151
|
Paulus C, Nevels M. The human cytomegalovirus major immediate-early proteins as antagonists of intrinsic and innate antiviral host responses. Viruses 2009; 1:760-79. [PMID: 21994568 PMCID: PMC3185523 DOI: 10.3390/v1030760] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 11/04/2009] [Accepted: 11/05/2009] [Indexed: 12/21/2022] Open
Abstract
The major immediate-early (IE) gene of human cytomegalovirus (CMV) is believed to have a decisive role in acute infection and its activity is an important indicator of viral reactivation from latency. Although a variety of gene products are expressed from this region, the 72-kDa IE1 and the 86-kDa IE2 nuclear phosphoproteins are the most abundant and important. Both proteins have long been recognized as promiscuous transcriptional regulators. More recently, a critical role of the IE1 and IE2 proteins in counteracting non-adaptive host cell defense mechanisms has been revealed. In this review we will briefly summarize the available literature on IE1- and IE2-dependent mechanisms contributing to CMV evasion from intrinsic and innate immune responses.
Collapse
Affiliation(s)
- Christina Paulus
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Franz-Josef-Strauss-Allee 11, D-93053 Regensburg, Germany; E-Mail:
| | | |
Collapse
|
152
|
Physical requirements and functional consequences of complex formation between the cytomegalovirus IE1 protein and human STAT2. J Virol 2009; 83:12854-70. [PMID: 19812155 DOI: 10.1128/jvi.01164-09] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Our previous work has shown that efficient evasion from type I interferon responses by human cytomegalovirus (hCMV) requires expression of the 72-kDa immediate-early 1 (IE1) protein. It has been suggested that IE1 inhibits interferon signaling through intranuclear sequestration of the signal transducer and activator of transcription 2 (STAT2) protein. Here we show that physical association and subnuclear colocalization of IE1 and STAT2 depend on short acidic and serine/proline-rich low-complexity motifs in the carboxy-terminal region of the 491-amino-acid viral polypeptide. These motifs compose an essential core (amino acids 373 to 420) and an adjacent ancillary site (amino acids 421 to 445) for STAT2 interaction that are predicted to form part of a natively unstructured domain. The presence of presumably "disordered" carboxy-terminal domains enriched in low-complexity motifs is evolutionarily highly conserved across all examined mammalian IE1 orthologs, and the murine cytomegalovirus IE1 protein appears to interact with STAT2 just like the human counterpart. A recombinant hCMV specifically mutated in the IE1 core STAT2 binding site displays hypersensitivity to alpha interferon, delayed early viral protein accumulation, and attenuated growth in fibroblasts. However, replication of this mutant virus is specifically restored by knockdown of STAT2 expression. Interestingly, complex formation with STAT2 proved to be entirely separable from disruption of nuclear domain 10 (ND10), another key activity of IE1. Finally, our results demonstrate that IE1 counteracts the antiviral interferon response and promotes viral replication by at least two distinct mechanisms, one depending on sequestration of STAT2 and the other one likely involving ND10 interaction.
Collapse
|
153
|
Human cytomegalovirus IE1-72 protein interacts with p53 and inhibits p53-dependent transactivation by a mechanism different from that of IE2-86 protein. J Virol 2009; 83:12388-98. [PMID: 19776115 DOI: 10.1128/jvi.00304-09] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Infection of host cells with human cytomegalovirus (HCMV) induces cell cycle dysregulation. Two HCMV immediate-early (IE) proteins, IE1-72 and IE2-86, are promiscuous transactivators that have been implicated in the dysregulatory events. Cellular p53 protein is accumulated to high levels in HCMV-infected cells, but the indicative marker of p53 transcriptional activity, p21, is markedly decreased. Both IE1-72 and IE2-86 were able to transactivate the p53 promoter and interact with p53 protein in DNA-transfected or HCMV-infected cells. HCMV UL84, a multiregulatory protein expressed in early periods of HCMV infection, also interacted with p53. HCMV IE1-72 prevented or disrupted p53 binding to p53-specific DNA sequences, while IE2-86 and/or UL84 enhanced p53 binding and induced supershift of this DNA-protein complex. Both HCMV IE1-72 and IE2-86 were able to inhibit p53-dependent transcriptional activation in plasmid-transfected cells. IE1-72, rather than IE2-86, was found to be responsible for p21 downregulation in HCMV-infected HEL cells. DNA transfection analysis using IE1-72 mutants revealed that exon 2/3 and the zinc finger region of IE1-72 are essential for IE1-72's effect on the repression of p53-dependent transcriptional activation. These data suggest that HCMV IE1-72 and/or IE2-86 transactivates the p53 promoter and induces p53 accumulation, but HCMV IE1-72 represses the p53 transactivation activity by a unique binding hindrance mechanism different from that of IE2-86. Thus, various modes of viral IE proteins and p53 interactions might result in multiple outcomes, such as stimulation of cellular DNA synthesis, cell cycle progression and cell cycle arrest, and prevention of program cell death.
Collapse
|
154
|
Effect of inducible expressed human cytomegalovirus immediate early 86 protein on cell apoptosis. Biosci Biotechnol Biochem 2009; 73:1268-73. [PMID: 19502735 DOI: 10.1271/bbb.80722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human cytomegalovirus is a common human pathogen that can cause life-threatening disease under certain conditions. During infection of host cells, the virus expresses regulatory proteins such as IE72 and IE86 that are important for viral propagation. IE86 plays a critical role in the modulation of viral replication as well as host cell cycle control and apoptosis. In this study, a Tet-On system was used to quantify the effect of IE86 on apoptosis and p53 expression. Our results indicate that IE86 inhibits tumor necrosis factor (TNF)-alpha induced apoptosis and that the anti-apoptotic activity of this viral protein correlates with its expression levels. In addition, IE86 did not alter the mRNA level of p53. The system developed should provide a method for functional analysis of human cytomegalovirus (HCMV) IE86 protein.
Collapse
|
155
|
Koh K, Lee K, Ahn JH, Kim S. Human cytomegalovirus infection downregulates the expression of glial fibrillary acidic protein in human glioblastoma U373MG cells: identification of viral genes and protein domains involved. J Gen Virol 2009; 90:954-962. [PMID: 19264642 DOI: 10.1099/vir.0.006486-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human cytomegalovirus (HCMV) has tropism for glial cells, among many other cell types. It was reported previously that the stable expression of HCMV immediate-early protein 1 (IE1) could dramatically reduce the RNA level of glial fibrillary acidic protein (GFAP), an astroglial cell-specific intermediate filament protein, which is progressively lost with an increase in glioma malignancy. To understand this phenomenon in the context of virus infection, a human glioblastoma cell line, U373MG, was infected with HCMV (strain AD169 or Towne). The RNA level of GFAP was reduced by more than 10-fold at an m.o.i. of 3 at 48 h post-infection, whilst virus treated with neutralizing antibody C23 or with UV light had a much-reduced effect. Treatment of infected cells with ganciclovir did not prevent HCMV-mediated downregulation of GFAP. Although the expression of GFAP RNA is downregulated in IE1-expressing cells, a mutant HCMV strain lacking IE1 still suppressed GFAP, indicating that other IE proteins may be involved. IE2 is also proposed to be involved in GFAP downregulation, as an adenoviral vector expressing IE2 could also reduce the RNA level of GFAP. Data from the mutational analysis indicated that HCMV infection might affect the expression of this structural protein significantly, primarily through the C-terminal acidic region of the IE1 protein.
Collapse
Affiliation(s)
- Kyungmi Koh
- School of Biological Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Karim Lee
- School of Biological Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Jin-Hyun Ahn
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Kyonggido 440-746, Republic of Korea
| | - Sunyoung Kim
- School of Biological Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| |
Collapse
|
156
|
The story of human cytomegalovirus and cancer: increasing evidence and open questions. Neoplasia 2009; 11:1-9. [PMID: 19107226 DOI: 10.1593/neo.81178] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 10/16/2008] [Accepted: 10/16/2008] [Indexed: 02/08/2023] Open
Abstract
Although human cytomegalovirus (HCMV) is generally not regarded to be an oncogenic virus, HCMV infection has been implicated in malignant diseases from different cancer entities. On the basis of our experimental findings, we developed the concept of "oncomodulation" to better explain the role of HCMV in cancer. Oncomodulation means that HCMV infects tumor cells and increases their malignancy. By this concept, HCMV was proposed to be a therapeutic target in a fraction of cancer patients. However, the clinical relevance of HCMV-induced oncomodulation remains to be clarified. One central question that has to be definitively answered is if HCMV establishes persistent virus replication in tumor cells or not. In our eyes, recent clinical findings from different groups in glioblastoma patients and especially the detection of a correlation between the numbers of HCMV-infected glioblastoma cells and tumor stage (malignancy) strongly increase the evidence that HCMV may exert oncomodulatory effects. Here, we summarize the currently available knowledge about the molecular mechanisms that may contribute to oncomodulation by HCMV as well as the clinical findings that suggest that a fraction of tumors from different entities is indeed infected with HCMV.
Collapse
|
157
|
Human cytomegalovirus protein pUL38 induces ATF4 expression, inhibits persistent JNK phosphorylation, and suppresses endoplasmic reticulum stress-induced cell death. J Virol 2009; 83:3463-74. [PMID: 19193809 DOI: 10.1128/jvi.02307-08] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The endoplasmic reticulum (ER) is a key organelle involved in sensing and responding to stressful conditions, including those resulting from infection of viruses, such as human cytomegalovirus (HCMV). Three signaling pathways collectively termed the unfolded protein response (UPR) are activated to resolve ER stress, but they will also lead to cell death if the stress cannot be alleviated. HCMV is able to modulate the UPR to promote its infection. The specific viral factors involved in such HCMV-mediated modulation, however, were unknown. We previously showed that HCMV protein pUL38 was required to maintain the viability of infected cells, and it blocked cell death induced by thapsigargin. Here, we report that pUL38 is an HCMV-encoded regulator to modulate the UPR. In infection, pUL38 allowed HCMV to upregulate phosphorylation of PKR-like ER kinase (PERK) and the alpha subunit of eukaryotic initiation factor 2 (eIF-2alpha), as well as induce robust accumulation of activating transcriptional factor 4 (ATF4), key components of the PERK pathway. pUL38 also allowed the virus to suppress persistent phosphorylation of c-Jun N-terminal kinase (JNK), which was induced by the inositol-requiring enzyme 1 pathway. In isolation, pUL38 overexpression elevated eIF-2alpha phosphorylation, induced ATF4 accumulation, limited JNK phosphorylation, and suppressed cell death induced by both thapsigargin and tunicamycin, two drugs that induce ER stress by different mechanisms. Importantly, ATF4 overexpression and JNK inhibition significantly reduced cell death in pUL38-deficient virus infection. Thus, pUL38 targets ATF4 expression and JNK activation, and this activity appears to be critical for protecting cells from ER stress induced by HCMV infection.
Collapse
|
158
|
Cheeran MCJ, Lokensgard JR, Schleiss MR. Neuropathogenesis of congenital cytomegalovirus infection: disease mechanisms and prospects for intervention. Clin Microbiol Rev 2009; 22:99-126, Table of Contents. [PMID: 19136436 PMCID: PMC2620634 DOI: 10.1128/cmr.00023-08] [Citation(s) in RCA: 349] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Congenital cytomegalovirus (CMV) infection is the leading infectious cause of mental retardation and hearing loss in the developed world. In recent years, there has been an improved understanding of the epidemiology, pathogenesis, and long-term disabilities associated with CMV infection. In this review, current concepts regarding the pathogenesis of neurological injury caused by CMV infections acquired by the developing fetus are summarized. The pathogenesis of CMV-induced disabilities is considered in the context of the epidemiology of CMV infection in pregnant women and newborn infants, and the clinical manifestations of brain injury are reviewed. The prospects for intervention, including antiviral therapies and vaccines, are summarized. Priorities for future research are suggested to improve the understanding of this common and disabling illness of infancy.
Collapse
Affiliation(s)
- Maxim C-J Cheeran
- Departments of Medicine, Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
159
|
Shin KC, Park CG, Hwang ES, Cha CY. Human cytomegalovirus IE1 protein enhances herpes simplex virus type 1-induced syncytial formation in U373MG cells. J Korean Med Sci 2008; 23:1046-52. [PMID: 19119451 PMCID: PMC2610642 DOI: 10.3346/jkms.2008.23.6.1046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 03/12/2008] [Indexed: 12/18/2022] Open
Abstract
Co-infection of herpes simplex virus type 1 (HSV-1) and human cytomegalovirus (HCMV) is not uncommon in immunocompromised hosts. Importantly, organ transplant recipients concurrently infected with HSV-1 and HCMV have a worse clinical outcome than recipients infected with a single virus. However, factors regulating the pathologic response in HSV-1, HCMV co-infected tissues are unclear. We investigated the potential biologic role of HCMV gene product immediate early 1 (IE1) protein in HSV-1-induced syncytial formation in U373MG cells. We utilized a co-infection model by infecting HSV-1 to U373MG cells constitutively expressing HCMV IE1 protein, UMG1-2. Syncytial formation was assessed by enumerating nuclei number per syncytium and number of syncytia. HSV-1-induced syncytial formation was enhanced after 24 hr in UMG1-2 cells compared with U373MG controls. The amplified phenotype in UMG1-2 cells was effectively suppressed by roscovitine in addition to inhibitors of viral replication. This is the first study to provide histological evidence of the contribution of HCMV IE1 protein to enhanced cytopathogenic responses in active HSV-1 infection.
Collapse
Affiliation(s)
- Ki-Chul Shin
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Chung-Gyu Park
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Eung-Soo Hwang
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Chang-Yon Cha
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
160
|
Inhibition of cyclooxygenase activity blocks cell-to-cell spread of human cytomegalovirus. Proc Natl Acad Sci U S A 2008; 105:19468-73. [PMID: 19033472 DOI: 10.1073/pnas.0810740105] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus has previously been shown to induce the accumulation of cyclooxygenase-2 RNA, protein, and enzyme activity. High doses of cyclooxygenase inhibitors substantially block viral replication in cultured fibroblasts. However, doses corresponding to the level of drug achieved in the plasma of patients have little effect on the replication of human cytomegalovirus in cultured cells. Here, we demonstrate that two nonsteroidal anti-inflammatory drugs, tolfenamic acid and indomethacin, markedly reduce direct cell-to-cell spread of human cytomegalovirus in cultured fibroblasts. The block is reversed by addition of prostaglandin E2, proving that it results from the action of the drugs on cyclooxygenase activity. Because direct cell-to-cell spread likely contributes importantly to pathogenesis of the virus, we suggest that nonsteroidal anti-inflammatory drugs might help to control human cytomegalovirus infections in conjunction with other anti-viral treatments.
Collapse
|
161
|
Yu Y, Pilgrim P, Yan J, Zhou W, Jenkins M, Gagliano N, Bumm K, Cannon M, Milzani A, Dalle-Donne I, Kast WM, Cobos E, Chiriva-Internati M. Protective CD8+ T-cell responses to cytomegalovirus driven by rAAV/GFP/IE1 loading of dendritic cells. J Transl Med 2008; 6:56. [PMID: 18834548 PMCID: PMC2570669 DOI: 10.1186/1479-5876-6-56] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2008] [Accepted: 10/05/2008] [Indexed: 12/26/2022] Open
Abstract
Background Recent studies demonstrate that recombinant adeno-associated virus (rAAV)-based antigen loading of dendritic cells (DCs) generates in vitro, significant and rapid cytotoxic T-lymphocyte (CTL) responses against viral antigens. Methods We used the rAAV system to induce specific CTLs against CVM antigens for the development of cytomegalovirus HCMV) gene therapy. As an extension of the versatility of the rAAV system, we incorporated immediate-early 1 (IE1), expressed in HCMV. Our rAAV vector induced a strong stimulation of CTLs directed against the HCMV antigen IE1. We then investigated the efficiency of the CTLs in killing IE1 targeted cells. Results A significant MHC Class I-restricted, anti-IE1-specific CTL killing was demonstrated against IE1 positive peripheral blood mononuclear cells (PBMC) after one, in vitro, stimulation. Conclusion In summary, single PBMC stimulation with rAAV/IE1 pulsed DCs induces strong antigen specific-CTL generation. CTLs were capable to lyse low doses of peptides pulsed into target cells. These data suggest that AAV-based antigen loading of DCs is highly effective for generating human CTL responses against HCMV antigens.
Collapse
Affiliation(s)
- Yuefei Yu
- Division of Hematology & Oncology, Texas Tech University Health Sciences Center and Southwest Cancer Treatment and Research Center, Lubbock, TX, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Binding STAT2 by the acidic domain of human cytomegalovirus IE1 promotes viral growth and is negatively regulated by SUMO. J Virol 2008; 82:10444-54. [PMID: 18701593 DOI: 10.1128/jvi.00833-08] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The human cytomegalovirus (HCMV) 72-kDa immediate-early 1 (IE1) protein is thought to modulate cellular antiviral functions impacting on promyelocytic leukemia (PML) nuclear bodies and signal transducer and activator of transcription (STAT) signaling. IE1 consists of four distinct regions: an amino-terminal region required for nuclear localization, a large central hydrophobic region responsible for PML targeting and transactivation activity, an acidic domain, and a carboxyl-terminal chromatin tethering domain. We found that the acidic domain of IE1 is required for binding to STAT2. A mutant HCMV encoding IE1(Delta421-475) with the acidic domain deleted was generated. In mutant virus-infected cells, IE1(Delta421-475) failed to bind to STAT2. The growth of mutant virus was only slightly delayed at a high multiplicity of infection (MOI) but was severely impaired at a low MOI with low-level accumulation of viral proteins. When cells were pretreated with beta interferon, the mutant virus showed an additional 1,000-fold reduction in viral growth, even at a high MOI, compared to the wild type. The inhibition of STAT2 loading on the target promoter upon infection was markedly reduced with mutant virus. Furthermore, sumoylation of IE1 at this acidic domain was found to abolish the activity of IE1 to bind to STAT2 and repress the interferon-stimulated genes. Our results provide genetic evidence that IE1 binding to STAT2 requires the 55-amino-acid acidic domain and promotes viral growth by interfering with interferon signaling and demonstrate that this viral activity is negatively regulated by a cellular sumoylation pathway.
Collapse
|
163
|
Yurochko AD. Human cytomegalovirus modulation of signal transduction. Curr Top Microbiol Immunol 2008; 325:205-20. [PMID: 18637508 DOI: 10.1007/978-3-540-77349-8_12] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An upregulation of cellular signaling pathways is observed in multiple cell types upon human cytomegalovirus (HCMV) infection, suggesting that a global feature of HCMV infection is the activation of the host cell. HCMV initiates and maintains cellular signaling through a multitiered process that is dependent on a series of events: (1) the viral glycoprotein ligand interacts with its cognate receptor, (2) cellular enzymes and viral tegument proteins present in the incoming virion are released and (3) a variety of viral gene products are expressed. Viral-mediated cellular modification has differential outcomes depending on the cell type infected. In permissive cell types, such as diploid fibroblasts, the upregulation of cellular signaling pathways following infection can initiate the viral gene cascade and promote the efficient transcription of multiple viral gene classes. In other cell types, such as endothelial cells and monocytes/macrophages, the upregulation of cellular pathways initiates functional host changes that allow viral spread to multiple organ systems. Together, the modification of signaling processes appears to be part of a thematic strategy deployed by the virus to direct the required functional changes in target cells that ultimately promote viral survival and persistence in the host.
Collapse
Affiliation(s)
- A D Yurochko
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway Shreveport, LA 71130-3932, USA.
| |
Collapse
|
164
|
Abstract
Caspase-dependent apoptosis has an important role in controlling viruses, and as a result, viruses often encode proteins that target this pathway. Caspase-dependent apoptosis can be activated from within the infected cell as an intrinsic response to replication-associated stresses or through death-inducing signals produced extrinsically by immune cells. Cytomegaloviruses (CMVs) encode a mitochondria-localized inhibitor of apoptosis, vMIA, and a viral inhibitor of caspase activation, vICA, the functional homologs of Bcl-2 related and c-FLIP proteins, respectively. Evidence from viral mutants deleting either vMIA or vICA suggests that each is necessary and sufficient to promote survival of infected cells undergoing caspase-dependent apoptosis. Additional proteins, including pUL38, IE1(491a), and IE2(579aa), can prevent apoptosis induced by various stimuli, while viruses with deletions of UL38, M45, or m41 undergo apoptosis. The viral RNA, beta2.7, binds mitochondrial respiratory complex I, maintains ATP production late in infection, and prevents death induced by a mitochondrial poison. Thus, CMV alters cell intrinsic defenses employing apoptosis, and multiple viral gene products together control death-inducing stimuli to promote survival.
Collapse
Affiliation(s)
- A L McCormick
- Department of Microbiology & Immunology, Emory Vaccine Center, Emory University Atlanta, GA 30322, USA.
| |
Collapse
|
165
|
Britt W. Manifestations of human cytomegalovirus infection: proposed mechanisms of acute and chronic disease. Curr Top Microbiol Immunol 2008; 325:417-70. [PMID: 18637519 DOI: 10.1007/978-3-540-77349-8_23] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Infections with human cytomegalovirus (HCMV) are a major cause of morbidity and mortality in humans with acquired or developmental deficits in innate and adaptive immunity. In the normal immunocompetent host, symptoms rarely accompany acute infections, although prolonged virus shedding is frequent. Virus persistence is established in all infected individuals and appears to be maintained by both a chronic productive infections as well as latency with restricted viral gene expression. The contributions of the each of these mechanisms to the persistence of this virus in the individual is unknown but frequent virus shedding into the saliva and genitourinary tract likely accounts for the near universal incidence of infection in most populations in the world. The pathogenesis of disease associated with acute HCMV infection is most readily attributable to lytic virus replication and end organ damage either secondary to virus replication and cell death or from host immunological responses that target virus-infected cells. Antiviral agents limit the severity of disease associated with acute HCMV infections, suggesting a requirement for virus replication in clinical syndromes associated with acute infection. End organ disease secondary to unchecked virus replication can be observed in infants infected in utero, allograft recipients receiving potent immunosuppressive agents, and patients with HIV infections that exhibit a loss of adaptive immune function. In contrast, diseases associated with chronic or persistent infections appear in normal individuals and in the allografts of the transplant recipient. The manifestations of these infections appear related to chronic inflammation, but it is unclear if poorly controlled virus replication is necessary for the different phenotypic expressions of disease that are reported in these patients. Although the relationship between HCMV infection and chronic allograft rejection is well known, the mechanisms that account for the role of this virus in graft loss are not well understood. However, the capacity of this virus to persist in the midst of intense inflammation suggests that its persistence could serve as a trigger for the induction of host-vs-graft responses or alternatively host responses to HCMV could contribute to the inflammatory milieu characteristic of chronic allograft rejection.
Collapse
Affiliation(s)
- W Britt
- Department of Pediatrics, University of Alabama School of Medicine, Childrens Hospital, Harbor Bldg. 104, 1600 7th Ave. South Birmingham, AL 35233, USA.
| |
Collapse
|
166
|
Chan G, Bivins-Smith ER, Smith MS, Smith PM, Yurochko AD. Transcriptome analysis reveals human cytomegalovirus reprograms monocyte differentiation toward an M1 macrophage. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:698-711. [PMID: 18566437 PMCID: PMC2614917 DOI: 10.4049/jimmunol.181.1.698] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Monocytes are primary targets for human CMV (HCMV) infection and are proposed to be responsible for hematogenous dissemination of the virus. Monocytes acquire different functional traits during polarization to the classical proinflammatory M1 macrophage or the alternative antiinflammatory M2 macrophage. We hypothesized that HCMV induced a proinflammatory M1 macrophage following infection to promote viral dissemination because, biologically, a proinflammatory state provides the tools to drive infected monocytes from the blood into the tissue. To test this hypothesis of monocyte conversion from a normal quiescent phenotype to an inflammatory phenotype, we used Affymetrix Microarray to acquire a transcriptional profile of infected monocytes at a time point our data emphasized is a key temporal regulatory point following infection. We found that HCMV significantly up-regulated 583 (5.2%) of the total genes and down-regulated 621 (5.5%) of the total genes>or=1.5-fold at 4 h postinfection. Further ontology analysis revealed that genes implicated in classical M1 macrophage activation were stimulated by HCMV infection. We found that 65% of genes strictly associated with M1 polarization were up-regulated, while only 4% of genes solely associated with M2 polarization were up-regulated. Analysis of the monocyte chemokinome at the transcriptional level showed that 44% of M1 and 33% of M2 macrophage chemokines were up-regulated. Proteomic analysis using chemokine Ab arrays confirmed the secretion of these chemotactic proteins from HCMV-infected monocytes. Overall, the results identify that the HCMV-infected monocyte transcriptome displayed a unique M1/M2 polarization signature that was skewed toward the classical M1 activation phenotype.
Collapse
Affiliation(s)
- Gary Chan
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | | | | | | | | |
Collapse
|
167
|
Sakai A, Watanabe K, Koketsu M, Akuzawa K, Yamada R, Li Z, Sadanari H, Matsubara K, Murayama T. Anti-Human Cytomegalovirus Activity of Constituents from Sasa Albo-Marginata (Kumazasa in Japan). ACTA ACUST UNITED AC 2008; 19:125-32. [DOI: 10.1177/095632020801900303] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Effective new anti-human cytomegalovirus (HCMV) agents and regimens need to be developed. We examined the anti-HCMV properties of crude extract (True World Extract of Bambuseae sasa [TWEBS]) and five compounds ( p-coumaric acid, 3-hydroxy-4-methoxyben-zaldehyde [vanillin], p-hydroxybenzaldehyde, 3-hydroxypyridine and 4',5,7-trihydroxy-3',5'-dimethoxyflavone [tricin]), isolated from Sasa albo-marginata, a bamboo known in Japan as Sasa. Methods: Among TWEBS and five compounds screened in a plaque reduction assay, four showed anti-HCMV activity in the MRC-5 human embryonic fibroblast cell line. The anti-HCMV mechanisms of the TWEBS was examined by western blot analysis using primary antibody specific for an immediate early (IE) antigen of HCMV, for a structural late antigen of HCMV and for β-actin. Results: Treatment of cells with ⩾0.001% of TWEBS inhibited the observable cytopathic effects of HCMV on infected cells. Western blot analysis demonstrated that TWEBS decreased the expression of IE antigen and late antigen of HCMV in the infected cells. Next, we examined the anti-HCMV properties of five compounds isolated from TWEBS. In a viral plaque reduction assay, tricin showed dose-dependent inhibitory properties with a 50% effective concentration of 0.17 µug/ml (selective index =1,205.8). Conclusions: The hot water extract (TWEBS) of Sasa albo-marginata, with tricin isolated from it, has anti-HCMV activity in MRC-5 cells. TWEBS and/or tricin are a novel compound with potential anti-HCMV activity. Future studies should evaluate these findings in vivo.
Collapse
Affiliation(s)
- Asumi Sakai
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan
| | - Kunitomo Watanabe
- Division of Anaerobe Research, Life Science Research Center, Gifu University, Gifu, Japan
| | - Mamoru Koketsu
- Division of Instrumental Analysis, Life Science Research Center, Gifu University, Gifu, Japan
| | - Kazuhiko Akuzawa
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan
| | - Rie Yamada
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan
| | - Zhuan Li
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan
| | - Hidetaka Sadanari
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan
| | - Keiko Matsubara
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan
| | - Tsugiya Murayama
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan
| |
Collapse
|
168
|
Development of cell lines that provide tightly controlled temporal translation of the human cytomegalovirus IE2 proteins for complementation and functional analyses of growth-impaired and nonviable IE2 mutant viruses. J Virol 2008; 82:7059-77. [PMID: 18463148 DOI: 10.1128/jvi.00675-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) IE2 86 protein is essential for viral replication. Two other proteins, IE2 60 and IE2 40, which arise from the C-terminal half of IE2 86, are important for later stages of the infection. Functional analyses of IE2 86 in the context of the infection have utilized bacterial artificial chromosomes as vectors to generate mutant viruses. One limitation is that many mutations result in debilitated or nonviable viruses. Here, we describe a novel system that allows tightly controlled temporal expression of the IE2 proteins and provides complementation of both growth-impaired and nonviable IE2 mutant viruses. The strategy involves creation of cell lines with separate lentiviruses expressing a bicistronic RNA with a selectable marker as the first open reading frame (ORF) and IE2 86, IE2 60, or IE2 40 as the second ORF. Induction of expression of the IE2 proteins occurs only following DNA recombination events mediated by Cre and FLP recombinases that delete the first ORF. HCMV encodes Cre and FLP, which are expressed at immediate-early (for IE2 86) and early-late (for IE2 40 and IE2 60) times, respectively. We show that the presence of full-length IE2 86 alone provides some complementation for virus production, but the correct temporal expression of IE2 86 and IE2 40 together has the most beneficial effect for early-late gene expression and synthesis of infectious virus. This approach for inducible protein translation can be used for complementation of other mutations as well as controlled expression of toxic cellular and microbial proteins.
Collapse
|
169
|
Cobbs CS, Soroceanu L, Denham S, Zhang W, Kraus MH. Modulation of oncogenic phenotype in human glioma cells by cytomegalovirus IE1-mediated mitogenicity. Cancer Res 2008; 68:724-30. [PMID: 18245472 DOI: 10.1158/0008-5472.can-07-2291] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent evidence indicates that human cytomegalovirus (HCMV) infection occurs in a high percentage of human malignant gliomas in vivo, as the HCMV immediate early-1 (IE1) protein is detected in >90% of these tumors. The HCMV IE1 protein is essential for viral infection and has potent trans-activating and oncomodulatory properties. To investigate a potential role of HCMV in glioma biology, we stably expressed the HCMV IE1 gene product in immortalized and malignant human glial cells. Here we show that stable IE1 expression can differentially affect the growth of human glioblastoma cells, resulting in either growth proliferation or arrest. IE1 expression led to dysregulation of phosphatidylinositol 3-kinase/AKT activity, Rb phosphorylation, and expression of the p53 family of proteins. In U87 and U118 glioblastoma cells, IE1 induced cellular proliferation paralleled by reduction in steady-state expression level of Rb and p53 family proteins (including p53, p63, or p73) and simultaneous induction of the phosphatidylinositol 3-kinase/AKT signaling pathway. In contrast, IE1 expression in LN229 and U251 glioblastoma cells and immortalized human astrocytes was associated with increased expression of p53 family proteins, accompanied by growth arrest or lack of enhanced proliferation. Moreover, IE1 promoted cell cycle entry and DNA synthesis of human glioma cells on both stable expression in tumor-derived cell lines as well as transient expression in primary glioblastoma cells. These findings indicate that HCMV IE1 can significantly affect important oncogenic signaling pathways in glioblastoma cells.
Collapse
Affiliation(s)
- Charles S Cobbs
- Department of Surgery, Division of Neurosurgery, University of Alabama School of Medicine, Birmingham, Alabama, USA.
| | | | | | | | | |
Collapse
|
170
|
Abstract
The IE86 protein of human cytomegalovirus (HCMV) is unique among viral and cellular proteins because it negatively autoregulates its own expression, activates the viral early and late promoters, and both activates and inhibits cellular promoters. It promotes cell cycle progression from Go/G1 to G1/S and arrests cell cycle progression at the G1/S interface or at G2/M. The IE86 protein is essential because it creates a cellular environment favorable for viral replication. The multiple functions of the IE86 protein during the replication of HCMV are reviewed.
Collapse
|
171
|
Murayama T, Eizuru Y, Yamada R, Sadanari H, Matsubara K, Rukung G, Tolo FM, Mungai GM, Kofi-Tsekpo M. Anticytomegalovirus activity of pristimerin, a triterpenoid quinone methide isolated from Maytenus heterophylla (Eckl. & Zeyh.). Antivir Chem Chemother 2007; 18:133-9. [PMID: 17626597 DOI: 10.1177/095632020701800303] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We examined the anticytomegalovirus properties of four compounds: pristimerin, the pristimerin analogue, lupeol and 2-acetylphenol-1-beta-D-glucopyranosyl (1 --> 6)-beta-D-xylpyranoside (acetophenol glycoside), isolated from Maytenus heterophylla, a Kenyan medicinal plant. The effects were studied on human cytomegalovirus (HCMV) replication in the human embryonic fibroblast cell line, MRC-5. In a viral plaque-reduction assay, pristimerin showed dose-dependent inhibitory properties with a 50% inhibitory concentration of 0.53 microg/ml (selective index = 27.9). The cells treated with pristimerin inhibited the cytopathic effects in HCMV-infected cells. Moreover, pristimerin suppressed viral replication without affecting the cell growth. Pristimerin inhibited the synthesis of viral DNA but had no virucidal effect on cell-free HCMV. Furthermore, Western blot analysis demonstrated that pristimerin decreased the amount of immediate early (IE) antigen (especially IE2) expression in the infected cells. These results suggest that pristimerin is a unique compound with potential anti-HCMV activity.
Collapse
Affiliation(s)
- Tsugiya Murayama
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Saffert RT, Kalejta RF. Human cytomegalovirus gene expression is silenced by Daxx-mediated intrinsic immune defense in model latent infections established in vitro. J Virol 2007; 81:9109-20. [PMID: 17596307 PMCID: PMC1951389 DOI: 10.1128/jvi.00827-07] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In addition to productive lytic infections, herpesviruses such as human cytomegalovirus (HCMV) establish a reservoir of latently infected cells that permit lifelong colonization of the host. When latency is established, the viral immediate-early (IE) genes that initiate the lytic replication cycle are not expressed. HCMV IE gene expression at the start of a lytic infection is facilitated by the viral pp71 protein, which is delivered to cells by infectious viral particles. pp71 neutralizes the Daxx-mediated cellular intrinsic immune defense that silences IE gene expression by generating a repressive chromatin structure on the viral major IE promoter (MIEP). In naturally latently infected cells and in cells latently infected in vitro, the MIEP also adopts a similar silenced chromatin structure. Here we analyze the role of Daxx in quiescent HCMV infections in vitro that mimic some, but not all, of the characteristics of natural latency. We show that in these "latent-like" infections, the Daxx-mediated defense that represses viral gene expression is not disabled because pp71 and Daxx localize to different cellular compartments. We demonstrate that Daxx is required to establish quiescent HCMV infections in vitro because in cells that would normally foster the establishment of these latent-like infections, the loss of Daxx causes the lytic replication cycle to be initiated. Importantly, the lytic cycle is inefficiently completed, which results in an abortive infection. Our work demonstrates that, in certain cell types, HCMV must silence its own gene expression to establish quiescence and prevent abortive infection and that the virus usurps a Daxx-mediated cellular intrinsic immune defense mechanism to do so. This identifies Daxx as one of the likely multiple viral and cellular determinants in the pathway of HCMV quiescence in vitro, and perhaps in natural latent infections as well.
Collapse
Affiliation(s)
- Ryan T Saffert
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
173
|
Cobbs CS, Soroceanu L, Denham S, Zhang W, Britt WJ, Pieper R, Kraus MH. Human cytomegalovirus induces cellular tyrosine kinase signaling and promotes glioma cell invasiveness. J Neurooncol 2007; 85:271-80. [PMID: 17589804 DOI: 10.1007/s11060-007-9423-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 05/23/2007] [Indexed: 01/17/2023]
Abstract
Given our previous findings that human cytomegalovirus (HCMV) nucleic acids and proteins are expressed in human malignant glioma in vivo, we investigated cellular signaling events associated with HCMV infection of human glioma and astroglial cells. HCMV infection caused rapid activation of the phosphatidylinositol-3 kinase (PI-3K) effector AKT kinase in human astro-glial and fibroblast cells, and induced tyrosine phosphorylation of phospholipase Cgamma (PLCgamma). Co-immunoprecipitation experiments revealed association of the p85 regulatory subunit of PI-3K with a high-molecular weight protein phosphorylated on tyrosine, following short-term exposure to HCMV. In contrast to a previous report, we were unable to confirm the identity of this high-molecular weight protein as being the epidermal growth factor receptor (EGFR). Stimulation of glioma and fibroblast cell lines over-expressing EGFR with HCMV (whole virus) or soluble glycoprotein B did not induce tyrosine phosphorylation of the receptor, as did the genuine ligand, EGF. Furthermore, we found that expression levels of the human ErbB1-4 receptors were not rate-limiting for HCMV infection. Dispensability of EGFR function during early HCMV infection was substantiated by demonstration of viral immediate early gene expression in cells lacking the EGFR gene, indicating that HCMV may promote oncogenic signaling pathways independently of EGFR activation. Among non-receptor cellular kinases, HCMV infection induced phosphorylation of focal adhesion kinase (FAK) Tyr397, which is indispensable for integrin-mediated cell migration and invasion. HCMV-induced FAK activation was paralleled by increased extracellular matrix-dependent migration of human malignant glioma but not normal astro-glial cells, suggesting that HCMV can selectively augment glioma cell invasiveness.
Collapse
Affiliation(s)
- Charles S Cobbs
- Department of Surgery, University of Alabama School of Medicine, Birmingham, AL, USA.
| | | | | | | | | | | | | |
Collapse
|
174
|
Odeberg J, Wolmer N, Falci S, Westgren M, Sundtröm E, Seiger A, Söderberg-Nauclér C. Late human cytomegalovirus (HCMV) proteins inhibit differentiation of human neural precursor cells into astrocytes. J Neurosci Res 2007; 85:583-93. [PMID: 17154414 DOI: 10.1002/jnr.21144] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Human cytomegalovirus (HCMV) is the most common cause of congenital infections in developed countries, with an incidence varying between 0.5-2.2%. Such infection may be the consequence of either a primary infection or reactivation of a latent infection in the mother and the outcome may vary from asymptomatic to severe brain disorders. Moreover, infants that are asymptomatic at the time of birth may still develop neurologic sequelae at a later age. Our hypothesis is that infection of stem cells of the central nervous system by HCMV alters the proliferation, differentiation or migration of these cells, and thereby gives rise to the brain abnormalities observed. We show that infection of human neural precursor cells (NPCs) with the laboratory strain Towne or the clinical isolate TB40 of HCMV suppresses the differentiation of these cells into astrocytes even at an multiplicity of infection (MOI) as low as 0.1 (by 33% and 67%, respectively). This inhibition required active viral replication and the expression of late HCMV proteins. Infection as late as 24 hr after the onset of differentiation, but not after 72 hr, also prevented the maturation of infected cultures. Furthermore, in cultures infected with TB40 (at an MOI of 1), approximately 54% of the cells were apoptotic and cell proliferation was significantly attenuated. Clearly, HCMV can reduce the capacity of NPCs to differentiate into astrocytes and this effect may provide part of the explanation for the abnormalities in brain development associated with congenital HCMV infection.
Collapse
Affiliation(s)
- Jenny Odeberg
- Karolinska Institutet, Department of Medicine, Center for Molecular Medicine, Karolinska University Hospital in Solna, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
175
|
Petrik DT, Schmitt KP, Stinski MF. The autoregulatory and transactivating functions of the human cytomegalovirus IE86 protein use independent mechanisms for promoter binding. J Virol 2007; 81:5807-18. [PMID: 17376893 PMCID: PMC1900308 DOI: 10.1128/jvi.02437-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The functions of the human cytomegalovirus (HCMV) IE86 protein are paradoxical, as it can both activate and repress viral gene expression through interaction with the promoter region. Although the mechanism for these functions is not clearly defined, it appears that a combination of direct DNA binding and protein-protein interactions is involved. Multiple sequence alignment of several HCMV IE86 homologs reveals that the amino acids (534)LPIYE(538) are conserved between all primate and nonprimate CMVs. In the context of a bacterial artificial chromosome (BAC), mutation of both P535 and Y537 to alanines (P535A/Y537A) results in a nonviable BAC. The defective HCMV BAC does not undergo DNA replication, although the P535A/Y537A mutant IE86 protein appears to be stably expressed. The P535A/Y537A mutant IE86 protein is able to negatively autoregulate transcription from the major immediate-early (MIE) promoter and was recruited to the MIE promoter in a chromatin immunoprecipitation (ChIP) assay. However, the P535A/Y537A mutant IE86 protein was unable to transactivate early viral genes and was not recruited to the early viral UL4 and UL112 promoters in a ChIP assay. From these data, we conclude that the transactivation and repressive functions of the HCMV IE86 protein can be separated and must occur through independent mechanisms.
Collapse
Affiliation(s)
- Dustin T Petrik
- Interdisciplinary Program in Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
176
|
Jarvis MA, Nelson JA. Human cytomegalovirus tropism for endothelial cells: not all endothelial cells are created equal. J Virol 2007; 81:2095-101. [PMID: 16956936 PMCID: PMC1865914 DOI: 10.1128/jvi.01422-06] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Michael A Jarvis
- Vaccine and Gene Therapy Institute, Oregon Health Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | |
Collapse
|
177
|
Terhune S, Torigoi E, Moorman N, Silva M, Qian Z, Shenk T, Yu D. Human cytomegalovirus UL38 protein blocks apoptosis. J Virol 2007; 81:3109-23. [PMID: 17202209 PMCID: PMC1866066 DOI: 10.1128/jvi.02124-06] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Apoptosis is an innate cellular defense response to viral infection. The slow-replicating human cytomegalovirus (HCMV) blocks premature death of host cells prior to completion of the infection cycle. In this study, we report that the HCMV UL38 gene encodes a cell death inhibitory protein. A mutant virus lacking the pUL38 coding sequence, ADdlUL38, grew poorly in human fibroblasts, failed to accumulate viral DNA to wild-type levels, and induced excessive death of infected cells. Cells expressing pUL38 were resistant to cell death upon infection and effectively supported the growth of ADdlUL38. Cells infected with the pUL38-deficient virus showed morphological changes characteristic of apoptosis, including cell shrinkage, membrane blebbing, vesicle release, and chromatin condensation and fragmentation. The proteolytic cleavage of two key enzymes involved in apoptosis, namely, caspase 3 and poly(ADP-ribose) polymerase, was activated upon ADdlUL38 infection, and the cleavage was blocked in cells expressing pUL38. The pan-caspase inhibitor Z-VAD-FMK largely restored the growth of ADdlUL38 in normal fibroblasts, indicating that the defective growth of the mutant virus mainly resulted from premature death of host cells. Furthermore, cells expressing pUL38 were resistant to cell death induced by a mutant adenovirus lacking the antiapoptotic E1B-19K protein or by thapsigargin, which disrupts calcium homeostasis in the endoplasmic reticulum. Taken together, these results indicate that the HCMV protein pUL38 suppresses apoptosis, blocking premature death of host cells to facilitate efficient virus replication.
Collapse
Affiliation(s)
- Scott Terhune
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
178
|
Chiou SH, Yang YP, Lin JC, Hsu CH, Jhang HC, Yang YT, Lee CH, Ho LLT, Hsu WM, Ku HH, Chen SJ, Chen SSL, Chang MDT, Wu CW, Juan LJ. The immediate early 2 protein of human cytomegalovirus (HCMV) mediates the apoptotic control in HCMV retinitis through up-regulation of the cellular FLICE-inhibitory protein expression. THE JOURNAL OF IMMUNOLOGY 2006; 177:6199-206. [PMID: 17056549 DOI: 10.4049/jimmunol.177.9.6199] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human CMV (HCMV) is a widespread human pathogen that causes blindness by inducing retinitis in AIDS patients. Previously, we showed that viral immediate early 2 (IE2) protein may allow HCMV to evade the immune control by killing the Fas receptor-positive T lymphocytes attracted to the infected retina with increased secretion of Fas ligand (FasL). In this study, we further demonstrate that the secreted FasL also kills uninfected Fas-rich bystander retinal cells and that IE2 simultaneously protects the infected cells from undergoing apoptotic death, in part, by activating the expression of cellular FLIP (c-FLIP), an antiapoptotic molecule that blocks the direct downstream executer caspase 8 of the FasL/Fas pathway. c-FLIP induction requires the N-terminal 98 residues of IE2 and the c-FLIP promoter region spanning nucleotides -978 to -696. In vivo association of IE2 to this region, IE2-specific c-FLIP activation, and decrease of FasL-up-regulated activities of caspases 8 and 3 were all demonstrated in HCMV-infected human retinal cells. Moreover, c-FLIP up-regulation by IE2 appeared to involve PI3K and might also render cells resistant to TRAIL-mediated death. Finally, enhanced c-FLIP signals were immunohistochemically detected in IE-positive cells in the HCMV-infected lesions of the human retina. Taken together, these data demonstrate specific activation of c-FLIP by HCMV IE2 and indicate a novel role for c-FLIP in the pathogenesis of HCMV retinitis.
Collapse
Affiliation(s)
- Shih-Hwa Chiou
- Department of Ophthalmology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Sharon-Friling R, Goodhouse J, Colberg-Poley AM, Shenk T. Human cytomegalovirus pUL37x1 induces the release of endoplasmic reticulum calcium stores. Proc Natl Acad Sci U S A 2006; 103:19117-22. [PMID: 17135350 PMCID: PMC1748185 DOI: 10.1073/pnas.0609353103] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The human CMV UL37x1-encoded protein, also known as the viral mitochondria-localized inhibitor of apoptosis, traffics to the endoplasmic reticulum and mitochondria of infected cells. It induces the fragmentation of mitochondria and blocks apoptosis. We demonstrate that UL37x1 protein mobilizes Ca(2+) from the endoplasmic reticulum into the cytosol. This release is accompanied by cell rounding, cell swelling, and reorganization of the actin cytoskeleton, and these morphological changes can be substantially blocked by a Ca(2+) chelating agent. The UL37x1-mediated release of Ca(2+) from the endoplasmic reticulum likely has multiple consequences, including induction of the unfolded protein response, modulation of mitochondrial function, induction of mitochondrial fission, and protection against apoptotic stimuli.
Collapse
Affiliation(s)
- Ronit Sharon-Friling
- *Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014; and
| | - Joseph Goodhouse
- *Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014; and
| | - Anamaris M. Colberg-Poley
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010
| | - Thomas Shenk
- *Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
180
|
Tomoiu A, Gravel A, Tanguay RM, Flamand L. Functional interaction between human herpesvirus 6 immediate-early 2 protein and ubiquitin-conjugating enzyme 9 in the absence of sumoylation. J Virol 2006; 80:10218-28. [PMID: 17005699 PMCID: PMC1617313 DOI: 10.1128/jvi.00375-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The immediate-early 2 (IE2) protein of human herpesvirus 6 is a potent transactivator of cellular and viral promoters. To better understand the biology of IE2, we generated a LexA-IE2 fusion protein and screened, using the yeast two-hybrid system, a Jurkat T-cell cDNA library for proteins that could interact with IE2. The most frequently isolated IE2-interacting protein was the human ubiquitin-conjugating enzyme 9 (Ubc9), a protein involved in the small ubiquitin-like modifier (SUMO) conjugation pathway. Using deletion mutants of IE2, we mapped the IE2-Ubc9-interacting region to residues 989 to 1037 of IE2. The interaction was found to be of functional significance to IE2, as Ubc9 overexpression significantly repressed promoter activation by IE2. The C93S Ubc9 mutant exhibited a similar effect on IE2, indicating that the E2 SUMO-conjugating function of Ubc9 is not required for its repressive action on IE2. No consensus sumoylation sites or evidence of IE2 conjugation to SUMO could be demonstrated under in vivo or in vitro conditions. Moreover, expression levels and nuclear localization of IE2 were not altered by Ubc9 overexpression, suggesting that Ubc9's repressive function likely occurs at the transcriptional complex level. Overall, our results indicate that Ubc9 influences IE2's function and provide new information on the complex interactions that occur between herpesviruses and the sumoylation pathway.
Collapse
Affiliation(s)
- Andru Tomoiu
- Centre de Recherche du CHUL, 2705 Laurier Blvd., Room T1-49, Québec, QC, Canada
| | | | | | | |
Collapse
|
181
|
Shlapobersky M, Sanders R, Clark C, Spector DH. Repression of HMGA2 gene expression by human cytomegalovirus involves the IE2 86-kilodalton protein and is necessary for efficient viral replication and inhibition of cyclin A transcription. J Virol 2006; 80:9951-61. [PMID: 17005673 PMCID: PMC1617307 DOI: 10.1128/jvi.01300-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Human cytomegalovirus (HCMV) infection results in dysregulation of several cell cycle genes, including inhibition of cyclin A transcription. In this work, we examine the effect of the HCMV infection on expression of the high-mobility group A2 (HMGA2) gene, which encodes an architectural transcription factor that is involved in cyclin A promoter activation. We find that expression of HMGA2 RNA is repressed in infected cells. To determine whether repression of HMGA2 is directly related to the inhibition of cyclin A expression and impacts on the progression of the infection, we constructed an HCMV recombinant that expressed HMGA2. In cells infected with the recombinant virus, cyclin A mRNA and protein are induced, and there is a significant delay in viral early gene expression and DNA replication. To determine the mechanism of HMGA2 repression, we used recombinant viruses that expressed either no IE1 72-kDa protein (CR208) or greatly reduced levels of IE2 86-kDa (IE2 86) protein (IE2 86DeltaSX-EGFP). At a high multiplicity of infection, the IE1 deletion mutant is comparable to the wild type with respect to inhibition of HMGA2. In contrast, the IE2 86DeltaSX-EGFP mutant does not significantly repress HMGA2 expression, suggesting that IE2 86 is involved in the regulation of this gene. Cyclin A expression is also induced in cells infected with this mutant virus. Since HMGA2 is important for cell proliferation and differentiation, particularly during embryogenesis, it is possible that the repression of HMGA2 expression during fetal development could contribute to the specific birth defects in HCMV-infected neonates.
Collapse
Affiliation(s)
- Mark Shlapobersky
- Cellular and Molecular Medicine East, Room 2059, 9500 Gilman Drive, University of California-San Diego, La Jolla, CA 92093-0712, USA
| | | | | | | |
Collapse
|
182
|
Odeberg J, Wolmer N, Falci S, Westgren M, Seiger A, Söderberg-Nauclér C. Human cytomegalovirus inhibits neuronal differentiation and induces apoptosis in human neural precursor cells. J Virol 2006; 80:8929-39. [PMID: 16940505 PMCID: PMC1563895 DOI: 10.1128/jvi.00676-06] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the most common cause of congenital infections in developed countries, with an incidence varying between 0.5 and 2.2% and consequences varying from asymptomatic infection to lethal conditions for the fetus. Infants that are asymptomatic at birth may still develop neurological sequelae, such as hearing loss and mental retardation, at a later age. Infection of neural stem and precursor cells by HCMV and consequent disruption of the proliferation, differentiation, and/or migration of these cells may be the primary mechanism underlying the development of brain abnormalities. In the present investigation, we demonstrate that human neural precursor cells (NPCs) are permissive for HCMV infection, by both the laboratory strain Towne and the clinical isolate TB40, resulting in 55% and 72% inhibition of induced differentiation of human NPCs into neurons, respectively, when infection occurred at the onset of differentiation. This repression of neuronal differentiation required active viral replication and involved the expression of late HCMV gene products. This capacity of HCMV to prevent neuronal differentiation declined within 24 h after initiation of differentiation. Furthermore, the rate of cell proliferation in infected cultures was attenuated. Surprisingly, HCMV-infected cells exhibited an elevated frequency of apoptosis at 7 days following the onset of differentiation, at which time approximately 50% of the cells were apoptotic at a multiplicity of infection of 10. These findings indicate that HCMV has the capacity to reduce the ability of human NPCs to differentiate into neurons, which may offer one explanation for the abnormalities in brain development associated with congenital HCMV infection.
Collapse
Affiliation(s)
- Jenny Odeberg
- Neurotec Department, Division of Neurodegeneration and Neuroinflammation, Novum floor 5, SE-141 86 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
183
|
Casavant NC, Luo MH, Rosenke K, Winegardner T, Zurawska A, Fortunato EA. Potential role for p53 in the permissive life cycle of human cytomegalovirus. J Virol 2006; 80:8390-401. [PMID: 16912290 PMCID: PMC1563868 DOI: 10.1128/jvi.00505-06] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Infection of primary fibroblasts with human cytomegalovirus (HCMV) causes a rapid stabilization of the cellular protein p53. p53 is a major effector of the cellular damage response, and activation of this transcription factor can lead either to cell cycle arrest or to apoptosis. Viruses employ many tactics to avoid p53-mediated effects. One method HCMV uses to counteract p53 is sequestration into its viral replication centers. In order to determine whether or not HCMV benefits from this sequestration, we infected a p53(-/-) fibroblast line. We find that although these cells are permissive for viral infection, several parameters are substantially altered compared to wild-type (wt) fibroblasts. p53(-/-) cells show delayed and decreased accumulation of infectious viral particles compared to control fibroblasts, with the largest difference of 100-fold at 72 h post infection (p.i.) and peak titers decreased by approximately 10- to 20-fold at 144 h p.i. Viral DNA accumulation is also delayed and somewhat decreased in p53(-/-) cells; however, on average, levels of DNA are not more than fivefold lower than wt at any time p.i. and thus cannot account entirely for the observed differences in titers. In addition, there are delays in the expression of several key viral proteins, including the early replication protein UL44 and some of the late structural proteins, pp28 (UL99) and MCP (UL86). UL44 localization also indicates delayed formation and maturation of the replication centers throughout the course of infection. Localization of the major tegument protein pp65 (UL83) is also altered in these p53(-/-) cells. Partial reconstitution of the p53(-/-) cells with a wt copy of p53 returns all parameters toward wt, while reconstitution with mutant p53 does not. Taken together, our data suggest that wt p53 enhances the ability of HCMV to replicate and produce high concentrations of infectious virions in permissive cells.
Collapse
Affiliation(s)
- N C Casavant
- Department of Microbiology, Molecular Biology and Biochemistry and The Center for Reproductive Biology, University of Idaho, Moscow, 83844-3052, USA
| | | | | | | | | | | |
Collapse
|
184
|
Marfè G, De Martino L, Filomeni G, Di Stefano C, Giganti MG, Pagnini U, Napolitano F, Iovane G, Ciriolo MR, Salimei PS. Degenerate PCR method for identification of an antiapoptotic gene in BHV-1. J Cell Biochem 2006; 97:813-23. [PMID: 16237705 DOI: 10.1002/jcb.20636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To investigate on the hypothetical presence of an antiapoptotic gene, we utilized the CODEHOP (COnsensus-DEgenerate Hybrid Oligonucleotide Primers) strategy amplifying unknown sequences from a background of genomic (bovine herpesvirus type-1) BHV-1 DNA. An alignment of carboxyl-terminal domains belonging to three proteins encoded by gamma34.5, MyD116 and GADD34 genes, was carried out to design degenerate PCR primers in highly conserved regions. This allowed the amplification of a 110 bp fragment. This fragment was subjected to automatic sequencing and DNA sequence analysis revealed that its position resided between the nt 14363 and the nt 14438 in bovine herpesvirus type-1 (BHV-1) Cooper strain sharing an identity of 86% (UL14). Transient transfections showed that UL14 protein is efficient in protecting MDBK and K562 cells from sorbitol induced apoptosis. The protein's anti-apoptotic function may derive from its heat shock protein-like properties.
Collapse
Affiliation(s)
- G Marfè
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata-Via Montpellier 1, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Tomoiu A, Gravel A, Flamand L. Mapping of human herpesvirus 6 immediate-early 2 protein transactivation domains. Virology 2006; 354:91-102. [PMID: 16884756 DOI: 10.1016/j.virol.2006.06.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 04/10/2006] [Accepted: 06/23/2006] [Indexed: 11/21/2022]
Abstract
The immediate-early 2 (IE2) protein of human herpesvirus 6 (HHV-6) is a potent transactivator of multiple cellular and viral promoters. Deletion mutants of HHV-6 variant A IE2 allowed us to map functional transactivation domains acting on complex and minimal promoter sequences. This mapping showed that both the N-terminal and C-terminal domains of IE2 are required for efficient transactivation, and that deletion of the C-terminal (1397-1466) tail of IE2 drastically reduces both transactivation and the intranuclear distribution of IE2. Moreover, we determined that the ATF/CRE binding site within the HHV-6A polymerase promoter is not required for efficient transactivation by IE2, whereas the R3 repeat region of the putative immediate-early promoter of HHV-6A is responsive to and positively regulated by IE2. These results contrast sharply to that of human cytomegalovirus (HCMV) IE2, which down-regulates its promoter. Our characterization of HHV-6 IE2 transactivating activity provides a better understanding of the complex interactions of this protein with the viral and cellular transcription machinery and highlights significant differences with the IE2 protein of HCMV.
Collapse
Affiliation(s)
- Andru Tomoiu
- Laboratory of Virology, Rheumatology and Immunology Research Center, Centre de Recherche du CHUL and Faculty of Medicine, Laval University, 2705 Laurier Blvd., Room T1-49, Québec, Qc, Canada G1V 4G2.
| | | | | |
Collapse
|
186
|
Utama B, Shen YH, Mitchell BM, Makagiansar IT, Gan Y, Muthuswamy R, Duraisamy S, Martin D, Wang X, Zhang MX, Wang J, Wang J, Vercellotti GM, Gu W, Wang XL. Mechanisms for human cytomegalovirus-induced cytoplasmic p53 sequestration in endothelial cells. J Cell Sci 2006; 119:2457-67. [PMID: 16720642 DOI: 10.1242/jcs.02974] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection results in endothelial dysfunction, typically known as dysregulated apoptosis, and aberrant expression and sub-cellular localization of p53, a tumor suppressor that accumulates at the late stage of infection. In this study, we examined three hypotheses that could be responsible for HCMV-induced cytoplasmic p53 accumulation at the later stage of infection: hyperactive nuclear export, cytoplasmic p53 tethering and delayed p53 degradation. Leptomycin B treatment, a nuclear export inhibitor, was unable to reduce cytoplasmic p53, thereby eliminating the hyperactive nuclear export mechanism. The findings that nascent p53 still entered nuclei after the nuclear export inhibition indicated that cytoplasmic tethering may play a minor role. Cytoplasmic p53 was still observed after the translation activities were blocked by cycloheximide. There was more than an eight-fold increase in the cytoplasmic p53 half-life with abnormal p53 ubiquitination. Taken together, these results suggest that delayed degradation could be responsible for the cytoplasmic p53 accumulation. The general slow-down of the proteasomal activity and the dysregulated p53 ubiquitination process at the later stage of infection could contribute to the reduced cytoplasmic p53 degradation and might be relevant to dysregulated endothelial apoptosis. The HCMV-induced changes in p53 dynamics could contribute to endothelial dysfunction.
Collapse
Affiliation(s)
- Budi Utama
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Jurak I, Brune W. Induction of apoptosis limits cytomegalovirus cross-species infection. EMBO J 2006; 25:2634-42. [PMID: 16688216 PMCID: PMC1478185 DOI: 10.1038/sj.emboj.7601133] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Accepted: 04/18/2006] [Indexed: 11/08/2022] Open
Abstract
Cross-species infections are responsible for the majority of emerging and re-emerging viral diseases. However, little is known about the mechanisms that restrict viruses to a certain host species, and the factors viruses need to cross the species barrier and replicate in a different host. Cytomegaloviruses (CMVs) are representatives of the beta-herpesviruses that are highly species specific. They replicate only in cells of their own or a closely related species. In this study, the molecular mechanism underlying the cytomegalovirus species specificity was investigated. We show that infection of human cells with the murine cytomegalovirus (MCMV) triggers the intrinsic apoptosis pathway involving caspase-9 activation. MCMV can break the species barrier and replicate in human cells if apoptosis is blocked by Bcl-2 or a functionally analogous protein. A single gene of the human cytomegalovirus encoding a mitochondrial inhibitor of apoptosis is sufficient to allow MCMV replication in human cells. Moreover, the same principle facilitates replication of the rat cytomegalovirus in human cells. Thus, induction of apoptosis serves as an innate immune defense to inhibit cross-species infections of rodent CMVs.
Collapse
Affiliation(s)
- Igor Jurak
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
- Division of Viral Infections, Robert Koch Institute, Berlin, Germany
| | - Wolfram Brune
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
- Division of Viral Infections, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
188
|
Abstract
Human cytomegalovirus (HCMV) is a beta herpes virus with a double stranded DNA genome of 240kbp. The virus is prevalent and establishes a latent infection in most adults. HCMV is an opportunistic pathogen for patients with impaired cellular immunity. HCMV pneumonia is a common presentation of HCMV disease in immunocompromised patients. The incidence of HCMV pneumonitis can be as high as 90% in lung transplant recipients. This paper takes a fresh look at the challenging perspectives of molecular, immunologic, cellular, diagnostic, clinical, and therapeutic characteristics of HCMV infection as future targets for development of antiviral strategies.
Collapse
Affiliation(s)
- Erik Langhoff
- James J. Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA.
| | | |
Collapse
|
189
|
Zhen H, Fang F, Ye DY, Shu SN, Zhou YF, Dong YS, Nie XC, Li G. Experimental study on the action of allitridin against human cytomegalovirus in vitro: Inhibitory effects on immediate-early genes. Antiviral Res 2006; 72:68-74. [PMID: 16844239 DOI: 10.1016/j.antiviral.2006.03.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 03/22/2006] [Accepted: 03/28/2006] [Indexed: 11/29/2022]
Abstract
Garlic (Allium sativum) extraction has been reported having anti-HCMV efficacy. This study was aimed to investigate the effect of allitridin (diallyl trisulfide, a compound from A. sativum extraction) on the replication of HCMV and the expression of viral immediate-early genes. In HCMV plaque-reduction assay, allitridin appeared a dose-dependent inhibitory ability with EC(50) value of 4.2 microg/ml (selective index, SI=16.7). Time-of-addition and time-of-removal studies showed that allitridin inhibited HCMV replication in earlier period of viral cycle before viral DNA synthesis. Both immediate early gene (ie1) transcription and IEA (IE(1)72 and IE(2)86) expression was suppressed by allitridin, but not by GCV in a single HCMV cycle format. In addition, allitridin appeared stronger inhibition on IE(2)86 than on IE(1)72. Decrease of viral DNA load in infected cells was also detected under allitridin treatment, probably due to an indirect consequence of the reduction in ie gene transcription. In summary, this study indicated that allitridin has anti-HCMV activity and the mechanism is associated with suppression of ie gene transcription.
Collapse
Affiliation(s)
- Hong Zhen
- Laboratory of Pediatric Clinical Virology, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Wang J, Shen YH, Utama B, Wang J, LeMaire SA, Coselli JS, Vercellotti GM, Wang XL. HCMV infection attenuates hydrogen peroxide induced endothelial apoptosis-- involvement of ERK pathway. FEBS Lett 2006; 580:2779-87. [PMID: 16650413 DOI: 10.1016/j.febslet.2006.04.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2005] [Revised: 03/21/2006] [Accepted: 04/14/2006] [Indexed: 11/23/2022]
Abstract
Human cytomegalovirus (HCMV) exerts anti-apoptotic effect during early stage of infection, which provides HCMV time for propagation. We investigated pathways mediating the resistance to H(2)O(2)-induced cell death - a self-defense mechanism to remove infected cells. We found that human aortic endothelial cells (HAECs) infected with VHL/E strain of HCMV during first 3 days were resistant to H(2)O(2) (0-2 mM) induced apoptosis. This anti-apoptotic effect may be mediated by the upregulation of Bcl-2, an anti-apoptotic protein through the activation pro-survival pathway extracellular signal regulated kinase (ERK). Through this mechanism, HCMV is able to propagate and causes endothelial dysfunction, hence vascular disease.
Collapse
Affiliation(s)
- Jing Wang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Adult Cardiac Services, Texas Heart Institute, St. Luke's Episcopal Hospital, Baylor College of Medicine, MS NAB 2010, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
191
|
Zhang Z, Evers DL, McCarville JF, Dantonel JC, Huong SM, Huang ES. Evidence that the human cytomegalovirus IE2-86 protein binds mdm2 and facilitates mdm2 degradation. J Virol 2006; 80:3833-43. [PMID: 16571800 PMCID: PMC1440454 DOI: 10.1128/jvi.80.8.3833-3843.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Levels of the p53 tumor suppressor protein are increased in human cytomegalovirus (HCMV)-infected cells and may be important for HCMV pathogenesis. In normal cells p53 levels are kept low due to an autoregulatory feedback loop where p53 activates the transcription of mdm2 and mdm2 binds and ubiquitinates p53, targeting p53 for proteasomal degradation. Here we report that, in contrast to uninfected cells, mdm2 was undetectable upon treatment of infected fibroblasts with the proteasome inhibitor MG132. Cellular depletion of mdm2 was reproducible in p53-null cells transfected with the HCMV IE2-86 protein, but not with IE172, independently of the endogenous mdm2 promoter. IE2-86 also prevented the emergence of presumably ubiquitinated species of p53. The regions of IE2-86 important for mdm2 depletion were those containing the sequences corresponding to the putative zinc finger and C-terminal acidic motifs. mdm2 and IE2-86 coimmunoprecipitated in transfected and infected cell lysates and in a cell-free system. IE2-86 blocked mdm2's p53-independent transactivation of the cyclin A promoter in transient-transfection experiments. Pulse-chase experiments revealed that IE2-86 but not IE1-72 or several loss-of-function IE2-86 mutants increased the half-life of p53 and reduced the half-life of mdm2. Short interfering RNA-mediated depletion of IE2-86 restored the ability of HCMV-infected cells to accumulate mdm2 in response to proteasome inhibition. Taken together, the data suggest that specific interactions between IE2-86 and mdm2 cause proteasome-independent degradation of mdm2 and that this may be important for the accumulation of p53 in HCMV-infected cells.
Collapse
Affiliation(s)
- Zhigang Zhang
- CB #7295, Lineberger Comprehensive Cancer Center, Rm. 32-026, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295, USA
| | | | | | | | | | | |
Collapse
|
192
|
Saffert RT, Kalejta RF. Inactivating a cellular intrinsic immune defense mediated by Daxx is the mechanism through which the human cytomegalovirus pp71 protein stimulates viral immediate-early gene expression. J Virol 2006; 80:3863-71. [PMID: 16571803 PMCID: PMC1440479 DOI: 10.1128/jvi.80.8.3863-3871.2006] [Citation(s) in RCA: 242] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human cytomegalovirus (HCMV) masterfully evades adaptive and innate immune responses, allowing infection to be maintained and periodically reactivated for the life of the host. Here we show that cells also possess an intrinsic immune defense against HCMV that is disarmed by the virus. In HCMV-infected cells, the promyelocytic leukemia nuclear body (PML-NB) protein Daxx silences viral immediate-early gene expression through the action of a histone deacetylase. However, this antiviral tactic is efficiently neutralized by the viral pp71 protein, which is incorporated into virions, delivered to cells upon infection, and mediates the proteasomal degradation of Daxx. This work demonstrates the mechanism through which pp71 activates viral immediate-early gene expression in HCMV-infected cells. Furthermore, it provides insight into how a PML-NB protein institutes an intrinsic immune defense against a DNA virus and how HCMV pp71 inactivates this defense.
Collapse
Affiliation(s)
- Ryan T Saffert
- Institute for Molecular Virology, and McArdle Laboratory for Cancer Research, University of Wisconsin--Madison, 1525 Linden Drive, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
193
|
Söderberg-Nauclér C. Does cytomegalovirus play a causative role in the development of various inflammatory diseases and cancer? J Intern Med 2006; 259:219-46. [PMID: 16476101 DOI: 10.1111/j.1365-2796.2006.01618.x] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human cytomegalovirus (HCMV) is a herpes virus that infects and is carried by 70-100% of the world's population. During its evolution, this virus has developed mechanisms that allow it to survive in an immunocompetent host. For many years, HCMV was not considered to be a major human pathogen, as it appeared to cause only rare cases of HCMV inclusion disease in neonates. However, HCMV is poorly adapted for survival in the immunosuppressed host and has emerged as an important human pathogen in AIDS patients and in patients undergoing immunosuppressive therapy following organ or bone marrow transplantation. HCMV-mediated disease in such patients has highlighted the possible role of this virus in the development of other diseases, in particular inflammatory diseases such as vascular diseases, autoimmune diseases and, more recently, with certain forms of cancers. Current research is focused on determining whether HCMV plays a causative role in these diseases or is merely an epiphenomenon of inflammation. Inflammation plays a central role in the pathogenesis of HCMV. This virus has developed a number of mechanisms that enable it to hide from the cells of the immune system and, at the same time, reactivation of a latent infection requires immune activation. Numerous products of the HCMV genome are devoted to control central functions of the innate and adaptive immune responses. By influencing the regulation of various cellular processes including the cell cycle, apoptosis and migration as well as tumour invasiveness and angiogenesis, HCMV may participate in disease development. Thus, the various drugs now available for treatment of HCMV disease (e.g. ganciclovir, acyclovir and foscarnet), may also prove to be useful in the treatment of other, more widespread diseases.
Collapse
Affiliation(s)
- C Söderberg-Nauclér
- Department of Medicine, Center for Molecular Medicine, L8:03, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
194
|
Paulus C, Krauss S, Nevels M. A human cytomegalovirus antagonist of type I IFN-dependent signal transducer and activator of transcription signaling. Proc Natl Acad Sci U S A 2006; 103:3840-5. [PMID: 16497831 PMCID: PMC1533784 DOI: 10.1073/pnas.0600007103] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Type I IFNs are crucial components of the innate immune response to viral attack. They are rapidly synthesized and secreted after infection with human cytomegalovirus (CMV) and trigger a signal transduction pathway that involves successive activation and nuclear translocation of signal transducer and activator of transcription 1 (STAT1) and STAT2. The activated STATs, together with the IFN regulatory factor 9 protein, form a trimeric transcription complex (IFN-stimulated gene factor 3) that stimulates expression of numerous IFN-responsive genes, many of which exhibit antiviral activity. Here we demonstrate that the viral 72-kDa IE1 protein (IE1-72kDa) confers partial resistance to the antiviral activity of type I IFNs upon CMV. Accordingly, IFN-responsive transcripts accumulate to substantially increased levels after infection with an IE1-deficient mutant as compared with wild-type virus, and ectopic expression of the viral protein in stably transfected cells is sufficient to block their induction. We further show that IE1-72kDa forms a physical complex with STAT1 and STAT2 in nuclei of infected cells and in vitro and prevents association of STAT1, STAT2, and IFN regulatory factor 9 with promoters of IFN-responsive genes in vivo. Our results indicate that the viral protein blocks an intranuclear step after nuclear translocation and before DNA binding of IFN-stimulated gene factor 3, presumably by interfering with the integrity and/or correct subnuclear localization of the protein complex. This study identifies the CMV IE1-72kDa protein as a viral antagonist of the cellular innate immune response, inhibiting IFN-dependent STAT signaling by means of an unprecedented molecular mechanism.
Collapse
Affiliation(s)
- Christina Paulus
- Institut für Medizinische Mikrobiologie und Hygiene, Forschungszentrum, Universität Regensburg, D-93047 Regensburg, Germany
| | - Steffen Krauss
- Institut für Medizinische Mikrobiologie und Hygiene, Forschungszentrum, Universität Regensburg, D-93047 Regensburg, Germany
| | - Michael Nevels
- Institut für Medizinische Mikrobiologie und Hygiene, Forschungszentrum, Universität Regensburg, D-93047 Regensburg, Germany
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
195
|
Nie X, Fang F, Li H, Dong Y, Zhou Y, Zhen H, Liu Z, Li G. Effects of human cytomegalovirus infection on apoptosis and expression of apoptosis-regulating factors. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2006; 25:480-3. [PMID: 16463650 DOI: 10.1007/bf02895993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study aimed to find out dynamic changes of apoptosis in human cytomegalovirus (HCMV) infected cells and the influence of HCMV infection on activation of caspase-3 and the expression of apoptosis-regulating genes, bcl-2 and fas mRNA. The sequential changes of apoptotic cell rate in high and low MOI (MOI = 2.5 and 0.25 respectively) of HCMV infected human embryonic lung fibroblasts (HELFs) at 1 h, 12 h, 24 h, 36 h, 48 h, 72 h and 96 h post-infection were measured by flow cytometry. The expression levels of caspase-3 protein and bcl-2 and fas mRNA in HCMV infected cells (MOI = 0.25) at 72 h post-infection were detected by Western blot and in situ hybridization methods, respectively. It was found that the ratio of apoptotic cells in normal controls was consistently lower, but the rates in low and high MOI infected cells were gradually increased with time prolonged, reached peak at 96 h (8.85%) and 72 h (25.63%), respectively. By Western blot analysis, only a narrow band of 32 kD (1 kD = 0.992 1 ku) procaspase-3 was found in normal cells, but a wider procaspase-3 band and a much wider band of 17 kD proteins (p17) appeared in the infected cells. Meanwhile, the expression of bcl-2 mRNA was higher and that of fas mRNA was lower in the normal HELF cells, whereas there were significantly lower bcl-2 mRNA and higher fas mRNA expression levels in HCMV infected cells. It was concluded that HCMV was a stronger inducer of apoptosis in HELF cells. Caspase-3, as the marker of undergoing apoptosis, was expressed increasingly and activated in the infected cells, indicating its action in HCMV-inducing apoptosis. Down-regulating bcl-2 mRNA expression and up-regulating fas mRNA expression were also involved in the mechanism of HCMV-induced apoptosis.
Collapse
Affiliation(s)
- Xingcao Nie
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | | | | | | | | |
Collapse
|
196
|
Rosenke K, Samuel MA, McDowell ET, Toerne MA, Fortunato EA. An intact sequence-specific DNA-binding domain is required for human cytomegalovirus-mediated sequestration of p53 and may promote in vivo binding to the viral genome during infection. Virology 2006; 348:19-34. [PMID: 16455125 DOI: 10.1016/j.virol.2005.12.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 08/12/2005] [Accepted: 12/12/2005] [Indexed: 11/23/2022]
Abstract
The p53 protein is stabilized during infection of primary human fibroblasts with human cytomegalovirus (HCMV). However, the p53 in HCMV-infected cells is unable to activate its downstream targets. HCMV accomplishes this inactivation, at least in part, by sequestering p53 into viral replication centers within the cell's nucleus soon after they are established. In order to better understand the interplay between HCMV and p53 and the mechanism of sequestration, we constructed a panel of mutant p53-GFP fusion constructs for use in transfection/infection experiments. These mutants affected several post-translational modification sites and several sites within the central sequence-specific DNA-binding domain of the protein. Two categories of p53 sequestration were observed when the mutant constructs were transfected into primary fibroblasts and then infected at either high or low multiplicity. The first category, including all of the post-translational modification mutants, showed sequestration comparable to a wild-type (wt) control, while the second category, mutants affecting the DNA-binding core, were not specifically sequestered above control GFP levels. This suggested that the DNA-binding ability of the protein was required for sequestration. When the HCMV genome was analyzed for p53 consensus binding sites, 21 matches were found, which localized either to the promoters or the coding regions of viral proteins involved in DNA replication and processing as well as structural proteins. An analysis of in vivo binding to these identified sites via chromatin immunoprecipitation assays revealed differential binding to several of the sites over the course of infection.
Collapse
Affiliation(s)
- Kyle Rosenke
- University of Idaho, Department of Microbiology, Molecular Biology and Biochemistry and Center for Reproductive Biology, Moscow, ID 83844-3052, USA
| | | | | | | | | |
Collapse
|
197
|
Andoniou CE, Degli-Esposti MA. Insights into the mechanisms of CMV‐mediated interference with cellular apoptosis. Immunol Cell Biol 2006; 84:99-106. [PMID: 16405657 DOI: 10.1111/j.1440-1711.2005.01412.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Apoptosis has the potential to function as a defence mechanism during viral infection. Identification of CMV mutants that cause the apoptotic death of infected cells confirmed that viral infection activates apoptotic pathways and that this process is counteracted by CMV to ensure efficient viral replication. The recent identification of CMV-encoded proteins that suppress cell death has greatly enhanced our understanding of the mechanisms used by this family of viruses to prevent apoptosis. CMV do not encode homologues of known death-suppressing proteins, suggesting that the CMV family has evolved novel, more sophisticated strategies for the inhibition of apoptosis. The identification and characterization of the human CMV (HCMV)-encoded antiapoptotic proteins UL36 (viral inhibitor of caspase-8 activation [vICA]) and UL37 (viral mitochondria-localized inhibitor of apoptosis [vMIA]) have confirmed that CMV target unique apoptotic control points. For example, vMIA inhibits apoptosis by binding Bax and sequestering it at the mitochondrial membrane as an inactive oligomer. This knowledge not only provides a more complete understanding of the CMV replication process but also allows the identification of previously unrecognized apoptotic checkpoints. Because HCMV is an important cause of birth defects and an increasingly important opportunistic pathogen, a firm grasp of the mechanisms by which it affects cellular apoptosis may provide avenues for the design of improved therapeutic strategies. Here, we review the recent progress made in understanding the role of CMV-encoded proteins in the inhibition of apoptosis.
Collapse
Affiliation(s)
- Christopher E Andoniou
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia
| | | |
Collapse
|
198
|
Taylor RT, Bresnahan WA. Human cytomegalovirus immediate-early 2 protein IE86 blocks virus-induced chemokine expression. J Virol 2006; 80:920-8. [PMID: 16378994 PMCID: PMC1346867 DOI: 10.1128/jvi.80.2.920-928.2006] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The effect of human cytomegalovirus (HCMV) gene expression on cytokine (beta interferon) and chemokine (RANTES, MIG, MCP-2, MIP-1alpha, and interleukin-8) expression was examined. We demonstrate that HCMV gene expression is required to suppress the transcriptional induction of these cytokines and that the HCMV immediate-early 2 gene product IE86 can effectively block the expression of cytokines and proinflammatory chemokines during HCMV and Sendai virus infection. Additionally, we present data on viral mutants and ectopic protein expression which demonstrate that pp65, another identified HCMV cytokine antagonist, is not involved in regulating these proinflammatory cytokines. This is the first report to demonstrate that IE86 can act to suppress virus-induced proinflammatory cytokine transcript expression, extending the antiviral properties of this multifunctional viral protein.
Collapse
Affiliation(s)
- R Travis Taylor
- Department of Microbiology, University of Minnesota, 1060 Mayo Building, MMC196, Minneapolis, MN 55455, USA
| | | |
Collapse
|
199
|
Chan G, Guilbert LJ. Enhanced monocyte binding to human cytomegalovirus-infected syncytiotrophoblast results in increased apoptosis via the release of tumour necrosis factor alpha. J Pathol 2005; 207:462-70. [PMID: 16158462 DOI: 10.1002/path.1849] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have shown that monocytes bound to intercellular adhesion molecules (ICAM-1) on syncytialized placental trophoblasts (ST) induce trophoblast apoptosis, and that ST infection by human cytomegalovirus (HCMV) up-regulates ICAM-1. We hypothesize that the focal loss of trophoblast seen in HCMV-infected placenta is mediated by increased adherence of monocytes at sites of infection. We find that ST cultures (differentiated from primary cytotrophoblasts) increase monocyte binding when infected with HCMV. Monocyte adhesion was inhibited by antibodies to ICAM-1 and its ligand leukocyte function-associated molecule (LFA-1) on monocytes. When co-cultured with adhering monocytes, infected ST cultures had higher levels of apoptosis than infected cultures alone. Although trophoblast apoptosis clustered around adhering monocytes, it occurred only in non-infected cells. Blocking monocyte binding with ICAM-1 and LFA-1 antibodies reduced the rate of apoptosis to that of the infected culture. Co-cultures incubated with TNFalpha antibody and EGF inhibited both monocyte- and HCMV-induced apoptosis but did not block binding. We conclude that HCMV stimulates ST culture expression of ICAM-1, which binds to LFA-1 on monocytes that release TNFalpha, thereby inducing apoptosis of neighbouring uninfected trophoblasts. The above data indicates that trophoblast loss associated with HCMV infection can be caused by increased monocyte adhesion to ST.
Collapse
Affiliation(s)
- Gary Chan
- Department of Medical Microbiology and Immunology, The Perinatal Research Centre, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
200
|
Griffin C, Wang ECY, McSharry BP, Rickards C, Browne H, Wilkinson GWG, Tomasec P. Characterization of a highly glycosylated form of the human cytomegalovirus HLA class I homologue gpUL18. J Gen Virol 2005; 86:2999-3008. [PMID: 16227221 PMCID: PMC2844262 DOI: 10.1099/vir.0.81126-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Human cytomegalovirus (HCMV) gpUL18 is a HLA class I (HLA-I) homologue with high affinity for the inhibitory receptor LIR-1/ILT2. The previously described 67 kDa form of gpUL18 is shown here to be sensitive to endoglycosidase-H (EndoH). A novel form of gpUL18 with a molecular mass of approximately 160 kDa and resistance to EndoH was identified in cells infected with HCMV strain AD169 or the low passage HCMV isolates Merlin and Toledo. The 67 kDa EndoH-sensitive gpUL18 glycoform was detected earlier in a productive infection (from 24 h post-infection) than the slower-migrating EndoH-resistant glycoform (from 72 h post-infection). Deletion of the US2-US11 region from the HCMV genome was associated with a substantial up-regulation of endogenous HLA-I in infected cells, but had no obvious effect on the gpUL18 expression pattern. Vaccinia virus and adenovirus vectors were used to further analyse gpUL18 expression. Depending on the delivery vector system, differences in the electrophoretic motility of the EndoH-resistant >105 kDa form of gpUL18, but not the EndoH-sensitive 67 kDa form, were observed; post-translational modification of the higher molecular mass glycoform appears to be influenced by active virus infection and vector delivery. The EndoH-sensitive 67 kDa gpUL18 had a rapid turnover, while the maturation to the EndoH-resistant >105 kDa form was relatively slow and inefficient. However, synthesis of the EndoH-resistant >105 kDa form was enhanced with elevated levels of beta2-microglobulin. When expressed by using an adenovirus vector, both the EndoH-sensitive 67 kDa and the EndoH-resistant >105 kDa gpUL18 forms could be detected on the cell surface.
Collapse
Affiliation(s)
- Cora Griffin
- Section of Infection and Immunity, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| | - Eddie C. Y. Wang
- Section of Infection and Immunity, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| | - Brian P. McSharry
- Section of Infection and Immunity, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| | - Carole Rickards
- Section of Infection and Immunity, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| | - Helena Browne
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Gavin W. G. Wilkinson
- Section of Infection and Immunity, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| | - Peter Tomasec
- Section of Infection and Immunity, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| |
Collapse
|