151
|
Jabri B, Sollid LM. T Cells in Celiac Disease. THE JOURNAL OF IMMUNOLOGY 2017; 198:3005-3014. [PMID: 28373482 DOI: 10.4049/jimmunol.1601693] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/30/2017] [Indexed: 12/30/2022]
Abstract
Celiac disease is a human T cell-mediated autoimmune-like disorder caused by exposure to dietary gluten in genetically predisposed individuals. This review will discuss how CD4 T cell responses directed against an exogenous Ag can cause an autoreactive B cell response and participate in the licensing of intraepithelial lymphocytes to kill intestinal epithelial cells. Furthermore, this review will examine the mechanisms by which intraepithelial cytotoxic T cells mediate tissue destruction in celiac disease.
Collapse
Affiliation(s)
- Bana Jabri
- Department of Medicine, University of Chicago, Chicago, IL 60637; .,Department of Pathology, University of Chicago, Chicago, IL 60637.,Department of Pediatrics, University of Chicago, Chicago, IL 60637; and
| | - Ludvig M Sollid
- Department of Immunology, Centre for Immune Regulation, K.G. Jebsen Coeliac Disease Research Centre, University of Oslo and Oslo University Hospital-Rikshospitalet, N-0372 Oslo, Norway
| |
Collapse
|
152
|
Lee HR, Son CH, Koh EK, Bae JH, Kang CD, Yang K, Park YS. Expansion of cytotoxic natural killer cells using irradiated autologous peripheral blood mononuclear cells and anti-CD16 antibody. Sci Rep 2017; 7:11075. [PMID: 28894091 PMCID: PMC5593981 DOI: 10.1038/s41598-017-09259-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/25/2017] [Indexed: 01/01/2023] Open
Abstract
Natural killer (NK) cells are considered a promising strategy for cancer treatment. Various methods for large-scale NK cell expansion have been developed, but they should guarantee that no viable cells are mixed with the expanded NK cells because most methods involve cancer cells or genetically modified cells as feeder cells. We used an anti-CD16 monoclonal antibody (mAb) and irradiated autologous peripheral blood mononuclear cells (PBMCs) (IrAPs) to provide a suitable environment (activating receptor-ligand interactions) for the NK cell expansion. This method more potently expanded NK cells, and the final product was composed of highly purified NK cells with lesser T-cell contamination. The expanded NK cells showed greater upregulation of various activation receptors, CD107a, and secreted larger amounts of interferon gamma. IrAPs expressed NKG2D ligands and CD48, and coengagement of CD16 with NKG2D and 2B4 caused potent NK cell activation and proliferation. The expanded NK cells were cytotoxic toward various cancer cells in vitro and in vivo. Moreover, irradiation or a chemotherapeutic drug further enhanced this antitumor effect. Therefore, we developed an effective in vitro culture method for large-scale expansion of highly purified cytotoxic NK cells with potent antitumor activity using IrAPs instead of cancer cell-based feeder cells.
Collapse
Affiliation(s)
- Hong-Rae Lee
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Jwadong-gil 40, Jangan-eup, Gijang-gun, Busan, 46033, South Korea.,Department of Biochemistry, Pusan National University School of Medicine, Yangsan, 50612, South Korea
| | - Cheol-Hun Son
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Jwadong-gil 40, Jangan-eup, Gijang-gun, Busan, 46033, South Korea
| | - Eun-Kyoung Koh
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Jwadong-gil 40, Jangan-eup, Gijang-gun, Busan, 46033, South Korea
| | - Jae-Ho Bae
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, 50612, South Korea
| | - Chi-Dug Kang
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, 50612, South Korea
| | - Kwangmo Yang
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Jwadong-gil 40, Jangan-eup, Gijang-gun, Busan, 46033, South Korea.
| | - You-Soo Park
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Jwadong-gil 40, Jangan-eup, Gijang-gun, Busan, 46033, South Korea.
| |
Collapse
|
153
|
Abstract
Natural killer (NK) cells are cytotoxic lymphocytes that recognize tumor cells or stressed cells through 'missing-self' signals, such as altered or absent expression of MHC class I molecules. The function of NK cells is regulated by the activation or inhibition of receptors present on their surface. The activation of NK cells results in cytotoxic activity on target cells through release of toxic granules and inflammatory cytokines. However, NK cells infiltrating tumors have been frequently shown to exhibit a skewed phenotype that includes decreased antitumor activity and enhanced protumor activities, such as angiogenesis and metastasis. In fact, many studies have reported that tumor microenvironments induce a protumor phenotype in NK cells. Here, we review the biological properties of NK cells in the context of tumorigenesis and tumor progression, with a specific focus on the interactions between NK cells and critical tumor microenvironments, such as epithelial-to-mesenchymal transition, matrix metalloproteinases, and tumor-associated chronic inflammation in tumor metastasis.
Collapse
|
154
|
Molfetta R, Quatrini L, Santoni A, Paolini R. Regulation of NKG2D-Dependent NK Cell Functions: The Yin and the Yang of Receptor Endocytosis. Int J Mol Sci 2017; 18:ijms18081677. [PMID: 28767057 PMCID: PMC5578067 DOI: 10.3390/ijms18081677] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 07/27/2017] [Accepted: 07/30/2017] [Indexed: 12/22/2022] Open
Abstract
Natural-killer receptor group 2, member D (NKG2D) is a well characterized natural killer (NK) cell activating receptor that recognizes several ligands poorly expressed on healthy cells but up-regulated upon stressing stimuli in the context of cancer or viral infection. Although NKG2D ligands represent danger signals that render target cells more susceptible to NK cell lysis, accumulating evidence demonstrates that persistent exposure to ligand-expressing cells causes the decrease of NKG2D surface expression leading to a functional impairment of NKG2D-dependent NK cell functions. Upon ligand binding, NKG2D is internalized from the plasma membrane and sorted to lysosomes for degradation. However, receptor endocytosis is not only a mechanism of receptor clearance from the cell surface, but is also required for the proper activation of signalling events leading to the functional program of NK cells. This review is aimed at providing a summary of current literature relevant to the molecular mechanisms leading to NKG2D down-modulation with particular emphasis given to the role of NKG2D endocytosis in both receptor degradation and signal propagation. Examples of chronic ligand-induced down-regulation of NK cell activating receptors other than NKG2D, including natural cytotoxicity receptors (NCRs), DNAX accessory molecule-1 (DNAM1) and CD16, will be also discussed.
Collapse
Affiliation(s)
- Rosa Molfetta
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Linda Quatrini
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161 Rome, Italy.
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France.
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Rossella Paolini
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161 Rome, Italy.
| |
Collapse
|
155
|
Engineering Natural Killer Cells for Cancer Immunotherapy. Mol Ther 2017; 25:1769-1781. [PMID: 28668320 PMCID: PMC5542803 DOI: 10.1016/j.ymthe.2017.06.012] [Citation(s) in RCA: 322] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/09/2017] [Accepted: 06/10/2017] [Indexed: 01/21/2023] Open
Abstract
The past several years have seen tremendous advances in the engineering of immune effector cells as therapy for cancer. While chimeric antigen receptors (CARs) have been used extensively to redirect the specificity of autologous T cells against hematological malignancies with striking clinical results, studies of CAR-modified natural killer (NK) cells have been largely preclinical. In this review, we focus on recent advances in NK cell engineering, particularly on preclinical evidence suggesting that NK cells may be as effective as T cells in recognizing and killing targets after genetic modification. We will discuss strategies to introduce CARs into both primary NK cells and NK cell lines in an effort to provide antigen specificity, the challenges of manufacturing engineered NK cells, and evidence supporting the effectiveness of this approach from preclinical and early-phase clinical studies using CAR-engineered NK cells. CAR-NK cells hold great promise as a novel cellular immunotherapy against refractory malignancies. Notably, NK cells can provide an "off-the-shelf" product, eliminating the need for a personalized and patient-specific product that plagues current CAR-T cell therapies. The ability to more potently direct NK cell-mediated cytotoxicity against refractory tumors through the expression of CAR is likely to contribute to the recent paradigm shift in cancer treatment.
Collapse
|
156
|
Mahapatra S, Mace EM, Minard CG, Forbes LR, Vargas-Hernandez A, Duryea TK, Makedonas G, Banerjee PP, Shearer WT, Orange JS. High-resolution phenotyping identifies NK cell subsets that distinguish healthy children from adults. PLoS One 2017; 12:e0181134. [PMID: 28767726 PMCID: PMC5540415 DOI: 10.1371/journal.pone.0181134] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/27/2017] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells are critical in immune defense against infected, stressed or transformed cells. Their function is regulated by the heterogeneous expression of a wide array of surface receptors that shape its phenotypic diversity. Although NK cells develop in the bone marrow and secondary lymphoid tissues, substantive differentiation is apparent in the peripheral blood including known age-related variation. In order to gain greater insight into phenotypic and functional variation within peripheral blood NK cells across age groups, we used multi-parametric, polyfunctional flow cytometry to interrogate the NK cell variability in 20 healthy adults and 15 5-10, 11-15 and 16-20 year-old children. We found that the normative ranges in both adults and children displayed great inter-individual variation for most markers. While the expression of several receptors did not differ, among those that did, the majority of the differences existed between adults and the three pediatric groups, rather than among children of different ages. Interestingly, we also identified variation in the individual expression of some markers by sex and ethnicity. Combinatorial analysis of NK cell receptors revealed intermediate subsets between the CD56bright and CD56dim NK cells. Furthermore, on examining the NK cell diversity by age, adults were discovered to have the lowest developmental diversity. Thus, our findings identify previously unappreciated NK cell subsets potentially distinguishing children from adults and suggest functional correlates that may have relevance in age-specific host defense.
Collapse
Affiliation(s)
- Sanjana Mahapatra
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Human Immunobiology, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Emily M. Mace
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Human Immunobiology, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Charles G. Minard
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lisa R. Forbes
- Center for Human Immunobiology, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alexander Vargas-Hernandez
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Human Immunobiology, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Teresa K. Duryea
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Residents’ Primary Care Group, Texas Children’s Hospital, Houston, Texas, United States of America
| | - George Makedonas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Human Immunobiology, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Pinaki P. Banerjee
- Center for Human Immunobiology, Texas Children’s Hospital, Houston, Texas, United States of America
| | - William T. Shearer
- Center for Human Immunobiology, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jordan S. Orange
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Human Immunobiology, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
157
|
Nabekura T, Gotthardt D, Niizuma K, Trsan T, Jenus T, Jonjic S, Lanier LL. Cutting Edge: NKG2D Signaling Enhances NK Cell Responses but Alone Is Insufficient To Drive Expansion during Mouse Cytomegalovirus Infection. THE JOURNAL OF IMMUNOLOGY 2017; 199:1567-1571. [PMID: 28760883 DOI: 10.4049/jimmunol.1700799] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/12/2017] [Indexed: 12/25/2022]
Abstract
NK cells play a critical role in host defense against viruses. In this study, we investigated the role of NKG2D in the expansion of NK cells after mouse CMV (MCMV) infection. Wild-type and NKG2D-deficient (Klrk1-/- ) Ly49H+ NK cells proliferated robustly when infected with MCMV strains engineered to allow expression of NKG2D ligands, which enhanced the response of wild-type NK cells. Naive NK cells exclusively express NKG2D-L, which pairs only with DAP10, whereas NKG2D-S expressed by activated NK cells pairs with DAP10 and DAP12, similar to Ly49H. However, NKG2D alone was unable to drive robust expansion of Ly49H- NK cells when mice were infected with these MCMV strains, likely because NKG2D-S was only transiently expressed postinfection. These findings demonstrate that NKG2D augments Ly49H-dependent proliferation of NK cells; however, NKG2D signaling alone is inadequate for expansion of NK cells, likely due to only transient expression of the NKG2D-DAP12 complex.
Collapse
Affiliation(s)
- Tsukasa Nabekura
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143.,Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143.,Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Dagmar Gotthardt
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143.,Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143
| | - Kouta Niizuma
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143.,Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki 305-8575, Japan; and
| | - Tihana Trsan
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka 51000, Croatia
| | - Tina Jenus
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka 51000, Croatia
| | - Stipan Jonjic
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka 51000, Croatia
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143; .,Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143
| |
Collapse
|
158
|
Campbell AR, Duggan MC, Suarez-Kelly LP, Bhave N, Opheim KS, McMichael EL, Trikha P, Parihar R, Luedke E, Lewis A, Yung B, Lee R, Raulet D, Tridandapani S, Groh V, Yu L, Yildiz V, Byrd JC, Caligiuri MA, Carson WE. MICA-Expressing Monocytes Enhance Natural Killer Cell Fc Receptor-Mediated Antitumor Functions. Cancer Immunol Res 2017; 5:778-789. [PMID: 28724544 DOI: 10.1158/2326-6066.cir-16-0005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/20/2016] [Accepted: 07/05/2017] [Indexed: 12/11/2022]
Abstract
Natural killer (NK) cells are large granular lymphocytes that promote the antitumor response via communication with other cell types in the tumor microenvironment. Previously, we have shown that NK cells secrete a profile of immune stimulatory factors (e.g., IFNγ, MIP-1α, and TNFα) in response to dual stimulation with the combination of antibody (Ab)-coated tumor cells and cytokines, such as IL12. We now demonstrate that this response is enhanced in the presence of autologous monocytes. Monocyte enhancement of NK cell activity was dependent on cell-to-cell contact as determined by a Transwell assay. It was hypothesized that NK cell effector functions against Ab-coated tumor cells were enhanced via binding of MICA on monocytes to NK cell NKG2D receptors. Strategies to block MICA-NKG2D interactions resulted in reductions in IFNγ production. Depletion of monocytes in vivo resulted in decreased IFNγ production by murine NK cells upon exposure to Ab-coated tumor cells. In mice receiving trastuzumab and IL12 therapy, monocyte depletion resulted in significantly greater tumor growth in comparison to mock-depleted controls (P < 0.05). These data suggest that NK cell-monocyte interactions enhance NK cell antitumor activity in the setting of monoclonal Ab therapy for cancer. Cancer Immunol Res; 5(9); 778-89. ©2017 AACR.
Collapse
Affiliation(s)
- Amanda R Campbell
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.,Medical Scientist Training Program and Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio
| | - Megan C Duggan
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.,Medical Scientist Training Program and Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio
| | | | - Neela Bhave
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Kallan S Opheim
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Elizabeth L McMichael
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.,Medical Scientist Training Program and Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio
| | - Prashant Trikha
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Robin Parihar
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Eric Luedke
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.,Department of Surgery, The Ohio State University, Columbus, Ohio
| | - Adrian Lewis
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Bryant Yung
- Department of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Robert Lee
- Department of Pharmacy, The Ohio State University, Columbus, Ohio
| | - David Raulet
- Department of Molecular and Cell Biology, University of California, Berkeley, California
| | - Susheela Tridandapani
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, Ohio
| | - Veronika Groh
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Lianbo Yu
- Center for Biostatistics, The Ohio State University, Columbus, Ohio
| | - Vedat Yildiz
- Center for Biostatistics, The Ohio State University, Columbus, Ohio
| | - John C Byrd
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.,Division of Hematology, The Ohio State University, Columbus, Ohio
| | - Michael A Caligiuri
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.,Division of Hematology, The Ohio State University, Columbus, Ohio
| | - William E Carson
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio. .,Department of Surgery, The Ohio State University, Columbus, Ohio
| |
Collapse
|
159
|
Demoulin B, Cook WJ, Murad J, Graber DJ, Sentman ML, Lonez C, Gilham DE, Sentman CL, Agaugue S. Exploiting natural killer group 2D receptors for CAR T-cell therapy. Future Oncol 2017; 13:1593-1605. [PMID: 28613086 DOI: 10.2217/fon-2017-0102] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chimeric antigen receptors (CARs) are genetically engineered proteins that combine an extracellular antigen-specific recognition domain with one or several intracellular T-cell signaling domains. When expressed in T cells, these CARs specifically trigger T-cell activation upon antigen recognition. While the clinical proof of principle of CAR T-cell therapy has been established in hematological cancers, CAR T cells are only at the early stages of being explored to tackle solid cancers. This special report discusses the concept of exploiting natural killer cell receptors as an approach that could broaden the specificity of CAR T cells and potentially enhance the efficacy of this therapy against solid tumors. New data demonstrating feasibility of this approach in humans and supporting the ongoing clinical trial are also presented.
Collapse
Affiliation(s)
- Benjamin Demoulin
- Research & Development Department, Celyad SA, Mont-Saint-Guibert, Belgium
| | - W James Cook
- Center for Sy+nthetic Immunity, Department of Microbiology & Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | | | - David J Graber
- Center for Sy+nthetic Immunity, Department of Microbiology & Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Marie-Louise Sentman
- Center for Sy+nthetic Immunity, Department of Microbiology & Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Caroline Lonez
- Research & Development Department, Celyad SA, Mont-Saint-Guibert, Belgium
| | - David E Gilham
- Research & Development Department, Celyad SA, Mont-Saint-Guibert, Belgium
| | - Charles L Sentman
- Center for Sy+nthetic Immunity, Department of Microbiology & Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Sophie Agaugue
- Research & Development Department, Celyad SA, Mont-Saint-Guibert, Belgium
| |
Collapse
|
160
|
Xie X, Zhou Y, Wang X, Guo J, Li J, Fan H, Dou J, Shen B, Zhou C. Enhanced antitumor activity of gemcitabine by polysaccharide-induced NK cell activation and immune cytotoxicity reduction in vitro/vivo. Carbohydr Polym 2017; 173:360-371. [PMID: 28732877 DOI: 10.1016/j.carbpol.2017.06.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/15/2017] [Accepted: 06/05/2017] [Indexed: 12/25/2022]
Abstract
The polysaccharide SEP has been reported to activate NK and T cells via TLR2/4. Here, the combination of gemcitabine (GEM) and SEP against HepG-2 was investigated. SEP apparently enhanced antitumor activity of gemcitabine against liver cancer through stimulating NKG2D and DAP10/Akt pathway to activate NK cells. The NKG2D upregulation could improve the sensitivity of NK-92 cells targeting to its ligand MICA expressed on HepG-2 cells. Meanwhile, GEM up-regulated MICA expression and attenuated soluble MICA secretion through inhibiting ADAM10 expression, which in turn enhanced the cytotoxicity of NK-92 cells against cancer cells. SEP remarkably enhanced GEM antitumor activity with an inhibitory rate of 79.1% in an H22-bearing mouse model. Moreover, SEP reversed atrophy and apoptosis caused by GEM in both spleen and bone marrow through suppressing ROS secretion in vivo. The data indicated that the combination of SEP and GEM is a potential chemo-immunotherapy strategy for liver cancer treatment clinically.
Collapse
Affiliation(s)
- Xin Xie
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu 210009, PR China
| | - Yiran Zhou
- Department of General Surgery, Rui Jin Hospital, Research Institute of Pancreatic Diseases, School of Medicine, Shanghai JiaoTong University, Shanghai 200025, China
| | - Xue Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu 210009, PR China
| | - Jian Guo
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu 210009, PR China
| | - Jingwen Li
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu 210009, PR China
| | - Hongye Fan
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu 210009, PR China
| | - Jie Dou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu 210009, PR China
| | - Baiyong Shen
- Department of General Surgery, Rui Jin Hospital, Research Institute of Pancreatic Diseases, School of Medicine, Shanghai JiaoTong University, Shanghai 200025, China.
| | - Changlin Zhou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu 210009, PR China.
| |
Collapse
|
161
|
Ivanova OK, Sharapova TN, Romanova EA, Soshnikova NV, Sashchenko LP, Yashin DV. CD3 + CD8 + NKG2D + T Lymphocytes Induce Apoptosis and Necroptosis in HLA-Negative Cells via FasL-Fas Interaction. J Cell Biochem 2017; 118:3359-3366. [PMID: 28294381 DOI: 10.1002/jcb.25990] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/13/2017] [Indexed: 01/22/2023]
Abstract
An important problem in cellular immunology is to identify new populations of cytotoxic lymphocytes capable of killing tumor cells that have lost classical components of MHC-machinery and to understand mechanisms of the death of these cells. We have previously found that CD4+ CD25+ lymphocytes appear in the lymphokine-activated killer (LAK) cell culture, which carry Tag7 (PGRP-S) and FasL proteins on their surface and can kill Hsp70- and Fas-expressing HLA-negative cells. In this work, we have continued to study the mechanisms of killing of the HLA-negative tumor cells, focusing this time on the CD8+ lymphocytes. We show that after a tumor antigen contact the IL-2 activated CD8+ lymphocytes acquire ability to lyse tumor cells bearing this antigen. However, activation of the CD8+ lymphocytes in the absence of antigen causes appearance of a cytotoxic population of CD8+ NKG2D+ lymphocytes, which are able to lyse HLA-negative cancer cells that have lost the classic mechanism of antigen presentation. These cells recognize the noncanonical MicA antigen on the surface of HLA-negative K562 cells but kill them via the FasL-Fas interaction, as do cytotoxic T lymphocytes. FasL presented on the lymphocyte surface can trigger both apoptosis and necroptosis. Unlike in the case of TNFR1, another cell death receptor, no switching to alternative processes has been observed upon induction of Fas-dependent cell death. It may well be that the apoptotic and necroptotic signals are transduced separately in the latter case, with the ability of FasL+ lymphocytes to induce necroptosis allowing them to kill tumor cells that escape apoptosis. J. Cell. Biochem. 118: 3359-3366, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Olga K Ivanova
- Department of Molecular Immunogenetics of Cancer, Institute of Gene Biology RAS, 34/5 Vavilova str., Moscow 119334, Russia
| | - Tatiana N Sharapova
- Department of Molecular Immunogenetics of Cancer, Institute of Gene Biology RAS, 34/5 Vavilova str., Moscow 119334, Russia
| | - Elena A Romanova
- Department of Molecular Immunogenetics of Cancer, Institute of Gene Biology RAS, 34/5 Vavilova str., Moscow 119334, Russia
| | - Natalia V Soshnikova
- Department of Molecular Immunogenetics of Cancer, Institute of Gene Biology RAS, 34/5 Vavilova str., Moscow 119334, Russia
| | - Lidia P Sashchenko
- Department of Molecular Immunogenetics of Cancer, Institute of Gene Biology RAS, 34/5 Vavilova str., Moscow 119334, Russia
| | - Denis V Yashin
- Department of Molecular Immunogenetics of Cancer, Institute of Gene Biology RAS, 34/5 Vavilova str., Moscow 119334, Russia
| |
Collapse
|
162
|
Morvan MG, Champsaur M, Reizis B, Lanier LL. Chronic In Vivo Interaction of Dendritic Cells Expressing the Ligand Rae-1ε with NK Cells Impacts NKG2D Expression and Function. Immunohorizons 2017; 1:10-19. [PMID: 28815225 PMCID: PMC5555644 DOI: 10.4049/immunohorizons.1700004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To investigate how dendritic cells (DCs) interact with NK cells in vivo, we developed a novel mouse model in which Rae-1ε, a ligand of the NKG2D receptor, is expressed in cells with high levels of CD11c. In these CD11c-Rae1 mice, expression of Rae-1 was confirmed on all subsets of DCs and a small subset of B and T cells, but not on NK cells. DC numbers and activation status were unchanged, and NK cells in these CD11c-Rae1 mice presented the same Ly49 repertoire and maturation levels as their littermate wildtype controls. Early NK cell activation after mouse CMV infection was slightly lower than in wildtype mice, but NK cell expansion and viral control were comparable. Notably, we demonstrate that chronic interaction of NK cells with NKG2D ligand-expressing DCs leads to a reversible NKG2D down-modulation, as well as impaired NKG2D-dependent NK cell functions, including tumor rejection. In addition to generating a useful mouse model, our studies reveal in vivo the functional importance of the NK cell and DC cross-talk.
Collapse
Affiliation(s)
- Maelig G. Morvan
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA 94143
| | - Marine Champsaur
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA 94143
| | - Boris Reizis
- Department of Pathology, New York University School of Medicine, New York, NY 10016
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032
| | - Lewis L. Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
163
|
Jelenčić V, Lenartić M, Wensveen FM, Polić B. NKG2D: A versatile player in the immune system. Immunol Lett 2017; 189:48-53. [PMID: 28414183 DOI: 10.1016/j.imlet.2017.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/11/2017] [Indexed: 12/21/2022]
Abstract
NKG2D is known as a potent activating receptor of the immune system. It is expressed on a multitude of immune cells, including NK cells and different subsets of T cells. NKG2D recognizes various MHC I-like ligands that are induced on target cells exposed to stressors such as viral infection, DNA damage and oncological transformation. NKG2D drives or facilitates cytotoxic and cytokine responses towards cells expressing its ligands to eliminate the threat. Therefore, NKG2D is usually classified as a sensor that translates cellular stress into activation signals for immune cells. However, more recently it has become evident that NKG2D plays a role beyond direct killing of target cells. Lack of NKG2D affects development of NK cells in the bone marrow, resulting in hyperreactive NK cells. NKG2D deficiency on CD8 T cells affects the ability of effector cells to produce cytokines in response to T cell receptor engagement and reduces their capacity to establish immunological memory. Although NKG2D is not expressed on B cells subsets, lack of this receptor in hematopoietic precursors affects B cell development. Homing of mature B2 cells is altered in NKG2D-deficient mice and they have a strong reduction in peripheral B1a cell numbers, resulting in increased susceptibility to bacterial infections. The exact molecular mechanisms via which NKG2D mediates these versatile functions is still being explored, but appears to depend on the control of activation thresholds, either in hematopoietic precursors or mature immune cell subsets. In this review, we will elaborate on the underappreciated developmental and regulatory roles of NKG2D.
Collapse
Affiliation(s)
- Vedrana Jelenčić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Maja Lenartić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Felix M Wensveen
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia; Department of Experimental Immunology, Amsterdam Medical Center, Amsterdam, The Netherlands
| | - Bojan Polić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
164
|
Weil S, Memmer S, Lechner A, Huppert V, Giannattasio A, Becker T, Müller-Runte A, Lampe K, Beutner D, Quaas A, Schubert R, Herrmann E, Steinle A, Koehl U, Walter L, von Bergwelt-Baildon MS, Koch J. Natural Killer Group 2D Ligand Depletion Reconstitutes Natural Killer Cell Immunosurveillance of Head and Neck Squamous Cell Carcinoma. Front Immunol 2017; 8:387. [PMID: 28443091 PMCID: PMC5385630 DOI: 10.3389/fimmu.2017.00387] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/20/2017] [Indexed: 12/21/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a highly heterogeneous and aggressive tumor originating from the epithelial lining of the upper aero-digestive tract accounting for 300,000 annual deaths worldwide due to failure of current therapies. The natural killer group 2D (NKG2D) receptors on natural killer (NK) cells and several T cell subsets play an important role for immunosurveillance of HNSCC and are thus targeted by tumor immune evasion strategies in particular by shedding of various NKG2D ligands (NKG2DLs). Based on plasma and tumor samples of 44 HNSCC patients, we found that despite compositional heterogeneity the total plasma level of NKG2DLs correlates with NK cell inhibition and disease progression. Strikingly, based on tumor spheroids and primary tumors of HNSCC patients, we found that NK cells failed to infiltrate HNSCC tumors in the presence of high levels of NKG2DLs, demonstrating a novel mechanism of NKG2DL-dependent tumor immune escape. Therefore, the diagnostic acquisition of the plasma level of all NKG2DLs might be instrumental for prognosis and to decipher a patient cohort, which could benefit from restoration of NKG2D-dependent tumor immunosurveillance. Along these lines, we could show that removal of shed NKG2DLs (sNKG2DLs) from HNSCC patients’ plasma restored NK cell function in vitro and in individual patients following surgical removal of the primary tumor. In order to translate these findings into a therapeutic setting, we performed a proof-of-concept study to test the efficacy of adsorption apheresis of sNKG2DLs from plasma after infusion of human MICA in rhesus monkeys. Complete removal of MICA was achieved after three plasma volume exchanges. Therefore, we propose adsorption apheresis of sNKG2DLs as a future preconditioning strategy to improve the efficacy of autologous and adoptively transferred immune cells in cellular cancer immunotherapy.
Collapse
Affiliation(s)
- Sandra Weil
- NK Cell Biology, Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,Institute of Medical Microbiology and Hygiene, University of Mainz Medical Center, Mainz, Germany
| | - Stefanie Memmer
- NK Cell Biology, Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,Institute of Medical Microbiology and Hygiene, University of Mainz Medical Center, Mainz, Germany
| | - Axel Lechner
- Medical Faculty, Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne, Center for Integrated Oncology Köln Bonn, Cologne, Germany
| | | | - Ariane Giannattasio
- NK Cell Biology, Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Tamara Becker
- Primate Husbandry, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | | | - Karen Lampe
- Infectious Pathology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Dirk Beutner
- Medical Faculty, Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne, Center for Integrated Oncology Köln Bonn, Cologne, Germany
| | - Alexander Quaas
- Institute of Pathology, University of Cologne, Cologne, Germany
| | - Ralf Schubert
- Allergy, Pulmonology, and Cystic Fibrosis, Children's Hospital, Goethe University, Frankfurt am Main, Germany
| | - Eva Herrmann
- Institute for Biostatistics and Mathematical Modelling, Goethe University, Frankfurt am Main, Germany
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Ulrike Koehl
- Hannover Medical School, Institute for Cellular Therapeutics, IFB-Tx, Hannover, Germany
| | - Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | | | - Joachim Koch
- NK Cell Biology, Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,Institute of Medical Microbiology and Hygiene, University of Mainz Medical Center, Mainz, Germany
| |
Collapse
|
165
|
Altmeyer S, Zentek J, Vahjen W, Scharek-Tedin L. The expression of NKG2D on porcine IEL and its possible relation to the adaptive intestinal immune system. Vet Immunol Immunopathol 2017; 187:89-95. [PMID: 28494934 DOI: 10.1016/j.vetimm.2017.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/12/2017] [Accepted: 03/23/2017] [Indexed: 01/15/2023]
Abstract
The gastrointestinal tract contains a multitude of components which include intraepithelial lymphocytes (IEL). IELs have been reported to express a variety of surface receptors that enable cross talk among various cell populations. The purpose of the reported investigation was to determine which IEL populations express the natural killer cell receptor NKG2D which is an activating receptor that plays a role in cytolytic responses. In a feeding experiment with piglets, IELs were isolated from jejunal tissue at three different stages post weaning. The time dependent development of different cell populations was evaluated and an elevated number of lymphocytes (CD45+) shortly after weaning was observed compared to later time points. The number of T cells (CD3), including cytotoxic T cells (CD8β/CD16-), appeared to be particularly affected by the weaning period. Correlation analysis revealed an association between the NKG2D expression in jejunal tissue and the frequency of lymphocytes, esp. CD8β+ cytotoxic T cells. Gene expression analysis of NKG2D were performed on several isolated IEL populations and support the hypothesis that cytotoxic T cells (CD8β) in the porcine gut epithelium are capable of communicating with the surrounding enterocytes and inducing immune reactions via NKG2D. Unlike previous observations in porcine blood, the γδ T cells of the gut epithelium also showed expression of the stress factor binding NKG2D receptor. Subsequent analysis of the isolated IELs revealed that T cells appear to only express the receptor after isolation with an anti-CD3 mab, indicating that a previous stimulation of the TCR/CD3 complex may reinforce this signal transduction pathway.
Collapse
Affiliation(s)
- Sara Altmeyer
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Strasse 49, D-14195 Berlin, Germany.
| | - Jürgen Zentek
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Strasse 49, D-14195 Berlin, Germany
| | - Wilfried Vahjen
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Strasse 49, D-14195 Berlin, Germany
| | - Lydia Scharek-Tedin
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Strasse 49, D-14195 Berlin, Germany
| |
Collapse
|
166
|
Abstract
Triggering of cell-mediated immunity is largely dependent on the recognition of foreign or abnormal molecules by a myriad of cell surface-bound receptors. Many activating immune receptors do not possess any intrinsic signaling capacity but instead form noncovalent complexes with one or more dimeric signaling modules that communicate with a common set of kinases to initiate intracellular information-transfer pathways. This modular architecture, where the ligand binding and signaling functions are detached from one another, is a common theme that is widely employed throughout the innate and adaptive arms of immune systems. The evolutionary advantages of this highly adaptable platform for molecular recognition are visible in the variety of ligand-receptor interactions that can be linked to common signaling pathways, the diversification of receptor modules in response to pathogen challenges, and the amplification of cellular responses through incorporation of multiple signaling motifs. Here we provide an overview of the major classes of modular activating immune receptors and outline the current state of knowledge regarding how these receptors assemble, recognize their ligands, and ultimately trigger intracellular signal transduction pathways that activate immune cell effector functions.
Collapse
Affiliation(s)
- Richard Berry
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University , Clayton, Victoria 3800, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University , Clayton, Victoria 3800, Australia
| | - Matthew E Call
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research , Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne , Parkville, Victoria 3052, Australia
| |
Collapse
|
167
|
Molfetta R, 1 Department of Molecular Medicine, “Sapienza” University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161, Rome, Italy, Zitti B, Santoni A, Paolini R, 2 Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden. Ubiquitin and ubiquitin-like modifiers modulate NK cell-mediated recognition and killing of damaged cells. AIMS ALLERGY AND IMMUNOLOGY 2017. [DOI: 10.3934/allergy.2017.4.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
168
|
Abstract
Viral infections continuously challenge and shape our immune system. Due to their fine antigen recognition ability, adaptive lymphocytes protect against pathogen reencounter by generating specific immunological memory. Innate cells such as macrophages also adapt to pathogen challenge and mount resistance to reinfection, a phenomenon termed trained immunity. As part of the innate immunity, natural killer (NK) cells can display rapid effector functions and play a crucial role in the control of viral infections, especially by the β-herpesvirus cytomegalovirus (CMV). CMV activates the NK-cell pool by inducing proinflammatory signals, which prime NK cells, paralleling macrophage training. In addition, CMV dramatically shapes the NK-cell repertoire due to its ability to trigger specific NK cell-activating receptors, and enables the expansion and persistence of a specific NK-cell subset displaying adaptive and memory features. In this chapter, we will discuss how different signals during CMV infection contribute to NK-cell training and acquisition of classical memory properties and how these events can impact on reinfection and cross-resistance.
Collapse
|
169
|
Gavlovsky PJ, Tonnerre P, Guitton C, Charreau B. Expression of MHC class I-related molecules MICA, HLA-E and EPCR shape endothelial cells with unique functions in innate and adaptive immunity. Hum Immunol 2016; 77:1084-1091. [PMID: 26916837 DOI: 10.1016/j.humimm.2016.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 02/03/2016] [Accepted: 02/18/2016] [Indexed: 10/22/2022]
Abstract
Endothelial cells (ECs) located at the interface of blood and tissues display regulatory activities toward coagulation, inflammation and vascular homeostasis. By expressing MHC class I and II antigens, ECs also contribute to immune responses. In transplantation, graft ECs are both trigger and target of alloimmune responses. ECs express a set of MHC class I-like or structural related molecules such as HLA-E, MHC class I related chain A (MICA) and the endothelial protein C receptor (EPCR) that provide multiple and unique functions to ECs. HLA-E is a low polymorphic ligand for the CD94/NKG2A/C receptors, and triggers HLA-E-restricted CD8+αβT cell responses against viral and bacterial peptides. MICA is a highly polymorphic ligand for NKG2D activating NK and costimulating CD8+T cells and a ligand for tissue-resident Vδ1 γδ T subsets. More intriguing is the role of EPCR, a key regulator of coagulation, as a ligand for a circulating subset of Vδ2- γδ T cells. Coexpression of this set of MHC class I-related molecules that allow ECs to activate a subtle array of immune responses upon stress and infection may also influence transplant outcome. Here, the respective structure, expression, and functions of HLA-E, MICA and EPCR as well as the impact of their polymorphism are reviewed.
Collapse
Affiliation(s)
- Pierre-Jean Gavlovsky
- INSERM, UMR1064, LabEx Transplantex, Nantes F44000, France; CHU Nantes, Institut de Transplantation et de Recherche en Transplantation-Urologie-Néphrologie, ITUN, Nantes F44000, France; LUNAM Université de Nantes, Faculté de Médecine, Nantes F44000, France; IHU-CESTI, Nantes F44000, France
| | - Pierre Tonnerre
- INSERM, UMR1064, LabEx Transplantex, Nantes F44000, France; LUNAM Université de Nantes, Faculté de Médecine, Nantes F44000, France
| | - Christophe Guitton
- INSERM, UMR1064, LabEx Transplantex, Nantes F44000, France; CHU Nantes, Institut de Transplantation et de Recherche en Transplantation-Urologie-Néphrologie, ITUN, Nantes F44000, France; LUNAM Université de Nantes, Faculté de Médecine, Nantes F44000, France
| | - Béatrice Charreau
- INSERM, UMR1064, LabEx Transplantex, Nantes F44000, France; CHU Nantes, Institut de Transplantation et de Recherche en Transplantation-Urologie-Néphrologie, ITUN, Nantes F44000, France; LUNAM Université de Nantes, Faculté de Médecine, Nantes F44000, France.
| |
Collapse
|
170
|
Liu F, Duan X, Wan Z, Zang H, You S, Yang R, Liu H, Li D, Li J, Zhang Y, Xin S. Lower number and decreased function of natural killer cells in hepatitis B virus related acute-on-chronic liver failure. Clin Res Hepatol Gastroenterol 2016; 40:605-613. [PMID: 27053076 DOI: 10.1016/j.clinre.2016.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/07/2016] [Accepted: 01/21/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND Hepatitis B virus (HBV)-related acute-on-chronic liver failure (ACLF) refers to acute deterioration occurring in patients with chronic hepatitis B infected liver diseases. An abnormality in NK cells mediated cellular immunity is believed to be a contributing factor. We aimed to evaluate the characteristic of NK cells in the peripheral blood of HBV related ACLF. METHODS Flow cytometric method was used to detect the absolute numbers and subgroups of NK cells, and analyze the cytotoxicity and killing ability of NK cells in patients with HBV-ACLF. RESULTS The results showed that peripheral numbers of NK cells were decreased in patients with HBV-ACLF, but not statistically significant. The cytotoxic CD56dimCD16bright NK cells were significantly decreased in HBV infected patients, especially ACLF patients. The CD56brightCD16- subgroup was expanded in patients with CHB and the CD56dimCD16- subgroup was expanded in patients with ACLF. The activating receptors of NKG2D, NKp30, NKp44, and NKp46 were increased in patients with ACLF. The inhibitory receptors of CD158a were increased, though the CD158b was decreased in patients of ACLF. The function of NK cells including cytotoxicity and killing activity were both downregulated in patients with ACLF and CHB. Even if after IL-12/15 stimulation, INF-γ and TNF-α produced by patients with ACLF were still less than those produced by healthy controls. CONCLUSIONS Patients with HBV-ACLF had lower numbers and decreased functions of cytotoxic NK cells.
Collapse
Affiliation(s)
| | | | | | - Hong Zang
- Beijing 302 Hospital, Beijing, China
| | | | | | | | - Dongze Li
- Beijing 302 Hospital, Beijing, China
| | - Jin Li
- Beijing 302 Hospital, Beijing, China
| | - Yawei Zhang
- Yale School of Public Health, Yale University, New Haven, CT, United States.
| | | |
Collapse
|
171
|
Molfetta R, Quatrini L, Zitti B, Capuano C, Galandrini R, Santoni A, Paolini R. Regulation of NKG2D Expression and Signaling by Endocytosis. Trends Immunol 2016; 37:790-802. [PMID: 27667711 DOI: 10.1016/j.it.2016.08.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 11/17/2022]
Abstract
NKG2D is an activating receptor that can bind to a large number of stress-induced ligands that are expressed in the context of cancer or viral infection. This receptor is expressed on many cytotoxic lymphocytes, and plays a crucial role in antitumor and antiviral immune responses. However, exposure to NKG2D ligand-expressing target cells promotes receptor endocytosis, ultimately leading to lysosomal receptor degradation and impairment of NKG2D-mediated functions. Interestingly, before being degraded, internalized receptors can signal from the endosomal compartment, leading to the appropriate activation of cellular functional programs. This review summarizes recent findings on ligand-induced receptor internalization, with particular emphasis on the role of endocytosis in the control of both NKG2D-mediated intracellular signaling and receptor degradation.
Collapse
Affiliation(s)
- Rosa Molfetta
- Department of Molecular Medicine, Institute Pasteur-Fondazione Cenci Bolognetti, 'Sapienza' University of Rome, 00161, Rome, Italy
| | - Linda Quatrini
- Department of Molecular Medicine, Institute Pasteur-Fondazione Cenci Bolognetti, 'Sapienza' University of Rome, 00161, Rome, Italy
| | - Beatrice Zitti
- Department of Molecular Medicine, Institute Pasteur-Fondazione Cenci Bolognetti, 'Sapienza' University of Rome, 00161, Rome, Italy
| | - Cristina Capuano
- Department of Experimental Medicine, 'Sapienza' University of Rome, 00161 Rome, Italy
| | - Ricciarda Galandrini
- Department of Experimental Medicine, 'Sapienza' University of Rome, 00161 Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Institute Pasteur-Fondazione Cenci Bolognetti, 'Sapienza' University of Rome, 00161, Rome, Italy; Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Neuromed, Pozzilli, IS, Italy.
| | - Rossella Paolini
- Department of Molecular Medicine, Institute Pasteur-Fondazione Cenci Bolognetti, 'Sapienza' University of Rome, 00161, Rome, Italy.
| |
Collapse
|
172
|
Singh BK, Kambayashi T. The Immunomodulatory Functions of Diacylglycerol Kinase ζ. Front Cell Dev Biol 2016; 4:96. [PMID: 27656643 PMCID: PMC5013040 DOI: 10.3389/fcell.2016.00096] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/22/2016] [Indexed: 12/13/2022] Open
Abstract
The generation of diacylglycerol (DAG) is critical for promoting immune cell activation, regulation, and function. Diacylglycerol kinase ζ (DGKζ) serves as an important negative regulator of DAG by enzymatically converting DAG into phosphatidic acid (PA) to shut down DAG-mediated signaling. Consequently, the loss of DGKζ increases DAG levels and the duration of DAG-mediated signaling. However, while the enhancement of DAG signaling is thought to augment immune cell function, the loss of DGKζ can result in both immunoactivation and immunomodulation depending on the cell type and function. In this review, we discuss how different immune cell functions can be selectively modulated by DGKζ. Furthermore, we consider how targeting DGKζ can be potentially beneficial for the resolution of human diseases by either promoting immune responses important for protection against infection or cancer or dampening immune responses in immunopathologic conditions such as allergy and septic shock.
Collapse
Affiliation(s)
- Brenal K Singh
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania Philadelphia, PA, USA
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
173
|
Peipp M, Derer S, Lohse S, Staudinger M, Klausz K, Valerius T, Gramatzki M, Kellner C. HER2-specific immunoligands engaging NKp30 or NKp80 trigger NK-cell-mediated lysis of tumor cells and enhance antibody-dependent cell-mediated cytotoxicity. Oncotarget 2016; 6:32075-88. [PMID: 26392331 PMCID: PMC4741660 DOI: 10.18632/oncotarget.5135] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 09/04/2015] [Indexed: 12/19/2022] Open
Abstract
NK cells detect tumors through activating surface receptors, which bind self-antigens that are frequently expressed upon malignant transformation. To increase the recognition of tumor cells, the extracellular domains of ligands of the activating NK cell receptors NKp30, NKp80 and DNAM-1 (i.e. B7-H6, AICL and PVR, respectively) were fused to a single-chain fragment variable (scFv) targeting the human epidermal growth factor receptor 2 (HER2), which is displayed by various solid tumors. The resulting immunoligands, designated B7-H6:HER2-scFv, AICL:HER2-scFv, and PVR:HER2-scFv, respectively, bound HER2 and the addressed NK cell receptor. However, whereas B7-H6:HER2-scFv and AICL:HER2-scFv triggered NK cells to kill HER2-positive breast cancer cells at nanomolar concentrations, PVR:HER2-scFv was not efficacious. Moreover, NK cell cytotoxicity was enhanced synergistically when B7-H6:HER2-scFv or AICL:HER2-scFv were applied in combination with another HER2-specific immunoligand engaging the stimulatory receptor NKG2D. In contrast, no improvements were achieved by combining B7-H6:HER2-scFv with AICL:HER2-scFv. Additionally, B7-H6:HER2-scFv and AICL:HER2-scFv enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) by the therapeutic antibodies trastuzumab and cetuximab synergistically, with B7-H6:HER2-scFv exhibiting a higher efficacy. In summary, antibody-derived proteins engaging NKp30 or NKp80 may represent attractive biologics to further enhance anti-tumor NK cell responses and may provide an innovative approach to sensitize tumor cells for antibody-based immunotherapy.
Collapse
Affiliation(s)
- Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Stefanie Derer
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Stefan Lohse
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Matthias Staudinger
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Katja Klausz
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Martin Gramatzki
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christian Kellner
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
174
|
Development of a Modular Assay for Detailed Immunophenotyping of Peripheral Human Whole Blood Samples by Multicolor Flow Cytometry. Int J Mol Sci 2016; 17:ijms17081316. [PMID: 27529227 PMCID: PMC5000713 DOI: 10.3390/ijms17081316] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/18/2016] [Accepted: 07/28/2016] [Indexed: 12/19/2022] Open
Abstract
The monitoring of immune cells gained great significance in prognosis and prediction of therapy responses. For analyzing blood samples, the multicolor flow cytometry has become the method of choice as it combines high specificity on single cell level with multiple parameters and high throughput. Here, we present a modular assay for the detailed immunophenotyping of blood (DIoB) that was optimized for an easy and direct application in whole blood samples. The DIoB assay characterizes 34 immune cell subsets that circulate the peripheral blood including all major immune cells such as T cells, B cells, natural killer (NK) cells, monocytes, dendritic cells (DCs), neutrophils, eosinophils, and basophils. In addition, it evaluates their functional state and a few non-leukocytes that also have been associated with the outcome of cancer therapy. This DIoB assay allows a longitudinal and close-meshed monitoring of a detailed immune status in patients requiring only 2.0 mL of peripheral blood and it is not restricted to peripheral blood mononuclear cells. It is currently applied for the immune monitoring of patients with glioblastoma multiforme (IMMO-GLIO-01 trial, NCT02022384), pancreatic cancer (CONKO-007 trial, NCT01827553), and head and neck cancer (DIREKHT trial, NCT02528955) and might pave the way for immune biomarker identification for prediction and prognosis of therapy outcome.
Collapse
|
175
|
Shimasaki N, Coustan-Smith E, Kamiya T, Campana D. Expanded and armed natural killer cells for cancer treatment. Cytotherapy 2016; 18:1422-1434. [PMID: 27497701 DOI: 10.1016/j.jcyt.2016.06.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/11/2016] [Accepted: 06/16/2016] [Indexed: 10/21/2022]
Abstract
The capacity of natural killer (NK) cells to recognize and kill transformed cells suggests that their infusion could be used to treat cancer. It is difficult to obtain large numbers of NK cells ex vivo by exposure to cytokines alone but the addition of stimulatory cells to the cultures can induce NK cell proliferation and long-term expansion. Some of these methods have been validated for clinical-grade application and support clinical trials testing feasibility and safety of NK cell administration. Early data indicate that ex vivo expansion of NK cells from healthy donors or from patients with cancer is robust, allowing multiple infusions from a single apheresis. NK cells can transiently expand in vivo after infusion. Allogeneic NK cells are not direct effectors of graft-versus-host disease but this may occur if donor NK cells are infused after allogeneic hematopoietic stem cell transplant, which may activate T cell alloreactivity. NK cells can be directed with antibodies, or engineered using either transient modification by electroporation of mRNA or prolonged gene expression by viral transduction. Thus, expanded NK cells can be armed with activating receptors that enhance their natural anti-tumor capacity or with chimeric antigen receptors that can redirect them towards specific tumor targets. They can also be induced to express cytokines that promote their autonomous growth, further supporting their in vivo expansion. With the implementation of these approaches, expanded and armed NK cells should ultimately become a powerful component of immunotherapy of cancer.
Collapse
Affiliation(s)
- Noriko Shimasaki
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Elaine Coustan-Smith
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Takahiro Kamiya
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Dario Campana
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
176
|
Kadri N, Wagner AK, Ganesan S, Kärre K, Wickström S, Johansson MH, Höglund P. Dynamic Regulation of NK Cell Responsiveness. Curr Top Microbiol Immunol 2016; 395:95-114. [PMID: 26658943 DOI: 10.1007/82_2015_485] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Natural killer (NK) cells deliver cytotoxic granules and immunomodulatory cytokines in response to transformed and virally infected cells. NK cell functions are under the control of a large number of germline-encoded receptors that recognize various ligands on target cells, but NK cells also respond to cytokines in the surrounding environment. The interaction between NK cell receptors and their ligands delivers either inhibitory or activating signals. The cytokine milieu further shapes NK cell responses, either directly or by influencing the way inhibitory or activating signals are perceived by NK cells. In this review, we discuss how NK cell function is controlled by inhibitory receptors and MHC-I molecules, how activating receptors contribute to NK cell education, and finally, how cytokines secreted by the surrounding cells affect NK cell responsiveness. Inputs at these three levels involve different cell types and are seamlessly integrated to form a functional NK cell population.
Collapse
Affiliation(s)
- Nadir Kadri
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine (HERM), Karolinska Institutet, 141 86, Stockholm, Sweden
| | - Arnika Kathleen Wagner
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Sridharan Ganesan
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine (HERM), Karolinska Institutet, 141 86, Stockholm, Sweden
| | - Klas Kärre
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Stina Wickström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Maria H Johansson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Petter Höglund
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine (HERM), Karolinska Institutet, 141 86, Stockholm, Sweden.
| |
Collapse
|
177
|
Chávez-Blanco A, Chacón-Salinas R, Dominguez-Gomez G, Gonzalez-Fierro A, Perez-Cardenas E, Taja-Chayeb L, Trejo-Becerril C, Duenas-Gonzalez A. Viral inhibitors of NKG2D ligands for tumor surveillance. Expert Opin Ther Targets 2016; 20:1375-1387. [PMID: 27322108 DOI: 10.1080/14728222.2016.1202928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Natural Killer cells (NK) are key for the innate immune response against tumors and viral infections. Several viral proteins evade host immune response and target the NK cell receptor NKG2D and its ligands. Areas covered: This review aimed to describe the viruses and their proteins that interfere with the NKG2D receptor and their ligands, and how these interactions lead to immune evasion, host protection, and tissue damage from acute and chronic viral infections. Expert opinion: The study of viral proteins has already impacted the field of oncology. A prime example is the HBV vaccine and the development of antiviral drugs for HIV, Hepatitis C, and the family of Herpesviridae viruses. The NKG2D system seems to be a rational therapeutic target. Nevertheless, an effective cytotoxic response by NK cells is mediated by a network of activating and inhibitory receptors, the integration of which determines if the NK cell becomes cytotoxic or permissive. Immunotherapeutic agents that increase the antitumor lytic activity of NK cells through modulating activation and inhibitory signaling of NK cells are being developed. Nevertheless, more research is needed to dissect the integrative mechanism of NK cells function to fully exploit their antitumor and antiviral effector mechanisms.
Collapse
Affiliation(s)
- Alma Chávez-Blanco
- a Division of Basic Research , Instituto Nacional de Cancerología , Mexico City , Mexico
| | - Rommel Chacón-Salinas
- b Departamento de Inmunología , Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN , Mexico City , México
| | | | - Aurora Gonzalez-Fierro
- a Division of Basic Research , Instituto Nacional de Cancerología , Mexico City , Mexico
| | - Enrique Perez-Cardenas
- a Division of Basic Research , Instituto Nacional de Cancerología , Mexico City , Mexico
| | - Lucia Taja-Chayeb
- a Division of Basic Research , Instituto Nacional de Cancerología , Mexico City , Mexico
| | | | - Alfonso Duenas-Gonzalez
- c Unidad de Investigacion Biomedica en Cancer , Instituto de Investigaciones Biomédicas UNAM/Instituto Nacional de Cancerología , Mexico City , Mexico.,d Unidad de Investigacion Basica Aplicada , ISSEMyM Cancer Center , Toluca , Mexico
| |
Collapse
|
178
|
Brennan K, McSharry BP, Keating S, Petrasca A, O'Reilly VP, Keane J, Doherty DG, Gardiner CM. Human Natural Killer cell expression of ULBP2 is associated with a mature functional phenotype. Hum Immunol 2016; 77:876-885. [PMID: 27349945 DOI: 10.1016/j.humimm.2016.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 06/02/2016] [Accepted: 06/23/2016] [Indexed: 11/19/2022]
Abstract
NKG2D is an important activating receptor expressed on NK cells. Ligands (termed NKG2DL) for this receptor include ULBP1-6, MICA and MICB in humans; they are upregulated in stressed, cancerous or infected cells where they engage NKG2D to induce NK cell cytotoxicity and cytokine production. Expression of NKG2DL on effector cells has been described in mice and more recently in human cells. We confirm that NK cell lines and IL-2 stimulated primary human NK cells also express the NKG2DL, ULBP2. However, expression of ULBP2 was not a result of transfer from a non-NK cell to an NK cell and in contrast to recent reports we saw no evidence that ULBP2 expression targeted these NK cells for fratricide or for cytotoxicity by NKG2D-expressing, non-NK effector cells. ULBP2 expression was however linked to expression of mature CD57(+) NK cells. In particular, expression of ULBP2 was strongest on those NK cells that had evidence of recent activation and proliferation. We suggest that ULBP2 could be used to identify recently activated "mature" NK cells. Defining this phenotype would be useful for understanding the ontogeny on human NK cells.
Collapse
Affiliation(s)
- Kiva Brennan
- NK Cell Laboratory, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College, Dublin 2, Ireland
| | - Brian P McSharry
- NK Cell Laboratory, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College, Dublin 2, Ireland
| | - Sinéad Keating
- NK Cell Laboratory, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College, Dublin 2, Ireland
| | - Andreea Petrasca
- Department of Immunology, School of Medicine, Trinity College Dublin, Dublin 8, Ireland
| | - Vincent P O'Reilly
- Department of Immunology, School of Medicine, Trinity College Dublin, Dublin 8, Ireland
| | - Joseph Keane
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin 8, Ireland
| | - Derek G Doherty
- Department of Immunology, School of Medicine, Trinity College Dublin, Dublin 8, Ireland
| | - Clair M Gardiner
- NK Cell Laboratory, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
179
|
sMICA as novel and early predictors for acute myocardial infarction. Eur J Med Res 2016; 21:25. [PMID: 27306684 PMCID: PMC4910230 DOI: 10.1186/s40001-016-0220-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/03/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND AND AIMS MHC class I polypeptide-related chain A (MICA) molecule is induced in response to viral infection, various types of stress, such as endoplasmic reticulum stress, and ischemia or/and reperfusion, by which MICA was shed from the cell surface into the extracellular domain, generating a soluble form (sMICA). In the present study, we designed to investigate the serum sMICA level in patients with AMI and determine whether sMICA could be an early biomarker for diagnosis of AMI. METHODS There were 103 patients who presented with first-time AMI that was assessed after the incident. The control group consisted of 103 healthy volunteers. Serum levels of sMICA and Troponin T were detected by the specific ELISA kits. RESULTS Serum levels of sMICA reach the peaks [(1.34 ± .18 and 1.72 ± .20)n/l] at 6-12 h and serum levels of cTnT reach the peaks [(1.16 ± .28 and 1.14 ± .34)n/l] at 12-24 h. Both of them were significantly higher than the healthy controls [(.168 ± .014) n/l, p = .000] for sMICA and [(.13 ± .06) n/l, p = .000] for Troponin T (cTnT). sMICA is more sensitive in the early diagnosis of AMI than cTnT. The combined ROC analysis revealed an AUC value of .78 (95 % CI .69-.83) in discriminating AMI patients from healthy controls. CONCLUSIONS We have detected high levels of sMICA in patients with AMI. Elevated serum sMICA may be a novel biomarker for the early detection of myocardial injury in humans.
Collapse
|
180
|
Fišerová A, Richter J, Čapková K, Bieblová J, Mikyšková R, Reiniš M, Indrová M. Resistance of novel mouse strains different in MHC class I and the NKC domain to the development of experimental tumors. Int J Oncol 2016; 49:763-72. [PMID: 27279019 DOI: 10.3892/ijo.2016.3561] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/18/2016] [Indexed: 11/05/2022] Open
Abstract
To elucidate the immunological mechanisms critical for tumor progression, we bred novel mouse strains, different in the NKC and H-2D domains. We used inbreeding to generate hybrids of Balb/c and C57BL/6 of stable H-2Db+d-NK1.1neg and H-2Db-d+NK1.1high phenotypes. We analyzed the growth of three established MHC class I-deficient tumor cell lines: TC-1/A9 tumor (HPV-associated) and B16F10 melanoma, both syngeneic to C57BL/6, and the MCB8 (3-methycholanthrene-induced tumor) syngeneic to Balb/c. Furthermore, we induced colorectal carcinoma by azoxymethane-DSS treatment to test the susceptibility to chemically-induced primary cancer. We found that the novel strains spontaneously regressed the tumor transplants syngeneic to both Balb/c (MCB8) and C57BL/6 (B16F10 and TC-1/A9) mice. The H2-Db+d-NK1.1neg, but not the H2-Db-d+NK1.1high strain was also highly resistant to chemically-induced colorectal cancer in comparison to the parental mice. The immune changes during TC-1/A9 cancer development involved an increase of the NK cell distribution in the peripheral blood and spleen along with higher expression of NKG2D activation antigen; this was in correlation with the time-dependent rise of cytotoxic activity in comparison to C57BL/6 mice. The TC-1/A9 cancer regression was accompanied by higher proportion of B cells in the spleen and B220+/CD86+ activated antigen-presenting B cells distributed in the lymphoid organs, as well as in the periphery. The changes in the T-cell population were represented mainly by the prevalence of T helper cells reflected by grown CD4/CD8 ratio, most prominent in the b+d-NK1.1neg strain. The results of the present study imply usefulness of the two novel mouse strains as an experimental model for further studies of tumor resistance mechanisms.
Collapse
Affiliation(s)
- Anna Fišerová
- Department of Health Care Disciplines and Population Protection, Czech Technical University in Prague, Faculty of Biomedical Engineering, Sportovců 2311, 27201 Kladno, Czech Republic
| | - Jan Richter
- Department of Health Care Disciplines and Population Protection, Czech Technical University in Prague, Faculty of Biomedical Engineering, Sportovců 2311, 27201 Kladno, Czech Republic
| | - Katarína Čapková
- Department of Health Care Disciplines and Population Protection, Czech Technical University in Prague, Faculty of Biomedical Engineering, Sportovců 2311, 27201 Kladno, Czech Republic
| | - Jana Bieblová
- Department of Transgenic Models of Diseases, Institute of Molecular Genetics of the AS CR, v.v.i., Prague, Czech Centre for Phenogenomics, Division BIOCEV, Průmyslová 595, 252 42 Vestec, Czech Republic
| | - Romana Mikyšková
- Department of Transgenic Models of Diseases, Institute of Molecular Genetics of the AS CR, v.v.i., Prague, Czech Centre for Phenogenomics, Division BIOCEV, Průmyslová 595, 252 42 Vestec, Czech Republic
| | - Milan Reiniš
- Department of Transgenic Models of Diseases, Institute of Molecular Genetics of the AS CR, v.v.i., Prague, Czech Centre for Phenogenomics, Division BIOCEV, Průmyslová 595, 252 42 Vestec, Czech Republic
| | - Marie Indrová
- Department of Transgenic Models of Diseases, Institute of Molecular Genetics of the AS CR, v.v.i., Prague, Czech Centre for Phenogenomics, Division BIOCEV, Průmyslová 595, 252 42 Vestec, Czech Republic
| |
Collapse
|
181
|
Wang WY, Tian W, Zhu FM, Liu XX, Li LX, Wang F. MICA, MICB Polymorphisms and Linkage Disequilibrium with HLA-B in a Chinese Mongolian Population. Scand J Immunol 2016; 83:456-462. [PMID: 27028549 DOI: 10.1111/sji.12437] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/22/2016] [Indexed: 11/30/2022]
Abstract
In this study, polymorphisms of major histocompatibility complex class I chain-related genes A and B (MICA and MICB) and human leucocyte antigen (HLA)-B gene were investigated for 158 unrelated Chinese Mongolian subjects recruited from central Inner Mongolia Autonomous Region, northern China, by polymerase chain reaction-sequence-based typing (PCR-SBT) and cloning. Collectively, 79 alleles, including 20 MICA, 12 MICB and 47 HLA-B alleles, were identified. MICA*008:01 (21.2%), MICB*005:02 (48.1%) and HLA-B*51:01 (7.91%) were the most common alleles. Significant global linkage disequilibrium (LD) was detected between HLA-B and MICA, HLA-B and MICB, and MICA and MICB loci (all P < 0.000001). The most frequent haplotypes were HLA-B*51:01-MICA*009:01 (7.28%), HLA-B*58:01-MICB*008 (6.96%), MICA*010-MICB*005:02 (13.92%) and HLA-B*58:01-MICA*002:01-MICB*008 (6.96%). HLA-B-MICA haplotypes such as HLA-B*50:01-MICA*009:02 were associated with single MICB allele. Some HLA-B-MICA haplotypes were associated with multiple MICB alleles, including HLA-B*51:01-MICA*009:01. One novel MICB allele, MICB*031, was identified, which has possibly arisen from MICB*002:01 through single mutation event. We also confirmed the existence of a recently recognized MICA allele, MICA*073, whose ethnic origin has not been previously described. Genotype distributions at MICA, MICB and HLA-B were consistent with a neutrality model. Our results provide new insight into MIC genetic polymorphisms in Chinese ethnic groups. Findings shown here are important from an anthropologic perspective and will inform future studies of the potential role of MIC genes in allogeneic organ transplantation and HLA-linked disease association in populations of related ancestry.
Collapse
Affiliation(s)
- W Y Wang
- Immunogenetics Research Group, Department of Immunology, College of Basic Medical Sciences, Central South University, Changsha, China
| | - W Tian
- Immunogenetics Research Group, Department of Immunology, College of Basic Medical Sciences, Central South University, Changsha, China
- Laboratory of Cellular and Molecular Biology, College of Basic Medical Sciences, Central South University, Changsha, China
| | - F M Zhu
- HLA typing laboratory, Blood Center of Zhejiang Province, Hangzhou, Zhejiang, China
- Key Laboratory of Blood Safety Research, Ministry of Health, Hangzhou, China
| | - X X Liu
- Immunogenetics Research Group, Department of Immunology, College of Basic Medical Sciences, Central South University, Changsha, China
| | - L X Li
- Immunogenetics Research Group, Department of Immunology, College of Basic Medical Sciences, Central South University, Changsha, China
- Laboratory of Cellular and Molecular Biology, College of Basic Medical Sciences, Central South University, Changsha, China
| | - F Wang
- Immunogenetics Research Group, Department of Immunology, College of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
182
|
Abstract
Human and mouse NKG2D ligands (NKG2DLs) are absent or only poorly expressed by most normal cells but are upregulated by cell stress, hence, alerting the immune system in case of malignancy or infection. Although these ligands are numerous and highly variable (at genetic, genomic, structural, and biochemical levels), they all belong to the major histocompatibility complex class I gene superfamily and bind to a single, invariant, receptor: NKG2D. NKG2D (CD314) is an activating receptor expressed on NK cells and subsets of T cells that have a key role in the recognition and lysis of infected and tumor cells. Here, we review the molecular diversity of NKG2DLs, discuss the increasing appreciation of their roles in a variety of medical conditions, and propose several explanations for the evolutionary force(s) that seem to drive the multiplicity and diversity of NKG2DLs while maintaining their interaction with a single invariant receptor.
Collapse
Affiliation(s)
- Raphael Carapito
- ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx TRANSPLANTEX, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Laboratoire International Associé (LIA) INSERM, Strasbourg (France) - Nagano (Japan), Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Strasbourg, France
| | - Seiamak Bahram
- ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx TRANSPLANTEX, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Laboratoire International Associé (LIA) INSERM, Strasbourg (France) - Nagano (Japan), Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Strasbourg, France.,Laboratoire Central d'Immunologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
183
|
Saunders PM, Vivian JP, O'Connor GM, Sullivan LC, Pymm P, Rossjohn J, Brooks AG. A bird's eye view of NK cell receptor interactions with their MHC class I ligands. Immunol Rev 2016; 267:148-66. [PMID: 26284476 DOI: 10.1111/imr.12319] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The surveillance of target cells by natural killer (NK) cells utilizes an ensemble of inhibitory and activating receptors, many of which interact with major histocompatibility complex (MHC) class I molecules. NK cell recognition of MHC class I proteins is important developmentally for the acquisition of full NK cell effector capacity and during target cell recognition, where the engagement of inhibitory receptors and MHC class I molecules attenuates NK cell activation. Human NK cells have evolved two broad strategies for recognition of human leukocyte antigen (HLA) class I molecules: (i) direct recognition of polymorphic classical HLA class I proteins by diverse receptor families such as the killer cell immunoglobulin-like receptors (KIRs), and (ii) indirect recognition of conserved sets of HLA class I-derived peptides displayed on the non-classical HLA-E for recognition by CD94-NKG2 receptors. In this review, we assess the structural basis for the interaction between these NK receptors and their HLA class I ligands and, using the suite of published KIR and CD94-NKG2 ternary complexes, highlight the features that allow NK cells to orchestrate the recognition of a range of different HLA class I proteins.
Collapse
Affiliation(s)
- Philippa M Saunders
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Julian P Vivian
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| | - Geraldine M O'Connor
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Lucy C Sullivan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Phillip Pymm
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Andrew G Brooks
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
184
|
Rajasekaran K, Riese MJ, Rao S, Wang L, Thakar MS, Sentman CL, Malarkannan S. Signaling in Effector Lymphocytes: Insights toward Safer Immunotherapy. Front Immunol 2016; 7:176. [PMID: 27242783 PMCID: PMC4863891 DOI: 10.3389/fimmu.2016.00176] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 04/20/2016] [Indexed: 12/15/2022] Open
Abstract
Receptors on T and NK cells systematically propagate highly complex signaling cascades that direct immune effector functions, leading to protective immunity. While extensive studies have delineated hundreds of signaling events that take place upon receptor engagement, the precise molecular mechanism that differentially regulates the induction or repression of a unique effector function is yet to be fully defined. Such knowledge can potentiate the tailoring of signal transductions and transform cancer immunotherapies. Targeted manipulations of signaling cascades can augment one effector function such as antitumor cytotoxicity while contain the overt generation of pro-inflammatory cytokines that contribute to treatment-related toxicity such as “cytokine storm” and “cytokine-release syndrome” or lead to autoimmune diseases. Here, we summarize how individual signaling molecules or nodes may be optimally targeted to permit selective ablation of toxic immune side effects.
Collapse
Affiliation(s)
- Kamalakannan Rajasekaran
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute , Milwaukee, WI , USA
| | - Matthew J Riese
- Laboratory of Lymphocyte Biology, Blood Research Institute, Milwaukee, WI, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sridhar Rao
- Laboratory of Stem Cell Transcriptional Regulation, Blood Research Institute, Milwaukee, WI, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Li Wang
- Department of Medicine, Medical College of Wisconsin , Milwaukee, WI , USA
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Charles L Sentman
- Department of Microbiology and Immunology, Center for Synthetic Immunity at the Geisel School of Medicine at Dartmouth , Lebanon, NH , USA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
185
|
Raju S, Kretzmer LZ, Koues OI, Payton JE, Oltz EM, Cashen A, Polic B, Schreiber RD, Shaw AS, Markiewicz MA. NKG2D-NKG2D Ligand Interaction Inhibits the Outgrowth of Naturally Arising Low-Grade B Cell Lymphoma In Vivo. THE JOURNAL OF IMMUNOLOGY 2016; 196:4805-13. [PMID: 27183590 DOI: 10.4049/jimmunol.1501982] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 04/04/2016] [Indexed: 12/15/2022]
Abstract
It is now clear that recognition of nascent tumors by the immune system is critical for survival of the host against cancer. During cancer immunoediting, the ability of the tumor to escape immune recognition is important for tumor development. The immune system recognizes tumors via the presence of classical Ags and also by conserved innate mechanisms. One of these mechanisms is the NKG2D receptor that recognizes ligands whose expression is induced by cell transformation. In this study, we show that in NKG2D receptor-deficient mice, increasing numbers of B cells begin to express NKG2D ligands as they age. Their absence in wild-type mice suggests that these cells are normally cleared by NKG2D-expressing cells. NKG2D-deficient mice and mice constitutively expressing NKG2D ligands had increased incidence of B cell tumors, confirming that the inability to clear NKG2D ligand-expressing cells was important in tumor suppression and that NKG2D ligand expression is a marker of nascent tumors. Supporting a role for NKG2D ligand expression in controlling the progression of early-stage B cell lymphomas in humans, we found higher expression of a microRNA that inhibits human NKG2D ligand expression in tumor cells from high-grade compared with low-grade follicular lymphoma patients.
Collapse
Affiliation(s)
- Saravanan Raju
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Lena Z Kretzmer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Olivia I Koues
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Jacqueline E Payton
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Eugene M Oltz
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Amanda Cashen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63105
| | - Bojan Polic
- Department of Histology and Embryology, Medical Faculty University of Rijeka, 51000 Rijeka, Croatia
| | - Robert D Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Andrey S Shaw
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; Howard Hughes Medical Institute, Washington University School of Medicine, St Louis, MO 63110; and
| | - Mary A Markiewicz
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
186
|
Gilhar A, Schrum AG, Etzioni A, Waldmann H, Paus R. Alopecia areata: Animal models illuminate autoimmune pathogenesis and novel immunotherapeutic strategies. Autoimmun Rev 2016; 15:726-35. [PMID: 26971464 DOI: 10.1016/j.autrev.2016.03.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/02/2016] [Indexed: 01/13/2023]
Abstract
One of the most common human autoimmune diseases, alopecia areata (AA), is characterized by sudden, often persisting and psychologically devastating hair loss. Animal models have helped greatly to elucidate critical cellular and molecular immune pathways in AA. The two most prominent ones are inbred C3H/HeJ mice which develop an AA-like hair phenotype spontaneously or after experimental induction, and healthy human scalp skin xenotransplanted onto SCID mice, in which a phenocopy of human AA is induced by injecting IL-2-stimulated PBMCs enriched for CD56+/NKG2D+ cells intradermally. The current review critically examines the pros and cons of the available AA animal models and how they have shaped our understanding of AA pathobiology, and the development of new therapeutic strategies. AA is thought to arise when the hair follicle's (HF) natural immune privilege (IP) collapses, inducing ectopic MHC class I expression in the HF epithelium and autoantigen presentation to autoreactive CD8+ T cells. In common with other autoimmune diseases, upregulation of IFN-γ and IL-15 is critically implicated in AA pathogenesis, as are NKG2D and its ligands, MICA, and ULBP3. The C3H/HeJ mouse model was used to identify key immune cell and molecular principles in murine AA, and proof-of-principle that Janus kinase (JAK) inhibitors are suitable agents for AA management in vivo, since both IFN-γ and IL-15 signal via the JAK pathway. Instead, the humanized mouse model of AA has been used to demonstrate the previously hypothesized key role of CD8+ T cells and NKG2D+ cells in AA pathogenesis and to discover human-specific pharmacologic targets like the potassium channel Kv1.3, and to show that the PDE4 inhibitor, apremilast, inhibits AA development in human skin. As such, AA provides a model disease, in which to contemplate general challenges, opportunities, and limitations one faces when selecting appropriate animal models in preclinical research for human autoimmune diseases.
Collapse
Affiliation(s)
- Amos Gilhar
- Skin Research Laboratory, Faculty of Medicine, Technion - Israel Institute of Technology, Flieman Medical Center, PO Box 9649, Haifa, Israel.
| | - Adam G Schrum
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Amos Etzioni
- Ruth Children Hospital, Haifa, Israel; Rappaport Medical School, Technion, Haifa, Israel
| | - Herman Waldmann
- Therapeutic Immunology Group, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ralf Paus
- Centre for Dermatology Research, Inst. of Inflammation and Repair, University of Manchester, Manchester, UK; Department of Dermatology, University of Münster, Münster, Germany
| |
Collapse
|
187
|
Abstract
NKG2D is an activating receptor expressed on the surface of natural killer (NK) cells, CD8(+) T cells, and subsets of CD4(+) T cells, invariant NKT cells (iNKT), and γδ T cells. In humans, NKG2D transmits signals by its association with the DAP10 adapter subunit, and in mice alternatively spliced isoforms transmit signals either using DAP10 or DAP12 adapter subunits. Although NKG2D is encoded by a highly conserved gene (KLRK1) with limited polymorphism, the receptor recognizes an extensive repertoire of ligands, encoded by at least eight genes in humans (MICA, MICB, RAET1E, RAET1G, RAET1H, RAET1I, RAET1L, and RAET1N), some with extensive allelic polymorphism. Expression of the NKG2D ligands is tightly regulated at the level of transcription, translation, and posttranslation. In general, healthy adult tissues do not express NKG2D glycoproteins on the cell surface, but these ligands can be induced by hyperproliferation and transformation, as well as when cells are infected by pathogens. Thus, the NKG2D pathway serves as a mechanism for the immune system to detect and eliminate cells that have undergone "stress." Viruses and tumor cells have devised numerous strategies to evade detection by the NKG2D surveillance system, and diversification of the NKG2D ligand genes likely has been driven by selective pressures imposed by pathogens. NKG2D provides an attractive target for therapeutics in the treatment of infectious diseases, cancer, and autoimmune diseases.
Collapse
Affiliation(s)
- Lewis L Lanier
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California.
| |
Collapse
|
188
|
Tang M, Acheampong DO, Wang Y, Xie W, Wang M, Zhang J. Tumoral NKG2D alters cell cycle of acute myeloid leukemic cells and reduces NK cell-mediated immune surveillance. Immunol Res 2016; 64:754-64. [DOI: 10.1007/s12026-015-8769-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
189
|
Jabri B, Abadie V. IL-15 functions as a danger signal to regulate tissue-resident T cells and tissue destruction. Nat Rev Immunol 2015; 15:771-83. [PMID: 26567920 PMCID: PMC5079184 DOI: 10.1038/nri3919] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this Opinion article, we discuss the function of tissues as a crucial checkpoint for the regulation of effector T cell responses, and the notion that interleukin-15 (IL-15) functions as a danger molecule that communicates to the immune system that the tissue is under attack and poises it to mediate tissue destruction. More specifically, we propose that expression of IL-15 in tissues promotes T helper 1 cell-mediated immunity and provides co-stimulatory signals to effector cytotoxic T cells to exert their effector functions and drive tissue destruction. Therefore, we think that IL-15 contributes to tissue protection by promoting the elimination of infected cells but that when its expression is chronically dysregulated, it can promote the development of complex T cell-mediated disorders associated with tissue destruction, such as coeliac disease and type 1 diabetes.
Collapse
Affiliation(s)
- Bana Jabri
- Departments of Medicine, Pathology and Pediatrics, University of Chicago, Knapp Center for Biomedical Discovery (KCBD), Chicago, Illinois 60637, USA
| | - Valérie Abadie
- Department of Microbiology, Infectious Diseases, and Immunology, University of Montreal, and the Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada
| |
Collapse
|
190
|
Li Y, Yin J, Li T, Huang S, Yan H, Leavenworth J, Wang X. NK cell-based cancer immunotherapy: from basic biology to clinical application. SCIENCE CHINA-LIFE SCIENCES 2015; 58:1233-45. [DOI: 10.1007/s11427-015-4970-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/16/2015] [Indexed: 12/31/2022]
|
191
|
Quatrini L, Molfetta R, Zitti B, Peruzzi G, Fionda C, Capuano C, Galandrini R, Cippitelli M, Santoni A, Paolini R. Ubiquitin-dependent endocytosis of NKG2D-DAP10 receptor complexes activates signaling and functions in human NK cells. Sci Signal 2015; 8:ra108. [PMID: 26508790 DOI: 10.1126/scisignal.aab2724] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cytotoxic lymphocytes share the presence of the activating receptor NK receptor group 2, member D (NKG2D) and the signaling-competent adaptor DNAX-activating protein 10 (DAP10), which together play an important role in antitumor immune surveillance. Ligand stimulation induces the internalization of NKG2D-DAP10 complexes and their delivery to lysosomes for degradation. In experiments with human NK cells and cell lines, we found that the ligand-induced endocytosis of NKG2D-DAP10 depended on the ubiquitylation of DAP10, which was also required for degradation of the internalized complexes. Moreover, through combined biochemical and microscopic analyses, we showed that ubiquitin-dependent receptor endocytosis was required for the activation of extracellular signal-regulated kinase (ERK) and NK cell functions, such as the secretion of cytotoxic granules and the inflammatory cytokine interferon-γ. These results suggest that NKG2D-DAP10 endocytosis represents a means to decrease cell surface receptor abundance, as well as to control signaling outcome in cytotoxic lymphocytes.
Collapse
Affiliation(s)
- Linda Quatrini
- Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Rosa Molfetta
- Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Beatrice Zitti
- Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Giovanna Peruzzi
- Istituto Italiano di Tecnologia, CLNS@Sapienza, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Cinzia Fionda
- Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Cristina Capuano
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Ricciarda Galandrini
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Marco Cippitelli
- Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy. Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, 00161 Rome, Italy.
| | - Rossella Paolini
- Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy. Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, 00161 Rome, Italy.
| |
Collapse
|
192
|
Wu CY, Roybal KT, Puchner EM, Onuffer J, Lim WA. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Science 2015; 350:aab4077. [PMID: 26405231 PMCID: PMC4721629 DOI: 10.1126/science.aab4077] [Citation(s) in RCA: 533] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/09/2015] [Indexed: 12/17/2022]
Abstract
There is growing interest in using engineered cells as therapeutic agents. For example, synthetic chimeric antigen receptors (CARs) can redirect T cells to recognize and eliminate tumor cells expressing specific antigens. Despite promising clinical results, these engineered T cells can exhibit excessive activity that is difficult to control and can cause severe toxicity. We designed "ON-switch" CARs that enable small-molecule control over T cell therapeutic functions while still retaining antigen specificity. In these split receptors, antigen-binding and intracellular signaling components assemble only in the presence of a heterodimerizing small molecule. This titratable pharmacologic regulation could allow physicians to precisely control the timing, location, and dosage of T cell activity, thereby mitigating toxicity. This work illustrates the potential of combining cellular engineering with orthogonal chemical tools to yield safer therapeutic cells that tightly integrate cell-autonomous recognition and user control.
Collapse
Affiliation(s)
- Chia-Yung Wu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA. The Cell Propulsion Lab, an NIH Nanomedicine Development Center, University of California, San Francisco, CA 94158, USA
| | - Kole T Roybal
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA. The Cell Propulsion Lab, an NIH Nanomedicine Development Center, University of California, San Francisco, CA 94158, USA
| | - Elias M Puchner
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | - James Onuffer
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA. The Cell Propulsion Lab, an NIH Nanomedicine Development Center, University of California, San Francisco, CA 94158, USA.
| | - Wendell A Lim
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA. The Cell Propulsion Lab, an NIH Nanomedicine Development Center, University of California, San Francisco, CA 94158, USA. Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
193
|
Okita R, Wolf D, Yasuda K, Maeda A, Yukawa T, Saisho S, Shimizu K, Yamaguchi Y, Oka M, Nakayama E, Lundqvist A, Kiessling R, Seliger B, Nakata M. Contrasting Effects of the Cytotoxic Anticancer Drug Gemcitabine and the EGFR Tyrosine Kinase Inhibitor Gefitinib on NK Cell-Mediated Cytotoxicity via Regulation of NKG2D Ligand in Non-Small-Cell Lung Cancer Cells. PLoS One 2015; 10:e0139809. [PMID: 26439264 PMCID: PMC4595469 DOI: 10.1371/journal.pone.0139809] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 09/17/2015] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Several cytotoxic anticancer drugs inhibit DNA replication and/or mitosis, while EGFR tyrosine kinase inhibitors inactivate EGFR signalling in cancer cell. Both types of anticancer drugs improve the overall survival of the patients with non-small-cell lung cancer (NSCLC), although tumors often become refractory to this treatment. Despite several mechanisms by which the tumors become resistant having been described the effect of these compounds on anti-tumor immunity remains largely unknown. METHODS This study examines the effect of the cytotoxic drug Gemcitabine and the EGFR tyrosine kinase inhibitor Gefitinib on the expression of NK group 2 member D (NKG2D) ligands as well as the sensitivity of NSCLC cells to the NK-mediated lysis. RESULTS We demonstrate that Gemcitabine treatment leads to an enhanced expression, while Gefitinib downregulated the expression of molecules that act as key ligands for the activating receptor NKG2D and promote NK cell-mediated recognition and cytolysis. Gemcitabine activated ATM and ATM- and Rad-3-related protein kinase (ATR) pathways. The Gemcitabine-induced phosphorylation of ATM as well as the upregulation of the NKG2D ligand expression could be blocked by an ATM-ATR inhibitor. In contrast, Gefitinib attenuated NKG2D ligand expression. Silencing EGFR using siRNA or addition of the PI3K inhibitor resulted in downregulation of NKG2D ligands. The observations suggest that the EGFR/PI3K pathway also regulates the expression of NKG2D ligands. Additionally, we showed that both ATM-ATR and EGFR regulate MICA/B via miR20a. CONCLUSION In keeping with the effect on NKG2D expression, Gemcitabine enhanced NK cell-mediated cytotoxicity while Gefitinib attenuated NK cell killing in NSCLC cells.
Collapse
Affiliation(s)
- Riki Okita
- Department of General Thoracic Surgery, Kawasaki Medical School, Kurashiki, Japan
- Department of Oncology and Pathology, Immune and Gene Therapy Laboratory, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| | - Diana Wolf
- Institute of Medical Immunology, Martin Luther University, Halle-Wittenberg, Halle, Germany
| | - Koichiro Yasuda
- Department of General Thoracic Surgery, Kawasaki Medical School, Kurashiki, Japan
| | - Ai Maeda
- Department of General Thoracic Surgery, Kawasaki Medical School, Kurashiki, Japan
| | - Takuro Yukawa
- Department of General Thoracic Surgery, Kawasaki Medical School, Kurashiki, Japan
| | - Shinsuke Saisho
- Department of General Thoracic Surgery, Kawasaki Medical School, Kurashiki, Japan
| | - Katsuhiko Shimizu
- Department of General Thoracic Surgery, Kawasaki Medical School, Kurashiki, Japan
| | | | - Mikio Oka
- Department of Respiratory Medicine, Kawasaki Medical School, Kurashiki, Japan
| | - Eiichi Nakayama
- Faculty of Health and Welfare, Kawasaki University of Medical Welfare, Kurashiki, Japan
| | - Andreas Lundqvist
- Department of Oncology and Pathology, Immune and Gene Therapy Laboratory, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Rolf Kiessling
- Department of Oncology and Pathology, Immune and Gene Therapy Laboratory, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University, Halle-Wittenberg, Halle, Germany
| | - Masao Nakata
- Department of General Thoracic Surgery, Kawasaki Medical School, Kurashiki, Japan
| |
Collapse
|
194
|
Natural killer cell receptors: alterations and therapeutic targeting in malignancies. Immunol Res 2015; 64:25-35. [DOI: 10.1007/s12026-015-8695-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
195
|
Human fused NKG2D-IL-15 protein controls xenografted human gastric cancer through the recruitment and activation of NK cells. Cell Mol Immunol 2015; 14:293-307. [PMID: 26364916 DOI: 10.1038/cmi.2015.81] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 08/01/2015] [Accepted: 08/01/2015] [Indexed: 12/30/2022] Open
Abstract
Interleukin (IL)-15 plays an important role in natural killer (NK) and CD8+ T-cell proliferation and function and is more effective than IL-2 for tumor immunotherapy. The trans-presentation of IL-15 by neighboring cells is more effective for NK cell activation than its soluble IL-15. In this study, the fusion protein dsNKG2D-IL-15, which consisted of two identical extracellular domains of human NKG2D coupled to human IL-15 via a linker, was engineered in Escherichia coli. DsNKG2D-IL-15 could efficiently bind to major histocompatibility complex class I chain-related protein A (MICA) of human tumor cells with the two NKG2D domains and trans-present IL-15 to NK or CD8+ T cells. We transplanted human gastric cancer (SGC-7901) cells into nude mice and mouse melanoma cells with ectopic expression of MICA (B16BL6-MICA) into C57BL/6 mice. Then, we studied the anti-tumor effects mediated by dsNKG2D-IL-15 in the two xenografted tumor models. Human dsNKG2D-IL-15 exhibited higher efficiency than IL-15 in suppressing gastric cancer growth. Exogenous human dsNKG2D-IL-15 was centrally distributed in the mouse tumor tissues based on in vivo live imaging. The frequencies of human CD56+ cells infiltrated into the tumor tissues following the injection of peripheral blood mononuclear cells into nude mice bearing human gastric cancer were significantly increased by human dsNKG2D-IL-15 treatment. Human dsNKG2D-IL-15 also delayed the growth of transplanted melanoma (B16BL6-MICA) by activating and recruiting mouse NK and CD8+ T cells. The anti-melanoma effect of human dsNKG2D-IL-15 in C57BL/6 mice was mostly decreased by the in vivo depletion of mouse NK cells. These data highlight the potential use of human dsNKG2D-IL-15 for tumor therapy.Cellular & Molecular Immunology advance online publication, 14 September 2015; doi:10.1038/cmi.2015.81.
Collapse
|
196
|
Elemam NM, Mekky RY, El-Ekiaby NM, El Sobky SA, El Din MAM, Esmat G, Abdelaziz AI. Repressing PU.1 by miR-29a∗ in NK cells of HCV patients, diminishes its cytolytic effect on HCV infected cell models. Hum Immunol 2015; 76:687-694. [PMID: 26429314 DOI: 10.1016/j.humimm.2015.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 09/24/2015] [Accepted: 09/27/2015] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Natural killer cells are immune safeguards against HCV infection. PU.1 is a pivotal transcription factor in the development of NK cells. This study aimed at studying the regulatory effect of miRNAs on both development and function of NK cells isolated from HCV patients. METHODS NK cells were isolated from 17 chronic HCV patients and 12 healthy controls; after which miRNA and mRNA were quantified using qRT-PCR. Manipulating miRNA expression using mimics and antagomirs, was performed followed by investigating downstream targets as well as viral abundance. RESULTS PU.1 expression levels were upregulated in NK cells of HCV patients. In silico analysis revealed PU.1 to be a potential downstream target of miR-29a(∗), where miR-29a(∗) overexpression in NK cells caused a significant downregulation in PU.1 mRNA. Forcing miR-29a(∗) caused a downregulation of the cytotoxicity determinant NK activating receptor (NKG2D) via upregulation of miR-155. Moreover, perforin-1 mRNA was found to be downregulated upon forcing the expression of miR-29a(∗) in NK cells of HCV patients. This decrease in NK cytolytic function was accompanied by an 80% viral load increase in cocultured HCVcc cell models. CONCLUSIONS This study showed that HCV infection might abrogate NK cytotoxic potential through altering PU.1, NKG2D receptor and perforin molecules.
Collapse
Affiliation(s)
- Noha Mousaad Elemam
- The Molecular Pathology Research Group, Department of Pharmacology and Toxicology, German University in Cairo, New Cairo City, Main Entrance Al Tagamoa Al Khames, 11835 Cairo, Egypt
| | - Radwa Yehia Mekky
- The Molecular Pathology Research Group, Department of Pharmacology and Toxicology, German University in Cairo, New Cairo City, Main Entrance Al Tagamoa Al Khames, 11835 Cairo, Egypt
| | - Nada Magdy El-Ekiaby
- The Molecular Pathology Research Group, Department of Pharmacology and Toxicology, German University in Cairo, New Cairo City, Main Entrance Al Tagamoa Al Khames, 11835 Cairo, Egypt
| | - Shereen Ahmed El Sobky
- The Molecular Pathology Research Group, Department of Pharmaceutical Biology, German University in Cairo, New Cairo City, Main Entrance Al Tagamoa Al Khames, 11835 Cairo, Egypt
| | | | - Gamal Esmat
- Department of Tropical Medicine and Hepatology, Cairo University, Kasr El-Aini St, Cairo, Egypt
| | - Ahmed Ihab Abdelaziz
- The Molecular Pathology Research Group, Department of Pharmacology and Toxicology, German University in Cairo, New Cairo City, Main Entrance Al Tagamoa Al Khames, 11835 Cairo, Egypt.
| |
Collapse
|
197
|
Genetic Diversity and mRNA Expression of Porcine MHC Class I Chain-Related 2 (SLA-MIC2) Gene and Development of a High-Resolution Typing Method. PLoS One 2015; 10:e0135922. [PMID: 26305091 PMCID: PMC4549063 DOI: 10.1371/journal.pone.0135922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 07/28/2015] [Indexed: 11/19/2022] Open
Abstract
The genetic structure and function of MHC class I chain-related (MIC) genes in the pig genome have not been well characterized, and show discordance in available data. Therefore, we have experimentally characterized the exon-intron structure and functional copy expression pattern of the pig MIC gene, SLA-MIC2. We have also studied the genetic diversity of SLA-MIC2 from seven different breeds using a high-resolution genomic sequence-based typing (GSBT) method. Our results showed that the SLA-MIC2 gene has a similar molecular organization as the human and cattle orthologs, and is expressed in only a few tissues including the small intestine, lung, and heart. A total of fifteen SLA-MIC2 alleles were identified from typing 145 animals, ten of which were previously unreported. Our analysis showed that the previously reported and tentatively named SLA-MIC2*05, 07, and 01 alleles occurred most frequently. The observed heterozygosity varied from 0.26 to 0.73 among breeds. The number of alleles of the SLA-MIC2 gene in pigs is somewhat lower compared to the number of alleles of the porcine MHC class I and II genes; however, the level of heterozygosity was similar. Our results indicate the comprehensiveness of using genomic DNA-based typing for the systemic study of the SLA-MIC2 gene. The method developed for this study, as well as the detailed information that was obtained, could serve as fundamental tools for understanding the influence of the SLA-MIC2 gene on porcine immune responses.
Collapse
|
198
|
Tang F, Sally B, Lesko K, Discepolo V, Abadie V, Ciszewski C, Semrad C, Guandalini S, Kupfer SS, Jabri B. Cysteinyl leukotrienes mediate lymphokine killer activity induced by NKG2D and IL-15 in cytotoxic T cells during celiac disease. ACTA ACUST UNITED AC 2015; 212:1487-95. [PMID: 26304964 PMCID: PMC4577841 DOI: 10.1084/jem.20150303] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 08/06/2015] [Indexed: 11/21/2022]
Abstract
Tang et al. show that cytotoxic effector cells produce and respond to cysteinyl leukotrienes to allow target cell killing dependent on NKG2D and IL-15. They further demonstrate a role for cysteinyl leukotrienes in celiac disease pathogenesis. Eicosanoids are inflammatory mediators that play a key but incompletely understood role in linking the innate and adaptive immune systems. Here, we show that cytotoxic effector T cells (CTLs) are capable of both producing and responding to cysteinyl leukotrienes (CystLTs), allowing for the killing of target cells in a T cell receptor–independent manner. This process is dependent on the natural killer receptor NKG2D and exposure to IL-15, a cytokine induced in distressed tissues. IL-15 and NKG2D signaling drives the up-regulation of key enzymes implicated in the synthesis of CystLTs, as well as the expression of CystLT receptors, suggesting a positive feedback loop. Finally, although the CystLT pathway has been previously linked to various allergic disorders, we provide unexpected evidence for its involvement in the pathogenesis of celiac disease (CD), a T helper 1 cell–mediated enteropathy induced by gluten. These findings provide new insights into the cytolytic signaling pathway of NKG2D and the pathogenesis of organ-specific immune disorders. Furthermore, they suggest that the blockade of CystLT receptors may represent a potent therapeutic target for CD or potentially other autoimmune disorders in which NKG2D has been implicated.
Collapse
Affiliation(s)
- Fangming Tang
- Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637 Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637
| | - Benjamin Sally
- Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637 Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637
| | - Kathryn Lesko
- Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637 Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637
| | - Valentina Discepolo
- Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637 Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637 Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637 European Laboratory for the Investigation of Food-Induced Disorders (ELFID), Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, 80138 Naples, Italy
| | - Valerie Abadie
- Sainte-Justine Hospital Research Center, Department of Microbiology, Infectiology, and Immunology, Faculty of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Cezary Ciszewski
- Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637 Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637
| | - Carol Semrad
- Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637 Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637
| | - Stefano Guandalini
- Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637 Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637
| | - Sonia S Kupfer
- Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637 Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637
| | - Bana Jabri
- Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637 Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637 Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637
| |
Collapse
|
199
|
Natural Killer Cell Activating Receptor NKG2D Is Involved in the Immunosuppressive Effects of Mycophenolate Mofetil and Hepatitis B Virus Infection. Am J Med Sci 2015; 349:432-7. [PMID: 25828197 DOI: 10.1097/maj.0000000000000442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The purpose of this study is to investigate whether mycophenolate mofetil (MMF), a new immunosuppressant, and its metabolite mycophenolic acid (MPA) affect the activity of liver resident natural killer (NK) cells, resulting in increased susceptibility to hepatitis B virus (HBV) infection. Hepatic NK cells were isolated from C57BL/6 and C57BL/6JTgN (A1b1HBV) 44Bri transgenic mice treated with MMF in the presence or absence of IL-15. After incubation of isolated hepatic NK cells in the presence or absence of MPA, reverse transcription polymerase chain reaction and immunolabeling were used to assess the expression of NK receptors Ly49A, NKG2A and NKG2D. In addition, cytokine enzyme-linked immunosorbent assay and [H]-TdR-release assay were carried out to assess NK cell activation and cytotoxic capacity. After treatment with MMF in the presence or absence of IL-15, HBsAg titers were measured in C57BL/6JTgN (A1b1HBV) 44Bri transgenic mice. Treatment with either MPA or MMF resulted in reduced NK cell cytotoxicity, downregulated NKG2D and Ly49A expression and upregulated NKG2A. Interestingly, NKG2D downregulation was ameliorated by IL-15. In HBV-transgenic mice, MMF treatment impaired NK cell activity but did not affect virus replication, whereas IL-15 treatment reduced HBsAg titers. MPA and MMF mediate NKG2D downregulation both in vitro and in vivo, reducing the cytotoxic capacity of NK cells. These findings indicate that NKG2D regulation may be important in the immunosuppressive effect NK cells and involved in HBV infection.
Collapse
|
200
|
Dong S, Geng L, Shen MD, Zheng SS. WITHDRAWN: Natural Killer Cell Activating Receptor NKG2D Is Involved in the Immunosuppressant Effect of Mycophenolate Mofetil and Infection of Hepatitis B Virus. Transplant Proc 2015; 47:1796-801. [PMID: 26293053 DOI: 10.1016/j.transproceed.2015.02.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 02/10/2015] [Indexed: 11/19/2022]
Abstract
In this study we investigated whether mycophenolate mofetil (MMF), a new immunosuppressant, and its metabolite mycophenolic acid (MPA) influence the activity of liver resident natural killer (NK) cells, resulting in increased susceptibility to hepatitis B virus (HBV) infection. We isolated the hepatic NK cells of C57BL/6 and C57BL/6JTgN (A1b1HBV) 44Bri) transgenic mice administered MMF in the presence or absence of interleukin (IL)-15, or incubated isolated hepatic NK cells in the presence or absence of MPA and used RT-PCR, immunolabeling to assess the expression of NK receptors Ly49A, NKG2A and NKG2D, and cytokine ELISA and [(3)H]-TdR-release assay to assess the activation and cytotoxic capacity of NK cells. After treatment of MMF in the presence or absence of IL-15, HBsAg titer was also measured in C57BL/6JTgN (A1b1HBV) 44Bri) transgenic mice. After both MPA and MMF treatments, NK cytotoxicity was reduced, NKG2D and Ly49A expression was down-regulated, but NKG2A was up-regulated. Down-regulation of NKG2D could be ameliorated by IL-15, and in HBV-transgenic mice, MMF treatment impaired NK cell activity, but did not influence virus replication, whereas IL-15 treatment depressed HBsAg titer. MPA and MMF mediate down-regulation of NKG2D in vitro and vivo, restricting the cytotoxic capacity of NK cells. Regulation of NKG2D may be important in the effect of immunosuppressant on NK cell activity and involved in HBV infection.
Collapse
Affiliation(s)
- S Dong
- Department of General Surgery, The First Affiliated Hospital, College of Medicine, ZheJiang University, HangZhou, China
| | - L Geng
- Department of General Surgery, The First Affiliated Hospital, College of Medicine, ZheJiang University, HangZhou, China
| | - M-D Shen
- Department of General Surgery, The First Affiliated Hospital, College of Medicine, ZheJiang University, HangZhou, China
| | - S-S Zheng
- Department of General Surgery, The First Affiliated Hospital, College of Medicine, ZheJiang University, HangZhou, China.
| |
Collapse
|