151
|
High frequency of transmitted HIV-1 Gag HLA class I-driven immune escape variants but minimal immune selection over the first year of clade C infection. PLoS One 2015; 10:e0119886. [PMID: 25781986 PMCID: PMC4363590 DOI: 10.1371/journal.pone.0119886] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/03/2015] [Indexed: 11/19/2022] Open
Abstract
In chronic HIV infection, CD8+ T cell responses to Gag are associated with lower viral loads, but longitudinal studies of HLA-restricted CD8+ T cell-driven selection pressure in Gag from the time of acute infection are limited. In this study we examined Gag sequence evolution over the first year of infection in 22 patients identified prior to seroconversion. A total of 310 and 337 full-length Gag sequences from the earliest available samples (median = 14 days after infection [Fiebig stage I/II]) and at one-year post infection respectively were generated. Six of 22 (27%) individuals were infected with multiple variants. There was a trend towards early intra-patient viral sequence diversity correlating with viral load set point (p = 0.07, r = 0.39). At 14 days post infection, 59.7% of Gag CTL epitopes contained non-consensus polymorphisms and over half of these (35.3%) comprised of previously described CTL escape variants. Consensus and variant CTL epitope proportions were equally distributed irrespective of the selecting host HLA allele and most epitopes remained unchanged over 12 months post infection. These data suggest that intrapatient diversity during acute infection is an indicator of disease outcome. In this setting, there is a high rate of transmitted CTL escape variants and limited immune selection in Gag during the first year of infection. These data have relevance for vaccine strategies designed to elicit effective CD8+ T cell immune responses.
Collapse
|
152
|
HIV-1 replication capacity: Setting the pace of disease. Proc Natl Acad Sci U S A 2015; 112:3591-2. [PMID: 25775570 DOI: 10.1073/pnas.1502208112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
153
|
Sheward DJ, Ntale R, Garrett NJ, Woodman ZL, Abdool Karim SS, Williamson C. HIV-1 Superinfection Resembles Primary Infection. J Infect Dis 2015; 212:904-8. [PMID: 25754982 DOI: 10.1093/infdis/jiv136] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/23/2015] [Indexed: 11/12/2022] Open
Abstract
The relevance of superinfection as a model to identify correlates of protection against human immunodeficiency virus (HIV) depends on whether the superinfecting transmission resembles primary infection, which has not been established. Here, we characterize the genetic bottleneck in superinfected individuals for the first time. In all 3 cases, superinfection produced a spike in viral load and could be traced to a single, C-C chemokine receptor 5-tropic founder virus with shorter, less glycosylated variable regions than matched chronic viruses. These features are consistent with primary HIV transmission and provide support for the use of superinfection as a model to address correlates of protection against HIV.
Collapse
Affiliation(s)
- Daniel J Sheward
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, South Africa
| | - Roman Ntale
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, South Africa Department of Biomedical Laboratory Sciences, College of Medicine and Health Sciences, Kigali, Rwanda
| | - Nigel J Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA) Department of Infectious Diseases, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban
| | - Zenda L Woodman
- Department of Molecular and Cell Biology, University of Cape Town
| | - Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA) Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Carolyn Williamson
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, South Africa Centre for the AIDS Programme of Research in South Africa (CAPRISA) National Health Laboratory Services, Johannesburg, South Africa
| |
Collapse
|
154
|
Sagar M. Origin of the transmitted virus in HIV infection: infected cells versus cell-free virus. J Infect Dis 2015; 210 Suppl 3:S667-73. [PMID: 25414422 DOI: 10.1093/infdis/jiu369] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
All human immunodeficiency virus type 1 (HIV-1)-infected inocula, such as genital secretions, breast milk, and blood, contain both cell-free virus and infected cells. The relative contributions of cell-free and/or cell-associated virus in establishing an infection in a naive host during the different modes of HIV-1 acquisition remains unclear. Studies aim to elucidate the source of the acquired virus because strategies to prevent acquisition may have differential efficacy against the different modes of transmission. In this review, I will detail some of the challenges in identifying the source of the transmitted virus, genotypic and phenotypic differences among cell-free compared with cell-associated HIV-1, and implications on the efficacy for prevention strategies.
Collapse
|
155
|
Asmal M, Luedemann C, Lavine CL, Mach LV, Balachandran H, Brinkley C, Denny TN, Lewis MG, Anderson H, Pal R, Sok D, Le K, Pauthner M, Hahn BH, Shaw GM, Seaman MS, Letvin NL, Burton DR, Sodroski JG, Haynes BF, Santra S. Infection of monkeys by simian-human immunodeficiency viruses with transmitted/founder clade C HIV-1 envelopes. Virology 2015; 475:37-45. [PMID: 25462344 PMCID: PMC4280322 DOI: 10.1016/j.virol.2014.10.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 10/27/2014] [Indexed: 10/24/2022]
Abstract
Simian-human immunodeficiency viruses (SHIVs) that mirror natural transmitted/founder (T/F) viruses in man are needed for evaluation of HIV-1 vaccine candidates in nonhuman primates. Currently available SHIVs contain HIV-1 env genes from chronically-infected individuals and do not reflect the characteristics of biologically relevant HIV-1 strains that mediate human transmission. We chose to develop clade C SHIVs, as clade C is the major infecting subtype of HIV-1 in the world. We constructed 10 clade C SHIVs expressing Env proteins from T/F viruses. Three of these ten clade C SHIVs (SHIV KB9 C3, SHIV KB9 C4 and SHIV KB9 C5) replicated in naïve rhesus monkeys. These three SHIVs are mucosally transmissible and are neutralized by sCD4 and several HIV-1 broadly neutralizing antibodies. However, like natural T/F viruses, they exhibit low Env reactivity and a Tier 2 neutralization sensitivity. Of note, none of the clade C T/F SHIVs elicited detectable autologous neutralizing antibodies in the infected monkeys, even though antibodies that neutralized a heterologous Tier 1 HIV-1 were generated. Challenge with these three new clade C SHIVs will provide biologically relevant tests for vaccine protection in rhesus macaques.
Collapse
Affiliation(s)
- Mohammed Asmal
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Corinne Luedemann
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christy L Lavine
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Linh V Mach
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Harikrishnan Balachandran
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christie Brinkley
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Thomas N Denny
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | | | | | - Ranajit Pal
- Advanced BioScience Laboratories, Inc., Rockville, MD 20850, USA
| | - Devin Sok
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Khoa Le
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Matthias Pauthner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Beatrice H Hahn
- University of Pennsylvania, Department of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - George M Shaw
- University of Pennsylvania, Department of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Norman L Letvin
- University of Pennsylvania, Department of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joseph G Sodroski
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sampa Santra
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
156
|
Berzofsky JA, Franchini G. Human/Simian Immunodeficiency Virus Transmission and Infection at Mucosal Sites. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
157
|
Generation and characterization of an HIV-1 subtype C transmitted and early founder virus consensus sequence. AIDS Res Hum Retroviruses 2014; 30:1001-5. [PMID: 25025284 DOI: 10.1089/aid.2014.0042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The tight bottleneck during HIV-1 transmission generally results in only a single virus variant being transmitted. Investigation of the HIV-1 envelope glycoprotein (Env) can identify vulnerabilities of transmitting viruses that can be targeted by vaccines designed to elicit protection against global HIV-1. This study generated an HIV-1 subtype C consensus transmitted and early founder virus Env (EnvFVC) after detailed sequence analysis of 1,894 env genes obtained from 80 acutely infected individuals from South Africa, Malawi, and Zambia. The inferred EnvFVC sequence incorporates characteristics of transmitted and early founder viruses and results in the expression of a functional and conformationally intact Env. Overall, the "subtype-based" or "region-based" EnvFVC described here can be used in the development of a useful immunogen for novel vaccine design.
Collapse
|
158
|
Mucosal immunity in the female genital tract, HIV/AIDS. BIOMED RESEARCH INTERNATIONAL 2014; 2014:350195. [PMID: 25313360 PMCID: PMC4181941 DOI: 10.1155/2014/350195] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 01/15/2023]
Abstract
Mucosal immunity consists of innate and adaptive immune responses which can be influenced by systemic immunity. Despite having been the subject of intensive studies, it is not fully elucidated what exactly occurs after HIV contact with the female genital tract mucosa. The sexual route is the main route of HIV transmission, with an increased risk of infection in women compared to men. Several characteristics of the female genital tract make it suitable for inoculation, establishment of infection, and systemic spread of the virus, which causes local changes that may favor the development of infections by other pathogens, often called sexually transmitted diseases (STDs). The relationship of these STDs with HIV infection has been widely studied. Here we review the characteristics of mucosal immunity of the female genital tract, its alterations due to HIV/AIDS, and the characteristics of coinfections between HIV/AIDS and the most prevalent STDs.
Collapse
|
159
|
Ritchie AJ, Cai F, Smith NMG, Chen S, Song H, Brackenridge S, Abdool Karim SS, Korber BT, McMichael AJ, Gao F, Goonetilleke N. Recombination-mediated escape from primary CD8+ T cells in acute HIV-1 infection. Retrovirology 2014; 11:69. [PMID: 25212771 PMCID: PMC4180588 DOI: 10.1186/s12977-014-0069-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 07/31/2014] [Indexed: 12/02/2022] Open
Abstract
Background A major immune evasion mechanism of HIV-1 is the accumulation of non-synonymous mutations in and around T cell epitopes, resulting in loss of T cell recognition and virus escape. Results Here we analyze primary CD8+ T cell responses and virus escape in a HLA B*81 expressing subject who was infected with two T/F viruses from a single donor. In addition to classic escape through non-synonymous mutation/s, we also observed rapid selection of multiple recombinant viruses that conferred escape from T cells specific for two epitopes in Nef. Conclusions Our study shows that recombination between multiple T/F viruses provide greater options for acute escape from CD8+ T cell responses than seen in cases of single T/F virus infection. This process may contribute to the rapid disease progression in patients infected by multiple T/F viruses. Electronic supplementary material The online version of this article (doi:10.1186/s12977-014-0069-9) contains supplementary material, which is available to authorized users.
Collapse
|
160
|
Sterrett S, Learn GH, Edlefsen PT, Haynes BF, Hahn BH, Shaw GM, Bar KJ. Low Multiplicity of HIV-1 Infection and No Vaccine Enhancement in VAX003 Injection Drug Users. Open Forum Infect Dis 2014; 1:ofu056. [PMID: 25734126 PMCID: PMC4281816 DOI: 10.1093/ofid/ofu056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 06/23/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND We performed human immunodeficiency virus type 1 (HIV-1) transmitted/founder (T/F) virus analysis of the VAX003 vaccine efficacy trial participants to characterize the transmission bottleneck and test for vaccine-associated reduction or enhancement of infection in this injection drug user (IDU) cohort. METHODS We performed single genome sequencing of plasma vRNA from 50 subjects sampled in early HIV infection. Sequences were analyzed phylogenetically, T/F viruses enumerated, and a sieve analysis performed. RESULTS Eight of 19 (42%) placebo recipients were productively infected by more than 1 virus (range 1-5, median 1, mean 1.7). This frequency of multiple virus transmission was greater than reported for heterosexual cohorts (19%, P = .03) but not statistically different from vaccine recipients (22.6%, P > .05), where the range was 1-3, median 1, and mean 1.3 (P > .05 for all comparisons). An atypical sieve effect was detected in Env V2 but was not associated with reduction or enhancement of virus acquisition. CONCLUSIONS The number of T/F viruses in IDUs was surprising low, with 95% of individuals infected by only 1-3 viruses. This finding suggests that a successful vaccine or other prevention modality generally needs to protect against only one or a few viruses regardless of risk behavior. T/F analysis identified an atypical genetic sieve in the V2 region of Envelope and found no evidence for vaccine-mediated enhancement in VAX003.
Collapse
Affiliation(s)
| | - Gerald H Learn
- Perelman School of Medicine , University of Pennsylvania , Philadelphia
| | - Paul T Edlefsen
- Fred Hutchinson Cancer Research Center , Seattle, Washington
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University Medical Center , Durham, North Carolina
| | - Beatrice H Hahn
- Perelman School of Medicine , University of Pennsylvania , Philadelphia
| | - George M Shaw
- Perelman School of Medicine , University of Pennsylvania , Philadelphia
| | - Katharine J Bar
- Perelman School of Medicine , University of Pennsylvania , Philadelphia
| |
Collapse
|
161
|
Stern A, Bianco S, Yeh MT, Wright C, Butcher K, Tang C, Nielsen R, Andino R. Costs and benefits of mutational robustness in RNA viruses. Cell Rep 2014; 8:1026-36. [PMID: 25127138 DOI: 10.1016/j.celrep.2014.07.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 05/18/2014] [Accepted: 07/11/2014] [Indexed: 12/19/2022] Open
Abstract
The accumulation of mutations in RNA viruses is thought to facilitate rapid adaptation to changes in the environment. However, most mutations have deleterious effects on fitness, especially for viruses. Thus, tolerance to mutations should determine the nature and extent of genetic diversity that can be maintained in the population. Here, we combine population genetics theory, computer simulation, and experimental evolution to examine the advantages and disadvantages of tolerance to mutations, also known as mutational robustness. We find that mutational robustness increases neutral diversity and, as expected, can facilitate adaptation to a new environment. Surprisingly, under certain conditions, robustness may also be an impediment for viral adaptation, if a highly diverse population contains a large proportion of previously neutral mutations that are deleterious in the new environment. These findings may inform therapeutic strategies that cause extinction of otherwise robust viral populations.
Collapse
Affiliation(s)
- Adi Stern
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Simone Bianco
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; IBM Research-Almaden, Industrial and Applied Genomics, 650 Harry Road, San Jose, CA 95120-6099, USA
| | - Ming Te Yeh
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Caroline Wright
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kristin Butcher
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chao Tang
- Center for Quantitative Biology, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Statistics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
162
|
Affiliation(s)
- Sarah B Joseph
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Ronald Swanstrom
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA. Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA. UNC Center for AIDS Research, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
163
|
Al-Mawsawi LQ, Wu NC, De La Cruz J, Shi VC, Wu TT, Daar ES, Lewis MJ, Yang OO, Sun R. Short communication: HIV-1 gag genetic variation in a single acutely infected participant defined by high-resolution deep sequencing. AIDS Res Hum Retroviruses 2014; 30:806-11. [PMID: 24914638 DOI: 10.1089/aid.2014.0097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Acute HIV-1 infection is characterized by the rapid generation of highly diverse genetic variants to adapt to the new host environment. Understanding the dynamics of viral genetic variation at this stage of infection is critical for vaccine design efforts and early drug treatment. Here, using a high-resolution deep sequencing approach targeting the HIV-1 gag region, we reveal very early immune pressure with dramatic subpopulation shifts in a single acutely infected participant providing further insight into the genetic dynamics of acute HIV-1 infection.
Collapse
Affiliation(s)
- Laith Q Al-Mawsawi
- 1 Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California , Los Angeles, Los Angeles, California
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Carlson JM, Schaefer M, Monaco DC, Batorsky R, Claiborne DT, Prince J, Deymier MJ, Ende ZS, Klatt NR, DeZiel CE, Lin TH, Peng J, Seese AM, Shapiro R, Frater J, Ndung'u T, Tang J, Goepfert P, Gilmour J, Price MA, Kilembe W, Heckerman D, Goulder PJR, Allen TM, Allen S, Hunter E. HIV transmission. Selection bias at the heterosexual HIV-1 transmission bottleneck. Science 2014; 345:1254031. [PMID: 25013080 DOI: 10.1126/science.1254031] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Heterosexual transmission of HIV-1 typically results in one genetic variant establishing systemic infection. We compared, for 137 linked transmission pairs, the amino acid sequences encoded by non-envelope genes of viruses in both partners and demonstrate a selection bias for transmission of residues that are predicted to confer increased in vivo fitness on viruses in the newly infected, immunologically naïve recipient. Although tempered by transmission risk factors, such as donor viral load, genital inflammation, and recipient gender, this selection bias provides an overall transmission advantage for viral quasispecies that are dominated by viruses with high in vivo fitness. Thus, preventative or therapeutic approaches that even marginally reduce viral fitness may lower the overall transmission rates and offer long-term benefits even upon successful transmission.
Collapse
Affiliation(s)
| | - Malinda Schaefer
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Daniela C Monaco
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Rebecca Batorsky
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02114, USA
| | - Daniel T Claiborne
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Jessica Prince
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Martin J Deymier
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Zachary S Ende
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Nichole R Klatt
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | | | | | - Jian Peng
- Microsoft Research, Redmond, WA 98052, USA
| | - Aaron M Seese
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02114, USA
| | - Roger Shapiro
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - John Frater
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX1 7BN, UK. National Institute of Health Research, Oxford Biomedical Research Centre, Oxford OX3 7LE, UK. Oxford Martin School, University of Oxford, Oxford OX1 3BD, UK
| | - Thumbi Ndung'u
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02114, USA. HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4013, South Africa. KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa. Max Planck Institute for Infection Biology, D-10117 Berlin, Germany
| | - Jianming Tang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Paul Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jill Gilmour
- International AIDS Vaccine Initiative, London SW10 9NH, UK. Imperial College of Science Technology and Medicine, London SW10 9NH, UK
| | - Matt A Price
- International AIDS Vaccine Initiative, San Francisco, CA 94105, USA. Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94105, USA
| | - William Kilembe
- Rwanda-Zambia HIV Research Group: Zambia-Emory HIV Research Project, Lusaka, Zambia
| | | | - Philip J R Goulder
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4013, South Africa. Department of Paediatrics, University of Oxford, Oxford OX1 3SY, UK
| | - Todd M Allen
- Rwanda-Zambia HIV Research Group: Zambia-Emory HIV Research Project, Lusaka, Zambia. Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA. Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Susan Allen
- International AIDS Vaccine Initiative, San Francisco, CA 94105, USA. Microsoft Research, Los Angeles, CA 98117, USA. Department of Paediatrics, University of Oxford, Oxford OX1 3SY, UK
| | - Eric Hunter
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA. Rwanda-Zambia HIV Research Group: Zambia-Emory HIV Research Project, Lusaka, Zambia. Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
165
|
Del Prete GQ, Park H, Fennessey CM, Reid C, Lipkey L, Newman L, Oswald K, Kahl C, Piatak M, Quiñones OA, Alvord WG, Smedley J, Estes JD, Lifson JD, Picker LJ, Keele BF. Molecularly tagged simian immunodeficiency virus SIVmac239 synthetic swarm for tracking independent infection events. J Virol 2014; 88:8077-90. [PMID: 24807714 PMCID: PMC4097795 DOI: 10.1128/jvi.01026-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 04/30/2014] [Indexed: 12/20/2022] Open
Abstract
Following mucosal human immunodeficiency virus type 1 transmission, systemic infection is established by one or only a few viral variants. Modeling single-variant, mucosal transmission in nonhuman primates using limiting-dose inoculations with a diverse simian immunodeficiency virus isolate stock may increase variability between animals since individual variants within the stock may have substantial functional differences. To decrease variability between animals while retaining the ability to enumerate transmitted/founder variants by sequence analysis, we modified the SIVmac239 clone to generate 10 unique clones that differ by two or three synonymous mutations (molecular tags). Transfection- and infection-derived virus stocks containing all 10 variants showed limited phenotypic differences in 9 of the 10 clones. Twenty-nine rhesus macaques were challenged intrarectally or intravenously with either a single dose or repeated, limiting doses of either stock. The proportion of each variant within each inoculum and in plasma from infected animals was determined by using a novel real-time single-genome amplification assay. Each animal was infected with one to five variants, the number correlating with the dose. Longitudinal sequence analysis revealed that the molecular tags are highly stable with no reversion to the parental sequence detected in >2 years of follow-up. Overall, the viral stocks are functional and mucosally transmissible and the number of variants is conveniently discernible by sequence analysis of a small amplicon. This approach should be useful for tracking individual infection events in preclinical vaccine evaluations, long-term viral reservoir establishment/clearance research, and transmission/early-event studies. Importance: Human immunodeficiency virus type 1 transmission is established by one or only a few viral variants. Modeling of limited variant transmission in nonhuman primates with a diverse simian immunodeficiency virus isolate stock may increase the variability between animals because of functional differences in the individual variants within the stock. To decrease such variability while retaining the ability to distinguish and enumerate transmitted/founder variants by sequence analysis, we generated a viral stock with 10 sequence-identifiable but otherwise genetically identical variants. This virus was characterized in vitro and in vivo and shown to allow discrimination of distinct transmission events. This approach provides a novel nonhuman primate challenge system for the study of viral transmission, evaluation of vaccines and other prevention approaches, and characterization of viral reservoirs and strategies to target them.
Collapse
Affiliation(s)
- Gregory Q Del Prete
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Haesun Park
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Carolyn Reid
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Leslie Lipkey
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Laura Newman
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Kelli Oswald
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Christoph Kahl
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Octavio A Quiñones
- Statistical Consulting, Data Management Services, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - W Gregory Alvord
- Statistical Consulting, Data Management Services, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jeremy Smedley
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jacob D Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Louis J Picker
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| |
Collapse
|
166
|
McCloskey RM, Liang RH, Harrigan PR, Brumme ZL, Poon AFY. An evaluation of phylogenetic methods for reconstructing transmitted HIV variants using longitudinal clonal HIV sequence data. J Virol 2014; 88:6181-94. [PMID: 24648453 PMCID: PMC4093844 DOI: 10.1128/jvi.00483-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 03/11/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED A population of human immunodeficiency virus (HIV) within a host often descends from a single transmitted/founder virus. The high mutation rate of HIV, coupled with long delays between infection and diagnosis, make isolating and characterizing this strain a challenge. In theory, ancestral reconstruction could be used to recover this strain from sequences sampled in chronic infection; however, the accuracy of phylogenetic techniques in this context is unknown. To evaluate the accuracy of these methods, we applied ancestral reconstruction to a large panel of published longitudinal clonal and/or single-genome-amplification HIV sequence data sets with at least one intrapatient sequence set sampled within 6 months of infection or seroconversion (n = 19,486 sequences, median [interquartile range] = 49 [20 to 86] sequences/set). The consensus of the earliest sequences was used as the best possible estimate of the transmitted/founder. These sequences were compared to ancestral reconstructions from sequences sampled at later time points using both phylogenetic and phylogeny-naive methods. Overall, phylogenetic methods conferred a 16% improvement in reproducing the consensus of early sequences, compared to phylogeny-naive methods. This relative advantage increased with intrapatient sequence diversity (P < 10(-5)) and the time elapsed between the earliest and subsequent samples (P < 10(-5)). However, neither approach performed well for reconstructing ancestral indel variation, especially within indel-rich regions of the HIV genome. Although further improvements are needed, our results indicate that phylogenetic methods for ancestral reconstruction significantly outperform phylogeny-naive alternatives, and we identify experimental conditions and study designs that can enhance accuracy of transmitted/founder virus reconstruction. IMPORTANCE When HIV is transmitted into a new host, most of the viruses fail to infect host cells. Consequently, an HIV infection tends to be descended from a single "founder" virus. A priority target for the vaccine research, these transmitted/founder viruses are difficult to isolate since newly infected individuals are often unaware of their status for months or years, by which time the virus population has evolved substantially. Here, we report on the potential use of evolutionary methods to reconstruct the genetic sequence of the transmitted/founder virus from its descendants at later stages of an infection. These methods can recover this ancestral sequence with an overall error rate of about 2.3%-about 15% more information than if we had ignored the evolutionary relationships among viruses. Although there is no substitute for sampling infections at earlier points in time, these methods can provide useful information about the genetic makeup of transmitted/founder HIV.
Collapse
Affiliation(s)
- Rosemary M. McCloskey
- BC Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Richard H. Liang
- BC Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - P. Richard Harrigan
- BC Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zabrina L. Brumme
- BC Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Art F. Y. Poon
- BC Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
167
|
Cohen YZ, Dolin R. Novel HIV vaccine strategies: overview and perspective. THERAPEUTIC ADVANCES IN VACCINES 2014; 1:99-112. [PMID: 24757518 DOI: 10.1177/2051013613494535] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A human immunodeficiency virus (HIV) vaccine remains a central component in the quest to control the worldwide epidemic. To examine the status of the development of HIV vaccines, we review the results of the efficacy trials carried out to date and the immunologic principles that guided them. Four vaccine concepts have been evaluated in HIV-1 vaccine efficacy trials, and the results of these trials have provided significant information for future vaccine development. While one of these trials demonstrated that a safe and effective HIV vaccine is possible, many questions remain regarding the basis for the observed protection and the most efficient way to stimulate it. Novel HIV vaccine strategies including induction of highly potent broadly neutralizing antibodies, use of novel homologous and heterologous vector systems, and vectored immunoprophylaxis seek to expand and build upon the knowledge gained from these trials.
Collapse
Affiliation(s)
- Yehuda Z Cohen
- Center for Virus and Vaccine Research, Beth Israel Deaconess Medical Center, E/CLS-1003, 330 Brookline Ave, Boston, 02215, USA
| | - Raphael Dolin
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
168
|
Abstract
Tissues such as the genital tract, skin, and lung act as barriers against invading pathogens. To protect the host, incoming microbes must be quickly and efficiently controlled by the immune system at the portal of entry. Memory is a hallmark of the adaptive immune system, which confers long-term protection and is the basis for efficacious vaccines. While the majority of existing vaccines rely on circulating antibody for protection, struggles to develop antibody-based vaccines against infections such as herpes simplex virus (HSV) and human immunodeficiency virus (HIV) have underscored the need to generate memory T cells for robust antiviral control. The circulating memory T-cell population is generally divided into two subsets: effector memory (TEM ) and central memory (TCM ). These two subsets can be distinguished by their localization, as TCM home to secondary lymphoid organs and TEM circulate through non-lymphoid tissues. More recently, studies have identified a third subset, called tissue-resident memory (TRM ) cells, based on its migratory properties. This subset is found in peripheral tissues that require expression of specific chemoattractants and homing receptors for T-cell recruitment and retention, including barrier sites such as the skin and genital tract. In this review, we categorize different tissues in the body based on patterns of memory T-cell migration and tissue residency. This review also describes the rules for TRM generation and the properties that distinguish them from circulating TEM and TCM cells. Finally, based on the failure of recent T-cell-based vaccines to provide optimal protection, we also discuss the potential role of TRM cells in vaccine design against microbes that invade through the peripheral tissues and highlight new vaccination strategies that take advantage of this newly described memory T-cell subset.
Collapse
Affiliation(s)
- Haina Shin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
169
|
Smedley J, Turkbey B, Bernardo ML, Del Prete GQ, Estes JD, Griffiths GL, Kobayashi H, Choyke PL, Lifson JD, Keele BF. Tracking the luminal exposure and lymphatic drainage pathways of intravaginal and intrarectal inocula used in nonhuman primate models of HIV transmission. PLoS One 2014; 9:e92830. [PMID: 24667371 PMCID: PMC3965472 DOI: 10.1371/journal.pone.0092830] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 02/25/2014] [Indexed: 12/22/2022] Open
Abstract
Over 80% of sexual HIV-1 transmissions originate from a single viral variant, but the underlying basis for this transmission bottleneck remains to be elucidated. Nonhuman primate models of mucosal virus transmission allow opportunities to gain insight into the basis of this mucosal bottleneck. We used simulated inocula consisting of either non-infectious vital dye or contrast dye with non-invasive magnetic resonance imaging (MRI) to visualize mucosal exposure and passive lymphatic drainage patterns following vaginal and rectal exposures in Indian origin rhesus macaques. Results revealed a limited overall distance of dye coverage from the anal verge following 1 ml (n = 8) intrarectally administered, which greatly increased with a 3 ml (n = 8) volume. Intravaginal dye exposure using 2 ml revealed complete coverage of the mucosa of the vagina and ectocervix, however dye was not detectable in the endocervix, uterus, fallopian tubes or ovaries in nuliparous sexually mature rhesus macaques (n = 9). In addition, following submucosal and intranodal injections of vital dye or MRI contrast dye in the rectum (n = 9), or distal and proximal vagina (n = 4), the lymphatic drainage pathways were identified as first the internal then common iliac chain followed by para-aortic lymph nodes. Drainage from the distal descending colon (n = 8) was via the para-colonic lymph nodes followed by the inferior mesenteric and para-aortic lymph nodes. Analysis after vaginal challenge with infectious SIVmac239 followed by euthanasia at day 3 revealed a pattern of viral dissemination consistent with the imaging results. These results provide insights into potential patterns of viral dissemination that can help guide efforts to better elucidate the earliest events of virus transmission and potential intervention strategies.
Collapse
Affiliation(s)
- Jeremy Smedley
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Baris Turkbey
- Molecular Imaging Program, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Marcelino L. Bernardo
- Molecular Imaging Program, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Gregory Q. Del Prete
- The AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Jacob D. Estes
- The AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Gary L. Griffiths
- Clinical Monitoring Research Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Hisataka Kobayashi
- Molecular Imaging Program, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Peter L. Choyke
- Molecular Imaging Program, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jeffrey D. Lifson
- The AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Brandon F. Keele
- The AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, United States of America
| |
Collapse
|
170
|
Factors associated with siman immunodeficiency virus transmission in a natural African nonhuman primate host in the wild. J Virol 2014; 88:5687-705. [PMID: 24623416 DOI: 10.1128/jvi.03606-13] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED African green monkeys (AGMs) are naturally infected with simian immunodeficiency virus (SIV) at high prevalence levels and do not progress to AIDS. Sexual transmission is the main transmission route in AGM, while mother-to-infant transmission (MTIT) is negligible. We investigated SIV transmission in wild AGMs to assess whether or not high SIV prevalence is due to differences in mucosal permissivity to SIV (i.e., whether the genetic bottleneck of viral transmission reported in humans and macaques is also observed in AGMs in the wild). We tested 121 sabaeus AGMs (Chlorocebus sabaeus) from the Gambia and found that 53 were SIV infected (44%). By combining serology and viral load quantitation, we identified 4 acutely infected AGMs, in which we assessed the diversity of the quasispecies by single-genome amplification (SGA) and documented that a single virus variant established the infections. We thus show that natural SIV transmission in the wild is associated with a genetic bottleneck similar to that described for mucosal human immunodeficiency virus (HIV) transmission in humans. Flow cytometry assessment of the immune cell populations did not identify major differences between infected and uninfected AGM. The expression of the SIV coreceptor CCR5 on CD4+ T cells dramatically increased in adults, being higher in infected than in uninfected infant and juvenile AGMs. Thus, the limited SIV MTIT in natural hosts appears to be due to low target cell availability in newborns and infants, which supports HIV MTIT prevention strategies aimed at limiting the target cells at mucosal sites. Combined, (i) the extremely high prevalence in sexually active AGMs, (ii) the very efficient SIV transmission in the wild, and (iii) the existence of a fraction of multiparous females that remain uninfected in spite of massive exposure to SIV identify wild AGMs as an acceptable model of exposed, uninfected individuals. IMPORTANCE We report an extensive analysis of the natural history of SIVagm infection in its sabaeus monkey host, the African green monkey species endemic to West Africa. Virtually no study has investigated the natural history of SIV infection in the wild. The novelty of our approach is that we report for the first time that SIV infection has no discernible impact on the major immune cell populations in natural hosts, thus confirming the nonpathogenic nature of SIV infection in the wild. We also focused on the correlates of SIV transmission, and we report, also for the first time, that SIV transmission in the wild is characterized by a major genetic bottleneck, similar to that described for HIV-1 transmission in humans. Finally, we report here that the restriction of target cell availability is a major correlate of the lack of SIV transmission to the offspring in natural hosts of SIVs.
Collapse
|
171
|
Tsai L, Tasovski I, Leda AR, Chin MPS, Cheng-Mayer C. The number and genetic relatedness of transmitted/founder virus impact clinical outcome in vaginal R5 SHIVSF162P3N infection. Retrovirology 2014; 11:22. [PMID: 24612462 PMCID: PMC3975242 DOI: 10.1186/1742-4690-11-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/23/2014] [Indexed: 12/31/2022] Open
Abstract
Background Severe genetic bottleneck occurs during HIV-1 sexual transmission whereby most infections are initiated by a single transmitted/founder (T/F) virus. Similar observations had been made in nonhuman primates exposed mucosally to SIV/SHIV. We previously reported variable clinical outcome in rhesus macaques inoculated intravaginally (ivg) with a high dose of R5 SHIVSF162P3N. Given the potential contributions of viral diversity to HIV-1 persistence and AIDS pathogenesis and recombination between retroviral genomes increases the genetic diversity, we tested the hypothesis that transmission of multiple variants contributes to heightened levels of virus replication and faster disease progression in the SHIVSF162P3N ivg-infected monkeys. Results We found that the differences in viral replication and disease progression between the transiently viremic (TV; n = 2), chronically-infected (CP; n = 8) and rapid progressor (RP; n = 4) ivg-infected macaques cannot be explained by which variant in the inoculum was infecting the animal. Rather, transmission of a single variant was observed in both TV rhesus, with 1–2 T/F viruses found in the CPs and 2–4 in all four RP macaques. Moreover, the genetic relatedness of the T/F viruses in the CP monkeys with multivariant transmission was greater than that seen in the RPs. Biological characterization of a subset of T/F envelopes from chronic and rapid progressors revealed differences in their ability to mediate entry into monocyte-derived macrophages, with enhanced macrophage tropism observed in the former as compared to the latter. Conclusion Our study supports the tenet that sequence diversity of the infecting virus contributes to higher steady-state levels of HIV-1 virus replication and faster disease progression and highlights the role of macrophage tropism in HIV-1 transmission and persistence.
Collapse
Affiliation(s)
| | | | | | | | - Cecilia Cheng-Mayer
- Aaron Diamond AIDS Research Center, Aaron Diamond Professor at the Rockefeller University, New York, NY, USA.
| |
Collapse
|
172
|
Abstract
PURPOSE OF REVIEW The development of a preventive HIV vaccine remains an unresolved challenge. Animal models that can predict the results of HIV vaccine efficacy trials and identify the immune mechanisms responsible for vaccine protection would be most useful for HIV vaccine development. The purpose of the current review is to critique recent developments in the use of animal models of HIV infection in preclinical studies of AIDS vaccines and to describe how the use of improved animal models can inform the development of an HIV vaccine. RECENT FINDINGS The results of preclinical experiments with candidate HIV vaccines can vary with the SIV challenge virus used. It is now known that there is considerable variability in the neutralization sensitivity and that the level of viral sequence diversity within the challenge stocks varies. This has allowed more realistic preclinical vaccine studies with heterologous vaccine antigens and challenge viruses. Further, the dose of challenge virus and the route of virus challenge can modify the efficacy of candidate vaccines in preclinical studies. SUMMARY Recent experiments demonstrate that nonhuman primate models of AIDS can reproduce the complex biology of HIV transmission, recapitulate the results of HIV vaccine efficacy trials in humans and be used to identify correlates of protection.
Collapse
|
173
|
Abstract
PURPOSE OF REVIEW To briefly describe some of the replication-competent vectors being investigated for development of candidate HIV vaccines focusing primarily on technologies that have advanced to testing in macaques or have entered clinical trials. RECENT FINDINGS Replication-competent viral vectors have advanced to the stage at which decisions can be made regarding the future development of HIV vaccines. The viruses being used as replication-competent vector platforms vary considerably, and their unique attributes make it possible to test multiple vaccine design concepts and also mimic various aspects of an HIV infection. Replication-competent viral vectors encoding simian immunodeficiency virus or HIV proteins can be used to safely immunize macaques, and in some cases, there is evidence of significant vaccine efficacy in challenge protection studies. Several live HIV vaccine vectors are in clinical trials to evaluate immunogenicity, safety, the effect of mucosal delivery, and potential effects of preexisting immunity. SUMMARY A variety of DNA and RNA viruses are being used to develop replication-competent viral vectors for HIV vaccine delivery. Multiple viral vector platforms have proven to be well tolerated and immunogenic with evidence of efficacy in macaques. Some of the more advanced HIV vaccine prototypes based on vesicular stomatitis virus, vaccinia virus, measles virus, and Sendai virus are in clinical trials.
Collapse
|
174
|
da Silva J, Wyatt SK. Fitness valleys constrain HIV-1's adaptation to its secondary chemokine coreceptor. J Evol Biol 2014; 27:604-15. [DOI: 10.1111/jeb.12329] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 01/04/2014] [Indexed: 12/15/2022]
Affiliation(s)
- J. da Silva
- School of Molecular and Biomedical Science; University of Adelaide; Adelaide SA Australia
| | - S. K. Wyatt
- School of Molecular and Biomedical Science; University of Adelaide; Adelaide SA Australia
| |
Collapse
|
175
|
Hanke T. Conserved immunogens in prime-boost strategies for the next-generation HIV-1 vaccines. Expert Opin Biol Ther 2014; 14:601-16. [PMID: 24490585 DOI: 10.1517/14712598.2014.885946] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Effective vaccines are the best solution for stopping the spread of HIV/AIDS and other infectious diseases. Their development and in-depth understanding of pathogen-host interactions rely on technological advances. AREAS COVERED Rational vaccine development can be effectively approached by conceptual separation of, on one hand, design of immunogens from improving their presentation to the immune system and, on the other, induction of antibodies from induction of killer CD8(+) T cells. The biggest roadblock for many vaccines is the pathogens' variability. This is best tackled by focusing both antibodies and T cells on the functionally most conserved regions of proteins common to many variants, including escape mutants. For vectored vaccines, these 'universal' subunit immunogens are most efficiently delivered using heterologous prime-boost regimens, which can be further optimised by adjuvantation and route of delivery. EXPERT OPINION Development of vaccines against human diseases has many features in common. Acceleration of vaccine discovery depends on basic research and new technologies. Novel strategies should be safely, but rapidly tested in humans. While out-of-the-box thinking is important, vaccine success largely depends on incremental advances best achieved through small, systematic, iterative clinical studies. Failures are inevitable, but the end rewards are huge. The future will be exciting.
Collapse
Affiliation(s)
- Tomáš Hanke
- The Jenner Institute, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ , UK
| |
Collapse
|
176
|
Response to 'single genome amplification and sequencing methods require appropriate thresholds for viral transmission and evolution studies'. AIDS 2014; 28:142-4. [PMID: 24413268 DOI: 10.1097/qad.0000000000000075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
177
|
Abstract
UNLABELLED Human immunodeficiency virus (HIV) incidence is an important measure for monitoring the epidemic and evaluating the efficacy of intervention and prevention trials. This study developed a high-throughput, single-measure incidence assay by implementing a pyrosequencing platform. We devised a signal-masking bioinformatics pipeline, which yielded a process error rate of 5.8 × 10(-4) per base. The pipeline was then applied to analyze 18,434 envelope gene segments (HXB2 7212 to 7601) obtained from 12 incident and 24 chronic patients who had documented HIV-negative and/or -positive tests. The pyrosequencing data were cross-checked by using the single-genome-amplification (SGA) method to independently obtain 302 sequences from 13 patients. Using two genomic biomarkers that probe for the presence of similar sequences, the pyrosequencing platform correctly classified all 12 incident subjects (100% sensitivity) and 23 of 24 chronic subjects (96% specificity). One misclassified subject's chronic infection was correctly classified by conducting the same analysis with SGA data. The biomarkers were statistically associated across the two platforms, suggesting the assay's reproducibility and robustness. Sampling simulations showed that the biomarkers were tolerant of sequencing errors and template resampling, two factors most likely to affect the accuracy of pyrosequencing results. We observed comparable biomarker scores between AIDS and non-AIDS chronic patients (multivariate analysis of variance [MANOVA], P = 0.12), indicating that the stage of HIV disease itself does not affect the classification scheme. The high-throughput genomic HIV incidence marks a significant step toward determining incidence from a single measure in cross-sectional surveys. IMPORTANCE Annual HIV incidence, the number of newly infected individuals within a year, is the key measure of monitoring the epidemic's rise and decline. Developing reliable assays differentiating recent from chronic infections has been a long-standing quest in the HIV community. Over the past 15 years, these assays have traditionally measured various HIV-specific antibodies, but recent technological advancements have expanded the diversity of proposed accurate, user-friendly, and financially viable tools. Here we designed a high-throughput genomic HIV incidence assay based on the signature imprinted in the HIV gene sequence population. By combining next-generation sequencing techniques with bioinformatics analysis, we demonstrated that genomic fingerprints are capable of distinguishing recently infected patients from chronically infected patients with high precision. Our high-throughput platform is expected to allow us to process many patients' samples from a single experiment, permitting the assay to be cost-effective for routine surveillance.
Collapse
|
178
|
Abstract
UNLABELLED HIV-1 infection is characterized by the rapid generation of genetic diversity that facilitates viral escape from immune selection and antiretroviral therapy. Despite recombination's crucial role in viral diversity and evolution, little is known about the genomic factors that influence recombination between highly similar genomes. In this study, we use a minimally modified full-length HIV-1 genome and high-throughput sequence analysis to study recombination in gag and pol in T cells. We find that recombination is favored at a number of recombination hot spots, where recombination occurs six times more frequently than at corresponding cold spots. Interestingly, these hot spots occur near important features of the HIV-1 genome but do not occur at sites immediately around protease inhibitor or reverse transcriptase inhibitor drug resistance mutations. We show that the recombination hot and cold spots are consistent across five blood donors and are independent of coreceptor-mediated entry. Finally, we check common experimental confounders and find that these are not driving the location of recombination hot spots. This is the first study to identify the location of recombination hot spots between two similar viral genomes with great statistical power and under conditions that closely reflect natural recombination events among HIV-1 quasispecies. IMPORTANCE The ability of HIV-1 to evade the immune system and antiretroviral therapy depends on genetic diversity within the viral quasispecies. Retroviral recombination is an important mechanism that helps to generate and maintain this genetic diversity, but little is known about how recombination rates vary within the HIV-1 genome. We measured recombination rates in gag and pol and identified recombination hot and cold spots, demonstrating that recombination is not random but depends on the underlying gene sequence. The strength and location of these recombination hot and cold spots can be used to improve models of viral dynamics and evolution, which will be useful for the design of robust antiretroviral therapies.
Collapse
|
179
|
Interaction with cellular CD4 exposes HIV-1 envelope epitopes targeted by antibody-dependent cell-mediated cytotoxicity. J Virol 2013; 88:2633-44. [PMID: 24352444 DOI: 10.1128/jvi.03230-13] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Anti-HIV-1 envelope glycoprotein (Env) antibodies without broadly neutralizing activity correlated with protection in the RV144 clinical trial, stimulating interest in other protective mechanisms involving antibodies, such as antibody-dependent cell-mediated cytotoxicity (ADCC). Env epitopes targeted by many antibodies effective at mediating ADCC are poorly exposed on the unliganded Env trimer. Here we investigated the mechanism of exposure of ADCC epitopes on Env and showed that binding of Env and CD4 within the same HIV-1-infected cell effectively exposes these epitopes. Env capacity to transit to the CD4-bound conformation is required for ADCC epitope exposure. Importantly, cell surface CD4 downregulation by Nef and Vpu accessory proteins and Vpu-mediated BST-2 antagonism modulate exposure of ADCC-mediating epitopes and reduce the susceptibility of infected cells to this effector function in vitro. Significantly, Env conformational changes induced by cell surface CD4 are conserved among Env from HIV-1 and HIV-2/SIVmac lineages. Altogether, our observations describe a highly conserved mechanism required to expose ADCC epitopes that might help explain the evolutionary advantage of downregulation of cell surface CD4 by the HIV-1 Vpu and Nef proteins. IMPORTANCE HIV-1 envelope epitopes targeted by many antibodies effective at mediating antibody-dependent cell-mediated cytotoxicity (ADCC) are poorly exposed on the unliganded envelope trimer. Here we investigated the mechanism of exposure of these epitopes and found that envelope interaction with the HIV-1 CD4 receptor is required to expose some of these epitopes. Moreover, our results suggest that HIV-1 CD4 downregulation might help avoid the killing of HIV-1-infected cells by this immune mechanism.
Collapse
|
180
|
Quantification of entry phenotypes of macrophage-tropic HIV-1 across a wide range of CD4 densities. J Virol 2013; 88:1858-69. [PMID: 24307580 DOI: 10.1128/jvi.02477-13] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Defining a macrophage-tropic phenotype for HIV-1 to assess a role in pathogenesis is complicated by the fact that HIV-1 isolates vary continuously in their ability to enter monocyte-derived macrophages (MDMs) in vitro, and MDMs vary in their ability to support HIV-1 entry. To overcome these limitations, we identified consistent differences in entry phenotypes between five paired blood-derived, T cell-tropic HIV-1 env genes, four of which are CCR5-using (R5) and one of which is CXCR4-using (X4), and cerebrospinal fluid (CSF)-derived, R5 macrophage-tropic env genes. We performed entry assays using the CD4- and CCR5-inducible Affinofile cell line, expressing a range of CD4 levels that approximates the range from MDMs to CD4(+) T cells. The macrophage-tropic viruses were significantly better at infecting cells expressing low levels of CD4 than the T cell-tropic viruses from the same subjects, with the titration of CD4 providing a distinctive and quantitative phenotype. This difference in CD4 utilization was not due to macrophage-tropic viruses being CD4 independent. Furthermore, macrophage-tropic viruses did not differ from paired T cell-tropic viruses in their ability to use low levels of CCR5 (tpaired = -1.39; P = 0.24) or their use of an alternative conformation of CCR5. We also infected MDMs with a panel of viruses and observed that infectivity of each virus differed across four donors and between three preparations from a single donor. We concluded that the evolutionary transition from replication in T cells to that in macrophages involves a phenotypic transition to acquire the ability to infect cells expressing low levels of CD4 and that this phenotype is more reliably measured in Affinofile cells than in macrophages. IMPORTANCE HIV-1 typically infects memory T cells by using CD4 and CCR5 to enter cells. The virus evolves to infect new cell types by changing the coreceptor from CCR5 to CXCR4 to infect naive T cells or adapting to the use of low levels of CD4 to infect macrophages. However, defining the phenotype of macrophage tropism has been difficult due to inherent variability in the use of macrophages generated in culture to support entry of HIV-1. We describe the use of Affinofile cells with inducible and variable levels of CD4 to identify a signature phenotype for macrophage-tropic HIV-1. The ability to define HIV-1 variants that have evolved an entry phenotype that allows more efficient entry into cells with low levels of CD4 sets the stage for a clearer placement of these variants in HIV-associated pathogenesis.
Collapse
|
181
|
Fenton-May AE, Dibben O, Emmerich T, Ding H, Pfafferott K, Aasa-Chapman MM, Pellegrino P, Williams I, Cohen MS, Gao F, Shaw GM, Hahn BH, Ochsenbauer C, Kappes JC, Borrow P. Relative resistance of HIV-1 founder viruses to control by interferon-alpha. Retrovirology 2013; 10:146. [PMID: 24299076 PMCID: PMC3907080 DOI: 10.1186/1742-4690-10-146] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/22/2013] [Indexed: 12/24/2022] Open
Abstract
Background Following mucosal human immunodeficiency virus type 1 (HIV-1) transmission, type 1 interferons (IFNs) are rapidly induced at sites of initial virus replication in the mucosa and draining lymph nodes. However, the role played by IFN-stimulated antiviral activity in restricting HIV-1 replication during the initial stages of infection is not clear. We hypothesized that if type 1 IFNs exert selective pressure on HIV-1 replication in the earliest stages of infection, the founder viruses that succeed in establishing systemic infection would be more IFN-resistant than viruses replicating during chronic infection, when type 1 IFNs are produced at much lower levels. To address this hypothesis, the relative resistance of virus isolates derived from HIV-1-infected individuals during acute and chronic infection to control by type 1 IFNs was analysed. Results The replication of plasma virus isolates generated from subjects acutely infected with HIV-1 and molecularly cloned founder HIV-1 strains could be reduced but not fully suppressed by type 1 IFNs in vitro. The mean IC50 value for IFNα2 (22 U/ml) was lower than that for IFNβ (346 U/ml), although at maximally-inhibitory concentrations both IFN subtypes inhibited virus replication to similar extents. Individual virus isolates exhibited differential susceptibility to inhibition by IFNα2 and IFNβ, likely reflecting variation in resistance to differentially up-regulated IFN-stimulated genes. Virus isolates from subjects acutely infected with HIV-1 were significantly more resistant to in vitro control by IFNα than virus isolates generated from the same individuals during chronic, asymptomatic infection. Viral IFN resistance declined rapidly after the acute phase of infection: in five subjects, viruses derived from six-month consensus molecular clones were significantly more sensitive to the antiviral effects of IFNs than the corresponding founder viruses. Conclusions The establishment of systemic HIV-1 infection by relatively IFNα-resistant founder viruses lends strong support to the hypothesis that IFNα plays an important role in the control of HIV-1 replication during the earliest stages of infection, prior to systemic viral spread. These findings suggest that it may be possible to harness the antiviral activity of type 1 IFNs in prophylactic and potentially also therapeutic strategies to combat HIV-1 infection.
Collapse
Affiliation(s)
- Angharad E Fenton-May
- Nuffield Department of Medicine, University of Oxford, NDM Research Building, Old Road Campus, Headington, Oxford OX3 7FZ, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Braibant M, Barin F. The role of neutralizing antibodies in prevention of HIV-1 infection: what can we learn from the mother-to-child transmission context? Retrovirology 2013; 10:103. [PMID: 24099103 PMCID: PMC3851888 DOI: 10.1186/1742-4690-10-103] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/10/2013] [Indexed: 01/12/2023] Open
Abstract
In most viral infections, protection through existing vaccines is linked to the presence of vaccine-induced neutralizing antibodies (NAbs). However, more than 30 years after the identification of AIDS, the design of an immunogen able to induce antibodies that would neutralize the highly diverse HIV-1 variants remains one of the most puzzling challenges of the human microbiology. The role of antibodies in protection against HIV-1 can be studied in a natural situation that is the mother-to-child transmission (MTCT) context. Indeed, at least at the end of pregnancy, maternal antibodies of the IgG class are passively transferred to the fetus protecting the neonate from new infections during the first weeks or months of life. During the last few years, strong data, presented in this review, have suggested that some NAbs might confer protection toward neonatal HIV-1 infection. In cases of transmission, it has been shown that the viral population that is transmitted from the mother to the infant is usually homogeneous, genetically restricted and resistant to the maternal HIV-1-specific antibodies. Although the breath of neutralization was not associated with protection, it has not been excluded that NAbs toward specific HIV-1 strains might be associated with a lower rate of MTCT. A better identification of the antibody specificities that could mediate protection toward MTCT of HIV-1 would provide important insights into the antibody responses that would be useful for vaccine development. The most convincing data suggesting that NAbs migh confer protection against HIV-1 infection have been obtained by experiments of passive immunization of newborn macaques with the first generation of human monoclonal broadly neutralizing antibodies (HuMoNAbs). However, these studies, which included only a few selected subtype B challenge viruses, provide data limited to protection against a very restricted number of isolates and therefore have limitations in addressing the hypervariability of HIV-1. The recent identification of highly potent second-generation cross-clade HuMoNAbs provides a new opportunity to evaluate the efficacy of passive immunization to prevent MTCT of HIV-1.
Collapse
Affiliation(s)
- Martine Braibant
- Université François-Rabelais, UFR Médecine, Inserm U966 10 bld Tonnellé, cedex, 37032 Tours, France.
| | | |
Collapse
|
183
|
Neutralizing IgG at the portal of infection mediates protection against vaginal simian/human immunodeficiency virus challenge. J Virol 2013; 87:11604-16. [PMID: 23966410 DOI: 10.1128/jvi.01361-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neutralizing antibodies may have critical importance in immunity against human immunodeficiency virus type 1 (HIV-1) infection. However, the amount of protective antibody needed at mucosal surfaces has not been fully established. Here, we evaluated systemic and mucosal pharmacokinetics (PK) and pharmacodynamics (PD) of 2F5 IgG and 2F5 Fab fragments with respect to protection against vaginal challenge with simian-human immunodeficiency virus-BaL in macaques. Antibody assessment demonstrated that 2F5 IgG was more potent than polymeric forms (IgM and IgA) across a range of cellular and tissue models. Vaginal challenge studies demonstrated a dose-dependent protection for 2F5 IgG and no protection with 2F5 Fab despite higher vaginal Fab levels at the time of challenge. Animals receiving 50 or 25 mg/kg of body weight 2F5 IgG were completely protected, while 3/5 animals receiving 5 mg/kg were protected. In the control animals, infection was established by a minimum of 1 to 4 transmitted/founder (T/F) variants, similar to natural human infection by this mucosal route; in the two infected animals that had received 5 mg 2F5 IgG, infection was established by a single T/F variant. Serum levels of 2F5 IgG were more predictive of sterilizing protection than measured vaginal levels. Fc-mediated antiviral activity did not appear to influence infection of primary target cells in cervical explants. However, PK studies highlighted the importance of the Fc portion in tissue biodistribution. Data presented in this study may be important in modeling serum levels of neutralizing antibodies that need to be achieved by either vaccination or passive infusion to prevent mucosal acquisition of HIV-1 infection in humans.
Collapse
|
184
|
Permar SR, Salazar MG, Gao F, Cai F, Learn GH, Kalilani L, Hahn BH, Shaw GM, Salazar-Gonzalez JF. Clonal amplification and maternal-infant transmission of nevirapine-resistant HIV-1 variants in breast milk following single-dose nevirapine prophylaxis. Retrovirology 2013; 10:88. [PMID: 23941304 PMCID: PMC3765243 DOI: 10.1186/1742-4690-10-88] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/06/2013] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Intrapartum administration of single-dose nevirapine (sdNVP) reduces perinatal HIV-1 transmission in resource-limiting settings by half. Yet this strategy has limited effect on subsequent breast milk transmission, making the case for new treatment approaches to extend maternal/infant antiretroviral prophylaxis through the period of lactation. Maternal and transmitted infant HIV-1 variants frequently develop NVP resistance mutations following sdNVP, complicating subsequent treatment/prophylaxis regimens. However, it is not clear whether NVP-resistant viruses are transmitted via breastfeeding or arise de novo in the infant. FINDINGS We performed a detailed HIV genetic analysis using single genome sequencing to identify the origin of drug-resistant variants in an sdNVP-treated postnatally-transmitting mother-infant pair. Phylogenetic analysis of HIV sequences from the child revealed low-diversity variants indicating infection by a subtype C single transmitted/founder virus that shared full-length sequence identity with a clonally-amplified maternal breast milk virus variant harboring the K103N NVP resistance mutation. CONCLUSION In this mother/child pair, clonal amplification of maternal NVP-resistant HIV variants present in systemic and mammary gland compartments following intrapartum sdNVP represents one source of transmitted NVP-resistant variants that is responsible for the acquisition of drug resistant virus by the breastfeeding infant. This finding emphasizes the need for combination antiretroviral prophylaxis to prevent mother-to-child HIV transmission.
Collapse
Affiliation(s)
- Sallie R Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Innate immune evasion strategies by human immunodeficiency virus type 1. ISRN AIDS 2013; 2013:954806. [PMID: 24052891 PMCID: PMC3767209 DOI: 10.1155/2013/954806] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/09/2013] [Indexed: 12/21/2022]
Abstract
Host immune components play both beneficial and pathogenic roles in human immunodeficiency virus type 1 (HIV-1) infection. During the initial stage of viral infection, a complex network of innate immune factors are activated. For instance, the immune cells express a number of inflammatory proteins including cytokines, chemokines, and antiviral restriction factors. These factors, specifically, interferons (IFNs) play a crucial role in antiviral defense system by modulating the downstream signaling events, by inducing maturation of dendritic cells (DCs), and by activation of macrophages, natural killer (NK) cells, and B and T cells. However, HIV-1 has evolved to utilize a number of strategies to overcome the antiviral effects of the host innate immune system. This review discusses the pathways and strategies utilized by HIV-1 to establish latent and persistent infection by defeating host's innate defense system.
Collapse
|
186
|
Limited nucleotide changes in the Rev response element (RRE) during HIV-1 infection alter overall Rev-RRE activity and Rev multimerization. J Virol 2013; 87:11173-86. [PMID: 23926352 DOI: 10.1128/jvi.01392-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
HIV-1 Rev and the Rev response element (RRE) enable a critical step in the viral replication cycle by facilitating the nuclear export of intron-containing mRNAs, yet their activities have rarely been analyzed in natural infections. This study characterized their genetic and functional variation in a small cohort of HIV-infected individuals. Multiple Rev and RRE sequences were obtained using single-genome sequencing (SGS) of plasma samples collected within 6 months after seroconversion and at a later time. This allowed the identification of cognate sequences that were linked in vivo in the same viral genome and acted together as a functional unit. Phylogenetic analyses of these sequences indicated that 4/5 infections were founded by a single transmission event. Rev and RRE variants from each time point were subjected to functional analysis as both cognate pairs and as individual components. While a range of Rev-RRE activities were seen, the activity of cognate pairs from a single time point clustered to a discrete level, which was termed the set point. In 3/5 patients, this set point changed significantly over the time period studied. In all patients, RRE activity was more sensitive to sequence variation than Rev activity and acted as the primary driver of the cognate set point. Selected patient RREs were also shown to have differences in Rev multimerization using gel shift binding assays. Thus, rather than acting as a simple on-off switch or maintaining a constant level of activity throughout infection, the Rev-RRE system can fluctuate, presumably to control replication.
Collapse
|
187
|
Breton G, Chomont N, Takata H, Fromentin R, Ahlers J, Filali-Mouhim A, Riou C, Boulassel MR, Routy JP, Yassine-Diab B, Sékaly RP. Programmed death-1 is a marker for abnormal distribution of naive/memory T cell subsets in HIV-1 infection. THE JOURNAL OF IMMUNOLOGY 2013; 191:2194-204. [PMID: 23918986 DOI: 10.4049/jimmunol.1200646] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chronic activation of T cells is a hallmark of HIV-1 infection and plays an important role in disease progression. We previously showed that the engagement of the inhibitory receptor programmed death (PD)-1 on HIV-1-specific CD4(+) and CD8(+) T cells leads to their functional exhaustion in vitro. However, little is known about the impact of PD-1 expression on the turnover and maturation status of T cells during the course of the disease. In this study, we show that PD-1 is upregulated on all T cell subsets, including naive, central memory, and transitional memory T cells in HIV-1-infected subjects. PD-1 is expressed at similar levels on most CD4(+) T cells during the acute and the chronic phase of disease and identifies cells that have recently entered the cell cycle. In contrast, PD-1 expression is dramatically increased in CD8(+) T cells during the transition from acute to chronic infection, and this is associated with reduced levels of cell proliferation. The failure to downregulate expression of PD-1 in most T cells during chronic HIV-1 infection is associated with persistent alterations in the distribution of T cell subsets and is associated with impaired responses to IL-7. Our findings identify PD-1 as a marker for aberrant distribution of T cell subsets in HIV-1 infection.
Collapse
Affiliation(s)
- Gaëlle Breton
- Laboratoire d'Immunologie, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Saint-Luc, Montreal, Quebec H2X 1P1, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Frange P, Meyer L, Jung M, Goujard C, Zucman D, Abel S, Hochedez P, Gousset M, Gascuel O, Rouzioux C, Chaix ML. Sexually-transmitted/founder HIV-1 cannot be directly predicted from plasma or PBMC-derived viral quasispecies in the transmitting partner. PLoS One 2013; 8:e69144. [PMID: 23874894 PMCID: PMC3706485 DOI: 10.1371/journal.pone.0069144] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/03/2013] [Indexed: 11/21/2022] Open
Abstract
Objective Characterization of HIV-1 sequences in newly infected individuals is important for elucidating the mechanisms of viral sexual transmission. We report the identification of transmitted/founder viruses in eight pairs of HIV-1 sexually-infected patients enrolled at the time of primary infection (“recipients”) and their transmitting partners (“donors”). Methods Using a single genome-amplification approach, we compared quasispecies in donors and recipients on the basis of 316 and 376 C2V5 env sequences amplified from plasma viral RNA and PBMC-associated DNA, respectively. Results Both DNA and RNA sequences indicated very homogeneous viral populations in all recipients, suggesting transmission of a single variant, even in cases of recent sexually transmitted infections (STIs) in donors (n = 2) or recipients (n = 3). In all pairs, the transmitted/founder virus was derived from an infrequent variant population within the blood of the donor. The donor variant sequences most closely related to the recipient sequences were found in plasma samples in 3/8 cases and/or in PBMC samples in 6/8 cases. Although donors were exclusively (n = 4) or predominantly (n = 4) infected by CCR5-tropic (R5) strains, two recipients were infected with highly homogeneous CXCR4/dual-mixed-tropic (X4/DM) viral populations, identified in both DNA and RNA. The proportion of X4/DM quasispecies in donors was higher in cases of X4/DM than R5 HIV transmission (16.7–22.0% versus 0–2.6%), suggesting that X4/DM transmission may be associated with a threshold population of X4/DM circulating quasispecies in donors. Conclusions These suggest that a severe genetic bottleneck occurs during subtype B HIV-1 heterosexual and homosexual transmission. Sexually-transmitted/founder virus cannot be directly predicted by analysis of the donor’s quasispecies in plasma and/or PBMC. Additional studies are required to fully understand the traits that confer the capacity to transmit and establish infection, and determine the role of concomitant STIs in mitigating the genetic bottleneck in mucosal HIV transmission.
Collapse
Affiliation(s)
- Pierre Frange
- Equipe d'accueil 3620, Université Paris-Descartes, Sorbonne Paris Cité, Paris, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Abstract
PURPOSE OF REVIEW One of the major obstacles in fully understanding HIV transmission comes from the impracticality of studying transmission in humans. Because of this encumbrance, the early phases of HIV transmission and systemic dissemination are poorly understood. In order to fully comprehend these critical steps in HIV infection, animal models must be devised to accurately reflect HIV's mode of action. This review seeks to highlight the essential nature of modelling HIV transmission in nonhuman primates (NHPs). RECENT FINDINGS Recently, it was discovered that HIV infection is established in newly infected recipients by a single or few transmitted/founder variants. This has reshaped how animal modelling is conducted with researchers currently recapitulating a physiologically relevant, low-titre infection. Pertinent animal models have been established for the most common routes of infection, including rectal, vaginal and penile transmission; models for intravenous and oral transmission are still in developmental stages. SUMMARY These limited dose models now accurately reflect HIV transmission in humans and provide a realistic experimental platform for vaccine development and other intervention strategies that can be used to inform vaccine development in humans. Using information obtained in NHP and human trials, it is conceivable to envision effective prevention modalities in the near future.
Collapse
Affiliation(s)
- Christine M. Fennessey
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| |
Collapse
|
190
|
Ping LH, Joseph SB, Anderson JA, Abrahams MR, Salazar-Gonzalez JF, Kincer LP, Treurnicht FK, Arney L, Ojeda S, Zhang M, Keys J, Potter EL, Chu H, Moore P, Salazar MG, Iyer S, Jabara C, Kirchherr J, Mapanje C, Ngandu N, Seoighe C, Hoffman I, Gao F, Tang Y, Labranche C, Lee B, Saville A, Vermeulen M, Fiscus S, Morris L, Karim SA, Haynes BF, Shaw GM, Korber BT, Hahn BH, Cohen MS, Montefiori D, Williamson C, Swanstrom R. Comparison of viral Env proteins from acute and chronic infections with subtype C human immunodeficiency virus type 1 identifies differences in glycosylation and CCR5 utilization and suggests a new strategy for immunogen design. J Virol 2013; 87:7218-33. [PMID: 23616655 PMCID: PMC3700278 DOI: 10.1128/jvi.03577-12] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/15/2013] [Indexed: 12/18/2022] Open
Abstract
Understanding human immunodeficiency virus type 1 (HIV-1) transmission is central to developing effective prevention strategies, including a vaccine. We compared phenotypic and genetic variation in HIV-1 env genes from subjects in acute/early infection and subjects with chronic infections in the context of subtype C heterosexual transmission. We found that the transmitted viruses all used CCR5 and required high levels of CD4 to infect target cells, suggesting selection for replication in T cells and not macrophages after transmission. In addition, the transmitted viruses were more likely to use a maraviroc-sensitive conformation of CCR5, perhaps identifying a feature of the target T cell. We confirmed an earlier observation that the transmitted viruses were, on average, modestly underglycosylated relative to the viruses from chronically infected subjects. This difference was most pronounced in comparing the viruses in acutely infected men to those in chronically infected women. These features of the transmitted virus point to selective pressures during the transmission event. We did not observe a consistent difference either in heterologous neutralization sensitivity or in sensitivity to soluble CD4 between the two groups, suggesting similar conformations between viruses from acute and chronic infection. However, the presence or absence of glycosylation sites had differential effects on neutralization sensitivity for different antibodies. We suggest that the occasional absence of glycosylation sites encoded in the conserved regions of env, further reduced in transmitted viruses, could expose specific surface structures on the protein as antibody targets.
Collapse
Affiliation(s)
- Li-Hua Ping
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sarah B. Joseph
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jeffrey A. Anderson
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Melissa-Rose Abrahams
- Institute of Infectious Diseases and Molecular Medicine, Division of Medical Virology, University of Cape Town and National Health Laboratory Services, Cape Town, South Africa
| | | | - Laura P. Kincer
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Florette K. Treurnicht
- Institute of Infectious Diseases and Molecular Medicine, Division of Medical Virology, University of Cape Town and National Health Laboratory Services, Cape Town, South Africa
| | - Leslie Arney
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Suany Ojeda
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ming Zhang
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, Georgia, USA
| | - Jessica Keys
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - E. Lake Potter
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Haitao Chu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Penny Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Maria G. Salazar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Shilpa Iyer
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cassandra Jabara
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jennifer Kirchherr
- Duke Human Vaccine Institute, Department of Medicine, Duke University, Durham, North Carolina, USA
| | | | - Nobubelo Ngandu
- Institute of Infectious Diseases and Molecular Medicine, Division of Medical Virology, University of Cape Town and National Health Laboratory Services, Cape Town, South Africa
| | | | - Irving Hoffman
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Feng Gao
- Duke Human Vaccine Institute, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Yuyang Tang
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Celia Labranche
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Benhur Lee
- Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, Los Angeles, California, USA
| | - Andrew Saville
- South African National Blood Service, Weltevreden Park, South Africa
| | - Marion Vermeulen
- South African National Blood Service, Weltevreden Park, South Africa
| | - Susan Fiscus
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Salim Abdool Karim
- Center for AIDS Program Research in South Africa, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - George M. Shaw
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bette T. Korber
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Beatrice H. Hahn
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Myron S. Cohen
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David Montefiori
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Carolyn Williamson
- Institute of Infectious Diseases and Molecular Medicine, Division of Medical Virology, University of Cape Town and National Health Laboratory Services, Cape Town, South Africa
| | - Ronald Swanstrom
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
191
|
Abbas W, Herbein G. Plasma membrane signaling in HIV-1 infection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1132-42. [PMID: 23806647 DOI: 10.1016/j.bbamem.2013.06.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/12/2013] [Accepted: 06/16/2013] [Indexed: 10/26/2022]
Abstract
Plasma membrane is a multifunctional structure that acts as the initial barrier against infection by intracellular pathogens. The productive HIV-1 infection depends upon the initial interaction of virus and host plasma membrane. Immune cells such as CD4+ T cells and macrophages contain essential cell surface receptors and molecules such as CD4, CXCR4, CCR5 and lipid raft components that facilitate HIV-1 entry. From plasma membrane HIV-1 activates signaling pathways that prepare the grounds for viral replication. Through viral proteins HIV-1 hijacks host plasma membrane receptors such as Fas, TNFRs and DR4/DR5, which results in immune evasion and apoptosis both in infected and uninfected bystander cells. These events are hallmark in HIV-1 pathogenesis that leads towards AIDS. The interplay between HIV-1 and plasma membrane signaling has much to offer in terms of viral fitness and pathogenicity, and a better understanding of this interplay may lead to development of new therapeutic approaches. This article is part of a Special Issue entitled: Viral Membrane Proteins - Channels for Cellular Networking.
Collapse
Affiliation(s)
- Wasim Abbas
- Department of Virology, EA 4266 "Pathogens & Inflammation", SFR FED4234, University of Franche-Comte, CHRU Besançon, F-25030 Besançon, France.
| | - Georges Herbein
- Department of Virology, EA 4266 "Pathogens & Inflammation", SFR FED4234, University of Franche-Comte, CHRU Besançon, F-25030 Besançon, France.
| |
Collapse
|
192
|
Luo M, Capina R, Daniuk C, Tuff J, Peters H, Kimani M, Wachihi C, Kimani J, Ball TB, Plummer FA. Immunogenicity of sequences around HIV-1 protease cleavage sites: potential targets and population coverage analysis for a HIV vaccine targeting protease cleavage sites. Vaccine 2013; 31:3000-8. [PMID: 23664989 DOI: 10.1016/j.vaccine.2013.04.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 04/08/2013] [Accepted: 04/24/2013] [Indexed: 11/30/2022]
Abstract
Developing an effective preventative vaccine against HIV-1 has proved to be a great challenge. The classical and proven vaccine approach has failed so far or produced a modest effect, new approaches are needed. In this study we evaluated the immunogenicity of the sequences around the protease cleavage sites (PCS) and the population coverage of a vaccine targeting HIV-1 PCS. The sequence conservation was evaluated by comparing entropy score of sequences around PCS with Gag and Pol. The immunogenicity of sequences around the 12 PCS (+10/-10 amino acids) was analyzed by identifying epitopes of HLA class I alleles in PCS region using four approaches: (1) identification of previously reported HLA class I allele epitopes around PCS region; (2) screening and validating epitopes of 8 HLA class I alleles common to most world populations using iTopia Epitope Discovery system and IFN-γ ELISpot assays; (3) screening of 151 patients of Pumwani cohort for PBMC IFN-γ ELISPOT responses to the subtype A and D consensus around PCS region; and (4) prediction of HLA alleles with epitopes around the PCS using NetMHCpan. Population coverage was calculated using the web-based analysis tool of the Immune Epitope Database based on HLA class I genotype frequencies from dbMHC database. The results showed that many HLA class I alleles have multiple epitopes in the 12 PCS regions, indicating sequence immunogenicity around PCS. Multiple epitopes of many HLA class I alleles common to >95% world populations have been identified around the 12 PCS region. Targeting these sites is a feasible vaccine approach.
Collapse
Affiliation(s)
- Ma Luo
- National Microbiology Laboratory, Winnipeg, Manitoba, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Phylogenetic inferences on HIV-1 transmission: implications for the design of prevention and treatment interventions. AIDS 2013; 27:1045-57. [PMID: 23902920 DOI: 10.1097/qad.0b013e32835cffd9] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
194
|
Andersson E, Shao W, Bontell I, Cham F, Cuong DD, Wondwossen A, Morris L, Hunt G, Sönnerborg A, Bertagnolio S, Maldarelli F, Jordan MR. Evaluation of sequence ambiguities of the HIV-1 pol gene as a method to identify recent HIV-1 infection in transmitted drug resistance surveys. INFECTION GENETICS AND EVOLUTION 2013; 18:125-31. [PMID: 23583545 DOI: 10.1016/j.meegid.2013.03.050] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 03/21/2013] [Accepted: 03/28/2013] [Indexed: 10/26/2022]
Abstract
Identification of recent HIV infection within populations is a public health priority for accurate estimation of HIV incidence rates and transmitted drug resistance at population level. Determining HIV incidence rates by prospective follow-up of HIV-uninfected individuals is challenging and serological assays have important limitations. HIV diversity within an infected host increases with duration of infection. We explore a simple bioinformatics approach to assess viral diversity by determining the percentage of ambiguous base calls in sequences derived from standard genotyping of HIV-1 protease and reverse transcriptase. Sequences from 691 recently infected (≤1 year) and chronically infected (>1 year) individuals from Sweden, Vietnam and Ethiopia were analyzed for ambiguity. A significant difference (p<0.0001) in the proportion of ambiguous bases was observed between sequences from individuals with recent and chronic infection in both HIV-1 subtype B and non-B infection, consistent with previous studies. In our analysis, a cutoff of <0.47% ambiguous base calls identified recent infection with a sensitivity and specificity of 88.8% and 74.6% respectively. 1,728 protease and reverse transcriptase sequences from 36 surveys of transmitted HIV drug resistance performed following World Health Organization guidance were analyzed for ambiguity. The 0.47% ambiguity cutoff was applied and survey sequences were classified as likely derived from recently or chronically infected individuals. 71% of patients were classified as likely to have been infected within one year of genotyping but results varied considerably amongst surveys. This bioinformatics approach may provide supporting population-level information to identify recent infection but its application is limited by infection with more than one viral variant, decreasing viral diversity in advanced disease and technical aspects of population based sequencing. Standardization of sequencing techniques and base calling and the addition of other parameters such as CD4 cell count may address some of the technical limitations and increase the usefulness of the approach.
Collapse
Affiliation(s)
- Emmi Andersson
- Department of Laboratory Medicine, Karolinska Institutet, 14186 Huddinge, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Sanjuán R, Nebot MR, Peris JB, Alcamí J. Immune activation promotes evolutionary conservation of T-cell epitopes in HIV-1. PLoS Biol 2013; 11:e1001523. [PMID: 23565057 PMCID: PMC3614509 DOI: 10.1371/journal.pbio.1001523] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 02/14/2013] [Indexed: 01/06/2023] Open
Abstract
HIV, unlike other viruses, may benefit from immune recognition by preserving the sequence of its T cell epitopes, thereby enhancing transmission between cells. The immune system should constitute a strong selective pressure promoting viral genetic diversity and evolution. However, HIV shows lower sequence variability at T-cell epitopes than elsewhere in the genome, in contrast with other human RNA viruses. Here, we propose that epitope conservation is a consequence of the particular interactions established between HIV and the immune system. On one hand, epitope recognition triggers an anti-HIV response mediated by cytotoxic T-lymphocytes (CTLs), but on the other hand, activation of CD4+ helper T lymphocytes (TH cells) promotes HIV replication. Mathematical modeling of these opposite selective forces revealed that selection at the intrapatient level can promote either T-cell epitope conservation or escape. We predict greater conservation for epitopes contributing significantly to total immune activation levels (immunodominance), and when TH cell infection is concomitant to epitope recognition (trans-infection). We suggest that HIV-driven immune activation in the lymph nodes during the chronic stage of the disease may offer a favorable scenario for epitope conservation. Our results also support the view that some pathogens draw benefits from the immune response and suggest that vaccination strategies based on conserved TH epitopes may be counterproductive. A key component of the immune response against viruses and other pathogens is the recognition of short foreign protein sequences called epitopes. However, viruses can escape the immune system by mutating, so epitopes should accumulate high levels of genetic variability. This has been documented in several human viruses, but in HIV, unexpectedly, epitopes tend to be relatively conserved. Here, we propose that this is a consequence of the peculiar interactions that occur between HIV and the immune system. As with other viruses, recognition of HIV epitopes promotes the activation of cytotoxic and helper T lymphocytes, which then orchestrate a cellular immune response. However, HIV infects helper T lymphocytes as their target cell in the body and does so more efficiently when these cells have been activated to participate in an immune response. Mathematical modeling showed that, in some cases, HIV may take advantage of immune activation, thus favoring epitope conservation. This should be more likely to occur with epitopes that trigger more vigorous T-cell responses, and during the process known as “trans-infection,” in which helper T lymphocytes are infected while being activated. Our results highlight the potential advantages of an HIV vaccination strategy based on epitopes that stimulate cytotoxic T lymphocytes without specifically stimulating helper T lymphocytes.
Collapse
Affiliation(s)
- Rafael Sanjuán
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, València, Spain.
| | | | | | | |
Collapse
|
196
|
Abstract
Vaccines are arguably the most powerful medical intervention in the fight against infectious diseases. The enormity of the global human immunodeficiency virus type 1 (HIV)/acquired immunodeficiency syndrome (AIDS) pandemic makes the development of an AIDS vaccine a scientific and humanitarian priority. Research on vaccines that induce T-cell immunity has dominated much of the recent development effort, mostly because of disappointing efforts to induce neutralizing antibodies through vaccination. Whereas T cells are known to limit HIV and other virus infections after infection, their role in protection against initial infection is much less clear. In this article, we will review the rationale behind a T-cell-based vaccine approach, provide an overview of the methods and platforms that are being applied, and discuss the impact of recent vaccine trial results on the future direction of T-cell vaccine research.
Collapse
Affiliation(s)
- Richard A Koup
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
197
|
Heterogeneity in neutralization sensitivities of viruses comprising the simian immunodeficiency virus SIVsmE660 isolate and vaccine challenge stock. J Virol 2013; 87:5477-92. [PMID: 23468494 DOI: 10.1128/jvi.03419-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sooty mangabey-derived simian immunodeficiency virus (SIV) strain E660 (SIVsmE660) is a genetically heterogeneous, pathogenic isolate that is commonly used as a vaccine challenge strain in the nonhuman primate (NHP) model of human immunodeficiency virus type 1 (HIV-1) infection. Though it is often employed to assess antibody-based vaccine strategies, its sensitivity to antibody-mediated neutralization has not been well characterized. Here, we utilize single-genome sequencing and infectivity assays to analyze the neutralization sensitivity of the uncloned SIVsmE660 isolate, individual viruses comprising the isolate, and transmitted/founder (T/F) viruses arising from low-dose mucosal inoculation of macaques with the isolate. We found that the SIVsmE660 isolate overall was highly sensitive to neutralization by SIV-infected macaque plasma samples (50% inhibitory concentration [IC50] < 10(-5)) and monoclonal antibodies targeting V3 (IC50 < 0.01 μg/ml), CD4-induced (IC50 < 0.1 μg/ml), CD4 binding site (IC50 ~ 1 μg/ml), and V4 (IC50, ~5 μg/ml) epitopes. In comparison, SIVmac251 and SIVmac239 were highly resistant to neutralization by these same antibodies. Differences in neutralization sensitivity between SIVsmE660 and SIVmac251/239 were not dependent on the cell type in which virus was produced or tested. These findings indicate that in comparison to SIVmac251/239 and primary HIV-1 viruses, SIVsmE660 generally exhibits substantially less masking of antigenically conserved Env epitopes. Interestingly, we identified a minor population of viruses (~10%) in both the SIVsmE660 isolate and T/F viruses arising from it that were substantially more resistant (>1,000-fold) to antibody neutralization and another fraction (~20%) that was intermediate in neutralization resistance. These findings may explain the variable natural history and variable protection afforded by heterologous Env-based vaccines in rhesus macaques challenged by high-dose versus low-dose SIVsmE660 inoculation regimens.
Collapse
|
198
|
Russell ES, Ojeda S, Fouda GG, Meshnick SR, Montefiori D, Permar SR, Swanstrom R. Short communication: HIV type 1 subtype C variants transmitted through the bottleneck of breastfeeding are sensitive to new generation broadly neutralizing antibodies directed against quaternary and CD4-binding site epitopes. AIDS Res Hum Retroviruses 2013; 29:511-5. [PMID: 23075434 DOI: 10.1089/aid.2012.0197] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mother-to-child transmission of HIV-1 subtype C can occur in utero, intrapartum, or via breast milk exposure. While not well understood, there are putative differences in the mechanisms involved with the distinct routes of vertical HIV transmission. Here, we address the question of whether specific viral characteristics are common to variants transmitted through breastfeeding that may facilitate evasion of innate or adaptive immune responses. We amplified the envelope gene (env) from the plasma of six infants during acute infection who were infected with HIV-1 subtype C through breastfeeding, and from three available matched maternal samples. We sequenced the full-length env genes in these subjects revealing heterogeneous viral populations in the mothers and homogeneous populations in the infants. In five infants, the viral population arose from a single variant, while two variants were detected in the remaining infant. Infant env sequences had fewer N-linked glycosylation sites and shorter sequences than those of the available matched maternal samples. Though the small size of the study precluded our ability to test statistical significance, these results are consistent with selection for virus with shorter variable loops and fewer glycosylation sites during transmission of HIV-1 subtype C in other settings. Transmitted envs were resistant to neutralization by antibodies 2G12 and 2F5, but were generally sensitive to the more broadly neutralizing PG9, PG16, and VRC01, indicating that this new generation of broadly neutralizing monoclonal antibodies could be efficacious in passive immunization strategies.
Collapse
Affiliation(s)
- Elizabeth S. Russell
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Suany Ojeda
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Genevieve G. Fouda
- Human Vaccine Institute, Duke University Medical School, Durham, North Carolina
| | - Steven R. Meshnick
- Department of Epidemiology, Gillings School of Global Public Health, Chapel Hill, North Carolina
| | - David Montefiori
- Human Vaccine Institute, Duke University Medical School, Durham, North Carolina
| | - Sallie R. Permar
- Human Vaccine Institute, Duke University Medical School, Durham, North Carolina
| | - Ronald Swanstrom
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- UNC Center for Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
199
|
Rapid, complex adaptation of transmitted HIV-1 full-length genomes in subtype C-infected individuals with differing disease progression. AIDS 2013; 27:507-18. [PMID: 23370465 DOI: 10.1097/qad.0b013e32835cab64] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE(S) There is limited information on full-length genome sequences and the early evolution of transmitted HIV-1 subtype C viruses, which constitute the majority of viruses spread in Africa. The purpose of this study was to characterize the earliest changes across the genome of subtype C viruses following transmission, to better understand early control of viremia. DESIGN We derived the near full-length genome sequence responsible for clinical infection from five HIV subtype C-infected individuals with different disease progression profiles and tracked adaptation to immune responses in the first 6 months of infection. METHODS Near full-length genomes were generated by single genome amplification and direct sequencing. Sequences were analyzed for amino acid mutations associated with cytotoxic T lymphocyte (CTL) or antibody-mediated immune pressure, and for reversion. RESULTS Fifty-five sequence changes associated with adaptation to the new host were identified, with 38% attributed to CTL pressure, 35% to antibody pressure, 16% to reversions and the remainder were unclassified. Mutations in CTL epitopes were most frequent in the first 5 weeks of infection, with the frequency declining over time with the decline in viral load. CTL escape predominantly occurred in nef, followed by pol and env. Shuffling/toggling of mutations was identified in 81% of CTL epitopes, with only 7% reaching fixation within the 6-month period. CONCLUSION There was rapid virus adaptation following transmission, predominantly driven by CTL pressure, with most changes occurring during high viremia. Rapid escape and complex escape pathways provide further challenges for vaccine protection.
Collapse
|
200
|
Finucane MM, Rowley CF, Paciorek CJ, Essex M, Pagano M. Estimating the prevalence of transmitted HIV drug resistance using pooled samples. Stat Methods Med Res 2013; 25:917-35. [PMID: 23376965 DOI: 10.1177/0962280212473514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In many resource-poor countries, hiv-infected patients receive a standardized antiretroviral cocktail. In these settings, population-level surveillance of drug resistance is needed to characterize the prevalence of resistance mutations and to enable antiretroviral therapy programs to select the optimal regimen for their local population. The surveillance strategy currently recommended by the World Health Organization is prohibitively expensive in some settings and may not provide a sufficiently precise rendering of the emergence of drug resistance. By using a novel assay on pooled sera samples, we decrease surveillance costs while simultaneously increasing the accuracy of drug resistance prevalence estimates for an important mutation that impacts first-line antiretroviral therapy. We present a Bayesian model for pooled-testing data that garners more information from each resistance assay conducted, compared with individual testing. We expand on previous pooling methods to account for uncertainty about the population distribution of within-subject resistance levels. In addition, our model accounts for measurement error of the resistance assay, and this added uncertainty naturally propagates through the Bayesian model to our inference on the prevalence parameter. We conduct a simulation study that informs our pool size recommendations and that shows that this model renders the prevalence parameter identifiable in instances when an existing non-model-based estimator fails.
Collapse
Affiliation(s)
- Mariel M Finucane
- The J. David Gladstone Institutes, University of California, San Francisco, USA
| | - Christopher F Rowley
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, USA Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, USA Harvard School of Public Health AIDS Initiative, Boston, USA
| | | | - Max Essex
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, USA Harvard School of Public Health AIDS Initiative, Boston, USA
| | - Marcello Pagano
- Department of Biostatistics, Harvard School of Public Health, Boston, USA
| |
Collapse
|