151
|
Hanna CW, Demond H, Kelsey G. Epigenetic regulation in development: is the mouse a good model for the human? Hum Reprod Update 2018; 24:556-576. [PMID: 29992283 PMCID: PMC6093373 DOI: 10.1093/humupd/dmy021] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/20/2018] [Accepted: 06/05/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Over the past few years, advances in molecular technologies have allowed unprecedented mapping of epigenetic modifications in gametes and during early embryonic development. This work is allowing a detailed genomic analysis, which for the first time can answer long-standing questions about epigenetic regulation and reprogramming, and highlights differences between mouse and human, the implications of which are only beginning to be explored. OBJECTIVE AND RATIONALE In this review, we summarise new low-cell molecular methods enabling the interrogation of epigenetic information in gametes and early embryos, the mechanistic insights these have provided, and contrast the findings in mouse and human. SEARCH METHODS Relevant studies were identified by PubMed search. OUTCOMES We discuss the levels of epigenetic regulation, from DNA modifications to chromatin organisation, during mouse gametogenesis, fertilisation and pre- and post-implantation development. The recently characterised features of the oocyte epigenome highlight its exceptionally unique regulatory landscape. The chromatin organisation and epigenetic landscape of both gametic genomes are rapidly reprogrammed after fertilisation. This extensive epigenetic remodelling is necessary for zygotic genome activation, but the mechanistic link remains unclear. While the vast majority of epigenetic information from the gametes is erased in pre-implantation development, new insights suggest that repressive histone modifications from the oocyte may mediate a novel mechanism of imprinting. To date, the characterisation of epigenetics in human development has been almost exclusively limited to DNA methylation profiling; these data reinforce that the global dynamics are conserved between mouse and human. However, as we look closer, it is becoming apparent that the mechanisms regulating these dynamics are distinct. These early findings emphasise the importance of investigations of fundamental epigenetic mechanisms in both mouse and humans. WIDER IMPLICATIONS Failures in epigenetic regulation have been implicated in human disease and infertility. With increasing maternal age and use of reproductive technologies in countries all over the world, it is becoming ever more important to understand the necessary processes required to establish a developmentally competent embryo. Furthermore, it is essential to evaluate the extent to which these epigenetic patterns are sensitive to such technologies and other adverse environmental exposures.
Collapse
Affiliation(s)
- Courtney W Hanna
- Epigenetics programme, Babraham Institute, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Hannah Demond
- Epigenetics programme, Babraham Institute, Cambridge, UK
| | - Gavin Kelsey
- Epigenetics programme, Babraham Institute, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
152
|
Li J, Svilar D, McClellan S, Kim JH, Ahn EYE, Vens C, Wilson DM, Sobol RW. DNA Repair Molecular Beacon assay: a platform for real-time functional analysis of cellular DNA repair capacity. Oncotarget 2018; 9:31719-31743. [PMID: 30167090 PMCID: PMC6114979 DOI: 10.18632/oncotarget.25859] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/12/2018] [Indexed: 12/15/2022] Open
Abstract
Numerous studies have shown that select DNA repair enzyme activities impact response and/or toxicity of genotoxins, suggesting a requirement for enzyme functional analyses to bolster precision medicine or prevention. To address this need, we developed a DNA Repair Molecular Beacon (DRMB) platform that rapidly measures DNA repair enzyme activity in real-time. The DRMB assay is applicable for discovery of DNA repair enzyme inhibitors, for the quantification of enzyme rates and is sufficiently sensitive to differentiate cellular enzymatic activity that stems from variation in expression or effects of amino acid substitutions. We show activity measures of several different base excision repair (BER) enzymes, including proteins with tumor-identified point mutations, revealing lesion-, lesion-context- and cell-type-specific repair dependence; suggesting application for DNA repair capacity analysis of tumors. DRMB measurements using lysates from isogenic control and APE1-deficient human cells suggests the major mechanism of base lesion removal by most DNA glycosylases may be mono-functional base hydrolysis. In addition, development of a microbead-conjugated DRMB assay amenable to flow cytometric analysis further advances its application. Our studies establish an analytical platform capable of evaluating the enzyme activity of select DNA repair proteins in an effort to design and guide inhibitor development and precision cancer therapy options.
Collapse
Affiliation(s)
- Jianfeng Li
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA
| | - David Svilar
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Steven McClellan
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA
| | - Jung-Hyun Kim
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA
| | | | - Conchita Vens
- The Netherlands Cancer Institute, Division of Cell Biology, Amsterdam, The Netherlands
| | - David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, IRP, NIH Baltimore, MD, USA
| | - Robert W Sobol
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA.,Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
153
|
Hirasaki M, Ueda A, Asaka MN, Uranishi K, Suzuki A, Kohda M, Mizuno Y, Okazaki Y, Nishimoto M, Sharif J, Koseki H, Okuda A. Identification of the Coiled-Coil Domain as an Essential Methyl-CpG-Binding Domain Protein 3 Element for Preserving Lineage Commitment Potential of Embryonic Stem Cells. Stem Cells 2018; 36:1355-1367. [DOI: 10.1002/stem.2849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/31/2018] [Accepted: 04/13/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Masataka Hirasaki
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Atsushi Ueda
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Masamitsu N. Asaka
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Kousuke Uranishi
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Ayumu Suzuki
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Masakazu Kohda
- Division of Translational Research; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Yosuke Mizuno
- Division of Functional Genomics and Systems Medicine; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Yasushi Okazaki
- Division of Translational Research; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
- Division of Functional Genomics and Systems Medicine; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Masazumi Nishimoto
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Jafar Sharif
- Developmental Genetics Laboratory; RIKEN Center for Integrative Medical Sciences (IMS), Tsurumiku; Yokohama Kanagawa Japan
| | - Haruhiko Koseki
- Developmental Genetics Laboratory; RIKEN Center for Integrative Medical Sciences (IMS), Tsurumiku; Yokohama Kanagawa Japan
| | - Akihiko Okuda
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| |
Collapse
|
154
|
Corso-Díaz X, Jaeger C, Chaitankar V, Swaroop A. Epigenetic control of gene regulation during development and disease: A view from the retina. Prog Retin Eye Res 2018; 65:1-27. [PMID: 29544768 PMCID: PMC6054546 DOI: 10.1016/j.preteyeres.2018.03.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/01/2018] [Accepted: 03/08/2018] [Indexed: 12/20/2022]
Abstract
Complex biological processes, such as organogenesis and homeostasis, are stringently regulated by genetic programs that are fine-tuned by epigenetic factors to establish cell fates and/or to respond to the microenvironment. Gene regulatory networks that guide cell differentiation and function are modulated and stabilized by modifications to DNA, RNA and proteins. In this review, we focus on two key epigenetic changes - DNA methylation and histone modifications - and discuss their contribution to retinal development, aging and disease, especially in the context of age-related macular degeneration (AMD) and diabetic retinopathy. We highlight less-studied roles of DNA methylation and provide the RNA expression profiles of epigenetic enzymes in human and mouse retina in comparison to other tissues. We also review computational tools and emergent technologies to profile, analyze and integrate epigenetic information. We suggest implementation of editing tools and single-cell technologies to trace and perturb the epigenome for delineating its role in transcriptional regulation. Finally, we present our thoughts on exciting avenues for exploring epigenome in retinal metabolism, disease modeling, and regeneration.
Collapse
Affiliation(s)
- Ximena Corso-Díaz
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Catherine Jaeger
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Vijender Chaitankar
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
155
|
Czaja AJ. Under-Evaluated or Unassessed Pathogenic Pathways in Autoimmune Hepatitis and Implications for Future Management. Dig Dis Sci 2018; 63:1706-1725. [PMID: 29671161 DOI: 10.1007/s10620-018-5072-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/12/2018] [Indexed: 12/11/2022]
Abstract
Autoimmune hepatitis is a consequence of perturbations in homeostatic mechanisms that maintain self-tolerance but are incompletely understood. The goals of this review are to describe key pathogenic pathways that have been under-evaluated or unassessed in autoimmune hepatitis, describe insights that may shape future therapies, and encourage investigational efforts. The T cell immunoglobulin mucin proteins constitute a family that modulates immune tolerance by limiting the survival of immune effector cells, clearing apoptotic bodies, and expanding the population of granulocytic myeloid-derived suppressor cells. Galectins influence immune cell migration, activation, proliferation, and survival, and T cell exhaustion can be induced and exploited as a possible management strategy. The programmed cell death-1 protein and its ligands comprise an antigen-independent inhibitory axis that can limit the performance of activated T cells by altering their metabolism, and epigenetic changes can silence pro-inflammatory genes or de-repress anti-inflammatory genes that affect disease severity. Changes in the intestinal microbiota and permeability of the intestinal mucosal barrier can be causative or consequential events that affect the occurrence and phenotype of immune-mediated disease, and they may help explain the female propensity for autoimmune hepatitis. Perturbations within these homeostatic mechanisms have been implicated in experimental models and limited clinical experiences, and they have been favorably manipulated by monoclonal antibodies, recombinant molecules, pharmacological agents or dietary supplements. In conclusion, pathogenic mechanisms that have been implicated in other systemic immune-mediated and liver diseases but under-evaluated or unassessed in autoimmune hepatitis warrant consideration and rigorous evaluation.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
156
|
Singh AK, Kumar R, Pandey AK. Hepatocellular Carcinoma: Causes, Mechanism of Progression and Biomarkers. Curr Chem Genom Transl Med 2018; 12:9-26. [PMID: 30069430 PMCID: PMC6047212 DOI: 10.2174/2213988501812010009] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/15/2018] [Accepted: 05/20/2018] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular Carcinoma (HCC) is one of the most common malignant tumours in the world. It is a heterogeneous group of a tumour that vary in risk factor and genetic and epigenetic alteration event. Mortality due to HCC in last fifteen years has increased. Multiple factors including viruses, chemicals, and inborn and acquired metabolic diseases are responsible for its development. HCC is closely associated with hepatitis B virus, and at least in some regions of the world with hepatitis C virus. Liver injury caused by viral factor affects many cellular processes such as cell signalling, apoptosis, transcription, DNA repair which in turn induce important effects on cell survival, growth, transformation and maintenance. Molecular mechanisms of hepatocellular carcinogenesis may vary depending on different factors and this is probably why a large set of mechanisms have been associated with these tumours. Various biomarkers including α-fetoprotein, des-γ-carboxyprothrombin, glypican-3, golgi protein-73, squamous cell carcinoma antigen, circulating miRNAs and altered DNA methylation pattern have shown diagnostic significance. This review article covers up key molecular pathway alterations, biomarkers for diagnosis of HCC, anti-HCC drugs and relevance of key molecule/pathway/receptor as a drug target.
Collapse
Affiliation(s)
| | | | - Abhay K. Pandey
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| |
Collapse
|
157
|
Bornelöv S, Reynolds N, Xenophontos M, Gharbi S, Johnstone E, Floyd R, Ralser M, Signolet J, Loos R, Dietmann S, Bertone P, Hendrich B. The Nucleosome Remodeling and Deacetylation Complex Modulates Chromatin Structure at Sites of Active Transcription to Fine-Tune Gene Expression. Mol Cell 2018; 71:56-72.e4. [PMID: 30008319 PMCID: PMC6039721 DOI: 10.1016/j.molcel.2018.06.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 03/20/2018] [Accepted: 05/31/2018] [Indexed: 01/03/2023]
Abstract
Chromatin remodeling complexes play essential roles in metazoan development through widespread control of gene expression, but the precise molecular mechanisms by which they do this in vivo remain ill defined. Using an inducible system with fine temporal resolution, we show that the nucleosome remodeling and deacetylation (NuRD) complex controls chromatin architecture and the protein binding repertoire at regulatory regions during cell state transitions. This is primarily exerted through its nucleosome remodeling activity while deacetylation at H3K27 follows changes in gene expression. Additionally, NuRD activity influences association of RNA polymerase II at transcription start sites and subsequent nascent transcript production, thereby guiding the establishment of lineage-appropriate transcriptional programs. These findings provide a detailed molecular picture of genome-wide modulation of lineage-specific transcription by an essential chromatin remodeling complex as well as insight into the orchestration of molecular events involved in transcriptional transitions in vivo. Video Abstract
NuRD increases nucleosome density, expelling TFs or inhibiting recruitment NuRD displaces RNA Pol II from TSSs, reducing nascent transcription Local gains in TF and Mediator occupancy can be indirect effects of NuRD activity Resetting protein binding at regulatory elements can promote or suppress transcription
Collapse
Affiliation(s)
- Susanne Bornelöv
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Nicola Reynolds
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Maria Xenophontos
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK; European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL), Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Sarah Gharbi
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Ewan Johnstone
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK; European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL), Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Robin Floyd
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Meryem Ralser
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Jason Signolet
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Remco Loos
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK; European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL), Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Sabine Dietmann
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Paul Bertone
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK; European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL), Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK.
| | - Brian Hendrich
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
| |
Collapse
|
158
|
Garcia-Moreno SA, Plebanek MP, Capel B. Epigenetic regulation of male fate commitment from an initially bipotential system. Mol Cell Endocrinol 2018; 468:19-30. [PMID: 29410272 PMCID: PMC6084468 DOI: 10.1016/j.mce.2018.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/21/2022]
Abstract
A fundamental goal in biology is to understand how distinct cell types containing the same genetic information arise from a single stem cell throughout development. Sex determination is a key developmental process that requires a unidirectional commitment of an initially bipotential gonad towards either the male or female fate. This makes sex determination a unique model to study cell fate commitment and differentiation in vivo. We have focused this review on the accumulating evidence that epigenetic mechanisms contribute to the bipotential state of the fetal gonad and to the regulation of chromatin accessibility during and immediately downstream of the primary sex-determining switch that establishes the male fate.
Collapse
Affiliation(s)
| | | | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
159
|
Iarovaia OV, Kovina AP, Petrova NV, Razin SV, Ioudinkova ES, Vassetzky YS, Ulianov SV. Genetic and Epigenetic Mechanisms of β-Globin Gene Switching. BIOCHEMISTRY (MOSCOW) 2018; 83:381-392. [PMID: 29626925 DOI: 10.1134/s0006297918040090] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vertebrates have multiple forms of hemoglobin that differ in the composition of their polypeptide chains. During ontogenesis, the composition of these subunits changes. Genes encoding different α- and β-polypeptide chains are located in two multigene clusters on different chromosomes. Each cluster contains several genes that are expressed at different stages of ontogenesis. The phenomenon of stage-specific transcription of globin genes is referred to as globin gene switching. Mechanisms of expression switching, stage-specific activation, and repression of transcription of α- and β-globin genes are of interest from both theoretical and practical points of view. Alteration of balanced expression of globin genes, which usually occurs due to damage to adult β-globin genes, leads to development of severe diseases - hemoglobinopathies. In most cases, reactivation of the fetal hemoglobin gene in patients with β-thalassemia and sickle cell disease can reduce negative consequences of irreversible alterations of expression of the β-globin genes. This review focuses on the current state of research on genetic and epigenetic mechanisms underlying stage-specific switching of β-globin genes.
Collapse
Affiliation(s)
- O V Iarovaia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | | | | | | | | | | | | |
Collapse
|
160
|
Takeda Y, Demura M, Wang F, Karashima S, Yoneda T, Kometani M, Hashimoto A, Aono D, Horike SI, Meguro-Horike M, Yamagishi M, Takeda Y. Epigenetic Regulation of Aldosterone Synthase Gene by Sodium and Angiotensin II. J Am Heart Assoc 2018; 7:JAHA.117.008281. [PMID: 29739797 PMCID: PMC6015301 DOI: 10.1161/jaha.117.008281] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background DNA methylation is believed to be maintained in adult somatic cells. Recent findings, however, suggest that all methylation patterns are not stable. We demonstrate that stimulatory signals can change the DNA methylation status around transcription factor binding sites and a transcription start site and activate expression of the aldosterone synthase gene (CYP11B2). Methods and Results DNA methylation of CYP11B2 was analyzed in aldosterone‐producing adenomas, nonfunctioning adrenal adenomas, and adrenal glands and compared with the gene expression levels. CpG dinucleotides in the CYP11B2 promoter were found to be hypormethylated in tissues with high expression, but not in those with low expression, of CYP11B2. Methylation of the CYP11B2 promoter fused to a reporter gene decreased transcriptional activity. Methylation of recognition sequences of transcription factors, including CREB1, NGFIB (NR4A1), and NURR1 (NR4A2) diminished their DNA‐binding activity. A methylated‐CpG‐binding protein MECP2 interacted directly with the methylated CYP11B2 promoter. In rats, low salt intake led to upregulation of CYP11B2 expression and DNA hypomethylation in the adrenal gland. Treatment with angiotensin II type 1 receptor antagonist decreased CYP11B2 expression and led to DNA hypermethylation. Conclusions DNA demethylation may switch the phenotype of CYP11B2 expression from an inactive to an active state and regulate aldosterone biosynthesis.
Collapse
Affiliation(s)
- Yoshimichi Takeda
- Department of Internal Medicine, Kanazawa University School of Medicine, Kanazawa, Japan
| | - Masashi Demura
- Department of Hygiene, Kanazawa University School of Medicine, Kanazawa, Japan
| | - Fen Wang
- Department of Internal Medicine, Kanazawa University School of Medicine, Kanazawa, Japan
| | - Shigehiro Karashima
- Department of Internal Medicine, Kanazawa University School of Medicine, Kanazawa, Japan
| | - Takashi Yoneda
- Department of Internal Medicine, Kanazawa University School of Medicine, Kanazawa, Japan
| | - Mitsuhiro Kometani
- Department of Internal Medicine, Kanazawa University School of Medicine, Kanazawa, Japan
| | - Atsushi Hashimoto
- Department of Internal Medicine, Kanazawa University School of Medicine, Kanazawa, Japan
| | - Daisuke Aono
- Department of Internal Medicine, Kanazawa University School of Medicine, Kanazawa, Japan
| | - Shin-Ichi Horike
- Division of Functional Genomics, Kanazawa University Advanced Science Research Center, Kanazawa, Japan
| | - Makiko Meguro-Horike
- Division of Functional Genomics, Kanazawa University Advanced Science Research Center, Kanazawa, Japan
| | - Masakazu Yamagishi
- Department of Internal Medicine, Kanazawa University School of Medicine, Kanazawa, Japan
| | - Yoshiyu Takeda
- Department of Internal Medicine, Kanazawa University School of Medicine, Kanazawa, Japan .,Innovative Clinical Research Center, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
161
|
Wu DR, Gu KL, Yu JC, Fu X, Wang XW, Guo WT, Liao LQ, Zhu H, Zhang XS, Hui J, Wang Y. Opposing roles of miR-294 and MBNL1/2 in shaping the gene regulatory network of embryonic stem cells. EMBO Rep 2018; 19:embr.201745657. [PMID: 29735517 DOI: 10.15252/embr.201745657] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 04/03/2018] [Accepted: 04/11/2018] [Indexed: 01/25/2023] Open
Abstract
Alternative pre-mRNA splicing plays important roles in regulating self-renewal and differentiation of embryonic stem cells (ESCs). However, how specific alternative splicing programs are established in ESCs remains elusive. Here, we show that a subset of alternative splicing events in ESCs is dependent on miR-294 expression. Remarkably, roughly 60% of these splicing events are affected by the depletion of Muscleblind-Like Splicing Regulator 1 and 2 (Mbnl1/2). Distinct from canonical miRNA function, miR-294 represses Mbnl1/2 through both posttranscriptional and epigenetic mechanisms. Furthermore, we uncover non-canonical functions of MBNL proteins that bind and promote the expression of miR-294 targets, including Cdkn1a and Tgfbr2, thereby opposing the role of miR-294 in regulating cell proliferation, apoptosis, and epithelial-mesenchymal transition (EMT). Our study reveals extensive interactions between miRNAs and splicing factors, highlighting their roles in regulating cell type-specific alternative splicing and defining gene expression programs during development and cellular differentiation.
Collapse
Affiliation(s)
- Da-Ren Wu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Kai-Li Gu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Jian-Cheng Yu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xing Fu
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
| | - Xi-Wen Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Wen-Ting Guo
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Le-Qi Liao
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Hong Zhu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Shan Zhang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Jingyi Hui
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yangming Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| |
Collapse
|
162
|
Dattani A, Sridhar D, Aziz Aboobaker A. Planarian flatworms as a new model system for understanding the epigenetic regulation of stem cell pluripotency and differentiation. Semin Cell Dev Biol 2018; 87:79-94. [PMID: 29694837 DOI: 10.1016/j.semcdb.2018.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/21/2018] [Indexed: 12/11/2022]
Abstract
Planarian flatworms possess pluripotent stem cells (neoblasts) that are able to differentiate into all cell types that constitute the adult body plan. Consequently, planarians possess remarkable regenerative capabilities. Transcriptomic studies have revealed that gene expression is coordinated to maintain neoblast pluripotency, and ensure correct lineage specification during differentiation. But as yet they have not revealed how this regulation of expression is controlled. In this review, we propose that planarians represent a unique and effective system to study the epigenetic regulation of these processes in an in vivo context. We consolidate evidence suggesting that although DNA methylation is likely present in some flatworm lineages, it does not regulate neoblast function in Schmidtea mediterranea. A number of phenotypic studies have documented the role of histone modification and chromatin remodelling complexes in regulating distinct neoblast processes, and we focus on four important examples of planarian epigenetic regulators: Nucleosome Remodeling Deacetylase (NuRD) complex, Polycomb Repressive Complex (PRC), the SET1/MLL methyltransferases, and the nuclear PIWI/piRNA complex. Given the recent advent of ChIP-seq in planarians, we propose future avenues of research that will identify the genomic targets of these complexes allowing for a clearer picture of how neoblast processes are coordinated at the epigenetic level. These insights into neoblast biology may be directly relevant to mammalian stem cells and disease. The unique biology of planarians will also allow us to investigate how extracellular signals feed into epigenetic regulatory networks to govern concerted neoblast responses during regenerative polarity, tissue patterning, and remodelling.
Collapse
Affiliation(s)
- Anish Dattani
- Department of Zoology, South Parks Road, University of Oxford, OX1 3PS, UK.
| | - Divya Sridhar
- Department of Zoology, South Parks Road, University of Oxford, OX1 3PS, UK
| | - A Aziz Aboobaker
- Department of Zoology, South Parks Road, University of Oxford, OX1 3PS, UK.
| |
Collapse
|
163
|
Abstract
Since every cell of a multicellular organism contains the same genome, it is intriguing to understand why genetically homogenous cells are different from each other and what controls this. Several observations indicate that DNA methylation has an essential regulatory function in mammalian development, which is to establish the correct pattern of gene expression, and that DNA methylation pattern is tightly correlated with chromatin structure. Various physiological processes are controlled by specific DNA methylation patterns including genomic imprinting, inactivation of the X chromosome, regulation of tissue-specific gene expression and repression of transposons. Moreover, aberrant methylation could confer a selective advantage to cells, leading to cancerous growth. In this review we focus on the epigenetic molecular mechanisms during normal development and discuss how DNA methylation could affect the expression of genes leading to cancer transformation.
Collapse
Affiliation(s)
- Marcella Macaluso
- Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | | |
Collapse
|
164
|
Sokpor G, Castro-Hernandez R, Rosenbusch J, Staiger JF, Tuoc T. ATP-Dependent Chromatin Remodeling During Cortical Neurogenesis. Front Neurosci 2018; 12:226. [PMID: 29686607 PMCID: PMC5900035 DOI: 10.3389/fnins.2018.00226] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/22/2018] [Indexed: 12/20/2022] Open
Abstract
The generation of individual neurons (neurogenesis) during cortical development occurs in discrete steps that are subtly regulated and orchestrated to ensure normal histogenesis and function of the cortex. Notably, various gene expression programs are known to critically drive many facets of neurogenesis with a high level of specificity during brain development. Typically, precise regulation of gene expression patterns ensures that key events like proliferation and differentiation of neural progenitors, specification of neuronal subtypes, as well as migration and maturation of neurons in the developing cortex occur properly. ATP-dependent chromatin remodeling complexes regulate gene expression through utilization of energy from ATP hydrolysis to reorganize chromatin structure. These chromatin remodeling complexes are characteristically multimeric, with some capable of adopting functionally distinct conformations via subunit reconstitution to perform specific roles in major aspects of cortical neurogenesis. In this review, we highlight the functions of such chromatin remodelers during cortical development. We also bring together various proposed mechanisms by which ATP-dependent chromatin remodelers function individually or in concert, to specifically modulate vital steps in cortical neurogenesis.
Collapse
Affiliation(s)
- Godwin Sokpor
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
| | - Ricardo Castro-Hernandez
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
| | - Joachim Rosenbusch
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany.,DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Goettingen, Germany
| | - Tran Tuoc
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany.,DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Goettingen, Germany
| |
Collapse
|
165
|
Czaja AJ. Epigenetic changes and their implications in autoimmune hepatitis. Eur J Clin Invest 2018; 48. [PMID: 29383703 DOI: 10.1111/eci.12899] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/25/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND The genetic risk of autoimmune hepatitis is insufficient to explain the observed risk, and epigenetic changes may explain disparities in disease occurrence in different populations within and between countries. The goal of this review was to examine how epigenetic changes induced by the environment or inherited as a phenotypic trait may affect autoimmune hepatitis and be amenable to therapeutic intervention. MATERIALS AND METHODS Pertinent abstracts were identified in PubMed by multiple search terms. The number of abstracts reviewed was 1689, and the number of full-length articles reviewed exceeded 150. RESULTS Activation of pro-inflammatory genes in autoimmune disease is associated with hypomethylation of deoxyribonucleic acid and modification of histones within chromatin. Organ-specific microribonucleic acids can silence genes by marking messenger ribonucleic acids for degradation, and they can promote inflammatory activity or immunosuppression. High circulating levels of the microribonucleic acids 21 and 122 have been demonstrated in autoimmune hepatitis, and they may increase production of pro-inflammatory cytokines. Microribonucleic acids are also essential for maintaining regulatory T cells. Drugs, pollutants, infections, diet and ageing can induce inheritable epigenetic changes favouring autoimmunity. Reversal is feasible by manipulating enzymes, transcription factors, gene-silencing molecules and toxic exposures or by administering methyl donors and correcting vitamin D deficiency. Gene targets, site specificity, efficacy and consequences are uncertain. CONCLUSIONS Potentially reversible epigenetic changes may affect the occurrence and outcome of autoimmune hepatitis, and investigations are warranted to determine the nature of these changes, key genomic targets, and feasible interventions and their consequences.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
166
|
Zhang Y, Yang Y, Zhang F, Liao X, Shao Z, Li D. Epigenetic silencing of RNF144A expression in breast cancer cells through promoter hypermethylation and MBD4. Cancer Med 2018; 7:1317-1325. [PMID: 29473320 PMCID: PMC5911569 DOI: 10.1002/cam4.1324] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 12/27/2022] Open
Abstract
Emerging evidence shows that ring finger protein 144A (RNF144A), a poorly characterized member of the Ring-between-Ring (RBR) family of E3 ubiquitin ligases, is a potential tumor suppressor gene. However, its regulatory mechanism in breast cancer remains undefined. Here, we report that RNF144A promoter contains a putative CpG island and the methylation levels of RNF144A promoter are higher in primary breast tumors than those in normal breast tissues. Consistently, RNF144A promoter methylation levels are associated with its transcriptional silencing in breast cancer cells, and treatment with DNA methylation inhibitor 5-Aza-2-deoxycytidine (AZA) reactivates RNF144A expression in cells with RNF144A promoter hypermethylation. Furthermore, genetic knockdown or pharmacological inhibition of endogenous methyl-CpG-binding domain 4 (MBD4) results in increased RNF144A expression. These findings suggest that RNF144A is epigenetically silenced in breast cancer cells by promoter hypermethylation and MBD4.
Collapse
Affiliation(s)
- Ye Zhang
- Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Yin‐Long Yang
- Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of OncologyShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Cancer InstituteShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of Breast SurgeryShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Key Laboratory of Breast Cancer in ShanghaiShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Fang‐Lin Zhang
- Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of OncologyShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Cancer InstituteShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Xiao‐Hong Liao
- Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of OncologyShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Cancer InstituteShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Zhi‐Min Shao
- Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of OncologyShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Cancer InstituteShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of Breast SurgeryShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Key Laboratory of Breast Cancer in ShanghaiShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Da‐Qiang Li
- Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of OncologyShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Cancer InstituteShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of Breast SurgeryShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Key Laboratory of Breast Cancer in ShanghaiShanghai Medical CollegeFudan UniversityShanghai200032China
| |
Collapse
|
167
|
Kotandeniya D, Seiler CL, Fernandez J, Pujari SS, Curwick L, Murphy K, Wickramaratne S, Yan S, Murphy D, Sham YY, Tretyakova NY. Can 5-methylcytosine analogues with extended alkyl side chains guide DNA methylation? Chem Commun (Camb) 2018; 54:1061-1064. [PMID: 29323674 DOI: 10.1039/c7cc06867k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
5-Methylcytosine (MeC) is an endogenous modification of DNA that plays a crucial role in DNA-protein interactions, chromatin structure, epigenetic regulation, and DNA repair. MeC is produced via enzymatic methylation of the C-5 position of cytosine by DNA-methyltransferases (DNMT) which use S-adenosylmethionine (SAM) as a cofactor. Hemimethylated CG dinucleotides generated as a result of DNA replication are specifically recognized and methylated by maintenance DNA methyltransferase 1 (DNMT1). The accuracy of DNMT1-mediated methylation is essential for preserving tissue-specific DNA methylation and thus gene expression patterns. In the present study, we synthesized DNA duplexes containing MeC analogues with modified C-5 side chains and examined their ability to guide cytosine methylation by the human DNMT1 protein. We found that the ability of 5-alkylcytosines to direct cytosine methylation decreased with increased alkyl chain length and rigidity (methyl > ethyl > propyl ∼ vinyl). Molecular modeling studies indicated that this loss of activity may be caused by the distorted geometry of the DNA-protein complex in the presence of unnatural alkylcytosines.
Collapse
Affiliation(s)
- D Kotandeniya
- Masonic Cancer Center, 2231 6th St SE, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Liu K, Xu C, Lei M, Yang A, Loppnau P, Hughes TR, Min J. Structural basis for the ability of MBD domains to bind methyl-CG and TG sites in DNA. J Biol Chem 2018; 293:7344-7354. [PMID: 29567833 DOI: 10.1074/jbc.ra118.001785] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/20/2018] [Indexed: 01/08/2023] Open
Abstract
Cytosine methylation is a well-characterized epigenetic mark and occurs at both CG and non-CG sites in DNA. Both methylated CG (mCG)- and mCH (H = A, C, or T)-containing DNAs, especially mCAC-containing DNAs, are recognized by methyl-CpG-binding protein 2 (MeCP2) to regulate gene expression in neuron development. However, the molecular mechanism involved in the binding of methyl-CpG-binding domain (MBD) of MeCP2 to these different DNA motifs is unclear. Here, we systematically characterized the DNA-binding selectivities of the MBD domains in MeCP2 and MBD1-4 with isothermal titration calorimetry-based binding assays, mutagenesis studies, and X-ray crystallography. We found that the MBD domains of MeCP2 and MBD1-4 bind mCG-containing DNAs independently of the sequence identity outside the mCG dinucleotide. Moreover, some MBD domains bound to both methylated and unmethylated CA dinucleotide-containing DNAs, with a preference for the CAC sequence motif. We also found that the MBD domains bind to mCA or nonmethylated CA DNA by recognizing the complementary TG dinucleotide, which is consistent with an overlooked ligand of MeCP2, i.e. the matrix/scaffold attachment regions (MARs/SARs) with a consensus sequence of 5'-GGTGT-3' that was identified in early 1990s. Our results also explain why MeCP2 exhibits similar binding affinity to both mCA- and hmCA-containing dsDNAs. In summary, our results suggest that in addition to mCG sites, unmethylated CA or TG sites also serve as DNA-binding sites for MeCP2 and other MBD-containing proteins. This discovery expands the genome-wide activity of MBD-containing proteins in gene regulation.
Collapse
Affiliation(s)
- Ke Liu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Chao Xu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ming Lei
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ally Yang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7
| | - Timothy R Hughes
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
169
|
Deficiency in the DNA glycosylases UNG1 and OGG1 does not potentiate c-Myc-induced B-cell lymphomagenesis. Exp Hematol 2018; 61:52-58. [PMID: 29496532 DOI: 10.1016/j.exphem.2018.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 11/22/2022]
Abstract
C-Myc overexpression mediates lymphomagenesis; however, secondary genetic lesions are required for its full oncogenic potential. The origin and the mechanism of formation of these mutations are unclear. Using the lacI mutation detection system, we show that secondary mutations occur early in B-cell development and are repaired by Msh2. The mutations at the lacI gene were predominantly at C:G base pairs and CpG motifs, suggesting that they were formed due to cytosine deamination or oxidative damage of G. Therefore, we investigated the role of Ogg1 and UNG glycosylases in c-Myc-driven lymphomagenesis but found that their deficiencies did not influence disease outcome in the Eµ c-Myc mouse model. We also show that Rag proteins do not contribute to secondary lesions in this model. Our work suggests that mutations at C:G base pairs that are repaired primarily by the mismatch repair system arise early in B-cell ontogeny to promote c-Myc-driven lymphomagenesis.
Collapse
|
170
|
Hanaoka S, Ishida K, Tanaka S, Sakamoto S, Okuda K, Sanoh S, Ohta S, Kotake Y. Tributyltin induces epigenetic changes and decreases the expression of nuclear respiratory factor-1. Metallomics 2018; 10:337-345. [PMID: 29345269 DOI: 10.1039/c7mt00290d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tributyltin (TBT), a common organotin environmental pollutant, has been widely used as a component of marine antifouling paints. We previously reported that exposure to TBT inhibits the expression and DNA binding of nuclear respiratory factor-1 (NRF-1) and causes neurotoxicity. In the present study, we focused on the epigenetic effects of TBT and investigated whether TBT decreases NRF-1 expression via epigenetic modifications in SH-SY5Y human neuroblastoma cells. First, we found that exposure to 300 nM TBT decreases NRF-1 expression. We examined epigenetic changes induced by TBT, and showed that TBT causes hypermethylation of the NRF-1 promoter region, increases the amount of methyl-CpG-binding protein 2 (MeCP2) bound to the NRF-1 promoter, and alters the expression of DNA methyltransferases and ten-eleven translocation (TET) demethylation enzymes. These results suggest that epigenetic changes play an important role in regulation of NRF-1 expression. Next, we investigated effect of NRF-1 expression decrease on cells, and TBT reduces mitochondrial membrane potential and overexpression of NRF-1 rescued this reduction in membrane potential. Thus, we suggested that NRF-1 is important for maintaining mitochondrial membrane potential. Our study indicates that TBT causes epigenetic changes such as hypermethylation, which increases recruitment of MeCP2 to the NRF-1 promoter and probably lead to decreased of NRF-1 expression and mitochondrial membrane potential. Therefore, this research provides new evidence of the epigenetic action caused by organotin.
Collapse
Affiliation(s)
- Saki Hanaoka
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
171
|
Ovenden ES, McGregor NW, Emsley RA, Warnich L. DNA methylation and antipsychotic treatment mechanisms in schizophrenia: Progress and future directions. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:38-49. [PMID: 29017764 DOI: 10.1016/j.pnpbp.2017.10.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/01/2017] [Accepted: 10/04/2017] [Indexed: 12/15/2022]
Abstract
Antipsychotic response in schizophrenia is a complex, multifactorial trait influenced by pharmacogenetic factors. With genetic studies thus far providing little biological insight or clinical utility, the field of pharmacoepigenomics has emerged to tackle the so-called "missing heritability" of drug response in disease. Research on psychiatric disorders has only recently started to assess the link between epigenetic alterations and treatment outcomes. DNA methylation, the best characterised epigenetic mechanism to date, is discussed here in the context of schizophrenia and antipsychotic treatment outcomes. The majority of published studies have assessed the influence of antipsychotics on methylation levels in specific neurotransmitter-associated candidate genes or at the genome-wide level. While these studies illustrate the epigenetic modifications associated with antipsychotics, very few have assessed clinical outcomes and the potential of differential DNA methylation profiles as predictors of antipsychotic response. Results from other psychiatric disorder studies, such as depression and bipolar disorder, provide insight into what may be achieved by schizophrenia pharmacoepigenomics. Other aspects that should be addressed in future research include methodological challenges, such as tissue specificity, and the influence of genetic variation on differential methylation patterns.
Collapse
Affiliation(s)
- Ellen S Ovenden
- Department of Genetics, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Nathaniel W McGregor
- Department of Genetics, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Robin A Emsley
- Department of Psychiatry, Stellenbosch University, Tygerberg 7505, South Africa
| | - Louise Warnich
- Department of Genetics, Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
172
|
Stricker SH, Götz M. DNA-Methylation: Master or Slave of Neural Fate Decisions? Front Neurosci 2018; 12:5. [PMID: 29449798 PMCID: PMC5799221 DOI: 10.3389/fnins.2018.00005] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/04/2018] [Indexed: 01/05/2023] Open
Abstract
The pristine formation of complex organs depends on sharp temporal and spatial control of gene expression. Therefore, epigenetic mechanisms have been frequently attributed a central role in controlling cell fate determination. A prime example for this is the first discovered and still most studied epigenetic mark, DNA methylation, and the development of the most complex mammalian organ, the brain. Recently, the field of epigenetics has advanced significantly: new DNA modifications were discovered, epigenomic profiling became widely accessible, and methods for targeted epigenomic manipulation have been developed. Thus, it is time to challenge established models of epigenetic gene regulation. Here, we review the current state of knowledge about DNA modifications, their epigenomic distribution, and their regulatory role. We will summarize the evidence suggesting they possess crucial roles in neurogenesis and discuss whether this likely includes lineage choice regulation or rather effects on differentiation. Finally, we will attempt an outlook on how questions, which remain unresolved, could be answered soon.
Collapse
Affiliation(s)
- Stefan H Stricker
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian-Universität, Munich, Germany.,Physiological Genomics, BioMedical Center, Munich, Germany.,German Research Center for Environmental Health, Ingolstädter Landstrasse 1, Germany and Biomedical Center, Institute of Stem Cell Research, Helmholtz Zentrum, Ludwig-Maximilian-Universität, Munich, Germany
| | - Magdalena Götz
- Physiological Genomics, BioMedical Center, Munich, Germany.,German Research Center for Environmental Health, Ingolstädter Landstrasse 1, Germany and Biomedical Center, Institute of Stem Cell Research, Helmholtz Zentrum, Ludwig-Maximilian-Universität, Munich, Germany.,German Excellence Cluster of Systems Neurology, Munich, Germany
| |
Collapse
|
173
|
Hori Y, Otomura N, Nishida A, Nishiura M, Umeno M, Suetake I, Kikuchi K. Synthetic-Molecule/Protein Hybrid Probe with Fluorogenic Switch for Live-Cell Imaging of DNA Methylation. J Am Chem Soc 2018; 140:1686-1690. [PMID: 29381073 DOI: 10.1021/jacs.7b09713] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hybrid probes consisting of synthetic molecules and proteins are powerful tools for detecting biological molecules and signals in living cells. To date, most targets of the hybrid probes have been limited to pH and small analytes. Although biomacromolecules are essential to the physiological function of cells, the hybrid-probe-based approach has been scarcely employed for live-cell detection of biomacromolecules. Here, we developed a hybrid probe with a chemical switch for live-cell imaging of methylated DNA, an important macromolecule in the repression of gene expression. Using a protein labeling technique, we created a hybrid probe containing a DNA-binding fluorogen and a methylated-DNA-binding domain. The hybrid probe enhanced fluorescence intensity upon binding to methylated DNA and successfully monitored methylated DNA during mitosis. The hybrid probe offers notable advantages absent from probes based on small molecules or fluorescent proteins and is useful for live-cell analyses of epigenetic phenomena and diseases related to DNA methylation.
Collapse
Affiliation(s)
- Yuichiro Hori
- Graduate School of Engineering, Osaka University , Suita, Osaka 565-0871, Japan.,Immunology Frontier Research Center, Osaka University , Suita, Osaka 565-0871, Japan
| | - Norimichi Otomura
- Graduate School of Engineering, Osaka University , Suita, Osaka 565-0871, Japan
| | - Ayuko Nishida
- Graduate School of Engineering, Osaka University , Suita, Osaka 565-0871, Japan
| | - Miyako Nishiura
- Graduate School of Engineering, Osaka University , Suita, Osaka 565-0871, Japan
| | - Maho Umeno
- Graduate School of Engineering, Osaka University , Suita, Osaka 565-0871, Japan
| | - Isao Suetake
- Laboratory of Epigenetics, Institute for Protein Research, Osaka University , Suita, Osaka 565-0871, Japan.,Center for Twin Research, Graduate School of Medicine, Osaka University , Suita, Osaka 565-0871, Japan.,College of Nutrition, Koshien University , Takaraduka, Hyogo 665-0006, Japan
| | - Kazuya Kikuchi
- Graduate School of Engineering, Osaka University , Suita, Osaka 565-0871, Japan.,Immunology Frontier Research Center, Osaka University , Suita, Osaka 565-0871, Japan
| |
Collapse
|
174
|
Abstract
The discovery of CpG islands (CGIs) and the study of their structure and properties run parallel to the development of molecular biology in the last two decades of the twentieth century and to the development of high-throughput genomic technologies at the turn of the millennium. First identified as discrete G + C-rich regions of unmethylated DNA in several vertebrates, CGIs were soon found to display additional distinctive chromatin features from the rest of the genome in terms of accessibility and of the epigenetic modifications of their histones. These features, together with their colocalization with promoters and with origins of DNA replication in mammals, highlighted their relevance in the regulation of genomic processes. Recent approaches have shown with unprecedented detail the dynamics and diversity of the epigenetic landscape of CGIs during normal development and under pathological conditions. Also, comparative analyses across species have started revealing how CGIs evolve and contribute to the evolution of the vertebrate genome.
Collapse
Affiliation(s)
- Francisco Antequera
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain.
| | - Adrian Bird
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Edinburgh, EH9 3BF, UK
| |
Collapse
|
175
|
Physiological and Pathological Roles of CaMKII-PP1 Signaling in the Brain. Int J Mol Sci 2017; 19:ijms19010020. [PMID: 29271887 PMCID: PMC5795971 DOI: 10.3390/ijms19010020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 01/25/2023] Open
Abstract
Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII), a multifunctional serine (Ser)/threonine (Thr) protein kinase, regulates diverse activities related to Ca2+-mediated neuronal plasticity in the brain, including synaptic activity and gene expression. Among its regulators, protein phosphatase-1 (PP1), a Ser/Thr phosphatase, appears to be critical in controlling CaMKII-dependent neuronal signaling. In postsynaptic densities (PSDs), CaMKII is required for hippocampal long-term potentiation (LTP), a cellular process correlated with learning and memory. In response to Ca2+ elevation during hippocampal LTP induction, CaMKIIα, an isoform that translocates from the cytosol to PSDs, is activated through autophosphorylation at Thr286, generating autonomous kinase activity and a prolonged Ca2+/CaM-bound state. Moreover, PP1 inhibition enhances Thr286 autophosphorylation of CaMKIIα during LTP induction. By contrast, CaMKII nuclear import is regulated by Ser332 phosphorylation state. CaMKIIδ3, a nuclear isoform, is dephosphorylated at Ser332 by PP1, promoting its nuclear translocation, where it regulates transcription. In this review, we summarize physio-pathological roles of CaMKII/PP1 signaling in neurons. CaMKII and PP1 crosstalk and regulation of gene expression is important for neuronal plasticity as well as survival and/or differentiation.
Collapse
|
176
|
Yu AM, Calvo JA, Muthupalani S, Samson LD. The Mbd4 DNA glycosylase protects mice from inflammation-driven colon cancer and tissue injury. Oncotarget 2017; 7:28624-36. [PMID: 27086921 PMCID: PMC5053750 DOI: 10.18632/oncotarget.8721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/28/2016] [Indexed: 12/12/2022] Open
Abstract
Much of the global cancer burden is associated with longstanding inflammation accompanied by release of DNA-damaging reactive oxygen and nitrogen species. Here, we report that the Mbd4 DNA glycosylase is protective in the azoxymethane/dextran sodium sulfate (AOM/DSS) mouse model of inflammation-driven colon cancer. Mbd4 excises T and U from T:G and U:G mismatches caused by deamination of 5-methylcytosine and cytosine. Since the rate of deamination is higher in inflamed tissues, we investigated the role of Mbd4 in inflammation-driven tumorigenesis. In the AOM/DSS assay, Mbd4-/- mice displayed more severe clinical symptoms, decreased survival, and a greater tumor burden than wild-type (WT) controls. The increased tumor burden in Mbd4-/- mice did not arise from impairment of AOM-induced apoptosis in the intestinal crypt. Histopathological analysis indicated that the colonic epithelium of Mbd4-/- mice is more vulnerable than WT to DSS-induced tissue damage. We investigated the role of the Mbd4-/- immune system in AOM/DSS-mediated carcinogenesis by repeating the assay on WT and Mbd4-/- mice transplanted with WT bone marrow. Mbd4-/- mice with WT bone marrow behaved similarly to Mbd4-/- mice. Together, our results indicate that the colonic epithelium of Mbd4-/- mice is more vulnerable to DSS-induced injury, which exacerbates inflammation-driven tissue injury and cancer.
Collapse
Affiliation(s)
- Amy Marie Yu
- Biological Engineering Department, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts, USA
| | - Jennifer A Calvo
- Biological Engineering Department, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts, USA.,Biology Department, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts, USA
| | - Suresh Muthupalani
- Department of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts, USA
| | - Leona D Samson
- Biological Engineering Department, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts, USA.,Biology Department, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts, USA.,Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts, USA
| |
Collapse
|
177
|
Spruijt CG, Luijsterburg MS, Menafra R, Lindeboom RGH, Jansen PWTC, Edupuganti RR, Baltissen MP, Wiegant WW, Voelker-Albert MC, Matarese F, Mensinga A, Poser I, Vos HR, Stunnenberg HG, van Attikum H, Vermeulen M. ZMYND8 Co-localizes with NuRD on Target Genes and Regulates Poly(ADP-Ribose)-Dependent Recruitment of GATAD2A/NuRD to Sites of DNA Damage. Cell Rep 2017; 17:783-798. [PMID: 27732854 DOI: 10.1016/j.celrep.2016.09.037] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/10/2016] [Accepted: 09/13/2016] [Indexed: 01/05/2023] Open
Abstract
NuRD (nucleosome remodeling and histone deacetylase) is a versatile multi-protein complex with roles in transcription regulation and the DNA damage response. Here, we show that ZMYND8 bridges NuRD to a number of putative DNA-binding zinc finger proteins. The MYND domain of ZMYND8 directly interacts with PPPLΦ motifs in the NuRD subunit GATAD2A. Both GATAD2A and GATAD2B exclusively form homodimers and define mutually exclusive NuRD subcomplexes. ZMYND8 and NuRD share a large number of genome-wide binding sites, mostly active promoters and enhancers. Depletion of ZMYND8 does not affect NuRD occupancy genome-wide and only slightly affects expression of NuRD/ZMYND8 target genes. In contrast, the MYND domain in ZMYND8 facilitates the rapid, poly(ADP-ribose)-dependent recruitment of GATAD2A/NuRD to sites of DNA damage to promote repair by homologous recombination. Thus, these results show that a specific substoichiometric interaction with a NuRD subunit paralogue provides unique functionality to distinct NuRD subcomplexes.
Collapse
Affiliation(s)
- Cornelia G Spruijt
- Department of Molecular Cancer Research, University Medical Center Utrecht, 3584 CG Utrecht, the Netherlands; Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Roberta Menafra
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Rik G H Lindeboom
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Pascal W T C Jansen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Raghu Ram Edupuganti
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Marijke P Baltissen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Wouter W Wiegant
- Department of Human Genetics, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Moritz C Voelker-Albert
- Department of Molecular Cancer Research, University Medical Center Utrecht, 3584 CG Utrecht, the Netherlands
| | - Filomena Matarese
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Anneloes Mensinga
- Department of Molecular Cancer Research, University Medical Center Utrecht, 3584 CG Utrecht, the Netherlands
| | - Ina Poser
- Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Harmjan R Vos
- Department of Molecular Cancer Research, University Medical Center Utrecht, 3584 CG Utrecht, the Netherlands
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands.
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands.
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands.
| |
Collapse
|
178
|
Ba X, Boldogh I. 8-Oxoguanine DNA glycosylase 1: Beyond repair of the oxidatively modified base lesions. Redox Biol 2017; 14:669-678. [PMID: 29175754 PMCID: PMC5975208 DOI: 10.1016/j.redox.2017.11.008] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/08/2017] [Accepted: 11/08/2017] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress and the resulting damage to genomic DNA are inevitable consequences of endogenous physiological processes, and they are amplified by cellular responses to environmental exposures. One of the most frequent reactions of reactive oxygen species with DNA is the oxidation of guanine to pre-mutagenic 8-oxo-7,8-dihydroguanine (8-oxoG). Despite the vulnerability of guanine to oxidation, vertebrate genes are primarily embedded in GC-rich genomic regions, and over 72% of the promoters of human genes belong to a class with a high GC content. In the promoter, 8-oxoG may serve as an epigenetic mark, and when complexed with the oxidatively inactivated repair enzyme 8-oxoguanine DNA glycosylase 1, provide a platform for the coordination of the initial steps of DNA repair and the assembly of the transcriptional machinery to launch the prompt and preferential expression of redox-regulated genes. Deviations/variations from this artful coordination may be the etiological links between guanine oxidation and various cellular pathologies and diseases during ageing processes.
Collapse
Affiliation(s)
- Xueqing Ba
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China; School of Life Science, Northeast Normal University, Changchun, Jilin 130024, China.
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| |
Collapse
|
179
|
Ginder GD, Williams DC. Readers of DNA methylation, the MBD family as potential therapeutic targets. Pharmacol Ther 2017; 184:98-111. [PMID: 29128342 DOI: 10.1016/j.pharmthera.2017.11.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA methylation represents a fundamental epigenetic modification that regulates chromatin architecture and gene transcription. Many diseases, including cancer, show aberrant methylation patterns that contribute to the disease phenotype. DNA methylation inhibitors have been used to block methylation dependent gene silencing to treat hematopoietic neoplasms and to restore expression of developmentally silenced genes. However, these inhibitors disrupt methylation globally and show significant off-target toxicities. As an alternative approach, we have been studying readers of DNA methylation, the 5-methylcytosine binding domain family of proteins, as potential therapeutic targets to restore expression of aberrantly and developmentally methylated and silenced genes. In this review, we discuss the role of DNA methylation in gene regulation and cancer development, the structure and function of the 5-methylcytosine binding domain family of proteins, and the possibility of targeting the complexes these proteins form to treat human disease.
Collapse
Affiliation(s)
- Gordon D Ginder
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, United States; Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States.
| | - David C Williams
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
180
|
Bunker SK, Dandapat J, Chainy GB, Sahoo SK, Nayak PK. Neonatal Exposure to 6-n-Propyl-Thiouracil, an Anti-Thyroid Drug, Alters Expression of Hepatic DNA Methyltransferases, Methyl CpG-Binding Proteins, Gadd45a, p53, and PCNA in Adult Male Rats. Eur Thyroid J 2017; 6:281-291. [PMID: 29234621 PMCID: PMC5704726 DOI: 10.1159/000479681] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 07/20/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Neonatal 6-n-propyl-2-thiouracil (PTU) exposure to male rats is reported to impair liver function in adulthood. However, the mechanism by which the drug impairs liver function is not well known. OBJECTIVES The objectives of the study were to investigate the effects of neonatal exposure of PTU on the expression of DNA methyltransferases (DNMTs), methyl-DNA binding proteins (MBDs), Gadd45a, p53, and proliferating cell nuclear antigen (PCNA) in adult rat liver. METHODS The effects of neonatal transient (from birth to 30 days of age) and persistent (from birth to 90 days of age) treatment of PTU on DNA damage and on the expression of p53, PCNA, DNMTs, and MBDs were investigated at transcriptional and translational levels in male adult liver. RESULTS Persistent exposure to PTU from birth caused significant downregulation of expression of DNMT1 and DNMT3a and upregulation of DNMT3b, MBD4, and Gadd45a without any damage to DNA. Although MeCp2 transcripts were significantly low in the liver of adult rats after persistent exposure to PTU compared to controls, its translated products were significantly higher than in controls. The expression of p53 and PCNA in PTU-treated rats was significantly higher and lower, respectively, than that in control rats. CONCLUSION The results suggest that neonatal exposure of male rats to PTU resulted in alteration in the expression of proteins that are associated with DNA methylation and genome stabilization in adult rat liver.
Collapse
Affiliation(s)
| | | | - Gagan B.N. Chainy
- *Gagan B.N. Chainy, Department of Biotechnology, Utkal University, Bhubaneswar, Odisha 751004 (India), E-Mail
| | | | | |
Collapse
|
181
|
Mathot P, Grandin M, Devailly G, Souaze F, Cahais V, Moran S, Campone M, Herceg Z, Esteller M, Juin P, Mehlen P, Dante R. DNA methylation signal has a major role in the response of human breast cancer cells to the microenvironment. Oncogenesis 2017; 6:e390. [PMID: 29058695 PMCID: PMC5668886 DOI: 10.1038/oncsis.2017.88] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/07/2017] [Accepted: 08/22/2017] [Indexed: 02/06/2023] Open
Abstract
Breast cancer-associated fibroblasts (CAFs) have a crucial role in tumor initiation, metastasis and therapeutic resistance by secreting various growth factors, cytokines, protease and extracellular matrix components. Soluble factors secreted by CAFs are involved in many pathways including inflammation, metabolism, proliferation and epigenetic modulation, suggesting that CAF-dependent reprograming of cancer cells affects a large set of genes. This paracrine signaling has an important role in tumor progression, thus deciphering some of these processes could lead to relevant discoveries with subsequent clinical implications. Here, we investigated the mechanisms underlying the changes in gene expression patterns associated with the cross-talk between breast cancer cells and the stroma. From RNAseq data obtained from breast cancer cell lines grown in presence of CAF-secreted factors, we identified 372 upregulated genes, exhibiting an expression level positively correlated with the stromal content of breast cancer specimens. Furthermore, we observed that gene expression changes were not mediated through significant DNA methylation changes. Nevertheless, CAF-secreted factors but also stromal content of the tumors remarkably activated specific genes characterized by a DNA methylation pattern: hypermethylation at transcription start site and shore regions. Experimental approaches (inhibition of DNA methylation, knockdown of methyl-CpG-binding domain protein 2 and chromatin immunoprecipitation assays) indicated that this set of genes was epigenetically controlled. These data elucidate the importance of epigenetics marks in the cancer cell reprogramming induced by stromal cell and indicated that the interpreters of the DNA methylation signal have a major role in the response of the cancer cells to the microenvironment.
Collapse
Affiliation(s)
- P Mathot
- Dependence Receptors, Cancer and Development Laboratory, Centre de Recherche en Cancérologie de Lyon (CRCL), Inserm U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - M Grandin
- Dependence Receptors, Cancer and Development Laboratory, Centre de Recherche en Cancérologie de Lyon (CRCL), Inserm U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - G Devailly
- Department of Developmental Biology, The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - F Souaze
- Cell survival and tumor escape in breast cancer Laboratory, Center for Cancer Research Nantes-Angers UMR 892 Inserm-6299 CNRS/Université de Nantes, Nantes, France
| | - V Cahais
- Epigenetics Group, IARC, Lyon, France
| | - S Moran
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - M Campone
- Cell survival and tumor escape in breast cancer Laboratory, Center for Cancer Research Nantes-Angers UMR 892 Inserm-6299 CNRS/Université de Nantes, Nantes, France
| | - Z Herceg
- Epigenetics Group, IARC, Lyon, France
| | - M Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - P Juin
- Cell survival and tumor escape in breast cancer Laboratory, Center for Cancer Research Nantes-Angers UMR 892 Inserm-6299 CNRS/Université de Nantes, Nantes, France
| | - P Mehlen
- Dependence Receptors, Cancer and Development Laboratory, Centre de Recherche en Cancérologie de Lyon (CRCL), Inserm U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - R Dante
- Dependence Receptors, Cancer and Development Laboratory, Centre de Recherche en Cancérologie de Lyon (CRCL), Inserm U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| |
Collapse
|
182
|
Garcia-Gomez A, Li T, Kerick M, Català-Moll F, Comet NR, Rodríguez-Ubreva J, de la Rica L, Branco MR, Martín J, Ballestar E. TET2- and TDG-mediated changes are required for the acquisition of distinct histone modifications in divergent terminal differentiation of myeloid cells. Nucleic Acids Res 2017; 45:10002-10017. [PMID: 28973458 PMCID: PMC5622316 DOI: 10.1093/nar/gkx666] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/19/2017] [Indexed: 12/21/2022] Open
Abstract
The plasticity of myeloid cells is illustrated by a diversity of functions including their role as effectors of innate immunity as macrophages (MACs) and bone remodelling as osteoclasts (OCs). TET2, a methylcytosine dioxygenase highly expressed in these cells and frequently mutated in myeloid leukemias, may be a key contributor to this plasticity. Through transcriptomic and epigenomic analyses, we investigated 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC) and gene expression changes in two divergent terminal myeloid differentiation processes, namely MAC and OC differentiation. MACs and OCs undergo highly similar 5hmC and 5mC changes, despite their wide differences in gene expression. Many TET2- and thymine-DNA glycosylase (TDG)-dependent 5mC and 5hmC changes directly activate the common terminal myeloid differentiation programme. However, the acquisition of differential features between MACs and OCs also depends on TET2/TDG. In fact, 5mC oxidation precedes differential histone modification changes between MACs and OCs. TET2 and TDG downregulation impairs the acquisition of such differential histone modification and expression patterns at MAC-/OC-specific genes. We prove that the histone H3K4 methyltransferase SETD1A is differentially recruited between MACs and OCs in a TET2-dependent manner. We demonstrate a novel role of these enzymes in the establishment of specific elements of identity and function in terminal myeloid differentiation.
Collapse
Affiliation(s)
- Antonio Garcia-Gomez
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Tianlu Li
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Martin Kerick
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de La Salud (PTS), Granada, Spain
| | - Francesc Català-Moll
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Natalia R Comet
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Javier Rodríguez-Ubreva
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Lorenzo de la Rica
- Barts and The London School of Medicine and Dentistry, Centre for Neuroscience & Trauma, Blizard Institute, 4 Newark Street, London E1 2AT, UK
| | - Miguel R Branco
- Barts and The London School of Medicine and Dentistry, Centre for Neuroscience & Trauma, Blizard Institute, 4 Newark Street, London E1 2AT, UK
| | - Javier Martín
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de La Salud (PTS), Granada, Spain
| | - Esteban Ballestar
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
183
|
Pan H, Bilinovich SM, Kaur P, Riehn R, Wang H, Williams DC. CpG and methylation-dependent DNA binding and dynamics of the methylcytosine binding domain 2 protein at the single-molecule level. Nucleic Acids Res 2017. [PMID: 28637186 PMCID: PMC5587734 DOI: 10.1093/nar/gkx548] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The methylcytosine-binding domain 2 (MBD2) protein recruits the nucleosome remodeling and deacetylase complex (NuRD) to methylated DNA to modify chromatin and regulate transcription. Importantly, MBD2 functions within CpG islands that contain 100s to 1000s of potential binding sites. Since NuRD physically rearranges nucleosomes, the dynamic mobility of this complex is directly related to function. In these studies, we use NMR and single-molecule atomic force microscopy and fluorescence imaging to study DNA binding dynamics of MBD2. Single-molecule fluorescence tracking on DNA tightropes containing regions with CpG-rich and CpG-free regions reveals that MBD2 carries out unbiased 1D diffusion on CpG-rich DNA but subdiffusion on CpG-free DNA. In contrast, the protein stably and statically binds to methylated CpG (mCpG) regions. The intrinsically disordered region (IDR) on MBD2 both reduces exchange between mCpG sites along the DNA as well as the dissociation from DNA, acting like an anchor that restricts the dynamic mobility of the MBD domain. Unexpectedly, MBD2 binding to methylated CpGs induces DNA bending that is augmented by the IDR region of the protein. These results suggest that MBD2 targets NuRD to unmethylated or methylated CpG islands where its distinct dynamic binding modes help maintain open or closed chromatin, respectively.
Collapse
Affiliation(s)
- Hai Pan
- Department of Physics, North Carolina State University, Raleigh, North Carolina, NC 27695, USA
| | - Stephanie M Bilinovich
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Parminder Kaur
- Department of Physics, North Carolina State University, Raleigh, North Carolina, NC 27695, USA
| | - Robert Riehn
- Department of Physics, North Carolina State University, Raleigh, North Carolina, NC 27695, USA
| | - Hong Wang
- Department of Physics, North Carolina State University, Raleigh, North Carolina, NC 27695, USA.,Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, NC 27695, USA
| | - David C Williams
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
184
|
Soozangar N, Sadeghi MR, Jeddi F, Somi MH, Shirmohamadi M, Samadi N. Comparison of genome‐wide analysis techniques to DNA methylation analysis in human cancer. J Cell Physiol 2017; 233:3968-3981. [DOI: 10.1002/jcp.26176] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/24/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Narges Soozangar
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences,Tabriz University of Medical SciencesTabrizIran
- Molecular Medicine Research CenterTabriz University of Medical SciencesTabrizIran
| | - Mohammad R. Sadeghi
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences,Tabriz University of Medical SciencesTabrizIran
| | - Farhad Jeddi
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences,Tabriz University of Medical SciencesTabrizIran
| | - Mohammad H. Somi
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences,Tabriz University of Medical SciencesTabrizIran
| | - Masoud Shirmohamadi
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Nasser Samadi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences,Tabriz University of Medical SciencesTabrizIran
- Department of Biochemistry, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
185
|
Lungu C, Pinter S, Broche J, Rathert P, Jeltsch A. Modular fluorescence complementation sensors for live cell detection of epigenetic signals at endogenous genomic sites. Nat Commun 2017; 8:649. [PMID: 28935858 PMCID: PMC5608954 DOI: 10.1038/s41467-017-00457-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 06/30/2017] [Indexed: 12/23/2022] Open
Abstract
Investigation of the fundamental role of epigenetic processes requires methods for the locus-specific detection of epigenetic modifications in living cells. Here, we address this urgent demand by developing four modular fluorescence complementation-based epigenetic biosensors for live-cell microscopy applications. These tools combine engineered DNA-binding proteins with domains recognizing defined epigenetic marks, both fused to non-fluorescent fragments of a fluorescent protein. The presence of the epigenetic mark at the target DNA sequence leads to the reconstitution of a functional fluorophore. With this approach, we could for the first time directly detect DNA methylation and histone 3 lysine 9 trimethylation at endogenous genomic sites in live cells and follow dynamic changes in these marks upon drug treatment, induction of epigenetic enzymes and during the cell cycle. We anticipate that this versatile technology will improve our understanding of how specific epigenetic signatures are set, erased and maintained during embryonic development or disease onset.Tools for imaging epigenetic modifications can shed light on the regulation of epigenetic processes. Here, the authors present a fluorescence complementation approach for detection of DNA and histone methylation at endogenous genomic sites allowing following of dynamic changes of these marks by live-cell microscopy.
Collapse
Affiliation(s)
- Cristiana Lungu
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany
| | - Sabine Pinter
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany
| | - Julian Broche
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany
| | - Philipp Rathert
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
186
|
Abstract
This paper provides a brief introductory review of the most recent advances in our knowledge about the structural and functional aspects of two transcriptional regulators: MeCP2, a protein whose mutated forms are involved in Rett syndrome; and CTCF, a constitutive transcriptional insulator. This is followed by a description of the PTMs affecting these two proteins and an analysis of their known interacting partners. A special emphasis is placed on the recent studies connecting these two proteins, focusing on the still poorly understood potential structural and functional interactions between the two of them on the chromatin substrate. An overview is provided for some of the currently known genes that are dually regulated by these two proteins. Finally, a model is put forward to account for their possible involvement in their regulation of gene expression.
Collapse
Affiliation(s)
- Juan Ausió
- a Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada.,b Center for Biomedical Research, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Philippe T Georgel
- c Department of Biological Sciences, Marshall University, Huntington, WV 25755, USA.,d Cell Differentiation and Development Center, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
187
|
Ludwig AK, Zhang P, Hastert FD, Meyer S, Rausch C, Herce HD, Müller U, Lehmkuhl A, Hellmann I, Trummer C, Storm C, Leonhardt H, Cardoso MC. Binding of MBD proteins to DNA blocks Tet1 function thereby modulating transcriptional noise. Nucleic Acids Res 2017; 45:2438-2457. [PMID: 27923996 PMCID: PMC5389475 DOI: 10.1093/nar/gkw1197] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/20/2016] [Indexed: 12/18/2022] Open
Abstract
Aberrant DNA methylation is a hallmark of various human disorders, indicating that the spatial and temporal regulation of methylation readers and modifiers is imperative for development and differentiation. In particular, the cross-regulation between 5-methylcytosine binders (MBD) and modifiers (Tet) has not been investigated. Here, we show that binding of Mecp2 and Mbd2 to DNA protects 5-methylcytosine from Tet1-mediated oxidation. The mechanism is not based on competition for 5-methylcytosine binding but on Mecp2 and Mbd2 directly restricting Tet1 access to DNA. We demonstrate that the efficiency of this process depends on the number of bound MBDs per DNA molecule. Accordingly, we find 5-hydroxymethylcytosine enriched at heterochromatin of Mecp2-deficient neurons of a mouse model for Rett syndrome and Tet1-induced reexpression of silenced major satellite repeats. These data unveil fundamental regulatory mechanisms of Tet enzymes and their potential pathophysiological role in Rett syndrome. Importantly, it suggests that Mecp2 and Mbd2 have an essential physiological role as guardians of the epigenome.
Collapse
Affiliation(s)
- Anne K Ludwig
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Peng Zhang
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Florian D Hastert
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Stephanie Meyer
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Cathia Rausch
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Henry D Herce
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Udo Müller
- Human Biology and BioImaging, Department of Biology II, LMU Munich, 82152 Martinsried, Germany
| | - Anne Lehmkuhl
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Ines Hellmann
- Anthropology and Human Genomics, Department Biology II, LMU Munich, 82152 Martinsried, Germany
| | - Carina Trummer
- Human Biology and BioImaging, Department of Biology II, LMU Munich, 82152 Martinsried, Germany
| | - Christian Storm
- Chemical Plant Ecology, Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Heinrich Leonhardt
- Human Biology and BioImaging, Department of Biology II, LMU Munich, 82152 Martinsried, Germany
| | - M Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
188
|
Acetylation- and Methylation-Related Epigenetic Proteins in the Context of Their Targets. Genes (Basel) 2017; 8:genes8080196. [PMID: 28783137 PMCID: PMC5575660 DOI: 10.3390/genes8080196] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/19/2017] [Accepted: 07/31/2017] [Indexed: 12/19/2022] Open
Abstract
The nucleosome surface is covered with multiple modifications that are perpetuated by eight different classes of enzymes. These enzymes modify specific target sites both on DNA and histone proteins, and these modifications have been well identified and termed “epigenetics”. These modifications play critical roles, either by affecting non-histone protein recruitment to chromatin or by disturbing chromatin contacts. Their presence dictates the condensed packaging of DNA and can coordinate the orderly recruitment of various enzyme complexes for DNA manipulation. This genetic modification machinery involves various writers, readers, and erasers that have unique structures, functions, and modes of action. Regarding human disease, studies have mainly focused on the genetic mechanisms; however, alteration in the balance of epigenetic networks can result in major pathologies including mental retardation, chromosome instability syndromes, and various types of cancers. Owing to its critical influence, great potential lies in developing epigenetic therapies. In this regard, this review has highlighted mechanistic and structural interactions of the main epigenetic families with their targets, which will help to identify more efficient and safe drugs against several diseases.
Collapse
|
189
|
Masiello I, Biggiogera M. Ultrastructural localization of 5-methylcytosine on DNA and RNA. Cell Mol Life Sci 2017; 74:3057-3064. [PMID: 28391361 PMCID: PMC11107537 DOI: 10.1007/s00018-017-2521-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/09/2017] [Accepted: 04/04/2017] [Indexed: 02/07/2023]
Abstract
DNA methylation is the major epigenetic modification and it is involved in the negative regulation of gene expression. Its alteration can lead to neoplastic transformation. Several biomolecular approaches are nowadays used to study this modification on DNA, but also on RNA molecules, which are known to play a role in different biological processes. RNA methylation is one of the most common RNA modifications and 5-methylcytosine presence has recently been suggested in mRNA. However, an analysis of nucleic acid methylation at electron microscope is still lacking. Therefore, we visualized DNA methylation status and RNA methylation sites in the interphase nucleus of HeLa cells and rat hepatocytes by ultrastructural immunocytochemistry and cytochemical staining. This approach represents an efficient alternative to study nucleic acid methylation. In particular, this ultrastructural method makes the visualization of this epigenetic modification on a single RNA molecule possible, thus overcoming the technical limitations for a (pre-)mRNA methylation analysis.
Collapse
Affiliation(s)
- Irene Masiello
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Marco Biggiogera
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy.
| |
Collapse
|
190
|
Morgan MB, Edge SE, Venn AA, Jones RJ. Developing transcriptional profiles in Orbicella franksi exposed to copper: Characterizing responses associated with a spectrum of laboratory-controlled environmental conditions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 189:60-76. [PMID: 28599170 DOI: 10.1016/j.aquatox.2017.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/23/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Michael B Morgan
- Department of Biology, Berry College, School of Mathematics and Natural Sciences, 2277 Martha Berry Hwy, Mount Berry, GA, 30149, USA.
| | - Sara E Edge
- Hawaii Pacific University, 45-045 Kamehameha Hwy, Kaneohe, HI, 96744, USA
| | - Alexander A Venn
- Marine Biology Department et Laboratoire International Associé 647 "BIOSENSIB", Centre Scientifique de Monaco, 8 Quai Antoine 1er, MC98000, Monaco
| | - Ross J Jones
- Australian Institute of Marine Science (AIMS), Perth, 6009, Australia
| |
Collapse
|
191
|
Job G, Brugger C, Xu T, Lowe BR, Pfister Y, Qu C, Shanker S, Baños Sanz JI, Partridge JF, Schalch T. SHREC Silences Heterochromatin via Distinct Remodeling and Deacetylation Modules. Mol Cell 2017; 62:207-221. [PMID: 27105116 DOI: 10.1016/j.molcel.2016.03.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/27/2016] [Accepted: 03/11/2016] [Indexed: 11/18/2022]
Abstract
Nucleosome remodeling and deacetylation (NuRD) complexes are co-transcriptional regulators implicated in differentiation, development, and diseases. Methyl-CpG binding domain (MBD) proteins play an essential role in recruitment of NuRD complexes to their target sites in chromatin. The related SHREC complex in fission yeast drives transcriptional gene silencing in heterochromatin through cooperation with HP1 proteins. How remodeler and histone deacetylase (HDAC) cooperate within NuRD complexes remains unresolved. We determined that in SHREC the two modules occupy distant sites on the scaffold protein Clr1 and that repressive activity of SHREC can be modulated by the expression level of the HDAC-associated Clr1 domain alone. Moreover, the crystal structure of Clr2 reveals an MBD-like domain mediating recruitment of the HDAC module to heterochromatin. Thus, SHREC bi-functionality is organized in two separate modules with separate recruitment mechanisms, which work together to elicit transcriptional silencing at heterochromatic loci.
Collapse
Affiliation(s)
- Godwin Job
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Christiane Brugger
- Department of Molecular Biology, Science III, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva 4, Switzerland
| | - Tao Xu
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Brandon R Lowe
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yvan Pfister
- Department of Molecular Biology, Science III, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva 4, Switzerland
| | - Chunxu Qu
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Sreenath Shanker
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - José I Baños Sanz
- Department of Molecular Biology, Science III, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva 4, Switzerland
| | - Janet F Partridge
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| | - Thomas Schalch
- Department of Molecular Biology, Science III, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva 4, Switzerland.
| |
Collapse
|
192
|
Zhang P, Rausch C, Hastert FD, Boneva B, Filatova A, Patil SJ, Nuber UA, Gao Y, Zhao X, Cardoso MC. Methyl-CpG binding domain protein 1 regulates localization and activity of Tet1 in a CXXC3 domain-dependent manner. Nucleic Acids Res 2017; 45:7118-7136. [PMID: 28449087 PMCID: PMC5499542 DOI: 10.1093/nar/gkx281] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 03/30/2017] [Accepted: 04/06/2017] [Indexed: 12/20/2022] Open
Abstract
Cytosine modifications diversify and structure the genome thereby controlling proper development and differentiation. Here, we focus on the interplay of the 5-methylcytosine reader Mbd1 and modifier Tet1 by analyzing their dynamic subcellular localization and the formation of the Tet oxidation product 5-hydroxymethylcytosine in mammalian cells. Our results demonstrate that Mbd1 enhances Tet1-mediated 5-methylcytosine oxidation. We show that this is due to enhancing the localization of Tet1, but not of Tet2 and Tet3 at heterochromatic DNA. We find that the recruitment of Tet1 and concomitantly its catalytic activity eventually leads to the displacement of Mbd1 from methylated DNA. Finally, we demonstrate that increased Tet1 heterochromatin localization and 5-methylcytosine oxidation are dependent on the CXXC3 domain of Mbd1, which recognizes unmethylated CpG dinucleotides. The Mbd1 CXXC3 domain deletion isoform, which retains only binding to methylated CpGs, on the other hand, blocks Tet1-mediated 5-methylcytosine to 5-hydroxymethylcytosine conversion, indicating opposite biological effects of Mbd1 isoforms. Our study provides new insights on how cytosine modifications, their modifiers and readers cross-regulate themselves.
Collapse
Affiliation(s)
- Peng Zhang
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Cathia Rausch
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Florian D. Hastert
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Boyana Boneva
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Alina Filatova
- Stem Cell and Developmental Biology, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Sujit J. Patil
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Ulrike A. Nuber
- Stem Cell and Developmental Biology, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Yu Gao
- Waisman Center & Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xinyu Zhao
- Waisman Center & Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - M. Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| |
Collapse
|
193
|
Cui S, Liu L, Wan T, Jiang L, Shi Y, Luo L. MiR-520b inhibits the development of glioma by directly targeting MBD2. Am J Cancer Res 2017; 7:1528-1539. [PMID: 28744402 PMCID: PMC5523033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/13/2017] [Indexed: 06/07/2023] Open
Abstract
MicroRNAs play important roles in the process of cancer, which microRNA-520b (miR-520b) has been reported to play critical roles in tumor progression in many types of cancers. However, its role in glioma remains unknown. In this study, we found that miR-520b could inhibit growth and progression in glioma by targeting methyl-CpG-binding domain 2 (MBD2). First, we analyzed the expression of miR-520b in different glioma grades and different cell lines (U87, U251 and astrocyte). Then we assessed the effect of miR-520b on glucose metabolism, invasion, angiogenesis and chemosensitivity in U87 and U251 cells. By using an online database, miR-520b was found to directly bind to the 3'-untranslated regions (3'-UTR) of MBD2 and reduce its expression at the protein level, which further inhibits the development of glioma. MBD2 was also found to be over-expressed in human glioma tissues and in U87 and U251 cells and its level was inversely correlated with that of miR-520b. Furthermore, restoration of MBD2 partially rescued the miR-520b-induced inhibitory effect on glucose metabolism, invasion, angiogenesis and chemosensitivity in glioma cells. In summary, to date, this is the first study to demonstrate that miR-520b functions as a tumor suppressor in glioma by directly targeting MBD2, suggesting that MBD2 may be a potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Sitong Cui
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, Jiangsu, China
| | - Liang Liu
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, Jiangsu, China
| | - Teng Wan
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, Jiangsu, China
| | - Lei Jiang
- Department of Cardiology, Jiangsu Province Official HospitalNanjing 210024, Jiangsu, China
| | - Yan Shi
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, Jiangsu, China
| | - Liangsheng Luo
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, Jiangsu, China
| |
Collapse
|
194
|
Mendonca A, Sanchez OF, Liu W, Li Z, Yuan C. CpG dinucleotide positioning patterns determine the binding affinity of methyl-binding domain to nucleosomes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:713-720. [DOI: 10.1016/j.bbagrm.2017.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/10/2017] [Accepted: 03/30/2017] [Indexed: 11/28/2022]
|
195
|
Zhao J, Fan YC, Chen LY, Gao S, Li F, Wang K. Alteration of methyl-CpG binding domain family in patients with chronic hepatitis B. Clin Res Hepatol Gastroenterol 2017; 41:272-283. [PMID: 28065745 DOI: 10.1016/j.clinre.2016.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/25/2016] [Accepted: 11/30/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND OBJECTIVE Epigenetics contributes to the outcome of chronic hepatitis B virus (HBV) infection. However, the role of methyl-CpG binding domain (MBD) family in the natural history of chronic hepatitis B (CHB) has not been demonstrated. It is aimed to investigate the dynamic expression of MBD family and assess the potential association of MBD family in the progression of CHB. METHODS Quantitative real-time polymerase chain reaction (RT-PCR) was used to determine the mRNA levels of MBD family in peripheral blood mononuclear cells (PBMCs) from 223 patients with CHB as training cohort, 146 patients with CHB as validation cohort [immune-tolerant (IT), immune clearance (IC), non/low-replicative (LR) and HBeAg negative hepatitis (ENH)], and 14 healthy controls (HCs). RESULTS The mRNA levels of MeCP2, MBD1, MBD2 and MBD4 were upregulated in patients with CHB compared with HCs. MBD1 mRNA was highest expressed in IT phase than other phases. The optimal cut-off value for MBD1 mRNA in discriminating IT phase from CHB was 0.0305 in both training and validation cohorts. Both MBD2 and MBD4 mRNA were highest expressed in IC phase than other phases. Moreover, the optimal cut-off values for MBD2 and MBD4 mRNA in discriminating IC phase from CHB were 0.0069 and 0.00099. Furthermore, MBD2 plus MBD4 performed better than MBD2 alone for discriminating IC phase from CHB in training (area under the curve of receiver operating characteristics [AUC] 0.736 vs. 0.671, P=0.0225) and validation cohorts (AUC 0.754 vs. 0.665, P=0.004). MeCP2 mRNA was highest expressed in patients with S3+S4. MeCP2 mRNA has higher AUC than APRI score for predicting S3+S4 and S4 in fibrosis. CONCLUSIONS MBD family is involved in the pathogenesis of CHB and is correlated with disease progression, suggesting the value in evaluating disease severity.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China; Institute of Hepatology, Shandong University, Jinan 250012, China
| | - Long-Yan Chen
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China; Institute of Hepatology, Shandong University, Jinan 250012, China
| | - Shuai Gao
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China; Institute of Hepatology, Shandong University, Jinan 250012, China
| | - Feng Li
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China; Institute of Hepatology, Shandong University, Jinan 250012, China.
| |
Collapse
|
196
|
Radhakrishnan S, Literman R, Mizoguchi B, Valenzuela N. MeDIP-seq and nCpG analyses illuminate sexually dimorphic methylation of gonadal development genes with high historic methylation in turtle hatchlings with temperature-dependent sex determination. Epigenetics Chromatin 2017; 10:28. [PMID: 28533820 PMCID: PMC5438563 DOI: 10.1186/s13072-017-0136-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/12/2017] [Indexed: 12/15/2022] Open
Abstract
Background DNA methylation alters gene expression but not DNA sequence and mediates some cases of phenotypic plasticity. Temperature-dependent sex determination (TSD) epitomizes phenotypic plasticity where environmental temperature drives embryonic sexual fate, as occurs commonly in turtles. Importantly, the temperature-specific transcription of two genes underlying gonadal differentiation is known to be induced by differential methylation in TSD fish, turtle and alligator. Yet, how extensive is the link between DNA methylation and TSD remains unclear. Here we test for broad differences in genome-wide DNA methylation between male and female hatchling gonads of the TSD painted turtle Chrysemys picta using methyl DNA immunoprecipitation sequencing, to identify differentially methylated candidates for future study. We also examine the genome-wide nCpG distribution (which affects DNA methylation) in painted turtles and test for historic methylation in genes regulating vertebrate gonadogenesis. Results Turtle global methylation was consistent with other vertebrates (57% of the genome, 78% of all CpG dinucleotides). Numerous genes predicted to regulate turtle gonadogenesis exhibited sex-specific methylation and were proximal to methylated repeats. nCpG distribution predicted actual turtle DNA methylation and was bimodal in gene promoters (as other vertebrates) and introns (unlike other vertebrates). Differentially methylated genes, including regulators of sexual development, had lower nCpG content indicative of higher historic methylation. Conclusions Ours is the first evidence suggesting that sexually dimorphic DNA methylation is pervasive in turtle gonads (perhaps mediated by repeat methylation) and that it targets numerous regulators of gonadal development, consistent with the hypothesis that it may regulate thermosensitive transcription in TSD vertebrates. However, further research during embryogenesis will help test this hypothesis and the alternative that instead, most differential methylation observed in hatchlings is the by-product of sexual differentiation and not its cause. Electronic supplementary material The online version of this article (doi:10.1186/s13072-017-0136-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Srihari Radhakrishnan
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50011 USA.,Department of Ecology, Evolution and Organismal Biology, Iowa State University, 251 Bessey Hall, Ames, IA 50011 USA
| | - Robert Literman
- Ecology and Evolutionary Biology Program, Iowa State University, Ames, IA 50011 USA.,Department of Ecology, Evolution and Organismal Biology, Iowa State University, 251 Bessey Hall, Ames, IA 50011 USA
| | - Beatriz Mizoguchi
- Interdepartmental Genetics and Genomics Program, Iowa State University, Ames, IA 50011 USA.,Department of Ecology, Evolution and Organismal Biology, Iowa State University, 251 Bessey Hall, Ames, IA 50011 USA
| | - Nicole Valenzuela
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, 251 Bessey Hall, Ames, IA 50011 USA
| |
Collapse
|
197
|
Zhang P, Ludwig AK, Hastert FD, Rausch C, Lehmkuhl A, Hellmann I, Smets M, Leonhardt H, Cardoso MC. L1 retrotransposition is activated by Ten-eleven-translocation protein 1 and repressed by methyl-CpG binding proteins. Nucleus 2017; 8:548-562. [PMID: 28524723 PMCID: PMC5703239 DOI: 10.1080/19491034.2017.1330238] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
One of the major functions of DNA methylation is the repression of transposable elements, such as the long-interspersed nuclear element 1 (L1). The underlying mechanism(s), however, are unclear. Here, we addressed how retrotransposon activation and mobilization are regulated by methyl-cytosine modifying ten-eleven-translocation (Tet) proteins and how this is modulated by methyl-CpG binding domain (MBD) proteins. We show that Tet1 activates both, endogenous and engineered L1 retrotransposons. Furthermore, we found that Mecp2 and Mbd2 repress Tet1-mediated activation of L1 by preventing 5hmC formation at the L1 promoter. Finally, we demonstrate that the methyl-CpG binding domain, as well as the adjacent non-sequence specific DNA binding domain of Mecp2 are each sufficient to mediate repression of Tet1-induced L1 mobilization. Our study reveals a mechanism how L1 elements get activated in the absence of Mecp2 and suggests that Tet1 may contribute to Mecp2/Mbd2-deficiency phenotypes, such as the Rett syndrome. We propose that the balance between methylation "reader" and "eraser/writer" controls L1 retrotransposition.
Collapse
Affiliation(s)
- Peng Zhang
- a Department of Biology , Technical University Darmstadt , Darmstadt , Germany
| | - Anne K Ludwig
- a Department of Biology , Technical University Darmstadt , Darmstadt , Germany
| | - Florian D Hastert
- a Department of Biology , Technical University Darmstadt , Darmstadt , Germany
| | - Cathia Rausch
- a Department of Biology , Technical University Darmstadt , Darmstadt , Germany
| | - Anne Lehmkuhl
- a Department of Biology , Technical University Darmstadt , Darmstadt , Germany
| | - Ines Hellmann
- b Anthropology and Human Genomics, Department Biology II , LMU Munich , Germany
| | - Martha Smets
- c Human Biology and BioImaging, Department of Biology II , LMU Munich , Germany
| | - Heinrich Leonhardt
- c Human Biology and BioImaging, Department of Biology II , LMU Munich , Germany
| | - M Cristina Cardoso
- a Department of Biology , Technical University Darmstadt , Darmstadt , Germany
| |
Collapse
|
198
|
Ee LS, McCannell KN, Tang Y, Fernandes N, Hardy WR, Green MR, Chu F, Fazzio TG. An Embryonic Stem Cell-Specific NuRD Complex Functions through Interaction with WDR5. Stem Cell Reports 2017; 8:1488-1496. [PMID: 28528697 PMCID: PMC5470077 DOI: 10.1016/j.stemcr.2017.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 11/18/2022] Open
Abstract
The Nucleosome Remodeling and Deacetylase (NuRD) complex is a chromatin regulatory complex that functions as a transcriptional co-repressor in metazoans. The NuRD subunit MBD3 is essential for targeting and assembly of a functional NuRD complex as well as embryonic stem cell (ESC) pluripotency. Three MBD3 isoforms (MBD3A, MBD3B, and MBD3C) are expressed in mouse. Here, we find that the MBD3C isoform contains a unique 50-amino-acid N-terminal region that is necessary for MBD3C to specifically interact with the histone H3 binding protein WDR5. Domain analyses of WDR5 reveal that the H3 binding pocket is required for interaction with MBD3C. We find that while Mbd3c knockout ESCs differentiate normally, MBD3C is redundant with the MBD3A and MBD3B isoforms in regulation of gene expression, with the unique MBD3C N terminus required for this redundancy. Together, our data characterize a unique NuRD complex variant that functions specifically in ESCs. Mbd3c binds Wdr5 through its unique N-terminal domain Wdr5 interaction is critical for Mbd3c function Mbd3c/NuRD can substitute for canonical NuRD complex in ESC gene regulation
Collapse
Affiliation(s)
- Ly-Sha Ee
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Kurtis N McCannell
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yang Tang
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Nancy Fernandes
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - W Rod Hardy
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Michael R Green
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Feixia Chu
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Thomas G Fazzio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
199
|
Tsou PS, Sawalha AH. Unfolding the pathogenesis of scleroderma through genomics and epigenomics. J Autoimmun 2017; 83:73-94. [PMID: 28526340 DOI: 10.1016/j.jaut.2017.05.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 05/09/2017] [Indexed: 12/12/2022]
Abstract
With unknown etiology, scleroderma (SSc) is a multifaceted disease characterized by immune activation, vascular complications, and excessive fibrosis in internal organs. Genetic studies, including candidate gene association studies, genome-wide association studies, and whole-exome sequencing have supported the notion that while genetic susceptibility to SSc appears to be modest, SSc patients are genetically predisposed to this disease. The strongest genetic association for SSc lies within the MHC region, with loci in HLA-DRB1, HLA-DQB1, HLA-DPB1, and HLA-DOA1 being the most replicated. The non-HLA genes associated with SSc are involved in various functions, with the most robust associations including genes for B and T cell activation and innate immunity. Other pathways include genes involved in extracellular matrix deposition, cytokines, and autophagy. Among these genes, IRF5, STAT4, and CD247 were replicated most frequently while SNPs rs35677470 in DNASE1L3, rs5029939 in TNFAIP3, and rs7574685 in STAT4 have the strongest associations with SSc. In addition to genetic predisposition, it became clear that environmental factors and epigenetic influences also contribute to the development of SSc. Epigenetics, which refers to studies that focus on heritable phenotypes resulting from changes in chromatin structure without affecting the DNA sequence, is one of the most rapidly expanding fields in biomedical research. Indeed extensive epigenetic changes have been described in SSc. Alteration in enzymes and mediators involved in DNA methylation and histone modification, as well as dysregulated non-coding RNA levels all contribute to fibrosis, immune dysregulation, and impaired angiogenesis in this disease. Genes that are affected by epigenetic dysregulation include ones involved in autoimmunity, T cell function and regulation, TGFβ pathway, Wnt pathway, extracellular matrix, and transcription factors governing fibrosis and angiogenesis. In this review, we provide a comprehensive overview of the current findings of SSc genetic susceptibility, followed by an extensive description and a systematic review of epigenetic research that has been carried out to date in SSc. We also summarize the therapeutic potential of drugs that affect epigenetic mechanisms, and outline the future prospective of genomics and epigenomics research in SSc.
Collapse
Affiliation(s)
- Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Amr H Sawalha
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
200
|
The Crucial Role of DNA Methylation and MeCP2 in Neuronal Function. Genes (Basel) 2017; 8:genes8050141. [PMID: 28505093 PMCID: PMC5448015 DOI: 10.3390/genes8050141] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/25/2017] [Accepted: 05/05/2017] [Indexed: 12/16/2022] Open
Abstract
A neuron is unique in its ability to dynamically modify its transcriptional output in response to synaptic activity while maintaining a core gene expression program that preserves cellular identity throughout a lifetime that is longer than almost every other cell type in the body. A contributing factor to the immense adaptability of a neuron is its unique epigenetic landscape that elicits locus-specific alterations in chromatin architecture, which in turn influences gene expression. One such epigenetic modification that is sensitive to changes in synaptic activity, as well as essential for maintaining cellular identity, is DNA methylation. The focus of this article is on the importance of DNA methylation in neuronal function, summarizing recent studies on critical players in the establishment of (the “writing”), the modification or erasure of (the “editing”), and the mediation of (the “reading”) DNA methylation in neurodevelopment and neuroplasticity. One “reader” of DNA methylation in particular, methyl-CpG-binding protein 2 (MeCP2), is highlighted, given its undisputed importance in neuronal function.
Collapse
|