151
|
Chick WS, Drechsel DA, Hammond W, Patel M, Johnson TE. Transmission of mutant phenotypes from ES cells to adult mice. Mamm Genome 2009; 20:734-40. [PMID: 19795169 PMCID: PMC2809776 DOI: 10.1007/s00335-009-9228-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 09/04/2009] [Indexed: 10/20/2022]
Abstract
Genetic manipulation of embryonic stem (ES) cells has been used to produce genetically engineered mice modeling human disorders. Here we describe a novel, additional application: selection for a phenotype of interest and subsequent transmission of that phenotype to a living mouse. We show, for the first time, that a cellular phenotype induced by ENU mutagenesis in ES cells can be transmitted and recapitulated in adult mice derived from these cells. We selected for paraquat-resistant (PQ(R)) ES clones. Subsequent injection of these cells into blastocysts resulted in the production of germline chimeras, from which tail skin fibroblasts exhibited enhanced PQ(R). This trait was also recovered in progeny of the chimera. We avoided PQ toxicity, which blocks the ability to involve the germline, by developing a sib-selection method, one that could be widely applied wherever the selection itself might diminish the pluripotency of the ES cells. Thus, phenotype-driven screens in ES cells are both feasible and efficient in producing intact mouse models for in vivo studies.
Collapse
Affiliation(s)
- Wallace S Chick
- Department of Cell and Developmental Biology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | | | | | | | |
Collapse
|
152
|
Deleting the 14-3-3 protein Bmh1 extends life span in Saccharomyces cerevisiae by increasing stress response. Genetics 2009; 183:1373-84. [PMID: 19805817 DOI: 10.1534/genetics.109.107797] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Enhanced stress response has been suggested to promote longevity in many species. Calorie restriction (CR) and conserved nutrient-sensing target of rapamycin (TOR) and protein kinase A (PKA) pathways have also been suggested to extend life span by increasing stress response, which protects cells from age-dependent accumulation of oxidative damages. Here we show that deleting the yeast 14-3-3 protein, Bmh1, extends chronological life span (CLS) by activating the stress response. 14-3-3 proteins are highly conserved chaperone-like proteins that play important roles in many cellular processes. bmh1Delta-induced heat resistance and CLS extension require the general stress-response transcription factors Msn2, Msn4, and Rim15. The bmh1Delta mutant also displays a decreased reactive oxygen species level and increased heat-shock-element-driven transcription activity. We also show that BMH1 genetically interacts with CR and conserved nutrient-sensing TOR- and PKA-signaling pathways to regulate life span. Interestingly, the level of phosphorylated Ser238 on Bmh1 increases during chronological aging, which is delayed by CR or by reduced TOR activities. In addition, we demonstrate that PKA can directly phosphorylate Ser238 on Bmh1. The status of Bmh1 phosphorylation is therefore likely to play important roles in life-span regulation. Together, our studies suggest that phosphorylated Bmh1 may cause inhibitory effects on downstream longevity factors, including stress-response proteins. Deleting Bmh1 may eliminate the inhibitory effects of Bmh1 on these longevity factors and therefore extends life span.
Collapse
|
153
|
Dekker P, Maier AB, van Heemst D, de Koning-Treurniet C, Blom J, Dirks RW, Tanke HJ, Westendorp RGJ. Stress-induced responses of human skin fibroblasts in vitro reflect human longevity. Aging Cell 2009; 8:595-603. [PMID: 19681808 DOI: 10.1111/j.1474-9726.2009.00506.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Unlike various model organisms, cellular responses to stress have not been related to human longevity. We investigated cellular responses to stress in skin fibroblasts that were isolated from young and very old subjects, and from offspring of nonagenarian siblings and their partners, representatives of the general population. Fibroblasts were exposed to rotenone and hyperglycemia and assessed for senescence-associated beta-galactosidase (SA-beta-gal) activity by flow cytometry. Apoptosis/cell death was measured with the Annexin-V/PI assay and cell-cycle analysis (Sub-G1 content) and growth potential was determined by the colony formation assay. Compared with fibroblasts from young subjects, baseline SA-beta-gal activity was higher in fibroblasts from old subjects (P = 0.004) as were stress-induced increases (rotenone: P < 0.001, hyperglycemia: P = 0.027). For measures of apoptosis/cell death, fibroblasts from old subjects showed higher baseline levels (Annexin V+/PI+ cells: P = 0.040, Sub-G1: P = 0.014) and lower stress-induced increases (Sub-G1: P = 0.018) than fibroblasts from young subjects. Numbers and total size of colonies under nonstressed conditions were higher for fibroblasts from young subjects (P = 0.017 and 0.006, respectively). Baseline levels of SA-beta-gal activity and apoptosis/cell death were not different between fibroblasts from offspring and partner. Stress-induced increases were lower for SA-beta-gal activity (rotenone: P = 0.064, hyperglycemia: P < 0.001) and higher for apoptosis/cell death (Annexin V+/PI- cells: P = 0.041, Annexin V+/PI+ cells: P = 0.008). Numbers and total size of colonies under nonstressed conditions were higher for fibroblasts from offspring (P = 0.001 and 0.024, respectively) whereas rotenone-induced decreases were lower (P = 0.008 and 0.004, respectively). These data provide strong support for the hypothesis that in vitro cellular responses to stress reflect the propensity for human longevity.
Collapse
Affiliation(s)
- Pim Dekker
- Department of Gerontology and Geriatrics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
154
|
Toychiev AH, Sabirov RZ, Takahashi N, Ando-Akatsuka Y, Liu H, Shintani T, Noda M, Okada Y. Activation of maxi-anion channel by protein tyrosine dephosphorylation. Am J Physiol Cell Physiol 2009; 297:C990-1000. [PMID: 19657061 DOI: 10.1152/ajpcell.00131.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The maxi-anion channel with a large single-channel conductance of >300 pS, and unknown molecular identity, is functionally expressed in a large variety of cell types. The channel is activated by a number of experimental maneuvers such as exposing cells to hypotonic or ischemic stress. The most effective and consistent method of activating it is patch membrane excision. However, the activation mechanism of the maxi-anion channel remains poorly understood at present. In the present study, involvement of phosphorylation/dephosphorylation in excision-induced activation was examined. In mouse mammary fibroblastic C127 cells, activity of the channel was suppressed by intracellular application of Mg-ATP, but not Mg-5'-adenylylimidodiphosphate (AMP-PNP), in a concentration-dependent manner. When a cocktail of broad-spectrum tyrosine phosphatase inhibitors was applied, channel activation was completely abolished, whereas inhibitors of serine/threonine protein phosphatases had no effect. On the other hand, protein tyrosine kinase inhibitors brought the channel out of an inactivated state. In mouse adult skin fibroblasts (MAFs) in primary culture, similar maxi-anion channels were found to be activated on membrane excision, in a manner sensitive to tyrosine phosphatase inhibitors. In MAFs isolated from animals deficient in receptor protein tyrosine phosphatase (RPTP)zeta, activation of the maxi-anion channel was significantly slower and less prominent compared with that observed in wild-type MAFs; however, channel activation was restored by transfection of the RPTPzeta gene. Thus it is concluded that activation of the maxi-anion channel involves protein dephosphorylation mediated by protein tyrosine phosphatases that include RPTPzeta in mouse fibroblasts, but not in C127 cells.
Collapse
Affiliation(s)
- Abduqodir H Toychiev
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
155
|
Hsieh CC, Papaconstantinou J. Dermal fibroblasts from long-lived Ames dwarf mice maintain their in vivo resistance to mitochondrial generated reactive oxygen species (ROS). Aging (Albany NY) 2009; 1:784-802. [PMID: 20157567 PMCID: PMC2815737 DOI: 10.18632/aging.100077] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 07/28/2009] [Indexed: 12/26/2022]
Abstract
Activation of p38 MAPK by ROS involves dissociation of
an inactive, reduced thioredoxin-ASK1 complex [(SH)2Trx-ASK1].
Release of ASK1 activates its kinase activity thus stimulating
the p38 MAPK pathway. The level of p38 MAPK activity is,
therefore, regulated by the balance of free vs. bound ASK1.
Longevity of Ames dwarf mice is attributed to their resistance
to oxidative stress. The levels of (SH)2 Trx-ASK1 are more abundant
in young and old dwarf mice compared to their age-matched controls
suggesting that the levels of this complex may play a role in
their resistance to oxidative stress. In these studies we demonstrate
that dermal fibroblasts from these long-lived mice exhibit (a)
higher levels of (SH)2Trx-ASK1 that correlate with their
resistance to ROS generated by inhibitors of electron transport
chain complexes CI (rotenone), CII (3-nitropropionic acid),
CIII, (antimycin A), and H2O2-mediated activation of p38 MAPK,
and (b) maintain their in vivo resistance to ROS generated by
3NPA. We propose that elevated levels of (SH)2Trx-ASK1 play a
role in conferring resistance to mitochondrial generated oxidative
stress and decreased endogenous ROS which are characteristics of
longevity determination.
Collapse
Affiliation(s)
- Ching-Chyuan Hsieh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | |
Collapse
|
156
|
Swindell WR. Heat shock proteins in long-lived worms and mice with insulin/insulin-like signaling mutations. Aging (Albany NY) 2009; 1:573-7. [PMID: 20157538 PMCID: PMC2806032 DOI: 10.18632/aging.100058] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 06/14/2009] [Indexed: 11/25/2022]
Abstract
Heat shock
proteins (HSPs) have proven to be effective tools for extending
invertebrate lifespan, and inC. elegans daf-2 mutants,
longevity resulting from loss of insulin / insulin-like signals is at least
partly dependent upon elevated HSP expression. In mice, inhibition of the
orthologous growth hormone / insulin-like growth factor I (GH / IGF-I)
pathway has similar pro-longevity effects. A recent study, however,
suggests that loss of GH / IGF-I signals in long-lived mice does not
broadly elevate HSP expression, but in fact decreases HSP expression in
many tissue types, such as liver and kidney. The contribution of chaperones
to the longevity of long-lived mice with altered GH / IGF-I signals may therefore
differ from that described in C. elegans daf-2 mutants. This result,
in combination with other recent findings, underscores the possibility that
systemic overexpression of chaperones will have dissimilar effects on
longevity in vertebrate and invertebrate systems.
Collapse
Affiliation(s)
- William R Swindell
- University of Michigan, Departments of Pathology and Geriatrics, Ann Arbor MI 48109, USA.
| |
Collapse
|
157
|
Swindell WR, Masternak MM, Kopchick JJ, Conover CA, Bartke A, Miller RA. Endocrine regulation of heat shock protein mRNA levels in long-lived dwarf mice. Mech Ageing Dev 2009; 130:393-400. [PMID: 19428459 PMCID: PMC2718793 DOI: 10.1016/j.mad.2009.03.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 03/12/2009] [Accepted: 03/28/2009] [Indexed: 11/22/2022]
Abstract
Heat shock proteins (HSPs) maintain proteostasis and may protect against age-associated pathology caused by protein malfolding. In Caenorhabditis elegans, the lifespan extension and thermotolerance in mutants with impaired insulin/IGF signals depend partly on HSP elevation. Less is known about the role of HSPs in the increased lifespan of mice with defects in GH/IGF-I pathways. We measured HSP mRNAs in liver, kidney, heart, lung, muscle and cerebral cortex from long-lived Pit1(dw/dw) Snell dwarf mice. We found many significant differences in HSP mRNA levels between dwarf and control mice, but these effects were complex and organ-specific. We noted 15 instances where HSP mRNAs were lower in Pit1(dw/dw) liver, kidney, or heart tissues, and 14/15 of these were also seen in Ghr(-/-) mice, which lack GH receptor. In contrast, of 12 examples where HSP mRNAs were higher in Snell liver, kidney, or heart, none were altered in Ghr(-/-) mice. Four liver mRNAs were depressed in both Pit1(dw/dw) and Ghr(-/-) mice, and each of these was elevated by GH injection in Ames (Prop1(df/df)) dwarf mice, consistent with the hypothesis that these declines depended on GH and/or IGF-I. Contributions of chaperones to longevity in mice may be more complex than those inferred from C. elegans.
Collapse
Affiliation(s)
- William R Swindell
- University of Michigan, Department of Pathology and Geriatrics Center, Ann Arbor, MI 48109-2200, USA.
| | | | | | | | | | | |
Collapse
|
158
|
Salmon AB, Pérez VI, Bokov A, Jernigan A, Kim G, Zhao H, Levine RL, Richardson A. Lack of methionine sulfoxide reductase A in mice increases sensitivity to oxidative stress but does not diminish life span. FASEB J 2009; 23:3601-8. [PMID: 19487311 DOI: 10.1096/fj.08-127415] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Methionine sulfoxide reductase A (MsrA) repairs oxidized methionine residues within proteins and may also function as a general antioxidant. Previous reports have suggested that modulation of MsrA in mice and mammalian cell culture can affect the accumulation of oxidized proteins and may regulate resistance to oxidative stress. Thus, under the oxidative stress theory of aging, these results would predict that MsrA regulates the aging process in mammals. We show here that MsrA(-/-) mice are more susceptible to oxidative stress induced by paraquat. Skin-derived fibroblasts do not express MsrA, but fibroblasts cultured from MsrA(-/-) mice were, nevertheless, also more susceptible to killing by various oxidative stresses. In contrast to previous reports, we find no evidence for neuromuscular dysfunction in MsrA(-/-) mice in either young adult or in older animals. Most important, we found no difference between MsrA(-/-) and control mice in either their median or maximum life span. Thus, our results show that MsrA regulates sensitivity to oxidative stress in mice but has no effect on aging, as determined by life span.
Collapse
Affiliation(s)
- Adam B Salmon
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Dr., San Antonio, TX 78245-3207, USA
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Bokov AF, Lindsey ML, Khodr C, Sabia MR, Richardson A. Long-lived ames dwarf mice are resistant to chemical stressors. J Gerontol A Biol Sci Med Sci 2009; 64:819-27. [PMID: 19414510 DOI: 10.1093/gerona/glp052] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
To probe the connection between longevity and stress resistance, we compared the sensitivity of Ames long-lived dwarf mice and control littermates with paraquat, diquat, and dobutamine. In young adult animals, 95% of male and 39% of female controls died after paraquat administration, but no dwarf animals died. When the experiment was repeated at an older age or a higher dosage of paraquat, dwarf mice still showed greater resistance. Dwarf mice also were more resistant to diquat; 80% of male and 60% of female controls died compared with 40% and 20% of dwarf mice, despite greater sensitivity of dwarf liver to diquat. Dwarf mice were also less sensitive to dobutamine-induced cardiac stress and had lower levels of liver and lung F(2)-isoprostanes. This is the first direct in vivo evidence that long-lived Ames dwarf mice have enhanced resistance to chemical insult, particularly oxidative stressors.
Collapse
Affiliation(s)
- Alex F Bokov
- Sam and Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, Texas Research Park Campus, 15355 Lambda Drive-MSC 7755, San Antonio, TX 78245-3207, USA
| | | | | | | | | |
Collapse
|
160
|
Garinis GA, Uittenboogaard LM, Stachelscheid H, Fousteri M, van Ijcken W, Breit TM, van Steeg H, Mullenders LH, van der Horst GT, Brüning JC, Niessen CM, Hoeijmakers JH, Schumacher B. Persistent transcription-blocking DNA lesions trigger somatic growth attenuation associated with longevity. Nat Cell Biol 2009; 11:604-15. [PMID: 19363488 PMCID: PMC2782455 DOI: 10.1038/ncb1866] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 02/05/2009] [Indexed: 12/22/2022]
Abstract
The accumulation of stochastic DNA damage throughout an organism's lifespan is thought to contribute to ageing. Conversely, ageing seems to be phenotypically reproducible and regulated through genetic pathways such as the insulin-like growth factor-1 (IGF-1) and growth hormone (GH) receptors, which are central mediators of the somatic growth axis. Here we report that persistent DNA damage in primary cells from mice elicits changes in global gene expression similar to those occurring in various organs of naturally aged animals. We show that, as in ageing animals, the expression of IGF-1 receptor and GH receptor is attenuated, resulting in cellular resistance to IGF-1. This cell-autonomous attenuation is specifically induced by persistent lesions leading to stalling of RNA polymerase II in proliferating, quiescent and terminally differentiated cells; it is exacerbated and prolonged in cells from progeroid mice and confers resistance to oxidative stress. Our findings suggest that the accumulation of DNA damage in transcribed genes in most if not all tissues contributes to the ageing-associated shift from growth to somatic maintenance that triggers stress resistance and is thought to promote longevity.
Collapse
MESH Headings
- Aging/physiology
- Animal Structures/metabolism
- Animals
- DNA/radiation effects
- DNA Damage/physiology
- DNA Repair/physiology
- Gene Expression Profiling
- Growth/physiology
- Growth/radiation effects
- Humans
- Longevity/physiology
- Longevity/radiation effects
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Biological
- Neoplasms/etiology
- Neoplasms/genetics
- Oxidative Stress/physiology
- Progeria/genetics
- Progeria/metabolism
- RNA Polymerase II/metabolism
- Rats
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Receptors, Somatotropin/genetics
- Receptors, Somatotropin/metabolism
- Stress, Physiological/physiology
- Transcription, Genetic/genetics
- Transcription, Genetic/radiation effects
- Ultraviolet Rays
Collapse
Affiliation(s)
- George A. Garinis
- MGC Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus Medical Center, PO Box 1738, 3000 DR Rotterdam, The Netherlands
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | - Lieneke M. Uittenboogaard
- MGC Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus Medical Center, PO Box 1738, 3000 DR Rotterdam, The Netherlands
| | - Heike Stachelscheid
- Center for Molecular Medicine Cologne, University of Cologne, Germany
- Institute for Genetics, University of Cologne, Germany
| | - Maria Fousteri
- Department of Toxicogenetics, LUMC, Leiden, The Netherlands
| | - Wilfred van Ijcken
- Erasmus Center for Biomics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Timo M. Breit
- Integrative Bioinformatics Unit, Institute for Informatics, Faculty of Science, University of Amsterdam, The Netherlands
| | - Harry van Steeg
- National Institute of Public Health and the Environment (RIVM), Laboratory of Toxicology, Pathology and Genetics (TOX), Bilthoven, The Netherlands
| | | | - Gijsbertus T.J. van der Horst
- MGC Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus Medical Center, PO Box 1738, 3000 DR Rotterdam, The Netherlands
| | - Jens C. Brüning
- Institute for Genetics, University of Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging Associated Diseases (CECAD), Cologne, Germany
| | - Carien M. Niessen
- Center for Molecular Medicine Cologne, University of Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging Associated Diseases (CECAD), Cologne, Germany
- Department of Dermatology, University of Cologne, Germany
| | - Jan H.J. Hoeijmakers
- MGC Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus Medical Center, PO Box 1738, 3000 DR Rotterdam, The Netherlands
| | - Björn Schumacher
- MGC Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus Medical Center, PO Box 1738, 3000 DR Rotterdam, The Netherlands
- Cologne Excellence Cluster for Cellular Stress Responses in Aging Associated Diseases (CECAD), Cologne, Germany
| |
Collapse
|
161
|
Page MM, Salmon AB, Leiser SF, Robb EL, Brown MF, Miller RA, Stuart JA. Mechanisms of stress resistance in Snell dwarf mouse fibroblasts: enhanced antioxidant and DNA base excision repair capacity, but no differences in mitochondrial metabolism. Free Radic Biol Med 2009; 46:1109-18. [PMID: 19439226 PMCID: PMC2683197 DOI: 10.1016/j.freeradbiomed.2009.01.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 12/22/2008] [Accepted: 01/15/2009] [Indexed: 02/07/2023]
Abstract
Dermal fibroblasts from long-lived Snell dwarf mice can withstand a variety of oxidative and non-oxidative stressors compared to normal littermate controls. Here, we report differences in the levels and activities of intracellular antioxidant and DNA repair enzymes between normal and Snell dwarf mice fibroblasts cultured under a variety of conditions, including: 3% and 20% ambient O(2); the presence and absence of serum; and the addition of an exogenous oxidative stress. The only significant difference between normal and dwarf cells cultured in complete medium, at 20% O(2), was an approximately 40% elevation of glutathione peroxidase (GPx) activity in the mutant cells. Serum deprivation elicited increases in GPx in both genotypes, but these activities remained higher in dwarf mouse cells. Dwarf mouse cells deprived of serum and challenged with exposure to paraquat or hydrogen peroxide showed a generally greater upregulation of catalase and DNA base excision repair enzymes. As these toxins can interact with mitochondria to increase mitochondrial ROS production, we explored whether there were differences in mitochondrial metabolism between normal and dwarf mouse cells. However, neither mitochondrial content nor the apparent mitochondrial membrane potential differed between genotypes. Overall, the results suggest that superior hydrogen peroxide metabolism and a marginally greater DNA base excision repair capacity contribute to the stress resistance phenotype of Snell dwarf mouse fibroblasts.
Collapse
Affiliation(s)
- Melissa M. Page
- Affiliation for Melissa M. Page, Ellen L. Robb, Melanie F. Brown and Jeffrey A. Stuart is Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada, L2S 3A1
| | - Adam B. Salmon
- Affiliation for Adam B. Salmon and Scott F. Leiser is Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109-2200
| | - Scott F. Leiser
- Affiliation for Adam B. Salmon and Scott F. Leiser is Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109-2200
| | - Ellen L. Robb
- Affiliation for Melissa M. Page, Ellen L. Robb, Melanie F. Brown and Jeffrey A. Stuart is Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada, L2S 3A1
| | - Melanie F. Brown
- Affiliation for Melissa M. Page, Ellen L. Robb, Melanie F. Brown and Jeffrey A. Stuart is Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada, L2S 3A1
| | - Richard A. Miller
- Affiliation for Richard A. Miller is Department of Pathology and Geriatrics Center, University of Michigan, 3001 BSRB Box 2200, Ann Arbor, MI 48109-2200 and Ann Arbor VA Medical Center, Ann Arbor, MI
| | - Jeffrey A. Stuart
- Affiliation for Melissa M. Page, Ellen L. Robb, Melanie F. Brown and Jeffrey A. Stuart is Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada, L2S 3A1
| |
Collapse
|
162
|
van der Bogt KE, Schrepfer S, Yu J, Sheikh AY, Hoyt G, Govaert JA, Velotta JB, Contag CH, Robbins RC, Wu JC. Comparison of transplantation of adipose tissue- and bone marrow-derived mesenchymal stem cells in the infarcted heart. Transplantation 2009; 87:642-52. [PMID: 19295307 PMCID: PMC2866004 DOI: 10.1097/tp.0b013e31819609d9] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mesenchymal stem cells hold promise for cardiovascular regenerative therapy. Derivation of these cells from the adipose tissue might be easier compared with bone marrow. However, the in vivo fate and function of adipose stromal cells (ASC) in the infarcted heart has never been compared directly to bone marrow-derived mesenchymal cells (MSC). METHODS ASC and MSC were isolated from transgenic FVB mice with a beta-actin promoter driving firefly luciferase and green fluorescent protein double fusion reporter gene, and they were characterized using flow cytometry, microscopy, bioluminescence imaging and luminometry. FVB mice (n=8 per group) underwent myocardial infarction followed by intramyocardial injection of 5x10(5) ASC, MSC, fibroblasts (Fibro, positive control), or saline (negative control). Cell survival was measured using bioluminescence imaging for 6 weeks and cardiac function was monitored by echocardiography and pressure-volume analysis. Ventricular morphology was assessed using histology. RESULTS ASC and MSC were CD34(-), CD45(-), c-Kit(-), CD90(+), Sca-1(+), shared similar morphology and had a population doubling time of approximately 2 days. Cells expressed Fluc reporter genes in a number-dependent fashion as confirmed by luminometry. After cardiac transplantation, both cell types showed drastic donor cell death within 4 to 5 weeks. Furthermore, transplantation of either cell type was not capable of preserving ventricular function and dimensions, as confirmed by pressure-volume-loops and histology. CONCLUSION This is the first study comparing the in vivo behavior of both cell types in the infarcted heart. ASC and MSC do not tolerate well in the cardiac environment, resulting in acute donor cell death and a subsequent loss of cardiac function similar to control groups.
Collapse
Affiliation(s)
- Koen E.A. van der Bogt
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Sonja Schrepfer
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Jin Yu
- Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, USA
| | - Ahmad Y. Sheikh
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Grant Hoyt
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Johannes A. Govaert
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeffrey B. Velotta
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Robert C. Robbins
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph C. Wu
- Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
163
|
Salmon AB, Leonard S, Masamsetti V, Pierce A, Podlutsky AJ, Podlutskaya N, Richardson A, Austad SN, Chaudhuri AR. The long lifespan of two bat species is correlated with resistance to protein oxidation and enhanced protein homeostasis. FASEB J 2009; 23:2317-26. [PMID: 19244163 DOI: 10.1096/fj.08-122523] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Altered structure, and hence function, of cellular macromolecules caused by oxidation can contribute to loss of physiological function with age. Here, we tested whether the lifespan of bats, which generally live far longer than predicted by their size, could be explained by reduced protein damage relative to short-lived mice. We show significantly lower protein oxidation (carbonylation) in Mexican free-tailed bats (Tadarida brasiliensis) relative to mice, and a trend for lower oxidation in samples from cave myotis bats (Myotis velifer) relative to mice. Both species of bat show in vivo and in vitro resistance to protein oxidation under conditions of acute oxidative stress. These bat species also show low levels of protein ubiquitination in total protein lysates along with reduced proteasome activity, suggesting diminished protein damage and removal in bats. Lastly, we show that bat-derived protein fractions are resistant to urea-induced protein unfolding relative to the level of unfolding detected in fractions from mice. Together, these data suggest that long lifespan in some bat species might be regulated by very efficient maintenance of protein homeostasis.
Collapse
Affiliation(s)
- Adam B Salmon
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Dr., San Antonio, TX 78245-3207, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Miller RA. Cell stress and aging: new emphasis on multiplex resistance mechanisms. J Gerontol A Biol Sci Med Sci 2009; 64:179-82. [PMID: 19225033 DOI: 10.1093/gerona/gln072] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Work, initially in Caenorhabditis elegans and then more recently in fruit flies and mice, has suggested that anti-aging mutations extend life span by simultaneous activation of pathways that protect cells from multiple forms of injury. This "multiplex stress resistance" theory suggests a number of new avenues for investigation of the genetic and cellular controls that influence organismic longevity within and among species, and that might lead to the development of pharmaceuticals that retard the aging process and, therefore, the entire panoply of age-dependent diseases and disabilities.
Collapse
Affiliation(s)
- Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA.
| |
Collapse
|
165
|
Arai Y, Kojima T, Takayama M, Hirose N. The metabolic syndrome, IGF-1, and insulin action. Mol Cell Endocrinol 2009; 299:124-8. [PMID: 18672019 DOI: 10.1016/j.mce.2008.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 07/03/2008] [Indexed: 12/25/2022]
Abstract
Recent studies have shown that insulin and insulin-like growth factor (IGF)-1 signaling are involved in the control of ageing and longevity in model organisms. Based on these studies, genes involved in the insulin/IGF-1 signaling pathway are believed to play a role in longevity throughout evolution and could also be important in determining human longevity. However, human studies have yielded conflicting and controversial results. In human, defects in insulin receptor signaling cause insulin resistance and diabetes, and IGF-1 deficiency is associated with an increased risk of cardiovascular disease and atherosclerosis. Interestingly, insulin sensitivity normally decreases during aging; however, centenarians were reported to maintain greatly increased insulin sensitivity and had a lower prevalence of the metabolic syndrome as compared to younger subjects. Additionally, a longitudinal study revealed that insulin-sensitizing hormones, including leptin and adiponectin, were significantly associated with the survival of centenarians, indicating that an efficient insulin response may influence human longevity.
Collapse
Affiliation(s)
- Yasumichi Arai
- Department of Internal Medicine, Division of Geriatric Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo 160-8582, Japan.
| | | | | | | |
Collapse
|
166
|
Brown-Borg HM. Hormonal control of aging in rodents: the somatotropic axis. Mol Cell Endocrinol 2009; 299:64-71. [PMID: 18674587 PMCID: PMC4390024 DOI: 10.1016/j.mce.2008.07.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 04/20/2008] [Accepted: 07/03/2008] [Indexed: 01/08/2023]
Abstract
There is a growing body of literature focusing on the somatotropic axis and regulation of aging and longevity. Many of these reports derive data from multiple endocrine mutants, those that exhibit both elevated growth hormone (GH) and insulin-like growth factor I (IGF-1) or deficiencies in one or both of these hormones. In general, both spontaneous and genetically engineered GH and IGF-1 deficiencies have lead to small body size, delayed development of sexual maturation and age-related pathology, and life span extension. In contrast, characteristics of high circulating GH included larger body sizes, early puberty and reproductive senescence, increased cancer incidence and reduced life span when compared to wild-type animals with normal plasma hormone concentrations. This information, along with that found in multiple other species, implicates this anabolic pathway as the major regulator of longevity in animals.
Collapse
Affiliation(s)
- Holly M Brown-Borg
- Department of Pharmacology, Physiology & Therapeutics, University of North Dakota School of Medicine & Health Sciences, 501 North Columbia Road, Grand Forks, ND 58203, United States.
| |
Collapse
|
167
|
Berryman DE, Christiansen JS, Johannsson G, Thorner MO, Kopchick JJ. Role of the GH/IGF-1 axis in lifespan and healthspan: lessons from animal models. Growth Horm IGF Res 2008; 18:455-71. [PMID: 18710818 PMCID: PMC2631405 DOI: 10.1016/j.ghir.2008.05.005] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 05/02/2008] [Indexed: 12/18/2022]
Abstract
Animal models are fundamentally important in our quest to understand the genetic, epigenetic, and environmental factors that contribute to human aging. In comparison to humans, relatively short-lived mammals are useful models as they allow for rapid assessment of both genetic manipulation and environmental intervention as related to longevity. These models also allow for the study of clinically relevant pathologies as a function of aging. Data associated with more distant species offers additional insight and critical consideration of the basic physiological processes and molecular mechanisms that influence lifespan. Consistently, two interventions, caloric restriction and repression of the growth hormone (GH)/insulin-like growth factor-1/insulin axis, have been shown to increase lifespan in both invertebrates and vertebrate animal model systems. Caloric restriction (CR) is a nutrition intervention that robustly extends lifespan whether it is started early or later in life. Likewise, genes involved in the GH/IGF-1 signaling pathways can lengthen lifespan in vertebrates and invertebrates, implying evolutionary conservation of the molecular mechanisms. Specifically, insulin and insulin-like growth factor-1 (IGF-1)-like signaling and its downstream intracellular signaling molecules have been shown to be associated with lifespan in fruit flies and nematodes. More recently, mammalian models with reduced growth hormone (GH) and/or IGF-1 signaling have also been shown to have extended lifespans as compared to control siblings. Importantly, this research has also shown that these genetic alterations can keep the animals healthy and disease-free for longer periods and can alleviate specific age-related pathologies similar to what is observed for CR individuals. Thus, these mutations may not only extend lifespan but may also improve healthspan, the general health and quality of life of an organism as it ages. In this review, we will provide an overview of how the manipulation of the GH/IGF axis influences lifespan, highlight the invertebrate and vertebrate animal models with altered lifespan due to modifications to the GH/IGF-1 signaling cascade or homologous pathways, and discuss the basic phenotypic characteristics and healthspan of these models.
Collapse
Affiliation(s)
- Darlene E. Berryman
- School of Human and Consumer Sciences, College of Health and Human Services, Ohio University, Athens, OH 45701
| | - Jens Sandahl Christiansen
- Jens Sandahl Christiansen, Department of Endocrinology, Aarhus University Hospital, Kommunehospitalet, DK 8000 Aarhus, Denmark
| | - Gudmundur Johannsson
- Gudmundur Johannsson, MD, Research Centre for Endocrinology and Metabolism, Sahlgrenska University Hospital, S-413 45 Göteborg, Sweden
| | - Michael O. Thorner
- Michael O. Thorner, University of Virginia Health System, Endocrinology and Metabolism, Charlottesville, VA 22908
| | - John J. Kopchick
- Edison Biotechnology Institute and Department of Biomedical Sciences, College of Osteopathic Medicine, Ohio University, Athens, OH 45701; Phone: (740)593-4534; Fax: (740)593-4795
| |
Collapse
|
168
|
Chen L, Na R, Gu M, Salmon AB, Liu Y, Liang H, Qi W, Van Remmen H, Richardson A, Ran Q. Reduction of mitochondrial H2O2 by overexpressing peroxiredoxin 3 improves glucose tolerance in mice. Aging Cell 2008; 7:866-78. [PMID: 18778410 DOI: 10.1111/j.1474-9726.2008.00432.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
H(2)O(2) is a major reactive oxygen species produced by mitochondria that is implicated to be important in aging and pathogenesis of diseases such as diabetes; however, the cellular and physiological roles of mitochondrial H(2)O(2) remain poorly understood. Peroxiredoxin 3 (Prdx3/Prx3) is a thioredoxin peroxidase localized in mitochondria. To understand the cellular and physiological roles of mitochondrial H(2)O(2) in aging and pathogenesis of age-associated diseases, we generated transgenic mice overexpressing Prdx3 (Tg(PRDX3) mice). Tg(PRDX3) mice overexpress Prdx3 in a broad range of tissues, and the Prdx3 overexpression occurs exclusively in the mitochondria. As a result of increased Prdx3 expression, mitochondria from Tg(PRDX3) mice produce significantly reduced amount of H(2)O(2), and cells from Tg(PRDX3) mice have increased resistance to stress-induced cell death and apoptosis. Interestingly, Tg(PRDX3) mice show improved glucose homeostasis, as evidenced by their reduced levels of blood glucose and increased glucose clearance. Tg(PRDX3) mice are also protected against hyperglycemia and glucose intolerance induced by high-fat diet feeding. Our results further show that the inhibition of GSK3 may play a role in mediating the improved glucose tolerance phenotype in Tg(PRDX3) mice. Thus, our results indicate that reduction of mitochondrial H(2)O(2) by overexpressing Prdx3 improves glucose tolerance.
Collapse
Affiliation(s)
- Liuji Chen
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, Texas 78229, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Abstract
Recent studies in diverse organisms implicate proto-oncogenic pathways, including insulin-like growth factor-I (IGF-I), Ras and AKT/protein kinase B in the ageing process. Although IGF-I is thought to contribute to cancer by promoting growth and preventing apoptosis, evidence from model organisms suggests that proto-oncogene homologues might contribute to the DNA mutations and chromosomal damage that are observed in tumour cells by increasing DNA damage, in both dividing and non-dividing cells, and involving error-prone systems in DNA repair. This raises the possibility that cancer can be reduced by chronic downregulation of pro-ageing pathways.
Collapse
Affiliation(s)
- Valter D Longo
- Andrus Gerontology Center, Molecular and Computational Biology Department, University of Southern California, 3715 McClintock Avenue, Los Angeles, California 90089-0191, USA.
| | | | | |
Collapse
|
170
|
Tawfik HE, Cena J, Schulz R, Kaufman S. Role of oxidative stress in multiparity-induced endothelial dysfunction. Am J Physiol Heart Circ Physiol 2008; 295:H1736-42. [DOI: 10.1152/ajpheart.87.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Multiparity is associated with increased risk of cardiovascular disease. We tested whether multiparity induces oxidative stress in rat vascular tissue. Coronary arteries and thoracic aorta were isolated from multiparous and age-matched virgin rats. Relaxation to ACh and sodium nitroprusside (SNP) was measured by wire myography. We also tested the effect of the superoxide dismutase mimetic MnTE2PyP (30 μM), the NADPH oxidase inhibitor apocynin (10 μM), and the peroxynitrite scavenger FeTPPs (10 μM) on ACh-mediated relaxation in coronary arteries. Vascular superoxide anion was measured using the luminol derivative L-012 and nitric oxide (NO) generation by the Griess reaction. Multiparity reduced maximal response and sensitivity to ACh in coronary arteries [maximal relaxation (Emax): multiparous 49 ± 3% vs. virgins 95% ± 3%; EC50: multiparous 135 ± 1 nM vs. virgins 60 ± 1 nM], and in aortic rings (Emax: multiparous 38 ± 3% vs. virgins 79 ± 4%; EC50: multiparous 160 ± 2 nM vs. virgins 90 ± 3 nM). Coronary arteries from the two groups relaxed similarly to SNP. Superoxide anions formation was significantly higher in both coronary arteries (2.8-fold increase) and aorta (4.1-fold increase) from multiparous rats compared with virgins. In multiparous rats, incubation with MnTE2PyP, apocynin, and FeTPPs improved maximal relaxation to ACh (MnTE2PyP: 74 ± 5%; vehicle: 41 ± 5%; apocynin: 73 ± 3% vs. vehicle: 41 ± 3%; FeTPPs: 72 ± 3% vs. vehicle: 46 ± 3%) and increased sensitivity (EC50: MnTE2PyP: 61 ± 0.5 nM vs. vehicle: 91 ± 1 nM; apocynin: 45 ± 3 nM vs. vehicle: 91 ± 6 nM; FeTPP: 131 ± 2 nM vs. vehicle: 185 ± 1 nM). Multiparity also reduced total nitrate/nitrite levels (multiparous: 2.5 ± 2 μmol/mg protein vs. virgins: 7 ± 1 μmol/mg protein) and endothelial nitric oxide synthase protein levels (multiparous: 0.53 ± 0.1 protein/actin vs. virgins: 1.0 ± 0.14 protein/actin). These data suggest that multiparity induces endothelial dysfunction through decreased NO bioavailability and increased reactive oxygen species formation.
Collapse
|
171
|
Benedetti MG, Foster AL, Vantipalli MC, White MP, Sampayo JN, Gill MS, Olsen A, Lithgow GJ. Compounds that confer thermal stress resistance and extended lifespan. Exp Gerontol 2008; 43:882-91. [PMID: 18755260 PMCID: PMC2603168 DOI: 10.1016/j.exger.2008.08.049] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 08/21/2008] [Accepted: 08/21/2008] [Indexed: 02/07/2023]
Abstract
The observation that long-lived and relatively healthy animals can be obtained by simple genetic manipulation prompts the search for chemical compounds that have similar effects. Since aging is the most important risk factor for many socially and economically important diseases, the discovery of a wide range of chemical modulators of aging in model organisms could prompt new strategies for attacking age-related disease such as diabetes, cancer and neurodegenerative disorders [Collins, J.J., Evason, K., Kornfeld, K., 2006. Pharmacology of delayed aging and extended lifespan of Caenorhabditis elegans. Exp. Gerontol.; Floyd, R.A., 2006. Nitrones as therapeutics in age-related diseases. Aging Cell 5, 51-57; Gill, M.S., 2006. Endocrine targets for pharmacological intervention in aging in Caenorhabditis elegans. Aging Cell 5, 23-30; Hefti, F.F., Bales, R., 2006. Regulatory issues in aging pharmacology. Aging Cell 5, 3-8]. Resistance to multiple types of stress is a common trait in long-lived genetic variants of a number of species; therefore, we have tested compounds that act as stress response mimetics. We have focused on compounds with antioxidant properties and identified those that confer thermal stress resistance in the nematode Caenorhabditis elegans. Some of these compounds (lipoic acid, propyl gallate, trolox and taxifolin) also extend the normal lifespan of this simple invertebrate, consistent with the general model that enhanced stress resistance slows aging.
Collapse
Affiliation(s)
- Michael G. Benedetti
- The Buck Institute, 8001 Redwood Blvd., Novato, CA 94945, USA. Tel: 415 209 2094. Fax: 415 209 2232. e-mail:
| | - Amanda L. Foster
- The Buck Institute, 8001 Redwood Blvd., Novato, CA 94945, USA. Tel: 415 209 2094. Fax: 415 209 2232. e-mail:
| | - Maithili C. Vantipalli
- The Buck Institute, 8001 Redwood Blvd., Novato, CA 94945, USA. Tel: 415 209 2094. Fax: 415 209 2232. e-mail:
| | - Mark P. White
- The Buck Institute, 8001 Redwood Blvd., Novato, CA 94945, USA. Tel: 415 209 2094. Fax: 415 209 2232. e-mail:
| | - James N. Sampayo
- The Buck Institute, 8001 Redwood Blvd., Novato, CA 94945, USA. Tel: 415 209 2094. Fax: 415 209 2232. e-mail:
| | - Matthew S. Gill
- The Buck Institute, 8001 Redwood Blvd., Novato, CA 94945, USA. Tel: 415 209 2094. Fax: 415 209 2232. e-mail:
| | - Anders Olsen
- The Buck Institute, 8001 Redwood Blvd., Novato, CA 94945, USA. Tel: 415 209 2094. Fax: 415 209 2232. e-mail:
| | - Gordon J. Lithgow
- The Buck Institute, 8001 Redwood Blvd., Novato, CA 94945, USA. Tel: 415 209 2094. Fax: 415 209 2232. e-mail:
| |
Collapse
|
172
|
Buffenstein R, Edrey YH, Yang T, Mele J. The oxidative stress theory of aging: embattled or invincible? Insights from non-traditional model organisms. AGE (DORDRECHT, NETHERLANDS) 2008; 30:99-109. [PMID: 19424860 PMCID: PMC2527631 DOI: 10.1007/s11357-008-9058-z] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 04/22/2008] [Indexed: 05/08/2023]
Abstract
Reactive oxygen species (ROS), inevitable byproducts of aerobic metabolism, are known to cause oxidative damage to cells and molecules. This, in turn, is widely accepted as a pivotal determinant of both lifespan and health span. While studies in a wide range of species support the role of ROS in many age-related diseases, its role in aging per se is questioned. Comparative data from a wide range of endotherms offer equivocal support for this theory, with many exceptions and inconclusive findings as to whether or not oxidative stress is either a correlate or a determinant of maximum species lifespan. Available data do not support the premise that metabolic rate and in vivo ROS production are determinants of lifespan, or that superior antioxidant defense contributes to species longevity. Rather, published studies often show either a negative associate or lack of correlation with species longevity. Furthermore, many long-living species such as birds, bats and mole-rats exhibit high levels of oxidative damage even at young ages. Similarly genetic manipulations altering expression of key antioxidants do not necessarily show an impact on lifespan, even though oxidative damage levels may be affected. While it is possible that these multiple exceptions to straightforward predictions of the free radical theory of aging all reflect species-specific, "private" mechanisms of aging, the preponderance of contrary data nevertheless present a challenge to this august theory. Therefore, contrary to accepted dogma, the role of oxidative stress as a determinant of longevity is still open to question.
Collapse
Affiliation(s)
- Rochelle Buffenstein
- Barshop Institute for Aging and Longevity Studies and Department of Physiology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, STCBM #2.2, San Antonio, TX 78245, USA.
| | | | | | | |
Collapse
|
173
|
Salmon AB, Akha AAS, Buffenstein R, Miller RA. Fibroblasts from naked mole-rats are resistant to multiple forms of cell injury, but sensitive to peroxide, ultraviolet light, and endoplasmic reticulum stress. J Gerontol A Biol Sci Med Sci 2008; 63:232-41. [PMID: 18375872 PMCID: PMC2710579 DOI: 10.1093/gerona/63.3.232] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fibroblasts from long-lived mutant mice are resistant to many forms of lethal injury as well as to the metabolic effects of rotenone and low-glucose medium. Here we evaluated fibroblasts from young adult naked mole-rats (NMR; Heterocephalus glaber), a rodent species in which maximal longevity exceeds 28 years. Compared to mouse cells, NMR cells were resistant to cadmium, methyl methanesulfonate, paraquat, heat, and low-glucose medium, consistent with the idea that cellular resistance to stress may contribute to disease resistance and longevity. Surprisingly, NMR cells were more sensitive than mouse cells to H(2)O(2), ultraviolet (UV) light, and rotenone. NMR cells, like cells from Snell dwarf mice, were more sensitive to tunicamycin and thapsigargin, which interfere with the function of the endoplasmic reticulum (ER stress). The sensitivity of both Snell dwarf and NMR cells to ER stress suggests that alterations in the unfolded protein response might modulate cell survival and aging rate.
Collapse
Affiliation(s)
- Adam B. Salmon
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI
| | - Amir A. Sadighi Akha
- Department of Pathology and the Geriatrics Center, University of Michigan, Ann Arbor, MI
| | - Rochelle Buffenstein
- Department of Biology, City College of New York, New York, NY
- The Barshop Institute for Aging and Longevity Studies, UTHSCSA, San Antonio, TX
- Department of Physiology, UTHSCSA, San Antonio, TX
| | - Richard A. Miller
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI
- Department of Pathology and the Geriatrics Center, University of Michigan, Ann Arbor, MI
- Ann Arbor VA Medical Center, Ann Arbor, MI
| |
Collapse
|
174
|
Salmon AB, Ljungman M, Miller RA. Cells from long-lived mutant mice exhibit enhanced repair of ultraviolet lesions. J Gerontol A Biol Sci Med Sci 2008; 63:219-31. [PMID: 18375871 PMCID: PMC2711434 DOI: 10.1093/gerona/63.3.219] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fibroblasts isolated from long-lived hypopituitary dwarf mice are resistant to many cell stresses, including ultraviolet (UV) light and methyl methane sulfonate (MMS), which induce cell death by producing DNA damage. Here we report that cells from Snell dwarf mice recover more rapidly than controls from the inhibition of RNA synthesis induced by UV damage. Recovery of messenger RNA (mRNA) synthesis in particular is more rapid in dwarf cells, suggesting enhanced repair of the actively transcribing genes in dwarf-derived cells. At early time points, there was no difference in the repair of cyclobutane pyrimidine dimers (CPD) or 6-4 photoproducts (6-4PP) in the whole genome, nor was there any significant difference in the repair of UV lesions in specific genes. However, at later time points we found that more lesions had been removed from the genome of dwarf-derived cells. We have also found that cells from dwarf mice express higher levels of the nucleotide excision repair proteins XPC and CSA, suggesting a causal link to enhanced DNA repair. Overall, these data suggest a mechanism for the UV resistance of Snell dwarf-derived fibroblasts that could contribute to the delay of aging and neoplasia in these mice.
Collapse
Affiliation(s)
- Adam B. Salmon
- Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI
| | - Mats Ljungman
- Department of Radiation Oncology, Division of Radiation & Cancer Biology, University of, Michigan Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI
| | - Richard A. Miller
- Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI
- Department of Pathology, Geriatrics Center, and VA Medical Center, University of Michigan, 3001 BSRB Box 2200, Ann Arbor, MI 48109-2200
| |
Collapse
|
175
|
Age to survive: DNA damage and aging. Trends Genet 2008; 24:77-85. [PMID: 18192065 DOI: 10.1016/j.tig.2007.11.004] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 11/19/2007] [Accepted: 11/19/2007] [Indexed: 12/15/2022]
Abstract
Aging represents the progressive functional decline and increased mortality risk common to nearly all metazoans. Recent findings experimentally link DNA damage and organismal aging: longevity-regulating genetic pathways respond to the accumulation of DNA damage and other stress conditions and conversely influence the rate of damage accumulation and its impact for cancer and aging. This novel insight has emerged from studies on human progeroid diseases and mouse models that have deficient DNA repair pathways. Here we discuss a unified concept of an evolutionarily conserved 'survival' response that shifts the organism's resources from growth to maintenance as an adaptation to stresses, such as starvation and DNA damage. This shift protects the organism from cancer and promotes healthy aging.
Collapse
|
176
|
Choksi KB, Roberts LJ, DeFord JH, Rabek JP, Papaconstantinou J. Lower levels of F2-isoprostanes in serum and livers of long-lived Ames dwarf mice. Biochem Biophys Res Commun 2007; 364:761-4. [PMID: 17964285 PMCID: PMC2238179 DOI: 10.1016/j.bbrc.2007.10.100] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Accepted: 10/08/2007] [Indexed: 12/13/2022]
Abstract
F2-isoprostanes (IsoPs), lipid peroxidation products, are markers that quantitatively measure levels of oxidative stress. IsoP levels increase in tissues and serum of aging animals suggesting an increase in oxidative stress. This supports the Free Radical Theory of Aging, which proposes that elevated levels of reactive oxygen species (ROS) cause macromolecular damage, and is a factor in the age-associated decline in tissue function. Numerous studies have shown that the longevity of long-lived mutant mice correlates with their resistance to oxidative stress. However, although the Ames dwarf (DW) mice show resistance to oxidative stress, it has not been shown that these mice have inherently lower levels of ROS. Our results show that the serum and liver IsoP levels in DW mice are lower at all ages suggesting that the lower levels of endogenous ROS production in DW mice may be a factor in their resistance to oxidative stress and longevity.
Collapse
Affiliation(s)
- Kashyap B. Choksi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-0643, USA
| | - L. Jackson Roberts
- Department of Pharmacology and Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - James H. DeFord
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-0643, USA
| | - Jeffrey P. Rabek
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-0643, USA
| | - John Papaconstantinou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-0643, USA
| |
Collapse
|
177
|
Csiszar A, Labinskyy N, Zhao X, Hu F, Serpillon S, Huang Z, Ballabh P, Levy RJ, Hintze TH, Wolin MS, Austad SN, Podlutsky A, Ungvari Z. Vascular superoxide and hydrogen peroxide production and oxidative stress resistance in two closely related rodent species with disparate longevity. Aging Cell 2007; 6:783-97. [PMID: 17925005 DOI: 10.1111/j.1474-9726.2007.00339.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Vascular aging is characterized by increased oxidative stress, impaired nitric oxide (NO) bioavailability and enhanced apoptotic cell death. The oxidative stress hypothesis of aging predicts that vascular cells of long-lived species exhibit lower production of reactive oxygen species (ROS) and/or superior resistance to oxidative stress. We tested this hypothesis using two taxonomically related rodents, the white-footed mouse (Peromyscus leucopus) and the house mouse (Mus musculus), that show a more than twofold difference in maximum lifespan potential (MLSP = 8 and 3.5 years, respectively). We compared interspecies differences in endothelial superoxide (O2-) and hydrogen peroxide (H2O2) production, NAD(P)H oxidase activity, mitochondrial ROS generation, expression of pro- and antioxidant enzymes, NO production, and resistance to oxidative stress-induced apoptosis. In aortas of P. leucopus, NAD(P)H oxidase expression and activity, endothelial and H2O2 production, and ROS generation by mitochondria were less than in mouse vessels. In P. leucopus, there was a more abundant expression of catalase, glutathione peroxidase 1 and hemeoxygenase-1, whereas expression of Cu/Zn-SOD and Mn-SOD was similar in both species. NO production and endothelial nitric oxide synthase expression was greater in P. leucopus. In mouse aortas, treatment with oxidized low-density lipoprotein (oxLDL) elicited substantial oxidative stress, endothelial dysfunction and endothelial apoptosis (assessed by TUNEL assay, DNA fragmentation and caspase 3 activity assays). According to our prediction, vessels of P. leucopus were more resistant to the proapoptotic effects of oxidative stressors (oxLDL and H2O2). Primary fibroblasts from P. leucopus also exhibited less H2O2-induced DNA damage (comet assay) than mouse cells. Thus, increased lifespan potential in P. leucopus is associated with a decreased cellular ROS generation and increased oxidative stress resistance, which accords with the prediction of the oxidative stress hypothesis of aging.
Collapse
Affiliation(s)
- Anna Csiszar
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Swindell WR. Gene expression profiling of long-lived dwarf mice: longevity-associated genes and relationships with diet, gender and aging. BMC Genomics 2007; 8:353. [PMID: 17915019 PMCID: PMC2094713 DOI: 10.1186/1471-2164-8-353] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Accepted: 10/03/2007] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Long-lived strains of dwarf mice carry mutations that suppress growth hormone (GH) and insulin-like growth factor I (IGF-I) signaling. The downstream effects of these endocrine abnormalities, however, are not well understood and it is unclear how these processes interact with aging mechanisms. This study presents a comparative analysis of microarray experiments that have measured hepatic gene expression levels in long-lived strains carrying one of four mutations (Prop1(df/df), Pit1(dw/dw), Ghrhr(lit/lit), GHR-KO) and describes how the effects of these mutations relate to one another at the transcriptional level. Points of overlap with the effects of calorie restriction (CR), CR mimetic compounds, low fat diets, gender dimorphism and aging were also examined. RESULTS All dwarf mutations had larger and more consistent effects on IGF-I expression than dietary treatments. In comparison to dwarf mutations, however, the transcriptional effects of CR (and some CR mimetics) overlapped more strongly with those of aging. Surprisingly, the Ghrhr(lit/lit) mutation had much larger effects on gene expression than the GHR-KO mutation, even though both mutations affect the same endocrine pathway. Several genes potentially regulated or co-regulated with the IGF-I transcript in liver tissue were identified, including a DNA repair gene (Snm1) that is upregulated in proportion to IGF-I inhibition. A total of 13 genes exhibiting parallel differential expression patterns among all four strains of long-lived dwarf mice were identified, in addition to 30 genes with matching differential expression patterns in multiple long-lived dwarf strains and under CR. CONCLUSION Comparative analysis of microarray datasets can identify patterns and consistencies not discernable from any one dataset individually. This study implements new analytical approaches to provide a detailed comparison among the effects of life-extending mutations, dietary treatments, gender and aging. This comparison provides insight into a broad range of issues relevant to the study of mammalian aging. In this context, 43 longevity-associated genes are identified and individual genes with the highest level of support among all microarray experiments are highlighted. These results provide promising targets for future experimental investigation as well as potential clues for understanding the functional basis of lifespan extension in mammalian systems.
Collapse
Affiliation(s)
- William R Swindell
- Department of Pathology, University of Michigan, 3118 BSRB, Ann Arbor, MI, USA.
| |
Collapse
|
179
|
Smith EM, Hoi JT, Eissenberg JC, Shoemaker JD, Neckameyer WS, Ilvarsonn AM, Harshman LG, Schlegel VL, Zempleni J. Feeding Drosophila a biotin-deficient diet for multiple generations increases stress resistance and lifespan and alters gene expression and histone biotinylation patterns. J Nutr 2007; 137:2006-12. [PMID: 17709434 PMCID: PMC2196439 DOI: 10.1093/jn/137.9.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Energy restriction increases stress resistance and lifespan in Drosophila melanogaster and other species. The roles of individual nutrients in stress resistance and longevity are largely unknown. The vitamin biotin is a potential candidate for mediating these effects, given its known roles in stress signaling and gene regulation by epigenetic mechanisms, i.e. biotinylation of histones. Here, we tested the hypothesis that prolonged culture of Drosophila on biotin-deficient (BD) medium increases stress resistance and lifespan. Flies were fed a BD diet for multiple generations; controls were fed a biotin-normal diet. In some experiments, a third group of flies was fed a BD diet for 12 generations and then switched to control diets for 2 generations to eliminate potential effects of short-term biotin deficiency. Flies fed a BD diet exhibited a 30% increase in lifespan. This increase was associated with enhanced resistance to the DNA-damaging agent hydroxyurea and heat stress. Also, fertility increased significantly compared with biotin-normal controls. Biotinylation of histones was barely detectable in biotin-deprived flies, suggesting that epigenetic events might have contributed to effects of biotin deprivation.
Collapse
Affiliation(s)
- Erin M Smith
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE 68583-0806, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Nagaoka-Yasuda R, Matsuo N, Perkins B, Limbaeck-Stokin K, Mayford M. An RNAi-based genetic screen for oxidative stress resistance reveals retinol saturase as a mediator of stress resistance. Free Radic Biol Med 2007; 43:781-8. [PMID: 17664141 DOI: 10.1016/j.freeradbiomed.2007.05.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 04/06/2007] [Accepted: 05/10/2007] [Indexed: 02/07/2023]
Abstract
Oxidative stress has been implicated in the pathogenesis of numerous late-onset diseases as well as organismal longevity. Nevertheless, the genetic components that affect cellular sensitivity to oxidative stress have not been explored extensively at the genome-wide level in mammals. Here we report an RNA interference (RNAi) screen for genes that increase resistance to an organic oxidant, tert-butylhydroperoxide (tert-BHP), in cultured fibroblasts. The loss-of-function screen allowed us to identify several short hairpin RNAs (shRNAs) that elevated the cellular resistance to tert-BHP. One of these shRNAs strongly protected cells from tert-BHP and H(2)O(2) by specifically reducing the expression of retinol saturase, an enzyme that converts all-trans-retinol (vitamin A) to all-trans-13,14-dihydroretinol. The protective effect was well correlated with the reduction in mRNA level and was observed in both primary fibroblasts and NIH3T3 cells. The results suggest a novel role for retinol saturase in regulating sensitivity to oxidative stress and demonstrate the usefulness of large-scale RNAi screening for elucidating new molecular pathways involved in stress resistance.
Collapse
Affiliation(s)
- Rie Nagaoka-Yasuda
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
181
|
Dhahbi J, Li X, Tran T, Masternak MM, Bartke A. Circulating blood leukocyte gene expression profiles: effects of the Ames dwarf mutation on pathways related to immunity and inflammation. Exp Gerontol 2007; 42:772-88. [PMID: 17611063 PMCID: PMC2045642 DOI: 10.1016/j.exger.2007.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 04/04/2007] [Accepted: 04/05/2007] [Indexed: 12/18/2022]
Abstract
Aging is associated with a decline of immune competence and an increase in markers of inflammation. There is considerable evidence that inflammatory processes play a role in aging and the determination of lifespan. Hypopituitary Ames dwarf mice have extended longevity and exhibit many symptoms of delayed aging, although various aspects of immune function are suppressed in the mutants. In the present study, the expression of genes related to immunity and inflammation was compared in peripheral blood leukocytes (PBL) from Ames dwarf and normal mice using Affymetrix GeneChip arrays. Among the more than 3000 probe sets that were differentially expressed, 273 were identified as being associated with immunity and/or inflammation. Pathway analysis revealed interactions among 91 of these probe sets, centered on casp3, bcl2, il4, prkca, mapk14 and TGFbeta1. Ames dwarf mice had reduced leukocyte expression of casp3 and TGFbeta and increased expression of Bcl2. Alterations in the expression of these genes suggest likely functional changes in apoptosis, B and T cell homeostasis, prostaglandin synthesis, humoral immunity, chemokine activity, complement activation, hemostasis and wound healing pathways. Collectively, these results suggest that activation of both anti-inflammatory pathways and an anti-clotting mechanism combined with reduced turnover of leukocytes may contribute to delayed aging and extended longevity of Ames dwarf mice. We are also aware that alterations in gene expression in PBLs can be due to different composition of PBL populations when comparing Ames dwarf to WT animals, and it will be interesting to investigate these genes in particular PBL populations in the future. However, whole leukocytes population represents the function of immune system in these organisms.
Collapse
Affiliation(s)
- Joseph Dhahbi
- BioMarker Pharmaceuticals Inc., 5941 Optical Court, San Jose, CA 95138, USA.
| | | | | | | | | |
Collapse
|
182
|
Ungvari Z, Orosz Z, Rivera A, Labinskyy N, Xiangmin Z, Olson S, Podlutsky A, Csiszar A. Resveratrol increases vascular oxidative stress resistance. Am J Physiol Heart Circ Physiol 2007; 292:H2417-24. [PMID: 17220179 DOI: 10.1152/ajpheart.01258.2006] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Epidemiological studies suggest that Mediterranean diets rich in resveratrol are associated with reduced risk of coronary artery disease. However, the mechanisms by which resveratrol exerts its vasculoprotective effects are not completely understood. Because oxidative stress and endothelial cell injury play a critical role in vascular aging and atherogenesis, we evaluated whether resveratrol inhibits oxidative stress-induced endothelial apoptosis. We found that oxidized LDL and TNF-α elicited significant increases in caspase-3/7 activity in endothelial cells and cultured rat aortas, which were prevented by resveratrol pretreatment (10−6–10−4 mol/l). The protective effect of resveratrol was attenuated by inhibition of glutathione peroxidase and heme oxygenase-1, suggesting a role for antioxidant systems in the antiapoptotic action of resveratrol. Indeed, resveratrol treatment protected cultured aortic segments and/or endothelial cells against increases in intracellular H2O2 levels and H2O2-mediated apoptotic cell death induced by oxidative stressors (exogenous H2O2, paraquat, and UV light). Resveratrol treatment also attenuated UV-induced DNA damage (comet assay). Resveratrol treatment upregulated the expression of glutathione peroxidase, catalase, and heme oxygenase-1 in cultured arteries, whereas it had no significant effect on the expression of SOD isoforms. Resveratrol also effectively scavenged H2O2 in vitro. Thus resveratrol seems to increase vascular oxidative stress resistance by scavenging H2O2 and preventing oxidative stress-induced endothelial cell death. We propose that the antioxidant and antiapoptotic effects of resveratrol, together with its previously described anti-inflammatory actions, are responsible, at least in part, for its cardioprotective effects.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | | | | | | | | | |
Collapse
|
183
|
Abstract
Multiple biological and environmental factors impact the life span of an organism. The endocrine system is a highly integrated physiological system in mammals that regulates metabolism, growth, reproduction, and response to stress, among other functions. As such, this pervasive entity has a major influence on aging and longevity. The growth hormone, insulin-like growth factor-1 and insulin pathways have been at the forefront of hormonal control of aging research in the last few years. Other hormones, including those from the thyroid and reproductive system have also been studied in terms of life span regulation. The relevance of these hormones to human longevity remains to be established, however the evidence from other species including yeast, nematodes, and flies suggest that evolutionarily well-conserved mechanisms are at play and the endocrine system is a key determinant.
Collapse
Affiliation(s)
- Holly M Brown-Borg
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, 501 North Columbia Road, Grand Forks, ND 58203, USA.
| |
Collapse
|
184
|
Csiszar A, Labinskyy N, Orosz Z, Xiangmin Z, Buffenstein R, Ungvari Z. Vascular aging in the longest-living rodent, the naked mole rat. Am J Physiol Heart Circ Physiol 2007; 293:H919-27. [PMID: 17468332 DOI: 10.1152/ajpheart.01287.2006] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The naked mole rat (NMR; Heterocephalus glaber) is the longest-living rodent known [maximum lifespan potential (MLSP): >28 yr] and is a unique model of successful aging showing attenuated declines in most physiological function. This study addresses age-related changes in endothelial function and production of reactive oxygen species in NMR arteries and vessels of shorter-living Fischer 344 rats (MLSP: approximately 3 yr). Rats exhibit a significant age-dependent decline in acetylcholine-induced responses in carotid arteries over a 2-yr age range. In contrast, over a 10-yr age range nitric oxide (NO)-mediated relaxation responses to acetylcholine and to the NO donor S-nitrosopencillamine (SNAP) were unaltered in NMRs. Cellular superoxide anion (O(2)(*-)) and H(2)O(2) production significantly increased with age in rat arteries, whereas they did not change substantially with age in NMR vessels. Indicators of apoptotic cell death (DNA fragmentation rate, caspase 3/7 activity) were significantly enhanced ( approximately 250-300%) in arteries of 2-yr-old rats. In contrast, vessels from 12-yr-old NMRs exhibited only a approximately 50% increase in apoptotic cell death. In the hearts of NMRs (2 to 26 yr old), expression of endothelial NO synthase, antioxidant enzymes (Cu,Zn-SOD, Mn-SOD, catalase, and glutathione peroxidase), the NAD(P)H oxidase subunit gp91(phox), and mitochondrial proteins (COX-IV, ATP synthase, and porin, an indicator of mitochondrial mass) did not change significantly with age. Thus long-living NMRs can maintain a youthful vascular function and cellular oxidant-antioxidant phenotype relatively longer and are better protected against aging-induced oxidative stress than shorter-living rats.
Collapse
Affiliation(s)
- Anna Csiszar
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | |
Collapse
|
185
|
Harper JM, Salmon AB, Leiser SF, Galecki AT, Miller RA. Skin-derived fibroblasts from long-lived species are resistant to some, but not all, lethal stresses and to the mitochondrial inhibitor rotenone. Aging Cell 2007; 6:1-13. [PMID: 17156084 PMCID: PMC2766812 DOI: 10.1111/j.1474-9726.2006.00255.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Fibroblast cell lines were developed from skin biopsies of eight species of wild-trapped rodents, one species of bat, and a group of genetically heterogeneous laboratory mice. Each cell line was tested in vitro for their resistance to six varieties of lethal stress, as well as for resistance to the nonlethal metabolic effects of the mitochondrial inhibitor rotenone and of culture at very low glucose levels. Standard linear regression of species-specific lifespan against each species mean stress resistance showed that longevity was associated with resistance to death induced by cadmium and hydrogen peroxide, as well as with resistance to rotenone inhibition. A multilevel regression method supported these associations, and suggested a similar association for resistance to heat stress. Regressions for resistance to cadmium, peroxide, heat, and rotenone remained significant after various statistical adjustments for body weight. In contrast, cells from longer-lived species did not show significantly greater resistance to ultraviolet light, paraquat, or the DNA alkylating agent methylmethanesulfonate. There was a strong correlation between species longevity and resistance to the metabolic effects of low-glucose medium among the rodent cell lines, but this test did not distinguish mice and rats from the much longer-lived little brown bat. These results are consistent with the idea that evolution of long-lived species may require development of cellular resistance to several forms of lethal injury, and provide justification for evaluation of similar properties in a much wider range of mammals and bird species.
Collapse
Affiliation(s)
- James M. Harper
- Department of Pathology, University of Michigan, School of Medicine, Ann Arbor, MI, USA
| | - Adam B. Salmon
- Program in Cellular and Molecular Biology, University of Michigan, School of Medicine, Ann Arbor, MI, USA
| | - Scott F. Leiser
- Program in Cellular and Molecular Biology, University of Michigan, School of Medicine, Ann Arbor, MI, USA
| | - Andrzej T. Galecki
- Geriatrics Center, University of Michigan, School of Medicine, Ann Arbor, MI, USA
| | - Richard A. Miller
- Department of Pathology, University of Michigan, School of Medicine, Ann Arbor, MI, USA
- Program in Cellular and Molecular Biology, University of Michigan, School of Medicine, Ann Arbor, MI, USA
- Geriatrics Center, University of Michigan, School of Medicine, Ann Arbor, MI, USA
- VA Medical Center, University of Michigan, School of Medicine, Ann Arbor, MI, USA
| |
Collapse
|
186
|
Labinskyy N, Csiszar A, Orosz Z, Smith K, Rivera A, Buffenstein R, Ungvari Z. Comparison of endothelial function, O2-* and H2O2 production, and vascular oxidative stress resistance between the longest-living rodent, the naked mole rat, and mice. Am J Physiol Heart Circ Physiol 2007; 291:H2698-704. [PMID: 17090784 DOI: 10.1152/ajpheart.00534.2006] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vascular aging is characterized by decreased nitric oxide (NO) bioavailability, oxidative stress, and enhanced apoptotic cell death. We hypothesized that interspecies comparative assessment of vascular function among rodents with disparate longevity may offer insight into the mechanisms determining successful vascular aging. We focused on four rodents that show approximately an order of magnitude range in maximum longevity (ML). The naked mole rat (NMR; Heterocephalus glaber) is the longest-living rodent known (ML > 28 yr), Damara mole rats (DMRs, Cryptomys damarensis; ML approximately 16 yr) and guinea pigs (GPs, Cavia porcellus; ML approximately 6 yr) have intermediate longevity, whereas laboratory mice are short living (ML approximately 3.5 yr). We compared interspecies differences in endothelial function, O(2)(-)* and H(2)O(2) production, and resistance to apoptotic stimuli in blood vessels. Sensitivity to acetylcholine-induced, NO-mediated relaxation was smaller in carotid arteries from NMRs, GPs, and DMRs than in mouse vessels. Measurements of production of O(2)(-)* (lucigenin chemiluminescence and ethidium bromide fluorescence) and H(2)O(2) (dichlorofluorescein fluorescence) showed that free radical production in vascular endothelial and smooth muscle cells is comparable in vessels of the three longer-living species and in arteries of shorter-living mice. In mouse arteries, H(2)O(2) (from 10(-6) to 10(-3) mol/l) and heat exposure (42 degrees C for 15-45 min) enhanced apoptotic cell death, as indicated by an increased DNA fragmentation rate and increased caspase 3/7 activity. In NMR vessels, only the highest doses of H(2)O(2) enhanced apoptotic cell death, whereas heat exposure did not increase DNA fragmentation rate. Interspecies comparison showed there is a negative correlation between H(2)O(2)-induced apoptotic cell death and ML. Thus endothelial vasodilator function and vascular production of reactive oxygen species do not correlate with maximal lifespan, whereas increased lifespan potential is associated with an increased vascular resistance to proapoptotic stimuli.
Collapse
Affiliation(s)
- Nazar Labinskyy
- Dept. of Physiology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | |
Collapse
|
187
|
Theroux S, Pereira M, Casten KS, Burwell RD, Yeung KC, Sedivy JM, Klysik J. Raf kinase inhibitory protein knockout mice: expression in the brain and olfaction deficit. Brain Res Bull 2006; 71:559-67. [PMID: 17292798 PMCID: PMC1817722 DOI: 10.1016/j.brainresbull.2006.11.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 11/17/2006] [Accepted: 11/20/2006] [Indexed: 10/23/2022]
Abstract
Raf kinase inhibitory protein (RKIP-1) is involved in the regulation of the MAP kinase, NF-kappaB, and GPCR signaling pathways. It is expressed in numerous tissues and cell types and orthologues have been documented throughout the animal and plant kingdoms. RKIP-1 has also been reported as an inhibitor of serine proteases, and a precursor of a neurostimulatory peptide. RKIP-1 has been implicated as a suppressor of metastases in several human cancers. We generated a knockout strain of mice to further assess RKIP-1's function in mammals. RKIP-1 is expressed in many tissues with the highest protein levels detectable in testes and brain. In the brain, expression was ubiquitous in limbic formations, and homozygous mice developed olfaction deficits in the first year of life. We postulate that RKIP-1 may be a modulator of behavioral responses.
Collapse
Affiliation(s)
- Steven Theroux
- Department of Natural Science, Assumption College, Worcester, MA
| | - Mandy Pereira
- Department of Molecular Biology Cell Biology and Biochemistry, Brown University, Providence, RI
| | | | | | - Kam C. Yeung
- Department of Biochemistry & Cancer Biology, Medical College of Ohio, Toledo, OH
| | - John M. Sedivy
- Department of Molecular Biology Cell Biology and Biochemistry, Brown University, Providence, RI
| | - Jan Klysik
- Department of Molecular Biology Cell Biology and Biochemistry, Brown University, Providence, RI
- *Corresponding author: Brown University, Department of Molecular Biology Cell Biology and Biochemistry, Division of Biology and Medicine, Ship St. 70, Providence, RI 02912, Tel: (401) 863-9534, FAX (401) 863-9653, E-mail:
| |
Collapse
|
188
|
Murakami S. Stress resistance in long-lived mouse models. Exp Gerontol 2006; 41:1014-9. [PMID: 16962277 DOI: 10.1016/j.exger.2006.06.061] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 06/17/2006] [Accepted: 06/30/2006] [Indexed: 12/11/2022]
Abstract
Cellular stress resistance has been observed in a variety of long-lived mouse systems. The Ames and Snell dwarf mice show altered hormonal profiles (low levels of growth hormone/IGF-1 and of other hormones). These altered hormonal profiles lead to physiological changes in cells, leading to increased resistance to multiple forms of stress including UV light, oxidative stress, heat, and the heavy metal cadmium. The cells also show resistance to carcinogen and senescence-like growth arrest induced by ambient oxygen. Thus, cellular stress resistance may confer resistance to various diseases associated with stress insults. Stress resistance has also been observed in various long-lived mice (hemizygous knockout of igf-1r, a mutation in p66(shc), and klotho overexpression) and in vitro CR (Carolie Restriction) system. Many of the long-lived mouse systems show reduction or inhibition of the insulin/IGF-1-FOXO pathway, thus suggesting that there may be an overlapping mechanism for increased life span. The insulin/IGF-1-FOXO pathway interlocks to several signal transduction pathways through AKT, FOXO, JNK, and other components. Taken together, stress resistance may be an essential function in cells that leads to increased longevity. I will summarize molecular basis of stress resistance and further discuss stress resistance in other systems.
Collapse
Affiliation(s)
- Shin Murakami
- Gheens Center on Aging, Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
189
|
Leiser SF, Salmon AB, Miller RA. Correlated resistance to glucose deprivation and cytotoxic agents in fibroblast cell lines from long-lived pituitary dwarf mice. Mech Ageing Dev 2006; 127:821-9. [PMID: 16979221 DOI: 10.1016/j.mad.2006.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 07/06/2006] [Accepted: 08/09/2006] [Indexed: 11/16/2022]
Abstract
Fibroblast cell lines derived from the skin of young adult mice of the long-lived Snell dwarf mutant mouse stock have been shown to be resistant to the cytotoxic effects of multiple agents, including hydrogen peroxide, cadmium, heat, ultraviolet light, and the carcinogen methyl methanesulfonate. Snell dwarf fibroblasts are here reported to differ from control cell lines in two other respects: they are relatively resistant to the metabolic inhibition induced by low glucose concentrations, and also resistant to the effects of the mitochondrial poison rotenone, a blocker of Complex I of the electron transport chain. Furthermore, analysis of cell lines derived from a group of genetically heterogeneous mice established that cell lines resistant to peroxide-induced cytotoxicity were also relatively resistant to death induced by paraquat, cadmium, and ultraviolet light. Resistance to the metabolic effects of low glucose medium was associated with resistance to peroxide and cadmium in cells from heterogeneous mice and Snell dwarf mice, though unexpectedly not associated with resistance to the lethal effects of paraquat or UV light. Further analysis of the basis for metabolic abnormalities in these cell lines may provide insights into the cause of stress resistance in dwarf-derived cultures and to the longevity and disease-resistance of these long-lived mutant mice.
Collapse
Affiliation(s)
- Scott F Leiser
- Cellular and Molecular Biology Graduate Program, University of Michigan School of Medicine, Ann Arbor, MI 48109-2200, USA
| | | | | |
Collapse
|
190
|
Harper JM, Salmon AB, Chang Y, Bonkowski M, Bartke A, Miller RA. Stress resistance and aging: influence of genes and nutrition. Mech Ageing Dev 2006; 127:687-94. [PMID: 16713617 PMCID: PMC2923407 DOI: 10.1016/j.mad.2006.04.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 04/03/2006] [Accepted: 04/12/2006] [Indexed: 11/19/2022]
Abstract
Previous studies have shown that dermal fibroblast cell lines derived from young adult mice of the long-lived Snell dwarf (dw/dw), Ames dwarf (df/df) and growth hormone receptor knockout (GHR-KO) mouse stocks are resistant, in vitro, to the cytotoxic effects of hydrogen peroxide, cadmium, ultraviolet light, paraquat, and heat. Here we show that, in contrast, fibroblasts from mice on low-calorie (CR) or low methionine (Meth-R) diets are not stress resistant in culture, despite the longevity induced by both dietary regimes. A second approach, involving induction of liver cell death in live animals using acetaminophen (APAP), documented hepatotoxin resistance in the CR and Meth-R mice, but dw/dw and GHR-KO mutant mice were not resistant to this agent, and were in fact more susceptible than littermate controls to the toxic effects of APAP. These data thus suggest that while resistance to stress is a common characteristic of experimental life span extension in mice, the cell types showing resistance may differ among the various models of delayed or decelerated aging.
Collapse
Affiliation(s)
- James M Harper
- Department of Pathology and Geriatrics Center, University of Michigan School of Medicine, Ann Arbor, MI, United States.
| | | | | | | | | | | |
Collapse
|
191
|
Boylston WH, DeFord JH, Papaconstantinou J. Identification of longevity-associated genes in long-lived Snell and Ames dwarf mice. AGE (DORDRECHT, NETHERLANDS) 2006; 28:125-144. [PMID: 19943135 PMCID: PMC2464723 DOI: 10.1007/s11357-006-9008-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2006] [Accepted: 02/01/2006] [Indexed: 05/27/2023]
Abstract
Recent landmark molecular genetic studies have identified an evolutionarily conserved insulin/IGF-1 signal transduction pathway that regulates lifespan. In C. elegans, Drosophila, and rodents, attenuated insulin/IGF-1 signaling appears to regulate lifespan and enhance resistance to environmental stress. The Ames (Prop1 (df/df)) and Snell (Pit1 (dw/dw)) hypopituitary dwarf mice with growth hormone (GH), thyroid-stimulating hormone (TSH), and prolactin deficiencies live 40-60% longer than control mice. Both mutants are resistant to multiple forms of environmental stress in vitro. Taken collectively, these genetic models indicate that diminished insulin/IGF-l signaling may play a central role in the determination of mammalian lifespan by conferring resistance to exogenous and endogenous stressors. These pleiotropic endocrine pathways control diverse programs of gene expression that appear to orchestrate the development of a biological phenotype that promotes longevity. With the ability to investigate thousands of genes simultaneously, several microarray surveys have identified potential longevity assurance genes and provided information on the mechanism(s) by which the dwarf genotypes (dw/dw) and (df/df), and caloric restriction may lead to longevity. We propose that a comparison of specific changes in gene expression shared between Snell and Ames dwarf mice may provide a deeper understanding of the transcriptional mechanisms of longevity determination. Furthermore, we propose that a comparison of the physiological consequences of the Pit1dw and Prop1df mutations may reveal transcriptional profiles similar to those reported for the C. elegans and Drosophila mutants. In this study we have identified classes of genes whose expression is similarly affected in both Snell and Ames dwarf mice. Our comparative microarray data suggest that specific detoxification enzymes of the P(450) (CYP) family as well as oxidative and steroid metabolism may play a key role in longevity assurance of the Snell and Ames dwarf mouse mutants. We propose that the altered expression of these genes defines a biochemical phenotype which may promote longevity in Snell and Ames dwarf mice.
Collapse
Affiliation(s)
- W. H. Boylston
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas USA
| | - James H. DeFord
- The Clayton Foundation for Research, Houston, Texas USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555 USA
| | - John Papaconstantinou
- The Clayton Foundation for Research, Houston, Texas USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555 USA
| |
Collapse
|
192
|
Brown-Borg HM. Longevity in mice: is stress resistance a common factor? AGE (DORDRECHT, NETHERLANDS) 2006; 28:145-162. [PMID: 19943136 PMCID: PMC2464727 DOI: 10.1007/s11357-006-9003-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 12/01/2005] [Indexed: 05/27/2023]
Abstract
A positive relationship between stress resistance and longevity has been reported in a multitude of studies in organisms ranging from yeast to mice. Several mouse lines have been discovered or developed that exhibit extended longevities when compared with normal, wild-type mice of the same genetic background. These long-living lines include the Ames dwarf, Snell dwarf, growth hormone receptor knockout (Laron dwarf), IGF-1 receptor heterozygote, Little, alpha-MUPA knockout, p66(shc) knockout, FIRKO, mClk-1 heterozygote, thioredoxin transgenic, and most recently the Klotho transgenic mouse. These mice are described in terms of the reported extended lifespans and studies involving resistance to stress. In addition, caloric restriction (CR) and stress resistance are briefly addressed for comparison with genetically altered mice. Although many of the long-living mice have GH/IGF-1/insulin signaling-related alterations and enhanced stress resistance, there are some that exhibit life extension without an obvious link to this hormone pathway. Resistance to oxidative stress is by far the most common system studied in long-living mice, but there is evidence of enhancement of resistance in other systems as well. The differences in stress resistance between long-living mutant and normal mice result from complex interrelationships among pathways that appear to coordinate signals of growth and metabolism, and subsequently result in differences in lifespan.
Collapse
Affiliation(s)
- H M Brown-Borg
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, 501 North Columbia Road, Grand Forks, ND 58203, USA.
| |
Collapse
|
193
|
Maynard SP, Miller RA. Fibroblasts from long-lived Snell dwarf mice are resistant to oxygen-induced in vitro growth arrest. Aging Cell 2006; 5:89-96. [PMID: 16441847 DOI: 10.1111/j.1474-9726.2006.00187.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Snell dwarf mice live longer than controls, and show lower age-adjusted rates of lethal neoplastic diseases. Fibroblast cells from adult dwarf mice are resistant to the lethal effects of oxidative and nonoxidative stresses, including the carcinogen methyl methanesulfonate. We now report that dwarf-derived fibroblasts are slow to enter the stage of growth arrest induced by culturing normal cells under standard culture conditions at 20% O(2). Dwarf cells cultured at 20% O(2) resemble control cells cultured at 3% O(2) not only in their delayed growth arrest, but also in their rapid growth rates and resistance to both oxidative and nonoxidative forms of cytotoxic stress. Levels of the heat-shock protein HSP-70 respond to serum withdrawal and stress only in control cells, showing that intracellular signals are blunted in dwarf-derived cells. These data suggest a model in which stable epigenetic changes induced in skin fibroblasts by the hormonal milieu of the Snell dwarf lead to resistance to multiple forms of injury, including the oxidative damage that contributes to growth arrest in vitro and neoplasia in intact mice.
Collapse
Affiliation(s)
- Scott P Maynard
- Department of Pathology and Geriatrics Center, University of Michigan, and Ann Arbor VA Medical Center, Ann Arbor, MI 48109-0940, USA
| | | |
Collapse
|
194
|
Corton JC, Brown-Borg HM. Peroxisome Proliferator-Activated Receptor Coactivator 1 in Caloric Restriction and Other Models of Longevity. J Gerontol A Biol Sci Med Sci 2005; 60:1494-509. [PMID: 16424281 DOI: 10.1093/gerona/60.12.1494] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dietary restriction of calories (caloric restriction [CR]) increases longevity in phylogenetically diverse species. CR retards or prevents age-dependent deterioration of tissues and an array of spontaneous and chemically induced diseases associated with obesity including cardiovascular disease, diabetes, and cancer. An understanding of the molecular mechanisms that underlie the beneficial effects of CR will help identify novel dietary, pharmacological, and lifestyle strategies for slowing the rate of aging and preventing these diseases as well as identify factors which modulate chemical toxicity. Here, we review the involvement of transcriptional coactivator proteins, peroxisome proliferator-activated receptor (PPAR) gamma coactivator 1 (PGC-1) alpha and beta, and regulated nuclear receptors (NR) in mediating the phenotypic changes found in models of longevity which include rodent CR models and mouse mutants in which insulin and/or insulin-like growth factor-I signaling is attenuated. PGC-1alpha is transcriptionally or posttranslationally regulated in mammals by: 1) forkhead box "other" (FoxO) transcription factors through an insulin/insulin-like growth factor-I -dependent pathway, 2) glucagon-stimulated cellular AMP (cAMP) response element binding protein, 3) stress-activated kinase signaling through p38 mitogen-activated protein kinase, and 4) the deacetylase and longevity factor sirtuin 1 (SIRT1). PGC-1alpha and PGC-1beta regulate the ligand-dependent and -independent activation of a large number of NR including PPARalpha and constitutive activated receptor (CAR). These NR regulate genes involved in nutrient and xenobiotic transport and metabolism as well as resistance to stress. CR reverses age-dependent decreases in PGC-1alpha, PPARalpha, and regulated genes. Strategies that target one or multiple PGC-1-regulated NR could be used to mimic the beneficial health effects found in models of longevity.
Collapse
Affiliation(s)
- J Christopher Corton
- United States Environmental Protection Agency, Division of Environmental Carcinogenesis, Research Triangle Park, NC 27711, USA.
| | | |
Collapse
|
195
|
Abstract
The important role of IGF and insulin-related signaling pathways in the control of longevity of worms and insects is very well documented. In the mouse, several spontaneous or experimentally induced mutations that interfere with GH biosynthesis, GH actions, or sensitivity to IGF-I lead to extended longevity. Increases in the average life span in these mutants range from approximately 20-70% depending on the nature of the endocrine defect, gender, diet, and/or genetic background. Extended longevity of hypopituitary and GH-resistant mice appears to be due to multiple mechanisms including reduced insulin levels, enhanced insulin sensitivity, alterations in carbohydrate and lipid metabolism, reduced generation of reactive oxygen species, enhanced resistance to stress, reduced oxidative damage, and delayed onset of age-related disease. There is considerable evidence to suggest that the genetic and endocrine mechanisms that influence aging and longevity in mice may play a similar role in other mammalian species, including the human.
Collapse
Affiliation(s)
- Andrzej Bartke
- Department of Physiology and Internal Medicine, Southern Illinois University School of Medicine, P.O. Box 19628, 801 North Rutledge, Room 4389, Springfield, Illinois 62794-9628, USA.
| |
Collapse
|
196
|
Sonntag WE, Carter CS, Ikeno Y, Ekenstedt K, Carlson CS, Loeser RF, Chakrabarty S, Lee S, Bennett C, Ingram R, Moore T, Ramsey M. Adult-onset growth hormone and insulin-like growth factor I deficiency reduces neoplastic disease, modifies age-related pathology, and increases life span. Endocrinology 2005; 146:2920-32. [PMID: 15790724 DOI: 10.1210/en.2005-0058] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Disruption of the insulin/IGF-I pathway increases life span in invertebrates. However, effects of decreased IGF-I signaling in mammalian models remain controversial. Using a rodent model with a specific and limited deficiency of GH and IGF-I, we report that GH and IGF-I deficiency throughout life [GH deficiency (GHD)] has no effect on life span compared with normal, heterozygous animals. However, treatment of GHD animals with GH from 4-14 wk of age [adult-onset (AO) GHD] increased median and maximal life span by 14% and 12%, respectively. Analysis of end-of-life pathology indicated that deficiency of these hormones decreased tumor incidence in GHD and AO-GHD animals (18 and 30%, respectively) compared with heterozygous animals and decreased the severity of, and eliminated deaths from, chronic nephropathy. Total disease burden was reduced by 24% in GHD and 16% in AO-GHD animals. Interestingly, the incidence of intracranial hemorrhage increased by 154 and 198% in GHD and AO-GHD animals, respectively, compared with heterozygous animals. Deaths from intracranial hemorrhage in AO-GHD animals were delayed by 14 wk accounting for the increased life span compared with GHD animals. The presence of GH and IGF-I was necessary to maximize reproductive fitness and growth of offspring early in life and to maintain cognitive function and prevent cartilage degeneration later in life. The diverse effects of GH and IGF-I are consistent with a model of antagonistic pleiotropy and suggest that, in response to a deficiency of these hormones, increased life span is derived at the risk of functional impairments and tissue degeneration.
Collapse
Affiliation(s)
- William E Sonntag
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157-1083, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|