151
|
Williams C, Choudhury R, McKenzie E, Lowe M. Targeting of the type II inositol polyphosphate 5-phosphatase INPP5B to the early secretory pathway. J Cell Sci 2007; 120:3941-51. [DOI: 10.1242/jcs.014423] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The inositol polyphosphate 5-phosphatase INPP5B is closely related to the Lowe syndrome protein OCRL1, sharing a similar substrate specificity, domain organisation and an ability to compensate for loss of OCRL1 in knockout mice. The cellular localisation and functions of INPP5B have remained poorly defined until recently, when a role within the endocytic pathway was suggested. Here, we report that INPP5B is also localised to the early secretory pathway including the Golgi apparatus and ER-to-Golgi intermediate compartment (ERGIC). Consistent with this localisation, INPP5B binds to specific RAB proteins within the secretory pathway, and mutational analysis indicates that RAB binding is required for efficient Golgi targeting of INPP5B. Unlike OCRL1, INPP5B interacts with neither clathrin nor α-adaptin and is largely absent from clathrin-coated intermediates. Expression of INPP5B but not OCRL1 alters the distribution of the cycling protein ERGIC53 when cells are incubated at low temperature (15°C) or in the presence of brefeldin A, causing ERGIC53 to accumulate in the ERGIC, with a concomitant loss from the ER. Our data suggest a role for INPP5B in retrograde ERGIC-to-ER transport and imply that it has functions distinct from those of OCRL1 within both the secretory and endocytic pathways.
Collapse
Affiliation(s)
- Catrin Williams
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Rawshan Choudhury
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Eddie McKenzie
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Martin Lowe
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
152
|
Abstract
Sterols such as cholesterol are important components of cellular membranes. They are not uniformly distributed among organelles and maintaining the proper distribution of sterols is critical for many cellular functions. Both vesicular and non-vesicular pathways move sterols between membranes and into and out of cells. There is growing evidence that a number of non-vesicular transport pathways operate in cells and, in the past few years, a number of proteins have been proposed to facilitate this transfer. Some are soluble sterol transfer proteins that may move sterol between membranes. Others are integral membranes proteins that mediate sterol efflux, uptake from cells, and perhaps intracellular sterol transfer as well. In most cases, the mechanisms and regulation of these proteins remains poorly understood. This review summarizes our current knowledge of these proteins and how they could contribute to intracellular sterol trafficking and distribution.
Collapse
Affiliation(s)
- William A Prinz
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD 20892, USA.
| |
Collapse
|
153
|
Nunokawa SY, Anan H, Shimada K, Hachikubo Y, Kashiyama T, Ito K, Yamamoto K. Binding of chara Myosin globular tail domain to phospholipid vesicles. PLANT & CELL PHYSIOLOGY 2007; 48:1558-1566. [PMID: 17921149 DOI: 10.1093/pcp/pcm126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Binding of Chara myosin globular tail domain to phospholipid vesicles was investigated quantitatively. It was found that the globular tail domain binds to vesicles made from acidic phospholipids but not to those made from neutral phospholipids. This binding was weakened at high KCl concentration, suggesting that the binding is electrostatic by nature. The dissociation constant for the binding of the globular tail domain to 20% phosphatidylserine vesicles (similar to endoplasmic reticulum in acidic phospholipid contents) at 150 mM KCl was 273 nM. The free energy change due to this binding calculated from the dissociation constant was -37.3 kJ mol(-1). Thus the bond between the globular tail domain and membrane phospholipids would not be broken when the motor domain of Chara myosin moves along the actin filament using the energy of ATP hydrolysis (DeltaG degrees ' = -30.5 kJ mol(-1)). Our results suggested that direct binding of Chara myosin to the endoplasmic reticulum membrane through the globular tail domain could work satisfactorily in Chara cytoplasmic streaming. We also suggest a possible regulatory mechanism of cytoplasmic streaming including phosphorylation-dependent dissociation of the globular tail domain from the endoplasmic reticulum membrane.
Collapse
Affiliation(s)
- Shun-Ya Nunokawa
- Department of Biology, Chiba University, Yayoicho, Inage-ku, Chiba, 263-8522 Japan
| | | | | | | | | | | | | |
Collapse
|
154
|
The PX-BAR membrane-remodeling unit of sorting nexin 9. EMBO J 2007; 26:4788-800. [PMID: 17948057 DOI: 10.1038/sj.emboj.7601889] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 09/19/2007] [Indexed: 11/08/2022] Open
Abstract
Sorting nexins (SNXs) form a family of proteins known to interact with components in the endosomal system and to regulate various steps of vesicle transport. Sorting nexin 9 (SNX9) is involved in the late stages of clathrin-mediated endocytosis in non-neuronal cells, where together with the GTPase dynamin, it participates in the formation and scission of the vesicle neck. We report here crystal structures of the functional membrane-remodeling unit of SNX9 and show that it efficiently tubulates lipid membranes in vivo and in vitro. Elucidation of the protein superdomain structure, together with mutational analysis and biochemical and cell biological experiments, demonstrated how the SNX9 PX and BAR domains work in concert in targeting and tubulation of phosphoinositide-containing membranes. The study provides insights into the SNX9-induced membrane modulation mechanism.
Collapse
|
155
|
Manna D, Albanese A, Park WS, Cho W. Mechanistic basis of differential cellular responses of phosphatidylinositol 3,4-bisphosphate- and phosphatidylinositol 3,4,5-trisphosphate-binding pleckstrin homology domains. J Biol Chem 2007; 282:32093-105. [PMID: 17823121 DOI: 10.1074/jbc.m703517200] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) are lipid second messengers that regulate various cellular processes by recruiting a wide range of downstream effector proteins to membranes. Several pleckstrin homology (PH) domains have been reported to interact with PtdIns(3,4)P2 and PtdIns(3,4,5)P3. To understand how these PH domains differentially respond to PtdIns(3,4)P2 and PtdIns(3,4,5)P3 signals, we quantitatively determined the PtdIns(3,4)P2 and PtdIns(3,4,5)P3 binding properties of several PH domains, including Akt, ARNO, Btk, DAPP1, Grp1, and C-terminal TAPP1 PH domains by surface plasmon resonance and monolayer penetration analyses. The measurements revealed that these PH domains have significant different phosphoinositide specificities and affinities. Btk-PH and TAPP1-PH showed genuine PtdIns(3,4,5)P3 and PtdIns(3,4)P2 specificities, respectively, whereas other PH domains exhibited less pronounced specificities. Also, the PH domains showed different degrees of membrane penetration, which greatly affected the kinetics of their membrane dissociation. Mutational studies showed that the presence of two proximal hydrophobic residues on the membrane-binding surface of the PH domain is important for membrane penetration and sustained membrane residence. When NIH 3T3 cells were stimulated with platelet-derived growth factor to generate PtdIns(3,4,5)P3, reversible translocation of Btk-PH, Grp1-PH, ARNO-PH, DAPP1-PH, and its L177A mutant to the plasma membrane was consistent with their in vitro membrane binding properties. Collectively, these studies provide new insight into how various PH domains would differentially respond to cellular PtdIns(3,4)P2 and PtdIns(3,4,5)P3 signals.
Collapse
Affiliation(s)
- Debasis Manna
- Department of Chemistry, University of Illinois, Chicago, Illinois 60607, USA
| | | | | | | |
Collapse
|
156
|
Stahelin RV, Karathanassis D, Murray D, Williams RL, Cho W. Structural and membrane binding analysis of the Phox homology domain of Bem1p: basis of phosphatidylinositol 4-phosphate specificity. J Biol Chem 2007; 282:25737-47. [PMID: 17581820 DOI: 10.1074/jbc.m702861200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phox homology (PX) domains, which have been identified in a variety of proteins involved in cell signaling and membrane trafficking, have been shown to interact with phosphoinositides (PIs) with different affinities and specificities. To elucidate the structural origin of the diverse PI specificity of PX domains, we determined the crystal structure of the PX domain from Bem1p that has been reported to bind phosphatidylinositol 4-phosphate (PtdIns(4)P). We also measured the membrane binding properties of the PX domain and its mutants by surface plasmon resonance and monolayer techniques and calculated the electrostatic potentials for the PX domain in the absence and presence of bound PtdIns(4)P. The Bem1p PX domain contains a signature PI-binding site optimized for PtdIns(4)P binding and also harbors basic and hydrophobic residues on the membrane-binding surface. The membrane binding of the Bem1p PX domain is initiated by nonspecific electrostatic interactions between the cationic membrane-binding surface of the domain and anionic membrane surfaces, followed by the membrane penetration of hydrophobic residues. Unlike other PX domains, the Bem1p PX domain has high intrinsic membrane penetrating activity in the absence of PtdIns(4)P, suggesting that the partial membrane penetration may occur before specific PtdIns(4)P binding and last after the removal of PtdIns(4)P under certain conditions. This structural and functional study of the PtdIns(4)P-binding Bem1p PX domain provides new insight into the diverse PI specificities and membrane-binding mechanisms of PX domains.
Collapse
Affiliation(s)
- Robert V Stahelin
- Department of Chemistry, University of Illinois, Chicago, Illinois 60607-7061, USA
| | | | | | | | | |
Collapse
|
157
|
Mason D, Mallo GV, Terebiznik MR, Payrastre B, Finlay BB, Brumell JH, Rameh L, Grinstein S. Alteration of epithelial structure and function associated with PtdIns(4,5)P2 degradation by a bacterial phosphatase. ACTA ACUST UNITED AC 2007; 129:267-83. [PMID: 17389247 PMCID: PMC2151621 DOI: 10.1085/jgp.200609656] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Elucidation of the role of PtdIns(4,5)P2 in epithelial function has been hampered by the inability to selectively manipulate the cellular content of this phosphoinositide. Here we report that SigD, a phosphatase derived from Salmonella, can effectively hydrolyze PtdIns(4,5)P2, generating PtdIns(5)P. When expressed by microinjecting cDNA into epithelial cells forming confluent monolayers, wild-type SigD induced striking morphological and functional changes that were not mimicked by a phosphatase-deficient SigD mutant (C462S). Depletion of PtdIns(4,5)P2 in intact SigD-injected cells was verified by detachment from the membrane of the pleckstrin homology domain of phospholipase Cδ, used as a probe for the phosphoinositide by conjugation to green fluorescent protein. Single-cell measurements of cytosolic pH indicated that the Na+/H+ exchange activity of epithelia was markedly inhibited by depletion of PtdIns(4,5)P2. Similarly, anion permeability, measured using two different halide-sensitive probes, was depressed in cells expressing SigD. Depletion of PtdIns(4,5)P2 was associated with marked alterations in the actin cytoskeleton and its association with the plasma membrane. The junctional complexes surrounding the injected cells gradually opened and the PtdIns(4,5)P2-depleted cells eventually detached from the monolayer, which underwent rapid restitution. Similar observations were made in intestinal and renal epithelial cultures. In addition to its effects on phosphoinositides, SigD has been shown to convert inositol 1,3,4,5,6-pentakisphosphate (IP5) into inositol 1,4,5,6-tetrakisphosphate (IP4), and the latter has been postulated to mediate the diarrhea caused by Salmonella. However, the effects of SigD on epithelial cells were not mimicked by microinjection of IP4. In contrast, the cytoskeletal and ion transport effects were replicated by hydrolyzing PtdIns(4,5)P2 with a membrane-targeted 5-phosphatase or by occluding the inositide using high-avidity tandem PH domain constructs. We therefore suggest that opening of the tight junctions and inhibition of Na+/H+ exchange caused by PtdIns(4,5)P2 hydrolysis combine to account, at least in part, for the fluid loss observed during Salmonella-induced diarrhea.
Collapse
Affiliation(s)
- David Mason
- Cell Biology Program, Hospital for Sick Children and Department of Biochemistry, University of Toronto. Toronto, Ontario, M5G 1X8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
158
|
Heck JN, Mellman DL, Ling K, Sun Y, Wagoner MP, Schill NJ, Anderson RA. A conspicuous connection: structure defines function for the phosphatidylinositol-phosphate kinase family. Crit Rev Biochem Mol Biol 2007; 42:15-39. [PMID: 17364683 DOI: 10.1080/10409230601162752] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The phosphatidylinositol phosphate (PIP) kinases are a unique family of enzymes that generate an assortment of lipid messengers, including the pivotal second messenger phosphatidylinositol 4,5-bisphosphate (PI4,5P2). While members of the PIP kinase family function by catalyzing a similar phosphorylation reaction, the specificity loop of each PIP kinase subfamily determines substrate preference and partially influences distinct subcellular targeting. Specific protein-protein interactions that are unique to particular isoforms or splice variants play a key role in targeting PIP kinases to appropriate subcellular compartments to facilitate the localized generation of PI4,5P2 proximal to effectors, a mechanism key for the function of PI4,5P2 as a second messenger. This review documents the discovery of the PIP kinases and their signaling products, and summarizes our current understanding of the mechanisms underlying the localized generation of PI4,5P2 by PIP kinases for the regulation of cellular events including actin cytoskeleton dynamics, vesicular trafficking, cell migration, and an assortment of nuclear events.
Collapse
Affiliation(s)
- Jessica N Heck
- Program in Molecular and Cellular Pharmacology, Department of Pharmacology, University of Wisconsin-Madison, University of Wisconsin Medical School, Madison, WI 53706, USA
| | | | | | | | | | | | | |
Collapse
|
159
|
Sbrissa D, Ikonomov OC, Fu Z, Ijuin T, Gruenberg J, Takenawa T, Shisheva A. Core protein machinery for mammalian phosphatidylinositol 3,5-bisphosphate synthesis and turnover that regulates the progression of endosomal transport. Novel Sac phosphatase joins the ArPIKfyve-PIKfyve complex. J Biol Chem 2007; 282:23878-91. [PMID: 17556371 DOI: 10.1074/jbc.m611678200] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Perturbations in phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2)-synthesizing enzymes result in enlarged endocytic organelles from yeast to humans, indicating evolutionarily conserved function of PtdIns(3,5)P2 in endosome-related events. This is reinforced by the structural and functional homology of yeast Vac14 and human Vac14 (ArPIKfyve), which activate yeast and mammalian PtdIns(3,5)P2-producing enzymes, Fab1 and PIKfyve, respectively. In yeast, PtdIns(3,5)P2-specific phosphatase, Fig4, in association with Vac14, turns over PtdIns(3,5)P2, but whether such a mechanism operates in mammalian cells and what the identity of mammalian Fig4 may be are unknown. Here we have identified and characterized Sac3, a Sac domain phosphatase, as the Fig4 mammalian counterpart. Endogenous Sac3, a widespread 97-kDa protein, formed a stable ternary complex with ArPIKfyve and PIKfyve. Concordantly, Sac3 cofractionated and colocalized with ArPIKfyve and PIKfyve. The intrinsic Sac3(WT) phosphatase activity preferably hydrolyzed PtdIns(3,5)P2 in vitro, although the other D5-phosphorylated polyphosphoinositides were also substrates. Ablation of endogenous Sac3 by short interfering RNAs elevated PtdIns(3,5)P2 in (32)P-labeled HEK293 cells. Ectopically expressed Sac3(WT) in COS cells colocalized with and dilated EEA1-positive endosomes, consistent with the PtdIns(3,5)P2 requirement in early endosome dynamics. In vitro reconstitution of carrier vesicle formation from donor early endosomes revealed a gain of function upon Sac3 loss, whereas PIKfyve or ArPIKfyve protein depletion produced a loss of function. These data demonstrate a coupling between the machinery for PtdIns(3,5)P2 synthesis and turnover achieved through a physical assembly of PIKfyve, ArPIKfyve, and Sac3. We suggest that the tight regulation in PtdIns(3,5)P2 homeostasis is mechanistically linked to early endosome dynamics in the course of cargo transport.
Collapse
Affiliation(s)
- Diego Sbrissa
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | |
Collapse
|
160
|
Vilhelmsson M, Zargari A, Crameri R, Rasool O, Achour A, Scheynius A, Hallberg BM. Crystal Structure of the Major Malassezia sympodialis Allergen Mala s 1 Reveals a β-Propeller Fold: A Novel Fold Among Allergens. J Mol Biol 2007; 369:1079-86. [PMID: 17481656 DOI: 10.1016/j.jmb.2007.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 04/01/2007] [Accepted: 04/03/2007] [Indexed: 11/23/2022]
Abstract
Atopic eczema (AE) is a chronic inflammatory disease in which genetic predisposition and environmental factors such as microorganisms contribute to the symptoms. The yeast Malassezia Sympodialis, part of the normal human cutaneous flora, can act as an allergen eliciting specific IgE and T-cell reactivity in patients with AE. The major M. sympodialis allergen Mala s 1 is localized mainly in the yeast cell wall and exposed on the cell surface. Interestingly, Mala s 1 does not exhibit any significant sequence homology to known proteins. Here we present the crystal structure of Mala s 1 determined by single-wavelength anomalous dispersion techniques using selenomethionine-substituted Mala s 1. Mala s 1 folds into a 6-fold beta-propeller, a novel fold among allergens. The putative active site of Mala s 1 overlaps structurally to putative active sites in potential homologues, Q4P4P8 and Tri 14, from the plant parasites Ustilago maydis and Gibberella zeae, respectively. This resemblance suggests that Mala s 1 and the parasite proteins may have similar functions. In addition, we show that Mala s 1 binds to the phosphoinositides (PI) PI(3)P, PI(4)P, and PI(5)P, lipids possibly playing a role in the localization of Mala s 1 to the cell surface. The crystal structure of Mala s 1 will provide insights into the role of this major allergen in the host-microbe interactions and induction of an allergic response in AE.
Collapse
Affiliation(s)
- Monica Vilhelmsson
- Department of Medicine, Clinical Allergy Research Unit, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
161
|
Wiradjaja F, Ooms LM, Tahirovic S, Kuhne E, Devenish RJ, Munn AL, Piper RC, Mayinger P, Mitchell CA. Inactivation of the Phosphoinositide Phosphatases Sac1p and Inp54p Leads to Accumulation of Phosphatidylinositol 4,5-Bisphosphate on Vacuole Membranes and Vacuolar Fusion Defects. J Biol Chem 2007; 282:16295-307. [PMID: 17392273 DOI: 10.1074/jbc.m701038200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphoinositides direct membrane trafficking, facilitating the recruitment of effectors to specific membranes. In yeast phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) isproposed to regulate vacuolar fusion; however, in intact cells this phosphoinositide can only be detected at the plasma membrane. In Saccharomyces cerevisiae the 5-phosphatase, Inp54p, dephosphorylates PtdIns(4,5)P2 forming PtdIns(4)P, a substrate for the phosphatase Sac1p, which hydrolyzes (PtdIns(4)P). We investigated the role these phosphatases in regulating PtdIns(4,5)P2 subcellular distribution. PtdIns(4,5)P2 bioprobes exhibited loss of plasma membrane localization and instead labeled a subset of fragmented vacuoles in Deltasac1 Deltainp54 and sac1ts Deltainp54 mutants. Furthermore, sac1ts Deltainp54 mutants exhibited vacuolar fusion defects, which were rescued by latrunculin A treatment, or by inactivation of Mss4p, a PtdIns(4)P 5-kinase that synthesizes plasma membrane PtdIns(4,5)P2. Under these conditions PtdIns(4,5)P2 was not detected on vacuole membranes, and vacuole morphology was normal, indicating vacuolar PtdIns(4,5)P2 derives from Mss4p-generated plasma membrane PtdIns(4,5)P2. Deltasac1 Deltainp54 mutants exhibited delayed carboxypeptidase Y sorting, cargo-selective secretion defects, and defects in vacuole function. These studies reveal PtdIns(4,5)P2 hydrolysis by lipid phosphatases governs its spatial distribution, and loss of phosphatase activity may result in PtdIns(4,5)P2 accumulation on vacuole membranes leading to vacuolar fragmentation/fusion defects.
Collapse
Affiliation(s)
- Fenny Wiradjaja
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Yaradanakul A, Feng S, Shen C, Lariccia V, Lin MJ, Yang J, Dong P, Yin HL, Albanesi JP, Hilgemann DW. Dual control of cardiac Na+ Ca2+ exchange by PIP(2): electrophysiological analysis of direct and indirect mechanisms. J Physiol 2007; 582:991-1010. [PMID: 17540705 PMCID: PMC2075271 DOI: 10.1113/jphysiol.2007.132712] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cardiac Na(+)-Ca(2+) exchange (NCX1) inactivates in excised membrane patches when cytoplasmic Ca(2+) is removed or cytoplasmic Na(+) is increased. Exogenous phosphatidylinositol-4,5-bis-phosphate (PIP(2)) can ablate both inactivation mechanisms, while it has no effect on inward exchange current in the absence of cytoplasmic Na(+). To probe PIP(2) effects in intact cells, we manipulated PIP(2) metabolism by several means. First, we used cell lines with M1 (muscarinic) receptors that couple to phospholipase C's (PLCs). As expected, outward NCX1 current (i.e. Ca(2+) influx) can be strongly inhibited when M1 agonists induce PIP(2) depletion. However, inward currents (i.e. Ca(2+) extrusion) without cytoplasmic Na(+) can be increased markedly in parallel with an increase of cell capacitance (i.e. membrane area). Similar effects are incurred by cytoplasmic perfusion of GTPgammaS or the actin cytoskeleton disruptor latrunculin, even in the presence of non-hydrolysable ATP (AMP-PNP). Thus, G-protein signalling may increase NCX1 currents by destabilizing membrane cytoskeleton-PIP(2) interactions. Second, to increase PIP(2) we directly perfused PIP(2) into cells. Outward NCX1 currents increase as expected. But over minutes currents decline substantially, and cell capacitance usually decreases in parallel. Third, using BHK cells with stable NCX1 expression, we increased PIP(2) by transient expression of a phosphatidylinositol-4-phosphate-5-kinase (hPIP5KIbeta) and a PI4-kinase (PI4KIIalpha). NCX1 current densities were decreased by > 80 and 40%, respectively. Fourth, we generated transgenic mice with 10-fold cardiac-specific overexpression of PI4KIIalpha. This wortmannin-insensitive PI4KIIalpha was chosen because basal cardiac phosphoinositides are nearly insensitive to wortmannin, and surface membrane PI4-kinase activity, defined functionally in excised patches, is not blocked by wortmannin. Both phosphatidylinositol-4-phosphate (PIP) and PIP(2) were increased significantly, while NCX1 current densities were decreased by 78% with no loss of NCX1 expression. Most mice developed cardiac hypertrophy, and immunohistochemical analysis suggests that NCX1 is redistributed away from the outer sarcolemma. Cholera toxin uptake was increased 3-fold, suggesting that clathrin-independent endocytosis is enhanced. We conclude that direct effects of PIP(2) to activate NCX1 can be strongly modulated by opposing mechanisms in intact cells that probably involve membrane cytoskeleton remodelling and membrane trafficking.
Collapse
Affiliation(s)
- Alp Yaradanakul
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Ling K, Bairstow SF, Carbonara C, Turbin DA, Huntsman DG, Anderson RA. Type I gamma phosphatidylinositol phosphate kinase modulates adherens junction and E-cadherin trafficking via a direct interaction with mu 1B adaptin. ACTA ACUST UNITED AC 2007; 176:343-53. [PMID: 17261850 PMCID: PMC2063960 DOI: 10.1083/jcb.200606023] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Assembly of E-cadherin–based adherens junctions (AJ) is obligatory for establishment of polarized epithelia and plays a key role in repressing the invasiveness of many carcinomas. Here we show that type Iγ phosphatidylinositol phosphate kinase (PIPKIγ) directly binds to E-cadherin and modulates E-cadherin trafficking. PIPKIγ also interacts with the μ subunits of clathrin adaptor protein (AP) complexes and acts as a signalling scaffold that links AP complexes to E-cadherin. Depletion of PIPKIγ or disruption of PIPKIγ binding to either E-cadherin or AP complexes results in defects in E-cadherin transport and blocks AJ assembly. An E-cadherin germline mutation that loses PIPKIγ binding and shows disrupted basolateral membrane targeting no longer forms AJs and leads to hereditary gastric cancers. These combined results reveal a novel mechanism where PIPKIγ serves as both a scaffold, which links E-cadherin to AP complexes and the trafficking machinery, and a regulator of trafficking events via the spatial generation of phosphatidylinositol-4,5-bisphosphate.
Collapse
Affiliation(s)
- Kun Ling
- Program in Molecular and Cellular Pharmacology, Department of Pharmacology, University of Wisconsin Medical School, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
164
|
Mao YS, Yin HL. Regulation of the actin cytoskeleton by phosphatidylinositol 4-phosphate 5 kinases. Pflugers Arch 2007; 455:5-18. [PMID: 17520274 DOI: 10.1007/s00424-007-0286-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 05/02/2007] [Indexed: 12/19/2022]
Abstract
Phosphatidylinositol (4,5)-bisphosphate (PIP(2)) is an important lipid mediator that has multiple regulatory functions. There is now increasing evidence that the phosphatidylinositol 4-phosphate 5 kinases (PIP5Ks), which synthesize PIP(2), are regulated spatially and temporally and that they have isoform-specific functions and regulations. This review will summarize the highlights of recent developments in understanding how the three major PIP5K isoforms regulate the actin cytoskeleton and other important cellular processes.
Collapse
Affiliation(s)
- Yuntao S Mao
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9040, USA
| | | |
Collapse
|
165
|
Rodgers MJ, Albanesi JP, Phillips MA. Phosphatidylinositol 4-kinase III-beta is required for Golgi maintenance and cytokinesis in Trypanosoma brucei. EUKARYOTIC CELL 2007; 6:1108-18. [PMID: 17483288 PMCID: PMC1951100 DOI: 10.1128/ec.00107-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The parasitic protozoan Trypanosoma brucei contains two type III phosphatidylinositol 4-kinases (alpha and beta). We have cloned the gene encoding the T. brucei type III phosphatidylinositol 4-kinase beta (TbPI4KIII-beta), expressed the protein in COS-7 cells, and confirmed that the protein catalyzes the phosphorylation of phosphatidylinositol. Depletion of TbPI4KIII-beta in procyclic T. brucei by RNA interference (RNAi) resulted in inhibition of cell growth and a distorted cellular morphology. RNAi cells had a distorted Golgi apparatus, and lysosomal and flagellar pocket proteins were mislocalized. Ultrastructural analysis revealed the internal accumulation of a heterogeneous population of vesicles, abnormal positioning of organelles, and a loss of cell polarity. Scanning electron microcopy revealed a twisted phenotype, and dividing cells often exhibited a detached daughter flagellum and lacked a cleavage furrow. Cell cycle analysis confirmed that cells depleted of TbPI4KIII-beta have a postmitotic cytokinesis block that occurs after a single round of mitosis, suggestive of a specific cell cycle block. In summary, TbPI4KIII-beta is an essential protein in procyclic T. brucei, required for maintenance of Golgi structure, protein trafficking, normal cellular shape, and cytokinesis.
Collapse
Affiliation(s)
- Melissa J Rodgers
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041, USA
| | | | | |
Collapse
|
166
|
Naslavsky N, Rahajeng J, Chenavas S, Sorgen PL, Caplan S. EHD1 and Eps15 interact with phosphatidylinositols via their Eps15 homology domains. J Biol Chem 2007; 282:16612-22. [PMID: 17412695 DOI: 10.1074/jbc.m609493200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C-terminal Eps15 homology domain-containing protein, EHD1, regulates the recycling of receptors from the endocytic recycling compartment to the plasma membrane. In cells, EHD1 localizes to tubular and spherical recycling endosomes. To date, the mode by which EHD1 associates with endosomal membranes remains unknown, and it has not been determined whether this interaction is direct or via interacting proteins. Here, we provide evidence demonstrating that EHD1 has the ability to bind directly and preferentially to an array of phospholipids, preferring phosphatidylinositols with a phosphate at position 3. Previous studies have demonstrated that EH domains coordinate calcium binding and interact with proteins containing the tripeptide asparagine-proline-phenylalanine (NPF). Using two-dimensional nuclear magnetic resonance analysis, we now describe a new function for the Eps15 homology (EH) domain of EHD1 and show that it is capable of directly binding phosphatidylinositol moieties. Moreover, we have expanded our studies to include the C-terminal EH domain of EHD4 and the second of the three N-terminal EH domains of Eps15 and demonstrated that phosphatidylinositol binding may be a more general property shared by certain other EH domains. Further studies identified a positively charged lysine residue (Lys-483) localized within the third helix of the EH domain, on the opposite face of the NPF-binding pocket, as being critical for the interaction with the phosphatidylinositols.
Collapse
Affiliation(s)
- Naava Naslavsky
- Department of Biochemistry and Molecular Biology and Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USA
| | | | | | | | | |
Collapse
|
167
|
Abstract
K-Ras is a small G-protein, localized mainly at the inner leaflet of the plasma membrane. The membrane targeting signal of this protein consists of a polybasic C-terminal sequence of six contiguous lysines and a farnesylated cysteine. Results from biophysical studies in model systems suggest that hydrophobic and electrostatic interactions are responsible for the membrane binding properties of K-Ras. To test this hypothesis in a cellular system, we first evaluated in vitro the effect of electrolytes on K-Ras membrane binding properties. Results demonstrated the electrical and reversible nature of K-Ras binding to anionic lipids in membranes. We next investigated membrane binding and subcellular distribution of K-Ras after disruption of the electrical properties of the outer and inner leaflets of plasma membrane and ionic gradients through it. Removal of sialic acid from the outer plasma membrane caused a redistribution of K-Ras to recycling endosomes. Inhibition of polyphosphoinositide synthesis at the plasma membrane, by depletion of cellular ATP, resulted in a similar subcellular redistribution of K-Ras. Treatment of cells with ionophores that modify transmembrane potential caused a redistribution of K-Ras to cytoplasm and endomembranes. Ca2+ ionophores, compared to K+ ionophores, caused a much broader redistribution of K-Ras to endomembranes. Taken together, these results reveal the dynamic nature of interactions between K-Ras and cellular membranes, and indicate that subcellular distribution of K-Ras is driven by electrostatic interaction of the polybasic region of the protein with negatively charged membranes.
Collapse
Affiliation(s)
- Guillermo A Gomez
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Departamento de Química Biológica, Universidad Nacional de Córdoba, Argentina
| | | |
Collapse
|
168
|
Pao AC, McCormick JA, Li H, Siu J, Govaerts C, Bhalla V, Soundararajan R, Pearce D. NH2 terminus of serum and glucocorticoid-regulated kinase 1 binds to phosphoinositides and is essential for isoform-specific physiological functions. Am J Physiol Renal Physiol 2007; 292:F1741-50. [PMID: 17356130 DOI: 10.1152/ajprenal.00027.2007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Serum and glucocorticoid regulated kinase 1 (SGK1) has been identified as a key regulatory protein that controls a diverse set of cellular processes including sodium (Na(+)) homeostasis, osmoregulation, cell survival, and cell proliferation. Two other SGK isoforms, SGK2 and SGK3, have been identified, which differ most markedly from SGK1 in their NH(2)-terminal domains. We found that SGK1 and SGK3 are potent stimulators of epithelial Na(+) channel (ENaC)-dependent Na(+) transport, while SGK2, which has a short NH(2) terminus, is a weak stimulator of ENaC. Further characterization of the role of the SGK1 NH(2) terminus revealed that its deletion does not affect in vitro kinase activity but profoundly limits the ability of SGK1 either to stimulate ENaC-dependent Na(+) transport or inhibit Forkhead-dependent gene transcription. The NH(2) terminus of SGK1, which shares sequence homology with the phosphoinositide 3-phosphate [PI(3)P] binding domain of SGK3, binds phosphoinositides in protein lipid overlay assays, interacting specifically with PI(3)P, PI(4)P, and PI(5)P, but not with PI(3,4,5)P(3). Moreover, a point mutation that reduces phosphoinositide binding to the NH(2) terminus also reduces SGK1 effects on Na(+) transport and Forkhead activity. These data suggest that the NH(2) terminus, although not required for PI 3-kinase-dependent modulation of SGK1 catalytic activity, is required for multiple SGK1 functions, including stimulation of ENaC and inhibition of the proapoptotic Forkhead transcription factor. Together, these observations support the idea that the NH(2)-terminal domain acts downstream of PI 3-kinase-dependent activation to target the kinase to specific cellular compartments and/or substrates, possibly through its interactions with a subset of phosphoinositides.
Collapse
Affiliation(s)
- Alan C Pao
- Division of Nephrology, Department of Medicine, San Francisco General Hospital, CA 94110, USA
| | | | | | | | | | | | | | | |
Collapse
|
169
|
König S, Mosblech A, Heilmann I. Stress-inducible and constitutive phosphoinositide pools have distinctive fatty acid patterns in Arabidopsis thaliana. FASEB J 2007; 21:1958-67. [PMID: 17327357 DOI: 10.1096/fj.06-7887com] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Function and development of eukaryotic cells require tight control of diverse physiological processes. Numerous cellular processes are regulated by polyphosphoinositides, which interact with protein partners or mediate release of the second messenger, inositol 1,4,5-trisphosphate (InsP3). Emerging evidence suggests that different regulatory or signaling functions of polyphosphoinositides may be orchestrated by the establishment of distinct subcellular pools; the principles underlying pool-formation are, however, not understood. Arabidopsis plants exhibit transient increases in polyphosphoinositides with hyperosmotic stress, providing a model for comparing constitutive and stress-inducible polyphosphoinositide pools. Using a combination of thin-layer-chromatography and gas-chromatography, phospholipids from stressed and nonstressed Arabidopsis plants were analyzed for their associated fatty acids. Under nonstress conditions structural phospholipids and phosphatidylinositol contained 50-70 mol% polyunsaturated fatty acids (PUFA), whereas polyphosphoinositides were more saturated (10-20 mol% PUFA). With hyperosmotic stress polyphosphoinositides with up to 70 mol% PUFA were formed that differed from constitutive species and coincided with a transient loss in unsaturated phosphatidylinositol. The patterns indicate inducible turnover of an unsaturated phosphatidylinositol pool, which accumulates under standard conditions and is primed for phosphorylation on stimulation. Metabolic analysis of wild-type and transgenic plants disturbed in phosphoinositide metabolism suggests that, in contrast to saturated species, unsaturated polyphosphoinositides are channeled toward InsP3-production.
Collapse
Affiliation(s)
- Sabine König
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | | | | |
Collapse
|
170
|
Carter CJ. Multiple genes and factors associated with bipolar disorder converge on growth factor and stress activated kinase pathways controlling translation initiation: implications for oligodendrocyte viability. Neurochem Int 2007; 50:461-90. [PMID: 17239488 DOI: 10.1016/j.neuint.2006.11.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 11/27/2006] [Indexed: 02/06/2023]
Abstract
Famine and viral infection, as well as interferon therapy have been reported to increase the risk of developing bipolar disorder. In addition, almost 100 polymorphic genes have been associated with this disease. Several form most of the components of a phosphatidyl-inositol signalling/AKT1 survival pathway (PIK3C3, PIP5K2A, PLCG1, SYNJ1, IMPA2, AKT1, GSK3B, TCF4) which is activated by growth factors (BDNF, NRG1) and also by NMDA receptors (GRIN1, GRIN2A, GRIN2B). Various other protein products of genes associated with bipolar disorder either bind to or are affected by phosphatidyl-inositol phosphate products of this pathway (ADBRK2, HIP1R, KCNQ2, RGS4, WFS1), are associated with its constituent elements (BCR, DUSP6, FAT, GNAZ) or are downstream targets of this signalling cascade (DPYSL2, DRD3, GAD1, G6PD, GCH1, KCNQ2, NOS3, SLC6A3, SLC6A4, SST, TH, TIMELESS). A further pathway relates to endoplasmic reticulum-stress (HSPA5, XBP1), caused by problems in protein glycosylation (ALG9), growth factor receptor sorting (PIK3C3, HIP1R, SYBL1), or aberrant calcium homoeostasis (WFS1). Key processes relating to these pathways appear to be under circadian control (ARNTL, CLOCK, PER3, TIMELESS). DISC1 can also be linked to many of these pathways. The growth factor pathway promotes protein synthesis, while the endoplasmic reticulum stress pathway, and other stress pathways activated by viruses and cytokines (IL1B, TNF, Interferons), oxidative stress or starvation, all factors associated with bipolar disorder risk, shuts down protein synthesis via control of the EIF2 alpha and beta translation initiation complex. For unknown reasons, oligodendrocytes appear to be particularly prone to defects in the translation initiation complex (EIF2B) and the convergence of these environmental and genomic signalling pathways on this area might well explain their vulnerability in bipolar disorder.
Collapse
|
171
|
Harsay E, Schekman R. Avl9p, a member of a novel protein superfamily, functions in the late secretory pathway. Mol Biol Cell 2007; 18:1203-19. [PMID: 17229886 PMCID: PMC1838974 DOI: 10.1091/mbc.e06-11-1035] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The branching of exocytic transport routes in both yeast and mammalian cells has complicated studies of the late secretory pathway, and the mechanisms involved in exocytic cargo sorting and exit from the Golgi and endosomes are not well understood. Because cargo can be sorted away from a blocked route and secreted by an alternate route, mutants defective in only one route do not exhibit a strong secretory phenotype and are therefore difficult to isolate. In a genetic screen designed to isolate such mutants, we identified a novel conserved protein, Avl9p, the absence of which conferred lethality in a vps1Delta apl2Delta strain background (lacking a dynamin and an adaptor-protein complex 1 subunit). Depletion of Avl9p in this strain resulted in secretory defects as well as accumulation of Golgi-like membranes. The triple mutant also had a depolarized actin cytoskeleton and defects in polarized secretion. Overexpression of Avl9p in wild-type cells resulted in vesicle accumulation and a post-Golgi defect in secretion. Phylogenetic analysis indicated evolutionary relationships between Avl9p and regulators of membrane traffic and actin function.
Collapse
Affiliation(s)
- Edina Harsay
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA.
| | | |
Collapse
|
172
|
Boss WF, Davis AJ, Im YJ, Galvão RM, Perera IY. Phosphoinositide metabolism: towards an understanding of subcellular signaling. Subcell Biochem 2006; 39:181-205. [PMID: 17121276 DOI: 10.1007/0-387-27600-9_8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Wendy F Boss
- Department of Plant Biology, North Carolina State University, Raleigh, NC 27695-7612, USA
| | | | | | | | | |
Collapse
|
173
|
Abstract
In the trans-Golgi network (TGN), proteins are sorted for transport to the endosomes, plasma membrane, preceding Golgi cisternae, and endoplasmic reticulum. The formation of clathrin-coated vesicles for transport to the endosomes and of COP-I-coated vesicles for retrograde trafficking is fairly well characterized at the molecular level. We describe our current understanding of the TGN-to-cell-surface carriers, with a specific focus on the components involved in membrane fission. Inhibiting the fission machinery promotes growth of transport carriers into large tubules that remain attached to the TGN. Overactivating this machinery, on the other hand, vesiculates the TGN. To understand how membrane fission is regulated by cargo to form transport carriers yet prevents complete vesiculation of the TGN remains a daunting challenge. We discuss these issues with regard to TGN-to-cell-surface transport carriers.
Collapse
Affiliation(s)
- Frédéric Bard
- Cell and Developmental Biology Department, University of California San Diego, La Jolla, California 92093, USA.
| | | |
Collapse
|
174
|
Lee SA, Kovacs J, Stahelin RV, Cheever ML, Overduin M, Gangi Setty T, Burd CG, Cho W, Kutateladze TG. Molecular mechanism of membrane docking by the Vam7p PX domain. J Biol Chem 2006; 281:37091-101. [PMID: 16984909 PMCID: PMC1838524 DOI: 10.1074/jbc.m608610200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Vam7p t-SNARE is an essential component of the vacuole fusion machinery that mediates membrane trafficking and protein sorting in yeast. Vam7p is recruited to vacuoles by its N-terminal PX domain that specifically recognizes PtdIns(3)P in the bilayers, however the precise mechanism of membrane anchoring remains unclear. Here we describe a molecular basis for membrane targeting and penetration by the Vam7p PX domain based on structural and quantitative analysis of its interactions with lipids and micelles. Our results derived from in vitro binding measurements using NMR, monolayer surface tension experiments and mutagenesis reveal a multivalent membrane docking mechanism involving specific PtdIns(3)P recognition that is facilitated by electrostatic interactions and accompanying hydrophobic insertion. Both the hydrophobic and electrostatic components enhance the Vam7p PX domain association with PtdIns(3)P-containing membranes. The inserting Val(70), Leu(71), and Trp(75) residues located next to the PtdIns(3)P binding pocket are surrounded by a basic patch, which is involved in nonspecific electrostatic contacts with acidic lipids, such as PtdSer. Substitution of the insertion residues significantly reduces the binding and penetrating power of the Vam7p PX domain and leads to cytoplasmic redistribution of the EGFP-tagged protein. The affinities of the PX domain for PtdIns(3)P and other lipids reveal a remarkable synergy within the multivalent complex that stably anchors Vam7p at the vacuolar membrane.
Collapse
Affiliation(s)
- Stephanie A. Lee
- From the Department of Pharmacology, University of Colorado Health Sciences Center, Aurora, Colorado 80045
| | - James Kovacs
- From the Department of Pharmacology, University of Colorado Health Sciences Center, Aurora, Colorado 80045
| | - Robert V. Stahelin
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-South Bend and the Department of Chemistry and Biochemistry, the Walther Center for Cancer Research, University of Notre Dame, South Bend, Indiana 46617
| | - Matthew L. Cheever
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599
| | - Michael Overduin
- CR-UK Institute for Cancer Studies, University of Birmingham, Birmingham, B15 2T, United Kingdom
| | - Thanuja Gangi Setty
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Christopher G. Burd
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Wonhwa Cho
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Tatiana G. Kutateladze
- From the Department of Pharmacology, University of Colorado Health Sciences Center, Aurora, Colorado 80045
| |
Collapse
|
175
|
Lay D, Gorgas K, Just WW. Peroxisome biogenesis: Where Arf and coatomer might be involved. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1678-87. [PMID: 17023067 DOI: 10.1016/j.bbamcr.2006.08.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 08/12/2006] [Accepted: 08/23/2006] [Indexed: 11/24/2022]
Abstract
The present review summarizes recent observations on binding of Arf and COPI coat to isolated rat liver peroxisomes. The general structural and functional features of both Arf and coatomer were considered along with the requirements and dependencies of peroxisomal Arf and coatomer recruitment. Studies on the expression of mammalian Pex11 proteins, mainly Pex11alpha and Pex11beta, intimately related to the process of peroxisome proliferation, revealed a sequence of individual steps including organelle elongation/tubulation, formation of membrane and matrix protein patches segregating distinct proteins from each other, development of membrane constrictions and final membrane fission. Based on the similarities of the processes leading to cargo selection and concentration on Golgi membranes on the one hand and to the formation of peroxisomal protein patches on the other hand, an implication of Arf and COPI in distinct processes of peroxisomal proliferation is hypothesized. Alternatively, peroxisomal Arf/COPI might facilitate the formation of COPI-coated peroxisomal vesicles functioning in cargo transport and retrieval from peroxisomes to the ER. Recent observations suggesting transport of Pex3 and Pex19 during early steps of peroxisome biogenesis from the ER to peroxisomes inevitably propose such a retrieval mechanism, provided the ER to peroxisome pathway is based on transporting vesicles.
Collapse
Affiliation(s)
- Dorothee Lay
- Biochemie-Zentrum der Universität Heidelberg (BZH), Im Neuenheimer Feld 328D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
176
|
Abstract
Inositol phospholipids have long been known to have an important regulatory role in cell physiology. The repertoire of cellular processes known to be directly or indirectly controlled by this class of lipids has now dramatically expanded. Through interactions mediated by their headgroups, which can be reversibly phosphorylated to generate seven species, phosphoinositides play a fundamental part in controlling membrane-cytosol interfaces. These lipids mediate acute responses, but also act as constitutive signals that help define organelle identity. Their functions, besides classical signal transduction at the cell surface, include regulation of membrane traffic, the cytoskeleton, nuclear events and the permeability and transport functions of membranes.
Collapse
Affiliation(s)
- Gilbert Di Paolo
- Department of Pathology and Cell Biology, The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, New York 10032, USA.
| | | |
Collapse
|
177
|
Blume JJ, Halbach A, Behrendt D, Paulsson M, Plomann M. EHD proteins are associated with tubular and vesicular compartments and interact with specific phospholipids. Exp Cell Res 2006; 313:219-31. [PMID: 17097635 DOI: 10.1016/j.yexcr.2006.10.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 09/22/2006] [Accepted: 10/05/2006] [Indexed: 10/23/2022]
Abstract
The four Eps15 homology (EH) domain-containing proteins, EHD1-EHD4, have recently been ascribed roles in the regulation of the recycling of distinct receptor molecules and are often found associated with tubular structures. Here, we report the analysis of all four EHD proteins with regard to tissue distribution, intracellular localization and lipid binding properties. Specific antibodies reveal distinct expression profiles for the individual proteins in tissues and at intracellular locations, where they potentially interact with specific phospholipids. Moreover, EHD proteins colocalize with vesicular and tubular structures, implying roles in transport processes and cytoskeletal dynamics. Protein variants carrying mutations in the N-terminal nucleotide-binding P-loop region are no longer associated with phospholipids or membrane compartments, while deletion of the C-terminal EH domain affects targeting to tubular structures. All EHD proteins are able to bind to phospholipids, but localizations differ for each protein.
Collapse
Affiliation(s)
- Jessica J Blume
- Center for Biochemistry and Center for Molecular Medicine, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str 52, D-50931 Cologne, Germany
| | | | | | | | | |
Collapse
|
178
|
Stahelin RV, Karathanassis D, Bruzik KS, Waterfield MD, Bravo J, Williams RL, Cho W. Structural and membrane binding analysis of the Phox homology domain of phosphoinositide 3-kinase-C2alpha. J Biol Chem 2006; 281:39396-406. [PMID: 17038310 DOI: 10.1074/jbc.m607079200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phox homology (PX) domains, which have been identified in a variety of proteins involved in cell signaling and membrane trafficking, have been shown to interact with phosphoinositides (PIs) with different affinities and specificities. To elucidate the structural origin of diverse PI specificities of PX domains, we determined the crystal structure of the PX domain from phosphoinositide 3-kinase C2alpha (PI3K-C2alpha), which binds phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)). To delineate the mechanism by which this PX domain interacts with membranes, we measured the membrane binding of the wild type domain and mutants by surface plasmon resonance and monolayer techniques. This PX domain contains a signature PI-binding site that is optimized for PtdIns(4,5)P(2) binding. The membrane binding of the PX domain is initiated by nonspecific electrostatic interactions followed by the membrane penetration of hydrophobic residues. Membrane penetration is specifically enhanced by PtdIns(4,5)P(2). Furthermore, the PX domain displayed significantly higher PtdIns(4,5)P(2) membrane affinity and specificity when compared with the PI3K-C2alpha C2 domain, demonstrating that high affinity PtdIns(4,5)P(2) binding was facilitated by the PX domain in full-length PI3K-C2alpha. Together, these studies provide new structural insight into the diverse PI specificities of PX domains and elucidate the mechanism by which the PI3K-C2alpha PX domain interacts with PtdIns(4,5)P(2)-containing membranes and thereby mediates the membrane recruitment of PI3K-C2alpha.
Collapse
Affiliation(s)
- Robert V Stahelin
- Departments of Chemistry and Medicinal Chemistry and Pharmacognosy, University of Illinois, Chicago, Illinois 60607, USA
| | | | | | | | | | | | | |
Collapse
|
179
|
Jeynov B, Lay D, Schmidt F, Tahirovic S, Just WW. Phosphoinositide synthesis and degradation in isolated rat liver peroxisomes. FEBS Lett 2006; 580:5917-24. [PMID: 17045591 DOI: 10.1016/j.febslet.2006.09.058] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 09/18/2006] [Accepted: 09/19/2006] [Indexed: 11/30/2022]
Abstract
Analyzing peroxisomal phosphoinositide (PId(#)) synthesis in highly purified rat liver peroxisomes we found synthesis of phosphatidylinositol 4-phosphate (PtdIns4P), PtdIns(4,5)P(2) and PtdIns(3,5)P(2). PtdIns3P was hardly detected in vitro, however, was observed in vivo after [(32)P]-phosphate labeling of primary rat hepatocytes. In comparison with other subcellular organelles peroxisomes revealed a unique PId pattern suggesting peroxisomal specificity of the observed synthesis. Use of phosphatase inhibitors enhanced the amount of PtdIns4P. The results obtained provide evidence that isolated rat liver peroxisomes synthesize PIds and suggest the association of PId 4-kinase and PId 5-kinase and PId 4-phosphatase activities with the peroxisomal membrane.
Collapse
Affiliation(s)
- Boyan Jeynov
- Biochemie-Zentrum der Universität Heidelberg (BZH), Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
180
|
Abstract
Changes in intracellular free calcium regulate many intracellular processes. With respect to the secretory pathway and the Golgi apparatus, changes in calcium concentration occurring either in the adjacent cytosol or within the lumen of the Golgi act to regulate Golgi function. Conversely, the Golgi sequesters calcium to shape cytosolic calcium signals as well as initiate them by releasing calcium via inositol-1,4,5-triphosphate (IP(3)) receptors, located on Golgi membranes. Local calcium transients juxtaposed to the Golgi (arising from release by the Golgi or other organelles) can activate calcium dependent signalling molecules located on or around the Golgi. This review focuses on the reciprocal relationship between the cell biology of the Golgi apparatus and intracellular calcium homeostasis.
Collapse
Affiliation(s)
- Nick J Dolman
- The Physiological Laboratory, The University of Liverpool, Crown Street, Liverpool, UK.
| | | |
Collapse
|
181
|
Sánchez-Bautista S, Marín-Vicente C, Gómez-Fernández JC, Corbalán-García S. The C2 Domain of PKCα Is a Ca2+-dependent PtdIns(4,5)P2 Sensing Domain: A New Insight into an Old Pathway. J Mol Biol 2006; 362:901-14. [PMID: 16949603 DOI: 10.1016/j.jmb.2006.07.093] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 07/25/2006] [Accepted: 07/26/2006] [Indexed: 11/28/2022]
Abstract
The C2 domain is a targeting domain that responds to intracellular Ca2+ signals in classical protein kinases (PKCs) and mediates the translocation of its host protein to membranes. Recent studies have revealed a new motif in the C2 domain, named the lysine-rich cluster, that interacts with acidic phospholipids. The purpose of this work was to characterize the molecular mechanism by which PtdIns(4,5)P2 specifically interacts with this motif. Using a combination of isothermal titration calorimetry, fluorescence resonance energy transfer and time-lapse confocal microscopy, we show here that Ca2+ specifically binds to the Ca2+ -binding region, facilitating PtdIns(4,5)P2 access to the lysine-rich cluster. The magnitude of PtdIns(4,5)P2 binding is greater than in the case of other polyphosphate phosphatidylinositols. Very importantly, the residues involved in PtdIns(4,5)P2 binding are essential for the plasma membrane localization of PKCalpha when RBL-2H3 cells are stimulated through their IgE receptors. Additionally, CFP-PH and CFP-C1 domains were used as bioprobes to demonstrate the co-existence of PtdIns(4,5)P2 and diacylglycerol in the plasma membrane, and it was shown that although a fraction of PtdIns(4,5)P2 is hydrolyzed to generate diacylglycerol and IP3, an important amount still remains in the membrane where it is available to activate PKCalpha. These findings entail revision of the currently accepted model of PKCalpha recruitment to the membrane and its activation.
Collapse
Affiliation(s)
- Sonia Sánchez-Bautista
- Departamento de Bioquímica y Biología Molecular (A), Facultad de Veterinaria, Universidad de Murcia Apartado de Correos 4021, E-30100-Murcia, Spain
| | | | | | | |
Collapse
|
182
|
Zonia L, Munnik T. Cracking the green paradigm: functional coding of phosphoinositide signals in plant stress responses. Subcell Biochem 2006; 39:207-37. [PMID: 17121277 DOI: 10.1007/0-387-27600-9_9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Laura Zonia
- Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 318, NL-1098 SM, Amsterdam, The Netherlands
| | | |
Collapse
|
183
|
Boucrot E, Saffarian S, Massol R, Kirchhausen T, Ehrlich M. Role of lipids and actin in the formation of clathrin-coated pits. Exp Cell Res 2006; 312:4036-48. [PMID: 17097636 PMCID: PMC2785547 DOI: 10.1016/j.yexcr.2006.09.025] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 09/06/2006] [Accepted: 09/07/2006] [Indexed: 11/20/2022]
Abstract
Assembly of clathrin-coated pits and their maturation into coated vesicles requires coordinated interactions between specific lipids and several structural and regulatory proteins. In the presence of primary alcohols, phospholipase D generates phosphatidylalcohols instead of PA, reducing stimulation of phosphatidyl inositol 5-kinase (PI5K) and hence decreasing formation of phosphoinositide-4,5-biphosphate (PIP(2)). Using live-cell imaging, we have shown that acute treatment of cells with 1-butanol or other small primary alcohols induces rapid disassembly of coated pits at the plasma membrane and blocks appearance of new ones. Addition of exogenous PIP(2) reverses this effect. Coated pits and vesicles reappear synchronously upon removal of 1-butanol; we have used this synchrony to assess the role of actin in coated vesicle assembly. Prolonged inhibition of actin polymerization by latrunculin A or cytochalasin D reduced by approximately 50% the frequency of coated pit formation without affecting maturation into coated vesicles. As in control cells, removal of 1-butanol in the continued presence of an actin depolymerizer led to synchronous appearance of new pits, which matured normally. Thus, remodeling of the actin cytoskeleton is not essential for clathrin-coated vesicle assembly but may indirectly affect the nucleation of clathrin-coated pits.
Collapse
Affiliation(s)
- Emmanuel Boucrot
- Department of Cell Biology and the CBR Institute for Biomedical Research, Harvard Medical School, Boston, 200 Longwood Ave, MA 02115 USA
| | - Saveez Saffarian
- Department of Cell Biology and the CBR Institute for Biomedical Research, Harvard Medical School, Boston, 200 Longwood Ave, MA 02115 USA
| | - Ramiro Massol
- Department of Cell Biology and the CBR Institute for Biomedical Research, Harvard Medical School, Boston, 200 Longwood Ave, MA 02115 USA
| | - Tomas Kirchhausen
- Department of Cell Biology and the CBR Institute for Biomedical Research, Harvard Medical School, Boston, 200 Longwood Ave, MA 02115 USA
| | - Marcelo Ehrlich
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
- *Corresponding author. Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel, Phone:972-3-6409406; Fax:972-3-6420246 E-Mail:
| |
Collapse
|
184
|
Thomas AM, Brown SG, Leaney JL, Tinker A. Differential phosphoinositide binding to components of the G protein-gated K+ channel. J Membr Biol 2006; 211:43-53. [PMID: 16988861 DOI: 10.1007/s00232-006-0014-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 04/30/2006] [Indexed: 10/24/2022]
Abstract
The regulation of ion channels and transporters by anionic phospholipids is currently very topical. G protein-gated K(+) channels from the Kir3.0 family are involved in slowing the heart rate, generating late inhibitory postsynaptic potentials and controlling hormone release from neuroendocrine cells. There is considerable functional precedent for the control of these channels by phosphatidylinositol 4,5-bisphosphate. In this study, we used a biochemical assay to investigate the lipid binding properties of Kir3.0 channel domains. We reveal a differential binding affinity to a range of phosphoinositides between the C termini of the Kir3.0 isoforms. Furthermore, the N terminus in addition to the C terminus of Kir3.4 is necessary to observe binding and is decreased by the mutations R72A, K195A and R196A but not K194A. Protein kinase C phosphorylation of the Kir3.1 C-terminal fusion protein decreases anionic phospholipid binding. The differential binding affinity has functional consequences as the inhibition of homomeric Kir3.1, occurring after M3 receptor activation, recovers over minutes while homomeric Kir3.2 does not.
Collapse
Affiliation(s)
- Alison M Thomas
- Department of Medicine and BHF Laboratories, University College London, 5 University Street, London, WC1E 6JJ, United Kingdom.
| | | | | | | |
Collapse
|
185
|
Brabec M, Blaas D, Fuchs R. Wortmannin delays transfer of human rhinovirus serotype 2 to late endocytic compartments. Biochem Biophys Res Commun 2006; 348:741-9. [PMID: 16890915 DOI: 10.1016/j.bbrc.2006.07.125] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 07/21/2006] [Indexed: 11/26/2022]
Abstract
Human rhinovirus 2 (HRV2) is internalized by members of the low-density lipoprotein receptor family into early endosomes (pH 6.2-6.0) where it dissociates from its receptors. After transfer into late endosomes, the virus undergoes a conformational change and RNA uncoating solely induced by pH < 5.6. Finally, virus capsids are degraded in lysosomes. To investigate the role of phosphatidylinositol 3-kinases (PI3K) in the HRV2 entry route, we used the inhibitor wortmannin. Although virus internalization was not altered by wortmannin, virus accumulated in enlarged early endosomes. Furthermore, the drug delayed HRV2 degradation and viral protein synthesis. Consequently, wortmannin-sensitive PI3K are involved in HRV2 transport from early to late compartments. However, wortmannin had no effect on the titer of infectious virus produced. Our data therefore suggest that virus retained in early endosomes for prolonged time periods can undergo the conformational change that otherwise occurs at pH < or = 5.6 in late endosomes.
Collapse
Affiliation(s)
- Marianne Brabec
- Department of Pathophysiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | | | | |
Collapse
|
186
|
Slomiany A, Grabska M, Slomiany BL. Homeostatic restitution of cell membranes. Nuclear membrane lipid biogenesis and transport of protein from cytosol to intranuclear spaces. Int J Biol Sci 2006; 2:216-26. [PMID: 16967103 PMCID: PMC1560408 DOI: 10.7150/ijbs.2.216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 08/29/2006] [Indexed: 01/08/2023] Open
Abstract
Our studies on homeostatic restitution of cellular and subcellular membranes showed that vesicular intracellular transport is engaged in systematic and coordinated replacement of lipids and proteins in the membranes of the secretory, non-dividing epithelial cells (Slomiany et al., J. Physiol. Pharmacol. 2004; 55: 837-860). In this report, we present evidence on the homeostatic restitution of lipids in the biomembranes that constitute nuclear envelopes. We investigated nuclear membranes lipid synthesis by employing purified intact nuclei (IN), the outer nuclear membrane (ONM), the inner nuclear membrane (INM) and the cell cytosol (CC). In contrast to Endoplasmic Reticulum (ER) which in the presence of CC generates new biomembrane that forms ER vesicles transporting ER products to Golgi, the IN, ONM and INM are not producing transport vesicles. Instead, the newly synthesized lipids remain in the nuclear membranes. The membranes (INM, ONM) of IN incubated with CC become enriched with newly synthesized phosphatidylcholine (PC), phosphatidylinositol (PI), phosphatidylinositol phosphates (PIPs) and phosphatidic acid (PA). The incubation of separated ONM and INM with CC also enriched the membranes with IN specific lipids identified above. Moreover, the incubation of IN or its membranes with CC afforded retention of numerous CC proteins on the nuclear membrane. Here, we concentrated on 30kDa CC protein that displayed affinity to nuclear membrane PIP2. The 30kDa CC protein bound to PIP2 of IN, INM, and ONM. With IN, initially the PIP2-30kDa CC protein complex was detected on ONM, after 30-120 min of incubation, was found on INM and in nuclear contents. At the same time when the 30 kDa protein was released from INM and found in nuclear contents, the PIP2 of INM and ONM became undetectable, while the lipid extract from the membrane displaced from IN contained labeled PI only. Since ONM is an uninterrupted continuum of ER and INM, we speculate that the synthesis of the lipids in the ER, in the region adjacent to nucleus, is defining nuclear outer and inner biomembrane composition, is responsible for transport of the cytosolic protein into the nucleus and, replenishment of ER membrane used for vesicular transport.
Collapse
Affiliation(s)
- Amalia Slomiany
- Research Center C-873, University of Medicine and Dentistry of New Jersey, New Jersey Dental School, Newark, NJ 07103, USA.
| | | | | |
Collapse
|
187
|
Yamamoto M, Chen MZ, Wang YJ, Sun HQ, Wei Y, Martinez M, Yin HL. Hypertonic stress increases phosphatidylinositol 4,5-bisphosphate levels by activating PIP5KIbeta. J Biol Chem 2006; 281:32630-8. [PMID: 16943196 DOI: 10.1074/jbc.m605928200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hyperosmotic stress increases phosphoinositide levels, reorganizes the actin cytoskeleton, and induces multiple acute and adaptive physiological responses. Here we showed that phosphatidylinositol 4,5-bisphosphate (PIP(2)) level increased rapidly in HeLa cells during hypertonic treatment. Depletion of the human type I phosphatidylinositol 4-phosphate 5-kinase beta isoform (PIP5KIbeta) by RNA interference impaired both the PIP(2) and actin cytoskeletal responses. PIP5KIbeta was recruited to membranes and was activated by hypertonic stress through Ser/Thr dephosphorylation. Calyculin A, a protein phosphatase 1 inhibitor, blocked the hypertonicity-induced PIP5KIbeta dephosphorylation/activation as well as PIP(2) increase in cells. Urea, which raises osmolarity without inducing cell shrinkage, did not promote dephosphorylation nor increase PIP(2) levels. Disruption or stabilization of the actin cytoskeleton, or inhibition of the Rho kinase, did not block the PIP(2) increase nor PIP5KIbeta dephosphorylation. Therefore, PIP5KIbeta is dephosphorylated in a volume-dependent manner by a calyculin A-sensitive protein phosphatase, which is activated upstream of actin remodeling and independently of Rho kinase activation. Our results establish a cause-and-effect relation between PIP5KIbeta dephosphorylation, lipid kinase activation, and PIP(2) increase in cells. This PIP(2) increase can orchestrate multiple downstream responses, including the reorganization of the actin cytoskeleton.
Collapse
Affiliation(s)
- Masaya Yamamoto
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | | | | | | | |
Collapse
|
188
|
Hyvola N, Diao A, McKenzie E, Skippen A, Cockcroft S, Lowe M. Membrane targeting and activation of the Lowe syndrome protein OCRL1 by rab GTPases. EMBO J 2006; 25:3750-61. [PMID: 16902405 PMCID: PMC1553191 DOI: 10.1038/sj.emboj.7601274] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 07/13/2006] [Indexed: 01/15/2023] Open
Abstract
The X-linked disorder oculocerebrorenal syndrome of Lowe is caused by mutation of the OCRL1 protein, an inositol polyphosphate 5-phosphatase. OCRL1 is localised to the Golgi apparatus and early endosomes, and can translocate to lamellipodia upon growth factor stimulation. We show here that OCRL1 interacts with several members of the rab family of small GTPases. Strongest interaction is seen with Golgi-associated rab1 and rab6 and endosomal rab5. Point mutants defective in rab binding fail to target to the Golgi apparatus and endosomes, strongly suggesting rab interaction is required for targeting of OCRL1 to these compartments. Membrane recruitment via rab binding is required for changes in Golgi and endosomal dynamics induced by overexpression of catalytically inactive OCRL1. In vitro experiments demonstrate that rab5 and rab6 directly stimulate the 5-phosphatase activity of OCRL1. We conclude that rabs play a dual role in regulation of OCRL1, firstly targeting it to the Golgi apparatus and endosomes, and secondly, directly stimulating the 5-phosphatase activity of OCRL1 after membrane recruitment.
Collapse
Affiliation(s)
- Noora Hyvola
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, UK
| | - Aipo Diao
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, UK
| | - Eddie McKenzie
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, UK
| | - Alison Skippen
- Department of Physiology, University College London, London, UK
| | | | - Martin Lowe
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, UK
| |
Collapse
|
189
|
Yamashita SI, Oku M, Wasada Y, Ano Y, Sakai Y. PI4P-signaling pathway for the synthesis of a nascent membrane structure in selective autophagy. ACTA ACUST UNITED AC 2006; 173:709-17. [PMID: 16754956 PMCID: PMC2063888 DOI: 10.1083/jcb.200512142] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Phosphoinositides regulate a wide range of cellular activities, including membrane trafficking and biogenesis, via interaction with various effector proteins that contain phosphoinositide binding motifs. We show that in the yeast Pichia pastoris, phosphatidylinositol 4'-monophosphate (PI4P) initiates de novo membrane synthesis that is required for peroxisome degradation by selective autophagy and that this PI4P signaling is modulated by an ergosterol-converting PpAtg26 (autophagy-related) protein harboring a novel PI4P binding GRAM (glucosyltransferase, Rab-like GTPase activators, and myotubularins) domain. A phosphatidylinositol-4-OH kinase, PpPik1, is the primary source of PI4P. PI4P concentrated in a protein-lipid nucleation complex recruits PpAtg26 through an interaction with the GRAM domain. Sterol conversion by PpAtg26 at the nucleation complex is necessary for elongation and maturation of the membrane structure. This study reveals the role of the PI4P-signaling pathway in selective autophagy, a process comprising multistep molecular events that lead to the de novo membrane formation.
Collapse
Affiliation(s)
- Shun-ichi Yamashita
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
190
|
Abstract
The unique lipid composition of the Golgi membranes is critical for maintaining their structural and functional identity, and is regulated by local lipid metabolism, a variety of lipid-binding, -modifying, -sensing and -transfer proteins, and by selective lipid sorting mechanisms. A growing body of evidence suggests that certain lipids, such as phosphoinositides and diacylglycerol, regulate Golgi-mediated transport events. However, their exact role in this process, and the underlying mechanisms that maintain their critical levels in specific membrane domains of the Golgi apparatus, remain poorly understood. Nevertheless, recent advances have revealed key regulators of lipid homoeostasis in the Golgi complex and have demonstrated their role in Golgi secretory function.
Collapse
Affiliation(s)
- S Lev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
191
|
Kim T, Gondré-Lewis MC, Arnaoutova I, Loh YP. Dense-core secretory granule biogenesis. Physiology (Bethesda) 2006; 21:124-33. [PMID: 16565478 DOI: 10.1152/physiol.00043.2005] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The dense-core secretory granule is a key organelle for secretion of hormones and neuropeptides in endocrine cells and neurons, in response to stimulation. Cholesterol and granins are critical for the assembly of these organelles at the trans-Golgi network, and their biogenesis is regulated quantitatively by posttranscriptional and posttranslational mechanisms.
Collapse
Affiliation(s)
- Taeyoon Kim
- Section on Cellular Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
192
|
Lorenzo O, Urbé S, Clague MJ. Systematic analysis of myotubularins: heteromeric interactions, subcellular localisation and endosomerelated functions. J Cell Sci 2006; 119:2953-9. [PMID: 16787938 DOI: 10.1242/jcs.03040] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The myotubularins are a large family of lipid phosphatases with specificity towards PtdIns3P and PtdIns(3,5)P2. Each of the 14 family members bears a signature phosphatase domain, which is inactive in six cases due to amino acid changes at the catalytic site. Fragmentary data have indicated heteromeric interactions between myotubularins, which have hitherto paired an active family member with an inactive one. In this study we have conducted a largescale analysis of potential associations within the human myotubularin family, through directed two-hybrid screening and immunoprecipitation of epitope-tagged proteins. We have confirmed all previously reported combinations and identified novel heteromeric interactions: MTMR8 with MTMR9, and MTMR3 with MTMR4, the first such combination of enzymatically active MTMs. We also report the capacity of several family members to self-associate, including MTMR3 and MTMR4. Subcellular localisation studies reveal a unique distribution of MTMR4 to endosomal structures, the major site of substrate lipid accumulation. All active MTMs we have tested (MTM1, MTMR2-MTMR4) reduce endosomal PtdIns3P levels upon overexpression. Despite this, only MTMR4 exerts any effect on EGF receptor trafficking and degradation, which is more pronounced with a phosphatase inactive form of MTMR4 and requires an intact FYVE domain.
Collapse
Affiliation(s)
- Oscar Lorenzo
- Physiological Laboratory, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | | | | |
Collapse
|
193
|
Kapp-Barnea Y, Ninio-Many L, Hirschberg K, Fukuda M, Jeromin A, Sagi-Eisenberg R. Neuronal calcium sensor-1 and phosphatidylinositol 4-kinase beta stimulate extracellular signal-regulated kinase 1/2 signaling by accelerating recycling through the endocytic recycling compartment. Mol Biol Cell 2006; 17:4130-41. [PMID: 16837555 PMCID: PMC1593177 DOI: 10.1091/mbc.e05-11-1014] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We demonstrate that recycling through the endocytic recycling compartment (ERC) is an essential step in Fc epsilonRI-induced activation of extracellular signal-regulated kinase (ERK)1/2. We show that ERK1/2 acquires perinuclear localization and colocalizes with Rab 11 and internalized transferrin in Fc epsilonRI-activated cells. Moreover, a close correlation exists between the amount of ERC-localized ERK1/2 and the amount of phospho-ERK1/2 that resides in the nucleus. We further show that by activating phosphatidylinositol 4-kinase beta (PI4Kbeta) and increasing the cellular level of phosphatidylinositol(4) phosphate, neuronal calcium sensor-1 (NCS-1), a calmodulin-related protein, stimulates recycling and thereby enhances Fc epsilonRI-triggered activation and nuclear translocation of ERK1/2. Conversely, NCS-1 short hairpin RNA, a kinase dead (KD) mutant of PI4Kbeta (KD-PI4Kbeta), the pleckstrin homology (PH) domain of FAPP1 as well as RNA interference of synaptotagmin IX or monensin, which inhibit export from the ERC, abrogate Fc epsilonRI-induced activation of ERK1/2. Consistently, NCS-1 also enhances, whereas both KD-PI4Kbeta and FAPP1-PH domain inhibit, Fc epsilonRI-induced release of arachidonic acid/metabolites, a downstream target of ERK1/2 in mast cells. Together, our results demonstrate a novel role for NCS-1 and PI4Kbeta in regulating ERK1/2 signaling and inflammatory reactions in mast cells. Our results further identify the ERC as a crucial determinant in controlling ERK1/2 signaling.
Collapse
Affiliation(s)
| | | | - Koret Hirschberg
- Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Mitsunori Fukuda
- Department of Developmental Biology and Neurosciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan; and
| | - Andreas Jeromin
- Center for Learning and Memory, University of Texas at Austin, Austin, TX 78712
| | | |
Collapse
|
194
|
Casanova JE. There goes the neighborhood. Focus on "localized PtdIns 3,5-P2 synthesis to regulate early endosome dynamics and fusion". Am J Physiol Cell Physiol 2006; 291:C231-3. [PMID: 16825602 DOI: 10.1152/ajpcell.00128.2006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
195
|
Abstract
In skeletal muscle and adipose tissue, insulin-stimulated glucose uptake is dependent upon translocation of the insulin-responsive glucose transporter GLUT4 from intracellular storage compartments to the plasma membrane. This insulin-induced redistribution of GLUT4 protein is achieved through a series of highly organized membrane trafficking events, orchestrated by insulin receptor signals. Recently, several key molecules linking insulin receptor signals and membrane trafficking have been identified, and emerging evidence supports the importance of subcellular compartmentalization of signaling components at the right time and in the right place. In addition, the translocation of GLUT4 in adipocytes requires insulin stimulation of dynamic actin remodeling at the inner surface of the plasma membrane (cortical actin) and in the perinuclear region. This results from at least two independent insulin receptor signals, one leading to the activation of phosphatidylinositol (PI) 3-kinase and the other to the activation of the Rho family small GTP-binding protein TC10. Thus, both spatial and temporal regulations of actin dynamics, both beneath the plasma membrane and around endomembranes, by insulin receptor signals are also involved in the process of GLUT4 translocation.
Collapse
Affiliation(s)
- Makoto Kanzaki
- TUBERO/Tohoku University Biomedical Engineering Research Organization, Tohoku University, Sendai, Japan
| |
Collapse
|
196
|
Bankaitis VA. Contemporary methods in lipid profiling, lipid–protein interactions, and membrane organization. Methods 2006. [DOI: 10.1016/j.ymeth.2006.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
197
|
Szivak I, Lamb N, Heilmeyer LMG. Subcellular Localization and Structural Function of Endogenous Phosphorylated Phosphatidylinositol 4-Kinase (PI4K92). J Biol Chem 2006; 281:16740-9. [PMID: 16606619 DOI: 10.1074/jbc.m511645200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anti-phosphopeptide antibodies were raised against phosphatidylinositol 4-kinase (PI4K92) phosphorylation sites (Suer, S., Sickmann, A., Meyer, H. E., Herberg, F. W., and Heilmeyer, L. M. Jr. (2001) Eur. J. Biochem. 268, 2099-2106). Characterization proved three of them (anti-pSer-294, anti-pSer-496, and anti-pThr-504 antibody) to be highly specific, recognizing solely PI4K92 phosphorylated at these sites, respectively. Indirect immunofluorescence reveals that PI4K92 phosphorylated on Ser-294 localizes exclusively at the Golgi. The enzyme phosphorylated on Ser-496 and Thr-504 is detected in nuclear speckles. Phosphorylation of Ser-294 on PI4K92 increases the lipid kinase activity and thus serves better in maintaining Golgi function and morphology (compare Hausser, A., Storz, P., Martens, S., Link, G., Toker, A., and Pfizenmaier, K. (2005) Nat. Cell Biol. 7, 880-886). Microinjection of anti-pSer-496, but not of anti-pSer-294 or anti-pThr-504 antibody, into the cytoplasm or into the nucleus of HS68 cells leads to development of hotspots, probably representing aggregated PI4K92, and in later stages, cells become apoptotic and finally die. The association of phosphorylated PI4K92 with nuclear speckles is dynamic and follows the morphological alteration of speckles upon inhibition of mRNA transcription with alpha-amanitin. Overexpressed PI4K92 phosphorylated on Ser-294 is not transported to the nucleus, and that phosphorylated on Ser-496 is found in the nucleus and mislocalized at the Golgi complex. We conclude that nuclear phosphatidylinositol 4-phosphate, and consequently, synthesis of polyphosphoinositides are required for a correct nuclear function.
Collapse
Affiliation(s)
- Ilona Szivak
- Institut für Physiologische Chemie, Ruhruniversität Bochum, Universitätstrasse 150, MA 2/141, 44801 Bochum, Germany
| | | | | |
Collapse
|
198
|
Abstract
All eukaryotic cells contain multiple acidic organelles, and V-ATPases are central players in organelle acidification. Not only is the structure of V-ATPases highly conserved among eukaryotes, but there are also many regulatory mechanisms that are similar between fungi and higher eukaryotes. These mechanisms allow cells both to regulate the pHs of different compartments and to respond to changing extracellular conditions. The Saccharomyces cerevisiae V-ATPase has emerged as an important model for V-ATPase structure and function in all eukaryotic cells. This review discusses current knowledge of the structure, function, and regulation of the V-ATPase in S. cerevisiae and also examines the relationship between biosynthesis and transport of V-ATPase and compartment-specific regulation of acidification.
Collapse
Affiliation(s)
- Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams St., Syracuse, NY 13210, USA.
| |
Collapse
|
199
|
Guerriero CJ, Weixel KM, Bruns JR, Weisz OA. Phosphatidylinositol 5-kinase stimulates apical biosynthetic delivery via an Arp2/3-dependent mechanism. J Biol Chem 2006; 281:15376-84. [PMID: 16601114 DOI: 10.1074/jbc.m601239200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The mechanisms by which polarized epithelial cells target distinct carriers enriched in newly synthesized proteins to the apical or basolateral membrane remain largely unknown. Here we investigated the effect of phosphatidylinositol metabolism and modulation of the actin cytoskeleton, two regulatory mechanisms that have individually been suggested to function in biosynthetic traffic, on polarized traffic in Madin-Darby canine kidney cells. Overexpression of phosphatidylinositol 5-kinase (PI5K) increased actin comet frequency in Madin-Darby canine kidney cells and concomitantly stimulated trans-Golgi network (TGN) to apical membrane delivery of the raft-associated protein influenza hemagglutinin (HA), but did not affect delivery of a non-raft-associated apical protein or a basolateral marker. Modulation of actin comet formation by pharmacologic means, by overexpression of the TGN-localized inositol polyphosphate 5-phosphatase Ocrl, or by blockade of Arp2/3 function had parallel effects on the rate of apical delivery of HA. Moreover, HA released from a TGN block was colocalized in transport carriers in association with PI5K and actin comets. Inhibition of Arp2/3 function in combination with microtubule depolymerization led to a virtual block in HA delivery, suggesting synergistic coordination of these cytoskeletal assemblies in membrane transport. Our results suggest a previously unidentified role for actin comet-mediated propulsion in the biosynthetic delivery of a subset of apical proteins.
Collapse
Affiliation(s)
- Christopher J Guerriero
- Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
200
|
Furutani M, Itoh T, Ijuin T, Tsujita K, Takenawa T. Thin Layer Chromatography–Blotting, a Novel Method for the Detection of Phosphoinositides. ACTA ACUST UNITED AC 2006; 139:663-70. [PMID: 16672266 DOI: 10.1093/jb/mvj076] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Phosphoinositides are believed to be involved in fundamental cellular events such as signal transduction and vesicular trafficking. Aberrant metabolisms of this lipid, caused by mutations in phosphoinositide kinases, phosphatases and lipases are known to be related to variety of human disorders such as diabetes and cancer. While the majority of such information is obtained by analyzing genetic and biochemical properties of phosphoinositide-metabolic enzymes, direct measurement of cellular content of the lipid is hindered by the lack of a simple method that is sensitive enough to measure phosphoinositides present in trace amounts in vivo. Here, we describe a novel, thin layer chromatography (TLC)-based method by which cellular phosphoinositides are separated, transferred and detected by specific phosphoinositide-binding domains. This method was applied to follow the generation of minor phosphoinositides, such as PtdIns(3,4,5)P3 and PtdIns(3,4)P2 in response to insulin and to compare PtdIns(4,5)P2 and PtdIns(3,4,5)P3 levels in several cancer cell lines. The method has potential application not only in investigating the physiological roles of phosphoinositides, but also in diagnosing metabolic disease and cancer by directly assessing phosphoinositide levels in samples obtained from patients.
Collapse
Affiliation(s)
- Masahiro Furutani
- Department of Biochemistry, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639
| | | | | | | | | |
Collapse
|