151
|
Steinberg GR, Carling D. AMP-activated protein kinase: the current landscape for drug development. Nat Rev Drug Discov 2020; 18:527-551. [PMID: 30867601 DOI: 10.1038/s41573-019-0019-2] [Citation(s) in RCA: 399] [Impact Index Per Article: 99.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the discovery of AMP-activated protein kinase (AMPK) as a central regulator of energy homeostasis, many exciting insights into its structure, regulation and physiological roles have been revealed. While exercise, caloric restriction, metformin and many natural products increase AMPK activity and exert a multitude of health benefits, developing direct activators of AMPK to elicit beneficial effects has been challenging. However, in recent years, direct AMPK activators have been identified and tested in preclinical models, and a small number have entered clinical trials. Despite these advances, which disease(s) represent the best indications for therapeutic AMPK activation and the long-term safety of such approaches remain to be established.
Collapse
Affiliation(s)
- Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| | - David Carling
- Cellular Stress Group, Medical Research Council London Institute of Medical Sciences, Hammersmith Hospital, Imperial College, London, UK
| |
Collapse
|
152
|
Romero FA, Jones CT, Xu Y, Fenaux M, Halcomb RL. The Race to Bash NASH: Emerging Targets and Drug Development in a Complex Liver Disease. J Med Chem 2020; 63:5031-5073. [PMID: 31930920 DOI: 10.1021/acs.jmedchem.9b01701] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a severe form of nonalcoholic fatty liver disease (NAFLD) characterized by liver steatosis, inflammation, and hepatocellular damage. NASH is a serious condition that can progress to cirrhosis, liver failure, and hepatocellular carcinoma. The association of NASH with obesity, type 2 diabetes mellitus, and dyslipidemia has led to an emerging picture of NASH as the liver manifestation of metabolic syndrome. Although diet and exercise can dramatically improve NASH outcomes, significant lifestyle changes can be challenging to sustain. Pharmaceutical therapies could be an important addition to care, but currently none are approved for NASH. Here, we review the most promising targets for NASH treatment, along with the most advanced therapeutics in development. These include targets involved in metabolism (e.g., sugar, lipid, and cholesterol metabolism), inflammation, and fibrosis. Ultimately, combination therapies addressing multiple aspects of NASH pathogenesis are expected to provide benefit for patients.
Collapse
Affiliation(s)
- F Anthony Romero
- Terns Pharmaceuticals, 1065 E. Hillsdale Blvd., Suite 100, Foster City, California 94404, United States
| | - Christopher T Jones
- Terns Pharmaceuticals, 1065 E. Hillsdale Blvd., Suite 100, Foster City, California 94404, United States
| | - Yingzi Xu
- Terns Pharmaceuticals, 1065 E. Hillsdale Blvd., Suite 100, Foster City, California 94404, United States
| | - Martijn Fenaux
- Terns Pharmaceuticals, 1065 E. Hillsdale Blvd., Suite 100, Foster City, California 94404, United States
| | - Randall L Halcomb
- Terns Pharmaceuticals, 1065 E. Hillsdale Blvd., Suite 100, Foster City, California 94404, United States
| |
Collapse
|
153
|
Shepard CR. TLR9 in MAFLD and NASH: At the Intersection of Inflammation and Metabolism. Front Endocrinol (Lausanne) 2020; 11:613639. [PMID: 33584545 PMCID: PMC7880160 DOI: 10.3389/fendo.2020.613639] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
Toll-Like Receptor 9 (TLR9) is an ancient receptor integral to the primordial functions of inflammation and metabolism. TLR9 functions to regulate homeostasis in a healthy system under acute stress. The literature supports that overactivation of TLR9 under the chronic stress of obesity is a critical driver of the pathogenesis of NASH and NASH-associated fibrosis. Research has focused on the core contributions of the parenchymal and non-parenchymal cells in the liver, adipose, and gut compartments. TLR9 is activated by endogenous circulating mitochondrial DNA (mtDNA). Chronically elevated circulating levels of mtDNA, caused by the stress of overnutrition, are observed in obesity, metabolic dysfunction-associated fatty liver disease (MAFLD), and NASH. Clinical evidence is supportive of TLR9 overactivation as a driver of disease. The role of TLR9 in metabolism and energy regulation may have an underappreciated contribution in the pathogenesis of NASH. Antagonism of TLR9 in NASH and NASH-associated fibrosis could be an effective therapeutic strategy to target both the inflammatory and metabolic components of such a complex disease.
Collapse
|
154
|
Jayarajan V, Appukuttan A, Aslam M, Reusch P, Regitz-Zagrosek V, Ladilov Y. Regulation of AMPK activity by type 10 adenylyl cyclase: contribution to the mitochondrial biology, cellular redox and energy homeostasis. Cell Mol Life Sci 2019; 76:4945-4959. [PMID: 31172217 PMCID: PMC11105217 DOI: 10.1007/s00018-019-03152-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 01/28/2023]
Abstract
The downregulation of AMP-activated protein kinase (AMPK) activity contributes to numerous pathologies. Recent reports suggest that the elevation of cellular cAMP promotes AMPK activity. However, the source of the cAMP pool that controls AMPK activity remains unknown. Mammalian cells possess two cAMP sources: membrane-bound adenylyl cyclase (tmAC) and intracellularly localized, type 10 soluble adenylyl cyclase (sAC). Due to the localization of sAC and AMPK in similar intracellular compartments, we hypothesized that sAC may control AMPK activity. In this study, sAC expression and activity were manipulated in H9C2 cells, adult rat cardiomyocytes or endothelial cells. sAC knockdown depleted the cellular cAMP content and decreased AMPK activity in an EPAC-dependent manner. Functionally, sAC knockdown reduced cellular ATP content, increased mitochondrial ROS formation and led to mitochondrial depolarization. Furthermore, sAC downregulation led to EPAC-dependent mitophagy disturbance, indicated by an increased mitochondrial mass and unaffected mitochondrial biogenesis. Consistently, sAC overexpression or stimulation with bicarbonate significantly increased AMPK activity and cellular ATP content. In contrast, tmAC inhibition or stimulation produced no effect on AMPK activity. Therefore, the sAC-EPAC axis may regulate basal and induced AMPK activity and support mitophagy, cellular energy and redox homeostasis. The study argues for sAC as a potential target in treating pathologies associated with AMPK downregulation.
Collapse
Affiliation(s)
- Vignesh Jayarajan
- Charité, Universitätsmedizin Berlin, Institute of Gender in Medicine, Center for Cardiovascular Research, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin Partner Site, Berlin, Germany
- Department of Clinical Pharmacology, Ruhr-University Bochum, Bochum, Germany
| | - Avinash Appukuttan
- Department of Clinical Pharmacology, Ruhr-University Bochum, Bochum, Germany
| | - Muhammad Aslam
- Internal Medicine I/Cardiology and Angiology, University Hospital of Giessen and Marburg, Giessen, Germany
- Experimental Cardiology, Justus Liebig University Giessen, Giessen, Germany
| | - Peter Reusch
- Department of Clinical Pharmacology, Ruhr-University Bochum, Bochum, Germany
| | - Vera Regitz-Zagrosek
- Charité, Universitätsmedizin Berlin, Institute of Gender in Medicine, Center for Cardiovascular Research, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin Partner Site, Berlin, Germany
| | - Yury Ladilov
- Charité, Universitätsmedizin Berlin, Institute of Gender in Medicine, Center for Cardiovascular Research, Berlin, Germany.
- DZHK (German Center for Cardiovascular Research), Berlin Partner Site, Berlin, Germany.
| |
Collapse
|
155
|
Sylow L, Richter EA. Current advances in our understanding of exercise as medicine in metabolic disease. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
156
|
Abstract
Adenylate kinase is a small, usually monomeric, enzyme found in every living thing due to its crucial role in energetic metabolism. This paper outlines the most relevant data about adenylate kinases isoforms, and the connection between dysregulation or mutation of human adenylate kinase and medical conditions. The following datadases were consulted: National Centre for Biotechnology Information, Protein Data Bank, and Mouse Genomic Informatics. The SmartBLAST tool, EMBOSS Needle Program, and Clustal Omega Program were used to analyze the best protein match, and to perform pairwise sequence alignment and multiple sequence alignment. Human adenylate kinase genes are located on different chromosomes, six of them being on the chromosomes 1 and 9. The adenylate kinases' intracellular localization and organ distribution explain their dysregulation in many diseases. The cytosolic isoenzyme 1 and the mitochondrial isoenzyme 2 are the main adenylate kinases that are integrated in the vast network of inflammatory modulators. The cytosolic isoenzyme 5 is correlated with limbic encephalitis and Leu673Pro mutation of the isoenzyme 7 leads to primary male infertility due to impairment of the ciliary function. The impairment of the mitochondrial isoenzymes 2 and 4 is demonstrated in neuroblastoma or glioma. The adenylate kinases are disease modifier that can assess the risk of diseases where oxidative stress plays a crucial role in pathogenesis like metabolic syndrome or neurodegenerative diseases. Because adenylate kinases has ATP as substrate, they are integrated in the global network of energetic process of any organism therefore are valid target for new pharmaceutical compounds.
Collapse
Affiliation(s)
- Mihaela Ileana Ionescu
- Department of Microbiology, Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, 6 Louis Pasteur, Cluj-Napoca, 400349, Romania. .,County Emergency Clinical Hospital, Cluj-Napoca, Romania.
| |
Collapse
|
157
|
Zhu W, Wu RD, Lv YG, Liu YM, Huang H, Xu JQ. BRD4 blockage alleviates pathological cardiac hypertrophy through the suppression of fibrosis and inflammation via reducing ROS generation. Biomed Pharmacother 2019; 121:109368. [PMID: 31707348 DOI: 10.1016/j.biopha.2019.109368] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 10/25/2022] Open
Abstract
Hypertension is an essential regulator of cardiac injury and remodeling. However, the pathogenesis that contributes to cardiac hypertrophy remains to be fully explored. BRD4, as a bromodomain and extra-terminal (BET) family member, plays an important role in critical biological processes. In the study, our results showed that BRD4 expression was up-regulated in human and mouse hypertrophied hearts, and importantly these effects were modulated by reactive oxygen species (ROS) generation. In angiotensin II (Ang II)-treated cardiomyocytes, BRD4 decrease markedly blunted the prohypertrophic effect, which was further promoted by the combinational treatment of ROS scavenger (N-acetyl-cysteine, NAC). In addition, NAC pre-treatment markedly elevated the anti-fibrotic role of BRD4 suppression in Ang II-incubated cardiomyocytes by repressing transforming growth factor β1 (TGF-β1)/SMADs signaling pathway. NAC combined with BRD4 reduction further alleviated inflammation and oxidative stress in Ang II-exposed cardiomyocytes, which was partly through inhibiting nuclear factor-κB (NF-κB) signaling and improving nuclear erythroid factor 2-related factor 2 (Nrf-2)/heme oxygenase-1 (HO-1) pathway, respectively. Furthermore, the in vivo results confirmed the protective effects of BRD4 suppression on mice against aortic banding (AB)-induced cardiac hypertrophy, as evidenced by the reduced cross sectional area and fibrotic area using H&E and Masson trichrome staining. What's more, the degree of cardiac hypertrophy (ANP and BNP), the expression of pro-fibrotic genes (TGF-β1, Collagen I, Collagen III and CTGF), the levels of inflammation and oxidative stress were all significantly attenuated by the blockage of BRD4 in AB-operated mice. Taken together, repressing BRD4 expression was found to confer a protective effect against experimental cardiac hypertrophy in mice, demonstrating its potential as an effective therapeutic target for pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Wen Zhu
- Department of Cardiovascular Medicine, ZiBo First Hospital, Zibo, Shandong, 255200, China
| | - Ruo-Dai Wu
- Department of Radiology, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong, 518055, China
| | - Yun-Gang Lv
- Department of Radiology, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong, 518055, China
| | - Yu-Meng Liu
- Department of Radiology, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong, 518055, China
| | - Hua Huang
- Department of Radiology, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong, 518055, China
| | - Jun-Qing Xu
- Department of Radiology, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
158
|
New insight into the mechanisms of ectopic fat deposition improvement after bariatric surgery. Sci Rep 2019; 9:17315. [PMID: 31754142 PMCID: PMC6872729 DOI: 10.1038/s41598-019-53702-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty-liver disease (NAFLD) is frequent in obese patients and represents a major risk factor for the development of diabetes and its complications. Bariatric surgery reverses the hepatic features of NAFLD. However, its mechanism of action remains elusive. We performed a comprehensive analysis of the mechanism leading to the improvement of NAFLD and insulin resistance in both obese rodents and humans following sleeve-gastrectomy (SG). SG improved insulin sensitivity and reduced hepatic and monocyte fat accumulation. Importantly, fat accumulation in monocytes was well comparable to that in hepatocytes, suggesting that Plin2 levels in monocytes might be a non-invasive marker for the diagnosis of NAFLD. Both in vitro and in vivo studies demonstrated an effective metabolic regeneration of liver function and insulin sensitivity. Specifically, SG improved NAFLD significantly by enhancing AMP-activated protein kinase (AMPK) phosphorylation and chaperone-mediated autophagy (CMA) that translate into the removal of Plin2 coating lipid droplets. This led to an increase in lipolysis and specific amelioration of hepatic insulin resistance. Elucidating the mechanism of impaired liver metabolism in obese subjects will help to design new strategies for the prevention and treatment of NAFLD.
Collapse
|
159
|
Babkov DA, Zhukowskaya ON, Borisov AV, Babkova VA, Sokolova EV, Brigadirova AA, Litvinov RA, Kolodina AA, Morkovnik AS, Sochnev VS, Borodkin GS, Spasov AA. Towards multi-target antidiabetic agents: Discovery of biphenyl-benzimidazole conjugates as AMPK activators. Bioorg Med Chem Lett 2019; 29:2443-2447. [DOI: 10.1016/j.bmcl.2019.07.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 12/25/2022]
|
160
|
Collodet C, Foretz M, Deak M, Bultot L, Metairon S, Viollet B, Lefebvre G, Raymond F, Parisi A, Civiletto G, Gut P, Descombes P, Sakamoto K. AMPK promotes induction of the tumor suppressor FLCN through activation of TFEB independently of mTOR. FASEB J 2019; 33:12374-12391. [PMID: 31404503 PMCID: PMC6902666 DOI: 10.1096/fj.201900841r] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AMPK is a central regulator of energy homeostasis. AMPK not only elicits acute metabolic responses but also promotes metabolic reprogramming and adaptations in the long-term through regulation of specific transcription factors and coactivators. We performed a whole-genome transcriptome profiling in wild-type (WT) and AMPK-deficient mouse embryonic fibroblasts (MEFs) and primary hepatocytes that had been treated with 2 distinct classes of small-molecule AMPK activators. We identified unique compound-dependent gene expression signatures and several AMPK-regulated genes, including folliculin (Flcn), which encodes the tumor suppressor FLCN. Bioinformatics analysis highlighted the lysosomal pathway and the associated transcription factor EB (TFEB) as a key transcriptional mediator responsible for AMPK responses. AMPK-induced Flcn expression was abolished in MEFs lacking TFEB and transcription factor E3, 2 transcription factors with partially redundant function; additionally, the promoter activity of Flcn was profoundly reduced when its putative TFEB-binding site was mutated. The AMPK-TFEB-FLCN axis is conserved across species; swimming exercise in WT zebrafish induced Flcn expression in muscle, which was significantly reduced in AMPK-deficient zebrafish. Mechanistically, we have found that AMPK promotes dephosphorylation and nuclear localization of TFEB independently of mammalian target of rapamycin activity. Collectively, we identified the novel AMPK-TFEB-FLCN axis, which may function as a key cascade for cellular and metabolic adaptations.—Collodet, C., Foretz, M., Deak, M., Bultot, L., Metairon, S., Viollet, B., Lefebvre, G., Raymond, F., Parisi, A., Civiletto, G., Gut, P., Descombes, P., Sakamoto, K. AMPK promotes induction of the tumor suppressor FLCN through activation of TFEB independently of mTOR.
Collapse
Affiliation(s)
- Caterina Collodet
- Nestlé Research, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, Lausanne, Switzerland.,School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, Lausanne, Switzerland
| | - Marc Foretz
- INSERM Unité 1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Maria Deak
- Nestlé Research, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, Lausanne, Switzerland
| | - Laurent Bultot
- Nestlé Research, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, Lausanne, Switzerland
| | - Sylviane Metairon
- Nestlé Research, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, Lausanne, Switzerland
| | - Benoit Viollet
- INSERM Unité 1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Gregory Lefebvre
- Nestlé Research, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, Lausanne, Switzerland
| | - Frederic Raymond
- Nestlé Research, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, Lausanne, Switzerland
| | - Alice Parisi
- Nestlé Research, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, Lausanne, Switzerland
| | - Gabriele Civiletto
- Nestlé Research, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, Lausanne, Switzerland
| | - Philipp Gut
- Nestlé Research, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, Lausanne, Switzerland
| | - Patrick Descombes
- Nestlé Research, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, Lausanne, Switzerland.,School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, Lausanne, Switzerland
| | - Kei Sakamoto
- Nestlé Research, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, Lausanne, Switzerland.,School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, Lausanne, Switzerland
| |
Collapse
|
161
|
Momtaz S, Salek-Maghsoudi A, Abdolghaffari AH, Jasemi E, Rezazadeh S, Hassani S, Ziaee M, Abdollahi M, Behzad S, Nabavi SM. Polyphenols targeting diabetes via the AMP-activated protein kinase pathway; future approach to drug discovery. Crit Rev Clin Lab Sci 2019; 56:472-492. [PMID: 31418340 DOI: 10.1080/10408363.2019.1648376] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Regarding the widespread progression of diabetes, its related complications and detrimental effects on human health, investigations on this subject seems compulsory. AMP-activated protein kinase (AMPK) is a serine/threonine kinase and a key player in energy metabolism regulation. AMPK is also considered as a prime target for pharmaceutical and therapeutic studies on disorders such as diabetes, metabolic syndrome and obesity, where the body energy homeostasis is imbalanced. Following the activation of AMPK (physiological or pharmacological), a cascade of metabolic events that improve metabolic health is triggered. While there are several publications on this subject, this is the first report that has focused solely on polyphenols targeting diabetes via AMPK pathway. The multiple characteristics of polyphenolic compounds and their favorable influence on diabetes pathogenesis, as well as their intersections with the AMPK signaling pathway, indicate that these compounds have a beneficial effect on the regulation of glucose homeostasis. PPs could potentially occupy a significant position in the future anti-diabetic drug market.
Collapse
Affiliation(s)
- Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR , Karaj , Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences , Tehran , Iran
| | - Armin Salek-Maghsoudi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences , Tehran , Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran , Iran
| | - Amir Hossein Abdolghaffari
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR , Karaj , Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences , Tehran , Iran.,Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN) , Tehran , Iran.,Department of Pharmacology, Pharmaceutical Sciences Branch, Islamic Azad University , Tehran , Iran
| | - Eghbal Jasemi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR , Karaj , Iran
| | - Shamsali Rezazadeh
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR , Karaj , Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences , Tehran , Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran , Iran
| | - Mojtaba Ziaee
- Cardiovascular Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences , Tehran , Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran , Iran
| | - Sahar Behzad
- Evidence-Based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences , Karaj , Iran.,Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| |
Collapse
|
162
|
Liu MM, Lian X, Liu H, Guo ZZ, Huang HH, Lei Y, Peng HP, Chen W, Lin XH, Liu AL, Xia XH. A colorimetric assay for sensitive detection of hydrogen peroxide and glucose in microfluidic paper-based analytical devices integrated with starch-iodide-gelatin system. Talanta 2019; 200:511-517. [DOI: 10.1016/j.talanta.2019.03.089] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/20/2019] [Accepted: 03/24/2019] [Indexed: 02/03/2023]
|
163
|
Vara-Ciruelos D, Russell FM, Hardie DG. The strange case of AMPK and cancer: Dr Jekyll or Mr Hyde? †. Open Biol 2019; 9:190099. [PMID: 31288625 PMCID: PMC6685927 DOI: 10.1098/rsob.190099] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
The AMP-activated protein kinase (AMPK) acts as a cellular energy sensor. Once switched on by increases in cellular AMP : ATP ratios, it acts to restore energy homeostasis by switching on catabolic pathways while switching off cell growth and proliferation. The canonical AMP-dependent mechanism of activation requires the upstream kinase LKB1, which was identified genetically to be a tumour suppressor. AMPK can also be switched on by increases in intracellular Ca2+, by glucose starvation and by DNA damage via non-canonical, AMP-independent pathways. Genetic studies of the role of AMPK in mouse cancer suggest that, before disease arises, AMPK acts as a tumour suppressor that protects against cancer, with this protection being further enhanced by AMPK activators such as the biguanide phenformin. However, once cancer has occurred, AMPK switches to being a tumour promoter instead, enhancing cancer cell survival by protecting against metabolic, oxidative and genotoxic stresses. Studies of genetic changes in human cancer also suggest diverging roles for genes encoding subunit isoforms, with some being frequently amplified, while others are mutated.
Collapse
Affiliation(s)
| | | | - D. Grahame Hardie
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
164
|
Inyang KE, Burton MD, Szabo-Pardi T, Wentworth E, McDougal TA, Ramirez ED, Pradhan G, Dussor G, Price TJ. Indirect AMP-Activated Protein Kinase Activators Prevent Incision-Induced Hyperalgesia and Block Hyperalgesic Priming, Whereas Positive Allosteric Modulators Block Only Priming in Mice. J Pharmacol Exp Ther 2019; 371:138-150. [PMID: 31324647 PMCID: PMC6750189 DOI: 10.1124/jpet.119.258400] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/16/2019] [Indexed: 12/17/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a multifunctional kinase that negatively regulates the mechanistic target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK) signaling, two signaling pathways linked to pain promotion after injury, such as surgical incision. AMPK can be activated directly using positive allosteric modulators, as well as indirectly through the upregulation of upstream kinases, such as liver kinase B1 (LKB1), which is a mechanism of action of metformin. Metformin’s antihyperalgesic effects occur only in male mice, raising questions about how metformin regulates pain sensitivity. We used metformin and other structurally distinct AMPK activators narciclasine (NCLS), ZLN-024, and MK8722, to treat incision-induced mechanical hypersensitivity and hyperalgesic priming in male and female mice. Metformin was the only AMPK activator to have sex-specific effects. We also found that indirect AMPK activators metformin and NCLS were able to reduce mechanical hypersensitivity and block hyperalgesic priming, whereas direct AMPK activators ZLN-024 and MK8722 only blocked priming. Direct and indirect AMPK activators stimulated AMPK in dorsal root ganglion (DRG) neuron cultures to a similar degree; however, incision decreased phosphorylated AMPK (p-AMPK) in DRG. Because AMPK phosphorylation is required for kinase activity, we interpret our findings as evidence that indirect AMPK activators are more effective for treating pain hypersensitivity after incision because they can drive increased p-AMPK through upstream kinases like LKB1. These findings have important implications for the development of AMPK-targeting therapeutics for pain treatment.
Collapse
Affiliation(s)
- Kufreobong E Inyang
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | - Michael D Burton
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | - Thomas Szabo-Pardi
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | - Emma Wentworth
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | - Timothy A McDougal
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | - Eric D Ramirez
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | - Grishma Pradhan
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | - Theodore J Price
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| |
Collapse
|
165
|
Zhou X, Muise ES, Haimbach R, Sebhat IK, Zhu Y, Liu F, Souza SC, Kan Y, Pinto S, Kelley DE, Hoek M. PAN-AMPK Activation Improves Renal Function in a Rat Model of Progressive Diabetic Nephropathy. J Pharmacol Exp Ther 2019; 371:45-55. [PMID: 31300612 DOI: 10.1124/jpet.119.258244] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/03/2019] [Indexed: 12/24/2022] Open
Abstract
Metabolic dysregulation and mitochondrial dysfunction are important features of acute and chronic tissue injury across species, and human genetics and preclinical data suggest that the master metabolic regulator 5'-adenosine monophosphate-activated protein kinase (AMPK) may be an effective therapeutic target for chronic kidney disease (CKD). We have recently disclosed a pan-AMPK activator, MK-8722, that was shown to have beneficial effects in preclinical models. In this study we investigated the effects of MK-8722 in a progressive rat model of diabetic nephropathy to determine whether activation of AMPK would be of therapeutic benefit. We found that MK-8722 administration in a therapeutic paradigm is profoundly renoprotective, as demonstrated by a reduction in proteinuria (63% decrease in MK-8722 10 mg/kg per day compared with vehicle group) and a significant improvement in glomerular filtration rate (779 and 430 μl/min per gram kidney weight in MK-8722 10 mg/kg per day and vehicle group, respectively), as well as improvements in kidney fibrosis. We provide evidence that the therapeutic effects of MK-8722 may be mediated by modulation of renal mitochondrial quality control as well by attenuating fibrotic and lipotoxic mechanisms in kidney cells. MK-8722 (10 mg/kg per day compared with vehicle group) achieved modest blood pressure reduction (10 mmHg lower for mean blood pressure) and significant metabolic improvements (decreased plasma glucose, triglyceride, and body weight) that could contribute to renoprotection. These data further validate the concept that targeting metabolic dysregulation in CKD could be a potential therapeutic approach. SIGNIFICANCE STATEMENT: We demonstrate in the present study that the pharmacological activation of AMPK using a small-molecule agent provided renoprotection and improved systemic and cellular metabolism. We further indicate that modulation of renal mitochondrial quality control probably contributed to renoprotection and was distinct from the effects of enalapril. Our findings suggest that improving renal mitochondrial biogenesis and function and attenuating fibrosis and lipotoxicity by targeting key metabolic nodes could be a potential therapeutic approach in management of CKD that could complement the current standard of care.
Collapse
Affiliation(s)
- Xiaoyan Zhou
- Department of Cardiometabolic Diseases (X.Z., R.H., Y.Z., F.L., S.C.S., Y.K., S.P., D.E.K., M.H.), Genetics and Pharmacogenomics (E.S.M.), and Medicinal Chemistry (I.K.S.), Merck & Co., Inc., Kenilworth, New Jersey
| | - Eric S Muise
- Department of Cardiometabolic Diseases (X.Z., R.H., Y.Z., F.L., S.C.S., Y.K., S.P., D.E.K., M.H.), Genetics and Pharmacogenomics (E.S.M.), and Medicinal Chemistry (I.K.S.), Merck & Co., Inc., Kenilworth, New Jersey
| | - Robin Haimbach
- Department of Cardiometabolic Diseases (X.Z., R.H., Y.Z., F.L., S.C.S., Y.K., S.P., D.E.K., M.H.), Genetics and Pharmacogenomics (E.S.M.), and Medicinal Chemistry (I.K.S.), Merck & Co., Inc., Kenilworth, New Jersey
| | - Iyassu K Sebhat
- Department of Cardiometabolic Diseases (X.Z., R.H., Y.Z., F.L., S.C.S., Y.K., S.P., D.E.K., M.H.), Genetics and Pharmacogenomics (E.S.M.), and Medicinal Chemistry (I.K.S.), Merck & Co., Inc., Kenilworth, New Jersey
| | - Yonghua Zhu
- Department of Cardiometabolic Diseases (X.Z., R.H., Y.Z., F.L., S.C.S., Y.K., S.P., D.E.K., M.H.), Genetics and Pharmacogenomics (E.S.M.), and Medicinal Chemistry (I.K.S.), Merck & Co., Inc., Kenilworth, New Jersey
| | - Franklin Liu
- Department of Cardiometabolic Diseases (X.Z., R.H., Y.Z., F.L., S.C.S., Y.K., S.P., D.E.K., M.H.), Genetics and Pharmacogenomics (E.S.M.), and Medicinal Chemistry (I.K.S.), Merck & Co., Inc., Kenilworth, New Jersey
| | - Sandra C Souza
- Department of Cardiometabolic Diseases (X.Z., R.H., Y.Z., F.L., S.C.S., Y.K., S.P., D.E.K., M.H.), Genetics and Pharmacogenomics (E.S.M.), and Medicinal Chemistry (I.K.S.), Merck & Co., Inc., Kenilworth, New Jersey
| | - Yanqing Kan
- Department of Cardiometabolic Diseases (X.Z., R.H., Y.Z., F.L., S.C.S., Y.K., S.P., D.E.K., M.H.), Genetics and Pharmacogenomics (E.S.M.), and Medicinal Chemistry (I.K.S.), Merck & Co., Inc., Kenilworth, New Jersey
| | - Shirly Pinto
- Department of Cardiometabolic Diseases (X.Z., R.H., Y.Z., F.L., S.C.S., Y.K., S.P., D.E.K., M.H.), Genetics and Pharmacogenomics (E.S.M.), and Medicinal Chemistry (I.K.S.), Merck & Co., Inc., Kenilworth, New Jersey
| | - David E Kelley
- Department of Cardiometabolic Diseases (X.Z., R.H., Y.Z., F.L., S.C.S., Y.K., S.P., D.E.K., M.H.), Genetics and Pharmacogenomics (E.S.M.), and Medicinal Chemistry (I.K.S.), Merck & Co., Inc., Kenilworth, New Jersey
| | - Maarten Hoek
- Department of Cardiometabolic Diseases (X.Z., R.H., Y.Z., F.L., S.C.S., Y.K., S.P., D.E.K., M.H.), Genetics and Pharmacogenomics (E.S.M.), and Medicinal Chemistry (I.K.S.), Merck & Co., Inc., Kenilworth, New Jersey
| |
Collapse
|
166
|
Vila IK, Park MK, Setijono SR, Yao Y, Kim H, Badin PM, Choi S, Narkar V, Choi SW, Chung J, Moro C, Song SJ, Song MS. A muscle-specific UBE2O/AMPKα2 axis promotes insulin resistance and metabolic syndrome in obesity. JCI Insight 2019; 4:128269. [PMID: 31292296 DOI: 10.1172/jci.insight.128269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023] Open
Abstract
Ubiquitin-conjugating enzyme E2O (UBE2O) is expressed preferentially in metabolic tissues, but its role in regulating energy homeostasis has yet to be defined. Here we find that UBE2O is markedly upregulated in obese subjects with type 2 diabetes and show that whole-body disruption of Ube2o in mouse models in vivo results in improved metabolic profiles and resistance to high-fat diet-induced (HFD-induced) obesity and metabolic syndrome. With no difference in nutrient intake, Ube2o-/- mice were leaner and expended more energy than WT mice. In addition, hyperinsulinemic-euglycemic clamp studies revealed that Ube2o-/- mice were profoundly insulin sensitive. Through phenotype analysis of HFD mice with muscle-, fat-, or liver-specific knockout of Ube2o, we further identified UBE2O as an essential regulator of glucose and lipid metabolism programs in skeletal muscle, but not in adipose or liver tissue. Mechanistically, UBE2O acted as a ubiquitin ligase and targeted AMPKα2 for ubiquitin-dependent degradation in skeletal muscle; further, muscle-specific heterozygous knockout of Prkaa2 ablated UBE2O-controlled metabolic processes. These results identify the UBE2O/AMPKα2 axis as both a potent regulator of metabolic homeostasis in skeletal muscle and a therapeutic target in the treatment of diabetes and metabolic disorders.
Collapse
Affiliation(s)
- Isabelle K Vila
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mi Kyung Park
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Yixin Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hyejin Kim
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Pierre-Marie Badin
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Sekyu Choi
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Vihang Narkar
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Sung-Woo Choi
- Department of Orthopedic Surgery, Soonchunhyang University College of Medicine, Seoul, South Korea
| | - Jongkyeong Chung
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Cedric Moro
- Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, UMR 1048, Inserm, Toulouse, France
| | - Su Jung Song
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, South Korea
| | - Min Sup Song
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
167
|
Jaafar R, Tran S, Shah AN, Sun G, Valdearcos M, Marchetti P, Masini M, Swisa A, Giacometti S, Bernal-Mizrachi E, Matveyenko A, Hebrok M, Dor Y, Rutter GA, Koliwad SK, Bhushan A. mTORC1 to AMPK switching underlies β-cell metabolic plasticity during maturation and diabetes. J Clin Invest 2019; 129:4124-4137. [PMID: 31265435 PMCID: PMC6763225 DOI: 10.1172/jci127021] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/24/2019] [Indexed: 12/28/2022] Open
Abstract
Pancreatic beta cells (β-cells) differentiate during fetal life, but only postnatally acquire the capacity for glucose-stimulated insulin secretion (GSIS). How this happens is not clear. In exploring what molecular mechanisms drive the maturation of β-cell function, we found that the control of cellular signaling in β-cells fundamentally switched from the nutrient sensor target of rapamycin (mTORC1) to the energy sensor 5'-adenosine monophosphate-activated protein kinase (AMPK), and that this was critical for functional maturation. Moreover, AMPK was activated by the dietary transition taking place during weaning, and this in turn inhibited mTORC1 activity to drive the adult β-cell phenotype. While forcing constitutive mTORC1 signaling in adult β-cells relegated them to a functionally immature phenotype with characteristic transcriptional and metabolic profiles, engineering the switch from mTORC1 to AMPK signaling was sufficient to promote β-cell mitochondrial biogenesis, a shift to oxidative metabolism, and functional maturation. We also found that type 2 diabetes, a condition marked by both mitochondrial degeneration and dysregulated GSIS, was associated with a remarkable reversion of the normal AMPK-dependent adult β-cell signature to a more neonatal one characterized by mTORC1 activation. Manipulating the way in which cellular nutrient signaling pathways regulate β-cell metabolism may thus offer new targets to improve β-cell function in diabetes.
Collapse
Affiliation(s)
- Rami Jaafar
- The Diabetes Center, UCSF, San Francisco, California, USA
| | - Stella Tran
- The Diabetes Center, UCSF, San Francisco, California, USA
| | - Ajit N. Shah
- The Diabetes Center, UCSF, San Francisco, California, USA
| | - Gao Sun
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, Hammersmith Hospital London, United Kingdom
| | | | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Matilde Masini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Avital Swisa
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | - Ernesto Bernal-Mizrachi
- Division of Endocrinology, Diabetes and Metabolism, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Aleksey Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Yuval Dor
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, Hammersmith Hospital London, United Kingdom
| | | | - Anil Bhushan
- The Diabetes Center, UCSF, San Francisco, California, USA
| |
Collapse
|
168
|
AMP-activated protein kinase complexes containing the β2 regulatory subunit are up-regulated during and contribute to adipogenesis. Biochem J 2019; 476:1725-1740. [PMID: 31189568 PMCID: PMC6595317 DOI: 10.1042/bcj20180714] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 12/15/2022]
Abstract
AMP-activated protein kinase (AMPK) is a heterotrimer of α-catalytic and β- and γ-regulatory subunits that acts to regulate cellular and whole-body nutrient metabolism. The key role of AMPK in sensing energy status has led to significant interest in AMPK as a therapeutic target for dysfunctional metabolism in type 2 diabetes, insulin resistance and obesity. Despite the actions of AMPK in the liver and skeletal muscle being extensively studied, the role of AMPK in adipose tissue and adipocytes remains less well characterised. Small molecules that selectively influence AMPK heterotrimers containing specific AMPKβ subunit isoforms have been developed, including MT47-100, which selectively inhibits complexes containing AMPKβ2. AMPKβ1 and AMPKβ2 are the principal AMPKβ subunit isoforms in rodent liver and skeletal muscle, respectively, yet the contribution of specific AMPKβ isoforms to adipose tissue function, however, remains largely unknown. This study therefore sought to determine the contribution of AMPKβ subunit isoforms to adipocyte biology, focussing on adipogenesis. AMPKβ2 was the principal AMPKβ isoform in 3T3-L1 adipocytes, isolated rodent adipocytes and human subcutaneous adipose tissue, as assessed by the contribution to total cellular AMPK activity. Down-regulation of AMPKβ2 with siRNA inhibited lipid accumulation, cellular adiponectin levels and adiponectin secretion during 3T3-L1 adipogenesis, whereas down-regulation of AMPKβ1 had no effect. Incubation of 3T3-L1 cells with MT47-100 selectively inhibited AMPK complexes containing AMPKβ2 whilst simultaneously inhibiting cellular lipid accumulation as well as cellular levels and secretion of adiponectin. Taken together, these data indicate that increased expression of AMPKβ2 is an important feature of efficient adipogenesis.
Collapse
|
169
|
Protection against Doxorubicin-Induced Cytotoxicity by Geniposide Involves AMPK α Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7901735. [PMID: 31346361 PMCID: PMC6617882 DOI: 10.1155/2019/7901735] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/10/2019] [Accepted: 05/21/2019] [Indexed: 12/26/2022]
Abstract
Oxidative stress and cardiomyocyte apoptosis play critical roles in the development of doxorubicin- (DOX-) induced cardiotoxicity. Our previous study found that geniposide (GE) could inhibit cardiac oxidative stress and apoptosis of cardiomyocytes but its role in DOX-induced heart injury remains unknown. Our study is aimed at investigating whether GE could protect against DOX-induced heart injury. The mice were subjected to a single intraperitoneal injection of DOX (15 mg/kg) to induce cardiomyopathy model. To explore the protective effects, GE was orally given for 10 days. The morphological examination and biochemical analysis were used to evaluate the effects of GE. H9C2 cells were used to verify the protective role of GE in vitro. GE treatment alleviated heart dysfunction and attenuated cardiac oxidative stress and cell loss induced by DOX in vivo and in vitro. GE could activate AMP-activated protein kinase α (AMPKα) in vivo and in vitro. Moreover, inhibition of AMPKα could abolish the protective effects of GE against DOX-induced oxidative stress and apoptosis. GE could protect against DOX-induced heart injury via activation of AMPKα. GE has therapeutic potential for the treatment of DOX cardiotoxicity.
Collapse
|
170
|
Kazyken D, Magnuson B, Bodur C, Acosta-Jaquez HA, Zhang D, Tong X, Barnes TM, Steinl GK, Patterson NE, Altheim CH, Sharma N, Inoki K, Cartee GD, Bridges D, Yin L, Riddle SM, Fingar DC. AMPK directly activates mTORC2 to promote cell survival during acute energetic stress. Sci Signal 2019; 12:12/585/eaav3249. [PMID: 31186373 PMCID: PMC6935248 DOI: 10.1126/scisignal.aav3249] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AMP-activated protein kinase (AMPK) senses energetic stress and, in turn, promotes catabolic and suppresses anabolic metabolism coordinately to restore energy balance. We found that a diverse array of AMPK activators increased mTOR complex 2 (mTORC2) signaling in an AMPK-dependent manner in cultured cells. Activation of AMPK with the type 2 diabetes drug metformin (GlucoPhage) also increased mTORC2 signaling in liver in vivo and in primary hepatocytes in an AMPK-dependent manner. AMPK-mediated activation of mTORC2 did not result from AMPK-mediated suppression of mTORC1 and thus reduced negative feedback on PI3K flux. Rather, AMPK associated with and directly phosphorylated mTORC2 (mTOR in complex with rictor). As determined by two-stage in vitro kinase assay, phosphorylation of mTORC2 by recombinant AMPK was sufficient to increase mTORC2 catalytic activity toward Akt. Hence, AMPK phosphorylated mTORC2 components directly to increase mTORC2 activity and downstream signaling. Functionally, inactivation of AMPK, mTORC2, and Akt increased apoptosis during acute energetic stress. By showing that AMPK activates mTORC2 to increase cell survival, these data provide a potential mechanism for how AMPK paradoxically promotes tumorigenesis in certain contexts despite its tumor-suppressive function through inhibition of growth-promoting mTORC1. Collectively, these data unveil mTORC2 as a target of AMPK and the AMPK-mTORC2 axis as a promoter of cell survival during energetic stress.
Collapse
Affiliation(s)
- Dubek Kazyken
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Brian Magnuson
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Cagri Bodur
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Hugo A. Acosta-Jaquez
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Deqiang Zhang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Xin Tong
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Tammy M. Barnes
- Department of Internal Medicine and Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Gabrielle K. Steinl
- Department of Internal Medicine and Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Nicole E. Patterson
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Christopher H. Altheim
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Naveen Sharma
- School of Kinesiology, Department of Molecular and Integrative Physiology, Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Ken Inoki
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Gregory D. Cartee
- School of Kinesiology, Department of Molecular and Integrative Physiology, Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Dave Bridges
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Lei Yin
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | | | - Diane C. Fingar
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA.,Corresponding author.
| |
Collapse
|
171
|
Webb M, Sideris DP, Biddle M. Modulation of mitochondrial dysfunction for treatment of disease. Bioorg Med Chem Lett 2019; 29:1270-1277. [DOI: 10.1016/j.bmcl.2019.03.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 12/18/2022]
|
172
|
Allosteric regulation of AMP-activated protein kinase by adenylate nucleotides and small-molecule drugs. Biochem Soc Trans 2019; 47:733-741. [PMID: 31000529 DOI: 10.1042/bst20180625] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 02/08/2023]
Abstract
The AMP (adenosine 5'-monophosphate)-activated protein kinase (AMPK) is a key regulator of cellular and whole-body energy homeostasis that co-ordinates metabolic processes to ensure energy supply meets demand. At the cellular level, AMPK is activated by metabolic stresses that increase AMP or adenosine 5'-diphosphate (ADP) coupled with falling adenosine 5'-triphosphate (ATP) and acts to restore energy balance by choreographing a shift in metabolism in favour of energy-producing catabolic pathways while inhibiting non-essential anabolic processes. AMPK also regulates systemic energy balance and is activated by hormones and nutritional signals in the hypothalamus to control appetite and body weight. Failure to maintain energy balance plays an important role in chronic diseases such as obesity, type 2 diabetes and inflammatory disorders, which has prompted a major drive to develop pharmacological activators of AMPK. An array of small-molecule allosteric activators has now been developed, several of which can activate AMPK by direct allosteric activation, independently of Thr172 phosphorylation, which was previously regarded as indispensable for AMPK activity. In this review, we summarise the state-of-the-art regarding our understanding of the molecular mechanisms that govern direct allosteric activation of AMPK by adenylate nucleotides and small-molecule drugs.
Collapse
|
173
|
Chen Q, Rong P, Zhu S, Yang X, Ouyang Q, Wang HY, Chen S. Targeting RalGAPα1 in skeletal muscle to simultaneously improve postprandial glucose and lipid control. SCIENCE ADVANCES 2019; 5:eaav4116. [PMID: 30989113 PMCID: PMC6459767 DOI: 10.1126/sciadv.aav4116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/12/2019] [Indexed: 05/14/2023]
Abstract
How insulin stimulates postprandial uptake of glucose and long-chain fatty acids (LCFAs) into skeletal muscle and the mechanisms by which these events are dampened in diet-induced obesity are incompletely understood. Here, we show that RalGAPα1 is a critical regulator of muscle insulin action and governs both glucose and lipid homeostasis. A high-fat diet increased RalGAPα1 protein but decreased its insulin-responsive Thr735-phosphorylation in skeletal muscle. A RalGAPα1Thr735Ala mutation impaired insulin-stimulated muscle assimilation of glucose and LCFAs and caused metabolic syndrome in mice. In contrast, skeletal muscle-specific deletion of RalGAPα1 improved postprandial glucose and lipid control. Mechanistically, these mutations of RalGAPα1 affected translocation of insulin-responsive glucose transporter GLUT4 and fatty acid translocase CD36 via RalA to affect glucose and lipid homeostasis. These data indicated RalGAPα1 as a dual-purpose target, for which we developed a peptide-blockade for improving muscle insulin sensitivity. Our findings have implications for drug discovery to combat metabolic disorders.
Collapse
|
174
|
Affiliation(s)
- Alessandro Pocai
- Cardiovascular and Metabolism, Janssen Research and Development, Spring House, Pennsylvania
| |
Collapse
|
175
|
Muise ES, Guan HP, Liu J, Nawrocki AR, Yang X, Wang C, Rodríguez CG, Zhou D, Gorski JN, Kurtz MM, Feng D, Leavitt KJ, Wei L, Wilkening RR, Apgar JM, Xu S, Lu K, Feng W, Li Y, He H, Previs SF, Shen X, van Heek M, Souza SC, Rosenbach MJ, Biftu T, Erion MD, Kelley DE, Kemp DM, Myers RW, Sebhat IK. Pharmacological AMPK activation induces transcriptional responses congruent to exercise in skeletal and cardiac muscle, adipose tissues and liver. PLoS One 2019; 14:e0211568. [PMID: 30811418 PMCID: PMC6392219 DOI: 10.1371/journal.pone.0211568] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/16/2019] [Indexed: 12/25/2022] Open
Abstract
Physical activity promotes metabolic and cardiovascular health benefits that derive in part from the transcriptional responses to exercise that occur within skeletal muscle and other organs. There is interest in discovering a pharmacologic exercise mimetic that could imbue wellness and alleviate disease burden. However, the molecular physiology by which exercise signals the transcriptional response is highly complex, making it challenging to identify a single target for pharmacological mimicry. The current studies evaluated the transcriptome responses in skeletal muscle, heart, liver, and white and brown adipose to novel small molecule activators of AMPK (pan-activators for all AMPK isoforms) compared to that of exercise. A striking level of congruence between exercise and pharmacological AMPK activation was observed across the induced transcriptome of these five tissues. However, differences in acute metabolic response between exercise and pharmacologic AMPK activation were observed, notably for acute glycogen balances and related to the energy expenditure induced by exercise but not pharmacologic AMPK activation. Nevertheless, intervention with repeated daily administration of short-acting activation of AMPK was found to mitigate hyperglycemia and hyperinsulinemia in four rodent models of metabolic disease and without the cardiac glycogen accretion noted with sustained pharmacologic AMPK activation. These findings affirm that activation of AMPK is a key node governing exercise mediated transcription and is an attractive target as an exercise mimetic.
Collapse
Affiliation(s)
- Eric S. Muise
- Genetics and Pharmacogenomics Department, MRL, Kenilworth, NJ, United States of America
- * E-mail: (ESM); (IKS)
| | - Hong-Ping Guan
- Biology-Discovery Department, MRL, Kenilworth, NJ, United States of America
| | - Jinqi Liu
- Biology-Discovery Department, MRL, Kenilworth, NJ, United States of America
| | - Andrea R. Nawrocki
- In Vivo Pharmacology Department, MRL, Kenilworth, NJ, United States of America
| | - Xiaodong Yang
- Biology-Discovery Department, MRL, Kenilworth, NJ, United States of America
| | - Chuanlin Wang
- Biology-Discovery Department, MRL, Kenilworth, NJ, United States of America
| | - Carlos G. Rodríguez
- In Vivo Pharmacology Department, MRL, Kenilworth, NJ, United States of America
| | - Dan Zhou
- In Vivo Pharmacology Department, MRL, Kenilworth, NJ, United States of America
| | - Judith N. Gorski
- In Vivo Pharmacology Department, MRL, Kenilworth, NJ, United States of America
| | - Marc M. Kurtz
- In Vitro PharmacologyDepartment, MRL, NJ, United States of America
| | - Danqing Feng
- Medicinal ChemistryDepartment, MRL, Kenilworth, NJ, United States of America
| | - Kenneth J. Leavitt
- Medicinal ChemistryDepartment, MRL, Kenilworth, NJ, United States of America
| | - Lan Wei
- Medicinal ChemistryDepartment, MRL, Kenilworth, NJ, United States of America
| | - Robert R. Wilkening
- Medicinal ChemistryDepartment, MRL, Kenilworth, NJ, United States of America
| | - James M. Apgar
- Medicinal ChemistryDepartment, MRL, Kenilworth, NJ, United States of America
| | - Shiyao Xu
- PPDM Preclinical ADME Department, MRL, Kenilworth, NJ, United States of America
| | - Ku Lu
- Biology-Discovery Department, MRL, Kenilworth, NJ, United States of America
| | - Wen Feng
- Biology-Discovery Department, MRL, Kenilworth, NJ, United States of America
| | - Ying Li
- Biology-Discovery Department, MRL, Kenilworth, NJ, United States of America
| | - Huaibing He
- PPDM Preclinical ADME Department, MRL, Kenilworth, NJ, United States of America
| | - Stephen F. Previs
- Biology-Discovery Department, MRL, Kenilworth, NJ, United States of America
| | - Xiaolan Shen
- SALAR Department, MRL, Kenilworth, NJ, United States of America
| | - Margaret van Heek
- In Vivo Pharmacology Department, MRL, Kenilworth, NJ, United States of America
| | - Sandra C. Souza
- Biology-Discovery Department, MRL, Kenilworth, NJ, United States of America
| | - Mark J. Rosenbach
- Biology-Discovery Department, MRL, Kenilworth, NJ, United States of America
| | - Tesfaye Biftu
- Medicinal ChemistryDepartment, MRL, Kenilworth, NJ, United States of America
| | - Mark D. Erion
- Biology-Discovery Department, MRL, Kenilworth, NJ, United States of America
| | - David E. Kelley
- Biology-Discovery Department, MRL, Kenilworth, NJ, United States of America
| | - Daniel M. Kemp
- Biology-Discovery Department, MRL, Kenilworth, NJ, United States of America
| | - Robert W. Myers
- In Vitro PharmacologyDepartment, MRL, NJ, United States of America
| | - Iyassu K. Sebhat
- Medicinal ChemistryDepartment, MRL, Kenilworth, NJ, United States of America
- * E-mail: (ESM); (IKS)
| |
Collapse
|
176
|
Abstract
The organs require oxygen and other types of nutrients (amino acids, sugars, and lipids) to function, the heart consuming large amounts of fatty acids for oxidation and adenosine triphosphate (ATP) generation.
Collapse
|
177
|
Ducommun S, Deak M, Zeigerer A, Göransson O, Seitz S, Collodet C, Madsen AB, Jensen TE, Viollet B, Foretz M, Gut P, Sumpton D, Sakamoto K. Chemical genetic screen identifies Gapex-5/GAPVD1 and STBD1 as novel AMPK substrates. Cell Signal 2019; 57:45-57. [PMID: 30772465 DOI: 10.1016/j.cellsig.2019.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 02/06/2023]
Abstract
AMP-activated protein kinase (AMPK) is a key regulator of cellular energy homeostasis, acting as a sensor of energy and nutrient status. As such, AMPK is considered a promising drug target for treatment of medical conditions particularly associated with metabolic dysfunctions. To better understand the downstream effectors and physiological consequences of AMPK activation, we have employed a chemical genetic screen in mouse primary hepatocytes in an attempt to identify novel AMPK targets. Treatment of hepatocytes with a potent and specific AMPK activator 991 resulted in identification of 65 proteins phosphorylated upon AMPK activation, which are involved in a variety of cellular processes such as lipid/glycogen metabolism, vesicle trafficking, and cytoskeleton organisation. Further characterisation and validation using mass spectrometry followed by immunoblotting analysis with phosphorylation site-specific antibodies identified AMPK-dependent phosphorylation of Gapex-5 (also known as GTPase-activating protein and VPS9 domain-containing protein 1 (GAPVD1)) on Ser902 in hepatocytes and starch-binding domain 1 (STBD1) on Ser175 in multiple cells/tissues. As new promising roles of AMPK as a key metabolic regulator continue to emerge, the substrates we identified could provide new mechanistic and therapeutic insights into AMPK-activating drugs in the liver.
Collapse
Affiliation(s)
- Serge Ducommun
- Nestlé Research, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, bâtiment G, 1015 Lausanne, Switzerland; School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Maria Deak
- Nestlé Research, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, bâtiment G, 1015 Lausanne, Switzerland
| | - Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Center for Environmental Health, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Olga Göransson
- Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden
| | - Susanne Seitz
- Institute for Diabetes and Cancer, Helmholtz Center for Environmental Health, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Caterina Collodet
- Nestlé Research, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, bâtiment G, 1015 Lausanne, Switzerland; School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Agnete B Madsen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E Jensen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Benoit Viollet
- Inserm, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris cité, Paris, France
| | - Marc Foretz
- Inserm, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris cité, Paris, France
| | - Philipp Gut
- Nestlé Research, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, bâtiment G, 1015 Lausanne, Switzerland
| | - David Sumpton
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Kei Sakamoto
- Nestlé Research, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, bâtiment G, 1015 Lausanne, Switzerland; School of Life Sciences, EPFL, 1015 Lausanne, Switzerland.
| |
Collapse
|
178
|
Garcia D, Hellberg K, Chaix A, Wallace M, Herzig S, Badur MG, Lin T, Shokhirev MN, Pinto AFM, Ross DS, Saghatelian A, Panda S, Dow LE, Metallo CM, Shaw RJ. Genetic Liver-Specific AMPK Activation Protects against Diet-Induced Obesity and NAFLD. Cell Rep 2019; 26:192-208.e6. [PMID: 30605676 PMCID: PMC6344045 DOI: 10.1016/j.celrep.2018.12.036] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 09/29/2018] [Accepted: 12/07/2018] [Indexed: 12/11/2022] Open
Abstract
The AMP-activated protein kinase (AMPK) is a highly conserved master regulator of metabolism, whose activation has been proposed to be therapeutically beneficial for the treatment of several metabolic diseases, including nonalcoholic fatty liver disease (NAFLD). NAFLD, characterized by excessive accumulation of hepatic lipids, is the most common chronic liver disease and a major risk factor for development of nonalcoholic steatohepatitis, type 2 diabetes, and other metabolic conditions. To assess the therapeutic potential of AMPK activation, we have generated a genetically engineered mouse model, termed iAMPKCA, where AMPK can be inducibly activated in vivo in mice in a spatially and temporally restricted manner. Using this model, we show that liver-specific AMPK activation reprograms lipid metabolism, reduces liver steatosis, decreases expression of inflammation and fibrosis genes, and leads to significant therapeutic benefits in the context of diet-induced obesity. These findings further support AMPK as a target for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Daniel Garcia
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Kristina Hellberg
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Amandine Chaix
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Martina Wallace
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sébastien Herzig
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Mehmet G Badur
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Terry Lin
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Antonio F M Pinto
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Debbie S Ross
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Satchidananda Panda
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Lukas E Dow
- Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Reuben J Shaw
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
179
|
Li Q, Wei G, Tao T. Leukocyte immunoglobulin-like receptor B4 (LILRB4) negatively mediates the pathological cardiac hypertrophy by suppressing fibrosis, inflammation and apoptosis via the activation of NF-κB signaling. Biochem Biophys Res Commun 2019; 509:16-23. [DOI: 10.1016/j.bbrc.2018.11.137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 11/21/2018] [Indexed: 11/25/2022]
|
180
|
Yan Y, Zhou XE, Novick SJ, Shaw SJ, Li Y, Brunzelle JS, Hitoshi Y, Griffin PR, Xu HE, Melcher K. Structures of AMP-activated protein kinase bound to novel pharmacological activators in phosphorylated, non-phosphorylated, and nucleotide-free states. J Biol Chem 2018; 294:953-967. [PMID: 30478170 DOI: 10.1074/jbc.ra118.004883] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/01/2018] [Indexed: 12/12/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is an attractive therapeutic target for managing metabolic diseases. A class of pharmacological activators, including Merck 991, binds the AMPK ADaM site, which forms the interaction surface between the kinase domain (KD) of the α-subunit and the carbohydrate-binding module (CBM) of the β-subunit. Here, we report the development of two new 991-derivative compounds, R734 and R739, which potently activate AMPK in a variety of cell types, including β2-specific skeletal muscle cells. Surprisingly, we found that they have only minor effects on direct kinase activity of the recombinant α1β2γ1 isoform yet robustly enhance protection against activation loop dephosphorylation. This mode of activation is reminiscent of that of ADP, which activates AMPK by binding to the nucleotide-binding sites in the γ-subunit, more than 60 Å away from the ADaM site. To understand the mechanisms of full and partial AMPK activation, we determined the crystal structures of fully active phosphorylated AMPK α1β1γ1 bound to AMP and R734/R739 as well as partially active nonphosphorylated AMPK bound to R734 and AMP and phosphorylated AMPK bound to R734 in the absence of added nucleotides at <3-Å resolution. These structures and associated analyses identified a novel conformational state of the AMPK autoinhibitory domain associated with partial kinase activity and provide new insights into phosphorylation-dependent activation loop stabilization in AMPK.
Collapse
Affiliation(s)
- Yan Yan
- From the Center of Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan 49503.,Van Andel Research Institute-Shanghai Institute of Materia Medica (VARI-SIMM) Center, Center for Structure and Function of Drug Targets, The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - X Edward Zhou
- From the Center of Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Scott J Novick
- Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458
| | - Simon J Shaw
- Rigel Pharmaceuticals, Inc., South San Francisco, California 94080, and
| | - Yingwu Li
- Rigel Pharmaceuticals, Inc., South San Francisco, California 94080, and
| | - Joseph S Brunzelle
- Northwestern University Synchrotron Research Center, Life Sciences Collaborative Access Team, Northwestern University, Argonne, Illinois 60439
| | - Yasumichi Hitoshi
- Rigel Pharmaceuticals, Inc., South San Francisco, California 94080, and
| | - Patrick R Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458
| | - H Eric Xu
- From the Center of Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan 49503.,Van Andel Research Institute-Shanghai Institute of Materia Medica (VARI-SIMM) Center, Center for Structure and Function of Drug Targets, The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China
| | - Karsten Melcher
- From the Center of Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan 49503,
| |
Collapse
|
181
|
Chaichi A, Prasad A, Gartia MR. Raman Spectroscopy and Microscopy Applications in Cardiovascular Diseases: From Molecules to Organs. BIOSENSORS 2018; 8:E107. [PMID: 30424523 PMCID: PMC6315865 DOI: 10.3390/bios8040107] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 01/03/2023]
Abstract
Noninvasive and label-free vibrational spectroscopy and microscopy methods have shown great potential for clinical diagnosis applications. Raman spectroscopy is based on inelastic light scattering due to rotational and vibrational modes of molecular bonds. It has been shown that Raman spectra provide chemical signatures of changes in biological tissues in different diseases, and this technique can be employed in label-free monitoring and clinical diagnosis of several diseases, including cardiovascular studies. However, there are very few literature reviews available to summarize the state of art and future applications of Raman spectroscopy in cardiovascular diseases, particularly cardiac hypertrophy. In addition to conventional clinical approaches such as electrocardiography (ECG), echocardiogram (cardiac ultrasound), positron emission tomography (PET), cardiac computed tomography (CT), and single photon emission computed tomography (SPECT), applications of vibrational spectroscopy and microscopy will provide invaluable information useful for the prevention, diagnosis, and treatment of cardiovascular diseases. Various in vivo and ex vivo investigations can potentially be performed using Raman imaging to study and distinguish pathological and physiological cardiac hypertrophies and understand the mechanisms of other cardiac diseases. Here, we have reviewed the recent literature on Raman spectroscopy to study cardiovascular diseases covering investigations on the molecular, cellular, tissue, and organ level.
Collapse
Affiliation(s)
- Ardalan Chaichi
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Alisha Prasad
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
182
|
Yan Y, Zhou XE, Xu HE, Melcher K. Structure and Physiological Regulation of AMPK. Int J Mol Sci 2018; 19:ijms19113534. [PMID: 30423971 PMCID: PMC6274893 DOI: 10.3390/ijms19113534] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 01/26/2023] Open
Abstract
Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a heterotrimeric αβγ complex that functions as a central regulator of energy homeostasis. Energy stress manifests as a drop in the ratio of adenosine triphosphate (ATP) to AMP/ADP, which activates AMPK’s kinase activity, allowing it to upregulate ATP-generating catabolic pathways and to reduce energy-consuming catabolic pathways and cellular programs. AMPK senses the cellular energy state by competitive binding of the three adenine nucleotides AMP, ADP, and ATP to three sites in its γ subunit, each, which in turn modulates the activity of AMPK’s kinase domain in its α subunit. Our current understanding of adenine nucleotide binding and the mechanisms by which differential adenine nucleotide occupancies activate or inhibit AMPK activity has been largely informed by crystal structures of AMPK in different activity states. Here we provide an overview of AMPK structures, and how these structures, in combination with biochemical, biophysical, and mutational analyses provide insights into the mechanisms of adenine nucleotide binding and AMPK activity modulation.
Collapse
Affiliation(s)
- Yan Yan
- Center for Cancer and Cell Biology, Van Andel Research Institute, 333 Bostwick Ave. N.E., Grand Rapids, MI 49503, USA.
- VARI/SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - X Edward Zhou
- Center for Cancer and Cell Biology, Van Andel Research Institute, 333 Bostwick Ave. N.E., Grand Rapids, MI 49503, USA.
| | - H Eric Xu
- Center for Cancer and Cell Biology, Van Andel Research Institute, 333 Bostwick Ave. N.E., Grand Rapids, MI 49503, USA.
- VARI/SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Karsten Melcher
- Center for Cancer and Cell Biology, Van Andel Research Institute, 333 Bostwick Ave. N.E., Grand Rapids, MI 49503, USA.
| |
Collapse
|
183
|
Silwal P, Kim JK, Yuk JM, Jo EK. AMP-Activated Protein Kinase and Host Defense against Infection. Int J Mol Sci 2018; 19:ijms19113495. [PMID: 30404221 PMCID: PMC6274990 DOI: 10.3390/ijms19113495] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023] Open
Abstract
5′-AMP-activated protein kinase (AMPK) plays diverse roles in various physiological and pathological conditions. AMPK is involved in energy metabolism, which is perturbed by infectious stimuli. Indeed, various pathogens modulate AMPK activity, which affects host defenses against infection. In some viral infections, including hepatitis B and C viral infections, AMPK activation is beneficial, but in others such as dengue virus, Ebola virus, and human cytomegaloviral infections, AMPK plays a detrimental role. AMPK-targeting agents or small molecules enhance the antiviral response and contribute to the control of microbial and parasitic infections. In addition, this review focuses on the double-edged role of AMPK in innate and adaptive immune responses to infection. Understanding how AMPK regulates host defenses will enable development of more effective host-directed therapeutic strategies against infectious diseases.
Collapse
Affiliation(s)
- Prashanta Silwal
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea.
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| | - Jin Kyung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea.
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea.
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| | - Jae-Min Yuk
- Department of Infection Biology, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea.
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea.
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| |
Collapse
|
184
|
Interactive Roles for AMPK and Glycogen from Cellular Energy Sensing to Exercise Metabolism. Int J Mol Sci 2018; 19:ijms19113344. [PMID: 30373152 PMCID: PMC6274970 DOI: 10.3390/ijms19113344] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/15/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022] Open
Abstract
The AMP-activated protein kinase (AMPK) is a heterotrimeric complex with central roles in cellular energy sensing and the regulation of metabolism and exercise adaptations. AMPK regulatory β subunits contain a conserved carbohydrate-binding module (CBM) that binds glycogen, the major tissue storage form of glucose. Research over the past two decades has revealed that the regulation of AMPK is impacted by glycogen availability, and glycogen storage dynamics are concurrently regulated by AMPK activity. This growing body of research has uncovered new evidence of physical and functional interactive roles for AMPK and glycogen ranging from cellular energy sensing to the regulation of whole-body metabolism and exercise-induced adaptations. In this review, we discuss recent advancements in the understanding of molecular, cellular, and physiological processes impacted by AMPK-glycogen interactions. In addition, we appraise how novel research technologies and experimental models will continue to expand the repertoire of biological processes known to be regulated by AMPK and glycogen. These multidisciplinary research advances will aid the discovery of novel pathways and regulatory mechanisms that are central to the AMPK signaling network, beneficial effects of exercise and maintenance of metabolic homeostasis in health and disease.
Collapse
|
185
|
Huang Y, Chi B, Xu Y, Song R, Wei L, Rao L, Feng L, Ren Y, Wan J. In silico screening of a novel scaffold for fructose-1,6-bisphosatase (FBPase) inhibitors. J Mol Graph Model 2018; 86:142-148. [PMID: 30366190 DOI: 10.1016/j.jmgm.2018.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/27/2018] [Accepted: 10/17/2018] [Indexed: 12/22/2022]
Abstract
Fructose-1, 6-bisphosphatase (FBPase) has been regarded as an attractive drug target to control blood glucose against Type 2 diabetes (T2D). In this study, by using the strategy of pharmacophore-based virtual screening, a novel scaffold inhibitor targeted the AMP allosteric site of human liver FBPase were screened, their inhibitory activities were further tested. The experimental results showed that compound H27 exhibited high inhibitory activities with the IC50 value of 5.3 μM. Therefore, compound H27 was chosen as the probe molecule, it's possible binding conformation targeted into FBPase was identified by using DOX2.0 strategy. The importance of key residues (T27, T31, K112 and R140) in allosteric site of FBPase for the binding inhibitors were validated by mutation experiments. The agreement between theory and experiment suggest that the interactional information of FBPase and inhibitors (H27) were reliable. On basis of these rational interactional information, the compound H29 was further designed to exhibit more potential FBPase inhibition (IC50 = 2.5 μM).
Collapse
Affiliation(s)
- Yunyuan Huang
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Bo Chi
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yanhong Xu
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Rongrong Song
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Lin Wei
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Li Rao
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Lingling Feng
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yanliang Ren
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan, 430079, China.
| | - Jian Wan
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
186
|
Zhang M, Xie ZF, Zhang RT, Chen DK, Gu M, Cui SC, Zhang YM, Zhang XW, Yu YY, Li J, Nan FJ, Li JY. Novel substituted pyrazolone derivatives as AMP-activated protein kinase activators to inhibit lipid synthesis and reduce lipid accumulation in ob/ob mice. Acta Pharmacol Sin 2018; 39:1622-1632. [PMID: 29795358 DOI: 10.1038/aps.2017.186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/21/2017] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a clinical syndrome characterized by hepatic steatosis. NAFLD is closely linked to obesity, insulin resistance and dyslipidemia. AMP-activated protein kinase (AMPK) functions as an energy sensor and plays a central role in regulating lipid metabolism. In this study, we identified a series of novel pyrazolone AMPK activators using a homogeneous time-resolved fluorescence assay (HTRF) based on the AMPKα2β1γ1 complex. Compound 29 (C29) is a candidate compound that directly activated the kinase domain of AMPK with an EC50 value of 2.1-0.2 μmol/L and acted as a non-selective activator of AMPK complexes. Treatment of HepG2 cells with C29 (20, 40 μmol/L) dose-dependently inhibited triglyceride accumulation. Chronic administration of C29 (10, 30 mg/kg every day, po, for 5 weeks) significantly improved lipid metabolism in both the liver and the plasma of ob/ob mice. These results demonstrate that the AMPK activators could be part of a novel treatment approach for NAFLD and associated metabolic disorders.
Collapse
|
187
|
Dolinar K, Jan V, Pavlin M, Chibalin AV, Pirkmajer S. Nucleosides block AICAR-stimulated activation of AMPK in skeletal muscle and cancer cells. Am J Physiol Cell Physiol 2018; 315:C803-C817. [PMID: 30230919 DOI: 10.1152/ajpcell.00311.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
AMP-activated kinase (AMPK) is a major regulator of energy metabolism and a promising target for development of new treatments for type 2 diabetes and cancer. 5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR), an adenosine analog, is a standard positive control for AMPK activation in cell-based assays. Some broadly used cell culture media, such as minimal essential medium α (MEMα), contain high concentrations of adenosine and other nucleosides. We determined whether such media alter AICAR action in skeletal muscle and cancer cells. In nucleoside-free media, AICAR stimulated AMPK activation, increased glucose uptake, and suppressed cell proliferation. Conversely, these effects were blunted or completely blocked in MEMα that contains nucleosides. Addition of adenosine or 2'-deoxyadenosine to nucleoside-free media also suppressed AICAR action. MEMα with nucleosides blocked AICAR-stimulated AMPK activation even in the presence of methotrexate, which normally markedly enhances AICAR action by reducing its intracellular clearance. Other common media components, such as vitamin B-12, vitamin C, and α-lipoic acid, had a minor modulatory effect on AICAR action. Our findings show that nucleoside-containing media, commonly used in AMPK research, block action of the most widely used pharmacological AMPK activator AICAR. Results of cell-based assays in which AICAR is used for AMPK activation therefore critically depend on media formulation. Furthermore, our findings highlight a role for extracellular nucleosides and nucleoside transporters in regulation of AMPK activation.
Collapse
Affiliation(s)
- Klemen Dolinar
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana , Ljubljana , Slovenia.,Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana , Ljubljana , Slovenia
| | - Vid Jan
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana , Ljubljana , Slovenia
| | - Mojca Pavlin
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana , Ljubljana , Slovenia.,Institute of Biophysics, Faculty of Medicine, University of Ljubljana , Ljubljana , Slovenia
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Integrative Physiology, Karolinska Institutet , Stockholm , Sweden.,National Research Tomsk State University , Tomsk , Russia
| | - Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana , Ljubljana , Slovenia
| |
Collapse
|
188
|
Ballak DB, Li S, Cavalli G, Stahl JL, Tengesdal IW, van Diepen JA, Klück V, Swartzwelter B, Azam T, Tack CJ, Stienstra R, Mandrup-Poulsen T, Seals DR, Dinarello CA. Interleukin-37 treatment of mice with metabolic syndrome improves insulin sensitivity and reduces pro-inflammatory cytokine production in adipose tissue. J Biol Chem 2018; 293:14224-14236. [PMID: 30006351 PMCID: PMC6139546 DOI: 10.1074/jbc.ra118.003698] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/06/2018] [Indexed: 12/22/2022] Open
Abstract
Obesity and the metabolic syndrome are characterized by chronic, low-grade inflammation mainly originating from expanding adipose tissue and resulting in inhibition of insulin signaling and disruption of glycemic control. Transgenic mice expressing human interleukin 37 (IL-37), an anti-inflammatory cytokine of the IL-1 family, are protected against metabolic syndrome when fed a high-fat diet (HFD) containing 45% fat. Here, we examined whether treatment with recombinant IL-37 ameliorates established insulin resistance and obesity-induced inflammation. WT mice were fed a HFD for 22 weeks and then treated daily with IL-37 (1 μg/mouse) during the last 2 weeks. Compared with vehicle only-treated mice, IL-37-treated mice exhibited reduced insulin in the plasma and had significant improvements in glucose tolerance and in insulin content of the islets. The IL-37 treatment also increased the levels of circulating IL-1 receptor antagonist. Cultured adipose tissues revealed that IL-37 treatment significantly decreases spontaneous secretions of IL-1β, tumor necrosis factor α (TNFα), and CXC motif chemokine ligand 1 (CXCL-1). We also fed mice a 60% fat diet with concomitant daily IL-37 for 2 weeks and observed decreased secretion of IL-1β, TNFα, and IL-6 and reduced intracellular levels of IL-1α in the liver and adipose tissue, along with improved plasma glucose clearance. Compared with vehicle treatment, these IL-37-treated mice had no apparent weight gain. In human adipose tissue cultures, the presence of 50 pm IL-37 reduced spontaneous release of TNFα and 50% of lipopolysaccharide-induced TNFα. These findings indicate that IL-37's anti-inflammatory effects can ameliorate established metabolic disturbances during obesity.
Collapse
Affiliation(s)
- Dov B. Ballak
- From the Department of Medicine, University of Colorado Denver, Aurora, Colorado 80045, ,the Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado 80309
| | - Suzhao Li
- From the Department of Medicine, University of Colorado Denver, Aurora, Colorado 80045
| | - Giulio Cavalli
- From the Department of Medicine, University of Colorado Denver, Aurora, Colorado 80045
| | - Jonathan L. Stahl
- the Department of Biomedical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Isak W. Tengesdal
- From the Department of Medicine, University of Colorado Denver, Aurora, Colorado 80045
| | - Janna A. van Diepen
- the Department of Medicine, Radboud University Medical Center, 6525 Nijmegen, The Netherlands, and
| | - Viola Klück
- From the Department of Medicine, University of Colorado Denver, Aurora, Colorado 80045
| | - Benjamin Swartzwelter
- From the Department of Medicine, University of Colorado Denver, Aurora, Colorado 80045
| | - Tania Azam
- From the Department of Medicine, University of Colorado Denver, Aurora, Colorado 80045
| | - Cees J. Tack
- the Department of Medicine, Radboud University Medical Center, 6525 Nijmegen, The Netherlands, and
| | - Rinke Stienstra
- the Department of Medicine, Radboud University Medical Center, 6525 Nijmegen, The Netherlands, and ,the Division of Human Nutrition, Wageningen University, 6525 Wageningen, The Netherlands
| | - Thomas Mandrup-Poulsen
- the Department of Biomedical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Douglas R. Seals
- the Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado 80309
| | - Charles A. Dinarello
- From the Department of Medicine, University of Colorado Denver, Aurora, Colorado 80045, ,the Department of Medicine, Radboud University Medical Center, 6525 Nijmegen, The Netherlands, and , To whom correspondence should be addressed:
Dept. of Medicine, University of Colorado Denver, Aurora, Colorado 80045. Tel.:
303-724-6174; Fax:
303-724-6178; E-mail:
| |
Collapse
|
189
|
Gu X, Bridges MD, Yan Y, de Waal PW, Zhou XE, Suino-Powell KM, Xu HE, Hubbell WL, Melcher K. Conformational heterogeneity of the allosteric drug and metabolite (ADaM) site in AMP-activated protein kinase (AMPK). J Biol Chem 2018; 293:16994-17007. [PMID: 30206123 DOI: 10.1074/jbc.ra118.004101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/05/2018] [Indexed: 12/12/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a master regulator of energy homeostasis and a promising drug target for managing metabolic diseases such as type 2 diabetes. Many pharmacological AMPK activators, and possibly unidentified physiological metabolites, bind to the allosteric drug and metabolite (ADaM) site at the interface between the kinase domain (KD) in the α-subunit and the carbohydrate-binding module (CBM) in the β-subunit. Here, using double electron-electron resonance (DEER) spectroscopy, we demonstrate that the CBM-KD interaction is partially dissociated and the interface highly disordered in the absence of pharmacological ADaM site activators as inferred from a low depth of modulation and broad DEER distance distributions. ADaM site ligands such as 991, and to a lesser degree phosphorylation, stabilize the KD-CBM association and strikingly reduce conformational heterogeneity in the ADaM site. Our findings that the ADaM site, formed by the KD-CBM interaction, can be modulated by diverse ligands and by phosphorylation suggest that it may function as a hub for integrating regulatory signals.
Collapse
Affiliation(s)
- Xin Gu
- From the Center of Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Michael D Bridges
- the Jules Stein Eye Institute and Department of Chemistry and Biochemistry, UCLA School of Medicine, University of California, Los Angeles, California 90095-7008, and
| | - Yan Yan
- From the Center of Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan 49503.,the VARI-SIMM Center, Center for Structure and Function of Drug Targets, The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China
| | - Parker W de Waal
- From the Center of Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - X Edward Zhou
- From the Center of Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Kelly M Suino-Powell
- From the Center of Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - H Eric Xu
- From the Center of Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan 49503.,the VARI-SIMM Center, Center for Structure and Function of Drug Targets, The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China
| | - Wayne L Hubbell
- the Jules Stein Eye Institute and Department of Chemistry and Biochemistry, UCLA School of Medicine, University of California, Los Angeles, California 90095-7008, and
| | - Karsten Melcher
- From the Center of Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan 49503,
| |
Collapse
|
190
|
Desjardins EM, Steinberg GR. Emerging Role of AMPK in Brown and Beige Adipose Tissue (BAT): Implications for Obesity, Insulin Resistance, and Type 2 Diabetes. Curr Diab Rep 2018; 18:80. [PMID: 30120579 DOI: 10.1007/s11892-018-1049-6] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The global prevalence of type 2 diabetes (T2D) is escalating at alarming rates, demanding the development of additional classes of therapeutics to further reduce the burden of disease. Recent studies have indicated that increasing the metabolic activity of brown and beige adipose tissue may represent a novel means to reduce circulating glucose and lipids in people with T2D. The AMP-activated protein kinase (AMPK) is a cellular energy sensor that has recently been demonstrated to be important in potentially regulating the metabolic activity of brown and beige adipose tissue. The goal of this review is to summarize recent work describing the role of AMPK in brown and beige adipose tissue, focusing on its role in adipogenesis and non-shivering thermogenesis. RECENT FINDINGS Ablation of AMPK in mouse adipocytes results in cold intolerance, a reduction in non-shivering thermogenesis in brown adipose tissue (BAT), and the development of non-alcoholic fatty liver disease (NAFLD) and insulin resistance; effects associated with a defect in mitochondrial specific autophagy (mitophagy) within BAT. The effects of a β3-adrenergic agonist on the induction of BAT thermogenesis and the browning of white adipose tissue (WAT) are also blunted in mice lacking adipose tissue AMPK. A specific AMPK activator, A-769662, also results in the activation of BAT and the browning of WAT, effects which may involve demethylation of the PR domain containing 16 (Prdm16) promoter region, which is important for BAT development. AMPK plays an important role in the development and maintenance of brown and beige adipose tissue. Adipose tissue AMPK is reduced in people with insulin resistance, consistent with findings that mice lacking adipocyte AMPK develop greater NAFLD and insulin resistance. These data suggest that pharmacologically targeting adipose tissue AMPK may represent a promising strategy to enhance energy expenditure and reduce circulating glucose and lipids, which may be effective for the treatment of NAFLD and T2D.
Collapse
Affiliation(s)
- Eric M Desjardins
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8N 3Z5, Canada
| | - Gregory R Steinberg
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8N 3Z5, Canada.
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8N 3Z5, Canada.
| |
Collapse
|
191
|
Hingst JR, Bruhn L, Hansen MB, Rosschou MF, Birk JB, Fentz J, Foretz M, Viollet B, Sakamoto K, Færgeman NJ, Havelund JF, Parker BL, James DE, Kiens B, Richter EA, Jensen J, Wojtaszewski JFP. Exercise-induced molecular mechanisms promoting glycogen supercompensation in human skeletal muscle. Mol Metab 2018; 16:24-34. [PMID: 30093357 PMCID: PMC6158101 DOI: 10.1016/j.molmet.2018.07.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/06/2018] [Accepted: 07/17/2018] [Indexed: 01/30/2023] Open
Abstract
Objective A single bout of exercise followed by intake of carbohydrates leads to glycogen supercompensation in prior exercised muscle. Our objective was to illuminate molecular mechanisms underlying this phenomenon in skeletal muscle of man. Methods We studied the temporal regulation of glycogen supercompensation in human skeletal muscle during a 5 day recovery period following a single bout of exercise. Nine healthy men depleted (day 1), normalized (day 2) and supercompensated (day 5) muscle glycogen in one leg while the contralateral leg served as a resting control. Euglycemic hyperinsulinemic clamps in combination with leg balance technique allowed for investigating insulin-stimulated leg glucose uptake under these 3 experimental conditions. Cellular signaling in muscle biopsies was investigated by global proteomic analyses and immunoblotting. We strengthened the validity of proposed molecular effectors by follow-up studies in muscle of transgenic mice. Results Sustained activation of glycogen synthase (GS) and AMPK in combination with elevated expression of proteins determining glucose uptake capacity were evident in the prior exercised muscle. We hypothesize that these alterations offset the otherwise tight feedback inhibition of glycogen synthesis and glucose uptake by glycogen. In line with key roles of AMPK and GS seen in the human experiments we observed abrogated ability for glycogen supercompensation in muscle with inducible AMPK deletion and in muscle carrying a G6P-insensitive form of GS in muscle. Conclusion Our study demonstrates that both AMPK and GS are key regulators of glycogen supercompensation following a single bout of glycogen-depleting exercise in skeletal muscle of both man and mouse. A single bout of exercise followed by carbohydrate intake leads to glycogen supersompensation in the prior exercised muscle. Skeletal muscle AMPK and glycogen synthase remain activated beyound normalized muscle glycogen content. Glycogen synthesis above resting levels is mediated independent of muscle insulin sensitivity.
Collapse
Affiliation(s)
- Janne R Hingst
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Lea Bruhn
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Mads B Hansen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Marie F Rosschou
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Jesper B Birk
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Joachim Fentz
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Marc Foretz
- INSERM, U1016, Institut Cochin, 75014, Paris, France; CNRS, UMR8104, 75014, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75014, Paris, France
| | - Benoit Viollet
- INSERM, U1016, Institut Cochin, 75014, Paris, France; CNRS, UMR8104, 75014, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75014, Paris, France
| | - Kei Sakamoto
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, United Kingdom
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense, Denmark
| | - Jesper F Havelund
- Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense, Denmark
| | - Benjamin L Parker
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia; School of Medicine, University of Sydney, Sydney, NSW, 2006, Australia
| | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Erik A Richter
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Jørgen Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, DK-2100, Copenhagen, Denmark; Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
192
|
Tallis J, James RS, Seebacher F. The effects of obesity on skeletal muscle contractile function. ACTA ACUST UNITED AC 2018; 221:221/13/jeb163840. [PMID: 29980597 DOI: 10.1242/jeb.163840] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Obesity can cause a decline in contractile function of skeletal muscle, thereby reducing mobility and promoting obesity-associated health risks. We reviewed the literature to establish the current state-of-knowledge of how obesity affects skeletal muscle contraction and relaxation. At a cellular level, the dominant effects of obesity are disrupted calcium signalling and 5'-adenosine monophosphate-activated protein kinase (AMPK) activity. As a result, there is a shift from slow to fast muscle fibre types. Decreased AMPK activity promotes the class II histone deacetylase (HDAC)-mediated inhibition of the myocyte enhancer factor 2 (MEF2). MEF2 promotes slow fibre type expression, and its activity is stimulated by the calcium-dependent phosphatase calcineurin. Obesity-induced attenuation of calcium signalling via its effects on calcineurin, as well as on adiponectin and actinin affects excitation-contraction coupling and excitation-transcription coupling in the myocyte. These molecular changes affect muscle contractile function and phenotype, and thereby in vivo and in vitro muscle performance. In vivo, obesity can increase the absolute force and power produced by increasing the demand on weight-supporting muscle. However, when normalised to body mass, muscle performance of obese individuals is reduced. Isolated muscle preparations show that obesity often leads to a decrease in force produced per muscle cross-sectional area, and power produced per muscle mass. Obesity and ageing have similar physiological consequences. The synergistic effects of obesity and ageing on muscle function may exacerbate morbidity and mortality. Important future research directions include determining: the relationship between time course of weight gain and changes in muscle function; the relative effects of weight gain and high-fat diet feeding per se; the effects of obesity on muscle function during ageing; and if the effects of obesity on muscle function are reversible.
Collapse
Affiliation(s)
- Jason Tallis
- Center for Sport, Exercise and Life Sciences, Science and Health Building, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Rob S James
- Center for Sport, Exercise and Life Sciences, Science and Health Building, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Frank Seebacher
- School of Life and Environmental Sciences, Heydon Laurence Building A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
193
|
2-[2-(4-(trifluoromethyl)phenylamino)thiazol-4-yl]acetic acid (Activator-3) is a potent activator of AMPK. Sci Rep 2018; 8:9599. [PMID: 29942003 PMCID: PMC6018554 DOI: 10.1038/s41598-018-27974-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 06/06/2018] [Indexed: 02/08/2023] Open
Abstract
AMPK is considered as a potential high value target for metabolic disorders. Here, we present the molecular modeling, in vitro and in vivo characterization of Activator-3, 2-[2-(4-(trifluoromethyl)phenylamino)thiazol-4-yl]acetic acid, an AMP mimetic and a potent pan-AMPK activator. Activator-3 and AMP likely share common activation mode for AMPK activation. Activator-3 enhanced AMPK phosphorylation by upstream kinase LKB1 and protected AMPK complex against dephosphorylation by PP2C. Molecular modeling analyses followed by in vitro mutant AMPK enzyme assays demonstrate that Activator-3 interacts with R70 and R152 of the CBS1 domain on AMPK γ subunit near AMP binding site. Activator-3 and C2, a recently described AMPK mimetic, bind differently in the γ subunit of AMPK. Activator-3 unlike C2 does not show cooperativity of AMPK activity in the presence of physiological concentration of ATP (2 mM). Activator-3 displays good pharmacokinetic profile in rat blood plasma with minimal brain penetration property. Oral treatment of High Sucrose Diet (HSD) fed diabetic rats with 10 mg/kg dose of Activator-3 once in a day for 30 days significantly enhanced glucose utilization, improved lipid profiles and reduced body weight, demonstrating that Activator-3 is a potent AMPK activator that can alleviate the negative metabolic impact of high sucrose diet in rat model.
Collapse
|
194
|
Steneberg P, Lindahl E, Dahl U, Lidh E, Straseviciene J, Backlund F, Kjellkvist E, Berggren E, Lundberg I, Bergqvist I, Ericsson M, Eriksson B, Linde K, Westman J, Edlund T, Edlund H. PAN-AMPK activator O304 improves glucose homeostasis and microvascular perfusion in mice and type 2 diabetes patients. JCI Insight 2018; 3:99114. [PMID: 29925691 DOI: 10.1172/jci.insight.99114] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/17/2018] [Indexed: 12/20/2022] Open
Abstract
AMPK activated protein kinase (AMPK), a master regulator of energy homeostasis, is activated in response to an energy shortage imposed by physical activity and caloric restriction. We here report on the identification of PAN-AMPK activator O304, which - in diet-induced obese mice - increased glucose uptake in skeletal muscle, reduced β cell stress, and promoted β cell rest. Accordingly, O304 reduced fasting plasma glucose levels and homeostasis model assessment of insulin resistance (HOMA-IR) in a proof-of-concept phase IIa clinical trial in type 2 diabetes (T2D) patients on Metformin. T2D is associated with devastating micro- and macrovascular complications, and O304 improved peripheral microvascular perfusion and reduced blood pressure both in animals and T2D patients. Moreover, like exercise, O304 activated AMPK in the heart, increased cardiac glucose uptake, reduced cardiac glycogen levels, and improved left ventricular stroke volume in mice, but it did not increase heart weight in mice or rats. Thus, O304 exhibits a great potential as a novel drug to treat T2D and associated cardiovascular complications.
Collapse
Affiliation(s)
- Pär Steneberg
- Umeå Centre for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| | - Emma Lindahl
- Umeå Centre for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| | - Ulf Dahl
- Umeå Centre for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| | - Emmelie Lidh
- Umeå Centre for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| | | | - Fredrik Backlund
- Umeå Centre for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| | | | - Eva Berggren
- Betagenon AB, Tvistevägen 48, SE-907 36 Umeå, Sweden
| | | | | | - Madelene Ericsson
- Department of Medical Biosciences, Umeå University, SE-901 87 Umeå, Sweden
| | | | - Kajsa Linde
- Betagenon AB, Tvistevägen 48, SE-907 36 Umeå, Sweden
| | - Jacob Westman
- Medchemcon AB, Jonsund Blomsberg 109, SE-744 97 Järlåsa, Sweden
| | - Thomas Edlund
- Umeå Centre for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden.,Betagenon AB, Tvistevägen 48, SE-907 36 Umeå, Sweden
| | - Helena Edlund
- Umeå Centre for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
195
|
De Jong KA, Barrand S, Wood-Bradley RJ, de Almeida DL, Czeczor JK, Lopaschuk GD, Armitage JA, McGee SL. Maternal high fat diet induces early cardiac hypertrophy and alters cardiac metabolism in Sprague Dawley rat offspring. Nutr Metab Cardiovasc Dis 2018; 28:600-609. [PMID: 29691147 DOI: 10.1016/j.numecd.2018.02.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/03/2018] [Accepted: 02/27/2018] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND AIM Maternal high fat diets (mHFD) have been associated with an increased offspring cardiovascular risk. Recently we found that the class IIa HDAC-MEF2 pathway regulates gene programs controlling fatty acid oxidation in striated muscle. This same pathway controls hypertrophic responses in the heart. We hypothesized that mHFD is associated with activation of signal controlling class II a HDAC activity and activation of genes involved in fatty acid oxidation and cardiac hypertrophy in offspring. METHODS AND RESULTS Female Sprague Dawley rats were fed either normal fat diet (12%) or high fat diet (43%) three weeks prior to mating, remaining on diets until study completion. Hearts of postnatal day 1 (PN1) and PN10 pups were collected. Bioenergetics and respiration analyses were performed in neonatal ventricular cardiomyocytes (NVCM). In offspring exposed to mHFD, body weight was increased at PN10 accompanied by increased body fat percentage and blood glucose. Heart weight and heart weight to body weight ratio were increased at PN1 and PN10, and were associated with elevated signalling through the AMPK-class IIa HDAC-MEF2 axis. The expression of the MEF2-regulated hypertrophic markers ANP and BNP were increased as were expression of genes involved in fatty acid oxidation. However this was only accompanied by an increased protein expression of fatty acid oxidation enzymes at PN10. NVCM isolated from these pups exhibited increased glycolysis and an impaired substrate flexibility. CONCLUSION Combined, these results suggest that mHFD induces signalling and transcriptional events indicative of reprogrammed cardiac metabolism and of cardiac hypertrophy in Sprague Dawley rat offspring.
Collapse
Affiliation(s)
- K A De Jong
- Metabolic Reprogramming Laboratory, Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia.
| | - S Barrand
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia.
| | - R J Wood-Bradley
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia.
| | - D L de Almeida
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia.
| | - J K Czeczor
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich-Heine University, c/o Auf'm Hennekamp 65, 40225, Düsseldorf, Germany; German Center of Diabetes Research, Ingolstädter Landstraße 1, 85764, München-Neuherberg, Germany.
| | - G D Lopaschuk
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Canada.
| | - J A Armitage
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia.
| | - S L McGee
- Metabolic Reprogramming Laboratory, Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia.
| |
Collapse
|
196
|
Dial AG, Ng SY, Manta A, Ljubicic V. The Role of AMPK in Neuromuscular Biology and Disease. Trends Endocrinol Metab 2018; 29:300-312. [PMID: 29572064 DOI: 10.1016/j.tem.2018.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/22/2022]
Abstract
AMP-activated protein kinase (AMPK) is a primary regulator of cellular metabolism. Recent studies have revealed that AMPK also mediates the maintenance and plasticity of α-motoneurons, the neuromuscular junction, and skeletal muscle. Furthermore, AMPK stimulation by either genetic, pharmacological, or physiological approaches elicits beneficial phenotypic remodeling in neuromuscular disorders (NMDs). Here, we review the role of AMPK as a governor of neuromuscular biology, and present evidence for AMPK as an effective molecular target for therapeutic pursuit in the context of the most prevalent NMDs, including Duchenne muscular dystrophy, spinal muscular atrophy, and myotonic dystrophy type 1. This information may be useful for engineering AMPK-targeted pharmacological- or lifestyle-based strategies to treat disorders of the neuromuscular system.
Collapse
Affiliation(s)
- Athan G Dial
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Sean Y Ng
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Alexander Manta
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
197
|
Foretz M, Viollet B. Activation of AMPK for a Break in Hepatic Lipid Accumulation and Circulating Cholesterol. EBioMedicine 2018; 31:15-16. [PMID: 29754882 PMCID: PMC6014063 DOI: 10.1016/j.ebiom.2018.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 11/02/2022] Open
Affiliation(s)
- Marc Foretz
- INSERM, U1016, Institut Cochin, Paris 75014, France; CNRS, UMR8104, Paris 75014, France; Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Benoit Viollet
- INSERM, U1016, Institut Cochin, Paris 75014, France; CNRS, UMR8104, Paris 75014, France; Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France.
| |
Collapse
|
198
|
Structural Determinants for Small-Molecule Activation of Skeletal Muscle AMPK α2β2γ1 by the Glucose Importagog SC4. Cell Chem Biol 2018; 25:728-737.e9. [PMID: 29657085 DOI: 10.1016/j.chembiol.2018.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/31/2018] [Accepted: 03/19/2018] [Indexed: 12/20/2022]
Abstract
The AMP-activated protein kinase (AMPK) αβγ heterotrimer regulates cellular energy homeostasis with tissue-specific isoform distribution. Small-molecule activation of skeletal muscle α2β2 AMPK complexes may prove a valuable treatment strategy for type 2 diabetes and insulin resistance. Herein, we report the small-molecule SC4 is a potent, direct AMPK activator that preferentially activates α2 complexes and stimulates skeletal muscle glucose uptake. In parallel with the term secretagog, we propose "importagog" to define a substance that induces or augments cellular uptake of another substance. Three-dimensional structures of the glucose importagog SC4 bound to activated α2β2γ1 and α2β1γ1 complexes reveal binding determinants, in particular a key interaction between the SC4 imidazopyridine 4'-nitrogen and β2-Asp111, which provide a design paradigm for β2-AMPK therapeutics. The α2β2γ1/SC4 structure reveals an interaction between a β2 N-terminal α helix and the α2 autoinhibitory domain. Our results provide a structure-function guide to accelerate development of potent, but importantly tissue-specific, β2-AMPK therapeutics.
Collapse
|
199
|
Young RJ, Leeson PD. Mapping the Efficiency and Physicochemical Trajectories of Successful Optimizations. J Med Chem 2018; 61:6421-6467. [DOI: 10.1021/acs.jmedchem.8b00180] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Robert J. Young
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Paul D. Leeson
- Paul Leeson Consulting Ltd., The Malt House, Main Street, Congerstone, Nuneaton, Warwickshire CV13 6LZ, U.K
| |
Collapse
|
200
|
Gamede M, Mabuza L, Ngubane P, Khathi A. The Effects of Plant-Derived Oleanolic Acid on Selected Parameters of Glucose Homeostasis in a Diet-Induced Pre-Diabetic Rat Model. Molecules 2018; 23:E794. [PMID: 29596390 PMCID: PMC6017303 DOI: 10.3390/molecules23040794] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/23/2018] [Accepted: 03/27/2018] [Indexed: 02/07/2023] Open
Abstract
Prolonged exposure to high energy diets has been implicated in the development of pre-diabetes, a long-lasting condition that precedes type 2 diabetes mellitus (T2DM). A combination of pharmacological and dietary interventions is used to prevent the progression of pre-diabetes to T2DM. However, poor patient compliance leads to negligence of the dietary intervention and thus reduced drug efficiency. Oleanolic acid (OA) has been reported to possess anti-diabetic effects in type 1 diabetic rats. However, the effects of this compound on pre-diabetes have not yet been established. Consequently, this study sought to evaluate the effects OA on a diet-induced pre-diabetes rat model. Pre-diabetic male Sprague Dawley rats were treated with OA in both the presence and absence of dietary intervention for a period of 12 weeks. The administration of OA with and without dietary intervention resulted in significantly improved glucose homeostasis through reduced caloric intake, body weights, plasma ghrelin concentration and glycated haemoglobin by comparison to the pre-diabetic control. These results suggest that OA may be used to manage pre-diabetes as it was able to restore glucose homeostasis and prevented the progression to overt type 2 diabetes.
Collapse
Affiliation(s)
- Mlindeli Gamede
- Schools of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4004, South Africa.
| | - Lindokuhle Mabuza
- Schools of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4004, South Africa.
| | - Phikelelani Ngubane
- Schools of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4004, South Africa.
| | - Andile Khathi
- Schools of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4004, South Africa.
| |
Collapse
|