151
|
Steinhorn B, Sorrentino A, Badole S, Bogdanova Y, Belousov V, Michel T. Chemogenetic generation of hydrogen peroxide in the heart induces severe cardiac dysfunction. Nat Commun 2018; 9:4044. [PMID: 30279532 PMCID: PMC6168530 DOI: 10.1038/s41467-018-06533-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/12/2018] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress plays an important role in the pathogenesis of many disease states. In the heart, reactive oxygen species are linked with cardiac ischemia/reperfusion injury, hypertrophy, and heart failure. While this correlation between ROS and cardiac pathology has been observed in multiple models of heart failure, the independent role of hydrogen peroxide (H2O2) in vitro and in vivo is unclear, owing to a lack of tools for precise manipulation of intracellular redox state. Here we apply a chemogenetic system based on a yeast D-amino acid oxidase to show that chronic generation of H2O2 in the heart induces a dilated cardiomyopathy with significant systolic dysfunction. We anticipate that chemogenetic approaches will enable future studies of in vivo H2O2 signaling not only in the heart, but also in the many other organ systems where the relationship between redox events and physiology remains unclear. Excessive production of reactive oxygen species (ROS) is associated with cardiac dysfunction, but the causal role of ROS remains poorly understood. Here the authors use an in vivo chemogenetic approach to develop a heart failure model in which generation of hydrogen peroxide in the heart leads to systolic heart failure without fibrotic remodeling.
Collapse
Affiliation(s)
- Benjamin Steinhorn
- Department of Medicine, Division of Cardiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Andrea Sorrentino
- Department of Medicine, Division of Cardiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Sachin Badole
- Department of Medicine, Division of Cardiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Yulia Bogdanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, GSP-7, Ulitsa Miklukho-Maklaya, 16/10, Moscow, Russia, 117997
| | - Vsevolod Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, GSP-7, Ulitsa Miklukho-Maklaya, 16/10, Moscow, Russia, 117997.,Pirogov Russian National Research Medical University, Moscow, Russia, 117997.,Institute for Cardiovascular Physiology, Georg August University Göttingen, D-37075, Göttingen, Germany
| | - Thomas Michel
- Department of Medicine, Division of Cardiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
152
|
Osuchowski MF, Ayala A, Bahrami S, Bauer M, Boros M, Cavaillon JM, Chaudry IH, Coopersmith CM, Deutschman CS, Drechsler S, Efron P, Frostell C, Fritsch G, Gozdzik W, Hellman J, Huber-Lang M, Inoue S, Knapp S, Kozlov AV, Libert C, Marshall JC, Moldawer LL, Radermacher P, Redl H, Remick DG, Singer M, Thiemermann C, Wang P, Wiersinga WJ, Xiao X, Zingarelli B. Minimum Quality Threshold in Pre-Clinical Sepsis Studies (MQTiPSS): An International Expert Consensus Initiative for Improvement of Animal Modeling in Sepsis. Shock 2018; 50:377-380. [PMID: 30106875 PMCID: PMC6133201 DOI: 10.1097/shk.0000000000001212] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/22/2018] [Accepted: 04/19/2018] [Indexed: 12/29/2022]
Abstract
Preclinical animal studies precede the majority of clinical trials. While the clinical definitions of sepsis and recommended treatments are regularly updated, a systematic review of preclinical models of sepsis has not been done and clear modeling guidelines are lacking. To address this deficit, a Wiggers-Bernard Conference on preclinical sepsis modeling was held in Vienna in May, 2017. The goal of the conference was to identify limitations of preclinical sepsis models and to propose a set of guidelines, defined as the "Minimum Quality Threshold in Preclinical Sepsis Studies" (MQTiPSS), to enhance translational value of these models. A total of 31 experts from 13 countries participated and were divided into six thematic Working Groups: Study Design, Humane modeling, Infection types, Organ failure/dysfunction, Fluid resuscitation, and Antimicrobial therapy endpoints. As basis for the MQTiPSS discussions, the participants conducted a literature review of the 260 most highly cited scientific articles on sepsis models (2002-2013). Overall, the participants reached consensus on 29 points; 20 at "recommendation" and nine at "consideration" strength. This Executive Summary provides a synopsis of the MQTiPSS consensus. We believe that these recommendations and considerations will serve to bring a level of standardization to preclinical models of sepsis and ultimately improve translation of preclinical findings. These guideline points are proposed as "best practices" for animal models of sepsis that should be implemented. To encourage its wide dissemination, this article is freely accessible on the Intensive Care Medicine Experimental and Infection journal websites. In order to encourage its wide dissemination, this article is freely accessible in Shock, Infection, and Intensive Care Medicine Experimental.
Collapse
Affiliation(s)
- Marcin F. Osuchowski
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria
| | - Alfred Ayala
- Rhode Island Hospital and Alpert School of Medicine at Brown University, Providence, Rhode Island
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria
| | | | - Mihaly Boros
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | | | - Irshad H. Chaudry
- University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | | | | | - Susanne Drechsler
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria
| | - Philip Efron
- University of Florida College of Medicine, Gainesville, Florida
| | - Claes Frostell
- Division of Anaesthesia and Intensive Care, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | - Gerhard Fritsch
- AUVA Trauma Center, Vienna, Austria
- Paracelsus Medical University, Salzburg, Austria
| | | | - Judith Hellman
- University of California School of Medicine, San Francisco, California
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Shigeaki Inoue
- Kobe University Graduate School of Medicine, Kobe, Japan
| | - Sylvia Knapp
- Medical University Vienna, Department of Medicine 1, Vienna, Austria
| | - Andrey V. Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria
| | - Claude Libert
- Center for Inflammation Research, VIB, Ghent, Belgium
- University Ghent, Ghent, Belgium
| | - John C. Marshall
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Canada
| | | | - Peter Radermacher
- Institute of Anaesthesiological Pathophysiology and Process Development, University Hospital of Ulm, Ulm, Germany
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria
| | | | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, University College London, UK
| | - Christoph Thiemermann
- The William Harvey Research Institute, Barts and London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ping Wang
- Feinstein Institute for Medical Research, Manhasset, New York
| | - W. Joost Wiersinga
- Division of Infectious Diseases, and Center for Experimental and Molecular Medicine, the Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Xianzhong Xiao
- Xiangya School of Medicine, Central South University, Chagnsha, Hunan, China
| | - Basilia Zingarelli
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
153
|
Tsuda M, Fukushima A, Matsumoto J, Takada S, Kakutani N, Nambu H, Yamanashi K, Furihata T, Yokota T, Okita K, Kinugawa S, Anzai T. Protein acetylation in skeletal muscle mitochondria is involved in impaired fatty acid oxidation and exercise intolerance in heart failure. J Cachexia Sarcopenia Muscle 2018; 9:844-859. [PMID: 30168279 PMCID: PMC6204592 DOI: 10.1002/jcsm.12322] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/04/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Exercise intolerance is a common clinical feature and is linked to poor prognosis in patients with heart failure (HF). Skeletal muscle dysfunction, including impaired energy metabolism in the skeletal muscle, is suspected to play a central role in this intolerance, but the underlying mechanisms remain elusive. Lysine acetylation, a recently identified post-translational modification, has emerged as a major contributor to the derangement of mitochondrial metabolism. We thus investigated whether mitochondrial protein acetylation is associated with impaired skeletal muscle metabolism and lowered exercise capacity in both basic and clinical settings of HF. METHODS We first conducted a global metabolomic analysis to determine whether plasma acetyl-lysine is a determinant factor for peak oxygen uptake (peak VO2 ) in HF patients. We then created a murine model of HF (n = 11) or sham-operated (n = 11) mice with or without limited exercise capacity by ligating a coronary artery, and we tested the gastrocnemius tissues by using mass spectrometry-based acetylomics. A causative relationship between acetylation and the activity of a metabolic enzyme was confirmed in in vitro studies. RESULTS The metabolomic analysis verified that acetyl-lysine was the most relevant metabolite that was negatively correlated with peak VO2 (r = -0.81, P < 0.01). At 4 weeks post-myocardial infarction HF, a treadmill test showed lowered work (distance × body weight) and peak VO2 in the HF mice compared with the sham-operated mice (11 ± 1 vs. 23 ± 1 J, P < 0.01; 143 ± 5 vs. 159 ± 3 mL/kg/min, P = 0.01; respectively). As noted, the protein acetylation of gastrocnemius mitochondria was 48% greater in the HF mice than the sham-operated mice (P = 0.047). Acetylproteomics identified the mitochondrial enzymes involved in fatty acid β-oxidation (FAO), the tricarboxylic acid cycle, and the electron transport chain as targets of acetylation. In parallel, the FAO enzyme (β-hydroxyacyl CoA dehydrogenase) activity and fatty acid-driven mitochondrial respiration were reduced in the HF mice. This alteration was associated with a decreased expression of mitochondrial deacetylase, Sirtuin 3, because silencing of Sirtuin 3 in cultured skeletal muscle cells resulted in increased mitochondrial acetylation and reduced β-hydroxyacyl CoA dehydrogenase activity. CONCLUSIONS Enhanced mitochondrial protein acetylation is associated with impaired FAO in skeletal muscle and reduced exercise capacity in HF. Our results indicate that lysine acetylation is a crucial mechanism underlying deranged skeletal muscle metabolism, suggesting that its modulation is a potential approach for exercise intolerance in HF.
Collapse
Affiliation(s)
- Masaya Tsuda
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Arata Fukushima
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Junichi Matsumoto
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shingo Takada
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Kakutani
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideo Nambu
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Katsuma Yamanashi
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takaaki Furihata
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takashi Yokota
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Koichi Okita
- Graduate School of Program in Lifelong Learning Studies, Hokusho University, Ebetsu, Japan
| | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Toshihisa Anzai
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
154
|
Cardiosphere-derived cells suppress allogeneic lymphocytes by production of PGE2 acting via the EP4 receptor. Sci Rep 2018; 8:13351. [PMID: 30190508 PMCID: PMC6127326 DOI: 10.1038/s41598-018-31569-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 08/07/2018] [Indexed: 12/17/2022] Open
Abstract
Cardiosphere-derived cells (CDCs) are a cardiac progenitor cell population, which have been shown to possess cardiac regenerative properties and can improve heart function in a variety of cardiac diseases. Studies in large animal models have predominantly focussed on using autologous cells for safety, however allogeneic cell banks would allow for a practical, cost-effective and efficient use in a clinical setting. The aim of this work was to determine the immunomodulatory status of these cells using CDCs and lymphocytes from 5 dogs. CDCs expressed MHC I but not MHC II molecules and in mixed lymphocyte reactions demonstrated a lack of lymphocyte proliferation in response to MHC-mismatched CDCs. Furthermore, MHC-mismatched CDCs suppressed lymphocyte proliferation and activation in response to Concanavalin A. Transwell experiments demonstrated that this was predominantly due to direct cell-cell contact in addition to soluble mediators whereby CDCs produced high levels of PGE2 under inflammatory conditions. This led to down-regulation of CD25 expression on lymphocytes via the EP4 receptor. Blocking prostaglandin synthesis restored both, proliferation and activation (measured via CD25 expression) of stimulated lymphocytes. We demonstrated for the first time in a large animal model that CDCs inhibit proliferation in allo-reactive lymphocytes and have potent immunosuppressive activity mediated via PGE2.
Collapse
|
155
|
Feng Y, Hemmeryckx B, Frederix L, Lox M, Wu J, Heggermont W, Lu HR, Gallacher D, Oyen R, Lijnen HR, Ni Y. Monitoring reperfused myocardial infarction with delayed left ventricular systolic dysfunction in rabbits by longitudinal imaging. Quant Imaging Med Surg 2018; 8:754-769. [PMID: 30306056 DOI: 10.21037/qims.2018.09.05] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Background An experimental imaging platform for longitudinal monitoring and evaluation of cardiac morphology-function changes has been long desired. We sought to establish such a platform by using a rabbit model of reperfused myocardial infarction (MI) that develops chronic left ventricle systolic dysfunction (LVSD) within 7 weeks. Methods Fifty-five New Zeeland white (NZW) rabbits received sham-operated or 60-min left circumflex coronary artery (LCx) ligation followed by reperfusion. Cardiac magnetic resonance imaging (cMRI), transthoracic echocardiography (echo), and blood samples were collected at baseline, in acute (48 hours or 1 week) and chronic (7 weeks) stage subsequent to MI for in vivo assessment of infarct size, cardiac morphology, LV function, and myocardial enzymes. Seven weeks post MI, animals were sacrificed and heart tissues were processed for histopathological staining. Results The success rate of surgical operation was 87.27%. The animal mortality rates were 12.7% and 3.6% both in acute and chronic stage separately. Serum levels of the myocardial enzyme cardiac Troponin T (cTnT) were significantly increased in MI rabbits as compared with sham animals after 4 hours of operation (P<0.05). According to cardiac morphology and function changes, 4 groups could be distinguished: sham rabbits (n=12), and MI rabbits with no (MI_NO_LVSD; n=10), moderate (MI_M_LVSD; n=9) and severe (MI_S_LVSD; n=15) LVSD. No significant differences in cardiac function or wall thickening between sham and MI_NO_LVSD rabbits were observed at both stages using both cMRI and echo methods. cMRI data showed that MI_M_LVSD rabbits exhibited a reduction of ejection fraction (EF) and an increase in end-systolic volume (ESV) at the acute phase, while at the chronic stage these parameters did not change further. Moreover, in MI_S_LVSD animals, these observations were more striking at the acute stage followed by a further decline in EF and increase in ESV at the chronic stage. Lateral wall thickening determined by cMRI was significantly decreased in MI_M_LVSD versus MI_NO_LVSD animals at both stages (P<0.05). As for MI_S_LVSD versus MI_M_LVSD rabbits, the thickening of anterior, inferior and lateral walls was significantly more decreased at both stages (P<0.05). Echo confirmed the findings of cMRI. Furthermore, these in vivo outcomes including those from vivid cine cMRI could be supported by exactly matched ex vivo histomorphological evidences. Conclusions Our findings indicate that chronic LVSD developed over time after surgery-induced MI in rabbits can be longitudinally evaluated using non-invasive imaging techniques and confirmed by the entire-heart-slice histomorphology. This experimental LVSD platform in rabbits may interest researchers in the field of experimental cardiology and help strengthen drug development and translational research for the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Yuanbo Feng
- Radiology, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Bianca Hemmeryckx
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Liesbeth Frederix
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Marleen Lox
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Jun Wu
- Ultrasound Diagnostic department, the second affiliated hospital of Dalian Medical University, Dalian 116000, China
| | - Ward Heggermont
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Hua Rong Lu
- Translational Sciences, Safety Pharmacology Research, Janssen Research & Development, Janssen Pharmaceutical NV, Beerse, Belgium
| | - David Gallacher
- Translational Sciences, Safety Pharmacology Research, Janssen Research & Development, Janssen Pharmaceutical NV, Beerse, Belgium
| | - Raymond Oyen
- Radiology, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - H Roger Lijnen
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Yicheng Ni
- Radiology, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| |
Collapse
|
156
|
Osuchowski MF, Ayala A, Bahrami S, Bauer M, Boros M, Cavaillon JM, Chaudry IH, Coopersmith CM, Deutschman C, Drechsler S, Efron P, Frostell C, Fritsch G, Gozdzik W, Hellman J, Huber-Lang M, Inoue S, Knapp S, Kozlov AV, Libert C, Marshall JC, Moldawer LL, Radermacher P, Redl H, Remick DG, Singer M, Thiemermann C, Wang P, Wiersinga WJ, Xiao X, Zingarelli B. Minimum quality threshold in pre-clinical sepsis studies (MQTiPSS): an international expert consensus initiative for improvement of animal modeling in sepsis. Intensive Care Med Exp 2018; 6:26. [PMID: 30112605 PMCID: PMC6093828 DOI: 10.1186/s40635-018-0189-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 07/18/2018] [Indexed: 12/16/2022] Open
Abstract
Background Pre-clinical animal studies precede the majority of clinical trials. While the clinical definitions of sepsis and recommended treatments are regularly updated, a systematic review of pre-clinical models of sepsis has not been done and clear modeling guidelines are lacking. Objective To address this deficit, a Wiggers-Bernard Conference on pre-clinical sepsis modeling was held in Vienna in May 2017. The goal of the conference was to identify limitations of pre-clinical sepsis models and to propose a set of guidelines, defined as the “Minimum Quality Threshold in Pre-Clinical Sepsis Studies” (MQTiPSS), to enhance translational value of these models. Methods A total of 31 experts from 13 countries participated and were divided into 6 thematic working groups (WG): (1) study design, (2) humane modeling, (3) infection types, (4) organ failure/dysfunction, (5) fluid resuscitation, and (6) antimicrobial therapy endpoints. As basis for the MQTiPSS discussions, the participants conducted a literature review of the 260 most highly cited scientific articles on sepsis models (2002–2013). Results Overall, the participants reached consensus on 29 points; 20 at “recommendation” (R) and 9 at “consideration” (C) strength. This executive summary provides a synopsis of the MQTiPSS consensus (Tables 1, 2, and 3). Detailed commentaries to all Rs and Cs are simultaneously published in three separate full-length papers. Conclusions We believe that these recommendations and considerations will serve to bring a level of standardization to pre-clinical models of sepsis and ultimately improve translation of pre-clinical findings. These guideline points are proposed as “best practices” for animal models of sepsis that should be implemented. In order to encourage its wide dissemination, this article is freely accessible in Shock, Infection and Intensive Care Medicine Experimental.
Collapse
Affiliation(s)
- Marcin F Osuchowski
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Donaueschingenstrasse 13, A-1200, Vienna, Austria.
| | - Alfred Ayala
- Rhode Island Hospital & Alpert School of Medicine at Brown University, Providence, RI, USA
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Donaueschingenstrasse 13, A-1200, Vienna, Austria
| | | | - Mihaly Boros
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | | | - Irshad H Chaudry
- University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | | | - Clifford Deutschman
- Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Susanne Drechsler
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Donaueschingenstrasse 13, A-1200, Vienna, Austria
| | - Philip Efron
- University of Florida College of Medicine, Gainesville, FL, USA
| | - Claes Frostell
- Division of Anaesthesia and Intensive Care, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | - Gerhard Fritsch
- AUVA Traumacenter, Vienna, Austria.,Paracelsus Medical University, Salzburg, Austria
| | | | - Judith Hellman
- School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Shigeaki Inoue
- Kobe University Graduate School of Medicine, Kobe, Japan
| | - Sylvia Knapp
- Department of Medicine 1, Medical University Vienna, Vienna, Austria
| | - Andrey V Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Donaueschingenstrasse 13, A-1200, Vienna, Austria
| | - Claude Libert
- Center for Inflammation Research, VIB, Ghent, Belgium.,University Ghent, Ghent, Belgium
| | - John C Marshall
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, Canada
| | - Lyle L Moldawer
- University of Florida College of Medicine, Gainesville, FL, USA
| | - Peter Radermacher
- Institute of Anaesthesiological Pathophysiology and Process Development, University Hospital of Ulm, Ulm, Germany
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Donaueschingenstrasse 13, A-1200, Vienna, Austria
| | | | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, University College London, London, UK
| | - Christoph Thiemermann
- The William Harvey Research Institute, Barts and London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Ping Wang
- Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Willem Joost Wiersinga
- Division of Infectious Diseases, and Center for Experimental and Molecular Medicine, the Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Xianzhong Xiao
- Xiangya School of Medicine, Central South University, Chagnsha, Hunan, China
| | - Basilia Zingarelli
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
157
|
Madrahimov N, Boyle EC, Gueler F, Goecke T, Knöfel AK, Irkha V, Maegel L, Höffler K, Natanov R, Ismail I, Maus U, Kühn C, Warnecke G, Shrestha ML, Cebotari S, Haverich A. Novel mouse model of cardiopulmonary bypass. Eur J Cardiothorac Surg 2018; 53:186-193. [PMID: 28977367 DOI: 10.1093/ejcts/ezx237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/06/2017] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Cardiopulmonary bypass (CPB) is an essential component of many cardiac interventions, and therefore, there is an increasing critical demand to minimize organ damage resulting from prolonged extracorporeal circulation. Our goal was to develop the first clinically relevant mouse model of CPB and to examine the course of extracorporeal circulation by closely monitoring haemodynamic and oxygenation parameters. METHODS Here, we report the optimization of device design, perfusion circuit and microsurgical techniques as well as validation of physiological functions during CPB in mice after circulatory arrest and reperfusion. Validation of the model required multiple blood gas analyses, and therefore, this initial report describes an acute model that is incompatible with survival due to the need of repetitive blood draws. RESULTS Biochemical and histopathological assessment of organ damage revealed only mild changes in the heart and lungs and signs of the beginning of acute organ failure in the liver and kidneys. CONCLUSIONS This new CPB mouse model will facilitate preclinical testing of therapeutic strategies in cardiovascular diseases and investigation of CPB in relation to different insults and pre-existing comorbidities. In combination with genetically modified mice, this model will be an important tool to dissect the molecular mechanisms involved in organ damage related to extracorporeal circulation.
Collapse
Affiliation(s)
- Nodir Madrahimov
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Erin C Boyle
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Faikah Gueler
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Tobias Goecke
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Ann-Kathrin Knöfel
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Valentyna Irkha
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Lavinia Maegel
- Department of Pathology, Hannover Medical School, Hannover, Germany
| | - Klaus Höffler
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Ruslan Natanov
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Issam Ismail
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Ulrich Maus
- Department of Pneumology, Hannover Medical School, Hannover, Germany
| | - Christian Kühn
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Gregor Warnecke
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Malakh-Lal Shrestha
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Serghei Cebotari
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
158
|
Cai W, Hite ZL, Lyu B, Wu Z, Lin Z, Gregorich ZR, Messer AE, McIlwain SJ, Marston SB, Kohmoto T, Ge Y. Temperature-sensitive sarcomeric protein post-translational modifications revealed by top-down proteomics. J Mol Cell Cardiol 2018; 122:11-22. [PMID: 30048711 DOI: 10.1016/j.yjmcc.2018.07.247] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/11/2018] [Accepted: 07/21/2018] [Indexed: 10/28/2022]
Abstract
Despite advancements in symptom management for heart failure (HF), this devastating clinical syndrome remains the leading cause of death in the developed world. Studies using animal models have greatly advanced our understanding of the molecular mechanisms underlying HF; however, differences in cardiac physiology and the manifestation of HF between animals, particularly rodents, and humans necessitates the direct interrogation of human heart tissue samples. Nevertheless, an ever-present concern when examining human heart tissue samples is the potential for artefactual changes related to temperature changes during tissue shipment or sample processing. Herein, we examined the effects of temperature on the post-translational modifications (PTMs) of sarcomeric proteins, the proteins responsible for muscle contraction, under conditions mimicking those that might occur during tissue shipment or sample processing. Using a powerful top-down proteomics method, we found that sarcomeric protein PTMs were differentially affected by temperature. Specifically, cardiac troponin I and enigma homolog isoform 2 showed robust increases in phosphorylation when tissue was incubated at either 4 °C or 22 °C. The observed increase is likely due to increased cyclic AMP levels and activation of protein kinase A in the tissue. On the contrary, cardiac troponin T and myosin regulatory light chain phosphorylation decreased when tissue was incubated at 4 °C or 22 °C. Furthermore, significant protein degradation was also observed after incubation at 4 °C or 22 °C. Overall, these results indicate that temperature exerts various effects on sarcomeric protein PTMs and careful tissue handling is critical for studies involving human heart samples. Moreover, these findings highlight the power of top-down proteomics for examining the integrity of cardiac tissue samples.
Collapse
Affiliation(s)
- Wenxuan Cai
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zachary L Hite
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Beini Lyu
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zhijie Wu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ziqing Lin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA; Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zachery R Gregorich
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Andrew E Messer
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Sean J McIlwain
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Steve B Marston
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Takushi Kohmoto
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ying Ge
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
159
|
Over-expression of a cardiac-specific human dopamine D5 receptor mutation in mice causes a dilated cardiomyopathy through ROS over-generation by NADPH oxidase activation and Nrf2 degradation. Redox Biol 2018; 19:134-146. [PMID: 30153650 PMCID: PMC6111036 DOI: 10.1016/j.redox.2018.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 12/26/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a severe disorder caused by medications or genetic mutations. D5 dopamine receptor (D5R) gene knockout (D5-/-) mice have cardiac hypertrophy and high blood pressure. To investigate the role and mechanism by which the D5R regulates cardiac function, we generated cardiac-specific human D5R F173L(hD5F173L-TG) and cardiac-specific human D5R wild-type (hD5WT-TG) transgenic mice, and H9c2 cells stably expressing hD5F173L and hD5WT. We found that cardiac-specific hD5F173L-TG mice, relative to hD5WT-TG mice, presented with DCM and increased cardiac expression of cardiac injury markers, NADPH oxidase activity, Nrf2 degradation, and activated ERK1/2/JNK pathway. H9c2-hD5F173L cells also had an increase in NADPH oxidase activity, Nrf2 degradation, and phospho-JNK (p-JNK) expression. A Nrf2 inhibitor also increased p-JNK expression in H9c2-hD5F173L cells but not in H9c2-hD5WT cells. We suggest that the D5R may play an important role in the preservation of normal heart function by inhibiting the production of reactive oxygen species, via inhibition of NADPH oxidase, Nrf2 degradation, and ERK1/2/JNK pathways.
Collapse
|
160
|
Meyer M, Rambod M, LeWinter M. Pharmacological heart rate lowering in patients with a preserved ejection fraction-review of a failing concept. Heart Fail Rev 2018; 23:499-506. [PMID: 29098508 PMCID: PMC5934348 DOI: 10.1007/s10741-017-9660-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epidemiological studies have demonstrated that high resting heart rates are associated with increased mortality. Clinical studies in patients with heart failure and reduced ejection fraction have shown that heart rate lowering with beta-blockers and ivabradine improves survival. It is therefore often assumed that heart rate lowering is beneficial in other patients as well. Here, we critically appraise the effects of pharmacological heart rate lowering in patients with both normal and reduced ejection fraction with an emphasis on the effects of pharmacological heart rate lowering in hypertension and heart failure. Emerging evidence from recent clinical trials and meta-analyses suggest that pharmacological heart rate lowering is not beneficial in patients with a normal or preserved ejection fraction. This has just begun to be reflected in some but not all guideline recommendations. The detrimental effects of pharmacological heart rate lowering are due to an increase in central blood pressures, higher left ventricular systolic and diastolic pressures, and increased ventricular wall stress. Therefore, we propose that heart rate lowering per se reproduces the hemodynamic effects of diastolic dysfunction and imposes an increased arterial load on the left ventricle, which combine to increase the risk of heart failure and atrial fibrillation. Pharmacologic heart rate lowering is clearly beneficial in patients with a dilated cardiomyopathy but not in patients with normal chamber dimensions and normal systolic function. These conflicting effects can be explained based on a model that considers the hemodynamic and ventricular structural effects of heart rate changes.
Collapse
Affiliation(s)
- Markus Meyer
- Department of Medicine, Cardiology Division, Larner College of Medicine at the University of Vermont, UVMMC, McClure 1, Cardiology, 111 Colchester Avenue, Burlington, VT, 05401, USA.
- Department of Medicine, Cardiology Division, Larner College of Medicine at the University of Vermont, Burlington, VT, 05405, USA.
| | - Mehdi Rambod
- Department of Medicine, Cardiology Division, Larner College of Medicine at the University of Vermont, Burlington, VT, 05405, USA
| | - Martin LeWinter
- Department of Medicine, Cardiology Division, Larner College of Medicine at the University of Vermont, Burlington, VT, 05405, USA
| |
Collapse
|
161
|
Rizvi F, Siddiqui R, DeFranco A, Homar P, Emelyanova L, Holmuhamedov E, Ross G, Tajik AJ, Jahangir A. Simvastatin reduces TGF-β1-induced SMAD2/3-dependent human ventricular fibroblasts differentiation: Role of protein phosphatase activation. Int J Cardiol 2018; 270:228-236. [PMID: 30220377 DOI: 10.1016/j.ijcard.2018.06.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/18/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Excessive cardiac fibrosis due to maladaptive remodeling leads to progression of cardiac dysfunction and is modulated by TGF-β1-activated intracellular phospho-SMAD signaling effectors and transcription regulators. SMAD2/3 phosphorylation, regulated by protein-phosphatases, has been studied in different cell types, but its role in human ventricular fibroblasts (hVFs) is not defined as a target to reduce cytokine-mediated excessive fibrotic response and adverse cardiac remodeling. Statins are a class of drugs reported to reduce cardiac fibrosis, although underlying mechanisms are not completely understood. We aimed to assess whether simvastatin-mediated reduction in TGF-β1-augmented profibrotic response involves reduction in phospho-SMAD2/3 owing to activation of protein-phosphatase in hVFs. METHODS AND RESULTS Cultures of hVFs were used. Effect of simvastatin on TGF-β1-treated hVF proliferation, cytotoxicity, myofibroblast differentiation/activation, profibrotic gene expression and protein-phosphatase activity was assessed. Simvastatin (1 μM) reduced effect of TGF-β1 (5 ng/mL) on hVF proliferation, myofibroblast differentiation (reduced α-smooth muscle actin [α-SMA-expression]) and activation (decreased procollagen-peptide release). Simvastatin also reduced TGF-β1-stimulated time-dependent increases in SMAD2/3 phosphorylation and nuclear translocation, mediated through catalytic activation of protein-phosphatases PPM1A and PP2A, which physically interact with SMAD2/3, thereby promoting their dephosphorylation. Effect of simvastatin on TGF-β1-induced fibroblast activation was annulled by okadaic acid, an inhibitor of protein-phosphatase. CONCLUSIONS This proof-of-concept study using an in vitro experimental cell culture model identifies the protective role of simvastatin against TGF-β1-induced hVF transformation into activated myofibroblasts through activation of protein phosphatase, a novel target that can be therapeutically modulated to curb excessive cardiac fibrosis associated with maladaptive cardiac remodeling.
Collapse
Affiliation(s)
- Farhan Rizvi
- Center for Integrative Research on Cardiovascular Aging (CIRCA), Aurora Research Institute, Aurora Health Care, 2801 W. Kinnickinnic River Parkway, Milwaukee, WI, USA.
| | - Ramail Siddiqui
- Center for Integrative Research on Cardiovascular Aging (CIRCA), Aurora Research Institute, Aurora Health Care, 2801 W. Kinnickinnic River Parkway, Milwaukee, WI, USA
| | - Alessandra DeFranco
- Center for Integrative Research on Cardiovascular Aging (CIRCA), Aurora Research Institute, Aurora Health Care, 2801 W. Kinnickinnic River Parkway, Milwaukee, WI, USA
| | - Peter Homar
- Center for Integrative Research on Cardiovascular Aging (CIRCA), Aurora Research Institute, Aurora Health Care, 2801 W. Kinnickinnic River Parkway, Milwaukee, WI, USA
| | - Larisa Emelyanova
- Center for Integrative Research on Cardiovascular Aging (CIRCA), Aurora Research Institute, Aurora Health Care, 2801 W. Kinnickinnic River Parkway, Milwaukee, WI, USA
| | - Ekhson Holmuhamedov
- Center for Integrative Research on Cardiovascular Aging (CIRCA), Aurora Research Institute, Aurora Health Care, 2801 W. Kinnickinnic River Parkway, Milwaukee, WI, USA
| | - Gracious Ross
- Center for Integrative Research on Cardiovascular Aging (CIRCA), Aurora Research Institute, Aurora Health Care, 2801 W. Kinnickinnic River Parkway, Milwaukee, WI, USA
| | - A Jamil Tajik
- Center for Integrative Research on Cardiovascular Aging (CIRCA), Aurora Research Institute, Aurora Health Care, 2801 W. Kinnickinnic River Parkway, Milwaukee, WI, USA; Aurora Cardiovascular Services, Aurora Sinai/Aurora St. Luke's Medical Centers, University of Wisconsin School of Medicine and Public Health, 2801 W. Kinnickinnic River Parkway, Milwaukee, WI, USA
| | - Arshad Jahangir
- Center for Integrative Research on Cardiovascular Aging (CIRCA), Aurora Research Institute, Aurora Health Care, 2801 W. Kinnickinnic River Parkway, Milwaukee, WI, USA; Aurora Cardiovascular Services, Aurora Sinai/Aurora St. Luke's Medical Centers, University of Wisconsin School of Medicine and Public Health, 2801 W. Kinnickinnic River Parkway, Milwaukee, WI, USA
| |
Collapse
|
162
|
Melleby AO, Romaine A, Aronsen JM, Veras I, Zhang L, Sjaastad I, Lunde IG, Christensen G. A novel method for high precision aortic constriction that allows for generation of specific cardiac phenotypes in mice. Cardiovasc Res 2018; 114:1680-1690. [DOI: 10.1093/cvr/cvy141] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/31/2018] [Indexed: 12/31/2022] Open
Affiliation(s)
- Arne O Melleby
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Andreas Romaine
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Jan Magnus Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway
- Bjørknes College, Oslo, Norway
| | - Ioanni Veras
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway
| | - Lili Zhang
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Ida G Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
163
|
Curl CL, Danes VR, Bell JR, Raaijmakers AJA, Ip WTK, Chandramouli C, Harding TW, Porrello ER, Erickson JR, Charchar FJ, Kompa AR, Edgley AJ, Crossman DJ, Soeller C, Mellor KM, Kalman JM, Harrap SB, Delbridge LMD. Cardiomyocyte Functional Etiology in Heart Failure With Preserved Ejection Fraction Is Distinctive-A New Preclinical Model. J Am Heart Assoc 2018; 7:JAHA.117.007451. [PMID: 29858360 PMCID: PMC6015350 DOI: 10.1161/jaha.117.007451] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Among the growing numbers of patients with heart failure, up to one half have heart failure with preserved ejection fraction (HFpEF). The lack of effective treatments for HFpEF is a substantial and escalating unmet clinical need—and the lack of HFpEF‐specific animal models represents a major preclinical barrier in advancing understanding of HFpEF. As established treatments for heart failure with reduced ejection fraction (HFrEF) have proven ineffective for HFpEF, the contention that the intrinsic cardiomyocyte phenotype is distinct in these 2 conditions requires consideration. Our goal was to validate and characterize a new rodent model of HFpEF, undertaking longitudinal investigations to delineate the associated cardiac and cardiomyocyte pathophysiology. Methods and Results The selectively inbred Hypertrophic Heart Rat (HHR) strain exhibits adult cardiac enlargement (without hypertension) and premature death (40% mortality at 50 weeks) compared to its control strain, the normal heart rat. Hypertrophy was characterized in vivo by maintained systolic parameters (ejection fraction at 85%–90% control) with marked diastolic dysfunction (increased E/E′). Surprisingly, HHR cardiomyocytes were hypercontractile, exhibiting high Ca2+ operational levels and markedly increased L‐type Ca2+ channel current. In HHR, prominent regions of reparative fibrosis in the left ventricle free wall adjacent to the interventricular septum were observed. Conclusions Thus, the cardiomyocyte remodeling process in the etiology of this HFpEF model contrasts dramatically with the suppressed Ca2+ cycling state that typifies heart failure with reduced ejection fraction. These findings may explain clinical observations, that treatments considered appropriate for heart failure with reduced ejection fraction are of little benefit for HFpEF—and suggest a basis for new therapeutic strategies.
Collapse
Affiliation(s)
- Claire L Curl
- Department of Physiology, University of Melbourne, Victoria, Australia
| | - Vennetia R Danes
- Department of Physiology, University of Melbourne, Victoria, Australia
| | - James R Bell
- Department of Physiology, University of Melbourne, Victoria, Australia
| | | | - Wendy T K Ip
- Department of Physiology, University of Melbourne, Victoria, Australia
| | | | - Tristan W Harding
- Department of Physiology, University of Melbourne, Victoria, Australia
| | - Enzo R Porrello
- Department of Physiology, University of Melbourne, Victoria, Australia.,Murdoch Children's Research Institute, Melbourne, Australia
| | | | - Fadi J Charchar
- School of Applied & Biomedical Sciences, Federation University, Ballarat, Australia
| | - Andrew R Kompa
- Department of Medicine, St. Vincent's Hospital The University of Melbourne, Australia
| | - Amanda J Edgley
- Department of Medicine, St. Vincent's Hospital The University of Melbourne, Australia
| | | | | | | | - Jonathan M Kalman
- Department of Medicine, University of Melbourne, Victoria, Australia
| | - Stephen B Harrap
- Department of Physiology, University of Melbourne, Victoria, Australia
| | - Lea M D Delbridge
- Department of Physiology, University of Melbourne, Victoria, Australia
| |
Collapse
|
164
|
Villalba-Orero M, López-Olañeta MM, González-López E, Padrón-Barthe L, Gómez-Salinero JM, García-Prieto J, Wai T, García-Pavía P, Ibáñez B, Jiménez-Borreguero LJ, Lara-Pezzi E. Lung ultrasound as a translational approach for non-invasive assessment of heart failure with reduced or preserved ejection fraction in mice. Cardiovasc Res 2018; 113:1113-1123. [PMID: 28472392 DOI: 10.1093/cvr/cvx090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/03/2017] [Indexed: 12/28/2022] Open
Abstract
Aims Heart failure (HF) has become an epidemic and constitutes a major medical, social, and economic problem worldwide. Despite advances in medical treatment, HF prognosis remains poor. The development of efficient therapies is hampered by the lack of appropriate animal models in which HF can be reliably determined, particularly in mice. The development of HF in mice is often assumed based on the presence of cardiac dysfunction, but HF itself is seldom proved. Lung ultrasound (LUS) has become a helpful tool for lung congestion assessment in patients at all stages of HF. We aimed to apply this non-invasive imaging tool to evaluate HF in mouse models of both systolic and diastolic dysfunction. Methods and results We used LUS to study HF in a mouse model of systolic dysfunction, dilated cardiomyopathy, and in a mouse model of diastolic dysfunction, diabetic cardiomyopathy. LUS proved to be a reliable and reproducible tool to detect pulmonary congestion in mice. The combination of LUS and echocardiography allowed discriminating those mice that develop HF from those that do not, even in the presence of evident cardiac dysfunction. The study showed that LUS can be used to identify the onset of HF decompensation and to evaluate the efficacy of therapies for this syndrome. Conclusions This novel approach in mouse models of cardiac disease enables for the first time to adequately diagnose HF non-invasively in mice with preserved or reduced ejection fraction, and will pave the way to a better understanding of HF and to the development of new therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Esther González-López
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Laura Padrón-Barthe
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | | | - Jaime García-Prieto
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Timothy Wai
- Institut Necker-Enfants Malades, Université Paris Descartes, Paris, France
| | - Pablo García-Pavía
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, Madrid, Spain.,Centro de Investigación Biomédica en Red Para Cardiología (CIBERCV), Madrid, Spain.,Universidad Francisco de Vitoria, Madrid, Spain
| | - Borja Ibáñez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,Centro de Investigación Biomédica en Red Para Cardiología (CIBERCV), Madrid, Spain.,Department of Cardiology, Instituto de Investigación Sanitaria (IIS), Fundación Jiménez Díaz Hospital, Madrid, Spain
| | - Luis J Jiménez-Borreguero
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,Hospital de la Princesa, Madrid, Spain
| | - Enrique Lara-Pezzi
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,Centro de Investigación Biomédica en Red Para Cardiología (CIBERCV), Madrid, Spain.,National Heart & Lung Institute, Imperial College London, London, UK
| |
Collapse
|
165
|
Platt MJ, Huber JS, Romanova N, Brunt KR, Simpson JA. Pathophysiological Mapping of Experimental Heart Failure: Left and Right Ventricular Remodeling in Transverse Aortic Constriction Is Temporally, Kinetically and Structurally Distinct. Front Physiol 2018; 9:472. [PMID: 29867532 PMCID: PMC5962732 DOI: 10.3389/fphys.2018.00472] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/16/2018] [Indexed: 12/16/2022] Open
Abstract
A growing proportion of heart failure (HF) patients present with impairments in both ventricles. Experimental pressure-overload (i.e., transverse aortic constriction, TAC) induces left ventricle (LV) hypertrophy and failure, as well as right ventricle (RV) dysfunction. However, little is known about the coordinated progression of biventricular dysfunction that occurs in TAC. Here we investigated the time course of systolic and diastolic function in both the LV and RV concurrently to improve our understanding of the chronology of events in TAC. Hemodynamic, histological, and morphometric assessments were obtained from the LV and RV at 2, 4, 9, and 18 weeks post-surgery. Results: Systolic pressures peaked in both ventricles at 4 weeks, thereafter steadily declining in the LV, while remaining elevated in the RV. The LV and RV followed different structural and functional timelines, suggesting the patterns in one ventricle are independent from the opposing ventricle. RV hypertrophy/fibrosis and pulmonary arterial remodeling confirmed a progressive right-sided pathology. We further identified both compensation and decompensation in the LV with persistent concentric hypertrophy in both phases. Finally, diastolic impairments in both ventricles manifested as an intricate progression of multiple parameters that were not in agreement until overt systolic failure was evident. Conclusion: We establish pulmonary hypertension was secondary to LV dysfunction, confirming TAC is a model of type II pulmonary hypertension. This study also challenges some common assumptions in experimental HF (e.g., the relationship between fibrosis and filling pressure) while addressing a knowledge gap with respect to temporality of RV remodeling in pressure-overload.
Collapse
Affiliation(s)
- Mathew J. Platt
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada
- IMPART Team Canada Investigator Network, Saint John, NB, Canada
| | - Jason S. Huber
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada
- IMPART Team Canada Investigator Network, Saint John, NB, Canada
| | - Nadya Romanova
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada
- IMPART Team Canada Investigator Network, Saint John, NB, Canada
| | - Keith R. Brunt
- IMPART Team Canada Investigator Network, Saint John, NB, Canada
- Department of Pharmacology, Dalhousie Medicine New Brunswick, Saint John, NB, Canada
| | - Jeremy A. Simpson
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada
- IMPART Team Canada Investigator Network, Saint John, NB, Canada
| |
Collapse
|
166
|
Orabi B, Kaddoura R, Omar AS, Carr C, Alkhulaifi A. Molecular and clinical roles of incretin-based drugs in patients with heart failure. Heart Fail Rev 2018; 23:363-376. [PMID: 29682682 DOI: 10.1007/s10741-018-9702-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors produce some beneficial and deleterious effects in diabetic patients not mediated by their glycemic lowering effects, and there is a need for better understanding of the molecular basis of these effects. They possess antioxidant and anti-inflammatory effects with some direct vasodilatory action (animal and human trial data) that may indirectly influence heart failure (HF). Unlike GLP-1R agonists, signaling for HF adverse effects was observed with two DPP-4 inhibitors, saxagliptin and alogliptin. Accordingly, these drugs should be used with caution in heart failure patients.
Collapse
Affiliation(s)
- Bassant Orabi
- Department of Clinical pharmacy, Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Rasha Kaddoura
- Department of Clinical pharmacy, Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Amr S Omar
- Department of Cardiothoracic Surgery/Cardiac Anaesthesia & ICU, Heart Hospital, Hamad Medical Corporation, (PO: 3050), Doha, Qatar.
- Department of Critical Care Medicine, Beni Suef University, Beni Suef, Egypt.
- Weill Cornell Medical College in Qatar, Doha, Qatar.
| | - Cornelia Carr
- Department of Cardiothoracic Surgery/Cardiac Anaesthesia & ICU, Heart Hospital, Hamad Medical Corporation, (PO: 3050), Doha, Qatar
| | - Abdulaziz Alkhulaifi
- Department of Cardiothoracic Surgery/Cardiac Anaesthesia & ICU, Heart Hospital, Hamad Medical Corporation, (PO: 3050), Doha, Qatar
| |
Collapse
|
167
|
Yan H, Li Y, Wang C, Zhang Y, Liu C, Zhou K, Hua Y. Contrary microRNA Expression Pattern Between Fetal and Adult Cardiac Remodeling: Therapeutic Value for Heart Failure. Cardiovasc Toxicol 2018; 17:267-276. [PMID: 27509882 DOI: 10.1007/s12012-016-9381-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
microRNAs (miRNAs) belong to a class of non-coding RNAs that regulate post-transcriptional gene expression during development and disease. Growing evidence indicates abundant miRNA expression changes and their important role in cardiac hypertrophy and failure. However, the role of miRNAs in fetal cardiac remodeling is little known. Here, we investigated the altered expression of fifteen miRNAs in rat fetal cardiac remodeling compared with adult cardiac remodeling. Among fifteen tested miRNAs, eleven and five miRNAs (miR-199a-5p, miR-214-3p, miR-155-3p, miR-155-5p and miR-499-5p) are significantly differentially expressed in fetal and adult cardiac remodeling, respectively. After comparison of miRNA expression in fetal and adult cardiac remodeling, we find that miRNA expression returns to the fetal level in adult cardiac failure and is activated in advance of the adult level in fetal failure. The current study highlights the contrary expression pattern between fetal and adult cardiac remodeling and that supports a novel potential therapeutic approach to treating heart failure.
Collapse
Affiliation(s)
- Hualin Yan
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, No. 20, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China.,West China Medical School, Sichuan University, Chengdu, China
| | - Yifei Li
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, No. 20, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China.,Key Laboratory of Ministry of Education for Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Chuan Wang
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, No. 20, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China.,West China Medical School, Sichuan University, Chengdu, China
| | - Yi Zhang
- Key Laboratory of Ministry of Education for Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Cong Liu
- Key Laboratory of Ministry of Education for Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Kaiyu Zhou
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, No. 20, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China. .,Key Laboratory of Ministry of Education for Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Yimin Hua
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, No. 20, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China. .,Key Laboratory of Ministry of Education for Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
168
|
Truitt R, Mu A, Corbin EA, Vite A, Brandimarto J, Ky B, Margulies KB. Increased Afterload Augments Sunitinib-Induced Cardiotoxicity in an Engineered Cardiac Microtissue Model. JACC Basic Transl Sci 2018; 3:265-276. [PMID: 30062212 PMCID: PMC6059907 DOI: 10.1016/j.jacbts.2017.12.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 12/17/2022]
Abstract
Sunitinib, a multitargeted oral tyrosine kinase inhibitor, used widely to treat solid tumors, results in hypertension in up to 47% and left ventricular dysfunction in up to 19% of treated individuals. The relative contribution of afterload toward inducing cardiac dysfunction with sunitinib treatment remains unknown. We created a preclinical model of sunitinib cardiotoxicity using engineered microtissues that exhibited cardiomyocyte death, decreases in force generation, and spontaneous beating at clinically relevant doses. Simulated increases in afterload augmented sunitinib cardiotoxicity in both rat and human microtissues, which suggest that antihypertensive therapy may be a strategy to prevent left ventricular dysfunction in patients treated with sunitinib.
Collapse
Key Words
- 2D, 2-dimensional
- 3D, 3-dimensional
- AICAR, 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside
- AMPK, adenosine monophosphate-activated protein kinase
- ATP, adenosine triphosphate
- CCCP, carbonyl cyanide m-chlorophenyl hydrazine
- CMT, cardiac microtissue
- DMSO, dimethyl sulfoxide
- EDTA, ethylenediamine tetraacetic acid
- Hu-iPS-CM, human induced pluripotent stem cell cardiomyocyte
- LV, left ventricle
- NRVM, neonatal rat ventricular myocyte
- PDMS, polydimethylsiloxane
- RPMI, Roswell Park Memorial Institute medium
- TMRM, tetramethylrhodamine
- afterload
- apoptosis
- cardiotoxicity
- huMSC, human mesenchymal stem cell
- iPS-CM, induced pluripotent stem cell-derived cardiomyocyte
- sunitinib
- tissue engineering
- toxicology
- tyrosine kinase inhibitors
Collapse
Affiliation(s)
- Rachel Truitt
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anbin Mu
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elise A. Corbin
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alexia Vite
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeffrey Brandimarto
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bonnie Ky
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kenneth B. Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
169
|
Wu H, Li L, Niu P, Huang X, Liu J, Zhang F, Shen W, Tan W, Wu Y, Huo Y. The Structure-function remodeling in rabbit hearts of myocardial infarction. Physiol Rep 2018. [PMID: 28637704 PMCID: PMC5492201 DOI: 10.14814/phy2.13311] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Animal models are of importance to investigate basic mechanisms for ischemic heart failure (HF). The objective of the study was to create a rabbit model through multiple coronary artery ligations to investigate the postoperative structure‐function remodeling of the left ventricle (LV) and coronary arterial trees. Here, we hypothesize that the interplay of the degenerated coronary vasculature and increased ventricle wall stress relevant to cardiac fibrosis in vicinity of myocardial infarction (MI) precipitates the incidence and progression of ischemic HF. Echocardiographic measurements showed an approximately monotonic drop of fractional shortening and ejection fraction from 40% and 73% down to 28% and 58% as well as persistent enlargement of LV cavity and slight mitral regurgitation at postoperative 12 weeks. Micro‐CT and histological measurements showed that coronary vascular rarefaction and cardiac fibrosis relevant to inflammation occurred concurrently in vicinity of MI at postoperative 12 weeks albeit there was compensatory vascular growth at postoperative 6 weeks. These findings validate the proposed rabbit model and prove the hypothesis. The post‐MI rabbit model can serve as a reference to test various drugs for treatment of ischemic HF.
Collapse
Affiliation(s)
- Haotian Wu
- School of Basic Medical Sciences, Nanjing University of Traditional Chinese Medicine, Nanjing, China.,Hebei Yiling Pharmaceutical Research Institute, Shijiazhuang, China
| | - Li Li
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Pei Niu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China.,College of Medicine, Hebei University, Baoding, China
| | - Xu Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Jinyi Liu
- College of Medicine, Hebei University, Baoding, China
| | | | - Wenzeng Shen
- College of Medicine, Hebei University, Baoding, China
| | - Wenchang Tan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China.,Shenzhen Graduate School, Peking University, Shenzhen, China.,PKU-HKUST Shenzhen-Hongkong Institution, Shenzhen, China
| | - Yiling Wu
- School of Basic Medical Sciences, Nanjing University of Traditional Chinese Medicine, Nanjing, China .,Hebei Yiling Pharmaceutical Research Institute, Shijiazhuang, China.,Key Laboratory, State Administration of Traditional Chinese Medicine (Cardiovascular and cerebrovascular collateral diseases), Shijiazhuang, China.,Hebei Province Key Laboratory of Collateral Diseases, Shijiazhuang, China
| | - Yunlong Huo
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China .,PKU-HKUST Shenzhen-Hongkong Institution, Shenzhen, China
| |
Collapse
|
170
|
Duchenne J, Claus P, Pagourelias ED, Mada RO, Van Puyvelde J, Vunckx K, Verbeken E, Gheysens O, Rega F, Voigt JU. Sheep can be used as animal model of regional myocardial remodeling and controllable work. Cardiol J 2018; 26:375-384. [PMID: 29570208 DOI: 10.5603/cj.a2018.0007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 12/31/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Pacing the right heart has been shown to induce reversible conduction delay and subse-quent asymmetric remodeling of the left ventricle (LV) in dogs and pigs. Both species have disadvantages in animal experiments. Therefore the aim of this study was to develop a more feasible and easy-to-use animal model in sheep. METHODS Dual-chamber (DDD) pacemakers with epicardial leads on the right atrium and right ven-tricular free wall were implanted in 13 sheep. All animals underwent 8 weeks of chronic rapid pacing at 180 bpm. Reported observations were made at 110 bpm. RESULTS DDD pacing acutely induced a left bundle branch block (LBBB) - like pattern with almost doubling in QRS width and the appearance of a septal flash, indicating mechanical dyssynchrony. Atrial pacing (AAI) resulted in normal ventricular conduction and function. During 8 weeks of rapid DDD pacing, animals developed LV remodeling (confirmed with histology) with septal wall thinning (-30%, p < 0.05), lateral wall thickening (+22%, p < 0.05), LV volume increase (+32%, p < 0.05), decrease of LV ejection fraction (-31%, p < 0.05), and functional mitral regurgitation. After 8 weeks, segmental pressure-strain-loops, representing regional myocardial work, were recorded. Switching from AAI to DDD pacing decreased immediately work in the septum and increased it in the lateral wall (-69 and +41%, respectively, p < 0.05). Global LV stroke work and dP/dtmax decreased (-27% and -25%, respectively, p < 0.05). CONCLUSIONS This study presents the development a new sheep model with an asymmetrically remod-eled LV. Simple pacemaker programing allows direct modulation of regional myocardial function and work. This animal model provides a new and valuable alternative for canine or porcine models and has the potential to become instrumental for investigating regional function and loading conditions on regional LV remodeling.
Collapse
Affiliation(s)
- Jürgen Duchenne
- Department of Cardiovascular Sciences and Department of Cardiovascular Diseases, KU Leuven - University of Leuven and University Hospitals Leuven, Leuven, Belgium.
| | - Piet Claus
- Department of Cardiovascular Sciences and Department of Cardiovascular Diseases, KU Leuven - University of Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Efstathios D Pagourelias
- Department of Cardiovascular Sciences and Department of Cardiovascular Diseases, KU Leuven - University of Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Razvan O Mada
- Department of Cardiovascular Sciences and Department of Cardiovascular Diseases, KU Leuven - University of Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Joeri Van Puyvelde
- Department of Cardiovascular Sciences and Department of Cardiothoracic Surgery, KU Leuven - University of Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Kathleen Vunckx
- Department of Imaging and Pathology and Department of Nuclear Medicine, KU Leuven - University of Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Eric Verbeken
- Department of Imaging and Pathology and Department of Pathology, KU Leuven - University of Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Olivier Gheysens
- Department of Imaging and Pathology and Department of Nuclear Medicine, KU Leuven - University of Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Filip Rega
- Department of Cardiovascular Sciences and Department of Cardiothoracic Surgery, KU Leuven - University of Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Jens-Uwe Voigt
- Department of Cardiovascular Sciences and Department of Cardiovascular Diseases, KU Leuven - University of Leuven and University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
171
|
Duchenne J, Turco A, Bézy S, Ünlü S, Pagourelias ED, Beela AS, Degtiarova G, Vunckx K, Nuyts J, Coudyzer W, Claus P, Rega F, Gheysens O, Voigt JU. Papillary muscles contribute significantly more to left ventricular work in dilated hearts. Eur Heart J Cardiovasc Imaging 2018; 20:84-91. [DOI: 10.1093/ehjci/jey043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/27/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jürgen Duchenne
- Department of Cardiovascular Sciences, KU Leuven—University of Leuven, Herestraat 49, Leuven, Belgium
- Department of Cardiovascular Diseases, University Hospitals Leuven, Herestraat 49, Leuven, Belgium
| | - Anna Turco
- Department of Imaging and Pathology, KU Leuven—University of Leuven, Herestraat 49, Leuven, Belgium
- Department of Nuclear Medicine and Molecular Imaging, University Hospitals Leuven, Herestraat 49, Leuven, Belgium
| | - Stéphanie Bézy
- Department of Cardiovascular Sciences, KU Leuven—University of Leuven, Herestraat 49, Leuven, Belgium
- Department of Cardiovascular Diseases, University Hospitals Leuven, Herestraat 49, Leuven, Belgium
| | - Serkan Ünlü
- Department of Cardiovascular Sciences, KU Leuven—University of Leuven, Herestraat 49, Leuven, Belgium
- Department of Cardiovascular Diseases, University Hospitals Leuven, Herestraat 49, Leuven, Belgium
| | - Efstathios D Pagourelias
- Department of Cardiovascular Sciences, KU Leuven—University of Leuven, Herestraat 49, Leuven, Belgium
- Department of Cardiovascular Diseases, University Hospitals Leuven, Herestraat 49, Leuven, Belgium
| | - Ahmed S Beela
- Department of Cardiovascular Sciences, KU Leuven—University of Leuven, Herestraat 49, Leuven, Belgium
- Department of Cardiovascular Diseases, University Hospitals Leuven, Herestraat 49, Leuven, Belgium
| | - Ganna Degtiarova
- Department of Imaging and Pathology, KU Leuven—University of Leuven, Herestraat 49, Leuven, Belgium
- Department of Nuclear Medicine and Molecular Imaging, University Hospitals Leuven, Herestraat 49, Leuven, Belgium
| | - Kathleen Vunckx
- Department of Imaging and Pathology, KU Leuven—University of Leuven, Herestraat 49, Leuven, Belgium
- Department of Nuclear Medicine and Molecular Imaging, University Hospitals Leuven, Herestraat 49, Leuven, Belgium
| | - Johan Nuyts
- Department of Imaging and Pathology, KU Leuven—University of Leuven, Herestraat 49, Leuven, Belgium
- Department of Nuclear Medicine and Molecular Imaging, University Hospitals Leuven, Herestraat 49, Leuven, Belgium
| | - Walter Coudyzer
- Department of Radiology, University Hospitals Leuven, Herestraat 49, Leuven, Belgium
| | - Piet Claus
- Department of Cardiovascular Sciences, KU Leuven—University of Leuven, Herestraat 49, Leuven, Belgium
- Department of Cardiovascular Diseases, University Hospitals Leuven, Herestraat 49, Leuven, Belgium
| | - Filip Rega
- Department of Cardiovascular Sciences, KU Leuven—University of Leuven, Herestraat 49, Leuven, Belgium
- Department of Cardiothoracic Surgery, University Hospitals Leuven, Herestraat 49, Leuven, Belgium
| | - Olivier Gheysens
- Department of Imaging and Pathology, KU Leuven—University of Leuven, Herestraat 49, Leuven, Belgium
- Department of Nuclear Medicine and Molecular Imaging, University Hospitals Leuven, Herestraat 49, Leuven, Belgium
| | - Jens-Uwe Voigt
- Department of Cardiovascular Sciences, KU Leuven—University of Leuven, Herestraat 49, Leuven, Belgium
- Department of Cardiovascular Diseases, University Hospitals Leuven, Herestraat 49, Leuven, Belgium
| |
Collapse
|
172
|
Remifentanil preconditioning confers cardioprotection via c-Jun NH 2-terminal kinases and extracellular signal regulated kinases pathways in ex-vivo failing rat heart. Eur J Pharmacol 2018; 828:1-8. [PMID: 29559303 DOI: 10.1016/j.ejphar.2018.03.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 11/23/2022]
Abstract
Remifentanil preconditioning (RPC) exerts protection in normal hearts, but has not been investigated in heart failure. The aim of the present study was to evaluate the effect of RPC in a chronic failing rat heart model and the mechanisms involving mitogen-activated protein kinases (MAPK) and Bcl-2 protein family. The doxorubicin induced failing rat hearts were subjected to 30 min ischemia / 120 min reperfusion (IR) with or without RPC by using Langendorff apparatus. RPC was induced by three cycles of 5 min remifentanil / 5 min drug-free perfusion before IR, with three different concentrations: 25, 50 and 100 μg/l. An extracellular signal regulated kinases (ERK) inhibitor PD98059, p38MAPK inhibitor SB203580, c-Jun NH2-terminal kinases (JNK) inhibitor SP600125 were perfused at 10 min before RPC. Infarct size, cardiac function and protein kinase activity were determined. RPC significantly reduced infarct size and the rise in lactate dehydrogenase (LDH) level caused by IR injury in failing heart. The JNK inhibitor SP600125 and ERK inhibitor PD98059 abolished the RPC mediated reduction effect on the infarct size and LDH activity after reperfusion. In addition, RPC increased the phosphorylation of JNK, ERK1/2 and the downstream GSK-3β, as well as the Bcl-2/Bax ratio, while, these changes were completely reversed by SP600125 and PD98059. And of note, SB203580 had no effect. In conclusion, our results suggested that the activation of JNK and ERK pathways, by leading to inhibition of GSK-3β and regulating Bcl-2 protein family, is a major mechanism that RPC confers cardioprotection in failing rat heart.
Collapse
|
173
|
Becher PM, Hinrichs S, Fluschnik N, Hennigs JK, Klingel K, Blankenberg S, Westermann D, Lindner D. Role of Toll-like receptors and interferon regulatory factors in different experimental heart failure models of diverse etiology: IRF7 as novel cardiovascular stress-inducible factor. PLoS One 2018. [PMID: 29538462 PMCID: PMC5851607 DOI: 10.1371/journal.pone.0193844] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Heart failure (HF) is a leading cause of morbidity and mortality in the western world. Although optimal medical care and treatment is widely available, the prognosis of patients with HF is still poor. Toll-like receptors (TLRs) are important compartments of the innate immunity. Current studies have identified TLRs as critical mediators in cardiovascular diseases. In the present study, we investigated the involvement of TLRs and interferon (IFN) regulatory factors (IRFs) in different experimental HF models including viral myocarditis, myocardial ischemia, diabetes mellitus, and cardiac hypertrophy. In addition, we investigated for the first time comprehensive TLR and IRF gene and protein expression under basal conditions in murine and human cardiac tissue. We found that Tlr4, Tlr9 and Irf7 displayed highest gene expression under basal conditions, indicating their significant role in first-line defense in the murine and human heart. Moreover, induction of TLRs and IRFs clearly differs between the various experimental HF models of diverse etiology and the concomitant inflammatory status. In the HF model of acute viral-induced myocarditis, TLR and IRF activation displayed the uppermost gene expression in comparison to the remaining experimental HF models, indicating the highest amount of myocardial inflammation in myocarditis. In detail, Irf7 displayed by far the highest gene expression during acute viral infection. Interestingly, post myocardial infarction TLR and IRF gene expression was almost exclusively increased in the infarct zone after myocardial ischemia (Tlr2, Tlr3, Tlr6, Tlr7, Tlr9, Irf3, Irf7). With one exception, Irf3 showed a decreased gene expression in the remote zone post infarction. Finally, we identified Irf7 as novel cardiovascular stress-inducible factor in the pathologically stressed heart. These findings on TLR and IRF function in the inflamed heart highlight the complexity of inflammatory immune response and raise more interesting questions for future investigation.
Collapse
Affiliation(s)
- Peter Moritz Becher
- Department for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
- * E-mail:
| | - Svenja Hinrichs
- Department for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Nina Fluschnik
- Department for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
| | - Jan K. Hennigs
- Section Pneumology, Department of Medicine II, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Stefan Blankenberg
- Department for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Dirk Westermann
- Department for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Diana Lindner
- Department for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
174
|
Abstract
Heart failure places an enormous burden on health and economic systems worldwide. It is a complex disease that is profoundly influenced by both genetic and environmental factors. Neither the molecular mechanisms underlying heart failure nor effective prevention strategies are fully understood. Fortunately, relevant aspects of human heart failure can be experimentally studied in tractable model animals, including the fruit fly, Drosophila, allowing the in vivo application of powerful and sophisticated molecular genetic and physiological approaches. Heart failure in Drosophila, as in humans, can be classified into dilated cardiomyopathies and hypertrophic cardiomyopathies. Critically, many genes and cellular pathways directing heart development and function are evolutionarily conserved from Drosophila to humans. Studies of molecular mechanisms linking aging with heart failure have revealed that genes involved in aging-associated energy homeostasis and oxidative stress resistance influence cardiac dysfunction through perturbation of IGF and TOR pathways. Importantly, ion channel proteins, cytoskeletal proteins, and integrins implicated in aging of the mammalian heart have been shown to play significant roles in heart failure. A number of genes previously described having roles in development of the Drosophila heart, such as genes involved in Wnt signaling pathways, have recently been shown to play important roles in the adult fly heart. Moreover, the fly model presents opportunities for innovative studies that cannot currently be pursued in the mammalian heart because of technical limitations. In this review, we discuss progress in our understanding of genes, proteins, and molecular mechanisms that affect the Drosophila adult heart and heart failure.
Collapse
Affiliation(s)
- Shasha Zhu
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Zhe Han
- Center for Cancer and Immunology Research, Children's National Medical Center, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Yan Luo
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Yulin Chen
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Qun Zeng
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Xiushan Wu
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.
| | - Wuzhou Yuan
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.
| |
Collapse
|
175
|
Treibel TA, Kozor R, Schofield R, Benedetti G, Fontana M, Bhuva AN, Sheikh A, López B, González A, Manisty C, Lloyd G, Kellman P, Díez J, Moon JC. Reverse Myocardial Remodeling Following Valve Replacement in Patients With Aortic Stenosis. J Am Coll Cardiol 2018; 71:860-871. [PMID: 29471937 PMCID: PMC5821681 DOI: 10.1016/j.jacc.2017.12.035] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Left ventricular (LV) hypertrophy, a key process in human cardiac disease, results from cellular (hypertrophy) and extracellular matrix expansion (interstitial fibrosis). OBJECTIVES This study sought to investigate whether human myocardial interstitial fibrosis in aortic stenosis (AS) is plastic and can regress. METHODS Patients with symptomatic, severe AS (n = 181; aortic valve area index 0.4 ± 0.1 cm2/m2) were assessed pre-aortic valve replacement (AVR) by echocardiography (AS severity, diastology), cardiovascular magnetic resonance (CMR) (for volumes, function, and focal or diffuse fibrosis), biomarkers (N-terminal pro-B-type natriuretic peptide and high-sensitivity troponin T), and the 6-min walk test. CMR was used to measure the extracellular volume fraction (ECV), thereby deriving matrix volume (LV mass × ECV) and cell volume (LV mass × [1 - ECV]). Biopsy excluded occult bystander disease. Assessment was repeated at 1 year post-AVR. RESULTS At 1 year post-AVR in 116 pacemaker-free survivors (age 70 ± 10 years; 54% male), mean valve gradient had improved (48 ± 16 mm Hg to 12 ± 6 mm Hg; p < 0.001), and indexed LV mass had regressed by 19% (88 ± 26 g/m2 to 71 ± 19 g/m2; p < 0.001). Focal fibrosis by CMR late gadolinium enhancement did not change, but ECV increased (28.2 ± 2.9% to 29.9 ± 4.0%; p < 0.001): this was the result of a 16% reduction in matrix volume (25 ± 9 ml/m2 to 21 ± 7 ml/m2; p < 0.001) but a proportionally greater 22% reduction in cell volume (64 ± 18 ml/m2 to 50 ± 13 ml/m2; p < 0.001). These changes were accompanied by improvement in diastolic function, N-terminal pro-B-type natriuretic peptide, 6-min walk test results, and New York Heart Association functional class. CONCLUSIONS Post-AVR, focal fibrosis does not resolve, but diffuse fibrosis and myocardial cellular hypertrophy regress. Regression is accompanied by structural and functional improvements suggesting that human diffuse fibrosis is plastic, measurable by CMR and a potential therapeutic target. (Regression of Myocardial Fibrosis After Aortic Valve Replacement; NCT02174471).
Collapse
Affiliation(s)
- Thomas A Treibel
- Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom; Institute for Cardiovascular Sciences, University College London, London, United Kingdom
| | - Rebecca Kozor
- Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| | - Rebecca Schofield
- Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| | - Giulia Benedetti
- Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| | - Marianna Fontana
- Institute for Cardiovascular Sciences, University College London, London, United Kingdom
| | - Anish N Bhuva
- Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom; Institute for Cardiovascular Sciences, University College London, London, United Kingdom
| | - Amir Sheikh
- Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| | - Begoña López
- Program of Cardiovascular Diseases, Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Cardiovascular Biomedical Research Center Network (CIBERCV), Carlos III National Institute of Health, Madrid, Spain
| | - Arantxa González
- Program of Cardiovascular Diseases, Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Cardiovascular Biomedical Research Center Network (CIBERCV), Carlos III National Institute of Health, Madrid, Spain
| | - Charlotte Manisty
- Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom; Institute for Cardiovascular Sciences, University College London, London, United Kingdom
| | - Guy Lloyd
- Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom; Institute for Cardiovascular Sciences, University College London, London, United Kingdom
| | - Peter Kellman
- National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Javier Díez
- Program of Cardiovascular Diseases, Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Cardiovascular Biomedical Research Center Network (CIBERCV), Carlos III National Institute of Health, Madrid, Spain; Department of Cardiology and Cardiac Surgery, University of Navarra Clinic, Pamplona, Spain
| | - James C Moon
- Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom; Institute for Cardiovascular Sciences, University College London, London, United Kingdom.
| |
Collapse
|
176
|
Rainer PP, Dong P, Sorge M, Fert-Bober J, Holewinski RJ, Wang Y, Foss CA, An SS, Baracca A, Solaini G, Glabe CG, Pomper MG, Van Eyk JE, Tomaselli GF, Paolocci N, Agnetti G. Desmin Phosphorylation Triggers Preamyloid Oligomers Formation and Myocyte Dysfunction in Acquired Heart Failure. Circ Res 2018; 122:e75-e83. [PMID: 29483093 DOI: 10.1161/circresaha.117.312082] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/18/2018] [Accepted: 02/23/2018] [Indexed: 01/28/2023]
Abstract
RATIONALE Disrupted proteostasis is one major pathological trait that heart failure (HF) shares with other organ proteinopathies, such as Alzheimer and Parkinson diseases. Yet, differently from the latter, whether and how cardiac preamyloid oligomers (PAOs) develop in acquired forms of HF is unclear. OBJECTIVE We previously reported a rise in monophosphorylated, aggregate-prone desmin in canine and human HF. We now tested whether monophosphorylated desmin acts as the seed nucleating PAOs formation and determined whether positron emission tomography is able to detect myocardial PAOs in nongenetic HF. METHODS AND RESULTS Here, we first show that toxic cardiac PAOs accumulate in the myocardium of mice subjected to transverse aortic constriction and that PAOs comigrate with the cytoskeletal protein desmin in this well-established model of acquired HF. We confirm this evidence in cardiac extracts from human ischemic and nonischemic HF. We also demonstrate that Ser31 phosphorylated desmin aggregates extensively in cultured cardiomyocytes. Lastly, we were able to detect the in vivo accumulation of cardiac PAOs using positron emission tomography for the first time in acquired HF. CONCLUSIONS Ser31 phosphorylated desmin is a likely candidate seed for the nucleation process leading to cardiac PAOs deposition. Desmin post-translational processing and misfolding constitute a new, attractive avenue for the diagnosis and treatment of the cardiac accumulation of toxic PAOs that can now be measured by positron emission tomography in acquired HF.
Collapse
Affiliation(s)
- Peter P Rainer
- From the Division of Cardiology, Medical University of Graz, Austria (P.P.R.)
- Johns Hopkins School of Medicine, Baltimore, MD (P.P.R., P.D., Y.W., C.A.F., M.G.P., G.F.T., N.P., G.A.)
| | - Peihong Dong
- Johns Hopkins School of Medicine, Baltimore, MD (P.P.R., P.D., Y.W., C.A.F., M.G.P., G.F.T., N.P., G.A.)
| | | | - Justyna Fert-Bober
- Cedars-Sinai Medical Center, Beverly-Hills, CA (J.F.-B., R.J.H., J.E.V.E.)
| | | | - Yuchuan Wang
- Johns Hopkins School of Medicine, Baltimore, MD (P.P.R., P.D., Y.W., C.A.F., M.G.P., G.F.T., N.P., G.A.)
| | - Catherine A Foss
- Johns Hopkins School of Medicine, Baltimore, MD (P.P.R., P.D., Y.W., C.A.F., M.G.P., G.F.T., N.P., G.A.)
| | - Steven S An
- Johns Hopkins School of Public Health, Baltimore, MD (S.S.A.)
| | - Alessandra Baracca
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy (A.B., G.S., G.A.)
| | - Giancarlo Solaini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy (A.B., G.S., G.A.)
| | | | - Martin G Pomper
- Johns Hopkins School of Medicine, Baltimore, MD (P.P.R., P.D., Y.W., C.A.F., M.G.P., G.F.T., N.P., G.A.)
| | - Jennifer E Van Eyk
- Cedars-Sinai Medical Center, Beverly-Hills, CA (J.F.-B., R.J.H., J.E.V.E.)
| | - Gordon F Tomaselli
- Johns Hopkins School of Medicine, Baltimore, MD (P.P.R., P.D., Y.W., C.A.F., M.G.P., G.F.T., N.P., G.A.)
| | - Nazareno Paolocci
- Johns Hopkins School of Medicine, Baltimore, MD (P.P.R., P.D., Y.W., C.A.F., M.G.P., G.F.T., N.P., G.A.)
- University of Perugia, Italy (N.P.)
| | - Giulio Agnetti
- Johns Hopkins School of Medicine, Baltimore, MD (P.P.R., P.D., Y.W., C.A.F., M.G.P., G.F.T., N.P., G.A.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy (A.B., G.S., G.A.)
| |
Collapse
|
177
|
Sarcomeric perturbations of myosin motors lead to dilated cardiomyopathy in genetically modified MYL2 mice. Proc Natl Acad Sci U S A 2018; 115:E2338-E2347. [PMID: 29463717 PMCID: PMC5877945 DOI: 10.1073/pnas.1716925115] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a devastating heart disease that affects about 1 million people in the United States, but the underlying mechanisms remain poorly understood. In this study, we aimed to determine the biomechanical and structural causes of DCM in transgenic mice carrying a novel mutation in the MYL2 gene, encoding the cardiac myosin regulatory light chain. Transgenic D94A (aspartic acid-to-alanine) mice were created and investigated by echocardiography and invasive hemodynamic and molecular structural and functional assessments. Consistent with the DCM phenotype, a significant reduction of the ejection fraction (EF) was observed in ∼5- and ∼12-mo-old male and female D94A lines compared with respective WT controls. Younger male D94A mice showed a more pronounced left ventricular (LV) chamber dilation compared with female counterparts, but both sexes of D94A lines developed DCM by 12 mo of age. The hypocontractile activity of D94A myosin motors resulted in the rightward shift of the force-pCa dependence and decreased actin-activated myosin ATPase activity. Consistent with a decreased Ca2+ sensitivity of contractile force, a small-angle X-ray diffraction study, performed in D94A fibers at submaximal Ca2+ concentrations, revealed repositioning of the D94A cross-bridge mass toward the thick-filament backbone supporting the hypocontractile state of D94A myosin motors. Our data suggest that structural perturbations at the level of sarcomeres result in aberrant cardiomyocyte cytoarchitecture and lead to LV chamber dilation and decreased EF, manifesting in systolic dysfunction of D94A hearts. The D94A-induced development of DCM in mice closely follows the clinical phenotype and suggests that MYL2 may serve as a new therapeutic target for dilated cardiomyopathy.
Collapse
|
178
|
Tan WS, Mullins TP, Flint M, Walton SL, Bielefeldt-Ohmann H, Carter DA, Gandhi MR, McDonald HR, Li J, Moritz KM, Reichelt ME, Gallo LA. Modeling heart failure risk in diabetes and kidney disease: limitations and potential applications of transverse aortic constriction in high-fat-fed mice. Am J Physiol Regul Integr Comp Physiol 2018; 314:R858-R869. [PMID: 29443547 DOI: 10.1152/ajpregu.00357.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is an increased incidence of heart failure in individuals with diabetes mellitus (DM). The coexistence of kidney disease in DM exacerbates the cardiovascular prognosis. Researchers have attempted to combine the critical features of heart failure, using transverse aortic constriction, with DM in mice, but variable findings have been reported. Furthermore, kidney outcomes have not been assessed in this setting; thus its utility as a model of heart failure in DM and kidney disease is unknown. We generated a mouse model of obesity, hyperglycemia, and mild kidney pathology by feeding male C57BL/6J mice a high-fat diet (HFD). Cardiac pressure overload was surgically induced using transverse aortic constriction (TAC). Normal diet (ND) and sham controls were included. Heart failure risk factors were evident at 8-wk post-TAC, including increased left ventricular mass (+49% in ND and +35% in HFD), cardiomyocyte hypertrophy (+40% in ND and +28% in HFD), and interstitial and perivascular fibrosis (Masson's trichrome and picrosirius red positivity). High-fat feeding did not exacerbate the TAC-induced cardiac outcomes. At 11 wk post-TAC in a separate mouse cohort, echocardiography revealed reduced left ventricular size and increased left ventricular wall thickness, the latter being evident in ND mice only. Systolic function was preserved in the TAC mice and was similar between ND and HFD. Thus combined high-fat feeding and TAC in mice did not model the increased incidence of heart failure in DM patients. This model, however, may mimic the better cardiovascular prognosis seen in overweight and obese heart failure patients.
Collapse
Affiliation(s)
- Wei Sheng Tan
- School of Biomedical Sciences, The University of Queensland , St. Lucia , Australia
| | - Thomas P Mullins
- School of Biomedical Sciences, The University of Queensland , St. Lucia , Australia
| | - Melanie Flint
- School of Biomedical Sciences, The University of Queensland , St. Lucia , Australia
| | - Sarah L Walton
- School of Biomedical Sciences, The University of Queensland , St. Lucia , Australia
| | | | - David A Carter
- Queensland Brain Institute, The University of Queensland , St. Lucia , Australia
| | - Meera R Gandhi
- School of Biomedical Sciences, The University of Queensland , St. Lucia , Australia.,Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Hayley R McDonald
- School of Biomedical Sciences, The University of Queensland , St. Lucia , Australia
| | - Joan Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , St. Lucia , Australia
| | - Karen M Moritz
- School of Biomedical Sciences, The University of Queensland , St. Lucia , Australia
| | - Melissa E Reichelt
- School of Biomedical Sciences, The University of Queensland , St. Lucia , Australia
| | - Linda A Gallo
- School of Biomedical Sciences, The University of Queensland , St. Lucia , Australia.,Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Australia
| |
Collapse
|
179
|
He SF, Jin SY, Yang W, Pan YL, Huang J, Zhang SJ, Zhang L, Zhang Y. Cardiac μ-opioid receptor contributes to opioid-induced cardioprotection in chronic heart failure. Br J Anaesth 2018; 121:26-37. [PMID: 29935580 DOI: 10.1016/j.bja.2017.11.110] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/10/2017] [Accepted: 12/23/2017] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND The therapeutic potential of cardiac μ-opioid receptors in ischaemia-reperfusion (I/R) injury during opioid-modulating diseases, such as heart failure, is unknown. We aimed to explore the changes of cardiac μ-opioid receptor expression during heart failure, and its role in opioid-induced cardioprotection. METHODS Rats received doxorubicin (DOX) or were subjected to coronary artery ligation to induce heart failure, or received normal saline (NS) as control. Hearts from NS or DOX rats were isolated and subjected to myocardial ischaemia and reperfusion in an in vitro perfusion system. The opioid [D-Ala,2N-MePhe,4 Gly-ol]-enkephalin (DAMGO), with a high μ-opioid receptor specificity, morphine, and remifentanil were administrated before I/R with or without opioid receptor antagonists, or an extracellular signal-regulated kinase (ERK) inhibitor. RESULTS Cardiac μ-opioid receptor mRNA concentrations were 3.2 times elevated in DOX-treated rats compared with NS rats, while cardiac μ-opioid receptor protein concentrations showed 6.1- and 3.5-fold increases in DOX-treated and post-infarcted rats, respectively. DAMGO reduced I/R-caused infarct size, expressed as the ratio of area at risk, from 0.50 (0.04) to 0.25 (0.03) in failing rat hearts, but had no effect on infarct size in control hearts. DAMGO promoted phosphorylation of ERK and glycogen synthase kinase (GSK)-3β only in failing hearts. DAMGO-mediated cardioprotection was blocked by an ERK inhibitor. The μ-opioid receptor antagonist D-Pen-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) prevented morphine- and remifentanil-induced cardioprotection and phosphorylation of ERK and GSK-3β in failing hearts. In contrast, δ- and κ-opioid receptor selective antagonists were less potent than CTOP in the failing hearts. CONCLUSIONS Cardiac μ-opioid receptors were substantially up-regulated during heart failure, which increased DAMGO-induced cardioprotection against I/R injury.
Collapse
Affiliation(s)
- S F He
- Department of Anaesthesiology, The Second Hospital of Anhui Medical University, Hefei, China
| | - S Y Jin
- Department of Anaesthesiology, The Second Hospital of Anhui Medical University, Hefei, China
| | - W Yang
- Department of Anaesthesiology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Y L Pan
- Department of Anaesthesiology, The Second Hospital of Anhui Medical University, Hefei, China
| | - J Huang
- Department of Anaesthesiology, The Second Hospital of Anhui Medical University, Hefei, China
| | - S J Zhang
- Department of Ultrasound, The Second Hospital of Anhui Medical University, Hefei, China
| | - L Zhang
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - Y Zhang
- Department of Anaesthesiology, The Second Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
180
|
Liaw CY, Ji S, Guvendiren M. Engineering 3D Hydrogels for Personalized In Vitro Human Tissue Models. Adv Healthc Mater 2018; 7. [PMID: 29345429 DOI: 10.1002/adhm.201701165] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/13/2017] [Indexed: 01/17/2023]
Abstract
There is a growing interest in engineering hydrogels for 3D tissue and disease models. The major motivation is to better mimic the physiological microenvironment of the disease and human condition. 3D tissue models derived from patients' own cells can potentially revolutionize the way treatment and diagnostic alternatives are developed. This requires development of tissue mimetic hydrogels with user defined and tunable properties. In this review article, a recent summary of 3D hydrogel platforms for in vitro tissue and disease modeling is given. Hydrogel design considerations and available hydrogel systems are summarized, followed by the types of currently available hydrogel models, such as bulk hydrogels, porous scaffolds, fibrous scaffolds, hydrogel microspheres, hydrogel sandwich systems, microwells, and 3D bioprinted constructs. Although hydrogels are utilized for a wide range of tissue models, this article focuses on liver and cancer models. This article also provides a detailed section on current challenges and future perspectives of hydrogel-based tissue models.
Collapse
Affiliation(s)
- Chya-Yan Liaw
- Instructive Biomaterials and Additive Manufacturing Laboratory; Otto H. York Chemical; Biological and Pharmaceutical Engineering; Newark College of Engineering; New Jersey Institute of Technology; University Heights; 138 York Center Newark NJ 07102 USA
| | - Shen Ji
- Instructive Biomaterials and Additive Manufacturing Laboratory; Otto H. York Chemical; Biological and Pharmaceutical Engineering; Newark College of Engineering; New Jersey Institute of Technology; University Heights; 138 York Center Newark NJ 07102 USA
| | - Murat Guvendiren
- Instructive Biomaterials and Additive Manufacturing Laboratory; Otto H. York Chemical; Biological and Pharmaceutical Engineering; Newark College of Engineering; New Jersey Institute of Technology; University Heights; 138 York Center Newark NJ 07102 USA
| |
Collapse
|
181
|
Shorter JR, Huang W, Beak JY, Hua K, Gatti DM, de Villena FPM, Pomp D, Jensen BC. Quantitative trait mapping in Diversity Outbred mice identifies two genomic regions associated with heart size. Mamm Genome 2018; 29:80-89. [PMID: 29279960 PMCID: PMC6340297 DOI: 10.1007/s00335-017-9730-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/11/2017] [Indexed: 01/19/2023]
Abstract
Heart size is an important factor in cardiac health and disease. In particular, increased heart weight is predictive of adverse cardiovascular outcomes in multiple large community-based studies. We use two cohorts of Diversity Outbred (DO) mice to investigate the role of genetics, sex, age, and diet on heart size. DO mice (n = 289) of both sexes from generation 10 were fed a standard chow diet, and analyzed at 12-15 weeks of age. Another cohort of female DO mice (n = 258) from generation 11 were fed either a high-fat, cholesterol-containing (HFC) diet or a low-fat, high-protein diet, and analyzed at 24-25 weeks. We did not observe an effect of diet on body or heart weight in generation 11 mice, although we previously reported an effect on other cardiovascular risk factors, including cholesterol, triglycerides, and insulin. We do observe a significant genetic effect on heart weight in this population. We identified two quantitative trait loci for heart weight, one (Hwtf1) at a genome-wide significance level of p ≤ 0.05 on MMU15 and one (Hwtf2) at a genome-wide suggestive level of p ≤ 0.1 on MMU10, that together explain 13.3% of the phenotypic variance. Hwtf1 contained collagen type XXII alpha 1 chain (Col22a1), and the NZO/HlLtJ and WSB/EiJ haplotypes were associated with larger hearts. This is consistent with heart tissue Col22a1 expression in DO founders and SNP patterns within Hwtf1 for Col22a1. Col22a1 has been previously associated with cardiac fibrosis in mice, suggesting that Col22a1 may be involved in pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- John R Shorter
- Department of Genetics, University of North Carolina, CB# 7264, Chapel Hill, NC, 27599, USA.
| | - Wei Huang
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Ju Youn Beak
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Kunjie Hua
- Department of Genetics, University of North Carolina, CB# 7264, Chapel Hill, NC, 27599, USA
| | | | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, CB# 7264, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Daniel Pomp
- Department of Genetics, University of North Carolina, CB# 7264, Chapel Hill, NC, 27599, USA
| | - Brian C Jensen
- Division of Cardiology, Department of Medicine, University of North Carolina, 6012 Burnett-Womack Building, Chapel Hill, NC, 27599, USA.
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599, USA.
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
182
|
Zhang D, Tu H, Cao L, Zheng H, Muelleman RL, Wadman MC, Li YL. Reduced N-Type Ca 2+ Channels in Atrioventricular Ganglion Neurons Are Involved in Ventricular Arrhythmogenesis. J Am Heart Assoc 2018; 7:JAHA.117.007457. [PMID: 29335317 PMCID: PMC5850164 DOI: 10.1161/jaha.117.007457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Attenuated cardiac vagal activity is associated with ventricular arrhythmogenesis and related mortality in patients with chronic heart failure. Our recent study has shown that expression of N‐type Ca2+ channel α‐subunits (Cav2.2‐α) and N‐type Ca2+ currents are reduced in intracardiac ganglion neurons from rats with chronic heart failure. Rat intracardiac ganglia are divided into the atrioventricular ganglion (AVG) and sinoatrial ganglion. Ventricular myocardium receives projection of neuronal terminals only from the AVG. In this study we tested whether a decrease in N‐type Ca2+ channels in AVG neurons contributes to ventricular arrhythmogenesis. Methods and Results Lentiviral Cav2.2‐α shRNA (2 μL, 2×107 pfu/mL) or scrambled shRNA was in vivo transfected into rat AVG neurons. Nontransfected sham rats served as controls. Using real‐time single‐cell polymerase chain reaction and reverse‐phase protein array, we found that in vivo transfection of Cav2.2‐α shRNA decreased expression of Cav2.2‐α mRNA and protein in rat AVG neurons. Whole‐cell patch‐clamp data showed that Cav2.2‐α shRNA reduced N‐type Ca2+ currents and cell excitability in AVG neurons. The data from telemetry electrocardiographic recording demonstrated that 83% (5 out of 6) of conscious rats with Cav2.2‐α shRNA transfection had premature ventricular contractions (P<0.05 versus 0% of nontransfected sham rats or scrambled shRNA‐transfected rats). Additionally, an index of susceptibility to ventricular arrhythmias, inducibility of ventricular arrhythmias evoked by programmed electrical stimulation, was higher in rats with Cav2.2‐α shRNA transfection compared with nontransfected sham rats and scrambled shRNA‐transfected rats. Conclusions A decrease in N‐type Ca2+ channels in AVG neurons attenuates vagal control of ventricular myocardium, thereby initiating ventricular arrhythmias.
Collapse
Affiliation(s)
- Dongze Zhang
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Huiyin Tu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Liang Cao
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE.,Department of Cardiac surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Hong Zheng
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE
| | - Robert L Muelleman
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Michael C Wadman
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE .,Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
183
|
Pluteanu F, Nikonova Y, Holzapfel A, Herzog B, Scherer A, Preisenberger J, Plačkić J, Scheer K, Ivanova T, Bukowska A, Goette A, Kockskämper J. Progressive impairment of atrial myocyte function during left ventricular hypertrophy and heart failure. J Mol Cell Cardiol 2018; 114:253-263. [DOI: 10.1016/j.yjmcc.2017.11.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 10/22/2017] [Accepted: 11/27/2017] [Indexed: 12/29/2022]
|
184
|
Chen J, Ceholski DK, Turnbull IC, Liang L, Hajjar RJ. Ischemic Model of Heart Failure in Rats and Mice. Methods Mol Biol 2018; 1816:175-182. [PMID: 29987819 DOI: 10.1007/978-1-4939-8597-5_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Temporary or permanent left coronary artery (LCA) ligation is the most widely used model of heart failure. In the present protocol, we describe the materials necessary for the procedure, key steps of the LCA ligation, triphenyl tetrazolium chloride (TTC) staining, and calculation of myocardial infarction (MI) size after ischemia-reperfusion (I/R) injury (30 min/24 h) in rats and mice. We discuss precautions and tips regarding the operation before and after surgery, both in vivo and ex vivo. The aim of this chapter is to describe the details of LCA surgery and provide recommendations for current and future surgical operators.
Collapse
Affiliation(s)
- Jiqiu Chen
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Delaine K Ceholski
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Irene C Turnbull
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lifan Liang
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roger J Hajjar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
185
|
Bikou O, Watanabe S, Hajjar RJ, Ishikawa K. A Pig Model of Myocardial Infarction: Catheter-Based Approaches. Methods Mol Biol 2018; 1816:281-294. [PMID: 29987828 DOI: 10.1007/978-1-4939-8597-5_22] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Despite enormous efforts in treating myocardial infarction (MI) and subsequent heart failure, the recent statistics from the American Heart Association evidently show that there still remains room for improvements. To develop and translate new therapeutics toward clinics, large animal models that allow us to test new therapies in human-like conditions are of extraordinary importance. In this chapter, we describe detailed protocols for the creation of a closed-chest MI model in pigs. The advantages of this model include high survival rate (>90% after ischemia-reperfusion), adjustable MI size depending on coronary occlusion site, reproducible cardiac dysfunction, and relatively low invasive method. The temporary coronary occlusion method for ischemia-reperfusion injury as well as the permanent occlusion method, using clot injection or embolic coil implantation, are described. Furthermore, we describe the key steps needed for understanding, performing, and analyzing cardiac angiography and echocardiography in pigs.
Collapse
Affiliation(s)
- Olympia Bikou
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shin Watanabe
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roger J Hajjar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kiyotake Ishikawa
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
186
|
Protein Kinase C Inhibition With Ruboxistaurin Increases Contractility and Reduces Heart Size in a Swine Model of Heart Failure With Reduced Ejection Fraction. JACC Basic Transl Sci 2017; 2:669-683. [PMID: 30062182 PMCID: PMC6058945 DOI: 10.1016/j.jacbts.2017.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/10/2017] [Accepted: 06/20/2017] [Indexed: 01/15/2023]
Abstract
Inotropic support is often required to stabilize the hemodynamics of patients with acute decompensated heart failure; while efficacious, it has a history of leading to lethal arrhythmias and/or exacerbating contractile and energetic insufficiencies. Novel therapeutics that can improve contractility independent of beta-adrenergic and protein kinase A-regulated signaling, should be therapeutically beneficial. This study demonstrates that acute protein kinase C-α/β inhibition, with ruboxistaurin at 3 months' post-myocardial infarction, significantly increases contractility and reduces the end-diastolic/end-systolic volumes, documenting beneficial remodeling. These data suggest that ruboxistaurin represents a potential novel therapeutic for heart failure patients, as a moderate inotrope or therapeutic, which leads to beneficial ventricular remodeling.
Collapse
Key Words
- ADHF, acute decompensated heart failure
- DIG, digitalis
- DOB, dobutamine
- ECG, electrocardiogram
- EDPVR, end-diastolic pressure-volume relationship
- EDV, end-diastolic volume
- ESPVR, end-systolic pressure-volume relationship
- ESV, end-systolic volume
- Ees, elastance end-systole
- HF, heart failure
- HFrEF, heart failure with reduced ejection fraction
- IR, ischemia–reperfusion
- LAD, left anterior descending coronary artery
- LV, left ventricle/ventricular
- LVEDV, left ventricular end-diastolic volume
- LVEF, left ventricular ejection fraction
- LVVPed10, left ventricular end-diastolic volume at a pressure of 10 mm Hg
- LVVPes80, left ventricular end- systolic volume at a pressure of 80 mm Hg
- MI, myocardial infarction
- PKA, protein kinase A
- PKC, protein kinase C
- PKCα/β inhibitor
- PLN, phospholamban
- PRSW, pre-load recruitable stroke work
- RBX, ruboxistaurin
- acute myocardial infarction
- heart failure with reduced ejection fraction
- invasive hemodynamics
- positive inotropy
Collapse
|
187
|
Lei CL, Wang K, Clerx M, Johnstone RH, Hortigon-Vinagre MP, Zamora V, Allan A, Smith GL, Gavaghan DJ, Mirams GR, Polonchuk L. Tailoring Mathematical Models to Stem-Cell Derived Cardiomyocyte Lines Can Improve Predictions of Drug-Induced Changes to Their Electrophysiology. Front Physiol 2017; 8:986. [PMID: 29311950 PMCID: PMC5732978 DOI: 10.3389/fphys.2017.00986] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/17/2017] [Indexed: 01/27/2023] Open
Abstract
Human induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) have applications in disease modeling, cell therapy, drug screening and personalized medicine. Computational models can be used to interpret experimental findings in iPSC-CMs, provide mechanistic insights, and translate these findings to adult cardiomyocyte (CM) electrophysiology. However, different cell lines display different expression of ion channels, pumps and receptors, and show differences in electrophysiology. In this exploratory study, we use a mathematical model based on iPSC-CMs from Cellular Dynamic International (CDI, iCell), and compare its predictions to novel experimental recordings made with the Axiogenesis Cor.4U line. We show that tailoring this model to the specific cell line, even using limited data and a relatively simple approach, leads to improved predictions of baseline behavior and response to drugs. This demonstrates the need and the feasibility to tailor models to individual cell lines, although a more refined approach will be needed to characterize individual currents, address differences in ion current kinetics, and further improve these results.
Collapse
Affiliation(s)
- Chon Lok Lei
- Computational Biology, Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Ken Wang
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Michael Clerx
- Computational Biology, Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Ross H Johnstone
- Computational Biology, Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | | | - Victor Zamora
- Clyde Biosciences, BioCity Scotland, Newhouse, United Kingdom
| | - Andrew Allan
- Clyde Biosciences, BioCity Scotland, Newhouse, United Kingdom
| | - Godfrey L Smith
- Clyde Biosciences, BioCity Scotland, Newhouse, United Kingdom
| | - David J Gavaghan
- Computational Biology, Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Gary R Mirams
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Liudmila Polonchuk
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| |
Collapse
|
188
|
Wang J, Nie Z, Chen H, Shu X, Yang Z, Yao R, Su Y, Ge J. Benefits of Cardiac Resynchronization Therapy in an Asynchronous Heart Failure Model Induced by Left Bundle Branch Ablation and Rapid Pacing. J Vis Exp 2017. [PMID: 29286395 DOI: 10.3791/56439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
It is now well recognized that heart failure (HF) patients with left bundle branch block (LBBB) derive substantial clinical benefits from cardiac resynchronization therapy (CRT), and LBBB has become one of the important predictors for CRT response. The conventional tachypacing-induced HF model has several major limitations, including absence of stable LBBB and rapid reversal of left ventricular (LV) dysfunction after cessation of pacing. Hence, it is essential to establish an optimal model of chronic HF with isolated LBBB for studying CRT benefits. In the present study, a canine model of asynchronous HF induced by left bundle branch (LBB) ablation and 4 weeks of rapid right ventricular (RV) pacing is established. The RV and right atrial (RA) pacing electrodes via the jugular vein approach, together with an epicardial LV pacing electrode, were implanted for CRT performance. Presented here are the detailed protocols of radiofrequency (RF) catheter ablation, pacing leads implantation, and rapid pacing strategy. Intracardiac and surface electrograms during operation were also provided for a better understanding of LBB ablation. Two-dimensional speckle tracking imaging and aortic velocity time integral (aVTI) were acquired to validate the chronic stable HF model with LV asynchrony and CRT benefits. By coordinating ventricular activation and contraction, CRT uniformed the LV mechanical work and restored LV pump function, which was followed by reversal of LV dilation. Moreover, the histopathological study revealed a significant restoration of cardiomyocyte diameter and collagen volume fraction (CVF) after CRT performance, indicating a histologic and cellular reverse remodeling elicited by CRT. In this report, we described a feasible and valid method to develop a chronic asynchronous HF model, which was suitable for studying structural and biologic reverse remodeling following CRT.
Collapse
Affiliation(s)
- Jingfeng Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University
| | - Zhenning Nie
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University
| | - Haiyan Chen
- Department of Echocardiography, Shanghai Institute of Medical imaging, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University
| | - Xianhong Shu
- Department of Echocardiography, Shanghai Institute of Medical imaging, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University
| | - Zhaohua Yang
- Department of Cardiac surgery, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University
| | - Ruiming Yao
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University
| | - Yangang Su
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University;
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University
| |
Collapse
|
189
|
Valero-Muñoz M, Backman W, Sam F. Murine Models of Heart Failure with Preserved Ejection Fraction: a "Fishing Expedition". JACC Basic Transl Sci 2017; 2:770-789. [PMID: 29333506 PMCID: PMC5764178 DOI: 10.1016/j.jacbts.2017.07.013] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 12/28/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is characterized by signs and symptoms of HF in the presence of a normal left ventricular (LV) ejection fraction (EF). Despite accounting for up to 50% of all clinical presentations of HF, the mechanisms implicated in HFpEF are poorly understood, thus precluding effective therapy. The pathophysiological heterogeneity in the HFpEF phenotype also contributes to this disease and likely to the absence of evidence-based therapies. Limited access to human samples and imperfect animal models that completely recapitulate the human HFpEF phenotype have impeded our understanding of the mechanistic underpinnings that exist in this disease. Aging and comorbidities such as atrial fibrillation, hypertension, diabetes and obesity, pulmonary hypertension and renal dysfunction are highly associated with HFpEF. Yet, the relationship and contribution between them remains ill-defined. This review discusses some of the distinctive clinical features of HFpEF in association with these comorbidities and highlights the advantages and disadvantage of commonly used murine models, used to study the HFpEF phenotype.
Collapse
Affiliation(s)
- Maria Valero-Muñoz
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Warren Backman
- Evans Department of Internal Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Flora Sam
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
- Evans Department of Internal Medicine, Boston University School of Medicine, Boston, Massachusetts
- Cardiovascular Section, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
190
|
Gyöngyösi M, Winkler J, Ramos I, Do QT, Firat H, McDonald K, González A, Thum T, Díez J, Jaisser F, Pizard A, Zannad F. Myocardial fibrosis: biomedical research from bench to bedside. Eur J Heart Fail 2017; 19:177-191. [PMID: 28157267 PMCID: PMC5299507 DOI: 10.1002/ejhf.696] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/07/2016] [Accepted: 10/01/2016] [Indexed: 01/05/2023] Open
Abstract
Myocardial fibrosis refers to a variety of quantitative and qualitative changes in the interstitial myocardial collagen network that occur in response to cardiac ischaemic insults, systemic diseases, drugs, or any other harmful stimulus affecting the circulatory system or the heart itself. Myocardial fibrosis alters the architecture of the myocardium, facilitating the development of cardiac dysfunction, also inducing arrhythmias, influencing the clinical course and outcome of heart failure patients. Focusing on myocardial fibrosis may potentially improve patient care through the targeted diagnosis and treatment of emerging fibrotic pathways. The European Commission funded the FIBROTARGETS consortium as a multinational academic and industrial consortium with the primary aim of performing a systematic and collaborative search of targets of myocardial fibrosis, and then translating these mechanisms into individualized diagnostic tools and specific therapeutic pharmacological options for heart failure. This review focuses on those methodological and technological aspects considered and developed by the consortium to facilitate the transfer of the new mechanistic knowledge on myocardial fibrosis into potential biomedical applications.
Collapse
Affiliation(s)
| | | | - Isbaal Ramos
- Innovative Technologies in Biological Systems SL (INNOPROT), Bizkaia, Spain
| | | | | | | | - Arantxa González
- Program of Cardiovascular Diseases, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Germany.,National Heart and Lung Institute, Imperial College London, UK
| | - Javier Díez
- Program of Cardiovascular Diseases, Center for Applied Medical Research, University of Navarra, Pamplona, Spain.,Department of Cardiology and Cardiac Surgery, University of Navarra Clinic, University of Navarra, Pamplona, Spain
| | - Frédéric Jaisser
- Centre de Recherche des Cordeliers, Inserm U1138, Université Pierre et Marie Curie, Paris, France
| | - Anne Pizard
- UMRS U1116 Inserm, CIC 1433, Pierre Drouin, CHU, Université de Lorraine, Nancy, France
| | - Faiez Zannad
- UMRS U1116 Inserm, CIC 1433, Pierre Drouin, CHU, Université de Lorraine, Nancy, France
| |
Collapse
|
191
|
Chen L, Yan KP, Liu XC, Wang W, Li C, Li M, Qiu CG. Valsartan regulates TGF-β/Smads and TGF-β/p38 pathways through lncRNA CHRF to improve doxorubicin-induced heart failure. Arch Pharm Res 2017; 41:101-109. [PMID: 29124661 DOI: 10.1007/s12272-017-0980-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/30/2017] [Indexed: 12/26/2022]
Abstract
This study investigated the interaction among valsartan (VAL), TGF-β pathways, and long non-coding RNA (lncRNA) cardiac hypertrophy-related factor (CHRF) in doxorubicin (DOX)-induced heart failure (HF), and explored their roles in DOX-induced HF progression. HF mice models in vivo were constructed by DOX induction. The expression of CHRF and TGF-β1 in hearts was detected, along with cardiac function, caspase-3 activity, and cell apoptosis. Primary myocardial cells were pretreated with VAL, followed by DOX induction in vitro for functional studies, including the detection of cell apoptosis with terminal deoxynucleotidyl transferase dUTP nick-end labeling and the expression of proteins associated with TGF-β1 pathways. HF models were established in vivo and in vitro. Expression of CHRF and TGF-β1 was up-regulated, and cell apoptosis and caspase-3 activity were increased in the hearts and cells of the HF models. VAL supplementation alleviated the cardiac dysfunction and injury in the HF process. Moreover, overexpressed CHRF up-regulated TGF-β1, promoted myocardial cell apoptosis, and reversed VAL's cardiac protective effect, while interference of CHRF (si-CHRF) did the opposite. Down-regulation of CHRF reversed the increased expression of TGF-β1 and the downstream proteins induced by pcDNA-TGF-β1 in HL-1 cells, while overexpression of CHRF reversed the VAL's cardiac protective effect in vivo. In conclusion, VAL regulates TGF-β pathways through lncRNA CHRF to improve DOX-induced HF.
Collapse
Affiliation(s)
- Lei Chen
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan, China.,Department of Cardiology, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Kui-Po Yan
- Department of Cardiology, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Xin-Can Liu
- Department of Cardiology, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Wei Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Chao Li
- Department of Ultrasonography, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Ming Li
- Department of Cardiology, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Chun-Guang Qiu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
192
|
Hentschke VS, Capalonga L, Rossato DD, Perini JL, Alves JP, Quagliotto E, Stefani GP, Karsten M, Pontes M, Dal Lago P. Functional capacity in a rat model of heart failure: impact of myocardial infarct size. Exp Physiol 2017; 102:1448-1458. [DOI: 10.1113/ep086076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 08/21/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Vítor Scotta Hentschke
- Laboratório de Fisiologia; Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA); Porto Alegre Rio Grande do Sul Brazil
- Programa de Pós-Graduação em Ciências da Saúde; Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA); Porto Alegre Rio Grande do Sul Brazil
| | - Lucas Capalonga
- Laboratório de Fisiologia; Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA); Porto Alegre Rio Grande do Sul Brazil
| | - Douglas Dalcin Rossato
- Laboratório de Fisiologia; Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA); Porto Alegre Rio Grande do Sul Brazil
- Centro Universitário Franciscano (UNIFRA); Santa Maria Rio Grande do Sul Brazil
| | - Júlia Luíza Perini
- Laboratório de Fisiologia; Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA); Porto Alegre Rio Grande do Sul Brazil
| | - Jadson Pereira Alves
- Laboratório de Fisiologia; Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA); Porto Alegre Rio Grande do Sul Brazil
- Programa de Pós-Graduação em Ciências da Saúde; Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA); Porto Alegre Rio Grande do Sul Brazil
| | - Edson Quagliotto
- Laboratório de Fisiologia; Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA); Porto Alegre Rio Grande do Sul Brazil
| | - Giuseppe Potrick Stefani
- Laboratório de Fisiologia; Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA); Porto Alegre Rio Grande do Sul Brazil
- Programa de Pós-Graduação em Ciências da Saúde; Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA); Porto Alegre Rio Grande do Sul Brazil
| | - Marlus Karsten
- Departamento de Fisioterapia; Universidade do Estado de Santa Catarina (UDESC); Florianópolis Santa Catarina Brazil
| | - Mauro Pontes
- Departamento de Farmacociências; Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA); Porto Alegre Rio Grande do Sul Brazil
| | - Pedro Dal Lago
- Laboratório de Fisiologia; Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA); Porto Alegre Rio Grande do Sul Brazil
- Departamento de Fisioterapia; Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA); Porto Alegre Rio Grande do Sul Brazil
| |
Collapse
|
193
|
Marcus NJ, Del Rio R, Ding Y, Schultz HD. KLF2 mediates enhanced chemoreflex sensitivity, disordered breathing and autonomic dysregulation in heart failure. J Physiol 2017; 596:3171-3185. [PMID: 29023738 DOI: 10.1113/jp273805] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 08/31/2017] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Enhanced carotid body chemoreflex activity contributes to development of disordered breathing patterns, autonomic dysregulation and increases in incidence of arrhythmia in animal models of reduced ejection fraction heart failure. Chronic reductions in carotid artery blood flow are associated with increased carotid body chemoreceptor activity. Krüppel-like Factor 2 (KLF2) is a shear stress-sensitive transcription factor that regulates the expression of enzymes which have previously been shown to play a role in increased chemoreflex sensitivity. We investigated the impact of restoring carotid body KLF2 expression on chemoreflex control of ventilation, sympathetic nerve activity, cardiac sympatho-vagal balance and arrhythmia incidence in an animal model of heart failure. The results indicate that restoring carotid body KLF2 in chronic heart failure reduces sympathetic nerve activity and arrhythmia incidence, and improves cardiac sympatho-vagal balance and breathing stability. Therapeutic approaches that increase KLF2 in the carotid bodies may be efficacious in the treatment of respiratory and autonomic dysfunction in heart failure. ABSTRACT Oscillatory breathing and increased sympathetic nerve activity (SNA) are associated with increased arrhythmia incidence and contribute to mortality in chronic heart failure (CHF). Increased carotid body chemoreflex (CBC) sensitivity plays a role in this process and can be precipitated by chronic blood flow reduction. We hypothesized that downregulation of a shear stress-sensitive transcription factor, Krüppel-like Factor 2 (KLF2), mediates increased CBC sensitivity in CHF and contributes to associated autonomic, respiratory and cardiac sequelae. Ventilation (Ve), renal SNA (RSNA) and ECG were measured at rest and during CBC activation in sham and CHF rabbits. Oscillatory breathing was quantified as the apnoea-hypopnoea index (AHI) and respiratory rate variability index (RRVI). AHI (control 6 ± 1/h, CHF 25 ± 1/h), RRVI (control 9 ± 3/h, CHF 29 ± 3/h), RSNA (control 22 ± 2% max, CHF 43 ± 5% max) and arrhythmia incidence (control 50 ± 10/h, CHF 300 ± 100/h) were increased in CHF at rest ( FIO2 21%), as were CBC responses (Ve, RSNA) to 10% FIO2 (all P < 0.05 vs. control). In vivo adenoviral transfection of KLF2 to the carotid bodies in CHF rabbits restored KLF2 expression, and reduced AHI (7 ± 2/h), RSNA (18 ± 2% max) and arrhythmia incidence (46 ± 13/h) as well as CBC responses to hypoxia (all P < 0.05 vs. CHF empty virus). Conversely, lentiviral KLF2 siRNA in the carotid body decreased KLF2 expression, increased chemoreflex sensitivity, and increased AHI (6 ± 2/h vs. 14 ± 3/h), RRVI (5 ± 3/h vs. 20 ± 3/h) and RSNA (24 ± 4% max vs. 34 ± 5% max) relative to scrambled-siRNA rabbits. In conclusion, down-regulation of KLF2 in the carotid body increases CBC sensitivity, oscillatory breathing, RSNA and arrhythmia incidence during CHF.
Collapse
Affiliation(s)
- Noah J Marcus
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, USA
| | - Rodrigo Del Rio
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA.,Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| | - Yanfeng Ding
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA.,University of North Texas Health Sciences Center, Fort Worth, TX, USA
| | - Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
194
|
Karmazyn M, Gan XT. Treatment of the cardiac hypertrophic response and heart failure with ginseng, ginsenosides, and ginseng-related products. Can J Physiol Pharmacol 2017; 95:1170-1176. [DOI: 10.1139/cjpp-2017-0092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Heart failure is a major medical and economic burden throughout the world. Although various treatment options are available to treat heart failure, death rates in both men and women remain high. Potential adjunctive therapies may lie with use of herbal medications, many of which possess potent pharmacological properties. Among the most widely studied is ginseng, a member of the genus Panax that is grown in many parts of the world and that has been used as a medical treatment for a variety of conditions for thousands of years, particularly in Asian societies. There are a number of ginseng species, each possessing distinct pharmacological effects due primarily to differences in their bioactive components including saponin ginsenosides and polysaccharides. While experimental evidence for salutary effects of ginseng on heart failure is robust, clinical evidence is less so, primarily due to a paucity of large-scale well-controlled clinical trials. However, there is evidence from small trials that ginseng-containing Chinese medications such as Shenmai can offer benefit when administered as adjunctive therapy to heart failure patients. Substantial additional studies are required, particularly in the clinical arena, to provide evidence for a favourable effect of ginseng in heart failure patients.
Collapse
|
195
|
Madrahimov N, Natanov R, Boyle EC, Goecke T, Knöfel AK, Irkha V, Solovieva A, Höffler K, Maus U, Kühn C, Ismail I, Warnecke G, Shrestha ML, Cebotari S, Haverich A. Cardiopulmonary Bypass in a Mouse Model: A Novel Approach. J Vis Exp 2017. [PMID: 28994765 DOI: 10.3791/56017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As prolonged cardiopulmonary bypass becomes more essential during cardiac interventions, an increasing clinical demand arises for procedure optimization and for minimizing organ damage resulting from prolonged extracorporal circulation. The goal of this paper was to demonstrate a fully functional and clinically relevant model of cardiopulmonary bypass in a mouse. We report on the device design, perfusion circuit optimization, and microsurgical techniques. This model is an acute model, which is not compatible with survival due to the need for multiple blood drawings. Because of the range of tools available for mice (e.g., markers, knockouts, etc.), this model will facilitate investigation into the molecular mechanisms of organ damage and the effect of cardiopulmonary bypass in relation to other comorbidities.
Collapse
Affiliation(s)
- Nodir Madrahimov
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School;
| | - Ruslan Natanov
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School
| | - Erin C Boyle
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School
| | - Tobias Goecke
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School
| | - Ann-Kathrin Knöfel
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School
| | - Valentyna Irkha
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School
| | - Anna Solovieva
- Department of Hematology, Oncology, Immunology, Rheumatology, and Pulmonology, University Hospital Tuebingen
| | - Klaus Höffler
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School
| | - Ulrich Maus
- Department of Pneumology, Hannover Medical School
| | - Christian Kühn
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School
| | - Issam Ismail
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School
| | - Gregor Warnecke
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School
| | - Malakh-Lal Shrestha
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School
| | - Serghei Cebotari
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School
| | - Axel Haverich
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School
| |
Collapse
|
196
|
Gupte AA, Hamilton DJ. Mitochondrial Function in Non-ischemic Heart Failure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:113-126. [PMID: 28551784 DOI: 10.1007/978-3-319-55330-6_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Provision for the continuous demand for energy from the beating heart relies heavily on efficient mitochondrial activity. Non-ischemic cardiomyopathy in which oxygen supply is not limiting results from etiologies such as pressure overload. It is associated with progressive development of metabolic stress culminating in energy depletion and heart failure. The mitochondria from the ventricular walls undergoing non-ischemic cardiomyopathy are subjected to long periods of adaptation to support the changing metabolic milieu, which has been described as mal-adaptation since it ultimately results in loss of cardiac contractile function. While the chronicity of exposure to metabolic stressors, co-morbidities and thereby adaptive changes in mitochondria maybe different between ischemic and non-ischemic heart failure, the resulting pathology is very similar, especially in late stage heart failure. Understanding of the mitochondrial changes in early-stage heart failure may guide the development of mitochondrial-targeted therapeutic options to prevent progression of non-ischemic heart failure. This chapter reviews findings of mitochondrial functional changes in animal models and humans with non-ischemic heart failure. While most animal models of non-ischemic heart failure exhibit cardiac mitochondrial dysfunction, studies in humans have been inconsistent despite confirmed reduction in ATP production. This chapter also reviews the possibility of impairment of substrate supply processes upstream of the mitochondria in heart failure, and discusses potential metabolism-targeted therapeutic options.
Collapse
Affiliation(s)
- Anisha A Gupte
- Center for Metabolism and Bioenergetics Research, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX, USA.
| | - Dale J Hamilton
- Center for Metabolism and Bioenergetics Research, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX, USA.,Houston Methodist, Department of Medicine, Houston, TX, USA
| |
Collapse
|
197
|
Sharifi-Sanjani M, Oyster NM, Tichy ED, Bedi KC, Harel O, Margulies KB, Mourkioti F. Cardiomyocyte-Specific Telomere Shortening is a Distinct Signature of Heart Failure in Humans. J Am Heart Assoc 2017; 6:JAHA.116.005086. [PMID: 28882819 PMCID: PMC5634248 DOI: 10.1161/jaha.116.005086] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background Telomere defects are thought to play a role in cardiomyopathies, but the specific cell type affected by the disease in human hearts is not yet identified. The aim of this study was to systematically evaluate the cell type specificity of telomere shortening in patients with heart failure in relation to their cardiac disease, age, and sex. Methods and Results We studied cardiac tissues from patients with heart failure by utilizing telomere quantitative fluorescence in situ hybridization, a highly sensitive method with single‐cell resolution. In this study, total of 63 human left ventricular samples, including 37 diseased and 26 nonfailing donor hearts, were stained for telomeres in combination with cardiomyocyte‐ or α‐smooth muscle cell‐specific markers, cardiac troponin T, and smooth muscle actin, respectively, and assessed for telomere length. Patients with heart failure demonstrate shorter cardiomyocyte telomeres compared with nonfailing donors, which is specific only to cardiomyocytes within diseased human hearts and is associated with cardiomyocyte DNA damage. Our data further reveal that hypertrophic hearts with reduced ejection fraction exhibit the shortest telomeres. In contrast to other reported cell types, no difference in cardiomyocyte telomere length is evident with age. However, under the disease state, telomere attrition manifests in both young and older patients with cardiac hypertrophy. Finally, we demonstrate that cardiomyocyte‐telomere length is better sustained in women than men under diseased conditions. Conclusions This study provides the first evidence of cardiomyocyte‐specific telomere shortening in heart failure.
Collapse
Affiliation(s)
| | - Nicholas M Oyster
- Department of Orthopaedic Surgery, University of Connecticut, Storrs, CT
| | - Elisia D Tichy
- Department of Orthopaedic Surgery, University of Connecticut, Storrs, CT
| | - Kenneth C Bedi
- Cardiovascular Institute, University of Connecticut, Storrs, CT
| | - Ofer Harel
- College of Liberal Arts and Sciences, Department of Statistics, University of Connecticut, Storrs, CT
| | | | - Foteini Mourkioti
- Department of Orthopaedic Surgery, University of Connecticut, Storrs, CT .,Cardiovascular Institute, University of Connecticut, Storrs, CT.,Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
198
|
Systolic Dysfunction in Infarcted Mice Does Not Necessarily Lead to Heart Failure: Need to Refine Preclinical Models. J Cardiovasc Transl Res 2017; 10:499-501. [PMID: 28812262 DOI: 10.1007/s12265-017-9765-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/04/2017] [Indexed: 10/19/2022]
Abstract
Heart failure (HF) is a major cause of death and hospitalization worldwide. Despite advances in reducing mortality, prognosis remains poor and prevalence has reached epidemic proportions. The limitations of available preclinical models represent a major hurdle in the development of new therapies. Myocardial infarction (MI) is a main cause of HF in humans, and mouse models of MI are often used to study HF mechanisms and experimental treatments. We investigated whether MI in mice constitutes an appropriate model of HF. Permanent ligation of the left coronary artery induced severe and persistent systolic dysfunction and ventricular dilatation. Mouse follow-up for 10 months showed no significant evidence of lung congestion or other pulmonary defects associated with HF. No difference was observed in the capacity of infarcted mice to exercise compared to control animals. These results indicate that severe cardiac dysfunction in mice is not sufficient to demonstrate the presence of HF.
Collapse
|
199
|
Transient receptor potential vanilloid 2 function regulates cardiac hypertrophy via stretch-induced activation. J Hypertens 2017; 35:602-611. [PMID: 28009703 DOI: 10.1097/hjh.0000000000001213] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Hypertension (increased afterload) results in cardiomyocyte hypertrophy leading to left ventricular hypertrophy and subsequently, heart failure with preserved ejection fraction. This study was performed to test the hypothesis that transient receptor potential vanilloid 2 subtype (TRPV2) function regulates hypertrophy under increased afterload conditions. METHODS We used functional (pore specific) TRPV2 knockout mice to evaluate the effects of increased afterload-induced stretch on cardiac size and function via transverse aortic constriction (TAC) as well as hypertrophic stimuli including adrenergic and angiotensin stimulation via subcutaneous pumps. Wild-type animals served as control for all experiments. Expression and localization of TRPV2 was investigated in wild-type cardiac samples. Changes in cardiac function were measured in vivo via echocardiography and invasive catheterization. Molecular changes, including protein and real-time PCR markers of hypertrophy, were measured in addition to myocyte size. RESULTS TRPV2 is significantly upregulated in wild-type mice after TAC, though not in response to beta-adrenergic or angiotensin stimulation. TAC-induced stretch stimulus caused an upregulation of TRPV2 in the sarcolemmal membrane. The absence of functional TRPV2 resulted in significantly reduced left ventricular hypertrophy after TAC, though not in response to beta-adrenergic or angiotensin stimulation. The decreased development of hypertrophy was not associated with significant deterioration of cardiac function. CONCLUSION We conclude that TRPV2 function, as a stretch-activated channel, regulates the development of cardiomyocyte hypertrophy in response to increased afterload.
Collapse
|
200
|
Egom EEA, Feridooni T, Pharithi RB, Khan B, Shiwani HA, Maher V, El Hiani Y, Pasumarthi KBS, Ribama HA. A natriuretic peptides clearance receptor's agonist reduces pulmonary artery pressures and enhances cardiac performance in preclinical models: New hope for patients with pulmonary hypertension due to left ventricular heart failure. Biomed Pharmacother 2017; 93:1144-1150. [PMID: 28738523 DOI: 10.1016/j.biopha.2017.07.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND In patients with left ventricular heart failure (HF), the development of pulmonary hypertension (PH) is common and represents a strong predictor of death. Despite recent advances in the pathophysiological understanding there is as yet no prospect of cure of this deadly clinical entity and the majority of patients continue to progress to right ventricular failure and die. Furthermore, there is no single medical treatment currently approved for PH related to HF. There is, therefore an urgent unmet need to identify novel pharmacological agents that will prevent the progressive increased or reverse the elevated pulmonary arterial pressures while enhancing cardiac performance in HF. METHOD AND RESULTS We here reported, for the first time, using a pressure-loop (P-V) conductance catheter system, that a specific natriuretic peptides clearance receptors' agonist, the ring-deleted atrial natriuretic peptide analogue, cANF4-23 (cANF) reduces pulmonary artery pressures. Strikingly, the administration of the cANF in these mice decreased the RVSP by 50% (n=5, F 25.687, DF 14, p<0.001) and heart rate (HR) by 11% (n=5, F 25.69, DF 14, p<0.001) as well as enhancing cardiac performance including left ventricular contractility in mice. Most strikingly, mice lacking NPR-C were much more susceptible to develop HF, indicating that NPR-C is a critical protective receptor in the heart. CONCLUSION Natriuretic peptides clearance receptors' agonists may, therefore represent a novel and attractive therapeutic strategy for PH related to HF, and ultimately improves the life expectancy and quality for millions of people around the planet.
Collapse
Affiliation(s)
- Emmanuel Eroume-A Egom
- Egom Clinical & Translational Research Services Ltd., Dartmouth, NS B2X 3H3, Canada; Cardiology Department, The Adelaide and Meath Hospital, Tallaght, Dublin, Ireland.
| | - Tiam Feridooni
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Rebabonye B Pharithi
- Cardiology Department, The Adelaide and Meath Hospital, Tallaght, Dublin, Ireland
| | - Barkat Khan
- Cardiology Department, The Adelaide and Meath Hospital, Tallaght, Dublin, Ireland
| | - Haaris A Shiwani
- Cardiology Department, The Adelaide and Meath Hospital, Tallaght, Dublin, Ireland
| | - Vincent Maher
- Cardiology Department, The Adelaide and Meath Hospital, Tallaght, Dublin, Ireland
| | - Yassine El Hiani
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | | | - Hilaire A Ribama
- Egom Clinical & Translational Research Services Ltd., Dartmouth, NS B2X 3H3, Canada
| |
Collapse
|