151
|
Zhang R, Shebes MA, Kho K, Scaffidi SJ, Meredith TC, Yu W. Spatial regulation of protein A in Staphylococcus aureus. Mol Microbiol 2021; 116:589-605. [PMID: 33949015 DOI: 10.1111/mmi.14734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/31/2022]
Abstract
Surface proteins of Staphylococcus aureus play vital roles in bacterial physiology and pathogenesis. Recent work suggests that surface proteins are spatially regulated by a YSIRK/GXXS signal peptide that promotes cross-wall targeting at the mid-cell, though the mechanisms remain unclear. We previously showed that protein A (SpA), a YSIRK/GXXS protein and key staphylococcal virulence factor, mis-localizes in a ltaS mutant deficient in lipoteichoic acid (LTA) production. Here, we identified that SpA contains another cross-wall targeting signal, the LysM domain, which, in addition to the YSIRK/GXXS signal peptide, significantly enhances SpA cross-wall targeting. We show that LTA synthesis, but not LtaS, is required for SpA septal anchoring and cross-wall deposition. Interestingly, LTA is predominantly found at the peripheral cell membrane and is diminished at the septum of dividing staphylococcal cells, suggesting a restriction mechanism for SpA septal localization. Finally, we show that D-alanylation of LTA abolishes SpA cross-wall deposition by disrupting SpA distribution in the peptidoglycan layer without altering SpA septal anchoring. Our study reveals that multiple factors contribute to the spatial regulation and cross-wall targeting of SpA via different mechanisms, which coordinately ensures efficient incorporation of surface proteins into the growing peptidoglycan during the cell cycle.
Collapse
Affiliation(s)
- Ran Zhang
- Department of Cell Biology, Microbiology and Molecular Biology (CMMB), University of South Florida, Tampa, FL, USA
| | - Mac A Shebes
- Department of Cell Biology, Microbiology and Molecular Biology (CMMB), University of South Florida, Tampa, FL, USA
| | - Kelvin Kho
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Salvatore J Scaffidi
- Department of Cell Biology, Microbiology and Molecular Biology (CMMB), University of South Florida, Tampa, FL, USA
| | - Timothy C Meredith
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Wenqi Yu
- Department of Cell Biology, Microbiology and Molecular Biology (CMMB), University of South Florida, Tampa, FL, USA
| |
Collapse
|
152
|
Nitulescu G, Margina D, Zanfirescu A, Olaru OT, Nitulescu GM. Targeting Bacterial Sortases in Search of Anti-Virulence Therapies with Low Risk of Resistance Development. Pharmaceuticals (Basel) 2021; 14:ph14050415. [PMID: 33946434 PMCID: PMC8147154 DOI: 10.3390/ph14050415] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/29/2022] Open
Abstract
Increasingly ineffective antibiotics and rapid spread of multi- and pan-resistant bacteria represent a global health threat; hence, the need of developing new antimicrobial medicines. A first step in this direction is identifying new molecular targets, such as virulence factors. Sortase A represents a virulence factor essential for the pathogenesis of Gram-positive pathogens, some of which have a high risk for human health. We present here an exhaustive collection of sortases inhibitors grouped by relevant chemical features: vinyl sulfones, 3-aryl acrylic acids and derivatives, flavonoids, naphtoquinones, anthraquinones, indoles, pyrrolomycins, isoquinoline derivatives, aryl β-aminoethyl ketones, pyrazolethiones, pyridazinones, benzisothiazolinones, 2-phenyl-benzoxazole and 2-phenyl-benzofuran derivatives, thiadiazoles, triazolothiadiazoles, 2-(2-phenylhydrazinylidene)alkanoic acids, and 1,2,4-thiadiazolidine-3,5-dione. This review focuses on highlighting their structure–activity relationships, using the half maximal inhibitory concentration (IC50), when available, as an indicator of each compound effect on a specific sortase. The information herein is useful for acquiring knowledge on diverse natural and synthetic sortases inhibitors scaffolds and for understanding the way their structural variations impact IC50. It will hopefully be the inspiration for designing novel effective and safe sortase inhibitors in order to create new anti-infective compounds and to help overcoming the current worldwide antibiotic shortage.
Collapse
|
153
|
Toward Homogenous Antibody Drug Conjugates Using Enzyme-Based Conjugation Approaches. Pharmaceuticals (Basel) 2021; 14:ph14040343. [PMID: 33917962 PMCID: PMC8068374 DOI: 10.3390/ph14040343] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 01/17/2023] Open
Abstract
In the last few decades, antibody-based diagnostic and therapeutic applications have been well established in medicine and have revolutionized cancer managements by improving tumor detection and treatment. Antibodies are unique medical elements due to their powerful properties of being able to recognize specific antigens and their therapeutic mechanisms such as blocking specific pathways, antibody-dependent cellular cytotoxicity, and complement-dependent cytotoxicity. Furthermore, modification techniques have paved the way for improving antibody properties and to develop new classes of antibody-conjugate-based diagnostic and therapeutic agents. These techniques allow arming antibodies with various effector molecules. However, these techniques are utilizing the most frequently used amino acid residues for bioconjugation, such as cysteine and lysine. These bioconjugation approaches generate heterogeneous products with different functional and safety profiles. This is mainly due to the abundance of lysine and cysteine side chains. To overcome these limitations, different site-direct conjugation methods have been applied to arm the antibodies with therapeutic or diagnostics molecules to generate unified antibody conjugates with tailored properties. This review summarizes some of the enzyme-based site-specific conjugation approaches.
Collapse
|
154
|
Kordbacheh S, Kasko AM. Peptide and protein engineering by modification of backbone and sidechain functional groups. POLYM INT 2021. [DOI: 10.1002/pi.6208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Shadi Kordbacheh
- Department of Bioengineering University of California Los Angeles CA USA
| | - Andrea M Kasko
- Department of Bioengineering University of California Los Angeles CA USA
- California Nanosystems Institute Los Angeles CA USA
| |
Collapse
|
155
|
Fuchs ACD, Ammelburg M, Martin J, Schmitz RA, Hartmann MD, Lupas AN. Archaeal Connectase is a specific and efficient protein ligase related to proteasome β subunits. Proc Natl Acad Sci U S A 2021; 118:e2017871118. [PMID: 33688044 PMCID: PMC7980362 DOI: 10.1073/pnas.2017871118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Sequence-specific protein ligations are widely used to produce customized proteins "on demand." Such chimeric, immobilized, fluorophore-conjugated or segmentally labeled proteins are generated using a range of chemical, (split) intein, split domain, or enzymatic methods. Where short ligation motifs and good chemoselectivity are required, ligase enzymes are often chosen, although they have a number of disadvantages, for example poor catalytic efficiency, low substrate specificity, and side reactions. Here, we describe a sequence-specific protein ligase with more favorable characteristics. This ligase, Connectase, is a monomeric homolog of 20S proteasome subunits in methanogenic archaea. In pulldown experiments with Methanosarcina mazei cell extract, we identify a physiological substrate in methyltransferase A (MtrA), a key enzyme of archaeal methanogenesis. Using microscale thermophoresis and X-ray crystallography, we show that only a short sequence of about 20 residues derived from MtrA and containing a highly conserved KDPGA motif is required for this high-affinity interaction. Finally, in quantitative activity assays, we demonstrate that this recognition tag can be repurposed to allow the ligation of two unrelated proteins. Connectase catalyzes such ligations at substantially higher rates, with higher yields, but without detectable side reactions when compared with a reference enzyme. It thus presents an attractive tool for the development of new methods, for example in the preparation of selectively labeled proteins for NMR, the covalent and geometrically defined attachment of proteins on surfaces for cryo-electron microscopy, or the generation of multispecific antibodies.
Collapse
Affiliation(s)
- Adrian C D Fuchs
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Moritz Ammelburg
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Jörg Martin
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Ruth A Schmitz
- Institute for General Microbiology, Christian Albrecht University of Kiel, 24118 Kiel, Germany
| | - Marcus D Hartmann
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Andrei N Lupas
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany;
| |
Collapse
|
156
|
Podracky CJ, An C, DeSousa A, Dorr BM, Walsh DM, Liu DR. Laboratory evolution of a sortase enzyme that modifies amyloid-β protein. Nat Chem Biol 2021; 17:317-325. [PMID: 33432237 PMCID: PMC7904614 DOI: 10.1038/s41589-020-00706-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 11/06/2020] [Indexed: 01/28/2023]
Abstract
Epitope-specific enzymes are powerful tools for site-specific protein modification but generally require genetic manipulation of the target protein. Here, we describe the laboratory evolution of the bacterial transpeptidase sortase A to recognize the LMVGG sequence in endogenous amyloid-β (Aβ) protein. Using a yeast display selection for covalent bond formation, we evolved a sortase variant that prefers LMVGG substrates from a starting enzyme that prefers LPESG substrates, resulting in a >1,400-fold change in substrate preference. We used this evolved sortase to label endogenous Aβ in human cerebrospinal fluid, enabling the detection of Aβ with sensitivities rivaling those of commercial assays. The evolved sortase can conjugate a hydrophilic peptide to Aβ42, greatly impeding the ability of the resulting protein to aggregate into higher-order structures. These results demonstrate laboratory evolution of epitope-specific enzymes toward endogenous targets as a strategy for site-specific protein modification without target gene manipulation and enable potential future applications of sortase-mediated labeling of Aβ peptides.
Collapse
Affiliation(s)
- Christopher J. Podracky
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, 02142,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 021383
| | - Chihui An
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 021383
| | - Alexandra DeSousa
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, 02115
| | - Brent M. Dorr
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 021383
| | - Dominic M. Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, 02115
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, 02142,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 021383,Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138
| |
Collapse
|
157
|
Anchoring surface proteins to the bacterial cell wall by sortase enzymes: how it started and what we know now. Curr Opin Microbiol 2021; 60:73-79. [PMID: 33611145 DOI: 10.1016/j.mib.2021.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/14/2021] [Accepted: 01/27/2021] [Indexed: 11/20/2022]
Abstract
In Gram-positive bacteria, the peptidoglycan serves as a placeholder for surface display of a unique class of monomeric and polymeric proteins, or pili - the precursors of which harbor a cell wall sorting signal with LPXTG motif that is recognized by a conserved transpeptidase enzyme called sortase. Since this original discovery over two decades ago, extensive genetic, biochemical and structural studies have illuminated the basic mechanisms of sortase-mediated cell wall anchoring of surface proteins and pili. We now know how LPXTG-containing surface proteins are folded post-translocationally, how sortase enzymes recognize substrates, and how a remnant of the cell wall sorting signal modulates intramembrane signaling. In this review, we will highlight new findings from a few model experimental paradigms and present future prospects for the field.
Collapse
|
158
|
Nakata M, Kreikemeyer B. Genetics, Structure, and Function of Group A Streptococcal Pili. Front Microbiol 2021; 12:616508. [PMID: 33633705 PMCID: PMC7900414 DOI: 10.3389/fmicb.2021.616508] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Streptococcus pyogenes (Group A Streptococcus; GAS) is an exclusively human pathogen. This bacterial species is responsible for a large variety of infections, ranging from purulent but mostly self-limiting oropharynx/skin diseases to streptococcal sequelae, including glomerulonephritis and rheumatic fever, as well as life-threatening streptococcal toxic-shock syndrome. GAS displays a wide array of surface proteins, with antigenicity of the M protein and pili utilized for M- and T-serotyping, respectively. Since the discovery of GAS pili in 2005, their genetic features, including regulation of expression, and structural features, including assembly mechanisms and protein conformation, as well as their functional role in GAS pathogenesis have been intensively examined. Moreover, their potential as vaccine antigens has been studied in detail. Pilus biogenesis-related genes are located in a discrete section of the GAS genome encoding fibronectin and collagen binding proteins and trypsin-resistant antigens (FCT region). Based on the heterogeneity of genetic composition and DNA sequences, this region is currently classified into nine distinguishable forms. Pili and fibronectin-binding proteins encoded in the FCT region are known to be correlated with infection sites, such as the skin and throat, possibly contributing to tissue tropism. As also found for pili of other Gram-positive bacterial pathogens, GAS pilin proteins polymerize via isopeptide bonds, while intramolecular isopeptide bonds present in the pilin provide increased resistance to degradation by proteases. As supported by findings showing that the main subunit is primarily responsible for T-serotyping antigenicity, pilus functions and gene expression modes are divergent. GAS pili serve as adhesins for tonsillar tissues and keratinocyte cell lines. Of note, a minor subunit is considered to have a harpoon function by which covalent thioester bonds with host ligands are formed. Additionally, GAS pili participate in biofilm formation and evasion of the immune system in a serotype/strain-specific manner. These multiple functions highlight crucial roles of pili during the onset of GAS infection. This review summarizes the current state of the art regarding GAS pili, including a new mode of host-GAS interaction mediated by pili, along with insights into pilus expression in terms of tissue tropism.
Collapse
Affiliation(s)
- Masanobu Nakata
- Department of Oral Microbiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| |
Collapse
|
159
|
Zrelovs N, Kurbatska V, Rudevica Z, Leonchiks A, Fridmanis D. Sorting out the Superbugs: Potential of Sortase A Inhibitors among Other Antimicrobial Strategies to Tackle the Problem of Antibiotic Resistance. Antibiotics (Basel) 2021; 10:164. [PMID: 33562778 PMCID: PMC7916047 DOI: 10.3390/antibiotics10020164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/22/2022] Open
Abstract
Rapid spread of antibiotic resistance throughout the kingdom bacteria is inevitably bringing humanity towards the "post-antibiotic" era. The emergence of so-called "superbugs"-pathogen strains that develop resistance to multiple conventional antibiotics-is urging researchers around the globe to work on the development or perfecting of alternative means of tackling the pathogenic bacteria infections. Although various conceptually different approaches are being considered, each comes with its advantages and drawbacks. While drug-resistant pathogens are undoubtedly represented by both Gram(+) and Gram(-) bacteria, possible target spectrum across the proposed alternative approaches of tackling them is variable. Numerous anti-virulence strategies aimed at reducing the pathogenicity of target bacteria rather than eliminating them are being considered among such alternative approaches. Sortase A (SrtA) is a membrane-associated cysteine protease that catalyzes a cell wall sorting reaction by which surface proteins, including virulence factors, are anchored to the bacterial cell wall of Gram(+) bacteria. Although SrtA inhibition seems perspective among the Gram-positive pathogen-targeted antivirulence strategies, it still remains less popular than other alternatives. A decrease in virulence due to inactivation of SrtA activity has been extensively studied in Staphylococcus aureus, but it has also been demonstrated in other Gram(+) species. In this manuscript, results of past studies on the discovery of novel SrtA inhibitory compounds and evaluation of their potency were summarized and commented on. Here, we discussed the rationale behind the inhibition of SrtA, raised some concerns on the comparability of the results from different studies, and touched upon the possible resistance mechanisms as a response to implementation of such therapy in practice. The goal of this article is to encourage further studies of SrtA inhibitory compounds.
Collapse
Affiliation(s)
| | | | | | | | - Davids Fridmanis
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k1, LV-1067 Riga, Latvia; (N.Z.); (V.K.); (Z.R.); (A.L.)
| |
Collapse
|
160
|
Schnurr E, Paqué PN, Attin T, Nanni P, Grossmann J, Holtfreter S, Bröker BM, Kohler C, Diep BA, Ribeiro ADA, Thurnheer T. Staphylococcus aureus Interferes with Streptococci Spatial Distribution and with Protein Expression of Species within a Polymicrobial Oral Biofilm. Antibiotics (Basel) 2021; 10:116. [PMID: 33530340 PMCID: PMC7911025 DOI: 10.3390/antibiotics10020116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/21/2022] Open
Abstract
We asked whether transient Staphylococcus aureus in the oral environment synergistically interacts with orally associated bacterial species such as Actinomyces oris, Candida albicans, Fusobacterium nucleatum, Streptococcus oralis, Streptococcus mutans, and Veillonella dispar (six-species control biofilm 6S). For this purpose, four modified biofilms with seven species that contain either the wild type strain of the S. aureus genotype (USA300-MRSA WT), its isogenic mutant with MSCRAMM deficiency (USA300-MRSA ΔMSCRAMM), a methicillin-sensitive S. aureus (ST72-MSSA-) or a methicillin-resistant S. aureus (USA800-MRSA) grown on hydroxyapatite disks were examined. Culture analyses, confocal-laser-scanning microscopy and proteome analyses were performed. S. aureus strains affected the amount of supragingival biofilm-associated species differently. The deletion of MSCRAMM genes disrupted the growth of S. aureus and the distribution of S. mutans and S. oralis within the biofilms. In addition, S. aureus caused shifts in the number of detectable proteins of other species in the 6S biofilm. S. aureus (USA300-MRSA WT), aggregated together with early colonizers such as Actinomyces and streptococci, influenced the number of secondary colonizers such as Fusobacterium nucleatum and was involved in structuring the biofilm architecture that triggered the change from a homeostatic biofilm to a dysbiotic biofilm to the development of oral diseases.
Collapse
Affiliation(s)
- Etyene Schnurr
- Instituto de Saúde de Nova Friburgo, Federal Fluminense University, 28625-650 Nova Friburgo, Brazil
| | - Pune N. Paqué
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (P.N.P.); (T.A.); (T.T.)
| | - Thomas Attin
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (P.N.P.); (T.A.); (T.T.)
| | - Paolo Nanni
- Functional Genomics Center, ETH Zürich and University of Zurich, 8057 Zurich, Switzerland; (P.N.); (J.G.)
| | - Jonas Grossmann
- Functional Genomics Center, ETH Zürich and University of Zurich, 8057 Zurich, Switzerland; (P.N.); (J.G.)
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Silva Holtfreter
- Department of Immunology, University Medicine Greifswald, 17475 Greifswald, Germany; (S.H.); (B.M.B.)
| | - Barbara M. Bröker
- Department of Immunology, University Medicine Greifswald, 17475 Greifswald, Germany; (S.H.); (B.M.B.)
| | - Christian Kohler
- Friedrich-Loeffler Institute for Medical Microbiology, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Binh An Diep
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA;
| | | | - Thomas Thurnheer
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (P.N.P.); (T.A.); (T.T.)
| |
Collapse
|
161
|
Zhang H, Zhou T, Su L, Wang H, Zhang B, Su Y. Effects of srtA variation on phagocytosis resistance and immune response of Streptococcus equi. INFECTION GENETICS AND EVOLUTION 2021; 89:104732. [PMID: 33503504 DOI: 10.1016/j.meegid.2021.104732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/17/2020] [Accepted: 01/21/2021] [Indexed: 11/26/2022]
Abstract
Strangles, which is caused by Streptococcus equi subspecies equi (S. equi), is one of the most prevalent equine infectious diseases with worldwide distribution and leads to serious economic loss in the horse industry. Sortase A (srtA) is a transpeptidase that anchors multiple virulence-associated surface proteins to the cell surface of S. equi. srtA plays a major role in S. equi infection and colonization of the host cell. In this study, we aimed to investigate the effects of srtA mutation on the phagocytic activity and immunogenicity of S. equi. The point-mutated recombinant sortases, including srtA-HT1112 (I88V), srtA-5012 (R147G), and srtA-ZZM17 (control), were expressed, purified, and used to immunize the mouse models. Phagocytic activity was assessed using equine polymorphonuclear cells, whereas opsonophagocytic function and adherence inhibition were measured using the antiserum of these mutants. Mouse serum antibody, bacterial load, and weight gain were also measured. The srtA-HT1112 (I88V) mutant showed significantly enhanced antiphagocytic capability, and its antiserum exhibited increased adherence inhibition activity. In addition, the srtA-HT1112 (I88V) mutant presented the highest lung bacterial load and lowest protection rate (50%) after the challenge with S. equi ZZM17. The srtA-5012 (R147G) mutant exhibited a high IgG2a level and protection rate (62.5%-75%) and the lowest lung bacterial load. These results indicate that the I88V mutation is associated with a high antiphagocytic activity, whereas R147G mutation is associated with the decreased lung bacterial load. Our findings may be useful for the evaluation and development of vaccines.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Tingting Zhou
- Department of Microbiology and Immunology, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Lining Su
- Xinjiang Academy of Animal Science, Urumqi, Xinjiang, China
| | - Hao Wang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Baojiang Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Yan Su
- Department of Microbiology and Immunology, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China.
| |
Collapse
|
162
|
Naorem RS, Blom J, Fekete C. Genome-wide comparison of four MRSA clinical isolates from Germany and Hungary. PeerJ 2021; 9:e10185. [PMID: 33520430 PMCID: PMC7811285 DOI: 10.7717/peerj.10185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/24/2020] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus is a drug-resistant pathogen, capable of colonizing diverse ecological niches and causing a broad spectrum of infections related to a community and healthcare. In this study, we choose four methicillin-resistant S. aureus (MRSA) clinical isolates from Germany and Hungary based on our previous polyphasic characterization finding. We assumed that the selected strains have a different genetic background in terms of the presence of resistance and virulence genes, prophages, plasmids, and secondary metabolite biosynthesis genes that may play a crucial role in niche adaptation and pathogenesis. To clarify these assumptions, we performed a comparative genome analysis of these strains and observed many differences in their genomic compositions. The Hungarian isolates (SA H27 and SA H32) with ST22-SCCmec type IVa have fewer genes for multiple-drug resistance, virulence, and prophages reported in Germany isolates. Germany isolate, SA G6 acquires aminoglycoside (ant(6)-Ia and aph(3’)-III) and nucleoside (sat-4) resistance genes via phage transduction and may determine its pathogenic potential. The comparative genome study allowed the segregation of isolates of geographical origin and differentiation of the clinical isolates from the commensal isolates. This study suggested that Germany and Hungarian isolates are genetically diverse and showing variation among them due to the gain or loss of mobile genetic elements (MGEs). An interesting finding is the addition of SA G6 genome responsible for the drastic decline of the core/pan-genome ratio curve and causing the pan-genome to open wider. Functional characterizations revealed that S. aureus isolates survival are maintained by the amino acids catabolism and favor adaptation to growing in a protein-rich medium. The dispersible and singleton genes content of S. aureus genomes allows us to understand the genetic variation among the CC5 and CC22 groups. The strains with the same genetic background were clustered together, which suggests that these strains are highly alike; however, comparative genome analysis exposed that the acquisition of phage elements, and plasmids through the events of MGEs transfer contribute to differences in their phenotypic characters. This comparative genome analysis would improve the knowledge about the pathogenic S. aureus strain’s characterization, and responsible for clinically important phenotypic differences among the S. aureus strains.
Collapse
Affiliation(s)
- Romen Singh Naorem
- Department of General and Environmental Microbiology, University of Pécs, Pécs, Hungary
| | - Jochen Blom
- Bioinformatics & Systems Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Csaba Fekete
- Department of General and Environmental Microbiology, University of Pécs, Pécs, Hungary
| |
Collapse
|
163
|
Siau JW, Nonis S, Chee S, Koh LQ, Ferrer FJ, Brown CJ, Ghadessy FJ. Directed co-evolution of interacting protein-peptide pairs by compartmentalized two-hybrid replication (C2HR). Nucleic Acids Res 2021; 48:e128. [PMID: 33104786 PMCID: PMC7736784 DOI: 10.1093/nar/gkaa933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 12/21/2022] Open
Abstract
Directed evolution methodologies benefit from read-outs quantitatively linking genotype to phenotype. We therefore devised a method that couples protein–peptide interactions to the dynamic read-out provided by an engineered DNA polymerase. Fusion of a processivity clamp protein to a thermostable nucleic acid polymerase enables polymerase activity and DNA amplification in otherwise prohibitive high-salt buffers. Here, we recapitulate this phenotype by indirectly coupling the Sso7d processivity clamp to Taq DNA polymerase via respective fusion to a high affinity and thermostable interacting protein–peptide pair. Escherichia coli cells co-expressing protein–peptide pairs can directly be used in polymerase chain reactions to determine relative interaction strengths by the measurement of amplicon yields. Conditional polymerase activity is further used to link genotype to phenotype of interacting protein–peptide pairs co-expressed in E. coli using the compartmentalized self-replication directed evolution platform. We validate this approach, termed compartmentalized two-hybrid replication, by selecting for high-affinity peptides that bind two model protein partners: SpyCatcher and the large fragment of NanoLuc luciferase. We further demonstrate directed co-evolution by randomizing both protein and peptide components of the SpyCatcher–SpyTag pair and co-selecting for functionally interacting variants.
Collapse
Affiliation(s)
- Jia Wei Siau
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, 138648, Singapore
| | - Samuel Nonis
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, 138648, Singapore
| | - Sharon Chee
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, 138648, Singapore
| | - Li Quan Koh
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, 138648, Singapore
| | - Fernando J Ferrer
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, 138648, Singapore
| | - Christopher J Brown
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, 138648, Singapore
| | - Farid J Ghadessy
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, 138648, Singapore
| |
Collapse
|
164
|
Use of molecular homology model to identify inhibitors of Staphylococcus pseudintermedius sortase A. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
165
|
Abstract
Cellulosomes are elaborate multienzyme complexes capable of efficiently deconstructing lignocellulosic substrates, produced by cellulolytic anaerobic microorganisms, colonizing a large variety of ecological niches. These macromolecular structures have a modular architecture and are composed of two main elements: the cohesin-bearing scaffoldins, which are non-catalytic structural proteins, and the various dockerin-bearing enzymes that tenaciously bind to the scaffoldins. Cellulosome assembly is mediated by strong and highly specific interactions between the cohesin modules, present in the scaffoldins, and the dockerin modules, present in the catalytic units. Cellulosomal architecture and composition varies between species and can even change within the same organism. These differences seem to be largely influenced by external factors, including the nature of the available carbon-source. Even though cellulosome producing organisms are relatively few, the development of new genomic and proteomic technologies has allowed the identification of cellulosomal components in many archea, bacteria and even some primitive eukaryotes. This reflects the importance of this cellulolytic strategy and suggests that cohesin-dockerin interactions could be involved in other non-cellulolytic processes. Due to their building-block nature and highly cellulolytic capabilities, cellulosomes hold many potential biotechnological applications, such as the conversion of lignocellulosic biomass in the production of biofuels or the development of affinity based technologies.
Collapse
Affiliation(s)
- Victor D Alves
- CIISA, Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Carlos M G A Fontes
- CIISA, Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Pedro Bule
- CIISA, Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal.
| |
Collapse
|
166
|
Yamaguchi M. [Investigation of pneumococcal virulence factors in the infection process]. Nihon Saikingaku Zasshi 2020; 75:173-183. [PMID: 33361653 DOI: 10.3412/jsb.75.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review summarizes current knowledge regarding the pathological mechanism of Streptococcus pneumoniae, a major cause of pneumonia, sepsis, and meningitis, with focus on our previously presented studies.To identify pneumococcal adhesins or invasins on cell surfaces, we investigated several proteins with an LPXTG anchoring motif and identified one showing interaction with human fibronectin, which was designated PfbA. Next, the mechanism of pneumococcal evasion form host immunity system in blood was examined and pneumococcal α-Enolase was found to function as a neutrophil extracellular trap induction factor. Although S. pneumoniae organisms are partially killed by iron ion-induced free radicals, they have an ability to invade red blood cells and then evade antibiotics, neutrophil phagocytosis, and H2O2 killing. In addition, our findings have indicated that zinc metalloprotease ZmpC suppresses pneumococcal virulence by inhibiting bacterial invasion of the central nervous system. Since evolutionarily conserved virulence factors are potential candidate therapeutic targets, we performed molecular evolutionary analyses, which revealed that cbpJ had the highest rate of codons under negative selection to total number of codons among genes encoding choline-binding proteins. Our experimental analysis results indicated that CbpJ functions as a virulence factor in pneumococcal pneumonia by contributing to evasion of neutrophil killing.Use of a molecular biological approach based on bacterial genome sequences, clinical disease states, and molecular evolutionary analysis is an effective strategy for revealing virulence factors and important therapeutic targets.
Collapse
Affiliation(s)
- Masaya Yamaguchi
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry
| |
Collapse
|
167
|
Abstract
Ever since the discovery of antibodies, they have been generated by complicated multi-step procedures. Typically, these involve sequencing, cloning, and screening after expression of the antibodies in a suitable organism and format. Here, a staphylococcal nanobody display is described that omits many the abovementioned intermediate steps and allows for simultaneous screening of multiple targets without prior knowledge nor expression of the binders. This paper reports a detailed, general step-by-step protocol to achieve nanobodies of high affinity. Apart from its focus on radioactive and fluorescent targets, it gives options for various other target formats and additional applications for the staphylococcal library; including flow cytometry and immunoprecipitation. This provides a system for antibody engineers that can be easily adopted to their specific needs.
Collapse
Affiliation(s)
- Marco Cavallari
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
168
|
Ibrar M, Zhang H. Site-Specific Biofunctionalization of Cellulose and Poly(dimethylsiloxane): A Chemoenzymatic Approach for Surface Engineering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15039-15047. [PMID: 33274948 DOI: 10.1021/acs.langmuir.0c02575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Site-specific, covalent immobilization of protein is of great importance in the design of bioanalytical devices. User-defined covalent coupling of protein onto the surface has been primarily limited to a noncanonical amino acid or cysteine residues. It is desirable to develop a new approach for site-specific biofunctionalization. Herein, we demonstrate a robust and modular chemoenzymatic approach for site-specific, covalent grafting of proteins onto a surface. The synthetic strategy relies on the combination of surface amine functionalization, followed by sortase-mediated coupling. The developed method was validated by site-specific immobilization of two model proteins (glutathione S-transferase and green fluorescent protein) on cellulose and polydimethylsiloxane surfaces via a short recognition motif (LPETG). The covalent coupling of immobilized proteins at the interface was characterized by Fourier Transform Infrared Spectroscopy in attenuated total reflectance mode, X-ray photoelectron spectroscopy, atomic force microscope, and fluorescent microscopy. This enzymatic surface functionalization approach could permit an oriented, homogeneous, and site-specific covalent tethering of LPETG-tag proteins to other materials under mild conditions.
Collapse
Affiliation(s)
- Muhammad Ibrar
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei, P.R. China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P.R. China
| | - Houjin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei, P.R. China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P.R. China
| |
Collapse
|
169
|
Role of SrtA in Pathogenicity of Staphylococcus lugdunensis. Microorganisms 2020; 8:microorganisms8121975. [PMID: 33322541 PMCID: PMC7763024 DOI: 10.3390/microorganisms8121975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Among coagulase-negative staphylococci (CoNS), Staphylococcus lugdunensis has a special position as causative agent of aggressive courses of infectious endocarditis (IE) more reminiscent of IEs caused by Staphylococcus aureus than those by CoNS. To initiate colonization and invasion, bacterial cell surface proteins are required; however, only little is known about adhesion of S. lugdunensis to biotic surfaces. Cell surface proteins containing the LPXTG anchor motif are covalently attached to the cell wall by sortases. Here, we report the functionality of Staphylococcus lugdunensis sortase A (SrtA) to link LPXTG substrates to the cell wall. To determine the role of SrtA dependent surface proteins in biofilm formation and binding eukaryotic cells, we generated SrtA-deficient mutants (ΔsrtA). These mutants formed a smaller amount of biofilm and bound less to immobilized fibronectin, fibrinogen, and vitronectin. Furthermore, SrtA absence affected the gene expression of two different adhesins on transcription level. Surprisingly, we found no decreased adherence and invasion in human cell lines, probably caused by the upregulation of further adhesins in ΔsrtA mutant strains. In conclusion, the functionality of S. lugdunensis SrtA in anchoring LPXTG substrates to the cell wall let us define it as the pathogen’s housekeeping sortase.
Collapse
|
170
|
Zhou Z, Wang L, Hu Y, Song R, Mei N, Chen T, Tang S. Preparation of AAEK-functionalized cellulose film with antibacterial and anti-adhesion activities. Int J Biol Macromol 2020; 167:66-75. [PMID: 33242549 DOI: 10.1016/j.ijbiomac.2020.11.143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/09/2020] [Accepted: 11/20/2020] [Indexed: 12/18/2022]
Abstract
Bacterial adhesion infection caused by medical materials in clinical application has become a serious threat, and it urgently needs new strategies to deal with these clinical challenges. The purpose of this study is to explore the effectiveness of surface-decorated aryl (β-amino) ethyl ketones (AAEK), a promising sorting enzyme A (SrtA) inhibitor of Staphylococcus aureus, to improve the anti-adhesion ability of biomaterials. AAEK was covalently grafted onto cellulose films (CF) via copper-catalyzed azide-alkyne 1, 3-dipolar cycloaddition click reaction. The data of contact angle measurements, ATR-FTIR and XPS proved the successful covalent attachment of AAEK-CF, and the antimicrobial efficacy of AAEK coating was assessed by CFUs, crystal violet staining, scanning electron microscopy and Living/Dead bacteria staining assay. The results illustrated that AAEK-CF exhibited excellent anti-adhesion ability to Staphylococcus aureus, and significantly reduced the number of bacteria adhering to the film. More importantly, AAEK-CF could hinder the formation of bacterial biofilm. Furthermore, AAEK-CF indicated no cytotoxicity to mammalian cells, and the cells could grow normally on the modified surface. Hence, our present work demonstrated that the grafting of the SrtA inhibitor-AAEK onto cellulose films enabled to combat bacterial biofilm formation in biomedical applications.
Collapse
Affiliation(s)
- Zongbao Zhou
- National Engineering Research Center for Healthcare Devices, Guangdong Institute of Medical Instruments, Guangzhou 510632, PR China; Biomedical Engineering Institute, Jinan University, Guangzhou 510632, PR China
| | - Lei Wang
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3568 CG Utrecht, the Netherlands
| | - Yingkui Hu
- National Engineering Research Center for Healthcare Devices, Guangdong Institute of Medical Instruments, Guangzhou 510632, PR China
| | - Rijian Song
- National Engineering Research Center for Healthcare Devices, Guangdong Institute of Medical Instruments, Guangzhou 510632, PR China
| | - Naibin Mei
- National Engineering Research Center for Healthcare Devices, Guangdong Institute of Medical Instruments, Guangzhou 510632, PR China
| | - Tao Chen
- National Engineering Research Center for Healthcare Devices, Guangdong Institute of Medical Instruments, Guangzhou 510632, PR China
| | - Shunqing Tang
- National Engineering Research Center for Healthcare Devices, Guangdong Institute of Medical Instruments, Guangzhou 510632, PR China.
| |
Collapse
|
171
|
Martin V, Egelund PHG, Johansson H, Thordal Le Quement S, Wojcik F, Sejer Pedersen D. Greening the synthesis of peptide therapeutics: an industrial perspective. RSC Adv 2020; 10:42457-42492. [PMID: 35516773 PMCID: PMC9057961 DOI: 10.1039/d0ra07204d] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Solid-phase peptide synthesis (SPPS) is generally the method of choice for the chemical synthesis of peptides, allowing routine synthesis of virtually any type of peptide sequence, including complex or cyclic peptide products. Importantly, SPPS can be automated and is scalable, which has led to its widespread adoption in the pharmaceutical industry, and a variety of marketed peptide-based drugs are now manufactured using this approach. However, SPPS-based synthetic strategies suffer from a negative environmental footprint mainly due to extensive solvent use. Moreover, most of the solvents used in peptide chemistry are classified as problematic by environmental agencies around the world and will soon need to be replaced, which in recent years has spurred a movement in academia and industry to make peptide synthesis greener. These efforts have been centred around solvent substitution, recycling and reduction, as well as exploring alternative synthetic methods. In this review, we focus on methods pertaining to solvent substitution and reduction with large-scale industrial production in mind, and further outline emerging technologies for peptide synthesis. Specifically, the technical requirements for large-scale manufacturing of peptide therapeutics are addressed.
Collapse
Affiliation(s)
- Vincent Martin
- Novo Nordisk A/S, CMC API Development Smørmosevej 17-19 DK-2880 Bagsværd Denmark +45 4444 8888
| | - Peter H G Egelund
- Novo Nordisk A/S, CMC API Development Smørmosevej 17-19 DK-2880 Bagsværd Denmark +45 4444 8888
| | - Henrik Johansson
- Novo Nordisk A/S, CMC API Development Smørmosevej 17-19 DK-2880 Bagsværd Denmark +45 4444 8888
| | | | - Felix Wojcik
- Novo Nordisk A/S, CMC API Development Smørmosevej 17-19 DK-2880 Bagsværd Denmark +45 4444 8888
| | - Daniel Sejer Pedersen
- Novo Nordisk A/S, CMC API Development Smørmosevej 17-19 DK-2880 Bagsværd Denmark +45 4444 8888
| |
Collapse
|
172
|
Zou Z, Mate DM, Nöth M, Jakob F, Schwaneberg U. Enhancing Robustness of Sortase A by Loop Engineering and Backbone Cyclization. Chemistry 2020; 26:13568-13572. [PMID: 32649777 PMCID: PMC7693181 DOI: 10.1002/chem.202002740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/08/2020] [Indexed: 12/13/2022]
Abstract
Staphylococcus aureus sortase A (SaSrtA) is widely used for site-specific protein modifications, but it lacks the robustness for performing bioconjugation reactions at elevated temperatures or in presence of denaturing agents. Loop engineering and subsequent head-to-tail backbone cyclization of SaSrtA yielded the cyclized variant CyM6 that has a 7.5 °C increased melting temperature and up to 4.6-fold increased resistance towards denaturants when compared to the parent rM4. CyM6 gained up to 2.6-fold (vs. parent rM4) yield of conjugate in ligation of peptide and primary amine under denaturing conditions.
Collapse
Affiliation(s)
- Zhi Zou
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
- DWI–Leibniz-Institute for Interactive MaterialsForckenbeckstraβe 5052074AachenGermany
| | - Diana M. Mate
- DWI–Leibniz-Institute for Interactive MaterialsForckenbeckstraβe 5052074AachenGermany
- Current address: Center of Molecular Biology “Severo Ochoa”Universidad Autónoma de MadridNicolás Cabrera 128049MadridSpain
| | - Maximilian Nöth
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
- DWI–Leibniz-Institute for Interactive MaterialsForckenbeckstraβe 5052074AachenGermany
| | - Felix Jakob
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
- DWI–Leibniz-Institute for Interactive MaterialsForckenbeckstraβe 5052074AachenGermany
| | - Ulrich Schwaneberg
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
- DWI–Leibniz-Institute for Interactive MaterialsForckenbeckstraβe 5052074AachenGermany
| |
Collapse
|
173
|
Design and Synthesis of Small Molecules as Potent Staphylococcus aureus Sortase A Inhibitors. Antibiotics (Basel) 2020; 9:antibiotics9100706. [PMID: 33081148 PMCID: PMC7602840 DOI: 10.3390/antibiotics9100706] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 01/25/2023] Open
Abstract
The widespread and uncontrollable emergence of antibiotic-resistant bacteria, especially methicillin-resistant Staphylococcus aureus, has promoted a wave of efforts to discover a new generation of antibiotics that prevent or treat bacterial infections neither as bactericides nor bacteriostats. Due to its crucial role in virulence and its nonessentiality in bacterial survival, sortase A has been considered as a great target for new antibiotics. Sortase A inhibitors have emerged as promising alternative antivirulence agents against bacteria. Herein, the structural and preparative aspects of some small synthetic organic compounds that block the pathogenic action of sortase A have been described.
Collapse
|
174
|
Hofmann T, Krah S, Sellmann C, Zielonka S, Doerner A. Greatest Hits-Innovative Technologies for High Throughput Identification of Bispecific Antibodies. Int J Mol Sci 2020; 21:E6551. [PMID: 32911608 PMCID: PMC7554978 DOI: 10.3390/ijms21186551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Recent years have shown a tremendous increase and diversification in antibody-based therapeutics with advances in production techniques and formats. The plethora of currently investigated bi- to multi-specific antibody architectures can be harnessed to elicit a broad variety of specific modes of actions in oncology and immunology, spanning from enhanced selectivity to effector cell recruitment, all of which cannot be addressed by monospecific antibodies. Despite continuously growing efforts and methodologies, the identification of an optimal bispecific antibody as the best possible combination of two parental monospecific binders, however, remains challenging, due to tedious cloning and production, often resulting in undesired extended development times and increased expenses. Although automated high throughput screening approaches have matured for pharmaceutical small molecule development, it was only recently that protein bioconjugation technologies have been developed for the facile generation of bispecific antibodies in a 'plug and play' manner. In this review, we provide an overview of the most relevant methodologies for bispecific screening purposes-the DuoBody concept, paired light chain single cell production approaches, Sortase A and Transglutaminase, the SpyTag/SpyCatcher system, and inteins-and elaborate on the benefits as well as drawbacks of the different technologies.
Collapse
Affiliation(s)
- Tim Hofmann
- Advanced Cell Culture Technologies, Merck Life Sciences KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany;
| | - Simon Krah
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany; (S.K.); (C.S.); (S.Z.)
| | - Carolin Sellmann
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany; (S.K.); (C.S.); (S.Z.)
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany; (S.K.); (C.S.); (S.Z.)
| | - Achim Doerner
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany; (S.K.); (C.S.); (S.Z.)
| |
Collapse
|
175
|
Wójcik M, Vázquez Torres S, Quax WJ, Boersma YL. Sortase mutants with improved protein thermostability and enzymatic activity obtained by consensus design. Protein Eng Des Sel 2020; 32:555-564. [PMID: 32725168 DOI: 10.1093/protein/gzaa018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/16/2020] [Accepted: 07/03/2020] [Indexed: 11/14/2022] Open
Abstract
Staphylococcus aureus sortase A (SaSrtA) is an enzyme that anchors proteins to the cell surface of Gram-positive bacteria. During the transpeptidation reaction performed by SaSrtA, proteins containing an N-terminal glycine can be covalently linked to another protein with a C-terminal LPXTG motif (X being any amino acid). Since the sortase reaction can be performed in vitro as well, it has found many applications in biotechnology. Although sortase-mediated ligation has many advantages, SaSrtA is limited by its low enzymatic activity and dependence on Ca2+. In our study, we evaluated the thermodynamic stability of the SaSrtA wild type and found the enzyme to be stable. We applied consensus analysis to further improve the enzyme's stability while at the same time enhancing the enzyme's activity. As a result, we found thermodynamically improved, more active and Ca2+-independent mutants. We envision that these new variants can be applied in conjugation reactions in low Ca2+ environments.
Collapse
Affiliation(s)
- Magdalena Wójcik
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 Groningen, The Netherlands
| | - Susana Vázquez Torres
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 Groningen, The Netherlands
| | - Wim J Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 Groningen, The Netherlands
| | - Ykelien L Boersma
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 Groningen, The Netherlands
| |
Collapse
|
176
|
Liu S, Refaei M, Liu S, Decker A, Hinerman JM, Herr AB, Howell M, Musier-Forsyth K, Tsang P. Hairpin RNA-induced conformational change of a eukaryotic-specific lysyl-tRNA synthetase extension and role of adjacent anticodon-binding domain. J Biol Chem 2020; 295:12071-12085. [PMID: 32611767 PMCID: PMC7443506 DOI: 10.1074/jbc.ra120.013852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/26/2020] [Indexed: 11/06/2022] Open
Abstract
Human lysyl-tRNA synthetase (hLysRS) is essential for aminoacylation of tRNALys Higher eukaryotic LysRSs possess an N-terminal extension (Nterm) previously shown to facilitate high-affinity tRNA binding and aminoacylation. This eukaryote-specific appended domain also plays a critical role in hLysRS nuclear localization, thus facilitating noncanonical functions of hLysRS. The structure is intrinsically disordered and therefore remains poorly characterized. Findings of previous studies are consistent with the Nterm domain undergoing a conformational transition to an ordered structure upon nucleic acid binding. In this study, we used NMR to investigate how the type of RNA, as well as the presence of the adjacent anticodon-binding domain (ACB), influences the Nterm conformation. To explore the latter, we used sortase A ligation to produce a segmentally labeled tandem-domain protein, Nterm-ACB. In the absence of RNA, Nterm remained disordered regardless of ACB attachment. Both alone and when attached to ACB, Nterm structure remained unaffected by titration with single-stranded RNAs. The central region of the Nterm domain adopted α-helical structure upon titration of Nterm and Nterm-ACB with RNA hairpins containing double-stranded regions. Nterm binding to the RNA hairpins resulted in CD spectral shifts consistent with an induced helical structure. NMR and fluorescence anisotropy revealed that Nterm binding to hairpin RNAs is weak but that the binding affinity increases significantly upon covalent attachment to ACB. We conclude that the ACB domain facilitates induced-fit conformational changes and confers high-affinity RNA hairpin binding, which may be advantageous for functional interactions of LysRS with a variety of different binding partners.
Collapse
Affiliation(s)
- Sheng Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Maryanne Refaei
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Shuohui Liu
- Department of Chemistry and Biochemistry, Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| | - Aaron Decker
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jennifer M. Hinerman
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Andrew B. Herr
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Mike Howell
- Protein Express, Inc., Cincinnati, Ohio, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| | - Pearl Tsang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
177
|
Schilcher K, Horswill AR. Staphylococcal Biofilm Development: Structure, Regulation, and Treatment Strategies. Microbiol Mol Biol Rev 2020; 84:e00026-19. [PMID: 32792334 PMCID: PMC7430342 DOI: 10.1128/mmbr.00026-19] [Citation(s) in RCA: 385] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In many natural and clinical settings, bacteria are associated with some type of biotic or abiotic surface that enables them to form biofilms, a multicellular lifestyle with bacteria embedded in an extracellular matrix. Staphylococcus aureus and Staphylococcus epidermidis, the most frequent causes of biofilm-associated infections on indwelling medical devices, can switch between an existence as single free-floating cells and multicellular biofilms. During biofilm formation, cells first attach to a surface and then multiply to form microcolonies. They subsequently produce the extracellular matrix, a hallmark of biofilm formation, which consists of polysaccharides, proteins, and extracellular DNA. After biofilm maturation into three-dimensional structures, the biofilm community undergoes a disassembly process that leads to the dissemination of staphylococcal cells. As biofilms are dynamic and complex biological systems, staphylococci have evolved a vast network of regulatory mechanisms to modify and fine-tune biofilm development upon changes in environmental conditions. Thus, biofilm formation is used as a strategy for survival and persistence in the human host and can serve as a reservoir for spreading to new infection sites. Moreover, staphylococcal biofilms provide enhanced resilience toward antibiotics and the immune response and impose remarkable therapeutic challenges in clinics worldwide. This review provides an overview and an updated perspective on staphylococcal biofilms, describing the characteristic features of biofilm formation, the structural and functional properties of the biofilm matrix, and the most important mechanisms involved in the regulation of staphylococcal biofilm formation. Finally, we highlight promising strategies and technologies, including multitargeted or combinational therapies, to eradicate staphylococcal biofilms.
Collapse
Affiliation(s)
- Katrin Schilcher
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado, USA
| |
Collapse
|
178
|
Schilcher K, Horswill AR. Staphylococcal Biofilm Development: Structure, Regulation, and Treatment Strategies. Microbiol Mol Biol Rev 2020. [PMID: 32792334 DOI: 10.1128/mmbr.00026-19/asset/e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
In many natural and clinical settings, bacteria are associated with some type of biotic or abiotic surface that enables them to form biofilms, a multicellular lifestyle with bacteria embedded in an extracellular matrix. Staphylococcus aureus and Staphylococcus epidermidis, the most frequent causes of biofilm-associated infections on indwelling medical devices, can switch between an existence as single free-floating cells and multicellular biofilms. During biofilm formation, cells first attach to a surface and then multiply to form microcolonies. They subsequently produce the extracellular matrix, a hallmark of biofilm formation, which consists of polysaccharides, proteins, and extracellular DNA. After biofilm maturation into three-dimensional structures, the biofilm community undergoes a disassembly process that leads to the dissemination of staphylococcal cells. As biofilms are dynamic and complex biological systems, staphylococci have evolved a vast network of regulatory mechanisms to modify and fine-tune biofilm development upon changes in environmental conditions. Thus, biofilm formation is used as a strategy for survival and persistence in the human host and can serve as a reservoir for spreading to new infection sites. Moreover, staphylococcal biofilms provide enhanced resilience toward antibiotics and the immune response and impose remarkable therapeutic challenges in clinics worldwide. This review provides an overview and an updated perspective on staphylococcal biofilms, describing the characteristic features of biofilm formation, the structural and functional properties of the biofilm matrix, and the most important mechanisms involved in the regulation of staphylococcal biofilm formation. Finally, we highlight promising strategies and technologies, including multitargeted or combinational therapies, to eradicate staphylococcal biofilms.
Collapse
Affiliation(s)
- Katrin Schilcher
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado, USA
| |
Collapse
|
179
|
Kumari P, Nath Y, Murty US, Ravichandiran V, Mohan U. Sortase A Mediated Bioconjugation of Common Epitopes Decreases Biofilm Formation in Staphylococcus aureus. Front Microbiol 2020; 11:1702. [PMID: 32903711 PMCID: PMC7438799 DOI: 10.3389/fmicb.2020.01702] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/29/2020] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is one of the most notorious pathogens and is frequently associated with nosocomial infections imposing serious risk to immune-compromised patients. This is in part due to its ability to colonize at the surface of indwelling medical devices and biofilm formation. Combating the biofilm formation with antibiotics has its own challenges like higher values of minimum inhibitory concentrations. Here, we describe a new approach to target biofilm formation by Gram positive bacteria. Sortase A is a transpeptidase enzyme which is responsible for tagging of around ∼22 cell surface proteins onto the outer surface. These proteins play a major role in the bacterial virulence. Sortase A recognizes its substrate through LPXTG motif. Here, we use this approach to install the synthetic peptide substrates onS. aureus. Sortase A substrate mimic, 6His-LPETG peptide was synthesized using solid phase peptide chemistry. Incorporation of the peptide on the cell surface was measured using ELISA. Effect of peptide incubation on Staphylococcus aureus biofilm was also studied. 71.1% biofilm inhibition was observed with 100 μM peptide while on silicon coated rubber latex catheter, 45.82% inhibition was observed. The present work demonstrates the inability of surface modified S. aureus to establish biofilm formation thereby presenting a novel method for attenuating its virulence.
Collapse
Affiliation(s)
- Poonam Kumari
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Yutika Nath
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | | | - Velayutham Ravichandiran
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Utpal Mohan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, India
| |
Collapse
|
180
|
Yang T, Zhang T, Guan XN, Dong Z, Lan L, Yang S, Yang CG. Tideglusib and Its Analogues As Inhibitors of Staphylococcus aureus SrtA. J Med Chem 2020; 63:8442-8457. [PMID: 32639734 DOI: 10.1021/acs.jmedchem.0c00803] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sortase A (SrtA) anchors surface proteins to the cell wall envelope, and it has attracted increasing interesting as a potential antivirulence target. Several small-molecule inhibitors for SrtA have been developed, but target validation remains largely underexplored. Herein, we report a new class of SrtA inhibitors that supports antivirulence therapy through small-molecule targeting of SrtA. Tideglusib (TD), a drug candidate for myotonic dystrophy, was outstanding in high-throughput screening. A concise synthetic route quickly provided TD analogues, and the structure-activity relationships for SrtA inhibition have been established from those analogues. Several compounds largely retained the in vitro potency and exhibited a better solubility than TD. Additionally, TD attenuated virulence-related phenotypes in vitro and protected mice against lethal S. aureus USA300 bacteremia. Our study indicates that TD and its analogues could be new candidates as SrtA inhibitors with potential in the development of new antivirulence agents.
Collapse
Affiliation(s)
- Teng Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guizhou 550025, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tao Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiang-Na Guan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ze Dong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lefu Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of the Chinese Academy of Sciences, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guizhou 550025, China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of the Chinese Academy of Sciences, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| |
Collapse
|
181
|
Hemu X, El Sahili A, Hu S, Zhang X, Serra A, Goh BC, Darwis DA, Chen MW, Sze SK, Liu CF, Lescar J, Tam JP. Turning an Asparaginyl Endopeptidase into a Peptide Ligase. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02078] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xinya Hemu
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Abbas El Sahili
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- NTU Institute of Structural Biology, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Side Hu
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- NTU Institute of Structural Biology, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Xiaohong Zhang
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Aida Serra
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- IMDEA Food Research Institute, Carr. de Canto Blanco, 8, Madrid 28049, Spain
| | - Boon Chong Goh
- NTU Institute of Structural Biology, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
- Antimicrobial Resistance Interdisciplinary Research Group, SMART, 1 CREATE Way, Singapore 138602
| | - Dina A. Darwis
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 14 Medical Drive, Singapore 117599
| | - Ming Wei Chen
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Siu Kwan Sze
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Chuan-fa Liu
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Julien Lescar
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- NTU Institute of Structural Biology, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - James P. Tam
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
182
|
Fauser J, Savitskiy S, Fottner M, Trauschke V, Gulen B. Sortase-Mediated Quantifiable Enzyme Immobilization on Magnetic Nanoparticles. Bioconjug Chem 2020; 31:1883-1892. [DOI: 10.1021/acs.bioconjchem.0c00322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Joel Fauser
- Department of Biochemistry and Signaltransduction, University Medical Center Hamburg-Eppendorf (UKE), Martinistrasse 52, 20251, Hamburg, Germany
- Center for Integrated Protein Science Munich (CIPSM), Department Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Sergey Savitskiy
- Department of Biochemistry and Signaltransduction, University Medical Center Hamburg-Eppendorf (UKE), Martinistrasse 52, 20251, Hamburg, Germany
- Center for Integrated Protein Science Munich (CIPSM), Department Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Maximilian Fottner
- Center for Integrated Protein Science Munich (CIPSM), Department Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Vanessa Trauschke
- Department of Chemistry, Center for Nanoscience (CeNS), Ludwig Maximilians-Universität, Schellingstrasse 4, 80799, Munich, Germany
| | - Burak Gulen
- Department of Biochemistry and Signaltransduction, University Medical Center Hamburg-Eppendorf (UKE), Martinistrasse 52, 20251, Hamburg, Germany
- Center for Integrated Protein Science Munich (CIPSM), Department Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| |
Collapse
|
183
|
PolyTag: A peptide tag that affords scaffold-less covalent protein assembly catalyzed by microbial transglutaminase. Anal Biochem 2020; 600:113700. [DOI: 10.1016/j.ab.2020.113700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022]
|
184
|
Frazier CL, Weeks AM. Engineered peptide ligases for cell signaling and bioconjugation. Biochem Soc Trans 2020; 48:1153-1165. [PMID: 32539119 PMCID: PMC8350744 DOI: 10.1042/bst20200001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 11/17/2022]
Abstract
Enzymes that catalyze peptide ligation are powerful tools for site-specific protein bioconjugation and the study of cellular signaling. Peptide ligases can be divided into two classes: proteases that have been engineered to favor peptide ligation, and protease-related enzymes with naturally evolved peptide ligation activity. Here, we provide a review of key natural peptide ligases and proteases engineered to favor peptide ligation activity. We cover the protein engineering approaches used to generate and improve these tools, along with recent biological applications, advantages, and limitations associated with each enzyme. Finally, we address future challenges and opportunities for further development of peptide ligases as tools for biological research.
Collapse
Affiliation(s)
- Clara L. Frazier
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Amy M. Weeks
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
185
|
Insights into the biochemical and functional characterization of sortase E transpeptidase of Corynebacterium glutamicum. Biochem J 2020; 476:3835-3847. [PMID: 31815278 DOI: 10.1042/bcj20190812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/30/2022]
Abstract
Most Gram-positive bacteria contain a membrane-bound transpeptidase known as sortase which covalently incorporates the surface proteins on to the cell wall. The sortase-displayed protein structures are involved in cell attachment, nutrient uptake and aerial hyphae formation. Among the six classes of sortase (A-F), sortase A of S. aureus is the well-characterized housekeeping enzyme considered as an ideal drug target and a valuable biochemical reagent for protein engineering. Similar to SrtA, class E sortase in GC rich bacteria plays a housekeeping role which is not studied extensively. However, C. glutamicum ATCC 13032, an industrially important organism known for amino acid production, carries a single putative sortase (NCgl2838) gene but neither in vitro peptide cleavage activity nor biochemical characterizations have been investigated. Here, we identified that the gene is having a sortase activity and analyzed its structural similarity with Cd-SrtF. The purified enzyme showed a greater affinity toward LAXTG substrate with a calculated KM of 12 ± 1 µM, one of the highest affinities reported for this class of enzyme. Moreover, site-directed mutation studies were carried to ascertain the structure functional relationship of Cg-SrtE and all these are new findings which will enable us to perceive exciting protein engineering applications with this class of enzyme from a non-pathogenic microbe.
Collapse
|
186
|
Wójcik M, Szala K, van Merkerk R, Quax WJ, Boersma YL. Engineering the specificity of Streptococcus pyogenes sortase A by loop grafting. Proteins 2020; 88:1394-1400. [PMID: 32501594 PMCID: PMC7586933 DOI: 10.1002/prot.25958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/30/2020] [Accepted: 05/27/2020] [Indexed: 11/24/2022]
Abstract
Sortases are a group of enzymes displayed on the cell‐wall of Gram‐positive bacteria. They are responsible for the attachment of virulence factors onto the peptidoglycan in a transpeptidation reaction through recognition of a pentapeptide substrate. Most housekeeping sortases recognize one specific pentapeptide motif; however, Streptococcus pyogenes sortase A (SpSrtA WT) recognizes LPETG, LPETA and LPKLG motifs. Here, we examined SpSrtA's flexible substrate specificity by investigating the role of the β7/β8 loop in determining substrate specificity. We exchanged the β7/β8 loop in SpSrtA with corresponding β7/β8 loops from Staphylococcus aureus (SaSrtA WT) and Bacillus anthracis (BaSrtA WT). While the BaSrtA‐derived variant showed no enzymatic activity toward either LPETG or LPETA substrates, the activity of the SaSrtA‐derived mutant toward the LPETA substrate was completely abolished. Instead, the mutant had an improved activity toward LPETG, the preferred substrate of SaSrtA WT.
Collapse
Affiliation(s)
- Magdalena Wójcik
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Kamil Szala
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Ronald van Merkerk
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Wim J Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Ykelien L Boersma
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
187
|
Shinbara K, Liu W, van Neer RHP, Katoh T, Suga H. Methodologies for Backbone Macrocyclic Peptide Synthesis Compatible With Screening Technologies. Front Chem 2020; 8:447. [PMID: 32626683 PMCID: PMC7314982 DOI: 10.3389/fchem.2020.00447] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/28/2020] [Indexed: 12/23/2022] Open
Abstract
Backbone macrocyclic structures are often found in diverse bioactive peptides and contribute to greater conformational rigidity, peptidase resistance, and potential membrane permeability compared to their linear counterparts. Therefore, such peptide scaffolds are an attractive platform for drug-discovery endeavors. Recent advances in synthetic methods for backbone macrocyclic peptides have enabled the discovery of novel peptide drug candidates against diverse targets. Here, we overview recent technical advancements in the synthetic methods including 1) enzymatic synthesis, 2) chemical synthesis, 3) split-intein circular ligation of peptides and proteins (SICLOPPS), and 4) in vitro translation system combined with genetic code reprogramming. We also discuss screening methodologies compatible with those synthetic methodologies, such as one-beads one-compound (OBOC) screening compatible with the synthetic method 2, cell-based assay compatible with 3, limiting-dilution PCR and mRNA display compatible with 4.
Collapse
Affiliation(s)
| | | | | | | | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
188
|
Sue CK, McConnell SA, Ellis-Guardiola K, Muroski J, McAllister RA, Yu J, Alvarez AI, Chang C, Ogorzalek Loo RR, Loo JA, Ton-That H, Clubb RT. Kinetics and Optimization of the Lysine-Isopeptide Bond Forming Sortase Enzyme from Corynebacterium diphtheriae. Bioconjug Chem 2020; 31:1624-1634. [PMID: 32396336 PMCID: PMC8153732 DOI: 10.1021/acs.bioconjchem.0c00163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Site-specifically modified protein bioconjugates have important applications in biology, chemistry, and medicine. Functionalizing specific protein side chains with enzymes using mild reaction conditions is of significant interest, but remains challenging. Recently, the lysine-isopeptide bond forming activity of the sortase enzyme that builds surface pili in Corynebacterium diphtheriae (CdSrtA) has been reconstituted in vitro. A mutationally activated form of CdSrtA was shown to be a promising bioconjugating enzyme that can attach Leu-Pro-Leu-Thr-Gly peptide fluorophores to a specific lysine residue within the N-terminal domain of the SpaA protein (NSpaA), enabling the labeling of target proteins that are fused to NSpaA. Here we present a detailed analysis of the CdSrtA catalyzed protein labeling reaction. We show that the first step in catalysis is rate limiting, which is the formation of the CdSrtA-peptide thioacyl intermediate that subsequently reacts with a lysine ε-amine in NSpaA. This intermediate is surprisingly stable, limiting spurious proteolysis of the peptide substrate. We report the discovery of a new enzyme variant (CdSrtAΔ) that has significantly improved transpeptidation activity, because it completely lacks an inhibitory polypeptide appendage ("lid") that normally masks the active site. We show that the presence of the lid primarily impairs formation of the thioacyl intermediate and not the recognition of the NSpaA substrate. Quantitative measurements reveal that CdSrtAΔ generates its cross-linked product with a catalytic turnover number of 1.4 ± 0.004 h-1 and that it has apparent KM values of 0.16 ± 0.04 and 1.6 ± 0.3 mM for its NSpaA and peptide substrates, respectively. CdSrtAΔ is 7-fold more active than previously studied variants, labeling >90% of NSpaA with peptide within 6 h. The results of this study further improve the utility of CdSrtA as a protein labeling tool and provide insight into the enzyme catalyzed reaction that underpins protein labeling and pilus biogenesis.
Collapse
Affiliation(s)
- Christopher K. Sue
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| | - Scott A. McConnell
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| | - Ken Ellis-Guardiola
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| | - John Muroski
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| | - Rachel A. McAllister
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| | - Justin Yu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| | - Ana I. Alvarez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| | - Chungyu Chang
- Molecular Biology Institute and the University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| | - Rachel R. Ogorzalek Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- Molecular Biology Institute and the University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| | - Hung Ton-That
- Molecular Biology Institute and the University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| | - Robert T. Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- Molecular Biology Institute and the University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| |
Collapse
|
189
|
Anchoring of heterologous proteins in multiple Lactobacillus species using anchors derived from Lactobacillus plantarum. Sci Rep 2020; 10:9640. [PMID: 32541679 PMCID: PMC7295990 DOI: 10.1038/s41598-020-66531-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Members of the genus Lactobacillus have a long history in food applications and are considered as promising and safe hosts for delivery of medically interesting proteins. We have assessed multiple surface anchors derived from Lactobacillus plantarum for protein surface display in multiple Lactobacillus species, using a Mycobacterium tuberculosis hybrid antigen as test protein. The anchors tested were a lipoprotein anchor and two cell wall anchors, one non-covalent (LysM domain) and one covalent (sortase-based anchoring using the LPXTG motif). Thus, three different expression vectors for surface-anchoring were tested in eight Lactobacillus species. When using the LPXTG and LysM cell wall anchors, surface display, as assessed by flow cytometry and fluorescence microscopy, was observed in all species except Lactobacillus acidophilus. Use of the cell membrane anchor revealed more variation in the apparent degree of surface-exposure among the various lactobacilli. Overproduction of the secreted and anchored antigen impaired bacterial growth rate to extents that varied among the lactobacilli and were dependent on the type of anchor. Overall, these results show that surface anchors derived from L. plantarum are promising candidates for efficient anchoring of medically interesting proteins in other food grade Lactobacillus species.
Collapse
|
190
|
Chen P, Liu R, Huang M, Zhu J, Wei D, Castellino FJ, Dang G, Xie F, Li G, Cui Z, Liu S, Zhang Y. A unique combination of glycoside hydrolases in Streptococcus suis specifically and sequentially acts on host-derived αGal-epitope glycans. J Biol Chem 2020; 295:10638-10652. [PMID: 32518157 DOI: 10.1074/jbc.ra119.011977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/06/2020] [Indexed: 01/02/2023] Open
Abstract
Infections by many bacterial pathogens rely on their ability to degrade host glycans by producing glycoside hydrolases (GHs). Here, we discovered a conserved multifunctional GH, SsGalNagA, containing a unique combination of two family 32 carbohydrate-binding modules (CBM), a GH16 domain and a GH20 domain, in the zoonotic pathogen Streptococcus suis 05ZYH33. Enzymatic assays revealed that the SsCBM-GH16 domain displays endo-(β1,4)-galactosidase activity specifically toward the host-derived αGal epitope Gal(α1,3)Gal(β1,4)Glc(NAc)-R, whereas the SsGH20 domain has a wide spectrum of exo-β-N-acetylhexosaminidase activities, including exo-(β1,3)-N-acetylglucosaminidase activity, and employs this activity to act in tandem with SsCBM-GH16 on the αGal-epitope glycan. Further, we found that the CBM32 domain adjacent to the SsGH16 domain is indispensable for SsGH16 catalytic activity. Surface plasmon resonance experiments uncovered that both CBM32 domains specifically bind to αGal-epitope glycan, and together they had a KD of 3.5 mm toward a pentasaccharide αGal-epitope glycan. Cell-binding and αGal epitope removal assays revealed that SsGalNagA efficiently binds to both swine erythrocytes and tracheal epithelial cells and removes the αGal epitope from these cells, suggesting that SsGalNagA functions in nutrient acquisition or alters host signaling in S. suis Both binding and removal activities were blocked by an αGal-epitope glycan. SsGalNagA is the first enzyme reported to sequentially act on a glycan containing the αGal epitope. These findings shed detailed light on the evolution of GHs and an important host-pathogen interaction.
Collapse
Affiliation(s)
- Ping Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ran Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mengmeng Huang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jinlu Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Dong Wei
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Francis J Castellino
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA.,W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Guanghui Dang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fang Xie
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Gang Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ziyin Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yueling Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
191
|
Ramirez NA, Das A, Ton-That H. New Paradigms of Pilus Assembly Mechanisms in Gram-Positive Actinobacteria. Trends Microbiol 2020; 28:999-1009. [PMID: 32499101 DOI: 10.1016/j.tim.2020.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023]
Abstract
Adhesive pili in Gram-positive bacteria represent a variety of extracellular multiprotein polymers that mediate bacterial colonization of specific host tissues and associated pathogenesis. Pili are assembled in two distinct but coupled steps, an orderly crosslinking of pilin monomers and subsequent anchoring of the polymer to peptidoglycan, catalyzed by two transpeptidase enzymes - the pilus-specific sortase and the housekeeping sortase. Here, we review this biphasic assembly mechanism based on studies of two prototypical models, the heterotrimeric pili in Corynebacterium diphtheriae and the heterodimeric pili in Actinomyces oris, highlighting some newly emerged basic paradigms. The disparate mechanisms of protein ligation mediated by the pilus-specific sortase and the spatial positioning of adhesive pili on the cell surface modulated by the housekeeping sortase are among the notable highlights.
Collapse
Affiliation(s)
- Nicholas A Ramirez
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Asis Das
- Department of Medicine, Neag Comprehensive Cancer Center, University of Connecticut Health Center, Farmington, CT, USA
| | - Hung Ton-That
- Molecular Biology Institute, University of California, Los Angeles, CA, USA; Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, CA, USA.
| |
Collapse
|
192
|
Gosschalk JE, Chang C, Sue CK, Siegel SD, Wu C, Kattke MD, Yi SW, Damoiseaux R, Jung ME, Ton-That H, Clubb RT. A Cell-based Screen in Actinomyces oris to Identify Sortase Inhibitors. Sci Rep 2020; 10:8520. [PMID: 32444661 PMCID: PMC7244523 DOI: 10.1038/s41598-020-65256-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
Sortase enzymes are attractive antivirulence drug targets that attach virulence factors to the surface of Staphylococcus aureus and other medically significant bacterial pathogens. Prior efforts to discover a useful sortase inhibitor have relied upon an in vitro activity assay in which the enzyme is removed from its native site on the bacterial surface and truncated to improve solubility. To discover inhibitors that are effective in inactivating sortases in vivo, we developed and implemented a novel cell-based screen using Actinomyces oris, a key colonizer in the development of oral biofilms. A. oris is unique because it exhibits sortase-dependent growth in cell culture, providing a robust phenotype for high throughput screening (HTS). Three molecules representing two unique scaffolds were discovered by HTS and disrupt surface protein display in intact cells and inhibit enzyme activity in vitro. This represents the first HTS for sortase inhibitors that relies on the simple metric of cellular growth and suggests that A. oris may be a useful platform for discovery efforts targeting sortase.
Collapse
Affiliation(s)
- Jason E Gosschalk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA.,UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, USA
| | - Chungyu Chang
- Division of Oral Biology and Medicine, University of California, Los Angeles, USA
| | - Christopher K Sue
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA.,UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, USA
| | - Sara D Siegel
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, TX, USA
| | - Chenggang Wu
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, TX, USA
| | - Michele D Kattke
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA.,UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, USA
| | - Sung Wook Yi
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA
| | - Robert Damoiseaux
- Department of Molecular and Medicinal Pharmacology, University of California, Los Angeles, USA.,California NanoSystems Institute, University of California, Los Angeles, USA
| | - Michael E Jung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA.,Molecular Biology Institute, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA
| | - Hung Ton-That
- Division of Oral Biology and Medicine, University of California, Los Angeles, USA. .,Department of Molecular and Medicinal Pharmacology, University of California, Los Angeles, USA.
| | - Robert T Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA. .,UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, USA. .,Molecular Biology Institute, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA.
| |
Collapse
|
193
|
Cui W, Aouidate A, Wang S, Yu Q, Li Y, Yuan S. Discovering Anti-Cancer Drugs via Computational Methods. Front Pharmacol 2020; 11:733. [PMID: 32508653 PMCID: PMC7251168 DOI: 10.3389/fphar.2020.00733] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/01/2020] [Indexed: 12/24/2022] Open
Abstract
New drug discovery has been acknowledged as a complicated, expensive, time-consuming, and challenging project. It has been estimated that around 12 years and 2.7 billion USD, on average, are demanded for a new drug discovery via traditional drug development pipeline. How to reduce the research cost and speed up the development process of new drug discovery has become a challenging, urgent question for the pharmaceutical industry. Computer-aided drug discovery (CADD) has emerged as a powerful, and promising technology for faster, cheaper, and more effective drug design. Recently, the rapid growth of computational tools for drug discovery, including anticancer therapies, has exhibited a significant and outstanding impact on anticancer drug design, and has also provided fruitful insights into the area of cancer therapy. In this work, we discussed the different subareas of the computer-aided drug discovery process with a focus on anticancer drugs.
Collapse
Affiliation(s)
- Wenqiang Cui
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Adnane Aouidate
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shouguo Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qiuliyang Yu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanhua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shuguang Yuan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
194
|
Barthels F, Marincola G, Marciniak T, Konhäuser M, Hammerschmidt S, Bierlmeier J, Distler U, Wich PR, Tenzer S, Schwarzer D, Ziebuhr W, Schirmeister T. Asymmetric Disulfanylbenzamides as Irreversible and Selective Inhibitors of Staphylococcus aureus Sortase A. ChemMedChem 2020; 15:839-850. [PMID: 32118357 PMCID: PMC7318353 DOI: 10.1002/cmdc.201900687] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/07/2020] [Indexed: 12/19/2022]
Abstract
Staphylococcus aureus is one of the most frequent causes of nosocomial and community-acquired infections, with drug-resistant strains being responsible for tens of thousands of deaths per year. S. aureus sortase A inhibitors are designed to interfere with virulence determinants. We have identified disulfanylbenzamides as a new class of potent inhibitors against sortase A that act by covalent modification of the active-site cysteine. A broad series of derivatives were synthesized to derive structure-activity relationships (SAR). In vitro and in silico methods allowed the experimentally observed binding affinities and selectivities to be rationalized. The most active compounds were found to have single-digit micromolar Ki values and caused up to a 66 % reduction of S. aureus fibrinogen attachment at an effective inhibitor concentration of 10 μM. This new molecule class exhibited minimal cytotoxicity, low bacterial growth inhibition and impaired sortase-mediated adherence of S. aureus cells.
Collapse
Affiliation(s)
- Fabian Barthels
- Institute for Pharmacy and BiochemistryJohannes-Gutenberg-University of MainzStaudinger Weg 555128MainzGermany
| | - Gabriella Marincola
- Institute for Molecular Infection BiologyJulius-Maximilians-University of WürzburgJosef-Schneider-Strasse 297080WürzburgGermany
| | - Tessa Marciniak
- Institute for Molecular Infection BiologyJulius-Maximilians-University of WürzburgJosef-Schneider-Strasse 297080WürzburgGermany
| | - Matthias Konhäuser
- Institute for Pharmacy and BiochemistryJohannes-Gutenberg-University of MainzStaudinger Weg 555128MainzGermany
| | - Stefan Hammerschmidt
- Institute for Pharmacy and BiochemistryJohannes-Gutenberg-University of MainzStaudinger Weg 555128MainzGermany
| | - Jan Bierlmeier
- Interfaculty Institute of BiochemistryEberhard-Karls-University of TübingenHoppe-Seyler-Strasse 472076TübingenGermany
| | - Ute Distler
- Institute for ImmunologyUniversity Medical CenterJohannes-Gutenberg-University of MainzLangenbeckstr. 155131MainzGermany
- Focus Program Translational Neuroscience (FTN)University Medical CenterLangenbeckstr. 155131MainzGermany
| | - Peter R. Wich
- Institute for Pharmacy and BiochemistryJohannes-Gutenberg-University of MainzStaudinger Weg 555128MainzGermany
- School of Chemical EngineeringUniversity of New South WalesScience and Engineering BuildingSydneyNSW 2052Australia
| | - Stefan Tenzer
- Institute for ImmunologyUniversity Medical CenterJohannes-Gutenberg-University of MainzLangenbeckstr. 155131MainzGermany
| | - Dirk Schwarzer
- Interfaculty Institute of BiochemistryEberhard-Karls-University of TübingenHoppe-Seyler-Strasse 472076TübingenGermany
| | - Wilma Ziebuhr
- Institute for Molecular Infection BiologyJulius-Maximilians-University of WürzburgJosef-Schneider-Strasse 297080WürzburgGermany
| | - Tanja Schirmeister
- Institute for Pharmacy and BiochemistryJohannes-Gutenberg-University of MainzStaudinger Weg 555128MainzGermany
| |
Collapse
|
195
|
Nemec AA, Tomko RJ. A suite of polymerase chain reaction-based peptide tagging plasmids for epitope-targeted enzymatic functionalization of yeast proteins. Yeast 2020; 37:327-335. [PMID: 32401365 DOI: 10.1002/yea.3471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 04/13/2020] [Accepted: 05/05/2020] [Indexed: 11/08/2022] Open
Abstract
The budding yeast and model eukaryote Saccharomyces cerevisiae has been invaluable for purification and analysis of numerous evolutionarily conserved proteins and multisubunit complexes that cannot be readily reconstituted in Escherichia coli. For many studies, it is desirable to functionalize a particular protein or subunit of a complex with a ligand, fluorophore or other small molecule. Enzyme-catalysed site-specific modification of proteins bearing short peptide tags is a powerful strategy to overcome the limitations associated with traditional nonselective labelling chemistries. Towards this end, we developed a suite of template plasmids for C-terminal tagging with short peptide sequences that can be site-specifically functionalized with high efficiency and selectivity. We have also combined these sequences with the FLAG tag as a handle for purification or immunological detection of the modified protein. We demonstrate the utility of these plasmids by site-specifically labelling the 28-subunit core particle subcomplex of the 26S proteasome with the small molecule fluorophore Cy5. The full set of plasmids has been deposited in the non-profit plasmid repository Addgene (http://www.addgene.org).
Collapse
Affiliation(s)
- Antonia A Nemec
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Robert J Tomko
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| |
Collapse
|
196
|
Briand ML, Gebleux R, Richina F, Correro MR, Grether Y, Dudal Y, Braga-Lagache S, Heller M, Beerli RR, Grawunder U, Corvini PFX, Shahgaldian P. Partially shielded enzymes capable of processing large protein substrates. Chem Commun (Camb) 2020; 56:5170-5173. [PMID: 32266896 DOI: 10.1039/d0cc01150a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the first method of enzyme protection enabling the production of partially shielded enzymes capable of processing substrates as large as proteins. We show that partially shielded sortase retains its transpeptidase activity and can perform bioconjugation reactions on antibodies. Moreover, a partially shielded trypsin is shown to outperform its soluble counterpart in terms of proteolytic kinetics. Remarkably, partial enzyme shielding results in a drastic increase in temporal stability of the enzyme.
Collapse
Affiliation(s)
- Manon L Briand
- School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasee 30, Muttenz CH-4132, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Russo BT, Ayinuola YA, Singh D, Carothers K, Fischetti VA, Flores-Mireles AL, Lee SW, Ploplis VA, Liang Z, Castellino FJ. The M Protein of Streptococcus pyogenes Strain AP53 Retains Cell Surface Functional Plasminogen Binding after Inactivation of the Sortase A Gene. J Bacteriol 2020; 202:e00096-20. [PMID: 32123038 PMCID: PMC7186463 DOI: 10.1128/jb.00096-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Streptococcus pyogenes (Lancefield group A Streptococcus [GAS]) is a β-hemolytic human-selective pathogen that is responsible for a large number of morbid and mortal infections in humans. For efficient infection, GAS requires different types of surface proteins that provide various mechanisms for evading human innate immune responses, thus enhancing pathogenicity of the bacteria. Many such virulence-promoting proteins, including the major surface signature M protein, are translocated after biosynthesis through the cytoplasmic membrane and temporarily tethered to this membrane via a type 1 transmembrane domain (TMD) positioned near the COOH terminus. In these proteins, a sorting signal, LPXTG, is positioned immediately upstream of the TMD, which is cleaved by the membrane-associated transpeptidase, sortase A (SrtA), leading to the covalent anchoring of these proteins to newly emerging l-Ala-l-Ala cross-bridges of the growing peptidoglycan cell wall. Herein, we show that inactivation of the srtA gene in a skin-tropic pattern D GAS strain (AP53) results in retention of the M protein in the cell membrane. However, while the isogenic AP53 ΔsrtA strain is attenuated in overall pathogenic properties due to effects on the integrity of the cell membrane, our data show that the M protein nonetheless can extend from the cytoplasmic membrane through the cell wall and then to the surface of the bacteria and thereby retain its important properties of productively binding and activating fluid-phase host plasminogen (hPg). The studies presented herein demonstrate an underappreciated additional mechanism of cell surface display of bacterial virulence proteins via their retention in the cell membrane and extension to the GAS surface.IMPORTANCE Group A Streptococcus pyogenes (GAS) is a human-specific pathogen that produces many surface factors, including its signature M protein, that contribute to its pathogenicity. M proteins undergo specific membrane localization and anchoring to the cell wall via the transpeptidase sortase A. Herein, we explored the role of sortase A function on M protein localization, architecture, and function, employing, a skin-tropic GAS isolate, AP53, which expresses a human plasminogen (hPg)-binding M (PAM) Protein. We showed that PAM anchored in the cell membrane, due to the targeted inactivation of sortase A, was nonetheless exposed on the cell surface and functionally interacted with host hPg. We demonstrate that M proteins, and possibly other sortase A-processed proteins that are retained in the cell membrane, can still function to initiate pathogenic processes by this underappreciated mechanism.
Collapse
Affiliation(s)
- Brady T Russo
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Yetunde A Ayinuola
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Damini Singh
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Katelyn Carothers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Vincent A Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, New York, USA
| | - Ana L Flores-Mireles
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Shaun W Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Victoria A Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Zhong Liang
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Francis J Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
198
|
Abstract
Immuno-positron emission tomography (immunoPET) is a paradigm-shifting molecular imaging modality combining the superior targeting specificity of monoclonal antibody (mAb) and the inherent sensitivity of PET technique. A variety of radionuclides and mAbs have been exploited to develop immunoPET probes, which has been driven by the development and optimization of radiochemistry and conjugation strategies. In addition, tumor-targeting vectors with a short circulation time (e.g., Nanobody) or with an enhanced binding affinity (e.g., bispecific antibody) are being used to design novel immunoPET probes. Accordingly, several immunoPET probes, such as 89Zr-Df-pertuzumab and 89Zr-atezolizumab, have been successfully translated for clinical use. By noninvasively and dynamically revealing the expression of heterogeneous tumor antigens, immunoPET imaging is gradually changing the theranostic landscape of several types of malignancies. ImmunoPET is the method of choice for imaging specific tumor markers, immune cells, immune checkpoints, and inflammatory processes. Furthermore, the integration of immunoPET imaging in antibody drug development is of substantial significance because it provides pivotal information regarding antibody targeting abilities and distribution profiles. Herein, we present the latest immunoPET imaging strategies and their preclinical and clinical applications. We also emphasize current conjugation strategies that can be leveraged to develop next-generation immunoPET probes. Lastly, we discuss practical considerations to tune the development and translation of immunoPET imaging strategies.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
| | - Zachary T Rosenkrans
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
| |
Collapse
|
199
|
Takahara M, Kamiya N. Synthetic Strategies for Artificial Lipidation of Functional Proteins. Chemistry 2020; 26:4645-4655. [DOI: 10.1002/chem.201904568] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/29/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Mari Takahara
- Department of Materials Science & Chemical EngineeringNational Institute of TechnologyKitakyushu College 5-20-1 Shii Kokuraminamiku Kitakyushu 802-0985 Japan
| | - Noriho Kamiya
- Department of Applied ChemistryGraduate School of Engineering 744 Motooka Nishiku Fukuoka 819-0395 Japan
- Division of Biotechnology, Center for Future ChemistryKyushu University 744 Motooka Nishiku Fukuoka 819-0395 Japan
| |
Collapse
|
200
|
Luo Y, Jiang C, Yu L, Yang A. Chemical Biology of Autophagy-Related Proteins With Posttranslational Modifications: From Chemical Synthesis to Biological Applications. Front Chem 2020; 8:233. [PMID: 32309274 PMCID: PMC7145982 DOI: 10.3389/fchem.2020.00233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/11/2020] [Indexed: 02/03/2023] Open
Abstract
Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved lysosomal degradation pathway in all eukaryotic cells, which is critical for maintaining cell homeostasis. A series of autophagy-related (ATG) proteins are involved in the regulation of autophagy. The activities of ATG proteins are mainly modulated by posttranslational modifications (PTMs), such as phosphorylation, lipidation, acetylation, ubiquitination, and sumoylation. To tackle molecular mechanisms of autophagy, more and more researches are focusing on the roles of PTMs in regulation of the activity of ATG proteins and autophagy process. The protein ligation techniques have emerged as powerful tools for the chemical engineering of proteins with PTMs, and provided effective methods to elucidate the molecular mechanism and physiological significance of PTMs. Recently, several ATG proteins with PTM were prepared by protein ligation techniques such as native chemical ligation (NCL), expressed protein ligation (EPL), peptide hydrazide-based NCL, and Sortase A-mediated ligation (SML). More importantly, the synthesized ATG proteins are successfully used to probe the mechanism of autophagy. In this review, we summarize protein ligation techniques for the preparation of ATG proteins with PTMs. In addition, we highlight the biological applications of synthetic ATG proteins to probe the autophagy mechanism.
Collapse
Affiliation(s)
- Yu Luo
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Chen Jiang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lihua Yu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|