151
|
Wei X, Du M, Xie J, Luo T, Zhou Y, Zhang K, Li J, Chen D, Xu P, Jia M, Zhou H, Fang H, Lyu J, Yang Y. Mutations in TOMM70 lead to multi-OXPHOS deficiencies and cause severe anemia, lactic acidosis, and developmental delay. J Hum Genet 2020; 65:231-240. [PMID: 31907385 DOI: 10.1038/s10038-019-0714-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/24/2019] [Accepted: 12/15/2019] [Indexed: 11/09/2022]
Abstract
TOM70 is a member of the TOM complex that transports cytosolic proteins into mitochondria. Here, we identified two compound heterozygous variants in TOMM70 [c.794C>T (p.T265M) and c.1745C>T (p.A582V)] from a patient with severe anemia, lactic acidosis, and developmental delay. Patient-derived immortalized lymphocytes showed decreased TOM70 expression, oligomerized TOM70 complex, and TOM 20/22/40 complex compared with expression in control lymphocytes. Functional analysis revealed that patient-derived cells exhibited multi-oxidative phosphorylation system (OXPHOS) complex defects, with complex IV being primarily affected. As a result, patient-derived cells grew slower in galactose medium and generated less ATP and more extracellular lactic acid than did control cells. In vitro cell model compensatory experiments confirmed the pathogenicity of TOMM70 variants since only wild-type TOM70, but not mutant TOM70, could restore the complex IV defect and TOM70 expression in TOM70 knockdown U2OS cells. Altogether, we report the first case of mitochondrial disease-causing mutations in TOMM70 and demonstrate that TOM70 is essential for multi-OXPHOS assembly. Mutational screening of TOMM70 should be employed to identify mitochondrial disease-causing gene mutations in the future.
Collapse
Affiliation(s)
- Xiujuan Wei
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Miaomiao Du
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jie Xie
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ting Luo
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yan Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Kun Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jin Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Deyu Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Pu Xu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Manli Jia
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Huaibin Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Hezhi Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China. .,Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, 310053, Zhejiang, China.
| | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, 100034, Beijing, China.
| |
Collapse
|
152
|
Li M, Zhou S, Chen C, Ma L, Luo D, Tian X, Dong X, Zhou Y, Yang Y, Cui Y. Therapeutic potential of pyruvate therapy for patients with mitochondrial diseases: a systematic review. Ther Adv Endocrinol Metab 2020; 11:2042018820938240. [PMID: 32695307 PMCID: PMC7350055 DOI: 10.1177/2042018820938240] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 06/08/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Mitochondrial disease is a term used to describe a set of heterogeneous genetic diseases caused by impaired structure or function of mitochondria. Pyruvate therapy for mitochondrial disease is promising from a clinical point of view. METHODS According to PRISMA guidelines, the following databases were searched to identify studies regarding pyruvate therapy for mitochondrial disease: PubMed, EMBASE, Cochrane Library, and Clinicaltrials. The search was up to April 2019. The endpoints were specific biomarkers (plasma level of lactate, plasma level of pyruvate, L/P ratio) and clinical rating scales [Japanese mitochondrial disease-rating scale (JMDRS), Newcastle Mitochondrial Disease Adult Scale (NMDAS), and others]. Two researchers independently screened articles, extracted data, and assessed the quality of the studies. RESULTS A total of six studies were included. Considerable differences were noted between studies in terms of study design, patient information, and outcome measures. The collected evidence may indicate an effective potential of pyruvate therapy on the improvement of mitochondrial disease. The majority of the common adverse events of pyruvate therapy were diarrhea and short irritation of the stomach. CONCLUSION Pyruvate therapy with no serious adverse events may be a potential therapeutic candidate for patients with incurable mitochondrial diseases, such as Leigh syndrome. However, recent evidence taken from case series and case reports, and theoretical supports of basic research are not sufficient. The use of global registries to collect patient data and more adaptive trial designs with larger numbers of participants are necessary to clarify the efficacy of pyruvate therapy.
Collapse
Affiliation(s)
- Min Li
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Shuang Zhou
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Chaoyang Chen
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Lingyun Ma
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Daohuang Luo
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Xin Tian
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Xiu Dong
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Ying Zhou
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | | | | |
Collapse
|
153
|
Abstract
The segregation of heteroplasmic mtDNA species was thought to be mostly stochastic. However, recent findings, including a study by Latorre-Pellicer et al. (2019) published in this issue of Cell Metabolism, provide evidence that nuclear DNA and mitochondrial DNA interactions play an important role in the sorting process.
Collapse
Affiliation(s)
- Carlos T Moraes
- Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
154
|
Trisolini L, Gambacorta N, Gorgoglione R, Montaruli M, Laera L, Colella F, Volpicella M, De Grassi A, Pierri CL. FAD/NADH Dependent Oxidoreductases: From Different Amino Acid Sequences to Similar Protein Shapes for Playing an Ancient Function. J Clin Med 2019; 8:jcm8122117. [PMID: 31810296 PMCID: PMC6947548 DOI: 10.3390/jcm8122117] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/11/2019] [Accepted: 11/18/2019] [Indexed: 12/29/2022] Open
Abstract
Flavoprotein oxidoreductases are members of a large protein family of specialized dehydrogenases, which include type II NADH dehydrogenase, pyridine nucleotide-disulphide oxidoreductases, ferredoxin-NAD+ reductases, NADH oxidases, and NADH peroxidases, playing a crucial role in the metabolism of several prokaryotes and eukaryotes. Although several studies have been performed on single members or protein subgroups of flavoprotein oxidoreductases, a comprehensive analysis on structure-function relationships among the different members and subgroups of this great dehydrogenase family is still missing. Here, we present a structural comparative analysis showing that the investigated flavoprotein oxidoreductases have a highly similar overall structure, although the investigated dehydrogenases are quite different in functional annotations and global amino acid composition. The different functional annotation is ascribed to their participation in species-specific metabolic pathways based on the same biochemical reaction, i.e., the oxidation of specific cofactors, like NADH and FADH2. Notably, the performed comparative analysis sheds light on conserved sequence features that reflect very similar oxidation mechanisms, conserved among flavoprotein oxidoreductases belonging to phylogenetically distant species, as the bacterial type II NADH dehydrogenases and the mammalian apoptosis-inducing factor protein, until now retained as unique protein entities in Bacteria/Fungi or Animals, respectively. Furthermore, the presented computational analyses will allow consideration of FAD/NADH oxidoreductases as a possible target of new small molecules to be used as modulators of mitochondrial respiration for patients affected by rare diseases or cancer showing mitochondrial dysfunction, or antibiotics for treating bacterial/fungal/protista infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anna De Grassi
- Correspondence: (A.D.G.); or (C.L.P.); Tel.: +39-080-544-3614 (A.D.G. & C.L.P.); Fax: +39-080-544-2770 (A.D.G. & C.L.P.)
| | - Ciro Leonardo Pierri
- Correspondence: (A.D.G.); or (C.L.P.); Tel.: +39-080-544-3614 (A.D.G. & C.L.P.); Fax: +39-080-544-2770 (A.D.G. & C.L.P.)
| |
Collapse
|
155
|
Nukui T, Matsui A, Niimi H, Yamamoto M, Matsuda N, Piao JL, Noguchi K, Kitajima I, Nakatsuji Y. Cerebrospinal fluid ATP as a potential biomarker in patients with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke like episodes (MELAS). Mitochondrion 2019; 50:145-148. [PMID: 31756516 DOI: 10.1016/j.mito.2019.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/01/2019] [Indexed: 12/19/2022]
Abstract
Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is caused by defective oxidative phosphorylation in the cerebral parenchyma, cerebral blood vessels, and leptomeningeal tissue. Although increased blood and cerebrospinal fluid (CSF) lactate level has been used as a diagnostic biomarker in patients with MELAS, no biomarkers reflecting disease activity exist. Since we have developed a highly sensitive ATP assay system using luciferase luminous reaction, we examined CSF ATP in patients with MELAS and found that it negatively correlates with disease activity and that it reflects the efficacy of the treatment. CSF ATP might be a novel disease monitoring marker for MELAS.
Collapse
Affiliation(s)
| | - Atsushi Matsui
- First Department of Internal Medicine, University of Toyama, Japan
| | - Hideki Niimi
- Department of Clinical Laboratory and Molecular Pathology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Japan
| | | | | | - Jin-Lan Piao
- Department of Neurology, University of Toyama, Japan
| | - Kyo Noguchi
- Department of Radiology, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Japan
| | - Isao Kitajima
- Department of Clinical Laboratory and Molecular Pathology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Japan
| | | |
Collapse
|
156
|
|
157
|
Kiiskilä J, Moilanen JS, Kytövuori L, Niemi AK, Majamaa K. Analysis of functional variants in mitochondrial DNA of Finnish athletes. BMC Genomics 2019; 20:784. [PMID: 31664900 PMCID: PMC6819560 DOI: 10.1186/s12864-019-6171-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/04/2019] [Indexed: 11/15/2022] Open
Abstract
Background We have previously reported on paucity of mitochondrial DNA (mtDNA) haplogroups J and K among Finnish endurance athletes. Here we aimed to further explore differences in mtDNA variants between elite endurance and sprint athletes. For this purpose, we determined the rate of functional variants and the mutational load in mtDNA of Finnish athletes (n = 141) and controls (n = 77) and determined the sequence variation in haplogroups. Results The distribution of rare and common functional variants differed between endurance athletes, sprint athletes and the controls (p = 0.04) so that rare variants occurred at a higher frequency among endurance athletes. Furthermore, the ratio between rare and common functional variants in haplogroups J and K was 0.42 of that in the remaining haplogroups (p = 0.0005). The subjects with haplogroup J and K also showed a higher mean level of nonsynonymous mutational load attributed to common variants than subjects with the other haplogroups. Interestingly, two of the rare variants detected in the sprint athletes were the disease-causing mutations m.3243A > G in MT-TL1 and m.1555A > G in MT-RNR1. Conclusions We propose that endurance athletes harbor an excess of rare mtDNA variants that may be beneficial for oxidative phosphorylation, while sprint athletes may tolerate deleterious mtDNA variants that have detrimental effect on oxidative phosphorylation system. Some of the nonsynonymous mutations defining haplogroup J and K may produce an uncoupling effect on oxidative phosphorylation thus favoring sprint rather than endurance performance.
Collapse
Affiliation(s)
- Jukka Kiiskilä
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland. .,Department of Neurology and Medical Research Center, Oulu University Hospital, Oulu, Finland.
| | - Jukka S Moilanen
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Clinical Genetics, Oulu University Hospital, Oulu, Finland
| | - Laura Kytövuori
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,Department of Neurology and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Anna-Kaisa Niemi
- Division of Neonatology, Rady Children's Hospital San Diego, University of California San Diego, San Diego, California, USA
| | - Kari Majamaa
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,Department of Neurology and Medical Research Center, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
158
|
Shtolz N, Mishmar D. The Mitochondrial Genome–on Selective Constraints and Signatures at the Organism, Cell, and Single Mitochondrion Levels. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00342] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
159
|
|
160
|
Boggan RM, Lim A, Taylor RW, McFarland R, Pickett SJ. Resolving complexity in mitochondrial disease: Towards precision medicine. Mol Genet Metab 2019; 128:19-29. [PMID: 31648942 DOI: 10.1016/j.ymgme.2019.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022]
Abstract
Mitochondrial diseases, caused by mutations in either the nuclear or mitochondrial genomes (mtDNA), are the most common form of inherited neurometabolic disorders. They are remarkably heterogeneous, both in their clinical presentation and genetic etiology, presenting challenges for diagnosis, clinical management and elucidation of molecular mechanism. The multifaceted nature of these diseases, compounded by the unique characteristics of mitochondrial genetics, cement their space in the field of complex disease. In this review we examine the m.3243A>G variant, one of the most prevalent mitochondrial DNA mutations, using it as an exemplar to demonstrate the challenges presented by these complex disorders. Disease caused by m.3243A>G is one of the most phenotypically diverse of all mitochondrial diseases; we outline known causes of this heterogeneity including mtDNA heteroplasmy, mtDNA copy number and nuclear genetic factors. We consider the impact that this has in the clinic, discussing the personalized management of common manifestations attributed to this pathogenic mtDNA variant, including hearing impairment, diabetes mellitus, myopathy, cardiac disease, stroke-like episodes and gastrointestinal disturbances. Future research into this complex disorder must account for this heterogeneity, benefitting from the use of large patient cohorts to build upon current clinical expertise. Through multi-disciplinary collaboration, the complexities of this mitochondrial disease can be addressed with the variety of diagnostic, prognostic, and treatment approaches that are moulded to best fit the needs of each individual patient.
Collapse
Affiliation(s)
- Róisín M Boggan
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Albert Lim
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Sarah J Pickett
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
161
|
Ng YS, Martikainen MH, Gorman GS, Blain A, Bugiardini E, Bunting A, Schaefer AM, Alston CL, Blakely EL, Sharma S, Hughes I, Lim A, de Goede C, McEntagart M, Spinty S, Horrocks I, Roberts M, Woodward CE, Chinnery PF, Horvath R, Nesbitt V, Fratter C, Poulton J, Hanna MG, Pitceathly RDS, Taylor RW, Turnbull DM, McFarland R. Pathogenic variants in MT-ATP6: A United Kingdom-based mitochondrial disease cohort study. Ann Neurol 2019; 86:310-315. [PMID: 31187502 PMCID: PMC6771528 DOI: 10.1002/ana.25525] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/20/2022]
Abstract
Distinct clinical syndromes have been associated with pathogenic MT-ATP6 variants. In this cohort study, we identified 125 individuals (60 families) including 88 clinically affected individuals and 37 asymptomatic carriers. Thirty-one individuals presented with Leigh syndrome and 7 with neuropathy ataxia retinitis pigmentosa. The remaining 50 patients presented with variable nonsyndromic features including ataxia, neuropathy, and learning disability. We confirmed maternal inheritance in 39 families and demonstrated that tissue segregation patterns and phenotypic threshold are variant dependent. Our findings suggest that MT-ATP6-related mitochondrial DNA disease is best conceptualized as a mitochondrial disease spectrum disorder and should be routinely included in genetic ataxia and neuropathy gene panels. ANN NEUROL 2019;86:310-315.
Collapse
Affiliation(s)
- Yi Shiau Ng
- Wellcome Centre for Mitochondrial ResearchNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Mika H. Martikainen
- Wellcome Centre for Mitochondrial ResearchNewcastle UniversityNewcastle upon TyneUnited Kingdom
- Faculty of MedicineUniversity of Turku, and Division of Clinical Neurosciences, Turku University HospitalTurkuFinland
| | - Gráinne S. Gorman
- Wellcome Centre for Mitochondrial ResearchNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Alasdair Blain
- Wellcome Centre for Mitochondrial ResearchNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Enrico Bugiardini
- Medical Research Council Centre for Neuromuscular DiseasesUniversity College London Queen Square Institute of Neurology and National Hospital for Neurology and NeurosurgeryLondonUnited Kingdom
- Department of Neuromuscular DiseasesUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Apphia Bunting
- Nuffield Department of Obstetrics and GynaecologyUniversity of OxfordOxfordUnited Kingdom
| | - Andrew M. Schaefer
- Wellcome Centre for Mitochondrial ResearchNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Charlotte L. Alston
- Wellcome Centre for Mitochondrial ResearchNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Emma L. Blakely
- Wellcome Centre for Mitochondrial ResearchNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Sunil Sharma
- Wellcome Centre for Mitochondrial ResearchNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Imelda Hughes
- Royal Manchester Children's HospitalCentral Manchester University Hospitals National Health Service Foundation TrustManchesterUnited Kingdom
| | - Albert Lim
- Wellcome Centre for Mitochondrial ResearchNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Christian de Goede
- Department of Paediatric NeurologyRoyal Preston HospitalPrestonUnited Kingdom
| | - Meriel McEntagart
- South West Thames Regional Genetics ServiceSt. George's HospitalLondonUnited Kingdom
| | - Stefan Spinty
- Alder Hey Children's National Health Service Foundation TrustLiverpoolUnited Kingdom
| | - Iain Horrocks
- Greater Glasgow and Clyde National Health Service Yorkhill HospitalGlasgowUnited Kingdom
| | - Mark Roberts
- Greater Manchester Neuroscience CentreSalford Royal National Health Service Foundation Trust, Manchester Academic Health Science CentreSalfordUnited Kingdom
| | - Cathy E. Woodward
- Neurogenetics UnitNational Hospital for Neurology and NeurosurgeryLondonUnited Kingdom
| | - Patrick F. Chinnery
- Department of Clinical NeurosciencesUniversity of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
- MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeUnited Kingdom
| | - Rita Horvath
- Wellcome Centre for Mitochondrial ResearchNewcastle UniversityNewcastle upon TyneUnited Kingdom
- Department of Clinical NeurosciencesUniversity of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Victoria Nesbitt
- Department of PaediatricsThe Children's HospitalOxfordUnited Kingdom
| | - Carl Fratter
- Oxford Medical Genetics LaboratoriesOxford University Hospitals National Health Service Foundation TrustOxfordUnited Kingdom
| | - Joanna Poulton
- Nuffield Department of Obstetrics and GynaecologyUniversity of OxfordOxfordUnited Kingdom
| | - Michael G. Hanna
- Medical Research Council Centre for Neuromuscular DiseasesUniversity College London Queen Square Institute of Neurology and National Hospital for Neurology and NeurosurgeryLondonUnited Kingdom
- Department of Neuromuscular DiseasesUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Robert D. S. Pitceathly
- Medical Research Council Centre for Neuromuscular DiseasesUniversity College London Queen Square Institute of Neurology and National Hospital for Neurology and NeurosurgeryLondonUnited Kingdom
- Department of Neuromuscular DiseasesUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial ResearchNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Doug M. Turnbull
- Wellcome Centre for Mitochondrial ResearchNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Robert McFarland
- Wellcome Centre for Mitochondrial ResearchNewcastle UniversityNewcastle upon TyneUnited Kingdom
| |
Collapse
|
162
|
Appendicular skeletal muscle mass: A more sensitive biomarker of disease severity than BMI in adults with mitochondrial diseases. PLoS One 2019; 14:e0219628. [PMID: 31344055 PMCID: PMC6657836 DOI: 10.1371/journal.pone.0219628] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
The study aimed to evaluate the body composition of patients with mitochondrial diseases (MD) and correlate it with disease severity. Overall, 89 patients (age ≥ 18 years) with MD were recruited, including 49 with chronic progressive external ophthalmoplegia (CPEO) and 40 with mitochondrial encephalomyopathy with lactate acidosis and stroke-like episodes (MELAS). Body composition, including fat mass index (FMI), fat-free mass index (FFMI), skeletal muscle mass index (SMI), and appendicular skeletal muscle mass index (ASMI), were examined using multifrequency bioelectric impedance analysis. Clinical assessments, including muscle strength, usual gait speed, and disease severity determined by the Newcastle Mitochondrial Disease Adult Scale score (NMDAS), were performed. The comparisons between patients group and age- and gender-matched healthy controls, as well as the correlations between anthropometric measurements, body composition, and disease severity were analyzed. Height, weight, body mass index (BMI), FFMI, SMI, and ASMI were significantly lower in patients with MD than in healthy controls. Notably, low muscle mass was noted in 69.7% (62/89) of MD patients, with 22 patients also presenting with compromised physical performance as indicated by decreased gait speed, resulting in 24.7% satisfied the sarcopenia diagnostic criteria. Disease severity was more negatively correlated with ASMI than it was with height, weight, and BMI. Subgroup analysis showed that in the MELAS subgroup, disease severity was negatively correlated with height, weight, and ASMI; whereas in the CPEO subgroup, it was only negatively correlated with ASMI and SMI. Additionally, ASMI was positively associated with muscle strength. Altogether, compared with BMI, ASMI is a more sensitive biomarker predicting disease severity of MD, both in MELAS and CPEO patients.
Collapse
|
163
|
Chakraborty S, Ibba M, Banerjee R. Biophysical characterization Of Alpers encephalopathy associated mutants of human mitochondrial phenylalanyl-tRNA synthetase. IUBMB Life 2019; 71:1141-1149. [PMID: 31241862 DOI: 10.1002/iub.2114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/06/2019] [Indexed: 12/13/2022]
Abstract
Mutations in nucleus-encoded mitochondrial aminoacyl-tRNA synthetases (mitaaRSs) lead to defects in mitochondrial translation affecting the expression and function of 13 subunits of the respiratory chain complex leading to diverse pathological conditions. Mutations in the FARS2 gene encoding human mitochondrial phenylalanyl-tRNA synthetase (HsmitPheRS) have been found to be associated with two different clinical representations, infantile Alpers encephalopathy and spastic paraplegia. Here we have studied three pathogenic mutants (Tyr144Cys, Ile329Thr, and Asp391Val) associated with Alpers encephalopathy to understand how these variants affect the biophysical properties of the enzyme. These mutants have already been reported to have reduced aminoacylation activity. Our study established that the mutants are significantly more thermolabile compared to the wild-type enzyme with reduced solubility in vitro. The presence of aggregation-prone insoluble HsmitPheRS variants could have a detrimental impact on organellar translation, and potentially impact normal mitochondrial function. © 2019 IUBMB Life, 71(8): 1141-1149, 2019 © 2019 IUBMB Life, 71(8):1141-1149, 2019.
Collapse
Affiliation(s)
- Shruti Chakraborty
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, India
| | - Michael Ibba
- Department of Microbiology, The Ohio State University, Columbus, Ohio
| | - Rajat Banerjee
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, India
| |
Collapse
|
164
|
Mitochondrial Dysfunctions: A Thread Sewing Together Alzheimer's Disease, Diabetes, and Obesity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7210892. [PMID: 31316720 PMCID: PMC6604285 DOI: 10.1155/2019/7210892] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/20/2019] [Accepted: 05/21/2019] [Indexed: 02/03/2023]
Abstract
Metabolic disorders are severe and chronic impairments of the health of many people and represent a challenge for the society as a whole that has to deal with an ever-increasing number of affected individuals. Among common metabolic disorders are Alzheimer's disease, obesity, and type 2 diabetes. These disorders do not have a univocal genetic cause but rather can result from the interaction of multiple genes, lifestyle, and environmental factors. Mitochondrial alterations have emerged as a feature common to all these disorders, underlining perhaps an impaired coordination between cellular needs and mitochondrial responses that could contribute to their development and/or progression.
Collapse
|
165
|
Maclean AE, Kimonis VE, Balk J. Pathogenic mutations in NUBPL affect complex I activity and cold tolerance in the yeast model Yarrowia lipolytica. Hum Mol Genet 2019; 27:3697-3709. [PMID: 29982452 PMCID: PMC6196649 DOI: 10.1093/hmg/ddy247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/22/2018] [Indexed: 11/26/2022] Open
Abstract
Complex I deficiency is a common cause of mitochondrial disease, resulting from mutations in genes encoding structural subunits, assembly factors or defects in mitochondrial gene expression. Advances in genetic diagnostics and sequencing have led to identification of several variants in NUBPL (nucleotide binding protein-like), encoding an assembly factor of complex I, which are potentially pathogenic. To help assign pathogenicity and learn more about the function of NUBPL, amino acid substitutions were recreated in the homologous Ind1 protein of the yeast model Yarrowia lipolytica. Leu102Pro destabilized the Ind1 protein, leading to a null-mutant phenotype. Asp103Tyr, Leu191Phe and Gly285Cys affected complex I assembly to varying degrees, whereas Gly136Asp substitution in Ind1 did not impact on complex I levels nor dNADH:ubiquinone activity. Blue-native polyacrylamide gel electrophoresis and immunolabelling of the structural subunits NUBM and NUCM revealed that all Ind1 variants accumulated a Q module intermediate of complex I. In the Ind1 Asp103Tyr variant, the matrix arm intermediate was virtually absent, indicating a dominant effect. Dysfunction of Ind1, but not absence of complex I, rendered Y. lipolytica sensitive to cold. The Ind1 Gly285Cys variant was able to support complex I assembly at 28°C, but not at 10°C. Our results indicate that Ind1 is required for progression of assembly from the Q module to the full matrix arm. Cold sensitivity could be developed as a phenotype assay to demonstrate pathogenicity of NUBPL mutations and other complex I defects.
Collapse
Affiliation(s)
- Andrew E Maclean
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK.,School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Virginia E Kimonis
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine, USA.,Children's Hospital of Orange County, Orange, CA, USA
| | - Janneke Balk
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK.,School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
166
|
Djouadi F, Bastin J. Mitochondrial Genetic Disorders: Cell Signaling and Pharmacological Therapies. Cells 2019; 8:cells8040289. [PMID: 30925787 PMCID: PMC6523966 DOI: 10.3390/cells8040289] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/19/2019] [Accepted: 03/23/2019] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial fatty acid oxidation (FAO) and respiratory chain (RC) defects form a large group of inherited monogenic disorders sharing many common clinical and pathophysiological features, including disruption of mitochondrial bioenergetics, but also, for example, oxidative stress and accumulation of noxious metabolites. Interestingly, several transcription factors or co-activators exert transcriptional control on both FAO and RC genes, and can be activated by small molecules, opening to possibly common therapeutic approaches for FAO and RC deficiencies. Here, we review recent data on the potential of various drugs or small molecules targeting pivotal metabolic regulators: peroxisome proliferator activated receptors (PPARs), sirtuin 1 (SIRT1), AMP-activated protein kinase (AMPK), and protein kinase A (PKA)) or interacting with reactive oxygen species (ROS) signaling, to alleviate or to correct inborn FAO or RC deficiencies in cellular or animal models. The possible molecular mechanisms involved, in particular the contribution of mitochondrial biogenesis, are discussed. Applications of these pharmacological approaches as a function of genotype/phenotype are also addressed, which clearly orient toward personalized therapy. Finally, we propose that beyond the identification of individual candidate drugs/molecules, future pharmacological approaches should consider their combination, which could produce additive or synergistic effects that may further enhance their therapeutic potential.
Collapse
Affiliation(s)
- Fatima Djouadi
- Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, F-75006 Paris, France.
| | - Jean Bastin
- Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, F-75006 Paris, France.
| |
Collapse
|
167
|
Schoonen M, Smuts I, Louw R, Elson JL, van Dyk E, Jonck LM, Rodenburg RJT, van der Westhuizen FH. Panel-Based Nuclear and Mitochondrial Next-Generation Sequencing Outcomes of an Ethnically Diverse Pediatric Patient Cohort with Mitochondrial Disease. J Mol Diagn 2019; 21:503-513. [PMID: 30872186 DOI: 10.1016/j.jmoldx.2019.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/08/2019] [Accepted: 02/06/2019] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial disease (MD) is a group of rare inherited disorders with clinical heterogeneous phenotypes. Recent advances in next-generation sequencing (NGS) allow for rapid genetic diagnostics in patients who experience MD, resulting in significant strides in determining its etiology. This, however, has not been the case in many patient populations. We report on a molecular diagnostic study using mitochondrial DNA and targeted nuclear DNA (nDNA) NGS of an extensive cohort of predominantly sub-Saharan African pediatric patients with clinical and biochemically defined MD. Patients in this novel cohort presented mostly with muscle involvement (73%). Of the original 212 patients, a muscle respiratory chain deficiency was identified in 127 cases. Genetic analyses were conducted for these 127 cases based on biochemical deficiencies, for both mitochondrial (n = 123) and nDNA using panel-based NGS (n = 86). As a pilot investigation, whole-exome sequencing was performed in a subset of African patients (n = 8). These analyses resulted in the identification of a previously reported pathogenic mitochondrial DNA variant and seven pathogenic or likely pathogenic nDNA variants (ETFDH, SURF1, COQ6, RYR1, STAC3, ALAS2, and TRIOBP), most of which were identified via whole-exome sequencing. This study contributes to knowledge of MD etiology in an understudied, ethnically diverse population; highlights inconsistencies in genotype-phenotype correlations; and proposes future directions for diagnostic approaches in such patient populations.
Collapse
Affiliation(s)
- Maryke Schoonen
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Izelle Smuts
- Department of Paediatrics and Child Health, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Roan Louw
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Joanna L Elson
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa; Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Etresia van Dyk
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Lindi-Maryn Jonck
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Richard J T Rodenburg
- Department of Pediatrics, Radboudumc Amalia Childrens Hospital, Radboud Center for Mitochondrial Medicine, Nijmegen, the Netherlands
| | - Francois H van der Westhuizen
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
168
|
Li K, Jin R, Wu X. Whole-exome sequencing identifies rare compound heterozygous mutations in the MSTO1 gene associated with cerebellar ataxia and myopathy. Eur J Med Genet 2019; 63:103623. [PMID: 30684668 DOI: 10.1016/j.ejmg.2019.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 11/22/2018] [Accepted: 01/19/2019] [Indexed: 10/27/2022]
Abstract
Human MSTO1 is involved in the regulation of mitochondrial distribution and morphology and its unregulated expression leads to mitochondrial disorder. Despite its significance for mitochondrial functions, human MSTO1 gene is rarely studied before 2017. As of late, MSTO1 mutations have been reported to cause clinical manifestations such as myopathy, cerebellar atrophy and ataxia, motor developmental delay, and pigmentary retinopathy. Here we have performed a whole-exome sequencing in a family which includes two brothers showing cerebellar atrophy and ataxia, intellectual disability, and myopathy. As a result, two mutations were identified. One of these mutations has been identified as a missense mutation, c.836G > A; p. (Arg279His) and a novel frameshift variant, c.1259delG; p. (Gly420ValfsTer2). So, the two brothers both had compound heterozygous mutations with a combination of protein-truncation mutation and missense mutation. These findings suggested an association of MSTO1 mutations with the early onset of symptoms and revealed the genotype-phenotype correlation between different mutation cases. In this case, the two brothers both have pes planus which is not reported in other cases. This might suggest that the novel mutation is responsible for dysmorphia. Thus, the recessive and novel MSTO1 mutations enriches genetic information on the pathogenicity of MSTO1 in humans.
Collapse
Affiliation(s)
- Kun Li
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Runming Jin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
169
|
Sommerville EW, Zhou XL, Oláhová M, Jenkins J, Euro L, Konovalova S, Hilander T, Pyle A, He L, Habeebu S, Saunders C, Kelsey A, Morris AAM, McFarland R, Suomalainen A, Gorman GS, Wang ED, Thiffault I, Tyynismaa H, Taylor RW. Instability of the mitochondrial alanyl-tRNA synthetase underlies fatal infantile-onset cardiomyopathy. Hum Mol Genet 2019; 28:258-268. [PMID: 30285085 PMCID: PMC6321959 DOI: 10.1093/hmg/ddy294] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 11/14/2022] Open
Abstract
Recessively inherited variants in AARS2 (NM_020745.2) encoding mitochondrial alanyl-tRNA synthetase (mt-AlaRS) were first described in patients presenting with fatal infantile cardiomyopathy and multiple oxidative phosphorylation defects. To date, all described patients with AARS2-related fatal infantile cardiomyopathy are united by either a homozygous or compound heterozygous c.1774C>T (p.Arg592Trp) missense founder mutation that is absent in patients with other AARS2-related phenotypes. We describe the clinical, biochemical and molecular investigations of two unrelated boys presenting with fatal infantile cardiomyopathy, lactic acidosis and respiratory failure. Oxidative histochemistry showed cytochrome c oxidase-deficient fibres in skeletal and cardiac muscle. Biochemical studies showed markedly decreased activities of mitochondrial respiratory chain complexes I and IV with a mild decrease of complex III activity in skeletal and cardiac muscle. Using next-generation sequencing, we identified a c.1738C>T (p.Arg580Trp) AARS2 variant shared by both patients that was in trans with a loss-of-function heterozygous AARS2 variant; a c.1008dupT (p.Asp337*) nonsense variant or an intragenic deletion encompassing AARS2 exons 5-7. Interestingly, our patients did not harbour the p.Arg592Trp AARS2 founder mutation. In silico modelling of the p.Arg580Trp substitution suggested a deleterious impact on protein stability and folding. We confirmed markedly decreased mt-AlaRS protein levels in patient fibroblasts, skeletal and cardiac muscle, although mitochondrial protein synthesis defects were confined to skeletal and cardiac muscle. In vitro data showed that the p.Arg580Trp variant had a minimal effect on activation, aminoacylation or misaminoacylation activities relative to wild-type mt-AlaRS, demonstrating that instability of mt-AlaRS is the biological mechanism underlying the fatal cardiomyopathy phenotype in our patients.
Collapse
Affiliation(s)
- Ewen W Sommerville
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Monika Oláhová
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Janda Jenkins
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO, USA
| | - Liliya Euro
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Svetlana Konovalova
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Taru Hilander
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Langping He
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Sultan Habeebu
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO, USA
| | - Carol Saunders
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO, USA
- School of Medicine, University of Missouri Kansas City, Kansas City, MO , USA
| | - Anna Kelsey
- Institute of Human Development, University of Manchester, Manchester M13 9PL, UK; Willink Metabolic Unit, Genomic Medicine, Saint Mary’s Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
| | - Andrew A M Morris
- Institute of Human Development, University of Manchester, Manchester M13 9PL, UK; Willink Metabolic Unit, Genomic Medicine, Saint Mary’s Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Anu Suomalainen
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki Finland
- Department of Neurosciences, Helsinki University Hospital, Helsinki, Finland
| | - Gráinne S Gorman
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Isabelle Thiffault
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO, USA
- School of Medicine, University of Missouri Kansas City, Kansas City, MO , USA
| | - Henna Tyynismaa
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
170
|
Kraja AT, Liu C, Fetterman JL, Graff M, Have CT, Gu C, Yanek LR, Feitosa MF, Arking DE, Chasman DI, Young K, Ligthart S, Hill WD, Weiss S, Luan J, Giulianini F, Li-Gao R, Hartwig FP, Lin SJ, Wang L, Richardson TG, Yao J, Fernandez EP, Ghanbari M, Wojczynski MK, Lee WJ, Argos M, Armasu SM, Barve RA, Ryan KA, An P, Baranski TJ, Bielinski SJ, Bowden DW, Broeckel U, Christensen K, Chu AY, Corley J, Cox SR, Uitterlinden AG, Rivadeneira F, Cropp CD, Daw EW, van Heemst D, de las Fuentes L, Gao H, Tzoulaki I, Ahluwalia TS, de Mutsert R, Emery LS, Erzurumluoglu AM, Perry JA, Fu M, Forouhi NG, Gu Z, Hai Y, Harris SE, Hemani G, Hunt SC, Irvin MR, Jonsson AE, Justice AE, Kerrison ND, Larson NB, Lin KH, Love-Gregory LD, Mathias RA, Lee JH, Nauck M, Noordam R, Ong KK, Pankow J, Patki A, Pattie A, Petersmann A, Qi Q, Ribel-Madsen R, Rohde R, Sandow K, Schnurr TM, Sofer T, Starr JM, Taylor AM, Teumer A, Timpson NJ, de Haan HG, Wang Y, Weeke PE, Williams C, Wu H, Yang W, Zeng D, Witte DR, Weir BS, Wareham NJ, Vestergaard H, Turner ST, Torp-Pedersen C, Stergiakouli E, Sheu WHH, et alKraja AT, Liu C, Fetterman JL, Graff M, Have CT, Gu C, Yanek LR, Feitosa MF, Arking DE, Chasman DI, Young K, Ligthart S, Hill WD, Weiss S, Luan J, Giulianini F, Li-Gao R, Hartwig FP, Lin SJ, Wang L, Richardson TG, Yao J, Fernandez EP, Ghanbari M, Wojczynski MK, Lee WJ, Argos M, Armasu SM, Barve RA, Ryan KA, An P, Baranski TJ, Bielinski SJ, Bowden DW, Broeckel U, Christensen K, Chu AY, Corley J, Cox SR, Uitterlinden AG, Rivadeneira F, Cropp CD, Daw EW, van Heemst D, de las Fuentes L, Gao H, Tzoulaki I, Ahluwalia TS, de Mutsert R, Emery LS, Erzurumluoglu AM, Perry JA, Fu M, Forouhi NG, Gu Z, Hai Y, Harris SE, Hemani G, Hunt SC, Irvin MR, Jonsson AE, Justice AE, Kerrison ND, Larson NB, Lin KH, Love-Gregory LD, Mathias RA, Lee JH, Nauck M, Noordam R, Ong KK, Pankow J, Patki A, Pattie A, Petersmann A, Qi Q, Ribel-Madsen R, Rohde R, Sandow K, Schnurr TM, Sofer T, Starr JM, Taylor AM, Teumer A, Timpson NJ, de Haan HG, Wang Y, Weeke PE, Williams C, Wu H, Yang W, Zeng D, Witte DR, Weir BS, Wareham NJ, Vestergaard H, Turner ST, Torp-Pedersen C, Stergiakouli E, Sheu WHH, Rosendaal FR, Ikram MA, Franco OH, Ridker PM, Perls TT, Pedersen O, Nohr EA, Newman AB, Linneberg A, Langenberg C, Kilpeläinen TO, Kardia SLR, Jørgensen ME, Jørgensen T, Sørensen TIA, Homuth G, Hansen T, Goodarzi MO, Deary IJ, Christensen C, Chen YDI, Chakravarti A, Brandslund I, Bonnelykke K, Taylor KD, Wilson JG, Rodriguez S, Davies G, Horta BL, Thyagarajan B, Rao DC, Grarup N, Davila-Roman VG, Hudson G, Guo X, Arnett DK, Hayward C, Vaidya D, Mook-Kanamori DO, Tiwari HK, Levy D, Loos RJF, Dehghan A, Elliott P, Malik AN, Scott RA, Becker DM, de Andrade M, Province MA, Meigs JB, Rotter JI, North KE. Associations of Mitochondrial and Nuclear Mitochondrial Variants and Genes with Seven Metabolic Traits. Am J Hum Genet 2019; 104:112-138. [PMID: 30595373 PMCID: PMC6323610 DOI: 10.1016/j.ajhg.2018.12.001] [Show More Authors] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 12/06/2018] [Indexed: 12/16/2022] Open
Abstract
Mitochondria (MT), the major site of cellular energy production, are under dual genetic control by 37 mitochondrial DNA (mtDNA) genes and numerous nuclear genes (MT-nDNA). In the CHARGEmtDNA+ Consortium, we studied genetic associations of mtDNA and MT-nDNA associations with body mass index (BMI), waist-hip-ratio (WHR), glucose, insulin, HOMA-B, HOMA-IR, and HbA1c. This 45-cohort collaboration comprised 70,775 (insulin) to 170,202 (BMI) pan-ancestry individuals. Validation and imputation of mtDNA variants was followed by single-variant and gene-based association testing. We report two significant common variants, one in MT-ATP6 associated (p ≤ 5E-04) with WHR and one in the D-loop with glucose. Five rare variants in MT-ATP6, MT-ND5, and MT-ND6 associated with BMI, WHR, or insulin. Gene-based meta-analysis identified MT-ND3 associated with BMI (p ≤ 1E-03). We considered 2,282 MT-nDNA candidate gene associations compiled from online summary results for our traits (20 unique studies with 31 dataset consortia's genome-wide associations [GWASs]). Of these, 109 genes associated (p ≤ 1E-06) with at least 1 of our 7 traits. We assessed regulatory features of variants in the 109 genes, cis- and trans-gene expression regulation, and performed enrichment and protein-protein interactions analyses. Of the identified mtDNA and MT-nDNA genes, 79 associated with adipose measures, 49 with glucose/insulin, 13 with risk for type 2 diabetes, and 18 with cardiovascular disease, indicating for pleiotropic effects with health implications. Additionally, 21 genes related to cholesterol, suggesting additional important roles for the genes identified. Our results suggest that mtDNA and MT-nDNA genes and variants reported make important contributions to glucose and insulin metabolism, adipocyte regulation, diabetes, and cardiovascular disease.
Collapse
Affiliation(s)
- Aldi T Kraja
- Division of Statistical Genomics, Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63110, USA.
| | - Chunyu Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Jessica L Fetterman
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Mariaelisa Graff
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27516, USA
| | - Christian Theil Have
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Charles Gu
- Division of Biostatistics, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Lisa R Yanek
- GeneSTAR Research Program, Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Kristin Young
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27516, USA
| | - Symen Ligthart
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3015 CE, the Netherlands
| | - W David Hill
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and University of Greifswald, Greifswald 17475, Germany
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Fernando P Hartwig
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas 96020-220, Brazil; MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol BS8 2BN, UK
| | - Shiow J Lin
- Division of Statistical Genomics, Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Lihua Wang
- Division of Statistical Genomics, Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Tom G Richardson
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol BS8 2BN, UK
| | - Jie Yao
- Institute for Translational Genomics and Population Sciences, LABioMed and Department of Pediatrics, at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Eliana P Fernandez
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3015 CE, the Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3015 CE, the Netherlands
| | - Mary K Wojczynski
- Division of Statistical Genomics, Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Wen-Jane Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan; Department of Social Work, Tunghai University, Taichung 407, Taiwan
| | - Maria Argos
- Department of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sebastian M Armasu
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Ruteja A Barve
- Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Kathleen A Ryan
- School of Medicine, Division of Endocrinology, Diabetes and Nutrition, and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ping An
- Division of Statistical Genomics, Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Thomas J Baranski
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Suzette J Bielinski
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Donald W Bowden
- Center for Diabetes Research, Wake Forest School of Medicine, Cincinnati, OH 45206, USA
| | - Ulrich Broeckel
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kaare Christensen
- The Danish Aging Research Center, University of Southern Denmark, Odense 5000, Denmark
| | - Audrey Y Chu
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Janie Corley
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Simon R Cox
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Andre G Uitterlinden
- Department of Internal Medicine, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Cheryl D Cropp
- Samford University McWhorter School of Pharmacy, Birmingham, Alabama, Translational Genomics Research Institute (TGen), Phoenix, AZ 35229, USA
| | - E Warwick Daw
- Division of Statistical Genomics, Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Lisa de las Fuentes
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - He Gao
- Department of Biostatistics and Epidemiology, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Ioanna Tzoulaki
- Department of Biostatistics and Epidemiology, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK; Department of Hygiene and Epidemiology, University of Ioannina, Ioannina 45110, Greece
| | | | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Leslie S Emery
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | | | - James A Perry
- School of Medicine, Division of Endocrinology, Diabetes and Nutrition, and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mao Fu
- School of Medicine, Division of Endocrinology, Diabetes and Nutrition, and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nita G Forouhi
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Yang Hai
- Institute for Translational Genomics and Population Sciences, LABioMed and Department of Pediatrics, at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Sarah E Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Centre for Genomic and Experimental Medicine, Medical Genetics Section, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol BS8 2BN, UK
| | - Steven C Hunt
- Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA; Department of Genetic Medicine, Weill Cornell Medicine, PO Box 24144, Doha, Qatar
| | - Marguerite R Irvin
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anna E Jonsson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Anne E Justice
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27516, USA; Biomedical and Translational Informatics, Geisinger Health, Danville, PA 17822, USA
| | - Nicola D Kerrison
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Nicholas B Larson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Keng-Hung Lin
- Department of Ophthalmology, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Latisha D Love-Gregory
- Genomics & Pathology Services, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rasika A Mathias
- GeneSTAR Research Program, Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; GeneSTAR Research Program, Divisions of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Joseph H Lee
- Taub Institute for Research on Alzheimer disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald 17475, Germany
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Ken K Ong
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - James Pankow
- University of Minnesota School of Public Health, Division of Epidemiology and Community Health, Minneapolis, MN 55454, USA
| | - Amit Patki
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alison Pattie
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Astrid Petersmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald 17475, Germany
| | - Qibin Qi
- Department of Epidemiology & Population Health, Albert Einstein School of Medicine, Bronx, NY 10461, USA
| | - Rasmus Ribel-Madsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Department of Endocrinology, Diabetes and Metabolism, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark; The Danish Diabetes Academy, 5000 Odense, Denmark
| | - Rebecca Rohde
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27516, USA
| | - Kevin Sandow
- Institute for Translational Genomics and Population Sciences, LABioMed and Department of Pediatrics, at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Theresia M Schnurr
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Tamar Sofer
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK; Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Adele M Taylor
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol BS8 2BN, UK
| | - Hugoline G de Haan
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Yujie Wang
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27516, USA
| | - Peter E Weeke
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Christine Williams
- Division of Statistical Genomics, Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Hongsheng Wu
- Computer Science and Networking, Wentworth Institute of Technology, Boston, MA 02115, USA
| | - Wei Yang
- Genome Technology Access Center, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Donglin Zeng
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniel R Witte
- Department of Public Health, Section of Epidemiology, Aarhus University, Denmark, Danish Diabetes Academy, Odense University Hospital, 5000 Odense, Denmark
| | - Bruce S Weir
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Henrik Vestergaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Steno Diabetes Center Copenhagen, Copenhagen 2820, Denmark
| | - Stephen T Turner
- Division of Nephrology and Hypertension, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55902, USA
| | - Christian Torp-Pedersen
- Department of Health Science and Technology, Aalborg University Hospital, Aalborg 9220, Denmark
| | - Evie Stergiakouli
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol BS8 2BN, UK
| | - Wayne Huey-Herng Sheu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan; Institute of Medical Technology, National Chung-Hsing University, Taichung 402, Taiwan; School of Medicine, National Defense Medical Center, Taipei 114, Taiwan; School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3015 CE, the Netherlands
| | - Oscar H Franco
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3015 CE, the Netherlands; Institute of Social and Preventive Medicine (ISPM), University of Bern, 3012 Bern, Switzerland
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Thomas T Perls
- Department of Medicine, Geriatrics Section, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Ellen A Nohr
- Research Unit for Gynecology and Obstetrics, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Anne B Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Allan Linneberg
- Department of Clinical Experimental Research, Rigshospitalet, Copenhagen 2200, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; The Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen 2000, Denmark
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Torben Jørgensen
- Research Centre for Prevention and Health, Glostrup Hospital, Glostrup 2600, Denmark; Department of Public Health, Faculty of Health Sciences, University of Copenhagen, Copenhagen 1014, Denmark; Faculty of Medicine, Aalborg University, Aalborg 9100, Denmark
| | - Thorkild I A Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research (Section of Metabolic Genetics) and Department of Public Health (Section on Epidemiology), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200N, Denmark
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and University of Greifswald, Greifswald 17475, Germany
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Cramer Christensen
- Department of Internal Medicine, Section of Endocrinology, Vejle Lillebaelt Hospital, 7100 Vejle, Denmark
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences, LABioMed and Department of Pediatrics, at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Aravinda Chakravarti
- Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ivan Brandslund
- Department of Clinical Biochemistry, Vejle Hospital, 7100 Vejle, Denmark; Institute of Regional Health Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Klaus Bonnelykke
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Gentofte & Naestved 2820, Denmark; Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, LABioMed and Department of Pediatrics, at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Santiago Rodriguez
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol BS8 2BN, UK
| | - Gail Davies
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Bernardo L Horta
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas 96020-220, Brazil
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - D C Rao
- Division of Biostatistics, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Victor G Davila-Roman
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Gavin Hudson
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, LABioMed and Department of Pediatrics, at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Donna K Arnett
- University of Kentucky, College of Public Health, Lexington, KY 40508, USA
| | - Caroline Hayward
- MRC Human Genetics Unit, University of Edinburgh, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Dhananjay Vaidya
- GeneSTAR Research Program, Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands; Department of Public Health and Primary Care, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Hemant K Tiwari
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Daniel Levy
- The Framingham Heart Study, Framingham, MA, USA; The Population Sciences Branch, NHLBI/NIH, Bethesda, MD 20892, USA
| | - Ruth J F Loos
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Genetics of Obesity and Related Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Abbas Dehghan
- Department of Biostatistics and Epidemiology, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Paul Elliott
- Department of Biostatistics and Epidemiology, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Afshan N Malik
- King's College London, Department of Diabetes, School of Life Course, Faculty of Life Sciences and Medicine, London SE1 1NN, UK
| | - Robert A Scott
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Diane M Becker
- GeneSTAR Research Program, Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mariza de Andrade
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - James B Meigs
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Division of General Internal Medicine, Massachusetts General Hospital, Boston 02114, MA, USA; Program in Medical and Population Genetics, Broad Institute, Boston, MA 02142, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, LABioMed and Department of Pediatrics, at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27516, USA.
| |
Collapse
|
171
|
Pacitti D, Levene M, Garone C, Nirmalananthan N, Bax BE. Mitochondrial Neurogastrointestinal Encephalomyopathy: Into the Fourth Decade, What We Have Learned So Far. Front Genet 2018; 9:669. [PMID: 30627136 PMCID: PMC6309918 DOI: 10.3389/fgene.2018.00669] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/04/2018] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an ultra-rare metabolic autosomal recessive disease, caused by mutations in the nuclear gene TYMP which encodes the enzyme thymidine phosphorylase. The resulting enzyme deficiency leads to a systemic accumulation of the deoxyribonucleosides thymidine and deoxyuridine, and ultimately mitochondrial failure due to a progressive acquisition of secondary mitochondrial DNA (mtDNA) mutations and mtDNA depletion. Clinically, MNGIE is characterized by gastrointestinal and neurological manifestations, including cachexia, gastrointestinal dysmotility, peripheral neuropathy, leukoencephalopathy, ophthalmoplegia and ptosis. The disease is progressively degenerative and leads to death at an average age of 37.6 years. As with the vast majority of rare diseases, patients with MNGIE face a number of unmet needs related to diagnostic delays, a lack of approved therapies, and non-specific clinical management. We provide here a comprehensive collation of the available knowledge of MNGIE since the disease was first described 42 years ago. This review includes symptomatology, diagnostic procedures and hurdles, in vitro and in vivo disease models that have enhanced our understanding of the disease pathology, and finally experimental therapeutic approaches under development. The ultimate aim of this review is to increase clinical awareness of MNGIE, thereby reducing diagnostic delay and improving patient access to putative treatments under investigation.
Collapse
Affiliation(s)
- Dario Pacitti
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London, United Kingdom
| | - Michelle Levene
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London, United Kingdom
| | - Caterina Garone
- MRC Mitochondrial Biology Unit, Cambridge Biomedical, Cambridge, United Kingdom
| | | | - Bridget E. Bax
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London, United Kingdom
| |
Collapse
|
172
|
Wang D, Ning C, Xiang H, Zheng X, Kong M, Yin T, Liu J, Zhao X. Polymorphism of mitochondrial tRNA genes associated with the number of pigs born alive. J Anim Sci Biotechnol 2018; 9:86. [PMID: 30534375 PMCID: PMC6260895 DOI: 10.1186/s40104-018-0299-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/17/2018] [Indexed: 11/13/2022] Open
Abstract
Background Mutations in mitochondrial tRNA genes have been widely reported association with human reproductions. It is also important to explore the effect on the number of piglets born alive (NBA). Here, 1017 sows were used to investigate the association between polymorphisms in mitochondrial tRNA genes and NBA. Results In total, 16 mutations were found in mitochondrial tRNA genes, of which 13 mutations were significantly associated with NBA (P < 0.05). The reproductions of mutant carriers were significantly greater than that of wild carriers by 0.989 piglets born alive/sow farrowing. To test whether the mutations altered the structure of mitochondrial tRNAs, the secondary and tertiary structures were predicted. In result, C2255T changed the secondary structure of tRNA-Val by elongating the T stem and shrinking the T loop, and C2255T and G2259A in the tRNA-Val gene, C6217T and T6219C in the tRNA-Ala gene, and T15283C in the tRNA-Glu gene altered the tertiary structure of their tRNAs, respectively by changing the folding form of the T arm, and C16487T in the tRNA-Thr gene changed the tertiary structure of mitochondrial tRNA-Thr by influencing the folding form of the acceptor arm. Conclusions Results highlight the effect of mitochondrial tRNA genes on the number of piglets born alive, and suggest that polymorphic sites of the tRNA genes be genetic markers for selection of pig reproduction. Electronic supplementary material The online version of this article (10.1186/s40104-018-0299-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dan Wang
- 1National Engineering Laboratory for Animal Breeding; Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction; College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Chao Ning
- 1National Engineering Laboratory for Animal Breeding; Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction; College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Hai Xiang
- 2School of Life Science and Engineering, Foshan University, Foshan, 528225 China
| | - Xianrui Zheng
- 1National Engineering Laboratory for Animal Breeding; Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction; College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Minghua Kong
- 1National Engineering Laboratory for Animal Breeding; Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction; College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Tao Yin
- 1National Engineering Laboratory for Animal Breeding; Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction; College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Jianfeng Liu
- 1National Engineering Laboratory for Animal Breeding; Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction; College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Xingbo Zhao
- 1National Engineering Laboratory for Animal Breeding; Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction; College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
173
|
SURF1 mutations in Chinese patients with Leigh syndrome: Novel mutations, mutation spectrum, and the functional consequences. Gene 2018; 674:15-24. [DOI: 10.1016/j.gene.2018.06.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/07/2018] [Accepted: 06/18/2018] [Indexed: 01/02/2023]
|
174
|
Abstract
Mitochondrial myopathies are progressive muscle conditions caused primarily by the impairment of oxidative phosphorylation (OXPHOS) in the mitochondria. This causes a deficit in energy production in the form of adenosine triphosphate (ATP), particularly in skeletal muscle. The diagnosis of mitochondrial myopathy is reliant on the combination of numerous techniques including traditional histochemical, immunohistochemical, and biochemical testing combined with the fast-emerging molecular genetic techniques, namely next-generation sequencing (NGS). This has allowed for the diagnosis to become more effective in terms of determining causative or novel genes. However, there are currently no effective or disease-modifying treatments available for the vast majority of patients with mitochondrial myopathies. Existing therapeutic options focus on the symptomatic management of disease manifestations. An increasing number of clinical trials have investigated the therapeutic effects of various vitamins, cofactors, and small molecules, though these trials have failed to show definitive outcome measures for clinical practice thus far. In addition, new molecular strategies, specifically mtZFNs and mtTALENs, that cause beneficial heteroplasmic shifts in cell lines harboring varying pathogenic mtDNA mutations offer hope for the future. Moreover, recent developments in the reproductive options for patients with mitochondrial myopathies mean that for some families, the possibility of preventing transmission of the mutation to the next generation is now possible.
Collapse
Affiliation(s)
- Syeda T Ahmed
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Lyndsey Craven
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Oliver M Russell
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
- MRC Centre for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Amy E Vincent
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.
- MRC Centre for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
175
|
MitoTALEN reduces mutant mtDNA load and restores tRNA Ala levels in a mouse model of heteroplasmic mtDNA mutation. Nat Med 2018; 24:1696-1700. [PMID: 30250143 DOI: 10.1038/s41591-018-0166-8] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/26/2018] [Indexed: 11/08/2022]
Abstract
Mutations in the mitochondrial DNA (mtDNA) are responsible for several metabolic disorders, commonly involving muscle and the central nervous system1. Because of the critical role of mtDNA in oxidative phosphorylation, the majority of pathogenic mtDNA mutations are heteroplasmic, co-existing with wild-type molecules1. Using a mouse model with a heteroplasmic mtDNA mutation2, we tested whether mitochondrial-targeted TALENs (mitoTALENs)3,4 could reduce the mutant mtDNA load in muscle and heart. AAV9-mitoTALEN was administered via intramuscular, intravenous, and intraperitoneal injections. Muscle and heart were efficiently transduced and showed a robust reduction in mutant mtDNA, which was stable over time. The molecular defect, namely a decrease in transfer RNAAla levels, was restored by the treatment. These results showed that mitoTALENs, when expressed in affected tissues, could revert disease-related phenotypes in mice.
Collapse
|
176
|
Loutre R, Heckel AM, Smirnova A, Entelis N, Tarassov I. Can Mitochondrial DNA be CRISPRized: Pro and Contra. IUBMB Life 2018; 70:1233-1239. [PMID: 30184317 DOI: 10.1002/iub.1919] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 01/08/2023]
Abstract
Mitochondria represent a chimera of macromolecules encoded either in the organellar genome, mtDNA, or in the nuclear one. If the pathway of protein targeting to different sub-compartments of mitochondria was relatively well studied, import of small noncoding RNAs into mammalian mitochondria still awaits mechanistic explanations and its functional issues are often not understood thus raising polemics. At the same time, RNA mitochondrial import pathway has an obvious attractiveness as it appears as a unique natural mechanism permitting to address nucleic acids into the organelles. Deciphering the function(s) of imported RNAs inside the mitochondria is extremely complicated due to their relatively low abundance, which suggests their regulatory role. We previously demonstrated that mitochondrial targeting of small noncoding RNAs able to specifically anneal with the mutant mitochondrial DNA led to a decrease of the mtDNA heteroplasmy level by inhibiting mutant mtDNA replication. We then demonstrated that increasing level of expression of such antireplicative recombinant RNAs increases significantly the antireplicative effect. In this report, we present a new data investigating the possibility to establish a CRISPR-Cas9 system targeting mtDNA exploiting of the pathway of RNA import into mitochondria. Mitochondrially addressed Cas9 versions and a set of mitochondrially targeted guide RNAs were tested in vitro and in vivo and their effect on mtDNA copy number was demonstrated. So far, the system appeared as more complicated for use than previously found for nuclear DNA, because only application of a pair of guide RNAs produced the effect of mtDNA depletion. We discuss, in a critical way, these results and put them in a broader context of polemics concerning the possibilities of manipulation of mtDNA in mammalians. The findings described here prove the potential of the RNA import pathway as a tool for studying mtDNA and for future therapy of mitochondrial disorders. © The Authors. IUBMB Life published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 70(12):1233-1239, 2018.
Collapse
Affiliation(s)
- Romuald Loutre
- UMR 7156 GMGM (Molecular Genetics, Genomics, Microbiology), University of Strasbourg - CNRS, Strasbourg, France
| | - Anne-Marie Heckel
- UMR 7156 GMGM (Molecular Genetics, Genomics, Microbiology), University of Strasbourg - CNRS, Strasbourg, France
| | - Anna Smirnova
- UMR 7156 GMGM (Molecular Genetics, Genomics, Microbiology), University of Strasbourg - CNRS, Strasbourg, France
| | - Nina Entelis
- UMR 7156 GMGM (Molecular Genetics, Genomics, Microbiology), University of Strasbourg - CNRS, Strasbourg, France
| | - Ivan Tarassov
- UMR 7156 GMGM (Molecular Genetics, Genomics, Microbiology), University of Strasbourg - CNRS, Strasbourg, France
| |
Collapse
|
177
|
Advances in methods for reducing mitochondrial DNA disease by replacing or manipulating the mitochondrial genome. Essays Biochem 2018; 62:455-465. [PMID: 29950320 PMCID: PMC6056713 DOI: 10.1042/ebc20170113] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/23/2018] [Accepted: 05/03/2018] [Indexed: 11/25/2022]
Abstract
Mitochondrial DNA (mtDNA) is a multi-copy genome whose cell copy number varies depending on tissue type. Mutations in mtDNA can cause a wide spectrum of diseases. Mutated mtDNA is often found as a subset of the total mtDNA population in a cell or tissue, a situation known as heteroplasmy. As mitochondrial dysfunction only presents after a certain level of heteroplasmy has been acquired, ways to artificially reduce or replace the mutated species have been attempted. This review addresses recent approaches and advances in this field, focusing on the prevention of pathogenic mtDNA transfer via mitochondrial donation techniques such as maternal spindle transfer and pronuclear transfer in which mutated mtDNA in the oocyte or fertilized embryo is substituted with normal copies of the mitochondrial genome. This review also discusses the molecular targeting and cleavage of pathogenic mtDNA to shift heteroplasmy using antigenomic therapy and genome engineering techniques including Zinc-finger nucleases and transcription activator-like effector nucleases. Finally, it considers CRISPR technology and the unique difficulties that mitochondrial genome editing presents.
Collapse
|
178
|
Barshad G, Blumberg A, Cohen T, Mishmar D. Human primitive brain displays negative mitochondrial-nuclear expression correlation of respiratory genes. Genome Res 2018; 28:952-967. [PMID: 29903725 PMCID: PMC6028125 DOI: 10.1101/gr.226324.117] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 05/31/2018] [Indexed: 01/04/2023]
Abstract
Oxidative phosphorylation (OXPHOS), a fundamental energy source in all human tissues, requires interactions between mitochondrial (mtDNA)- and nuclear (nDNA)-encoded protein subunits. Although such interactions are fundamental to OXPHOS, bi-genomic coregulation is poorly understood. To address this question, we analyzed ∼8500 RNA-seq experiments from 48 human body sites. Despite well-known variation in mitochondrial activity, quantity, and morphology, we found overall positive mtDNA-nDNA OXPHOS genes' co-expression across human tissues. Nevertheless, negative mtDNA-nDNA gene expression correlation was identified in the hypothalamus, basal ganglia, and amygdala (subcortical brain regions, collectively termed the "primitive" brain). Single-cell RNA-seq analysis of mouse and human brains revealed that this phenomenon is evolutionarily conserved, and both are influenced by brain cell types (involving excitatory/inhibitory neurons and nonneuronal cells) and by their spatial brain location. As the "primitive" brain is highly oxidative, we hypothesized that such negative mtDNA-nDNA co-expression likely controls for the high mtDNA transcript levels, which enforce tight OXPHOS regulation, rather than rewiring toward glycolysis. Accordingly, we found "primitive" brain-specific up-regulation of lactate dehydrogenase B (LDHB), which associates with high OXPHOS activity, at the expense of LDHA, which promotes glycolysis. Analyses of co-expression, DNase-seq, and ChIP-seq experiments revealed candidate RNA-binding proteins and CEBPB as the best regulatory candidates to explain these phenomena. Finally, cross-tissue expression analysis unearthed tissue-dependent splice variants and OXPHOS subunit paralogs and allowed revising the list of canonical OXPHOS transcripts. Taken together, our analysis provides a comprehensive view of mito-nuclear gene co-expression across human tissues and provides overall insights into the bi-genomic regulation of mitochondrial activities.
Collapse
Affiliation(s)
- Gilad Barshad
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Amit Blumberg
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Tal Cohen
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Dan Mishmar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| |
Collapse
|
179
|
Verechshagina N, Nikitchina N, Yamada Y, Harashima Н, Tanaka M, Orishchenko K, Mazunin I. Future of human mitochondrial DNA editing technologies. Mitochondrial DNA A DNA Mapp Seq Anal 2018; 30:214-221. [PMID: 29764251 DOI: 10.1080/24701394.2018.1472773] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
ATP and other metabolites, which are necessary for the development, maintenance, and functioning of bodily cells are all synthesized in the mitochondria. Multiple copies of the genome, present within the mitochondria, together with its maternal inheritance, determine the clinical manifestation and spreading of mutations in mitochondrial DNA (mtDNA). The main obstacle in the way of thorough understanding of mitochondrial biology and the development of gene therapy methods for mitochondrial diseases is the absence of systems that allow to directly change mtDNA sequence. Here, we discuss existing methods of manipulating the level of mtDNA heteroplasmy, as well as the latest systems, that could be used in the future as tools for human mitochondrial genome editing.
Collapse
Affiliation(s)
- N Verechshagina
- a Laboratory of Molecular Genetics Technologies , Immanuel Kant Baltic Federal University , Kaliningrad , Russia
| | - N Nikitchina
- a Laboratory of Molecular Genetics Technologies , Immanuel Kant Baltic Federal University , Kaliningrad , Russia
| | - Y Yamada
- b Faculty of Pharmaceutical Sciences, Laboratory for Molecular Design of Pharmaceutics , Hokkaido University , Sapporo , Japan
| | - Н Harashima
- b Faculty of Pharmaceutical Sciences, Laboratory for Molecular Design of Pharmaceutics , Hokkaido University , Sapporo , Japan
| | - M Tanaka
- c Department for Health and Longevity Research , National Institutes of Biomedical Innovation, Health and Nutrition , Ibaraki City, Osaka , Japan.,d Department of Neurology , Juntendo University Graduate School of Medicine , Tokyo , Japan
| | - K Orishchenko
- a Laboratory of Molecular Genetics Technologies , Immanuel Kant Baltic Federal University , Kaliningrad , Russia.,e Laboratory of Cell Technologies , Institute of Cytology and Genetics SB RAS , Novosibirsk , Russia
| | - I Mazunin
- a Laboratory of Molecular Genetics Technologies , Immanuel Kant Baltic Federal University , Kaliningrad , Russia
| |
Collapse
|
180
|
Plutino M, Chaussenot A, Rouzier C, Ait-El-Mkadem S, Fragaki K, Paquis-Flucklinger V, Bannwarth S. Targeted next generation sequencing with an extended gene panel does not impact variant detection in mitochondrial diseases. BMC MEDICAL GENETICS 2018; 19:57. [PMID: 29625556 PMCID: PMC5889585 DOI: 10.1186/s12881-018-0568-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/21/2018] [Indexed: 12/29/2022]
Abstract
Background Since the advent of next generation sequencing (NGS), several studies have tried to evaluate the relevance of targeted gene panel sequencing and whole exome sequencing for molecular diagnosis of mitochondrial diseases. The comparison between these different strategies is extremely difficult. A recent study analysed a cohort of patients affected by a mitochondrial disease using a NGS approach based on a targeted gene panel including 132 genes. This strategy led to identify the causative mutations in 15.2% of cases. The number of novel genes responsible for respiratory chain deficiency increases very rapidly. Methods In order to determine the impact of larger panels used as a first screening strategy on molecular diagnosis success, we analysed a cohort of 80 patients affected by a mitochondrial disease with a first mitochondrial DNA (mtDNA) NGS screening and secondarily a targeted mitochondrial panel of 281 nuclear genes. Results Pathogenic mtDNA abnormalities were identified in 4.1% (1/24) of children and 25% (14/56) of adult patients. The remaining 65 patients were analysed with our targeted mitochondrial panel and this approach enabled us to achieve an identification rate of 21.7% (5/23) in children versus 7.1% (3/42) in adults. Conclusions Our results confirm that larger gene panels do not improve diagnostic yield of mitochondrial diseases due to (i) their very high genetic heterogeneity, (ii) the ongoing discovery of novel genes and (iii) mutations in genes apparently not related to mitochondrial function that lead to secondary respiratory chain deficiency. Electronic supplementary material The online version of this article (10.1186/s12881-018-0568-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Morgane Plutino
- Université Côte d'Azur, CHU de Nice, Inserm, CNRS, IRCAN, Nice, France
| | | | - Cécile Rouzier
- Université Côte d'Azur, CHU de Nice, Inserm, CNRS, IRCAN, Nice, France
| | | | | | | | - Sylvie Bannwarth
- Université Côte d'Azur, CHU de Nice, Inserm, CNRS, IRCAN, Nice, France. .,IRCAN UMR CNRS 7284/INSERM U1081, Medicine School, 28 av de Valombrose, 06107, Nice cedex 2, France.
| |
Collapse
|
181
|
Abstract
The development of any novel reproductive technology involving manipulation of human embryos is almost inevitably going to be controversial and evoke sincerely held, but diametrically opposing views. The plethora of scientific, ethical and legal issues that surround the clinical use of such techniques fuels this divergence of opinion. During the policy change that was required to allow the use of mitochondrial donation in the UK, many of these issues were intensely scrutinised by a variety of people and in multiple contexts. This extensive process resulted in the publication of several reports that informed the recommendations made to government. We have been intrinsically involved in the development of mitochondrial donation, from refining the basic technique for use in human embryos through to clinical service delivery, and have taken the opportunity in this article to offer our own perspective on the issues it raises.
Collapse
Affiliation(s)
- Lyndsey Craven
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Julie Murphy
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Doug M. Turnbull
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Grainne S. Gorman
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
182
|
Adashi EY, Cohen IG. Preventing Mitochondrial Diseases: Embryo-Sparing Donor-Independent Options. Trends Mol Med 2018; 24:449-457. [PMID: 29605176 DOI: 10.1016/j.molmed.2018.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 12/26/2022]
Abstract
Mutant mitochondrial DNA gives rise to a broad range of incurable inborn maladies. Prevention may now be possible by replacing the mutation-carrying mitochondria of zygotes or oocytes at risk with donated unaffected counterparts. However, mitochondrial replacement therapy is being held back by theological, ethical, and safety concerns over the loss of human zygotes and the involvement of a donor. These concerns make it plain that the identification, validation, and regulatory adjudication of novel embryo-sparing donor-independent technologies remains a pressing imperative. This Opinion highlights three emerging embryo-sparing donor-independent options that stand to markedly allay theological, ethical, and safety concerns raised by mitochondrial replacement therapy.
Collapse
Affiliation(s)
- Eli Y Adashi
- The Warren Alpert Medical School, Brown University, Providence, RI 02905, USA.
| | - I Glenn Cohen
- Harvard Law School, Cambridge, MA 02138, USA; Petrie-Flom Center for Health Law Policy, Biotechnology, and Bioethics, Harvard University, 1563 Massachusetts Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
183
|
Kang I, Chu CT, Kaufman BA. The mitochondrial transcription factor TFAM in neurodegeneration: emerging evidence and mechanisms. FEBS Lett 2018; 592:793-811. [PMID: 29364506 PMCID: PMC5851836 DOI: 10.1002/1873-3468.12989] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/30/2022]
Abstract
The mitochondrial transcription factor A, or TFAM, is a mitochondrial DNA (mtDNA)-binding protein essential for genome maintenance. TFAM functions in determining the abundance of the mitochondrial genome by regulating packaging, stability, and replication. More recently, TFAM has been shown to play a central role in the mtDNA stress-mediated inflammatory response. Emerging evidence indicates that decreased mtDNA copy number is associated with several aging-related pathologies; however, little is known about the association of TFAM abundance and disease. In this Review, we evaluate the potential associations of altered TFAM levels or mtDNA copy number with neurodegeneration. We also describe potential mechanisms by which mtDNA replication, transcription initiation, and TFAM-mediated endogenous danger signals may impact mitochondrial homeostasis in Alzheimer, Huntington, Parkinson, and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Inhae Kang
- Department of Food Science and Nutrition, Jeju National University, Jeju, Korea
- Division of Cardiology, Vascular Medicine Institute, Department of Medicine Center for Metabolic and Mitochondrial Medicine (C3M), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Charleen T. Chu
- Department of Pathology, Center for Neuroscience, Pittsburgh Institute for Neurodegenerative Diseases, Conformational Protein Diseases Center, and the McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Brett A. Kaufman
- Division of Cardiology, Vascular Medicine Institute, Department of Medicine Center for Metabolic and Mitochondrial Medicine (C3M), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
184
|
|
185
|
Iwama K, Takaori T, Fukushima A, Tohyama J, Ishiyama A, Ohba C, Mitsuhashi S, Miyatake S, Takata A, Miyake N, Ito S, Saitsu H, Mizuguchi T, Matsumoto N. Novel recessive mutations in MSTO1 cause cerebellar atrophy with pigmentary retinopathy. J Hum Genet 2018; 63:263-270. [DOI: 10.1038/s10038-017-0405-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/04/2017] [Accepted: 12/10/2017] [Indexed: 12/31/2022]
|
186
|
Frazier AE, Thorburn DR, Compton AG. Mitochondrial energy generation disorders: genes, mechanisms, and clues to pathology. J Biol Chem 2017; 294:5386-5395. [PMID: 29233888 DOI: 10.1074/jbc.r117.809194] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Inherited disorders of oxidative phosphorylation cause the clinically and genetically heterogeneous diseases known as mitochondrial energy generation disorders, or mitochondrial diseases. Over the last three decades, mutations causing these disorders have been identified in almost 290 genes, but many patients still remain without a molecular diagnosis. Moreover, while our knowledge of the genetic causes is continually expanding, our understanding into how these defects lead to cellular dysfunction and organ pathology is still incomplete. Here, we review recent developments in disease gene discovery, functional characterization, and shared pathogenic parameters influencing disease pathology that offer promising avenues toward the development of effective therapies.
Collapse
Affiliation(s)
- Ann E Frazier
- From the Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, and
| | - David R Thorburn
- From the Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, and.,Victorian Clinical Genetic Services, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
| | - Alison G Compton
- From the Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, and
| |
Collapse
|
187
|
Ahmed ST, Alston CL, Hopton S, He L, Hargreaves IP, Falkous G, Oláhová M, McFarland R, Turnbull DM, Rocha MC, Taylor RW. Using a quantitative quadruple immunofluorescent assay to diagnose isolated mitochondrial Complex I deficiency. Sci Rep 2017; 7:15676. [PMID: 29142257 PMCID: PMC5688115 DOI: 10.1038/s41598-017-14623-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/12/2017] [Indexed: 11/21/2022] Open
Abstract
Isolated Complex I (CI) deficiency is the most commonly observed mitochondrial respiratory chain biochemical defect, affecting the largest OXPHOS component. CI is genetically heterogeneous; pathogenic variants affect one of 38 nuclear-encoded subunits, 7 mitochondrial DNA (mtDNA)-encoded subunits or 14 known CI assembly factors. The laboratory diagnosis relies on the spectrophotometric assay of enzyme activity in mitochondrially-enriched tissue homogenates, requiring at least 50 mg skeletal muscle, as there is no reliable histochemical method for assessing CI activity directly in tissue cryosections. We have assessed a validated quadruple immunofluorescent OXPHOS (IHC) assay to detect CI deficiency in the diagnostic setting, using 10 µm transverse muscle sections from 25 patients with genetically-proven pathogenic CI variants. We observed loss of NDUFB8 immunoreactivity in all patients with mutations affecting nuclear-encoding structural subunits and assembly factors, whilst only 3 of the 10 patients with mutations affecting mtDNA-encoded structural subunits showed loss of NDUFB8, confirmed by BN-PAGE analysis of CI assembly and IHC using an alternative, commercially-available CI (NDUFS3) antibody. The IHC assay has clear diagnostic potential to identify patients with a CI defect of Mendelian origins, whilst highlighting the necessity of complete mitochondrial genome sequencing in the diagnostic work-up of patients with suspected mitochondrial disease.
Collapse
Affiliation(s)
- Syeda T Ahmed
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK
| | - Charlotte L Alston
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK.,NHS Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Sila Hopton
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK.,NHS Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Langping He
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK.,NHS Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Iain P Hargreaves
- The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK.,School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Gavin Falkous
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK.,NHS Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Monika Oláhová
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK
| | - Mariana C Rocha
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK.,BHF Centre of Research Excellence, The James Black Centre, King's College London, University of London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK. .,NHS Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
188
|
Feichtinger RG, Oláhová M, Kishita Y, Garone C, Kremer LS, Yagi M, Uchiumi T, Jourdain AA, Thompson K, D'Souza AR, Kopajtich R, Alston CL, Koch J, Sperl W, Mastantuono E, Strom TM, Wortmann SB, Meitinger T, Pierre G, Chinnery PF, Chrzanowska-Lightowlers ZM, Lightowlers RN, DiMauro S, Calvo SE, Mootha VK, Moggio M, Sciacco M, Comi GP, Ronchi D, Murayama K, Ohtake A, Rebelo-Guiomar P, Kohda M, Kang D, Mayr JA, Taylor RW, Okazaki Y, Minczuk M, Prokisch H. Biallelic C1QBP Mutations Cause Severe Neonatal-, Childhood-, or Later-Onset Cardiomyopathy Associated with Combined Respiratory-Chain Deficiencies. Am J Hum Genet 2017; 101:525-538. [PMID: 28942965 PMCID: PMC5630164 DOI: 10.1016/j.ajhg.2017.08.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/11/2017] [Indexed: 11/16/2022] Open
Abstract
Complement component 1 Q subcomponent-binding protein (C1QBP; also known as p32) is a multi-compartmental protein whose precise function remains unknown. It is an evolutionary conserved multifunctional protein localized primarily in the mitochondrial matrix and has roles in inflammation and infection processes, mitochondrial ribosome biogenesis, and regulation of apoptosis and nuclear transcription. It has an N-terminal mitochondrial targeting peptide that is proteolytically processed after import into the mitochondrial matrix, where it forms a homotrimeric complex organized in a doughnut-shaped structure. Although C1QBP has been reported to exert pleiotropic effects on many cellular processes, we report here four individuals from unrelated families where biallelic mutations in C1QBP cause a defect in mitochondrial energy metabolism. Infants presented with cardiomyopathy accompanied by multisystemic involvement (liver, kidney, and brain), and children and adults presented with myopathy and progressive external ophthalmoplegia. Multiple mitochondrial respiratory-chain defects, associated with the accumulation of multiple deletions of mitochondrial DNA in the later-onset myopathic cases, were identified in all affected individuals. Steady-state C1QBP levels were decreased in all individuals' samples, leading to combined respiratory-chain enzyme deficiency of complexes I, III, and IV. C1qbp-/- mouse embryonic fibroblasts (MEFs) resembled the human disease phenotype by showing multiple defects in oxidative phosphorylation (OXPHOS). Complementation with wild-type, but not mutagenized, C1qbp restored OXPHOS protein levels and mitochondrial enzyme activities in C1qbp-/- MEFs. C1QBP deficiency represents an important mitochondrial disorder associated with a clinical spectrum ranging from infantile lactic acidosis to childhood (cardio)myopathy and late-onset progressive external ophthalmoplegia.
Collapse
Affiliation(s)
- René G Feichtinger
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Monika Oláhová
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Yoshihito Kishita
- Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241, Japan; Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Caterina Garone
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust, MRC Building, Cambridge CB2 0XY, UK; Department of Neurology, Columbia University Medical Center, New York, NY 10032-3784, USA
| | - Laura S Kremer
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Alexis A Jourdain
- Howard Hughes Medical Institute, Department of Molecular Biology, Center for Genome Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kyle Thompson
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Aaron R D'Souza
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust, MRC Building, Cambridge CB2 0XY, UK
| | - Robert Kopajtich
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany
| | - Charlotte L Alston
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Johannes Koch
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Wolfgang Sperl
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Elisa Mastantuono
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Tim M Strom
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Saskia B Wortmann
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria; Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802 Munich, Germany
| | - Germaine Pierre
- South West Regional Metabolic Department, Bristol Royal Hospital for Children, Bristol BS1 3NU, UK
| | - Patrick F Chinnery
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust, MRC Building, Cambridge CB2 0XY, UK
| | - Zofia M Chrzanowska-Lightowlers
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Robert N Lightowlers
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Salvatore DiMauro
- Department of Neurology, Columbia University Medical Center, New York, NY 10032-3784, USA
| | - Sarah E Calvo
- Howard Hughes Medical Institute, Department of Molecular Biology, Center for Genome Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vamsi K Mootha
- Howard Hughes Medical Institute, Department of Molecular Biology, Center for Genome Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Maurizio Moggio
- Neuromuscular Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Monica Sciacco
- Neuromuscular Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Giacomo P Comi
- Neuroscience Section, Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Dario Ronchi
- Neuroscience Section, Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, Chiba 266-0007, Japan
| | - Akira Ohtake
- Department of Pediatrics, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan
| | - Pedro Rebelo-Guiomar
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust, MRC Building, Cambridge CB2 0XY, UK; Graduate Program in Areas of Basic and Applied Biology, University of Porto, 4099-002 Porto, Portugal
| | - Masakazu Kohda
- Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241, Japan; Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Johannes A Mayr
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Yasushi Okazaki
- Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241, Japan; Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Michal Minczuk
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust, MRC Building, Cambridge CB2 0XY, UK
| | - Holger Prokisch
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany.
| |
Collapse
|
189
|
Clinical effects of chemical exposures on mitochondrial function. Toxicology 2017; 391:90-99. [PMID: 28757096 DOI: 10.1016/j.tox.2017.07.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/07/2017] [Accepted: 07/17/2017] [Indexed: 12/16/2022]
Abstract
Mitochondria are critical for the provision of ATP for cellular energy requirements. Tissue and organ functions are dependent on adequate ATP production, especially when energy demand is high. Mitochondria also play a role in a vast array of important biochemical pathways including apoptosis, generation and detoxification of reactive oxygen species, intracellular calcium regulation, steroid hormone and heme synthesis, and lipid metabolism. The complexity of mitochondrial structure and function facilitates its diverse roles but also enhances its vulnerability. Primary disorders of mitochondrial bioenergetics, or Primary Mitochondrial Diseases (PMD) are due to inherited genetic defects in the nuclear or mitochondrial genomes that result in defective oxidative phosphorylation capacity and cellular energy production. Secondary mitochondrial dysfunction is observed in a wide range of diseases such as Alzheimer's and Parkinson's disease. Several lines of evidence suggest that environmental exposures cause substantial mitochondrial dysfunction. Whereby literature from experimental and human studies on exposures associated with Alzheimer's and Parkinson's diseases exist, the significance of exposures as potential triggers in Primary Mitochondrial Disease (PMD) is an emerging clinical question that has not been systematically studied.
Collapse
|