diet for 4 weeks, in order to clarify the linkage between the delta oscillation and vitamin A. VAD mice demonstrated a significant decrease in the delta power of the EEG. However, 6-h sleep deprivation caused the recovery of the delta power in VAD mice to a level similar to that of the control. VAD also caused the decrease of spontaneous activity throughout 24-h period. Furthermore, dihydroxyphenylacetic acid, a metabolite of dopamine, was decreased significantly in the striatal tissue of VAD mice. Our present results suggest that the deficiency of vitamin A causes the attenuation of delta power in NREM sleep and spontaneous activity. These attenuations may be related to the alteration of striatal dopaminergic function.
Collapse
Affiliation(s)
- Kazuyoshi Kitaoka
- Department of Integrative Physiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan
| | | | | | | | | | | |
Collapse
|
152
|
Bogush A, Pedrini S, Pelta-Heller J, Chan T, Yang Q, Mao Z, Sluzas E, Gieringer T, Ehrlich ME. AKT and CDK5/p35 Mediate Brain-derived Neurotrophic Factor Induction of DARPP-32 in Medium Size Spiny Neurons in Vitro. J Biol Chem 2007; 282:7352-9. [PMID: 17209049 DOI: 10.1074/jbc.m606508200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mature striatal medium size spiny neurons express the dopamine and cyclic AMP-regulated phosphoprotein, 32 kDa (DARPP-32), but little is known about the mechanisms regulating its levels or the specification of fully differentiated neuronal subtypes. Cell extrinsic molecules that increase DARPP-32 mRNA and/or protein levels include brain-derived neurotrophic factor (BDNF), retinoic acid, and estrogen. DARPP-32 induction by BDNF in vitro requires phosphatidylinositide 3-kinase (PI3K), but inhibition of phosphorylation of protein kinase B/Akt does not entirely abolish expression of DARPP-32. Moreover, the requirement for Akt has not been established. Using pharmacologic inhibitors of PI3K, Akt, and cyclin-dependent kinase 5 (cdk5) and constitutively active and dominant negative PI3K, Akt, cdk5, and p35 viruses in cultured striatal neurons, we measured BDNF-induced levels of DARPP-32 protein and/or mRNA. We demonstrated that both the PI3K/Akt/mammalian target of rapamycin and the cdk5/p35 signal transduction pathways contribute to the induction of DARPP-32 protein levels by BDNF and that the effects are on both the transcriptional and translational levels. It also appears that PI3K is upstream of cdk5/p35, and its activation can lead to an increase in p35 protein levels. These data support the presence of multiple signal transduction pathways mediating expression of DARPP-32 in vitro, including a novel, important pathway via by which PI3K regulates the contribution of cdk5/p35.
Collapse
Affiliation(s)
- Alexey Bogush
- Farber Institute for Neurosciences and Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Germain P, Chambon P, Eichele G, Evans RM, Lazar MA, Leid M, De Lera AR, Lotan R, Mangelsdorf DJ, Gronemeyer H. International Union of Pharmacology. LXIII. Retinoid X receptors. Pharmacol Rev 2007; 58:760-72. [PMID: 17132853 DOI: 10.1124/pr.58.4.7] [Citation(s) in RCA: 377] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The physiological effects of retinoic acids (RAs) are mediated by members of two families of nuclear receptors, the retinoic acid receptors (RARs) and the retinoid X receptors (RXRs), which are encoded by three distinct human genes, RXRalpha, RXRbeta, and RXRgamma. RARs bind both all-trans- and 9-cis-RA, whereas only the 9-cis-RA stereoisomer binds to RXRs. As RXR/RAR heterodimers, these receptors control the transcription of RA target genes through binding to RA-response elements. This review is focused on the structure, mode of action, ligands, expression, and pharmacology of RXRs. Given their role as common partners to many other members of the nuclear receptor superfamily, these receptors have been the subject of intense scrutiny. Moreover, and despite numerous studies since their initial discovery, RXRs remain enigmatic nuclear receptors, and there is still no consensus regarding their role. Indeed, multiple questions about the actual biological role of RXRs and the existence of an endogenous ligand have still to be answered.
Collapse
Affiliation(s)
- Pierre Germain
- Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université Louis Pasteur, Illkirch, Communauté Urbaine de Strasbourg, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Germain P, Chambon P, Eichele G, Evans RM, Lazar MA, Leid M, De Lera AR, Lotan R, Mangelsdorf DJ, Gronemeyer H. International Union of Pharmacology. LX. Retinoic acid receptors. Pharmacol Rev 2007; 58:712-25. [PMID: 17132850 DOI: 10.1124/pr.58.4.4] [Citation(s) in RCA: 292] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Retinoid is a term for compounds that bind to and activate retinoic acid receptors (RARalpha, RARbeta, and RARgamma), members of the nuclear hormone receptor superfamily. The most important endogenous retinoid is all-trans-retinoic acid. Retinoids regulate a wide variety of essential biological processes, such as vertebrate embryonic morphogenesis and organogenesis, cell growth arrest, differentiation and apoptosis, and homeostasis, as well as their disorders. This review summarizes the considerable amount of knowledge generated on these receptors.
Collapse
Affiliation(s)
- Pierre Germain
- Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université Louis Pasteur, Illkirch, Communauté Urbaine de Strasbourg, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Stafslien DK, Vedvik KL, De Rosier T, Ozers MS. Analysis of ligand-dependent recruitment of coactivator peptides to RXRbeta in a time-resolved fluorescence resonance energy transfer assay. Mol Cell Endocrinol 2007; 264:82-9. [PMID: 17184907 DOI: 10.1016/j.mce.2006.10.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 10/04/2006] [Accepted: 10/10/2006] [Indexed: 11/26/2022]
Abstract
Because RXR plays a significant role in nuclear receptor signaling as a common heterodimeric partner for TR, PPAR, RAR, VDR, LXR and others, the ability of RXRbeta ligand binding domain (LBD) to interact with coregulator peptides bearing LXXLL or other interaction motifs was investigated using time-resolved fluorescence resonance energy transfer (TR-FRET). The random phage display peptide D22 and peptides derived from PGC1alpha, SRC1-4, SRC2-3, PRIP/RAP250 and RIP140 yielded the highest TR-FRET signal with RXRbeta LBD in the presence of saturating 9-cis retinoic acid (9-cisRA). Several peptides including D22, PGC1alpha, SRC3-2, PRIP/RAP250 and SRC1-4 also formed a complex with RXRbeta LBD in the presence of all-trans retinoic acid (at-RA) and the fatty acids, phytanic acid (PA) and docosahexaenoic acid (DHA). Determination of the dose dependency (EC50) of these compounds to recruit D22 to RXRbeta LBD indicated that the rank order potency was 9-cisRA>PA>at-RA>DHA. The ligands 9-cisRA and at-RA yielded an overall higher fold-change in D22 recruitment to RXRbeta LBD suggesting that more RXRbeta LBD-D22 complex was formed in the presence of these ligands under the assay conditions tested. The statistical parameter Z' factor for 9-cisRA-induced recruitment of D22 to RXRbeta LBD was 0.6 after 2h incubation, indicating a robust methodology that could be applied to high throughput screening. These results demonstrate that RXRbeta occupied with the fatty acid ligands, DHA and PA, can recruit coactivator peptides in a ligand-dependent manner.
Collapse
|
156
|
Rodríguez-Gómez JA, Lu JQ, Velasco I, Rivera S, Zoghbi SS, Liow JS, Musachio JL, Chin FT, Toyama H, Seidel J, Green MV, Thanos PK, Ichise M, Pike VW, Innis RB, McKay RDG. Persistent dopamine functions of neurons derived from embryonic stem cells in a rodent model of Parkinson disease. Stem Cells 2006; 25:918-28. [PMID: 17170065 PMCID: PMC4151324 DOI: 10.1634/stemcells.2006-0386] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The derivation of dopamine neurons is one of the best examples of the clinical potential of embryonic stem (ES) cells, but the long-term function of the grafted neurons has not been established. Here, we show that, after transplantation into an animal model, neurons derived from mouse ES cells survived for over 32 weeks, maintained midbrain markers, and had sustained behavioral effects. Microdialysis in grafted animals showed that dopamine (DA) release was induced by depolarization and pharmacological stimulants. Positron emission tomography measured the expression of presynaptic dopamine transporters in the graft and also showed that the number of postsynaptic DA D(2) receptors was normalized in the host striatum. These data suggest that ES cell-derived neurons show DA release and reuptake and stimulate appropriate postsynaptic responses for long periods after implantation. This work supports continued interest in ES cells as a source of functional DA neurons.
Collapse
Affiliation(s)
- Jose A Rodríguez-Gómez
- Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, Porter Neuroscience Research Center, National Institute of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Takahashi H, Liu FC. Genetic patterning of the mammalian telencephalon by morphogenetic molecules and transcription factors. ACTA ACUST UNITED AC 2006; 78:256-66. [PMID: 17061260 DOI: 10.1002/bdrc.20077] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Patterning centers that produce gradients of morphogenetic molecules, including fibroblast growth factor (FGF), bone morphogenetic proteins (BMP), Wnt, Sonic hedgehog (Shh), and retinoic acid (RA), are located in telencephalic anlage during early stages of development. Genetic evidence based on loss-of-function and gain-of-function studies indicate that they are involved in regional specification of the dorsal, ventral, and lateral telencephalon. For patterning of the dorsal telencephalon, FGF8 controls the anteroposterior patterning, while BMP and Wnt molecules regulate the mediolateral patterning. Shh and retinoic acid regulate patterning of the ventral and the lateral telencephalon. The regionalization of telencephalon is accompanied by expression of region-specific codes of transcription factors, which in turn regulate different phases of neuronal development to generate different cell types in each brain region. Therefore, bioactive signals of morphogenetic molecules are translated into transcription factor codes for regional specification, which subsequently leads to neurogenesis of the diversity of cell types in different regions of the telencephalon.
Collapse
Affiliation(s)
- Hiroshi Takahashi
- Developmental Neurobiology Group, Mitsubishi Kagaku Institute of Life Sciences, Tokyo, Japan
| | | |
Collapse
|
158
|
Molotkova N, Molotkov A, Duester G. Role of retinoic acid during forebrain development begins late when Raldh3 generates retinoic acid in the ventral subventricular zone. Dev Biol 2006; 303:601-10. [PMID: 17207476 PMCID: PMC1994967 DOI: 10.1016/j.ydbio.2006.11.035] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 11/02/2006] [Accepted: 11/27/2006] [Indexed: 12/24/2022]
Abstract
Retinoic acid (RA) synthesized by Raldh3 in the frontonasal surface ectoderm of chick embryos has been suggested to function in early forebrain patterning by regulating Fgf8, Shh, and Meis2 expression. Similar expression of Raldh3 exists in E8.75 mouse embryos, but Raldh2 is also expressed in the optic vesicle at this stage suggesting that both genes may play a role in early forebrain patterning. Furthermore, Raldh3 is expressed later in the forebrain itself (lateral ganglionic eminence; LGE) starting at E12.5, suggesting a later role in forebrain neurogenesis. Here we have analyzed mouse embryos carrying single or double null mutations in Raldh2 and Raldh3 for defects in forebrain development. Raldh2(-/-);Raldh3(-/-) embryos completely lacked RA signaling activity in the early forebrain, but exhibited relatively normal expression of Fgf8, Shh, and Meis2 in the forebrain. Thus, we find no clear requirement for RA in controlling expression of these important forebrain patterning genes, but Raldh3 expression in the frontonasal surface ectoderm was found to be needed for normal Fgf8 expression in the olfactory pit. Our studies revealed that later expression of Raldh3 in the subventricular zone of the LGE is required for RA signaling activity in the ventral forebrain. Importantly, expression of dopamine receptor D2 in E18.5 Raldh3(-/-) embryos was essentially eliminated in the developing nucleus accumbens, a tissue lying close to the source of RA provided by Raldh3. Our results suggest that the role of RA during forebrain development begins late when Raldh3 expression initiates in the ventral subventricular zone.
Collapse
Affiliation(s)
| | | | - Gregg Duester
- * Corresponding author. Fax: +1 858 646 3138. E-mail address: (G. Duester)
| |
Collapse
|
159
|
Lévesque D, Rouillard C. Nur77 and retinoid X receptors: crucial factors in dopamine-related neuroadaptation. Trends Neurosci 2006; 30:22-30. [PMID: 17134767 PMCID: PMC5333988 DOI: 10.1016/j.tins.2006.11.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 09/07/2006] [Accepted: 11/17/2006] [Indexed: 11/17/2022]
Abstract
Dopaminergic systems in the brain adapt in response to various stimuli from the internal and external world, but the mechanisms underlying this process are incompletely understood. Here, we review recent evidence that certain types of transcription factor of the nuclear receptor family, specifically Nur77 and retinoid X receptors, have important roles in adaptation and homeostatic regulation of dopaminergic systems. These findings call for a reassessment of our fundamental understanding of the molecular and cellular basis of dopamine-mediated transmission. Given that diseases such as Parkinson's disease and schizophrenia are thought to involve adaptation of dopamine signalling, these findings might provide new insight into these pathologies and offer new avenues for drug development.
Collapse
Affiliation(s)
- Daniel Lévesque
- Faculté de Pharmacie, Université de Montréal, Montréal, Québec, Canada H3C 3J7.
| | | |
Collapse
|
160
|
O'Reilly KC, Shumake J, Gonzalez-Lima F, Lane MA, Bailey SJ. Chronic administration of 13-cis-retinoic acid increases depression-related behavior in mice. Neuropsychopharmacology 2006; 31:1919-27. [PMID: 16395305 DOI: 10.1038/sj.npp.1300998] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Retinoid signaling plays a well-established role in neuronal differentiation, neurite outgrowth, and the patterning of the anteroposterior axis of the developing neural tube. However, there is increasing evidence that nutritional vitamin A status and retinoid signaling play an important role in the function of the adult brain. 13-Cis-retinoic acid (13-cis-RA) (isotretinoin or Accutane), a synthetic retinoid that is an effective oral treatment for severe nodular acne, has been linked with depression and suicide in patients. The purpose of this study was to test the hypothesis that chronic administration of 13-cis-RA would lead to depression-related behaviors in mice. Young, adult male mice received 13-cis-RA (1 mg/kg) by daily intraperitoneal injection for 6 weeks. This treatment paradigm produced plasma levels of 13-cis-RA that are comparable to those reported in human patients taking Accutane. In both the forced swim test and the tail suspension test, we found that 13-cis-RA-treated mice spent significantly more time immobile compared to vehicle-treated controls. In the open field test, there was no change in anxiety-related behavior in 13-cis-RA-treated mice. Furthermore, chronic administration of 13-cis-RA did not impair locomotion in either the open field or the rotarod test. Taken together, these results suggest that administration of 13-cis-RA increases depression-related behaviors in mice.
Collapse
Affiliation(s)
- Kally C O'Reilly
- Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | | | | | | | | |
Collapse
|
161
|
Jeong H, Kim MS, Kim SW, Kim KS, Seol W. Regulation of tyrosine hydroxylase gene expression by retinoic acid receptor. J Neurochem 2006; 98:386-94. [PMID: 16805833 DOI: 10.1111/j.1471-4159.2006.03866.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Retinoic acid (RA), a derivative of vitamin A, critically controls brain patterning and neurogenesis during embryogenesis, and is known to regulate morphological differentiation of catecholaminergic neuronal cells. In this study, we investigated whether the retinoic acid receptor (RAR), a transcription factor specifically activated by all-trans-RA, could directly regulate transcription of tyrosine hydroxylase (TH), the first and rate-limiting step in the catecholamine biosynthesis pathway. First, treating TH-expressing human neuroblastoma SK-N-BE(2)C cells with all-trans RA resulted in an approximately 1.7-fold increase in endogenous TH mRNA expression, as determined by real-time PCR analysis. Second, when SK-N-BE(2)C cells were transiently co-transfected with the TH promoter-luciferase reporter construct, reporter gene expression was prominently activated by RAR in a ligand-dependent manner. Third, we identified a putative RAR responsive cis-regulatory element at - 1500 to - 1487 bp in the TH upstream promoter region by deletional and site-directed mutational analysis. Finally, we demonstrated that this putative motif directly interacts with RAR protein in a sequence-specific manner by means of an electrophoretic mobility shift assay. Taken together, our results indicate that the TH gene may be a direct downstream target of the RA signaling pathway and that RAR is able to activate TH transcription through interaction with an upstream sequence motif residing at - 1500 to - 1487 bp.
Collapse
Affiliation(s)
- Hyerhan Jeong
- Institute for Brain Science and Technology, Inje University, Daejeon, South Korea
| | | | | | | | | |
Collapse
|
162
|
Abstract
Retinoids (vitamin A) are crucial for most forms of life. In chordates, they have important roles in the developing nervous system and notochord and many other embryonic structures, as well as in maintenance of epithelial surfaces, immune competence, and reproduction. The ability of all-trans retinoic acid to regulate expression of several hundred genes through binding to nuclear transcription factors is believed to mediate most of these functions. The role of all-trans retinoic may extend beyond the regulation of gene transcription because a large number of noncoding RNAs also are regulated by retinoic acid. Additionally, extra-nuclear mechanisms of action of retinoids are also being identified. In organisms ranging from prokaryotes to humans, retinal is covalently linked to G protein-coupled transmembrane receptors called opsins. These receptors function as light-driven ion pumps, mediators of phototaxis, or photosensory pigments. In vertebrates phototransduction is initiated by a photochemical reaction where opsin-bound 11-cis-retinal is isomerized to all-trans-retinal. The photosensitive receptor is restored via the retinoid visual cycle. Multiple genes encoding components of this cycle have been identified and linked to many human retinal diseases. Central aspects of vitamin A absorption, enzymatic oxidation of all-trans retinol to all-trans retinal and all-trans retinoic acid, and esterification of all-trans retinol have been clarified. Furthermore, specific binding proteins are involved in several of these enzymatic processes as well as in delivery of all-trans retinoic acid to nuclear receptors. Thus, substantial progress has been made in our understanding of retinoid metabolism and function. This insight has improved our view of retinoids as critical molecules in vision, normal embryonic development, and in control of cellular growth, differentiation, and death throughout life.
Collapse
Affiliation(s)
- Rune Blomhoff
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | | |
Collapse
|
163
|
Wagner E, Luo T, Sakai Y, Parada LF, Dräger UC. Retinoic acid delineates the topography of neuronal plasticity in postnatal cerebral cortex. Eur J Neurosci 2006; 24:329-40. [PMID: 16836633 DOI: 10.1111/j.1460-9568.2006.04934.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Retinoic acid is well recognized to promote neuronal differentiation in the embryonic nervous system, but how it influences the postnatal cerebral cortex remains largely unknown. The domain of highest retinoic acid actions in the cortex of the mouse constricts postnatally to a narrow band that includes the dorsal visual stream and the attentional and executive networks. This band of cortex, which is distinguished by the retinoic acid-synthesizing enzyme RALDH3, exhibits signs of delayed maturation and enhanced plasticity compared to the surrounding cortex, as indicated by suppression of parvalbumin, neurofilament, cytochrome oxidase and perineuronal net maturation, and persistence of the embryonic, polysialated form of the neural cell-adhesion molecule PSA-NCAM. During the first postnatal week, the RALDH3-expressing territory translocates in the caudal cortex from the medial limbic lobe to the adjacent neocortex. This topographical shift requires the neurotrophin NT-3 because in mice lacking neuronal NT-3 the RALDH3 enzyme maintains its early postnatal pattern up to adulthood. In the NT-3-null mutants, expression of the markers, whose topography colocalizes with RALDH3 in the normal cortex, matches the abnormal RALDH3 pattern. This indicates that the uneven retinoic acid distribution serves a role in patterning the maturation and to some extent function of the normal postnatal cerebral cortex.
Collapse
Affiliation(s)
- Elisabeth Wagner
- Eunice Kennedy Shriver Center for Mental Retardation, 200 Trapelo Road., Waltham, MA 02452, USA
| | | | | | | | | |
Collapse
|
164
|
Palha JA, Goodman AB. Thyroid hormones and retinoids: a possible link between genes and environment in schizophrenia. BRAIN RESEARCH REVIEWS 2006; 51:61-71. [PMID: 16325258 DOI: 10.1016/j.brainresrev.2005.10.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 08/28/2005] [Accepted: 10/03/2005] [Indexed: 12/14/2022]
Abstract
Phenotypic discordance for schizophrenia in monozygotic twins clearly indicates involvement of environmental factors as key determinants in disease development. Positive findings from genome scans, linkage and association studies apply in only a minority of those affected, while post-mortem brain investigations reveal altered expression of genes and proteins involved in numerous neurodevelopmental, metabolic and neurotransmitter pathways. Such altered expressions could result, on the one hand, from mutations in coding regions or polymorphisms in the promoter and regulatory regions in genes within those areas identified by gene searches or, on the other hand, from inadequate amounts of modulators, transporters and synthesizers of transcription factors necessary for regulation of the putative genes. Hormones and vitamins are such modulators. They could serve as bridges between genes and environment in schizophrenia. Multiple evidence supports the suggestion of retinoids and thyroid hormones as plausible actors in these roles. Both are not only essential for normal development of the central nervous system but also regulate the expression of many neurotransmitters, their synthesizing enzymes and receptors, and other genes in broader signaling transduction cascades affecting pathways that are altered in response to treatment. Functional and positional candidate genes include retinoic acid and thyroid hormone receptors, retinaldehyde dehydrogenases and deiodinases, which synthesize the powerful morphogens, retinoic acid and triiodothyronine, and the enzymes involved in their inactivation. This review highlights selective evidence supporting the retinoid and thyroid hormone hypotheses of schizophrenia.
Collapse
Affiliation(s)
- Joana Almeida Palha
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal.
| | | |
Collapse
|
165
|
Mark M, Ghyselinck NB, Chambon P. Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annu Rev Pharmacol Toxicol 2006; 46:451-80. [PMID: 16402912 DOI: 10.1146/annurev.pharmtox.46.120604.141156] [Citation(s) in RCA: 470] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Retinoic acid (RA) is involved in vertebrate morphogenesis, growth, cellular differentiation, and tissue homeostasis. The use of in vitro systems initially led to the identification of nuclear receptor RXR/RAR heterodimers as possible transducers of the RA signal. To unveil the physiological functions of RARs and RXRs, genetic and pharmacological studies have been performed in the mouse. Together, their results demonstrate that (a) RXR/RAR heterodimers in which RXR is either transcriptionally active or silent are involved in the transduction of the RA signal during prenatal development, (b) specific RXRalpha/RAR heterodimers are required at many distinct stages during early embryogenesis and organogenesis, (c) the physiological role of RA and its receptors cannot be extrapolated from teratogenesis studies using retinoids in excess. Additional cell type-restricted and temporally controlled somatic mutagenesis is required to determine the functions of RARs and RXRs during postnatal life.
Collapse
Affiliation(s)
- Manuel Mark
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut Clinique de la Souris, Centre National de la Recherche Scientifique/INSERM, Université Louis Pasteur de Strasbourg, Collège de France, 67404 Illkirch Cedex, CU de Strasbourg, France
| | | | | |
Collapse
|
166
|
Hale LA, Tallafuss A, Yan YL, Dudley L, Eisen JS, Postlethwait JH. Characterization of the retinoic acid receptor genes raraa, rarab and rarg during zebrafish development. Gene Expr Patterns 2006; 6:546-55. [PMID: 16455309 DOI: 10.1016/j.modgep.2005.10.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 10/22/2005] [Accepted: 10/27/2005] [Indexed: 11/16/2022]
Abstract
Retinoic acid signaling is important for patterning the central nervous system, paired appendages, digestive tract, and other organs. To begin to investigate retinoic acid signaling in zebrafish, we determined orthologies between zebrafish and tetrapod retinoic acid receptors (Rars) and examined the expression patterns of rar genes during embryonic development. Analysis of phylogenies and conserved syntenies showed that the three cloned zebrafish rar genes include raraa and rarab, which are co-orthologs of tetrapod Rara, and rarg, which is the zebrafish ortholog of tetrapod Rarg. We did not, however, find an ortholog of Rarb. RNA in situ hybridization experiments showed that rarab and rarg, are maternally expressed. Zygotic expression of raraa occurs predominantly in the hindbrain, lateral mesoderm, and tailbud. Zygotic expression of rarab largely overlaps that of raraa, except that in later stages rarab is expressed more broadly in the brain and in the pectoral fin bud and pharyngeal arches. Zygotic expression of zebrafish rarg also overlaps the other two genes, but it is expressed more strongly in the posterior hindbrain beginning in late somitogenesis as well as in neural crest cells in the pharyngeal arches. Thus, these three genes have largely overlapping expression patterns and a few gene-specific expression domains. Knowledge of these expression patterns will guide the interpretation of the roles these genes play in development.
Collapse
Affiliation(s)
- Laura A Hale
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403, USA
| | | | | | | | | | | |
Collapse
|
167
|
Baptista J, Prigmore E, Gribble SM, Jacobs PA, Carter NP, Crolla JA. Molecular cytogenetic analyses of breakpoints in apparently balanced reciprocal translocations carried by phenotypically normal individuals. Eur J Hum Genet 2006; 13:1205-12. [PMID: 16118644 DOI: 10.1038/sj.ejhg.5201488] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
To test the hypothesis that translocation breakpoints in normal individuals are simple and do not disrupt genes, we characterised the breakpoints in 13 phenotypically normal individuals incidentally ascertained with an apparently balanced reciprocal translocation. Cases were karyotyped, and the breakpoints were refined by fluorescence in situ hybridisation until breakpoint-spanning clones were identified. 1 Mb array-CGH was performed as a whole genome analysis tool to detect any imbalances in chromatin not directly involved in the breakpoints. Breakpoint-associated imbalances were not found in any of the patients analysed in this study. However, breakpoints which disrupted known genes were identified in two patients, with RYR2 disrupted in one patient and COL13A1 in the other. In a further eight patients, Ensembl mapping data suggested that a gene might be disrupted by a breakpoint. In one further patient, the translocation was shown to be nonreciprocal. This study shows that apparently balanced reciprocal translocations in phenotypically normal patients do not have imbalances at the breakpoints, in contrast to phenotypically abnormal patients where the translocation breakpoints are often associated with cryptic imbalances. However, phenotypically normal individuals, and phenotypically abnormal individuals may have genes disrupted and therefore inactivated by one of the breakpoints. The significance of these disruptions remains to be determined.
Collapse
Affiliation(s)
- Julia Baptista
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, Wiltshire, UK.
| | | | | | | | | | | |
Collapse
|
168
|
KAYMAK YESIM. INCIDENCE OF DEPRESSION RELATED TO ISOTRETINOIN TREATMENT IN 100 ACNE VULGARIS PATIENTS. Psychol Rep 2006. [DOI: 10.2466/pr0.99.7.897-906] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
169
|
Carta M, Stancampiano R, Tronci E, Collu M, Usiello A, Morelli M, Fadda F. Vitamin A deficiency induces motor impairments and striatal cholinergic dysfunction in rats. Neuroscience 2006; 139:1163-72. [PMID: 16530976 DOI: 10.1016/j.neuroscience.2006.01.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 01/24/2006] [Accepted: 01/26/2006] [Indexed: 11/19/2022]
Abstract
Vitamin A and its derivatives, retinoids, are involved in the regulation of gene expression by binding two nuclear receptor families, retinoic acid receptors and retinoid X receptors. Retinoid receptors are highly expressed in the striatum, revealing an involvement of this system in the control of movement as demonstrated by previous observations in knockout mice. To further assess the role of retinoids in adult striatal function, the present study investigated the effect of vitamin A deprivation on rat motor activity and coordination, the rate of synthesis and release of dopamine, the functioning of D1 and D2 receptors and their expression in the striatum. Moreover, the content of acetylcholine in the striatum was measured. Results show that 24 weeks of postnatal vitamin A deprivation induced severe locomotor deficits and impaired motor coordination. Vitamin A deprivation rats showed a significant hyperactivity following D1 receptor stimulation by R(+)-6-chloro-7,8-dihydroxy-1-phenyil-2,3,4,5-tetrahydro-1H-3-benzazepine or amphetamine and reduced catalepsy in response to haloperidol treatment. This different response to the above drugs is not due to a change in striatal DA release or synthesis between vitamin A deprivation and control animals. In situ hybridization experiments showed identical level of expression for the D1 and D2 receptor transcripts. On the other hand, the striatal tissue content of acetylcholine was reduced significantly by about 30% starting from the initial manifestation of motor deficits. We suggest that the locomotor impairment could be imputable to the dysfunction in striatal cholinergic interneurons. Our results stress the basic role of vitamin A in the maintenance of basal ganglia motor function in the adult rat brain.
Collapse
Affiliation(s)
- M Carta
- Department of Applied Science for Biosystems, Section of Nutrition and Human Physiology, University of Cagliari, Italy
| | | | | | | | | | | | | |
Collapse
|
170
|
Van Craenenbroeck K, De Bosscher K, Vanden Berghe W, Vanhoenacker P, Haegeman G. Role of glucocorticoids in dopamine-related neuropsychiatric disorders. Mol Cell Endocrinol 2005; 245:10-22. [PMID: 16310935 DOI: 10.1016/j.mce.2005.10.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Accepted: 10/14/2005] [Indexed: 01/12/2023]
Abstract
'Psychoneuroendocrinology' is now quickly emerging as a hot interdisciplinary research field that addresses the interplay between neuronal and endocrine signaling in psychiatric diseases. Both glucocorticoid hormones and dopamine have an important role in maintaining normal brain functions. In this review, molecular and mechanistic aspects of glucocorticoid effects on brain function and behavior will be discussed with specific reference to dopamine signaling.
Collapse
Affiliation(s)
- Kathleen Van Craenenbroeck
- Laboratory for Eukaryotic Gene Expression and Signal Transduction, LEGEST, Department of Molecular Biology, Ghent University-UGent, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
| | | | | | | | | |
Collapse
|
171
|
Wang HF, Liu FC. Regulation of multiple dopamine signal transduction molecules by retinoids in the developing striatum. Neuroscience 2005; 134:97-105. [PMID: 15939542 DOI: 10.1016/j.neuroscience.2005.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 03/28/2005] [Accepted: 04/01/2005] [Indexed: 11/17/2022]
Abstract
Increasing evidence based on pharmacological and genetic studies suggests that retinoid signaling plays an important role in developmental control of striatal neurons. In the present report, we screened for genes that might be regulated by retinoids in the developing striatum. We cultured tissue explants from the lateral ganglionic eminence (striatal primordium), and for regional comparison, its adjacent structures of the cerebral cortex and the medial ganglionic eminence in embryonic day 15 rat telencephalon. Using the ribonuclease protection assay, we found that both all-trans retinoic acid and 9-cis retinoic acid significantly up-regulated dopamine D1 receptor, heterotrimeric G protein olfactory, adenylyl cyclase type V and dopamine- and cyclic adenosine 3':5'-monophosphate-regulated phosphoprotein mRNAs in the lateral ganglionic eminence culture. By contrast, neither all-trans retinoic acid nor 9-cis retinoic acid significantly altered D1 receptor, heterotrimeric G protein olfactory, adenylyl cyclase type V and dopamine- and cyclic adenosine 3':5'-monophosphate-regulated phosphoprotein mRNAs in the cortical and the medial ganglionic eminence cultures except that D1 receptor mRNA was dramatically induced in the medial ganglionic eminence by retinoic acid treatments. To test whether the induction of multiple dopamine signaling molecules in the lateral ganglionic eminence was due to a general enhancement of neuronal differentiation by retinoic acid, we assayed the effects of retinoic acid on other differentiation markers, including glutamate decarboxylase 65, NR1 subunit of glutamate NMDA receptor and microtubule-associated protein-2. None of these genes were significantly altered by retinoic acid treatments in the lateral ganglionic eminence culture, indicating the specificity of gene regulation by retinoic acid signaling. As D1 receptor, heterotrimeric G protein olfactory, adenylyl cyclase type V and dopamine- and cyclic adenosine 3':5'-monophosphate-regulated phosphoprotein are important molecules involved in propagation of striatal dopamine neurotransmission, our study raises the hypothesis that retinoid signaling may coordinately activate the transcriptional program that is associated with the dopamine signaling pathway in developing striatal neurons. Such coordinate regulation by retinoids may be part of the mechanisms by which the complex yet highly organized neurochemical constituents of the striatum are established during development.
Collapse
Affiliation(s)
- H-F Wang
- Institute of Neuroscience, National Yang-Ming University, 155 Li-Rum Street, Taipei, Taiwan 11221, Republic of China
| | | |
Collapse
|
172
|
Piu F, Gauthier NK, Olsson R, Currier EA, Lund BW, Croston GE, Hacksell U, Brann MR. Identification of novel subtype selective RAR agonists. Biochem Pharmacol 2005; 71:156-62. [PMID: 16303118 DOI: 10.1016/j.bcp.2005.10.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 09/27/2005] [Accepted: 10/10/2005] [Indexed: 11/17/2022]
Abstract
Drugs targeting retinoid receptors have been developed to treat a variety of therapeutic indications, but their success has been limited in part due to lack of selectivity. A novel functional cell-based assay R-SATtrade mark was employed to screen a small molecule chemical library and identify a variety of novel RAR agonists with various subtype selectivities, including RARbeta/gamma and RARgamma selective agonists. A novel class of synthetic compounds that distinguishes between the different RARbeta isoforms is described. This pharmacophore displays anti-proliferative activity and induces differentiation in a neuronal cell line, consistent with a classical retinoid mechanism of action while providing unique subtype selectivity. These novel subtype selective RAR agonists could serve as powerful tools to probe into subtype and isoform-specific retinoid function.
Collapse
Affiliation(s)
- Fabrice Piu
- ACADIA Pharmaceuticals Inc., San Diego, CA 92131, USA.
| | | | | | | | | | | | | | | |
Collapse
|
173
|
Hoegberg P, Schmidt CK, Fletcher N, Nilsson CB, Trossvik C, Gerlienke Schuur A, Brouwer A, Nau H, Ghyselinck NB, Chambon P, Håkansson H. Retinoid status and responsiveness to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mice lacking retinoid binding protein or retinoid receptor forms. Chem Biol Interact 2005; 156:25-39. [PMID: 16109390 DOI: 10.1016/j.cbi.2005.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 06/16/2005] [Accepted: 06/27/2005] [Indexed: 11/15/2022]
Abstract
We have investigated the role of Vitamin A (retinoid) proteins in hepatic retinoid processing under normal conditions and during chemical stress induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a chemical known to interfere with retinoid turnover and metabolism. Three separate studies were performed in wildtype control mice and transgenic mice that lack one or more isoforms of retinoic acid receptors (RAR), retinoid X receptors (RXR), or intracellular retinoid-binding proteins (CRABP I, CRABP II, CRBP I). Body and organ weight development was monitored from 2 weeks of age to adult, and hepatic levels of retinyl esters, retinol, and retinoic acid were investigated. In addition, hepatic concentrations of 9-cis-4-oxo-13,14-dihydro-retinoic acid, a recently discovered retinoid metabolite that has proven sensitive to both TCDD exposure and Vitamin A status, were also determined. Mice absent in the three proteins CRBP I, CRABP I, and CRABP II (CI/CAI/CAII-/-) displayed significantly lower hepatic retinyl ester, retinol, and all-trans-retinoic acid levels compared to wildtype mice, whereas the liver concentrations of 9-cis-4-oxo-13,14-dihydro-retinoic acid was considerably higher. After treatment with TCDD, hepatic total retinoids were almost entirely depleted in the CI/CAI/CAII-/- mice, whereas wildtype mice and mice lacking CRABP I, and CRABP II (CAI/CAII-/-) retained approximately 60-70% of their Vitamin A content compared to controls at 28 days. RAR and RXR knockout mice responded similarly to wildtype mice with respect to TCDD-induced retinoid disruption, with the exception of RXRbeta-/- mice which showed no decrease in hepatic Vitamin A concentration, suggesting that the role of RXRbeta in TCDD-induced retinoid disruption should be further investigated. Overall, the abnormal retinoid profile in the triple knockout mice (CI/CAI/CAII-/-), but not double knockout (CAI/CAII-/-) mice, suggests that a loss of CRBP I may account for the difference in retinoid profile in CI/CAI/CAII-/- mice, and is likely to result in an increased susceptibility to hepatic retinoid depletion following dioxin exposure.
Collapse
Affiliation(s)
- Pi Hoegberg
- Karolinska Institutet, Institute of Environmental Medicine, S-17177 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
McCaffery P, Deutsch CK. Macrocephaly and the control of brain growth in autistic disorders. Prog Neurobiol 2005; 77:38-56. [PMID: 16280193 DOI: 10.1016/j.pneurobio.2005.10.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 09/29/2005] [Accepted: 10/05/2005] [Indexed: 01/17/2023]
Abstract
Autism is a childhood-onset neuropsychiatric disorder characterized by marked impairments in social interactions and communication, with restricted stereotypic and repetitive patterns of behavior, interests, and activities. Genetic epidemiology studies indicate that a strong genetic component exists to this disease, but these same studies also implicate significant environmental influence. The disorder also displays symptomatologic heterogeneity, with broad individual differences and severity on a graded continuum. In the search for phenotypes to resolve heterogeneity and better grasp autism's underlying biology, investigators have noted a statistical overrepresentation of macrocephaly, an indicator of enlarged brain volume. This feature is one of the most widely replicated biological findings in autism. What then does brain enlargement signify? One hypothesis invoked for the origin of macrocephaly is a reduction in neuronal pruning and consolidation of synapses during development resulting in an overabundance of neurites. An increase in generation of cells is an additional mechanism for macrocephaly, though it is less frequently discussed in the literature. Here, we review neurodevelopmental mechanisms regulating brain growth and highlight one underconsidered potential causal mechanism for autism and macrocephaly--an increase in neurogenesis and/or gliogenesis. We review factors known to control these processes with an emphasis on nuclear receptor activation as one signaling control that may be abnormal and contribute to increased brain volume in autistic disorders.
Collapse
|
175
|
Maret S, Franken P, Dauvilliers Y, Ghyselinck NB, Chambon P, Tafti M. Retinoic acid signaling affects cortical synchrony during sleep. Science 2005; 310:111-3. [PMID: 16210540 DOI: 10.1126/science.1117623] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Delta oscillations, characteristic of the electroencephalogram (EEG) of slow wave sleep, estimate sleep depth and need and are thought to be closely linked to the recovery function of sleep. The cellular mechanisms underlying the generation of delta waves at the cortical and thalamic levels are well documented, but the molecular regulatory mechanisms remain elusive. Here we demonstrate in the mouse that the gene encoding the retinoic acid receptor beta determines the contribution of delta oscillations to the sleep EEG. Thus, retinoic acid signaling, which is involved in the patterning of the brain and dopaminergic pathways, regulates cortical synchrony in the adult.
Collapse
Affiliation(s)
- Stéphanie Maret
- Center for Integrative Genomics, University of Lausanne, Génopode, 1015 Lausanne-Dorigny, Switzerland
| | | | | | | | | | | |
Collapse
|
176
|
Liao WL, Tsai HC, Wu CY, Liu FC. Differential expression of RARbeta isoforms in the mouse striatum during development: a gradient of RARbeta2 expression along the rostrocaudal axis. Dev Dyn 2005; 233:584-94. [PMID: 15778968 DOI: 10.1002/dvdy.20344] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The retinoic acid receptor RARbeta is highly expressed in the striatum of the ventral telencephalon. We studied the expression pattern of different RARbeta isoforms in the developing mouse striatum by in situ hybridization. We found a differential ontogeny of RARbeta2 and RARbeta1/3 in embryonic day (E) 13.5 lateral ganglionic eminence (striatal primordium). RARbeta2 mRNA was detected primarily in the rostral and ventromedial domains, whereas RARbeta1/3 mRNAs were enriched in the caudal and dorsolateral domains. Notably, by E16.5, a prominent decreasing gradient of RARbeta2 mRNA was present in the developing striatum along the rostrocaudal axis, i.e., RARbeta2 was expressed at higher levels in the rostral than the caudal striatum. No such gradient was found for RARbeta1/3 and RARbeta3 mRNAs. The rostrocaudal RARbeta2 gradient gradually disappeared postnatally and was absent in the adult striatum. The differential expression pattern of RARbeta isoforms in the developing striatum may provide an anatomical basis for differential gene regulation by RARbeta signaling.
Collapse
Affiliation(s)
- Wen-Lin Liao
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
177
|
Liao WL, Wang HF, Tsai HC, Chambon P, Wagner M, Kakizuka A, Liu FC. Retinoid signaling competence and RARbeta-mediated gene regulation in the developing mammalian telencephalon. Dev Dyn 2005; 232:887-900. [PMID: 15736225 DOI: 10.1002/dvdy.20281] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
To study retinoid signaling in the developing telencephalon, we transfected a retinoid reporter gene into different regions of developing telencephalon. We found that the ventral telencephalon was more competent to retinoid signaling than the dorsal telencephalon. Moreover, among all retinoic acid receptors (RARs) and retinoid X receptors (RXRs), RARbeta was strongly induced by retinoic acid in the ventral telencephalon, suggesting that RARbeta might be involved in retinoid signaling competence. The RT-PCR analysis indicated that RARbeta was selectively expressed in the developing striatum of ventral telencephalon. We then demonstrated that null mutations of RARbeta gene resulted in reduction of striatal-enriched tyrosine phosphatase (STEP) mRNA in the striatum of RARbeta-/- mutant mice. Conversely, the gain-of-function study showed that ectopic expression of RARbeta1 in the cerebral cortex enhanced STEP expression, and the effect was RARbeta-isoform specific. Our study identified RARbeta as an important molecule for transducing retinoid signals in developing ventral telencephalon.
Collapse
Affiliation(s)
- Wen-Lin Liao
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan 11221, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
178
|
Jeong JK, Velho TAF, Mello CV. Cloning and expression analysis of retinoic acid receptors in the zebra finch brain. J Comp Neurol 2005; 489:23-41. [PMID: 15977168 DOI: 10.1002/cne.20605] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The vitamin A derivative retinoic acid is produced postembryonically in discrete portions of the songbird brain, including some of the nuclei involved in song production and song learning, and its synthesis is required for the normal maturation of song behavior. To identify the brain targets for retinoic acid action, we cloned the zebra finch homologs of the alpha, beta, and gamma classes of retinoic acid receptors (RARs). In situ hybridization analysis revealed that the mRNAs for all three RARs are expressed at different levels in several brain areas, with a broader distribution than the mRNA for retinaldehyde-specific aldehyde dehydrogenase (zRalDH), a retinoic acid-synthesizing enzyme. Detectable RAR expression was found in all nuclei of the song control system, with the most marked expression occurring within the striatal song nucleus area X. These observations are consistent with a persistent action of retinoic acid in the postembryonic and adult songbird brain and provide further evidence for an involvement of retinoic acid signaling in the control of learned vocal behavior in a songbird species. They also suggest that the striatum is a major target of retinoic acid in songbirds.
Collapse
Affiliation(s)
- Jin K Jeong
- Neurological Sciences Institute, Oregon Health and Science University, West Campus, Beaverton, Oregon 97221, USA
| | | | | |
Collapse
|
179
|
Abrahams BS, Kwok MCH, Trinh E, Budaghzadeh S, Hossain SM, Simpson EM. Pathological aggression in "fierce" mice corrected by human nuclear receptor 2E1. J Neurosci 2005; 25:6263-70. [PMID: 16000615 PMCID: PMC6725287 DOI: 10.1523/jneurosci.4757-04.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Revised: 05/20/2005] [Accepted: 05/22/2005] [Indexed: 11/21/2022] Open
Abstract
"Fierce" mice, homozygous for the deletion of nuclear receptor 2E1 (NR2E1), show abnormal brain-eye development and pathological aggression. To evaluate functional equivalency between mouse and human NR2E1, we generated mice transgenic for a genomic clone spanning the human NR2E1 locus and bred these animals to fierce mice deleted for the corresponding mouse gene. In fierce mutants carrying human NR2E1, structural brain defects were eliminated and eye abnormalities ameliorated. Excitingly, behavior in these "rescue" mice was indistinguishable from controls. Because no artificial promoter was used to drive transgene expression, promoter and regulatory elements within the human NR2E1 clone are functional in mouse. Normal behavior in rescue animals suggests that mechanisms underlying the behavioral abnormalities in fierce mice may also be conserved in humans. Our data support the hypothesis that variation at NR2E1 may contribute to human behavioral disorders. Use of this rescue paradigm with other genes will permit the direct evaluation of human genes hypothesized to play a causal role in psychiatric disease but for which evidence is lacking or equivocal.
Collapse
MESH Headings
- Aggression/physiology
- Agonistic Behavior/physiology
- Animals
- Brain/abnormalities
- Brain/embryology
- Cerebral Cortex/abnormalities
- Congenital Abnormalities/embryology
- Congenital Abnormalities/genetics
- Congenital Abnormalities/therapy
- Crosses, Genetic
- Exploratory Behavior/physiology
- Eye Abnormalities/embryology
- Eye Abnormalities/genetics
- Eye Abnormalities/therapy
- Female
- Genotype
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Olfactory Bulb/abnormalities
- Orphan Nuclear Receptors
- Phenotype
- Promoter Regions, Genetic
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/deficiency
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/physiology
- Regulatory Sequences, Nucleic Acid
- Retina/abnormalities
- Reverse Transcriptase Polymerase Chain Reaction
- Species Specificity
- Territoriality
Collapse
Affiliation(s)
- Brett S Abrahams
- Graduate Program in Neuroscience, British Columbia Research Institute for Children's and Women's Health, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | | | | | | | | | | |
Collapse
|
180
|
Lefebvre P, Martin PJ, Flajollet S, Dedieu S, Billaut X, Lefebvre B. Transcriptional activities of retinoic acid receptors. VITAMINS AND HORMONES 2005; 70:199-264. [PMID: 15727806 DOI: 10.1016/s0083-6729(05)70007-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vitamin A derivatives plays a crucial role in embryonic development, as demonstrated by the teratogenic effect of either an excess or a deficiency in vitamin A. Retinoid effects extend however beyond embryonic development, and tissue homeostasis, lipid metabolism, cellular differentiation and proliferation are in part controlled through the retinoid signaling pathway. Retinoids are also therapeutically effective in the treatment of skin diseases (acne, psoriasis and photoaging) and of some cancers. Most of these effects are the consequences of retinoic acid receptors activation, which triggers transcriptional events leading either to transcriptional activation or repression of retinoid-controlled genes. Synthetic molecules are able to mimic part of the biological effects of the natural retinoic acid receptors, all-trans retinoic acid. Therefore, retinoic acid receptors are considered as highly valuable therapeutic targets and limiting unwanted secondary effects due to retinoid treatment requires a molecular knowledge of retinoic acid receptors biology. In this review, we will examine experimental evidence which provide a molecular basis for the pleiotropic effects of retinoids, and emphasize the crucial roles of coregulators of retinoic acid receptors, providing a conceptual framework to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Philippe Lefebvre
- INSERM U459 and Ligue Nationale Contre le Cancer, Faculté de Médecine de Lille, 59045 Lille cedex, France
| | | | | | | | | | | |
Collapse
|
181
|
Szanto A, Narkar V, Shen Q, Uray IP, Davies PJA, Nagy L. Retinoid X receptors: X-ploring their (patho)physiological functions. Cell Death Differ 2005; 11 Suppl 2:S126-43. [PMID: 15608692 DOI: 10.1038/sj.cdd.4401533] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Retinoid X receptor (RXR) belongs to a family of ligand-activated transcription factors that regulate many aspects of metazoan life. A class of nuclear receptors requires RXR as heterodimerization partner for their function. This places RXR in the crossroad of multiple distinct biological pathways. This and the fact that the debate on the endogenous ligand requirement for RXR is not yet settled make RXR still an enigmatic transcription factor. Here, we review some of the biology of RXR. We place RXR into the evolution of nuclear receptors, review structural details and ligands of the receptor. Then processes regulated by RXR are discussed focusing on the developmental roles deduced from studies on knockout animals and metabolic roles in diseases such as diabetes and atherosclerosis deduced from pharmacological studies. Finally, aspects of RXR's involvement in myeloid differentiation and apoptosis are summarized along with issues on RXR's suitability as a therapeutic target.
Collapse
Affiliation(s)
- A Szanto
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen H-4012, Hungary
| | | | | | | | | | | |
Collapse
|
182
|
Wietrzych M, Meziane H, Sutter A, Ghyselinck N, Chapman PF, Chambon P, Krezel W. Working memory deficits in retinoid X receptor gamma-deficient mice. Learn Mem 2005; 12:318-26. [PMID: 15897255 PMCID: PMC1142461 DOI: 10.1101/lm.89805] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Retinoid signaling has been recently shown to be required for mnemonic functions in rodents. To dissect the behavioral and molecular mechanisms involved in this requirement, we have analyzed the spatial and recognition working memory in mice carrying null mutations of retinoid receptors RARbeta and RXRgamma. Double mutants appeared deficient in spatial working memory as tested in spontaneous alternation in the Y-maze and delayed nonmatch to place (DNMTP) test in the T-maze. These mutant mice did acquire, however, spatial place reference or right/left discrimination tasks in the T-maze set-up, indicating that basic sensorimotor functions, spatial orientation, and motivational factors are unlikely to account for deficits in working memory-sensitive tasks. Double-mutant mice were also deficient in novel object recognition at intermediate, but not short delays. RXRgamma appeared to be the functionally predominant receptor in modulation of the working memory, as RXRgamma, but not RARbeta single null mutant mice exhibited deficits similar to those observed in the double mutants. The mechanism of this modulation is potentially related to functions of RXRgamma in frontal and perirhinal cortex, structures in which we detected RXRgamma expression and which are functionally implicated in working memory processes.
Collapse
Affiliation(s)
- Marta Wietrzych
- Institut de Gaénétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut Clinique de la Souris (ICS), CNRS/INSERM/ULP, College de France, BP10142, 67404 Illkirch Cedex, CU de Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
183
|
Lane MA, Bailey SJ. Role of retinoid signalling in the adult brain. Prog Neurobiol 2005; 75:275-93. [PMID: 15882777 DOI: 10.1016/j.pneurobio.2005.03.002] [Citation(s) in RCA: 283] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Revised: 03/11/2005] [Accepted: 03/14/2005] [Indexed: 11/30/2022]
Abstract
Vitamin A (all-trans-retinol) is the parent compound of a family of natural and synthetic compounds, the retinoids. Retinoids regulate gene transcription in numerous cells and tissues by binding to nuclear retinoid receptor proteins, which act as transcription factors. Much of the research conducted on retinoid signalling in the nervous system has focussed on developmental effects in the embryonic or early postnatal brain. Here, we review the increasing body of evidence indicating that retinoid signalling plays an important role in the function of the mature brain. Components of the metabolic pathway for retinoids have been identified in adult brain tissues, suggesting that all-trans-retinoic acid (ATRA) can be synthesized in discrete regions of the brain. The distribution of retinoid receptor proteins in the adult nervous system is different from that seen during development; and suggests that retinoid signalling is likely to have a physiological role in adult cortex, amygdala, hypothalamus, hippocampus, striatum and associated brain regions. A number of neuronal specific genes contain recognition sequences for the retinoid receptor proteins and can be directly regulated by retinoids. Disruption of retinoid signalling pathways in rodent models indicates their involvement in regulating synaptic plasticity and associated learning and memory behaviours. Retinoid signalling pathways have also been implicated in the pathophysiology of Alzheimer's disease, schizophrenia and depression. Overall, the data underscore the likely importance of adequate nutritional Vitamin A status for adult brain function and highlight retinoid signalling pathways as potential novel therapeutic targets for neurological diseases.
Collapse
Affiliation(s)
- Michelle A Lane
- Department of Human Ecology, Division of Nutritional Sciences, The University of Texas at Austin, Austin, TX 78712, USA.
| | | |
Collapse
|
184
|
Feng J, Chen J, Yan J, Jones IR, Craddock N, Cook EH, Goldman D, Heston LL, Sommer SS. Structural variants in the retinoid receptor genes in patients with schizophrenia and other psychiatric diseases. Am J Med Genet B Neuropsychiatr Genet 2005; 133B:50-3. [PMID: 15635645 DOI: 10.1002/ajmg.b.30113] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Retinoid receptors (RARs and RXRs) regulate brain morphogenesis and function. Defects in these receptors may contribute to schizophrenia or other psychiatric diseases. To test the hypothesis that genetic variants of the retinoid receptor genes may predispose to schizophrenia and other psychiatric diseases, the six RAR and RXR genes and a heterodimer partner, the NURR1 gene, were scanned in 100 schizophrenia patients, along with pilot studies in 20-24 patients with bipolar disorder (BPD), attention-deficit hyperactivity disorder (ADHD), autism, or alcoholism. A total of 5.4 megabases of genomic sequence was scanned. No variants affecting protein structure or expression (VAPSEs) were found in four of the genes. One uncommon missense variant was found in each of the RARbeta, RARgamma, and RXRgamma genes. We conclude that structural variants in the RAR/RXR and NURR1 genes do not play a major role in the etiology of schizophrenia.
Collapse
Affiliation(s)
- Jinong Feng
- Department of Molecular Genetics, City of Hope National Medical Center, Duarte, California 91010-3000, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Rioux L, Arnold SE. The expression of retinoic acid receptor alpha is increased in the granule cells of the dentate gyrus in schizophrenia. Psychiatry Res 2005; 133:13-21. [PMID: 15698673 DOI: 10.1016/j.psychres.2004.11.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Revised: 09/15/2004] [Accepted: 11/08/2004] [Indexed: 10/25/2022]
Abstract
Mounting evidence suggests that schizophrenia is a neurodevelopmental disease resulting in dysfunctional connectivity between various brain regions. Retinoid pathway dysregulation has been proposed as a potentially important factor in the etiology of schizophrenia. Retinoid signaling plays a central role in many aspects of development, ranging from neurogenesis to activity-dependent plasticity, and regulates the expression of many candidate genes for schizophrenia. The retinoid pathway acts through two families of nuclear receptors highly expressed in the hippocampus, the retinoic acid (RAR) and retinoid X (RXR) receptors, both existing in three different subtypes (alpha, beta and gamma) and several isoforms. The present study examines the expression of the retinoid receptors in the dentate gyrus of schizophrenia and nonpsychiatric controls. The proportion of granule cells of the dentate gyrus expressing RAR(alpha) is increased by twofold in schizophrenia, while the proportion of cells expressing RAR(gamma)1 and 2, as well as RXR(beta) and gamma, is unchanged. These results demonstrate a dysregulation in the expression of at least one member of the RAR family of retinoid receptors in schizophrenia. Understanding the basis for this and how it affects downstream molecular pathways associated with hippocampal plasticity may provide insight into the dysfunctional connectivity of schizophrenia.
Collapse
Affiliation(s)
- Lise Rioux
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, School of Medicine, Philadelphia, PA, USA.
| | | |
Collapse
|
186
|
Vergara MN, Arsenijevic Y, Del Rio-Tsonis K. CNS regeneration: A morphogen's tale. ACTA ACUST UNITED AC 2005; 64:491-507. [PMID: 16041757 DOI: 10.1002/neu.20158] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tissue regeneration will soon become an avenue for repair of damaged or diseased tissues as stem cell niches have been found in almost every organ of the vertebrate body including the CNS. In addition, different animals display an array of regenerative capabilities that are currently being researched to dissect the molecular mechanisms involved. This review concentrates on the different ways in which CNS tissues such as brain, spinal cord and retina can regenerate or display neurogenic potential and how these abilities are modulated by morphogens.
Collapse
|
187
|
Kida S, Uchida S. [Regulation of emotional behavior by nuclear receptors]. Nihon Yakurigaku Zasshi 2005; 125:17-24. [PMID: 15738617 DOI: 10.1254/fpj.125.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
|
188
|
Luo T, Wagner E, Crandall JE, Dräger UC. A retinoic-acid critical period in the early postnatal mouse brain. Biol Psychiatry 2004; 56:971-80. [PMID: 15601608 DOI: 10.1016/j.biopsych.2004.09.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Revised: 07/26/2004] [Accepted: 09/26/2004] [Indexed: 11/17/2022]
Abstract
BACKGROUND A normal supply of vitamin A, which regulates gene expression through its active form retinoic acid, is required by many organs; both excess and deficiency can be teratogenic. Very little is known about the role of retinoic acid in maturation of the mammalian forebrain. METHODS As retinoic acid cannot be visualized directly, we mapped its actions in the forebrain with indirect morphologic methods and by applying retinoic acid overdoses to early postnatal mice. RESULTS During this time, the morphologic indicators of retinoic acid actions are localized mainly in the limbic system and they undergo rapid changes. Retinoic acid overdoses can cause lasting behavioral abnormalities that point to disrupted limbic functions. In the anterior cingulate cortex, inhibitory interneurons are affected, and in the hippocampus, primarily the dentate gyrus is abnormal. CONCLUSIONS Retinoic acid is involved in functional maturation of limbic regions of the forebrain with a critical stage early postnatally in mice, when their brains are particularly vulnerable to vitamin A perturbations. This developmental time in mice compares with the second trimester of gestation in humans, a stage when in genetically predisposed individuals the corresponding brain regions are known to pass through a period of increased susceptibility to environmental disturbances.
Collapse
Affiliation(s)
- Tuanlian Luo
- E. Kennedy Shriver Center at the University of Massachusetts Medical School, Waltham, MA 02452, USA
| | | | | | | |
Collapse
|
189
|
Abstract
Cell replication is tightly controlled in normal tissues and aberrant during disease progression, such as in tumorigenesis. The replication of cells can be divided into four distinct phases: Gap 1 (G1), synthesis (S), gap 2 (G2), and mitosis (M). The progression from one phase to the next is intricately regulated and has many "checkpoints" that take into account cellular status and environmental cues. Among the modulators of cell cycle progression are specific nutrients, which function as energy sources or regulate the production and/or function of proteins needed to advance cells through a replicative cycle. In this review, we focus on the roles of specific nutrients (vitamin A, vitamin D, iron, folic acid, vitamin B12, zinc, and glucose) in the control of cell cycle progression and discuss how insights into the mechanisms by which these nutrients modulate this process can be and have been used to control aberrant cell growth in the treatment of prevalent pathologies.
Collapse
Affiliation(s)
- Brenda L Bohnsack
- Children's Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.
| | | |
Collapse
|
190
|
Corcoran JPT, So PL, Maden M. Disruption of the retinoid signalling pathway causes a deposition of amyloid beta in the adult rat brain. Eur J Neurosci 2004; 20:896-902. [PMID: 15305858 DOI: 10.1111/j.1460-9568.2004.03563.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have disrupted the retinoid signalling pathway in adult rats by a dietary deficiency of vitamin A. After 1 year of this dietary deficiency, there was a deposition of amyloid beta in the cerebral blood vessels. There is a downregulation of retinoic acid receptor alpha in the forebrain neurons of the retinoid-deficient rats and a loss of choline acetyl transferase expression, which precedes amyloid beta deposition. In neocortex of pathology samples of patients with Alzheimer's disease, the same retinoic acid receptor alpha deficit in the surviving neurons was observed. We have identified the retinoid-synthesizing enzymes involved in this process, retinaldehyde dehydrogenase-2 and class IV alcohol dehydrogenase, only the former is downregulated in patients with Alzheimer's disease. This suggests that retinoids are important for the maintenance of the adult nervous system and their loss may in part play a role in Alzheimer's disease.
Collapse
Affiliation(s)
- Jonathan P T Corcoran
- MRC Centre for Developmental Neurobiology, New Hunt's House, King's College London, Guy's Campus, London SE1 1UL, UK.
| | | | | |
Collapse
|
191
|
Waclaw RR, Wang B, Campbell K. The homeobox gene Gsh2 is required for retinoid production in the embryonic mouse telencephalon. Development 2004; 131:4013-20. [PMID: 15269172 DOI: 10.1242/dev.01272] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have examined the role of the homeobox gene Gsh2 in retinoid production and signaling within the ventral telencephalon of mouse embryos. Gsh2 mutants exhibit altered ventral telencephalic development,including a smaller striatum with fewer DARPP-32 neurons than wild types. We show that the expression of the retinoic acid (RA) synthesis enzyme,retinaldehyde dehydrogenase 3 (Raldh3, also known as Aldh1a3), is reduced in the lateral ganglionic eminence (LGE) of Gsh2 mutants. Moreover,using a retinoid reporter cell assay, we found that retinoid production in the Gsh2 mutants is markedly reduced. The striatal defects in Gsh2 mutants are thought to result from ectopic expression of Pax6 in the LGE. Previously, we had shown that removal of Pax6 from the Gsh2 mutant background improves the molecular identity of the LGE in these double mutants; however, Raldh3 expression is not improved. The Pax6;Gsh2 double mutants possess a larger striatum than the Gsh2 mutants, but the disproportionate reduction in DARPP-32 neurons is not improved. These findings suggest that reduced retinoid production in the Gsh2 mutant contributes to the striatal differentiation defects. As RA promotes the expression of DARPP-32 in differentiating LGE cells in vitro, we examined whether exogenous RA can improve striatal neuron differentiation in the Gsh2 mutants. Indeed,RA supplementation of Gsh2 mutants, during the period of striatal neurogenesis, results in a significant increase in DARPP-32 expression. Thus,in addition to the previously described role for Gsh2 to maintain correct molecular identity in the LGE, our results demonstrate a novel requirement of this gene for retinoid production within the ventral telencephalon.
Collapse
Affiliation(s)
- Ronald R Waclaw
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
192
|
Zhang J, Moseley A, Jegga AG, Gupta A, Witte DP, Sartor M, Medvedovic M, Williams SS, Ley-Ebert C, Coolen LM, Egnaczyk G, Genter MB, Lehman M, Lingrel J, Maggio J, Parysek L, Walsh R, Xu M, Aronow BJ. Neural system-enriched gene expression: relationship to biological pathways and neurological diseases. Physiol Genomics 2004; 18:167-83. [PMID: 15126645 DOI: 10.1152/physiolgenomics.00220.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
To understand the commitment of the genome to nervous system differentiation and function, we sought to compare nervous system gene expression to that of a wide variety of other tissues by gene expression database construction and mining. Gene expression profiles of 10 different adult nervous tissues were compared with that of 72 other tissues. Using ANOVA, we identified 1,361 genes whose expression was higher in the nervous system than other organs and, separately, 600 genes whose expression was at least threefold higher in one or more regions of the nervous system compared with their median expression across all organs. Of the 600 genes, 381 overlapped with the 1,361-gene list. Limited in situ gene expression analysis confirmed that identified genes did represent nervous system-enriched gene expression, and we therefore sought to evaluate the validity and significance of these top-ranked nervous system genes using known gene literature and gene ontology categorization criteria. Diverse functional categories were present in the 381 genes, including genes involved in intracellular signaling, cytoskeleton structure and function, enzymes, RNA metabolism and transcription, membrane proteins, as well as cell differentiation, death, proliferation, and division. We searched existing public sites and identified 110 known genes related to mental retardation, neurological disease, and neurodegeneration. Twenty-one of the 381 genes were within the 110-gene list, compared with a random expectation of 5. This suggests that the 381 genes provide a candidate set for further analyses in neurological and psychiatric disease studies and that as a field, we are as yet, far from a large-scale understanding of the genes that are critical for nervous system structure and function. Together, our data indicate the power of profiling an individual biologic system in a multisystem context to gain insight into the genomic basis of its structure and function.
Collapse
Affiliation(s)
- Jianhua Zhang
- Department of Cell Biology, University of Cincinnati College of Medicine, Cincinnati 45267, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Malaspina A, Pearce RKB, Graeber MB. Nuclear Hormone and Orphan Receptors: Their Role in Neuronal Differentiation and Cytoprotection and in the Pathogenesis of Parkinson’s Disease. Dev Neurosci 2004; 25:375-83. [PMID: 14966378 DOI: 10.1159/000075663] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Accepted: 11/03/2003] [Indexed: 11/19/2022] Open
Abstract
Human nuclear hormone receptors (NHR) and orphan receptors (NOR) act as transcription factors in response to a wide range of circulating hormones and unknown ligands. A role for NHR and NOR in disorders of the subcortical dopaminergic pathways such as Parkinson's disease (PD) is suggested by a wealth of recent data including experimental observations. Both classes of receptors promote the formation of specific neuronal identities, tissue patterning during embryonic development and the maturation of vulnerable monoaminergic and cholinergic neurons. NHR and NOR are also known to exert a neuroprotective function on adult neurons. The scope of this review is to revisit the functional profile of these receptors with particular reference to their activity in the development of selected neuronal populations relevant to the pathophysiology of PD and to discuss how they may relate to the neuropathological and clinical expression of the disease.
Collapse
Affiliation(s)
- A Malaspina
- Department of Neuropathology, Division of Neuroscience and Psychological Medicine, Faculty of Medicine, Imperial College London, Charing Cross Campus, London, UK.
| | | | | |
Collapse
|
194
|
Ethier I, Beaudry G, St-Hilaire M, Milbrandt J, Rouillard C, Lévesque D. The transcription factor NGFI-B (Nur77) and retinoids play a critical role in acute neuroleptic-induced extrapyramidal effect and striatal neuropeptide gene expression. Neuropsychopharmacology 2004; 29:335-46. [PMID: 14603264 DOI: 10.1038/sj.npp.1300318] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite extensive investigation, the cellular mechanisms responsible for neuroleptic actions remain elusive. We have previously shown that neuroleptics modulated the expression of some members of the ligand-activated transcription factors (nuclear receptors) including the nerve-growth factor inducible gene B (NGFI-B or Nur77) and retinoid X receptor (RXR) isoforms. Using genetic and pharmacological approaches, we investigated the role of NGFI-B and retinoids in acute behavioral and biochemical responses to dopamine antagonists. NGFI-B knockout (KO) mice display a profound alteration of haloperidol-induced catalepsy and striatal neuropeptide gene expression. Haloperidol-induced increase of striatal enkephalin mRNA is totally abolished in NGFI-B KO mice whereas the increase of neurotensin mRNA expression is reduced by 50%. Interestingly, catalepsy induced by raclopride, a specific dopamine D(2)/D(3) antagonist is completely abolished in NGFI-B-deficient mice whereas the cataleptic response to SCH 23390, a dopamine D(1) agonist, is preserved. Accordingly, the effects of haloperidol on striatal c-fos, Nor-1, and dynorphin mRNA expression are also preserved in NGFI-B-deficient mice. The cataleptic response and the increase of enkephalin mRNA expression induced by haloperidol can also be suppressed by administration of retinoid ligands 9-cis retinoic acid and docosahexaenoic acid. In addition, we demonstrate that haloperidol enhances colocalization of NGFI-B and RXRgamma1 isoform mRNAs, suggesting that both NGFI-B and a RXR isoform are highly coexpressed after haloperidol administration. Our data demonstrate, for the first time, that NGFI-B and retinoids are actively involved in the molecular cascade induced by neuroleptic drugs.
Collapse
MESH Headings
- Alitretinoin
- Animals
- Antineoplastic Agents/pharmacology
- Antipsychotic Agents/adverse effects
- Antipsychotic Agents/pharmacology
- Autoradiography
- Basal Ganglia Diseases/chemically induced
- Basal Ganglia Diseases/genetics
- Basal Ganglia Diseases/metabolism
- Behavior, Animal
- Binding Sites
- Catalepsy/chemically induced
- Catalepsy/genetics
- Catalepsy/metabolism
- Corpus Striatum/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Docosahexaenoic Acids/pharmacology
- Dose-Response Relationship, Drug
- Drug Combinations
- Drug Interactions
- Gene Expression Regulation/drug effects
- Haloperidol/pharmacology
- In Situ Hybridization
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neuropeptides/genetics
- Neuropeptides/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Receptors, Steroid
- Retinoid X Receptors
- Retinoids/agonists
- Retinoids/physiology
- Time Factors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription Factors/physiology
- Tretinoin/pharmacology
Collapse
Affiliation(s)
- Isabelle Ethier
- 1Neuroscience Unit, CHUQ Research Center (CHUL), Quebec, Canada
| | | | | | | | | | | |
Collapse
|
195
|
Dirks P, Tieding S, Schneider I, Mey J, Weiler R. Characterization of retinoic acid neuromodulation in the carp retina. J Neurosci Res 2004; 78:177-85. [PMID: 15378613 DOI: 10.1002/jnr.20253] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Visual sensation in vertebrates starts with the isomerization of 11-cis retinaldehyde into all-trans retinaldehyde. Aldehyde dehydrogenases, present in the pigment epithelium and some retinal cells, convert all-trans retinaldehyde into all-trans retinoic acid (at-RA). Evidence in the retina and the hippocampus has accumulated, showing that at-RA, besides being a morphogenetic factor, also acts as a neuromodulator. In mature retina, at-RA affects visual processing by acting on gap junctional conductances and the synaptic transfer between photoreceptors and horizontal cells. We present evidence supporting a neuromodulatory role of at-RA in the carp retina. High performance liquid chromatography (HPLC) measurements and an RA bioassay indicate a light dependency of at-RA formation, which can explain the observed effects of at-RA on spinule formation at horizontal cell dendrites in this retina. Furthermore, inhibiting endogenous metabolism and catabolism of at-RA affects formation and persistence of spinules in a way, supporting a direct involvement of at-RA in this light-dependent mechanism of synaptic plasticity. The action of at-RA, however, seems independent of the dopaminergic system, known for its light-signaling role in the retina, because at-RA effects on spinule formation persisted in retina depleted of dopaminergic neurons or in the presence of haloperidol. Together, these data indicate that at-RA acts effectively as a direct neuromodulator in carp retina, transmitting information about ambient light conditions to the neuronal retina.
Collapse
Affiliation(s)
- Petra Dirks
- Neurobiology, Dept. Biology, University of Oldenburg, Oldenburg, Germany
| | | | | | | | | |
Collapse
|
196
|
Moreno S, Farioli-Vecchioli S, Cerù MP. Immunolocalization of peroxisome proliferator-activated receptors and retinoid x receptors in the adult rat CNS. Neuroscience 2004; 123:131-45. [PMID: 14667448 DOI: 10.1016/j.neuroscience.2003.08.064] [Citation(s) in RCA: 454] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Peroxisome proliferator-activated and retinoid X receptors (PPARs and RXRs) are transcription factors belonging to the steroid hormone receptor superfamily. Upon activation by their ligands, PPARs and RXRs bind to their target genes as heterodimers. Ligands of these receptors include lipophylic molecules, such as retinoids, fatty acids and eicosanoids, the importance of which in the metabolism and functioning of the nervous tissue is well documented. The immunohistochemical distribution of PPARs and RXRs in the CNS of the adult rat was studied by means of a sensitive biotinyl-tyramide method. All PPAR (alpha, beta/delta and gamma) and RXR (alpha, beta and gamma) isotypes were detected and found to exhibit specific patterns of localization in the different areas of the brain and spinal cord. The presence of the nuclear receptors was observed in both neuronal and glial cells. While PPAR beta/delta and RXR beta showed a widespread distribution, alpha and gamma isotypes exhibited a more restricted pattern of expression. The frontal cortex, basal ganglia, reticular formation, some cranial nerve nuclei, deep cerebellar nuclei, and cerebellar Golgi cells appeared rather rich in all studied receptors. Based on our data, we suggest that in the adult CNS, PPARs and RXRs, besides playing roles common to many other tissues, may have specific functions in regulating the expression of genes involved in neurotransmission, and therefore play roles in complex processes, such as aging, neurodegeneration, learning and memory.
Collapse
Affiliation(s)
- S Moreno
- Department of Biology-LIME, University Roma Tre, Rome, Italy
| | | | | |
Collapse
|
197
|
Altucci L, Gronemeyer H. Retinoids and TRAIL: two cooperating actors to fight against cancer. VITAMINS AND HORMONES 2004; 67:319-45. [PMID: 15110184 DOI: 10.1016/s0083-6729(04)67017-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multiple studies performed in in vitro and in vivo settings have confirmed the cancer therapeutic and cancer preventive capacity of retinoids and rexinoids. These compounds mediate their actions through the retinoid and rexinoid receptors, respectively, which exist in multiple isoforms and form a plethora of distinct heterodimers. Despite their apparent anticancer potential, with one exception the molecular basis of this activity has remained largely elusive. The exception concerns acute promyelocytic leukemia (APL), the prototype of retinoic acid-dependent differentiation therapy, for which both the molecular nature of the disease and the mechanism of action of retinoids are well understood. However, retinoids and rexinoids are active beyond the borderlines of the well-defined chromosomal translocation that gives rise to curable APL. In this context, particularly interesting is that retinoic acid induces a member of the tumor necrosis factor family, tumor necrosis factor-related apoptosis inducing ligand (TRAIL) or Apo2L. This ligand is exceptional in that it is capable of inducing apoptosis in cancer cells but not in normal cells. It is possible that this connection to the TRAIL signaling pathway contributes to the anti-tumor activity of retinoids and rexinoids. This review focuses on what is presently known about the regulation of cell life and death by the retinoid/rexinoid and TRAIL signaling pathways.
Collapse
Affiliation(s)
- Lucia Altucci
- Dipartimento di Patologia Generale Seconda Università degli Studi di Napoli 80138, Napoli, Italy
| | | |
Collapse
|
198
|
Etchamendy N, Enderlin V, Marighetto A, Pallet V, Higueret P, Jaffard R. Vitamin A deficiency and relational memory deficit in adult mice: relationships with changes in brain retinoid signalling. Behav Brain Res 2003; 145:37-49. [PMID: 14529804 DOI: 10.1016/s0166-4328(03)00099-8] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vitamin A and its derivatives, the retinoids, have recently been reported to be implicated in the synaptic plasticity of the hippocampus and in cognitive functions. Acting via transcription factors, retinoids can regulate gene expression via their nuclear receptors [retinoic acid receptors (RARs) and retinoid X receptors (RXRs)]. We recently showed that a moderate (about 30%) hypoexpression of brain (and hippocampal) retinoid signalling, like that naturally occurring in the aged brain of mice, might be related to a selective relational memory deficit. To further assess this hypothesis, the present study investigated the effects of Vitamin A deprivation of varying duration both on the brain expression of retinoid receptors (RARbeta and RXRbeta/gamma) and two associated target genes [tissue-type transglutaminase (tTG) and neurogranin, (RC3)], and on radial maze discrimination learning using young adult mice as subjects. We observed that irrespective of its duration (i.e. 31 or 39 weeks), Vitamin A deprivation resulted in a significant reduction (25-30%) in the expression of brain RARbeta, RXRbeta/gamma and tTG mRNAs. Conversely, only the 39-week condition was found to induce a significant decrease in brain RC3 mRNAs contents and a selective relational memory impairment. Finally, daily administration of retinoic acid (RA) failed to reverse the 39-week Vitamin A deficiency (VAD)-related cognitive deficit and to fully normalise the associated brain retinoid hyposignalling. In particular, there was no evidence for an up-regulating effect of RA on whole brain (and hippocampal) RC3 mRNAs of the 39-week-depleted mice. The results show that post-natal VAD may induce a selective memory impairment and give further support to the hypothesis that the fine regulation of retinoid-mediated gene expression is important for optimal brain functioning and higher cognition.
Collapse
Affiliation(s)
- Nicole Etchamendy
- CNRS UMR 5106, Lab. Neurosciences Cognitives, Université de Bordeaux 1, Avenue des Facultés, 33405 Talence Cedex, France.
| | | | | | | | | | | |
Collapse
|
199
|
McCaffery PJ, Adams J, Maden M, Rosa-Molinar E. Too much of a good thing: retinoic acid as an endogenous regulator of neural differentiation and exogenous teratogen. Eur J Neurosci 2003; 18:457-72. [PMID: 12911743 DOI: 10.1046/j.1460-9568.2003.02765.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Retinoic acid (RA) is essential for both embryonic and adult growth, activating gene transcription via specific nuclear receptors. It is generated, via a retinaldehyde intermediate, from retinol (vitamin A). RA levels require precise regulation by controlled synthesis and catabolism, and when RA concentrations deviate from normal, in either direction, abnormal growth and development occurs. This review describes: (i) how the pattern of RA metabolic enzymes controls the actions of RA; and (ii) the type of abnormalities that result when this pattern breaks down. Examples are given of RA control of the anterior/posterior axis of the hindbrain, the dorsal/ventral axis of the spinal cord, as well as certain sex-specific segments of the spinal cord, using varied animal models including mouse, quail and mosquitofish. These functions are highly sensitive to abnormal changes in RA concentration. In rodents, the control of neural patterning and differentiation are disrupted when RA concentrations are lowered, whereas inappropriately high concentrations of RA result in abnormal development of cerebellum and hindbrain nuclei. The latter parallels the malformations seen in the human embryo exposed to RA due to treatment of the mother with the acne drug Accutane (13-cis RA) and, in cases where the child survives beyond birth, a particular set of behavioural anomalies can be described. Even the adult brain may be susceptible to an imbalance of RA, particularly the hippocampus. This report shows how the properties of RA as a neural induction agent and organizer of segmentation can explain the consequences of RA depletion and overexpression.
Collapse
|
200
|
Tan S, Hermann B, Borrelli E. Dopaminergic mouse mutants: investigating the roles of the different dopamine receptor subtypes and the dopamine transporter. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 54:145-97. [PMID: 12785287 DOI: 10.1016/s0074-7742(03)54005-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shirlee Tan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 10142 Illkirch, C.U. de Strasbourg, France
| | | | | |
Collapse
|