151
|
Wu D, Koganti R, Lambe UP, Yadavalli T, Nandi SS, Shukla D. Vaccines and Therapies in Development for SARS-CoV-2 Infections. J Clin Med 2020; 9:E1885. [PMID: 32560227 PMCID: PMC7355822 DOI: 10.3390/jcm9061885] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/28/2022] Open
Abstract
The current COVID-19 pandemic is caused by the novel coronavirus SARS-CoV-2. The virus causes severe respiratory symptoms which manifest disproportionately in the elderly. Currently, there are over 6.5 million cases and 380,000 deaths reported. Given the current severity of the outbreak, there is a great need for antiviral therapies and vaccines to treat and prevent COVID-19. In this review, we provide an overview of SARS-CoV-2 and discuss the emerging therapies and vaccines that show promise in combating COVID-19. We also highlight potential viral targets that could be exploited by researchers and drug manufacturers.
Collapse
Affiliation(s)
- David Wu
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (D.W.); (R.K.); (T.Y.)
| | - Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (D.W.); (R.K.); (T.Y.)
| | - Upendra P. Lambe
- National Institute of Virology, Indian Council of Medical Research, Mumbai 400012, India; (U.P.L.); (S.S.N.)
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (D.W.); (R.K.); (T.Y.)
| | - Shyam S. Nandi
- National Institute of Virology, Indian Council of Medical Research, Mumbai 400012, India; (U.P.L.); (S.S.N.)
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (D.W.); (R.K.); (T.Y.)
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
152
|
Advanced researches on the inhibition of influenza virus by Favipiravir and Baloxavir. BIOSAFETY AND HEALTH 2020. [DOI: 10.1016/j.bsheal.2020.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
153
|
Toots M, Plemper RK. Next-generation direct-acting influenza therapeutics. Transl Res 2020; 220:33-42. [PMID: 32088166 PMCID: PMC7102518 DOI: 10.1016/j.trsl.2020.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/22/2020] [Accepted: 01/28/2020] [Indexed: 12/16/2022]
Abstract
Influenza viruses are a major threat to human health globally. In addition to further improving vaccine prophylaxis, disease management through antiviral therapeutics constitutes an important component of the current intervention strategy to prevent advance to complicated disease and reduce case-fatality rates. Standard-of-care is treatment with neuraminidase inhibitors that prevent viral dissemination. In 2018, the first mechanistically new influenza drug class for the treatment of uncomplicated seasonal influenza in 2 decades was approved for human use. Targeting the PA endonuclease subunit of the viral polymerase complex, this class suppresses viral replication. However, the genetic barrier against viral resistance to both drug classes is low, pre-existing resistance is observed in circulating strains, and resistant viruses are pathogenic and transmit efficiently. Addressing the resistance problem has emerged as an important objective for the development of next-generation influenza virus therapeutics. This review will discuss the status of influenza therapeutics including the endonuclease inhibitor baloxavir marboxil after its first year of clinical use and evaluate a subset of direct-acting antiviral candidates in different stages of preclinical and clinical development.
Collapse
Affiliation(s)
- Mart Toots
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia.
| |
Collapse
|
154
|
Development of small-molecule inhibitors against hantaviruses. Microbes Infect 2020; 22:272-277. [PMID: 32445882 DOI: 10.1016/j.micinf.2020.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/18/2020] [Indexed: 11/21/2022]
Abstract
Hantavirus (HV), a pathogen of animal infectious diseases that poses a threat to humans, has attracted extensive attention. Clinically, HV can cause hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS), between which HFRS is mostly in Eurasia, and HPS is mostly in the Americas. This paper reviews the research progress of small-molecule inhibitors of HV.
Collapse
|
155
|
Shannon A, Selisko B, Le NTT, Huchting J, Touret F, Piorkowski G, Fattorini V, Ferron F, Decroly E, Meier C, Coutard B, Peersen O, Canard B. Favipiravir strikes the SARS-CoV-2 at its Achilles heel, the RNA polymerase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.05.15.098731. [PMID: 32511380 PMCID: PMC7263509 DOI: 10.1101/2020.05.15.098731] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ongoing Corona Virus Disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has emphasized the urgent need for antiviral therapeutics. The viral RNA-dependent-RNA-polymerase (RdRp) is a promising target with polymerase inhibitors successfully used for the treatment of several viral diseases. Here we show that Favipiravir exerts an antiviral effect as a nucleotide analogue through a combination of chain termination, slowed RNA synthesis and lethal mutagenesis. The SARS-CoV RdRp complex is at least 10-fold more active than any other viral RdRp known. It possesses both unusually high nucleotide incorporation rates and high-error rates allowing facile insertion of Favipiravir into viral RNA, provoking C-to-U and G-to-A transitions in the already low cytosine content SARS-CoV-2 genome. The coronavirus RdRp complex represents an Achilles heel for SARS-CoV, supporting nucleoside analogues as promising candidates for the treatment of COVID-19.
Collapse
Affiliation(s)
- A. Shannon
- Architecture et Fonction des Macromolécules Biologiques, CNRS and Aix-Marseille Université, UMR 7257, Polytech Case 925, 13009 Marseille, France
| | - B. Selisko
- Architecture et Fonction des Macromolécules Biologiques, CNRS and Aix-Marseille Université, UMR 7257, Polytech Case 925, 13009 Marseille, France
| | - NTT Le
- Architecture et Fonction des Macromolécules Biologiques, CNRS and Aix-Marseille Université, UMR 7257, Polytech Case 925, 13009 Marseille, France
| | - J. Huchting
- University of Hamburg, Faculty of Sciences, Department of Chemistry, Organic Chemistry, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany
| | - F. Touret
- Unité des Virus Émergents (UVE: Aix-Marseille Univ - IRD 190 - Inserm 1207 - IHU Méditerranée Infection), Marseille, France
| | - G. Piorkowski
- Unité des Virus Émergents (UVE: Aix-Marseille Univ - IRD 190 - Inserm 1207 - IHU Méditerranée Infection), Marseille, France
| | - V. Fattorini
- Architecture et Fonction des Macromolécules Biologiques, CNRS and Aix-Marseille Université, UMR 7257, Polytech Case 925, 13009 Marseille, France
| | - F. Ferron
- Architecture et Fonction des Macromolécules Biologiques, CNRS and Aix-Marseille Université, UMR 7257, Polytech Case 925, 13009 Marseille, France
| | - E. Decroly
- Architecture et Fonction des Macromolécules Biologiques, CNRS and Aix-Marseille Université, UMR 7257, Polytech Case 925, 13009 Marseille, France
| | - C Meier
- University of Hamburg, Faculty of Sciences, Department of Chemistry, Organic Chemistry, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany
| | - B. Coutard
- Unité des Virus Émergents (UVE: Aix-Marseille Univ - IRD 190 - Inserm 1207 - IHU Méditerranée Infection), Marseille, France
| | - O. Peersen
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - B. Canard
- Architecture et Fonction des Macromolécules Biologiques, CNRS and Aix-Marseille Université, UMR 7257, Polytech Case 925, 13009 Marseille, France
| |
Collapse
|
156
|
Abstract
Purpose of review We review antivirals inhibiting subunits of the influenza polymerase complex that are advancing in clinical development. Recent findings Favipiravir, pimodivir, and baloxavir are inhibitory in preclinical models for influenza A viruses, including pandemic threat viruses and those resistant to currently approved antivirals, and two (favipiravir and baloxavir) also inhibit influenza B viruses. All are orally administered, although the dosing regimens vary. The polymerase basic protein 1 transcriptase inhibitor favipiravir has shown inconsistent clinical effects in uncomplicated influenza, and is teratogenic effects in multiple species, contraindicating its use in pregnancy. The polymerase basic protein 2 cap-binding inhibitor pimodivir displays antiviral effects alone and in combination with oseltamivir in uncomplicated influenza, although variants with reduced susceptibility emerge frequently during monotherapy. Single doses of the polymerase acidic protein cap-dependent endonuclease inhibitor baloxavir are effective in alleviating symptoms and rapidly inhibiting viral replication in otherwise healthy and higher risk patients with acute influenza, although variants with reduced susceptibility emerge frequently during monotherapy. Combinations of newer polymerase inhibitors with neuraminidase inhibitors show synergy in preclinical models and are currently undergoing clinical testing in hospitalized patients. Summary These new polymerase inhibitors promise to add to the clinical management options and overall control strategies for influenza virus infections.
Collapse
|
157
|
Feasibility of Known RNA Polymerase Inhibitors as Anti-SARS-CoV-2 Drugs. Pathogens 2020; 9:pathogens9050320. [PMID: 32357471 PMCID: PMC7281371 DOI: 10.3390/pathogens9050320] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
Coronaviruses (CoVs) are positive-stranded RNA viruses that infect humans and animals. Infection by CoVs such as HCoV-229E, -NL63, -OC43 and -HKU1 leads to the common cold, short lasting rhinitis, cough, sore throat and fever. However, CoVs such as Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and the newest SARS-CoV-2 (the causative agent of COVID-19) lead to severe and deadly diseases with mortality rates ranging between ~1 to 35% depending on factors such as age and pre-existing conditions. Despite continuous global health threats to humans, there are no approved vaccines or drugs targeting human CoVs, and the recent outbreak of COVID-19 emphasizes an urgent need for therapeutic interventions. Using computational and bioinformatics tools, here we present the feasibility of reported broad-spectrum RNA polymerase inhibitors as anti- SARS-CoV-2 drugs targeting its main RNA polymerase, suggesting that investigational and approved nucleoside RNA polymerase inhibitors have potential as anti-SARS-CoV-2 drugs. However, we note that it is also possible for SARS-CoV-2 to evolve and acquire drug resistance mutations against these nucleoside inhibitors.
Collapse
|
158
|
Jensen JD, Lynch M. Considering mutational meltdown as a potential SARS-CoV-2 treatment strategy. Heredity (Edinb) 2020; 124:619-620. [PMID: 32251365 PMCID: PMC7133120 DOI: 10.1038/s41437-020-0314-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 01/30/2023] Open
Affiliation(s)
- Jeffrey D Jensen
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Michael Lynch
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
159
|
Toots M, Yoon JJ, Hart M, Natchus MG, Painter GR, Plemper RK. Quantitative efficacy paradigms of the influenza clinical drug candidate EIDD-2801 in the ferret model. Transl Res 2020; 218:16-28. [PMID: 31945316 PMCID: PMC7568909 DOI: 10.1016/j.trsl.2019.12.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022]
Abstract
Seasonal influenza viruses cause major morbidity and mortality worldwide, threatening in particular older adults and the immunocompromised. Two classes of influenza therapeutics dominate current disease management, but both are compromised by pre-existing or rapidly emerging viral resistance. We have recently reported a novel ribonucleoside analog clinical candidate, EIDD-2801, that combines potent antiviral efficacy in ferrets and human airway epithelium cultures with a high barrier against viral escape. In this study, we established fundamental EIDD-2801 efficacy paradigms against pandemic and seasonal influenza A virus (IAV) strains in ferrets that can be used to inform exposure targets and treatment regimens. Based on reduction of shed virus titers, alleviation of clinical signs, and lowered virus burden in upper and lower respiratory tract tissues, lowest efficacious oral dose concentrations of EIDD-2801, given twice daily, were 2.3 and 7 mg/kg of body weight against seasonal and pandemic IAVs, respectively. The latest opportunity for initiation of efficacious treatment was 36 hours after infection of ferrets. Administered in 12-hour intervals, three 7 mg/kg doses of EIDD-2801 were sufficient for maximal therapeutic benefit against a pandemic IAV and significantly shortened the time to resolution of clinical signs. Ferrets infected with pandemic IAV and treated following the minimally efficacious EIDD-2801 regimen demonstrated significantly less shed virus and inflammatory cellular infiltrates in nasal lavages, but mounted a robust humoral antiviral response after recovery that was indistinguishable from that of vehicle-treated animals. These results provide an experimental basis in a human disease-relevant influenza animal model for clinical testing of EIDD-2801.
Collapse
Affiliation(s)
- Mart Toots
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Jeong-Joong Yoon
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Michael Hart
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Michael G Natchus
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia
| | - George R Painter
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia; Department of Pharmacology, Emory University, Atlanta, Georgia
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia.
| |
Collapse
|
160
|
Fang QQ, Huang WJ, Li XY, Cheng YH, Tan MJ, Liu J, Wei HJ, Meng Y, Wang DY. Effectiveness of favipiravir (T-705) against wild-type and oseltamivir-resistant influenza B virus in mice. Virology 2020; 545:1-9. [PMID: 32174453 DOI: 10.1016/j.virol.2020.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 10/24/2022]
Abstract
The emergence of resistant mutants to the wildly used neuraminidase inhibitors (NAIs) makes the development of novel drugs necessary. Favipiravir (T-705) is one of the RNA-dependent RNA polymerase (RdRp) inhibitors developed in recent years. To examine the efficacy of T-705 against influenza B virus infections in vivo, C57BL/6 mice infected with wild-type or oseltamivir-resistant influenza B/Memphis/20/96 viruses were treated with T-705. Starting 2 h post inoculation (hpi), T-705 was orally administered to mice BID at dosages of 50, 150, or 300 mg/kg/day for 5 days. Oseltamivir was used as control. Here, we showed that T-705 protected mice from lethal infection in a dose-dependent manner. T-705 administration also significantly reduced viral loads and suppressed pulmonary pathology. In addition, phenotypic assays demonstrated that no T-705-resistant viruses emerged after T-705 treatment. In conclusion, T-705 can be effective to protect mice from lethal infection with both wild-type and oseltamivir-resistant influenza B viruses.
Collapse
Affiliation(s)
- Qiong-Qiong Fang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, 102206, China.
| | - Wei-Juan Huang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, 102206, China
| | - Xi-Yan Li
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, 102206, China
| | - Yan-Hui Cheng
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, 102206, China
| | - Min-Ju Tan
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, 102206, China
| | - Jia Liu
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, 102206, China
| | - He-Jiang Wei
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, 102206, China
| | - Yao Meng
- Shaanxi Provincial Center for Disease Control and Prevention, Xi'an, 710054, China
| | - Da-Yan Wang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, 102206, China.
| |
Collapse
|
161
|
Shiraki K, Daikoku T. Favipiravir, an anti-influenza drug against life-threatening RNA virus infections. Pharmacol Ther 2020; 209:107512. [PMID: 32097670 PMCID: PMC7102570 DOI: 10.1016/j.pharmthera.2020.107512] [Citation(s) in RCA: 292] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/14/2020] [Indexed: 12/16/2022]
Abstract
Favipiravir has been developed as an anti-influenza drug and licensed as an anti-influenza drug in Japan. Additionally, favipiravir is being stockpiled for 2 million people as a countermeasure for novel influenza strains. This drug functions as a chain terminator at the site of incorporation of the viral RNA and reduces the viral load. Favipiravir cures all mice in a lethal influenza infection model, while oseltamivir fails to cure the animals. Thus, favipiravir contributes to curing animals with lethal infection. In addition to influenza, favipiravir has a broad spectrum of anti-RNA virus activities in vitro and efficacies in animal models with lethal RNA viruses and has been used for treatment of human infection with life-threatening Ebola virus, Lassa virus, rabies, and severe fever with thrombocytopenia syndrome. The best feature of favipiravir as an antiviral agent is the apparent lack of generation of favipiravir-resistant viruses. Favipiravir alone maintains its therapeutic efficacy from the first to the last patient in an influenza pandemic or an epidemic lethal RNA virus infection. Favipiravir is expected to be an important therapeutic agent for severe influenza, the next pandemic influenza strain, and other severe RNA virus infections for which standard treatments are not available.
Collapse
Affiliation(s)
- Kimiyasu Shiraki
- Senri Kinran University and Department of Virology, University of Toyama, Japan.
| | - Tohru Daikoku
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Hokuriku University, Japan
| |
Collapse
|
162
|
|
163
|
Jena NR. Role of different tautomers in the base-pairing abilities of some of the vital antiviral drugs used against COVID-19. Phys Chem Chem Phys 2020; 22:28115-28122. [DOI: 10.1039/d0cp05297c] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Base-pair mutations induced by different tautomers of anti-viral drugs are the main reasons for their anti-viral activities.
Collapse
Affiliation(s)
- N. R. Jena
- Discipline of Natural Sciences
- Indian Institute of Information Technology
- Design, and Manufacturing
- Khamaria
- India
| |
Collapse
|
164
|
De Clercq E. New Nucleoside Analogues for the Treatment of Hemorrhagic Fever Virus Infections. Chem Asian J 2019; 14:3962-3968. [PMID: 31389664 PMCID: PMC7159701 DOI: 10.1002/asia.201900841] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/23/2019] [Indexed: 12/11/2022]
Abstract
Eight different compounds, all nucleoside analogues, could presently be considered as potential drug candidates for the treatment of Ebola virus (EBOV) and/or other hemorrhagic fever virus (HFV) infections. They can be considered as either (i) adenine analogues (3-deazaneplanocin A, galidesivir, GS-6620 and remdesivir) or (ii) guanine analogues containing the carboxamide entity (ribavirin, EICAR, pyrazofurin and favipiravir). All eight owe their mechanism of action to hydrogen bonded base pairing with either (i) uracil or (ii) cytosine. Four out of the eight compounds (galidesivir, GS-6620, remdesivir and pyrazofurin) are C-nucleosides, and two of them (GS-6620, remdesivir) also contain a phosphoramidate part. The C-nucleoside and phosphoramidate (and for the adenine analogues the 1'-cyano group as well) may be considered as essential attributes for their antiviral activity.
Collapse
Affiliation(s)
- Erik De Clercq
- Department of Microbiology, Immunology and TransplantationRega Institute for Medical Research, KU LeuvenHerestraat 493000LeuvenBelgium
| |
Collapse
|
165
|
Song R, Chen Z, Li W. Severe fever with thrombocytopenia syndrome (SFTS) treated with a novel antiviral medication, favipiravir (T-705). Infection 2019; 48:295-298. [PMID: 31673977 PMCID: PMC7223615 DOI: 10.1007/s15010-019-01364-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022]
Abstract
Background Severe fever and thrombocytopenia syndrome (SFTS) is an acute illness with a high mortality (16.2–29.1%). Unfortunately, there is no specific cure or vaccine for SFTS. Methods In this open-label study, two patients with SFTS were treated with favipiravir, a new antiviral drug. Results Patients had a sustainable virologic, immunologic and symptomatic recovery. Conclusions Favipiravir may be a prosiming drug for the treatment of SFTS. Electronic supplementary material The online version of this article (10.1007/s15010-019-01364-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rui Song
- Center of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, 100015, Beijing, People's Republic of China
| | - Zhihai Chen
- Center of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, 100015, Beijing, People's Republic of China.
| | - Wei Li
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, 100015, Beijing, People's Republic of China.
| |
Collapse
|
166
|
Synergistic lethal mutagenesis of hepatitis C virus. Antimicrob Agents Chemother 2019:AAC.01653-19. [PMID: 31570400 DOI: 10.1128/aac.01653-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Lethal mutagenesis is an antiviral approach that consists in extinguishing a virus by an excess of mutations acquired during replication in the presence of a mutagenic agent, often a nucleotide analogue. One of its advantages is its broad spectrum nature that renders the strategy potentially effective against emergent RNA viral infections. Here we describe synergistic lethal mutagenesis of hepatitis C virus (HCV) by a combination of favipiravir (T-705) and ribavirin. Synergy has been documented over a broad range of analogue concentrations using the Chou-Talalay method as implemented in the CompuSyn graphics, with average dose reduction index (DRI) above 1 (68.02±101.6 for favipiravir, and 5.83±6.07 for ribavirin), and average combination indices (CI) below 1 (0.52±0.28). Furthermore, analogue concentrations that individually did not extinguish high fitness HCV in ten serial infections, when used in combination they extinguished high fitness HCV in one to two passages. Although both analogues display a preference for G→A and C→U transitions, deep sequencing analysis of mutant spectra indicated a different preference of the two analogues for the mutation sites, thus unveiling a new possible synergy mechanism in lethal mutagenesis. Prospects of synergy among mutagenic nucleotides as a strategy to confront emerging viral infections are discussed.
Collapse
|
167
|
Kim EH, Kim SW, Park SJ, Kim S, Yu KM, Kim SG, Lee SH, Seo YK, Cho NH, Kang K, Soung DY, Choi YK. Greater Efficacy of Black Ginseng (CJ EnerG) over Red Ginseng against Lethal Influenza A Virus Infection. Nutrients 2019; 11:nu11081879. [PMID: 31412594 PMCID: PMC6723933 DOI: 10.3390/nu11081879] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 01/28/2023] Open
Abstract
Black ginseng (BG, CJ EnerG), prepared via nine repeated cycles of steaming and drying of fresh ginseng, contains more accessible acid polysaccharides and smaller and less polar ginsenosides than red ginseng (RG) processed only once. Because RG exhibits the ability to increase host protection against viral respiratory infections, we investigated the antiviral effects of BG. Mice were orally administered either BG or RG extract at 10 mg/kg bw daily for two weeks. Mice were then infected with a A(H1N1) pdm09 (A/California/04/2009) virus and fed extracts for an additional week. Untreated, infected mice were assigned to either the negative control, without treatments, or the positive control, treated with Tamiflu. Infected mice were monitored for 14 days to determine the survival rate. Lung tissues were evaluated for virus titer and by histological analyses. Cytokine levels were measured in bronchoalveolar lavage fluid. Mice treated with BG displayed a 100% survival rate against infection, while mice treated with RG had a 50% survival rate. Further, mice treated with BG had fewer accumulated inflammatory cells in bronchioles following viral infection than did mice treated with RG. BG also enhanced the levels of GM-CSF and IL-10 during the early and late stages of infection, respectively, compared to RG. Thus, BG may be useful as an alternative antiviral adjuvant to modulate immune responses to influenza A virus.
Collapse
Affiliation(s)
- Eun-Ha Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea
| | - Son-Woo Kim
- The Institutes of Food, CJ CheilJedang, Suwon 16495, Korea
| | - Su-Jin Park
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea
| | - Semi Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea
| | - Kwang-Min Yu
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea
| | | | - Seung Hun Lee
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea
| | - Yong-Ki Seo
- The Institutes of Food, CJ CheilJedang, Suwon 16495, Korea
| | - Nam-Hoon Cho
- The Institutes of Food, CJ CheilJedang, Suwon 16495, Korea
| | - Kimoon Kang
- The Institutes of Food, CJ CheilJedang, Suwon 16495, Korea
| | - Do Y Soung
- The Institutes of Food, CJ CheilJedang, Suwon 16495, Korea.
| | - Young-Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea.
- ID Bio Corporation, Cheongju 28370, Korea.
| |
Collapse
|
168
|
Influenza Virus with Increased pH of Hemagglutinin Activation Has Improved Replication in Cell Culture but at the Cost of Infectivity in Human Airway Epithelium. J Virol 2019; 93:JVI.00058-19. [PMID: 31189708 PMCID: PMC6694820 DOI: 10.1128/jvi.00058-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/02/2019] [Indexed: 01/09/2023] Open
Abstract
The pH stability of the hemagglutinin surface protein varies between different influenza strains and subtypes and can affect the virus’ ability to replicate and transmit. Here, we demonstrate a delicate balance that the virus strikes within and without the target cell. We show that a pH-stable hemagglutinin enables a human influenza virus to replicate more effectively in human airway cells and mouse lungs by facilitating virus survival in the extracellular environment of the upper respiratory tract. Conversely, after entering target cells, being more pH stable confers a relative disadvantage, resulting in less efficient delivery of the viral genome to the host cell nucleus. Since the balance we describe will be affected differently in different host environments, it may restrict a virus’ ability to cross species. In addition, our findings imply that different influenza viruses may show variation in how well they are controlled by antiviral strategies targeting pH-dependent steps in the virus replication cycle. Pandemic H1N1 (pH1N1) influenza virus emerged from swine in 2009 with an adequate capability to infect and transmit between people. In subsequent years, it has circulated as a seasonal virus and evolved further human-adapting mutations. Mutations in the hemagglutinin (HA) stalk that increase pH stability have been associated with human adaptation and airborne transmission of pH1N1 virus. Yet, our understanding of how pH stability impacts virus-host interactions is incomplete. Here, using recombinant viruses with point mutations that alter the pH stability of pH1N1 HA, we found distinct effects on virus phenotypes in different experimental models. Increased pH sensitivity enabled viruses to uncoat in endosomes more efficiently, manifesting as increased replication rate in typical continuous cell cultures under single-cycle conditions. A more acid-labile HA also conferred a small reduction in sensitivity to antiviral therapeutics that act at the pH-sensitive HA fusion step. Conversely, in primary human airway epithelium cultured at the air-liquid interface, increased pH sensitivity attenuated multicycle viral replication by compromising virus survival in the extracellular microenvironment. In a mouse model of influenza pathogenicity, there was an optimum HA activation pH, and viruses with either more- or less-pH-stable HA were less virulent. Opposing pressures inside and outside the host cell that determine pH stability may influence zoonotic potential. The distinct effects that changes in pH stability exert on viral phenotypes underscore the importance of using the most appropriate systems for assessing virus titer and fitness, which has implications for vaccine manufacture, antiviral drug development, and pandemic risk assessment. IMPORTANCE The pH stability of the hemagglutinin surface protein varies between different influenza strains and subtypes and can affect the virus’ ability to replicate and transmit. Here, we demonstrate a delicate balance that the virus strikes within and without the target cell. We show that a pH-stable hemagglutinin enables a human influenza virus to replicate more effectively in human airway cells and mouse lungs by facilitating virus survival in the extracellular environment of the upper respiratory tract. Conversely, after entering target cells, being more pH stable confers a relative disadvantage, resulting in less efficient delivery of the viral genome to the host cell nucleus. Since the balance we describe will be affected differently in different host environments, it may restrict a virus’ ability to cross species. In addition, our findings imply that different influenza viruses may show variation in how well they are controlled by antiviral strategies targeting pH-dependent steps in the virus replication cycle.
Collapse
|
169
|
Jochmans D, Neyts J. The path towards effective antivirals against rabies. Vaccine 2019; 37:4660-4662. [PMID: 29279280 PMCID: PMC7172090 DOI: 10.1016/j.vaccine.2017.12.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/06/2017] [Accepted: 12/09/2017] [Indexed: 01/21/2023]
Abstract
Rabies virus remains an important burden of disease claiming an estimated 60,000 lives each year, mainly children, and having a huge economical and societal cost. Post-exposure prophylaxis (PEP) is highly effective, however in patients that present with neurological symptoms the case-fatality ratio is extremely high (>99%). During the last decades several attempts to identify potent and effective antivirals were made. Only a few of these demonstrated improvement in clinical signs in animal studies and none of the trials in humans showed significant efficacy. Here we explore novel opportunities to identify more potent anti-rabies molecules. In particular important progress has been made on antivirals against other Mononegavirales (paramyxoviruses, filoviruses) which should be an impetus to test and optimize these molecules towards anti-rabies virus therapies. Effective rabies antivirals for therapeutic use need to be molecules that can be dosed into the cerebrospinal fluid and that rapidly and potently block ongoing virus replication and as such stop the further spread of the virus. Antivirals for prophylactic use can also be envisaged and these should be able to prevent infection of peripheral nerve cells and should have the potential to replace the current anti-rabies immunoglobulins that are used in PEP.
Collapse
Affiliation(s)
- Dirk Jochmans
- Rega Institute for Medical Research, University of Leuven (KU Leuven), Leuven, Belgium.
| | - Johan Neyts
- Rega Institute for Medical Research, University of Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
170
|
Zhang J, Hu Y, Musharrafieh R, Yin H, Wang J. Focusing on the Influenza Virus Polymerase Complex: Recent Progress in Drug Discovery and Assay Development. Curr Med Chem 2019; 26:2243-2263. [PMID: 29984646 DOI: 10.2174/0929867325666180706112940] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 03/27/2018] [Accepted: 05/06/2018] [Indexed: 12/17/2022]
Abstract
Influenza viruses are severe human pathogens that pose persistent threat to public health. Each year more people die of influenza virus infection than that of breast cancer. Due to the limited efficacy associated with current influenza vaccines, as well as emerging drug resistance from small molecule antiviral drugs, there is a clear need to develop new antivirals with novel mechanisms of action. The influenza virus polymerase complex has become a promising target for the development of the next-generation of antivirals for several reasons. Firstly, the influenza virus polymerase, which forms a heterotrimeric complex that consists of PA, PB1, and PB2 subunits, is highly conserved. Secondly, both individual polymerase subunit (PA, PB1, and PB2) and inter-subunit interactions (PA-PB1, PB1- PB2) represent promising drug targets. Lastly, growing insight into the structure and function of the polymerase complex has spearheaded the structure-guided design of new polymerase inhibitors. In this review, we highlight recent progress in drug discovery and assay development targeting the influenza virus polymerase complex and discuss their therapeutic potentials.
Collapse
Affiliation(s)
- Jiantao Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Rami Musharrafieh
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Hang Yin
- Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, United States
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States.,BIO5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
171
|
Lethal Mutagenesis of Rift Valley Fever Virus Induced by Favipiravir. Antimicrob Agents Chemother 2019; 63:AAC.00669-19. [PMID: 31085519 PMCID: PMC6658772 DOI: 10.1128/aac.00669-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023] Open
Abstract
Rift Valley fever virus (RVFV) is an emerging, mosquito-borne, zoonotic pathogen with recurrent outbreaks taking a considerable toll in human deaths in many African countries, for which no effective treatment is available. In cell culture studies and with laboratory animal models, the nucleoside analogue favipiravir (T-705) has demonstrated great potential for the treatment of several seasonal, chronic, and emerging RNA virus infections in humans, suggesting applicability to control some viral outbreaks. Rift Valley fever virus (RVFV) is an emerging, mosquito-borne, zoonotic pathogen with recurrent outbreaks taking a considerable toll in human deaths in many African countries, for which no effective treatment is available. In cell culture studies and with laboratory animal models, the nucleoside analogue favipiravir (T-705) has demonstrated great potential for the treatment of several seasonal, chronic, and emerging RNA virus infections in humans, suggesting applicability to control some viral outbreaks. Treatment with favipiravir was shown to reduce the infectivity of Rift Valley fever virus both in cell cultures and in experimental animal models, but the mechanism of this protective effect is not understood. In this work, we show that favipiravir at concentrations well below the toxicity threshold estimated for cells is able to extinguish RVFV from infected cell cultures. Nucleotide sequence analysis has documented RVFV mutagenesis associated with virus extinction, with a significant increase in G to A and C to U transition frequencies and a decrease of specific infectivity, hallmarks of lethal mutagenesis.
Collapse
|
172
|
Kiso M, Lopes TJS, Yamayoshi S, Ito M, Yamashita M, Nakajima N, Hasegawa H, Neumann G, Kawaoka Y. Combination Therapy With Neuraminidase and Polymerase Inhibitors in Nude Mice Infected With Influenza Virus. J Infect Dis 2019; 217:887-896. [PMID: 29186472 DOI: 10.1093/infdis/jix606] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 11/23/2017] [Indexed: 12/24/2022] Open
Abstract
Background Treatment of immunocompromised, influenza virus-infected patients with the viral neuraminidase inhibitor oseltamivir often leads to the emergence of drug-resistant variants. Combination therapy with compounds that target different steps in the viral life cycle may improve treatment outcomes and reduce the emergence of drug-resistant variants. Methods Here, we infected immunocompromised nude mice with an influenza A virus and treated them with neuraminidase (oseltamivir, laninamivir) or viral polymerase (favipiravir) inhibitors, or combinations thereof. Results Combination therapy for 28 days increased survival times compared with monotherapy, but the animals died after treatment was terminated. Mono- and combination therapies did not consistently reduce lung virus titers. Prolonged viral replication led to the emergence of neuraminidase inhibitor-resistant variants, although viruses remained sensitive to favipiravir. Overall, favipiravir provided greater benefit than neuraminidase inhibitors. Conclusions Collectively, our data demonstrate that combination therapy in immunocompromised hosts increases survival times, but does not suppress the emergence of neuraminidase inhibitor-resistant variants.
Collapse
Affiliation(s)
- Maki Kiso
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Japan
| | - Tiago J S Lopes
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Japan.,Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison
| | - Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Japan
| | - Mutsumi Ito
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Japan
| | - Makoto Yamashita
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Japan
| | - Noriko Nakajima
- Department of Pathology, National Institute of Infectious Diseases, Tokyo
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo
| | - Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Japan.,Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison.,ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
173
|
Abstract
Selection of viral mutants resistant to compounds used in therapy is a major determinant of treatment failure, a problem akin to antibiotic resistance in bacteria. In this scenario, mutagenic base and nucleoside analogs have entered the picture because they increase the mutation rate of viral populations to levels incompatible with their survival. This antiviral strategy is termed lethal mutagenesis. It has found a major impulse with the observation that some antiviral agents, which initially were considered only inhibitors of virus multiplication, may in effect exert part of their antiviral activity through mutagenesis. Here, we review the conceptual basis of lethal mutagenesis, the evidence of virus extinction through mutagenic nucleotide analogs and prospects for application in antiviral designs.
Collapse
|
174
|
Mifsud EJ, Hayden FG, Hurt AC. Antivirals targeting the polymerase complex of influenza viruses. Antiviral Res 2019; 169:104545. [PMID: 31247246 DOI: 10.1016/j.antiviral.2019.104545] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/19/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022]
Abstract
Current influenza antivirals have limitations with regard to their effectiveness and the potential emergence of resistance. Encouragingly, several new compounds which inhibit the polymerase of influenza viruses have recently been shown to have enhanced pre-clinical and clinical effectiveness compared to the neuraminidase inhibitors, the mainstay of influenza antiviral therapy over the last two decades. In this review we focus on four compounds which inhibit polymerase function, baloxavir marboxil, favipiravir, pimodivir and AL-794 and discuss their clinical and virological effectiveness, their propensity to select for resistance and their potential for future combination therapy with the most commonly used neuraminidase inhibitor, oseltamivir.
Collapse
Affiliation(s)
- Edin J Mifsud
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Frederick G Hayden
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia.
| |
Collapse
|
175
|
Current and Novel Approaches in Influenza Management. Vaccines (Basel) 2019; 7:vaccines7020053. [PMID: 31216759 PMCID: PMC6630949 DOI: 10.3390/vaccines7020053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 06/15/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022] Open
Abstract
Influenza is a disease that poses a significant health burden worldwide. Vaccination is the best way to prevent influenza virus infections. However, conventional vaccines are only effective for a short period of time due to the propensity of influenza viruses to undergo antigenic drift and antigenic shift. The efficacy of these vaccines is uncertain from year-to-year due to potential mismatch between the circulating viruses and vaccine strains, and mutations arising due to egg adaptation. Subsequently, the inability to store these vaccines long-term and vaccine shortages are challenges that need to be overcome. Conventional vaccines also have variable efficacies for certain populations, including the young, old, and immunocompromised. This warrants for diverse efficacious vaccine developmental approaches, involving both active and passive immunization. As opposed to active immunization platforms (requiring the use of whole or portions of pathogens as vaccines), the rapidly developing passive immunization involves administration of either pathogen-specific or broadly acting antibodies against a kind or class of pathogens as a treatment to corresponding acute infection. Several antibodies with broadly acting capacities have been discovered that may serve as means to suppress influenza viral infection and allow the process of natural immunity to engage opsonized pathogens whilst boosting immune system by antibody-dependent mechanisms that bridge the innate and adaptive arms. By that; passive immunotherapeutics approach assumes a robust tool that could aid control of influenza viruses. In this review, we comment on some improvements in influenza management and promising vaccine development platforms with an emphasis on the protective capacity of passive immunotherapeutics especially when coupled with the use of antivirals in the management of influenza infection.
Collapse
|
176
|
Espy N, Nagle E, Pfeffer B, Garcia K, Chitty AJ, Wiley M, Sanchez-Lockhart M, Bavari S, Warren T, Palacios G. T-705 induces lethal mutagenesis in Ebola and Marburg populations in macaques. Antiviral Res 2019; 170:104529. [PMID: 31195019 DOI: 10.1016/j.antiviral.2019.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/02/2019] [Indexed: 10/26/2022]
Abstract
Nucleoside analogues (NA) disrupt RNA viral RNA-dependent RNA polymerase (RdRP) function and fidelity for multiple viral families. The mechanism of action (MOA) of T-705 has been attributed alternatively or concurrently to chain termination and lethal mutagenesis depending on the viral species during in vitro studies. In this study, we evaluated the effect of T-705 on the viral population in non-human primates (NHPs) after challenge with Ebola virus (EBOV) or Marburg virus (MARV) to identify the predominant in vivo MOA. We used common virological assays in conjunction with deep sequencing to characterize T-705 effects. T-705 exhibited antiviral activity that was associated with a reduction in specific infectivity and an accumulation of low frequency nucleotide variants in plasma samples collected day 7 post infection. Stranded analysis of deep sequencing data to identify chain termination demonstrated no change in the transcriptional gradient in negative stranded viral reads and minimal changes in positive stranded viral reads in T-705 treated animals, questioning as a MOA in vivo. These findings indicate that lethal mutagenesis is a MOA of T-705 that may serve as an indication of therapeutic activity of NAs for evaluation in clinical settings. This study expands our understanding of MOAs of these compounds for the Filovirus family and provides further evidence that lethal mutagenesis could be a preponderant MOA for this class of therapeutic compounds.
Collapse
Affiliation(s)
- Nicole Espy
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Elyse Nagle
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Brad Pfeffer
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Karla Garcia
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Alex J Chitty
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Michael Wiley
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Mariano Sanchez-Lockhart
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Sina Bavari
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Travis Warren
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Gustavo Palacios
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA.
| |
Collapse
|
177
|
In silico structural elucidation of RNA-dependent RNA polymerase towards the identification of potential Crimean-Congo Hemorrhagic Fever Virus inhibitors. Sci Rep 2019; 9:6809. [PMID: 31048746 PMCID: PMC6497722 DOI: 10.1038/s41598-019-43129-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 04/17/2019] [Indexed: 01/05/2023] Open
Abstract
The Crimean-Congo Hemorrhagic Fever virus (CCHFV) is a segmented negative single-stranded RNA virus (-ssRNA) which causes severe hemorrhagic fever in humans with a mortality rate of ~50%. To date, no vaccine has been approved. Treatment is limited to supportive care with few investigational drugs in practice. Previous studies have identified viral RNA dependent RNA Polymerase (RdRp) as a potential drug target due to its significant role in viral replication and transcription. Since no crystal structure is available yet, we report the structural elucidation of CCHFV-RdRp by in-depth homology modeling. Even with low sequence identity, the generated model suggests a similar overall structure as previously reported RdRps. More specifically, the model suggests the presence of structural/functional conserved RdRp motifs for polymerase function, the configuration of uniform spatial arrangement of core RdRp sub-domains, and predicted positively charged entry/exit tunnels, as seen in sNSV polymerases. Extensive pharmacophore modeling based on per-residue energy contribution with investigational drugs allowed the concise mapping of pharmacophoric features and identified potential hits. The combination of pharmacophoric features with interaction energy analysis revealed functionally important residues in the conserved motifs together with in silico predicted common inhibitory binding modes with highly potent reference compounds.
Collapse
|
178
|
Netzler NE, Enosi Tuipulotu D, White PA. Norovirus antivirals: Where are we now? Med Res Rev 2019; 39:860-886. [PMID: 30584800 PMCID: PMC7168425 DOI: 10.1002/med.21545] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 12/24/2022]
Abstract
Human noroviruses inflict a significant health burden on society and are responsible for approximately 699 million infections and over 200 000 estimated deaths worldwide each year. Yet despite significant research efforts, approved vaccines or antivirals to combat this pathogen are still lacking. Safe and effective antivirals are not available, particularly for chronically infected immunocompromised individuals, and for prophylactic applications to protect high-risk and vulnerable populations in outbreak settings. Since the discovery of human norovirus in 1972, the lack of a cell culture system has hindered biological research and antiviral studies for many years. Recent breakthroughs in culturing human norovirus have been encouraging, however, further development and optimization of these novel methodologies are required to facilitate more robust replication levels, that will enable reliable serological and replication studies, as well as advances in antiviral development. In the last few years, considerable progress has been made toward the development of norovirus antivirals, inviting an updated review. This review focuses on potential therapeutics that have been reported since 2010, which were examined across at least two model systems used for studying human norovirus or its enzymes. In addition, we have placed emphasis on antiviral compounds with a defined chemical structure. We include a comprehensive outline of direct-acting antivirals and offer a discussion of host-modulating compounds, a rapidly expanding and promising area of antiviral research.
Collapse
Affiliation(s)
- Natalie E. Netzler
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, SydneyNew South WalesAustralia
| | - Daniel Enosi Tuipulotu
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, SydneyNew South WalesAustralia
| | - Peter A. White
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, SydneyNew South WalesAustralia
| |
Collapse
|
179
|
Cell line-dependent activation and antiviral activity of T-1105, the non-fluorinated analogue of T-705 (favipiravir). Antiviral Res 2019; 167:1-5. [PMID: 30951731 DOI: 10.1016/j.antiviral.2019.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022]
Abstract
The antiviral drug T-705 (favipiravir) and its non-fluorinated analogue T-1105 inhibit the polymerases of RNA viruses after being converted to their ribonucleoside triphosphate (RTP) metabolite. We here compared the activation efficiency of T-705 and T-1105 in four cell lines that are commonly used for their antiviral evaluation. In MDCK cells, the levels of T-705-RTP were markedly lower than those of T-1105-RTP, while the opposite was seen in A549, Vero and HEK293T cells. In the latter three cell lines, T-1105 activation was hindered by inefficient conversion of the ribonucleoside monophosphate to the ribonucleoside diphosphate en route to forming the active triphosphate. Accordingly, T-1105 had better anti-RNA virus activity in MDCK cells, while T-705 was more potent in the other three cell lines. Additionally, we identified a fourth metabolite, the NAD analogue of T-705/T-1105, and showed that it can be formed by nicotinamide mononucleotide adenylyltransferase.
Collapse
|
180
|
Nannetti G, Massari S, Mercorelli B, Bertagnin C, Desantis J, Palù G, Tabarrini O, Loregian A. Potent and broad-spectrum cycloheptathiophene-3-carboxamide compounds that target the PA-PB1 interaction of influenza virus RNA polymerase and possess a high barrier to drug resistance. Antiviral Res 2019; 165:55-64. [PMID: 30885750 DOI: 10.1016/j.antiviral.2019.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/25/2019] [Accepted: 03/04/2019] [Indexed: 12/17/2022]
Abstract
Influenza viruses are major respiratory pathogens responsible for both seasonal epidemics and occasional pandemics worldwide. The current available treatment options have limited efficacy and thus the development of new antivirals is highly needed. We previously reported the identification of a series of cycloheptathiophene-3-carboxamide compounds as influenza A virus inhibitors that act by targeting the protein-protein interactions between the PA-PB1 subunits of the viral polymerase. In this study, we characterized the antiviral properties of the most promising compounds as well as investigated their propensity to induce drug resistance. Our results show that some of the selected compounds possess potent, broad-spectrum anti-influenza activity as they efficiently inhibited the replication of several strains of influenza A and B viruses, including an oseltamivir-resistant clinical isolate, with nanomolar or low-micromolar potency. The most promising compounds specifically inhibited the PA-PB1 binding in vitro and interfered with the influenza A virus polymerase activity in a cellular context, without showing cytotoxicity. The most active PA-PB1 inhibitors showed to possess a drug resistance barrier higher than that of oseltamivir. Indeed, no viral variants with reduced susceptibility to the selected compounds emerged after serial passages of influenza A virus under drug selective pressure. Overall, our studies identified potent PA-PB1 inhibitors as promising candidates for the development of new anti-influenza drugs.
Collapse
Affiliation(s)
- Giulio Nannetti
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Serena Massari
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Chiara Bertagnin
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Jenny Desantis
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, Padua, Italy.
| |
Collapse
|
181
|
Omotuyi OI, Nash O, Safronetz D, Ojo AA, Ogunwa TH, Adelakun NS. T-705-modified ssRNA in complex with Lassa virus nucleoprotein exhibits nucleotide splaying and increased water influx into the RNA-binding pocket. Chem Biol Drug Des 2019; 93:544-555. [PMID: 30536557 DOI: 10.1111/cbdd.13451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/18/2018] [Accepted: 11/24/2018] [Indexed: 12/28/2022]
Abstract
Lassa virus infection is clinically characterized by multiorgan failure in humans. Without an FDA-approved vaccine, ribavirin is the frontline drug for the treatment but with attendant toxicities. 6-Fluoro-3-hydroxy-2-pyrazinecarboxamide (T-705) is an emerging alternative drug with proven anti-Lassa virus activity in experimental model. One of the mechanisms of action is its incorporation into nascent single-strand RNA (ssRNA) which forms complex with Lassa nucleoprotein (LASV-NP). Here, using molecular dynamics simulation, the structural and electrostatics changes associated with LASV-NP-ssRNA complex have been studied when none, one, or four of its bases has been substituted with T-705. The results demonstrated that glycosidic torsion angle χ (O4'-C1'-N1-C2) rotated from high-anti- (-110° and -60°) to the syn- conformation (+30) with increased T-705 substitution. Similarly, increased T-705 substitution resulted in increased splaying (55°-70°), loss of ssRNA-LASV-NP H-bond interaction, increased water influx into the ssRNA-binding pocket, and decreased electrostatic potentials of ssRNA pocket. Furthermore, strong positively correlated motion observed between α6 residues (aa: 128-145) and its contact ssRNA bases (5-7) is weakened in Apo biosystem and transitioned into anticorrelated motions in ssRNA-bound LASV-NP biosystem. Finally, LASV genome may become more accessible to cellular ribonuclease access with T-705 incorporation due to loss of NP interaction.
Collapse
Affiliation(s)
- Olaposi I Omotuyi
- Center for Biocomputing and Drug Development, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Oyekanmi Nash
- Center for Genomics Research and Innovation, National Biotechnology Development Agency, NABDA/FMST, Abuja, Nigeria
| | - David Safronetz
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Ayodeji A Ojo
- Department of Public and Community Health, Liberty University, Lynchburg, Virginia
| | - Tomisin H Ogunwa
- Center for Biocomputing and Drug Development, Adekunle Ajasin University, Akungba-Akoko, Nigeria.,School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Niyi S Adelakun
- Center for Biocomputing and Drug Development, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| |
Collapse
|
182
|
Determining the Mutation Bias of Favipiravir in Influenza Virus Using Next-Generation Sequencing. J Virol 2019; 93:JVI.01217-18. [PMID: 30381482 PMCID: PMC6321902 DOI: 10.1128/jvi.01217-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/21/2018] [Indexed: 12/15/2022] Open
Abstract
New antiviral drugs are needed as a first line of defense in the event of a novel influenza pandemic. Favipiravir is a broad-spectrum antiviral which is effective against influenza. The exact mechanism of how favipiravir works to inhibit influenza is still unclear. We used next-generation sequencing (NGS) to demonstrate that favipiravir causes mutations in influenza RNA. The greater depth of NGS sequence information over traditional sequencing methods allowed us to precisely determine the bias of particular mutations caused by favipiravir. NGS can also be used in a standard diagnostic pipeline to show that favipiravir is acting on the virus by revealing the mutation bias pattern typical to the drug. Our work will aid in testing whether viruses are resistant to favipiravir and may help demonstrate the effect of favipiravir on viruses in a clinical setting. This will be important if favipiravir is used during a future influenza pandemic. Favipiravir is a broad-spectrum antiviral drug that may be used to treat influenza. Previous research has identified that favipiravir likely acts as a mutagen, but the precise mutation bias that favipiravir induces in influenza virus RNAs has not been described. Here, we use next-generation sequencing (NGS) with barcoding of individual RNA molecules to accurately and quantitatively detect favipiravir-induced mutations and to sample orders of magnitude more mutations than would be possible through Sanger sequencing. We demonstrate that favipiravir causes mutations and show that favipiravir primarily acts as a guanine analogue and secondarily as an adenine analogue resulting in the accumulation of transition mutations. We also use a standard NGS pipeline to show that the mutagenic effect of favipiravir can be measured by whole-genome sequencing of virus. IMPORTANCE New antiviral drugs are needed as a first line of defense in the event of a novel influenza pandemic. Favipiravir is a broad-spectrum antiviral which is effective against influenza. The exact mechanism of how favipiravir works to inhibit influenza is still unclear. We used next-generation sequencing (NGS) to demonstrate that favipiravir causes mutations in influenza RNA. The greater depth of NGS sequence information over traditional sequencing methods allowed us to precisely determine the bias of particular mutations caused by favipiravir. NGS can also be used in a standard diagnostic pipeline to show that favipiravir is acting on the virus by revealing the mutation bias pattern typical to the drug. Our work will aid in testing whether viruses are resistant to favipiravir and may help demonstrate the effect of favipiravir on viruses in a clinical setting. This will be important if favipiravir is used during a future influenza pandemic.
Collapse
|
183
|
Rahim MN, Zhang Z, He S, Zhu W, Banadyga L, Safronetz D, Qiu X. Postexposure Protective Efficacy of T-705 (Favipiravir) Against Sudan Virus Infection in Guinea Pigs. J Infect Dis 2018; 218:S649-S657. [PMID: 29982696 PMCID: PMC6249569 DOI: 10.1093/infdis/jiy303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Filoviruses such as Ebola virus (EBOV), Marburg virus (MARV), and Sudan virus (SUDV) cause deadly viral hemorrhagic fever in humans, with high case-fatality rates; however, no licensed therapeutic agent or vaccine has been clinically approved to treat or prevent infection. T-705 (favipiravir) is a novel antiviral drug that has been approved for the treatment of influenza in Japan. T-705 exhibits broad-spectrum antiviral activity against different viruses, including MARV and EBOV, and here, we are the first to report the in vitro and in vivo antiviral activity of T-705 against SUDV. T-705 treatment reduced SUDV replication in Vero E6 cells. Subcutaneous administration of T-705, beginning 1-4 days after infection and continuing for 7 days, significantly protected SUDV-infected guinea pigs, with a survival rate of 83%-100%. Viral RNA replication and infectious virus production were also significantly reduced in the blood, spleen, liver, lungs, and kidney. Moreover, early administration of low-dose T-705 and late administration (at 5 days after infection) of higher-dose T-705 also showed partial protection. Overall, our study is the first to demonstrate the antiviral activity of T-705 against SUDV, suggesting that T-705 may be a potential drug candidate for use during outbreaks.
Collapse
Affiliation(s)
- Md N Rahim
- Special Pathogens Program, National Microbiology laboratory, Public Health Agency of Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Zirui Zhang
- Special Pathogens Program, National Microbiology laboratory, Public Health Agency of Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Shihua He
- Special Pathogens Program, National Microbiology laboratory, Public Health Agency of Canada
| | - Wenjun Zhu
- Special Pathogens Program, National Microbiology laboratory, Public Health Agency of Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Logan Banadyga
- Special Pathogens Program, National Microbiology laboratory, Public Health Agency of Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - David Safronetz
- Special Pathogens Program, National Microbiology laboratory, Public Health Agency of Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology laboratory, Public Health Agency of Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
184
|
Abstract
Fluorinated nucleosides constitute a large class of chemotherapeutics approved for clinical use. The pharmacokinetic and pharmacodynamic properties of a drug can be affected, as a consequence of modulation of electronic, lipophilic and steric parameters, by the introduction of fluorine into the structure of drug-like molecule. Herein, we focus on fluorinated-nucleoside analogs, their therapeutic use and applications based on the patent literature from 2014 to 2018. We briefly discuss the clinical properties of anticancer and antiviral fluorine-containing nucleos(t)ides US FDA-approved or in development, and highlight their resistance mechanisms and limitations in the clinic. We emphasize patent inventions related to improved synthetic methods toward selected nucleos(t)ide analogs including the phosphoramidate sofosbuvir and 18F-labeled nucleosides FLT and FMAU, used as a 18F-PET tracers.
Collapse
|
185
|
Abstract
Favipiravir is a broad-spectrum antiviral that has shown promise in treatment of influenza virus infections, in particular due to the apparent lack of emergence of resistance mutations against the drug in cell culture or animal studies. We demonstrate here that a mutation in a conserved region of the viral RNA polymerase confers resistance to favipiravir in vitro and in cell culture. The resistance mutation has a cost to viral fitness, but this can be restored by a compensatory mutation in the polymerase. Our findings support the development of favipiravir-resistance diagnostic and surveillance testing strategies and reinforce the importance of considering combinations of therapies to treat influenza infections. Favipiravir is a broad-spectrum antiviral that has shown promise in treatment of influenza virus infections. While emergence of resistance has been observed for many antiinfluenza drugs, to date, clinical trials and laboratory studies of favipiravir have not yielded resistant viruses. Here we show evolution of resistance to favipiravir in the pandemic H1N1 influenza A virus in a laboratory setting. We found that two mutations were required for robust resistance to favipiravir. We demonstrate that a K229R mutation in motif F of the PB1 subunit of the influenza virus RNA-dependent RNA polymerase (RdRP) confers resistance to favipiravir in vitro and in cell culture. This mutation has a cost to viral fitness, but fitness can be restored by a P653L mutation in the PA subunit of the polymerase. K229R also conferred favipiravir resistance to RNA polymerases of other influenza A virus strains, and its location within a highly conserved structural feature of the RdRP suggests that other RNA viruses might also acquire resistance through mutations in motif F. The mutations identified here could be used to screen influenza virus-infected patients treated with favipiravir for the emergence of resistance.
Collapse
|
186
|
de la Higuera I, Ferrer-Orta C, Moreno E, de Ávila AI, Soria ME, Singh K, Caridi F, Sobrino F, Sarafianos SG, Perales C, Verdaguer N, Domingo E. Contribution of a Multifunctional Polymerase Region of Foot-and-Mouth Disease Virus to Lethal Mutagenesis. J Virol 2018; 92:e01119-18. [PMID: 30068642 PMCID: PMC6158410 DOI: 10.1128/jvi.01119-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 07/23/2018] [Indexed: 01/01/2023] Open
Abstract
Viral RNA-dependent RNA polymerases (RdRps) are major determinants of high mutation rates and generation of mutant spectra that mediate RNA virus adaptability. The RdRp of the picornavirus foot-and-mouth disease virus (FMDV), termed 3D, is a multifunctional protein that includes a nuclear localization signal (NLS) in its N-terminal region. Previous studies documented that some amino acid substitutions within the NLS altered nucleotide recognition and enhanced the incorporation of the mutagenic purine analogue ribavirin in viral RNA, but the mutants tested were not viable and their response to lethal mutagenesis could not be studied. Here we demonstrate that NLS amino acid substitution M16A of FMDV serotype C does not affect infectious virus production but accelerates ribavirin-mediated virus extinction. The mutant 3D displays polymerase activity, RNA binding, and copying processivity that are similar to those of the wild-type enzyme but shows increased ribavirin-triphosphate incorporation. Crystal structures of the mutant 3D in the apo and RNA-bound forms reveal an expansion of the template entry channel due to the replacement of the bulky Met by Ala. This is a major difference with other 3D mutants with altered nucleotide analogue recognition. Remarkably, two distinct loop β9-α11 conformations distinguish 3Ds that exhibit higher or lower ribavirin incorporation than the wild-type enzyme. This difference identifies a specific molecular determinant of ribavirin sensitivity of FMDV. Comparison of several polymerase mutants indicates that different domains of the molecule can modify nucleotide recognition and response to lethal mutagenesis. The connection of this observation with current views on quasispecies adaptability is discussed.IMPORTANCE The nuclear localization signal (NLS) of the foot-and-mouth disease virus (FMDV) polymerase includes residues that modulate the sensitivity to mutagenic agents. Here we have described a viable NLS mutant with an amino acid replacement that facilitates virus extinction by ribavirin. The corresponding polymerase shows increased incorporation of ribavirin triphosphate and local structural modifications that implicate the template entry channel. Specifically, comparison of the structures of ribavirin-sensitive and ribavirin-resistant FMDV polymerases has identified loop β9-α11 conformation as a determinant of sensitivity to ribavirin mutagenesis.
Collapse
Affiliation(s)
| | - Cristina Ferrer-Orta
- Structural Biology Unit, Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Elena Moreno
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Ana Isabel de Ávila
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - María Eugenia Soria
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Kamalendra Singh
- Christopher S. Bond Life Sciences Center and Department of Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Flavia Caridi
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Francisco Sobrino
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Stefan G Sarafianos
- Christopher S. Bond Life Sciences Center and Department of Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Celia Perales
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Liver Unit, Internal Medicine, Laboratory of Malalties Hepàtiques, Vall d'Hebron Institut de Recerca-Hospital Universitari Vall d'Hebron (VHIR-HUVH), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nuria Verdaguer
- Structural Biology Unit, Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| |
Collapse
|
187
|
Gregori J, Soria ME, Gallego I, Guerrero-Murillo M, Esteban JI, Quer J, Perales C, Domingo E. Rare haplotype load as marker for lethal mutagenesis. PLoS One 2018; 13:e0204877. [PMID: 30281674 PMCID: PMC6169937 DOI: 10.1371/journal.pone.0204877] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/19/2018] [Indexed: 12/23/2022] Open
Abstract
RNA viruses replicate with a template-copying fidelity, which lies close to an extinction threshold. Increases of mutation rate by nucleotide analogues can drive viruses towards extinction. This transition is the basis of an antiviral strategy termed lethal mutagenesis. We have introduced a new diversity index, the rare haplotype load (RHL), to describe NS5B (polymerase) mutant spectra of hepatitis C virus (HCV) populations passaged in absence or presence of the mutagenic agents favipiravir or ribavirin. The increase in RHL is more prominent in mutant spectra whose expansions were due to nucleotide analogues than to multiple passages in absence of mutagens. Statistical tests for paired mutagenized versus non-mutagenized samples with 14 diversity indices show that RHL provides consistently the highest standardized effect of mutagenic treatment difference for ribavirin and favipiravir. The results indicate that the enrichment of viral quasispecies in very low frequency minority genomes can serve as a robust marker for lethal mutagenesis. The diagnostic value of RHL from deep sequencing data is relevant to experimental studies on enhanced mutagenesis of viruses, and to pharmacological evaluations of inhibitors suspected to have a mutagenic activity.
Collapse
Affiliation(s)
- Josep Gregori
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Internal Medicine Department, Vall d’Hebron Institut Recerca (VHIR)-Hospital Universitari Vall d’Hebron (HUVH), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Roche Diagnostics, S.L., Sant Cugat del Vallés, Barcelona, Spain
| | - María Eugenia Soria
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Internal Medicine Department, Vall d’Hebron Institut Recerca (VHIR)-Hospital Universitari Vall d’Hebron (HUVH), Barcelona, Spain
| | - Isabel Gallego
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Mercedes Guerrero-Murillo
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Internal Medicine Department, Vall d’Hebron Institut Recerca (VHIR)-Hospital Universitari Vall d’Hebron (HUVH), Barcelona, Spain
| | - Juan Ignacio Esteban
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Internal Medicine Department, Vall d’Hebron Institut Recerca (VHIR)-Hospital Universitari Vall d’Hebron (HUVH), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Josep Quer
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Internal Medicine Department, Vall d’Hebron Institut Recerca (VHIR)-Hospital Universitari Vall d’Hebron (HUVH), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Universitat Autónoma de Barcelona, Barcelona, Spain
- * E-mail: (CP); (JQ)
| | - Celia Perales
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Internal Medicine Department, Vall d’Hebron Institut Recerca (VHIR)-Hospital Universitari Vall d’Hebron (HUVH), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- * E-mail: (CP); (JQ)
| | - Esteban Domingo
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| |
Collapse
|
188
|
Davidson S. Treating Influenza Infection, From Now and Into the Future. Front Immunol 2018; 9:1946. [PMID: 30250466 PMCID: PMC6139312 DOI: 10.3389/fimmu.2018.01946] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/07/2018] [Indexed: 12/15/2022] Open
Abstract
Influenza viruses (IVs) are a continual threat to global health. The high mutation rate of the IV genome makes this virus incredibly successful, genetic drift allows for annual epidemics which result in thousands of deaths and millions of hospitalizations. Moreover, the emergence of new strains through genetic shift (e.g., swine-origin influenza A) can cause devastating global outbreaks of infection. Neuraminidase inhibitors (NAIs) are currently used to treat IV infection and act directly on viral proteins to halt IV spread. However, effectivity is limited late in infection and drug resistance can develop. New therapies which target highly conserved features of IV such as antibodies to the stem region of hemagglutinin or the IV RNA polymerase inhibitor: Favipiravir are currently in clinical trials. Compared to NAIs, these treatments have a higher tolerance for resistance and a longer therapeutic window and therefore, may prove more effective. However, clinical and experimental evidence has demonstrated that it is not just viral spread, but also the host inflammatory response and damage to the lung epithelium which dictate the outcome of IV infection. Therapeutic regimens for IV infection should therefore also regulate the host inflammatory response and protect epithelial cells from unnecessary cell death. Anti-inflammatory drugs such as etanercept, statins or cyclooxygenase enzyme 2 inhibitors may temper IV induced inflammation, demonstrating the possibility of repurposing these drugs as single or adjunct therapies for IV infection. IV binds to sialic acid receptors on the host cell surface to initiate infection and productive IV replication is primarily restricted to airway epithelial cells. Accordingly, targeting therapies to the epithelium will directly inhibit IV spread while minimizing off target consequences, such as over activation of immune cells. The neuraminidase mimic Fludase cleaves sialic acid receptors from the epithelium to inhibit IV entry to cells. While type III interferons activate an antiviral gene program in epithelial cells with minimal perturbation to the IV specific immune response. This review discusses the above-mentioned candidate anti-IV therapeutics and others at the preclinical and clinical trial stage.
Collapse
Affiliation(s)
- Sophia Davidson
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| |
Collapse
|
189
|
Hawman DW, Haddock E, Meade-White K, Williamson B, Hanley PW, Rosenke K, Komeno T, Furuta Y, Gowen BB, Feldmann H. Favipiravir (T-705) but not ribavirin is effective against two distinct strains of Crimean-Congo hemorrhagic fever virus in mice. Antiviral Res 2018; 157:18-26. [PMID: 29936152 PMCID: PMC11093520 DOI: 10.1016/j.antiviral.2018.06.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/16/2018] [Accepted: 06/20/2018] [Indexed: 01/05/2023]
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a cause of serious hemorrhagic disease in humans. Humans infected with CCHFV develop a non-specific febrile illness and then progress to the hemorrhagic phase where case fatality rates can be as high as 30%. Currently there is lack of vaccines and the recommended antiviral treatment, ribavirin, has inconsistent efficacy in both human and animal studies. In this study we developed a model of CCHFV infection in type I interferon deficient mice using the clinical CCHFV isolate strain Hoti. Mice infected with strain Hoti develop a progressively worsening and ultimately fatal disease. We utilized this model along with our established model using the prototypical CCHFV strain 10200 to evaluate treatment with ribavirin or the antiviral favipiravir. While ribavirin treatment was able to suppress viral loads at early time points it was ultimately unable to prevent development of terminal disease in mice infected with either strain of CCHFV. In contrast, favipiravir showed clinical benefit even when administered late in the clinical progression of CCHF. Interestingly, in a small subset of mice, late-onset of CCHF was observed after favipiravir treatment was stopped and persistence of viral RNA in favipiravir treated survivors was also seen. Nevertheless, favipiravir showed significant clinical benefit against two distinct strains of CCHFV suggesting it may be a potent antiviral for treatment of human CCHFV infections.
Collapse
|
190
|
Extinction of Zika Virus and Usutu Virus by Lethal Mutagenesis Reveals Different Patterns of Sensitivity to Three Mutagenic Drugs. Antimicrob Agents Chemother 2018; 62:AAC.00380-18. [PMID: 29914957 PMCID: PMC6125542 DOI: 10.1128/aac.00380-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/12/2018] [Indexed: 01/02/2023] Open
Abstract
Flaviviruses constitute an increasing source of public health concern, with growing numbers of pathogens causing disease and geographic spread to temperate climates. Despite a large body of evidence supporting mutagenesis as a conceivable antiviral strategy, there are currently no data on the sensitivity to increased mutagenesis for Zika virus (ZIKV) and Usutu virus (USUV), two emerging flaviviral threats. Flaviviruses constitute an increasing source of public health concern, with growing numbers of pathogens causing disease and geographic spread to temperate climates. Despite a large body of evidence supporting mutagenesis as a conceivable antiviral strategy, there are currently no data on the sensitivity to increased mutagenesis for Zika virus (ZIKV) and Usutu virus (USUV), two emerging flaviviral threats. In this study, we demonstrate that both viruses are sensitive to three ribonucleosides, favipiravir, ribavirin, and 5-fluorouracil, that have shown mutagenic activity against other RNA viruses while remaining unaffected by a mutagenic deoxyribonucleoside. Serial cell culture passages of ZIKV in the presence of these compounds resulted in the rapid extinction of infectivity, suggesting elevated sensitivity to mutagenesis. USUV extinction was achieved when a 10-fold dilution was applied between every passage, but not in experiments involving undiluted virus, indicating an overall lower susceptibility than ZIKV. Although the two viruses are inhibited by the same three drugs, ZIKV is relatively more susceptive to serial passage in the presence of purine analogues (favipiravir and ribavirin), while USUV replication is suppressed more efficiently by 5-fluorouracil. These differences in sensitivity typically correlate with the increases in the mutation frequencies observed in each nucleoside treatment. These results are relevant to the development of efficient therapies based on lethal mutagenesis and support the rational selection of different mutagenic nucleosides for each pathogen. We will discuss the implications of these results to the fidelity of flavivirus replication and the design of antiviral therapies based on lethal mutagenesis.
Collapse
|
191
|
Abstract
The high mutation rate of RNA viruses is credited with their evolvability and virulence. This Primer, however, discusses recent evidence that this is, in part, a byproduct of selection for faster genomic replication.
Collapse
Affiliation(s)
- Siobain Duffy
- School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
192
|
Resistance of high fitness hepatitis C virus to lethal mutagenesis. Virology 2018; 523:100-109. [PMID: 30107298 DOI: 10.1016/j.virol.2018.07.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 01/07/2023]
Abstract
Viral fitness quantifies the degree of virus adaptation to a given environment. How viral fitness can influence the mutant spectrum complexity of a viral quasispecies subjected to lethal mutagenesis has not been investigated. Here we document that two high fitness hepatitis C virus populations display higher resistance to the mutagenic nucleoside analogues favipiravir and ribavirin than their parental, low fitness HCV. All populations, however, exhibited a mutation transition bias indicative of active mutagenesis. Resistance to the analogues was associated with a limited expansion of mutant spectrum complexity, as evidenced by several diversity indices used to characterize mutant spectra. The results are consistent with a replicative site-drug competition mechanism that was previously proposed for HCV fitness-associated resistance to non-mutagenic inhibitors. Other alternative, non-mutually exclusive mechanisms are considered. The results introduce viral fitness as a relevant parameter to evaluate the response of viruses to lethal mutagenesis, with implications for antiviral designs.
Collapse
|
193
|
Orally Efficacious Broad-Spectrum Ribonucleoside Analog Inhibitor of Influenza and Respiratory Syncytial Viruses. Antimicrob Agents Chemother 2018; 62:AAC.00766-18. [PMID: 29891600 DOI: 10.1128/aac.00766-18] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/31/2018] [Indexed: 01/29/2023] Open
Abstract
Morbidity and mortality resulting from influenza-like disease are a threat, especially for older adults. To improve case management, next-generation broad-spectrum antiviral therapeutics that are efficacious against major drivers of influenza-like disease, including influenza viruses and respiratory syncytial virus (RSV), are urgently needed. Using a dual-pathogen high-throughput screening protocol for influenza A virus (IAV) and RSV inhibitors, we have identified N4-hydroxycytidine (NHC) as a potent inhibitor of RSV, influenza B viruses, and IAVs of human, avian, and swine origins. Biochemical in vitro polymerase assays and viral RNA sequencing revealed that the ribonucleotide analog is incorporated into nascent viral RNAs in place of cytidine, increasing the frequency of viral mutagenesis. Viral passaging in cell culture in the presence of an inhibitor did not induce robust resistance. Pharmacokinetic profiling demonstrated dose-dependent oral bioavailability of 36 to 56%, sustained levels of the active 5'-triphosphate anabolite in primary human airway cells and mouse lung tissue, and good tolerability after extended dosing at 800 mg/kg of body weight/day. The compound was orally efficacious against RSV and both seasonal and highly pathogenic avian IAVs in mouse models, reducing lung virus loads and alleviating disease biomarkers. Oral dosing reduced IAV burdens in a guinea pig transmission model and suppressed virus spread to uninfected contact animals through direct transmission. Based on its broad-spectrum efficacy and pharmacokinetic properties, NHC is a promising candidate for future clinical development as a treatment option for influenza-like diseases.
Collapse
|
194
|
Huchting J, Vanderlinden E, Winkler M, Nasser H, Naesens L, Meier C. Prodrugs of the Phosphoribosylated Forms of Hydroxypyrazinecarboxamide Pseudobase T-705 and Its De-Fluoro Analogue T-1105 as Potent Influenza Virus Inhibitors. J Med Chem 2018; 61:6193-6210. [PMID: 29906392 DOI: 10.1021/acs.jmedchem.8b00617] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We here disclose chemical synthesis of ribonucleoside 5'-monophosphate (RMP), -diphosphate (RDP), and -triphosphate (RTP) and cycloSal-, Di PPro-, and Tri PPPro nucleotide prodrugs of the antiviral pseudobase T-1105. Moreover, we include one nucleoside diphosphate prodrug of the chemically less stable T-705. We demonstrate efficient T-1105-RDP and -RTP release from the Di PPro and Tri PPPro compounds by esterase activation. Using crude enzyme extracts, we saw rapid phosphorylation of T-1105-RDP into T-1105-RTP. In sharp contrast, phosphorylation of T-1105-RMP was not seen, indicating a yet unrecognized bottleneck in T-1105's metabolic activation. Accordingly, Di PPro and Tri PPPro compounds displayed improved cell culture activity against influenza A and B virus, which they retained in a mutant cell line incapable of activating the nucleobase parent. T-1105-RTP had a strong inhibitory effect against isolated influenza polymerase, and Di PPro-T-1105-RDP showed 4-fold higher potency in suppressing one-cycle viral RNA synthesis versus T-1105. Hence, our T-1105-RDP and -RTP prodrugs improve antiviral potency and achieve efficient metabolic bypass.
Collapse
Affiliation(s)
- Johanna Huchting
- Organic Chemistry, Department of Chemistry, Faculty of Sciences , Hamburg University , Martin-Luther-King-Platz 6 , D-20146 Hamburg , Germany.,KU Leuven, Rega Institute for Medical Research , Herestraat 49 , B-3000 Leuven , Belgium
| | - Evelien Vanderlinden
- KU Leuven, Rega Institute for Medical Research , Herestraat 49 , B-3000 Leuven , Belgium
| | - Matthias Winkler
- Organic Chemistry, Department of Chemistry, Faculty of Sciences , Hamburg University , Martin-Luther-King-Platz 6 , D-20146 Hamburg , Germany
| | - Hiba Nasser
- Organic Chemistry, Department of Chemistry, Faculty of Sciences , Hamburg University , Martin-Luther-King-Platz 6 , D-20146 Hamburg , Germany
| | - Lieve Naesens
- KU Leuven, Rega Institute for Medical Research , Herestraat 49 , B-3000 Leuven , Belgium
| | - Chris Meier
- Organic Chemistry, Department of Chemistry, Faculty of Sciences , Hamburg University , Martin-Luther-King-Platz 6 , D-20146 Hamburg , Germany
| |
Collapse
|
195
|
Nucleobases and corresponding nucleosides display potent antiviral activities against dengue virus possibly through viral lethal mutagenesis. PLoS Negl Trop Dis 2018; 12:e0006421. [PMID: 29672522 PMCID: PMC5929572 DOI: 10.1371/journal.pntd.0006421] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 05/01/2018] [Accepted: 03/31/2018] [Indexed: 11/23/2022] Open
Abstract
Dengue virus affects millions of people worldwide each year. To date, there is no drug for the treatment of dengue-associated disease. Nucleosides are effective antivirals and work by inhibiting the accurate replication of the viral genome. Nucleobases offer a cheaper alternative to nucleosides for broad antiviral applications. Metabolic activation of nucleobases involves condensation with 5-phosphoribosyl-1-pyrophosphate to give the corresponding nucleoside-5’-monophosphate. This could provide an alternative to phosphorylation of a nucleoside, a step that is often rate limiting and inefficient in activation of nucleosides. We evaluated more than 30 nucleobases and corresponding nucleosides for their antiviral activity against dengue virus. Five nucleobases and two nucleosides were found to induce potent antiviral effects not previously described. Our studies further revealed that nucleobases were usually more active with a better tissue culture therapeutic index than their corresponding nucleosides. The development of viral lethal mutagenesis, an antiviral approach that takes into account the quasispecies behavior of RNA viruses, represents an exciting prospect not yet studied in the context of dengue replication. Passage of the virus in the presence of the nucleobase 3a (T-1105) and corresponding nucleoside 3b (T-1106), favipiravir derivatives, induced an increase in apparent mutations, indicating lethal mutagenesis as a possible antiviral mechanism. A more concerted and widespread screening of nucleobase libraries is a very promising approach to identify dengue virus inhibitors including those that may act as viral mutagens. Dengue virus is a world-wide public health menace estimated to infect hundreds of millions of people per year. Vaccines to prevent dengue virus infection have had limited success due in part to the requirement to elicit effective immune responses against the four dengue serotypes. There is an urgent unmet need for anti-dengue virus therapies. Nucleosides are effective antiviral small molecules which usually work by inhibiting the accurate replication of the viral genome. Typically, nucleosides must be converted within the cell to their triphosphate form to inhibit virus replication, thus inefficient phosphorylation often leads to suboptimal activity. We screened a small library of nucleobases that require an activation pathway different from nucleosides to achieve the same active form. We identified some known and previously undescribed dengue virus nucleobase inhibitors and their corresponding nucleosides. Our investigation of the mechanism of action of one nucleobase and its corresponding nucleoside found evidence for enhanced mutagenesis of the dengue virus genome in the presence of the compounds in cell culture. A wide screening of nucleobases libraries is a promising strategy to discover dengue virus inhibitors including potential viral mutagens.
Collapse
|
196
|
Anindita PD, Sasaki M, Okada K, Ito N, Sugiyama M, Saito-Tarashima N, Minakawa N, Shuto S, Otsuguro S, Ichikawa S, Matsuda A, Maenaka K, Orba Y, Sawa H. Ribavirin-related compounds exert in vitro inhibitory effects toward rabies virus. Antiviral Res 2018; 154:1-9. [PMID: 29601893 DOI: 10.1016/j.antiviral.2018.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/26/2018] [Accepted: 03/26/2018] [Indexed: 12/25/2022]
Abstract
Rabies remains an invariably fatal neurological disease despite the availability of a preventive vaccination and post-exposure prophylaxis that must be immediately administered to the exposed individual before symptom onset. There is no effective medication for treatment during the symptomatic phase. Ribavirin, a guanine nucleoside analog, is a potent inhibitor of rabies virus (RABV) replication in vitro but lacks clinical efficacy. Therefore, we attempted to identify potential ribavirin analogs with comparable or superior anti-RABV activity. Antiviral activity and cytotoxicity of the compounds were initially examined in human neuroblastoma cells. Among the tested compounds, two exhibited a 5- to 27-fold higher anti-RABV activity than ribavirin. Examination of the anti-RABV mechanisms of action of the compounds using time-of-addition and minigenome assays revealed that they inhibited viral genome replication and transcription. Addition of exogenous guanosine to RABV-infected cells diminished the antiviral activity of the compounds, suggesting that they are involved in guanosine triphosphate (GTP) pool depletion by inhibiting inosine monophosphate dehydrogenase (IMPDH). Taken together, our findings underline the potency of nucleoside analogs as a class of antiviral compounds for the development of novel agents against RABV.
Collapse
Affiliation(s)
- Paulina D Anindita
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan.
| | - Kazuma Okada
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Naoto Ito
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Makoto Sugiyama
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Noriko Saito-Tarashima
- Graduate School of Pharmaceutical Science, Tokushima University, Tokushima 770-8505, Japan
| | - Noriaki Minakawa
- Graduate School of Pharmaceutical Science, Tokushima University, Tokushima 770-8505, Japan
| | - Satoshi Shuto
- Laboratory of Organic Chemistry for Drug Development, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Satoko Otsuguro
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Satoshi Ichikawa
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Akira Matsuda
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Katsumi Maenaka
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0020, Japan; Global Virus Network, Baltimore, MD 21201, USA.
| |
Collapse
|
197
|
Lo MK, Jordan PC, Stevens S, Tam Y, Deval J, Nichol ST, Spiropoulou CF. Susceptibility of paramyxoviruses and filoviruses to inhibition by 2'-monofluoro- and 2'-difluoro-4'-azidocytidine analogs. Antiviral Res 2018; 153:101-113. [PMID: 29601894 PMCID: PMC6066796 DOI: 10.1016/j.antiviral.2018.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/20/2018] [Accepted: 03/24/2018] [Indexed: 02/07/2023]
Abstract
Ebolaviruses, marburgviruses, and henipaviruses are zoonotic pathogens belonging to the Filoviridae and Paramyxoviridae families. They exemplify viruses that continue to spill over into the human population, causing outbreaks characterized by high mortality and significant clinical sequelae in survivors of infection. There are currently no approved small molecule therapeutics for use in humans against these viruses. In this study, we evaluated the antiviral activity of the nucleoside analog 4'-azidocytidine (4'N3-C, R1479) and its 2'-monofluoro- and 2'-difluoro-modified analogs (2'F-4'N3-C and 2'diF-4'N3-C) against representative paramyxoviruses (Nipah virus, Hendra virus, measles virus, and human parainfluenza virus 3) and filoviruses (Ebola virus, Sudan virus, and Ravn virus). We observed enhanced antiviral activity against paramyxoviruses with both 2'diF-4'N3-C and 2'F-4'N3-C compared to R1479. On the other hand, while R1479 and 2'diF-4'N3-C inhibited filoviruses similarly to paramyxoviruses, we observed 10-fold lower filovirus inhibition by 2'F-4'N3-C. To our knowledge, this is the first study to compare the susceptibility of paramyxoviruses and filoviruses to R1479 and its 2'-fluoro-modified analogs. The activity of these compounds against negative-strand RNA viruses endorses the development of 4'-modified nucleoside analogs as broad-spectrum therapeutics against zoonotic viruses of public health importance.
Collapse
Affiliation(s)
- Michael K Lo
- US Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Paul C Jordan
- Alios BioPharma, Inc., a Janssen Pharmaceutical Company of Johnson & Johnson, South San Francisco, CA, USA
| | - Sarah Stevens
- Alios BioPharma, Inc., a Janssen Pharmaceutical Company of Johnson & Johnson, South San Francisco, CA, USA
| | - Yuen Tam
- Alios BioPharma, Inc., a Janssen Pharmaceutical Company of Johnson & Johnson, South San Francisco, CA, USA
| | - Jerome Deval
- Alios BioPharma, Inc., a Janssen Pharmaceutical Company of Johnson & Johnson, South San Francisco, CA, USA
| | - Stuart T Nichol
- US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
198
|
Delang L, Abdelnabi R, Neyts J. Favipiravir as a potential countermeasure against neglected and emerging RNA viruses. Antiviral Res 2018. [PMID: 29524445 DOI: 10.1016/j.antiviral.2018.03.003] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Favipiravir, also known as T-705, is an antiviral drug that has been approved in 2014 in Japan to treat pandemic influenza virus infections. The drug is converted intracellularly into its active, phosphoribosylated form, which is recognized as a substrate by the viral RNA-dependent RNA polymerase. Interestingly, besides its anti-influenza virus activity, this molecule is also able to inhibit the replication of flavi-, alpha-, filo-, bunya-, arena-, noro-, and of other RNA viruses, which include neglected and (re)emerging viruses for which no antiviral therapy is currently available. We will discuss the potential of favipiravir as a broad-spectrum countermeasure against infections caused by such neglected RNA viruses. Favipiravir has already been used off-label to treat patients infected with the Ebola virus and the Lassa virus. Because of the particular set-up of the clinical trials during these outbreaks, clear conclusions on the efficacy of favipiravir could not be made. For several viruses, it was demonstrated that the barrier of resistance development against favipiravir is high. Favipiravir has been shown to be well tolerated in healthy volunteers and in influenza virus-infected patients; however, caution is needed because of the teratogenic risks of this molecule. Because of its antiviral activity against different RNA viruses and its high barrier for resistance, the potential of favipiravir as a broad-spectrum antiviral seems promising, but safety and potency issues should be overcome before this drug or similar molecules could be used to treat large patient groups.
Collapse
Affiliation(s)
- Leen Delang
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, B-3000, Leuven, Belgium.
| | - Rana Abdelnabi
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, B-3000, Leuven, Belgium
| | - Johan Neyts
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, B-3000, Leuven, Belgium
| |
Collapse
|
199
|
Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease. mBio 2018; 9:mBio.00221-18. [PMID: 29511076 PMCID: PMC5844999 DOI: 10.1128/mbio.00221-18] [Citation(s) in RCA: 972] [Impact Index Per Article: 162.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Emerging coronaviruses (CoVs) cause severe disease in humans, but no approved therapeutics are available. The CoV nsp14 exoribonuclease (ExoN) has complicated development of antiviral nucleosides due to its proofreading activity. We recently reported that the nucleoside analogue GS-5734 (remdesivir) potently inhibits human and zoonotic CoVs in vitro and in a severe acute respiratory syndrome coronavirus (SARS-CoV) mouse model. However, studies with GS-5734 have not reported resistance associated with GS-5734, nor do we understand the action of GS-5734 in wild-type (WT) proofreading CoVs. Here, we show that GS-5734 inhibits murine hepatitis virus (MHV) with similar 50% effective concentration values (EC50) as SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Passage of WT MHV in the presence of the GS-5734 parent nucleoside selected two mutations in the nsp12 polymerase at residues conserved across all CoVs that conferred up to 5.6-fold resistance to GS-5734, as determined by EC50. The resistant viruses were unable to compete with WT in direct coinfection passage in the absence of GS-5734. Introduction of the MHV resistance mutations into SARS-CoV resulted in the same in vitro resistance phenotype and attenuated SARS-CoV pathogenesis in a mouse model. Finally, we demonstrate that an MHV mutant lacking ExoN proofreading was significantly more sensitive to GS-5734. Combined, the results indicate that GS-5734 interferes with the nsp12 polymerase even in the setting of intact ExoN proofreading activity and that resistance can be overcome with increased, nontoxic concentrations of GS-5734, further supporting the development of GS-5734 as a broad-spectrum therapeutic to protect against contemporary and emerging CoVs. Coronaviruses (CoVs) cause severe human infections, but there are no approved antivirals to treat these infections. Development of nucleoside-based therapeutics for CoV infections has been hampered by the presence of a proofreading exoribonuclease. Here, we expand the known efficacy of the nucleotide prodrug remdesivir (GS-5734) to include a group β-2a CoV. Further, GS-5734 potently inhibits CoVs with intact proofreading. Following selection with the GS-5734 parent nucleoside, 2 amino acid substitutions in the nsp12 polymerase at residues that are identical across CoVs provide low-level resistance to GS-5734. The resistance mutations decrease viral fitness of MHV in vitro and attenuate pathogenesis in a SARS-CoV animal model of infection. Together, these studies define the target of GS-5734 activity and demonstrate that resistance is difficult to select, only partial, and impairs fitness and virulence of MHV and SARS-CoV, supporting further development of GS-5734 as a potential effective pan-CoV antiviral.
Collapse
|
200
|
Guedj J, Piorkowski G, Jacquot F, Madelain V, Nguyen THT, Rodallec A, Gunther S, Carbonnelle C, Mentré F, Raoul H, de Lamballerie X. Antiviral efficacy of favipiravir against Ebola virus: A translational study in cynomolgus macaques. PLoS Med 2018; 15:e1002535. [PMID: 29584730 PMCID: PMC5870946 DOI: 10.1371/journal.pmed.1002535] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/14/2018] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Despite repeated outbreaks, in particular the devastating 2014-2016 epidemic, there is no effective treatment validated for patients with Ebola virus disease (EVD). Among the drug candidates is the broad-spectrum polymerase inhibitor favipiravir, which showed a good tolerance profile in patients with EVD (JIKI trial) but did not demonstrate a strong antiviral efficacy. In order to gain new insights into the antiviral efficacy of favipiravir and improve preparedness and public health management of future outbreaks, we assess the efficacy achieved by ascending doses of favipiravir in Ebola-virus-infected nonhuman primates (NHPs). METHODS AND FINDINGS A total of 26 animals (Macaca fascicularis) were challenged intramuscularly at day 0 with 1,000 focus-forming units of Ebola virus Gabon 2001 strain and followed for 21 days (study termination). This included 13 animals left untreated and 13 treated with doses of 100, 150, and 180 mg/kg (N = 3, 5, and 5, respectively) favipiravir administered intravenously twice a day for 14 days, starting 2 days before infection. All animals left untreated or treated with 100 mg/kg died within 10 days post-infection, while animals receiving 150 and 180 mg/kg had extended survival (P < 0.001 and 0.001, respectively, compared to untreated animals), leading to a survival rate of 40% (2/5) and 60% (3/5), respectively, at day 21. Favipiravir inhibited viral replication (molecular and infectious viral loads) in a drug-concentration-dependent manner (P values < 0.001), and genomic deep sequencing analyses showed an increase in virus mutagenesis over time. These results allowed us to identify that plasma trough favipiravir concentrations greater than 70-80 μg/ml were associated with reduced viral loads, lower virus infectivity, and extended survival. These levels are higher than those found in the JIKI trial, where patients had median trough drug concentrations equal to 46 and 26 μg/ml at day 2 and day 4 post-treatment, respectively, and suggest that the dosing regimen in the JIKI trial was suboptimal. The environment of a biosafety level 4 laboratory introduces a number of limitations, in particular the difficulty of conducting blind studies and performing detailed pharmacological assessments. Further, the extrapolation of the results to patients with EVD is limited by the fact that the model is fully lethal and that treatment initiation in patients with EVD is most often initiated several days after infection, when symptoms and high levels of viral replication are already present. CONCLUSIONS Our results suggest that favipiravir may be an effective antiviral drug against Ebola virus that relies on RNA chain termination and possibly error catastrophe. These results, together with previous data collected on tolerance and pharmacokinetics in both NHPs and humans, support a potential role for high doses of favipiravir for future human interventions.
Collapse
Affiliation(s)
- Jérémie Guedj
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- * E-mail:
| | - Géraldine Piorkowski
- UMR Émergence des Pathologies Virales, Aix-Marseille University, IRD 190, Inserm 1207, École des Hautes Études en Santé Publique, Marseille, France
| | | | - Vincent Madelain
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Thi Huyen Tram Nguyen
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Anne Rodallec
- UMR Émergence des Pathologies Virales, Aix-Marseille University, IRD 190, Inserm 1207, École des Hautes Études en Santé Publique, Marseille, France
- SMARTc Unit, U911 Cro2, Aix-Marseille University, Marseille, France
| | - Stephan Gunther
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - France Mentré
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Hervé Raoul
- Laboratoire P4 Inserm–Jean Mérieux, US003 Inserm, Lyon, France
| | - Xavier de Lamballerie
- UMR Émergence des Pathologies Virales, Aix-Marseille University, IRD 190, Inserm 1207, École des Hautes Études en Santé Publique, Marseille, France
| |
Collapse
|