151
|
Liang Y, Iqbal Z, Lu J, Wang J, Zhang H, Chen X, Duan L, Xia J. Cell-derived nanovesicle-mediated drug delivery to the brain: Principles and strategies for vesicle engineering. Mol Ther 2023; 31:1207-1224. [PMID: 36245129 PMCID: PMC10188644 DOI: 10.1016/j.ymthe.2022.10.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/27/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Developing strategies toward safe and effective drug delivery into the central nervous system (CNS) with improved targeting abilities and reduced off-target effects is crucial. CNS-targeted drug carriers made of synthetic molecules raise concerns about their biodegradation, clearance, immune responses, and neurotoxicity. Cell-derived nanovesicles (CDNs) have recently been applied in CNS-targeted drug delivery, because of their intrinsic stability, biocompatibility, inherent homing capability, and the ability to penetrate through biological barriers, including the blood-brain barrier. Among these CDNs, extracellular vesicles and exosomes are the most studied because their surface can be engineered and modified to cater to brain targeting. In this review, we focus on the application of CDNs in brain-targeted drug delivery to treat neurological diseases. We cover recently developed methods of exosome derivation and engineering, including exosome-like particles, hybrid exosomes, exosome-associated adeno-associated viruses, and envelope protein nanocages. Finally, we discuss the limitations and project the future development of the CDN-based brain-targeted delivery systems, and conclude that engineered CDNs hold great potential in the treatment of neurological diseases.
Collapse
Affiliation(s)
- Yujie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong 518020, China; Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, China
| | - Zoya Iqbal
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, China
| | - Jianping Lu
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong 518020, China
| | - Jianhong Wang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong 518020, China
| | - Hao Zhang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, Jiangsu 210096, China; EVLiXiR Biotech Inc., Nanjing, Jiangsu 210032, China
| | - Xi Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Li Duan
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, China.
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
152
|
Wallen M, Aqil F, Spencer W, Gupta RC. Milk/colostrum exosomes: A nanoplatform advancing delivery of cancer therapeutics. Cancer Lett 2023; 561:216141. [PMID: 36963459 PMCID: PMC10155642 DOI: 10.1016/j.canlet.2023.216141] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/09/2023] [Accepted: 03/19/2023] [Indexed: 03/26/2023]
Abstract
Chemotherapeutics continue to play a central role in the treatment of a wide variety of cancers. Conventional chemotherapy involving bolus intravenous doses results in severe side effects - in some cases life threatening - delayed toxicity and compromised quality-of-life. Attempts to deliver small drug molecules using liposomes, polymeric nanoparticles, micelles, lipid nanoparticles, etc. have produced limited nanoformulations for clinical use, presumably due to a lack of biocompatibility of the material, costs, toxicity, scalability, and/or lack of effective administration. Naturally occurring small extracellular vesicles, or exosomes, may offer a solution and a viable system for delivering cancer therapeutics. Combined with their inherent trafficking ability and versatility of cargo capacity, exosomes can be engineered to specifically target cancerous cells, thereby minimizing off-target effects, and increasing the efficacy of cancer therapeutics. Exosomal formulations have mitigated the toxic effects of several drugs in murine cancer models. In this article, we review studies related to exosomal delivery of both small molecules and biologics, including siRNA to inhibit specific gene expression, in the pursuit of effective cancer therapeutics. We focus primarily on bovine milk and colostrum exosomes as the cancer therapeutic delivery vehicles based on their high abundance, cost effectiveness, scalability, high drug loading, functionalization of exosomes for targeted delivery, and lack of toxicity. While bovine milk exosomes may provide a new platform for drug delivery, extensive comparison to other nanoformulations and evaluation of long-term toxicity will be required to fully realize its potential.
Collapse
Affiliation(s)
| | - Farrukh Aqil
- Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA; Department of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Wendy Spencer
- 3P Biotechnologies, Inc., Louisville, KY, 40202, USA
| | - Ramesh C Gupta
- 3P Biotechnologies, Inc., Louisville, KY, 40202, USA; Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
153
|
Zhang E, Phan P, Zhao Z. Cellular nanovesicles for therapeutic immunomodulation: A perspective on engineering strategies and new advances. Acta Pharm Sin B 2023; 13:1789-1827. [PMID: 37250173 PMCID: PMC10213819 DOI: 10.1016/j.apsb.2022.08.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 02/08/2023] Open
Abstract
Cellular nanovesicles which are referred to as cell-derived, nanosized lipid bilayer structures, have emerged as a promising platform for regulating immune responses. Owing to their outstanding advantages such as high biocompatibility, prominent structural stability, and high loading capacity, cellular nanovesicles are suitable for delivering various immunomodulatory molecules, such as small molecules, nucleic acids, peptides, and proteins. Immunomodulation induced by cellular nanovesicles has been exploited to modulate immune cell behaviors, which is considered as a novel cell-free immunotherapeutic strategy for the prevention and treatment of diverse diseases. Here we review emerging concepts and new advances in leveraging cellular nanovesicles to activate or suppress immune responses, with the aim to explicate their applications for immunomodulation. We overview the general considerations and principles for the design of engineered cellular nanovesicles with tailored immunomodulatory activities. We also discuss new advances in engineering cellular nanovesicles as immunotherapies for treating major diseases.
Collapse
Affiliation(s)
- Endong Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Philana Phan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
- Translational Oncology Program, University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
154
|
Tian W, Niu X, Feng F, Wang X, Wang J, Yao W, Zhang P. The promising roles of exosomal microRNAs in osteosarcoma: A new insight into the clinical therapy. Biomed Pharmacother 2023; 163:114771. [PMID: 37119740 DOI: 10.1016/j.biopha.2023.114771] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/18/2023] [Accepted: 04/22/2023] [Indexed: 05/01/2023] Open
Abstract
Osteosarcoma is the most common malignant bone sarcoma in children. Chemotherapy drugs resistance significantly hinders the overall survival of patients. Due to high biocompatibility and immunocompatibility, exosomes have been explored extensively. Multiple parent cells can actively secrete numerous exosomes, and the membrane structure of exosomes can protect miRNAs from degradation. Based on these characteristics, exosomal miRNAs play an important role in the occurrence, development, drug resistance. Therefore, in-depth exploration of exosome biogenesis and role of exosomal miRNAs will provide new strategies and targets for understanding the pathogenesis of osteosarcoma and overcoming chemotherapy drug resistance. Moreover, advancing evidences have showed that engineering modification could attribute stronger targeting to exosomes to deliver cargos to recipient cells more effectively. In this review, we focus on the mechanisms of exosomal miRNAs on the occurrence and development of osteosarcoma and the potential to function as tumor biomarkers for diagnosis and prognosis prediction. In addition, we also summarize recent advances in the clinical application values of engineering exosomes to provide novel ideas and directions for overcoming the chemotherapy resistance in osteosarcoma.
Collapse
Affiliation(s)
- Wen Tian
- Department of Bone and Soft Tissue Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Xiaoying Niu
- Department of Bone and Soft Tissue Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Feifei Feng
- Department of Toxicology, College of Public Health, Zhengzhou University, Henan 450001, China
| | - Xin Wang
- Department of Bone and Soft Tissue Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Jiaqiang Wang
- Department of Bone and Soft Tissue Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Weitao Yao
- Department of Bone and Soft Tissue Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Peng Zhang
- Department of Bone and Soft Tissue Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.
| |
Collapse
|
155
|
Almeida C, Teixeira AL, Dias F, Morais M, Medeiros R. Extracellular Vesicles as Potential Therapeutic Messengers in Cancer Management. BIOLOGY 2023; 12:biology12050665. [PMID: 37237479 DOI: 10.3390/biology12050665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023]
Abstract
A deeper understanding of the communication mechanisms of tumor cells in a tumor microenvironment can improve the development of new therapeutic solutions, leading to a more personalized approach. Recently, the field of extracellular vesicles (EVs) has drawn attention due to their key role in intercellular communication. EVs are nano-sized lipid bilayer vesicles that are secreted by all types of cells and can function as intermediators of intercellular communication with the ability to transfer different cargo (proteins, nucleic acids, sugar…) types among cells. This role of EVs is essential in a cancer context as it can affect tumor promotion and progression and contribute to the pre-metastatic niche establishment. Therefore, scientists from basic, translational, and clinical research areas are currently researching EVs with great expectations due to their potential to be used as clinical biomarkers, which are useful for disease diagnosis, prognosis, patient follow-up, or even as vehicles for drug delivery due to their natural carrier nature. The application of EVs presents numerous advantages as drug delivery vehicles, namely their capacity to overcome natural barriers, their inherent cell-targeting properties, and their stability in the circulation. In this review, we highlight the distinctive features of EVs, their application as efficient drug delivery systems, and their clinical applications.
Collapse
Affiliation(s)
- Cristina Almeida
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal
- Research Department of the Portuguese League Against Cancer Regional Nucleus of the North (LPCC-NRNorte), Estrada da Circunvalação 6657, 4200-177 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Mariana Morais
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal
- ICBAS School of Medicine and Biomedical Sciences, University of Porto (UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal
- Research Department of the Portuguese League Against Cancer Regional Nucleus of the North (LPCC-NRNorte), Estrada da Circunvalação 6657, 4200-177 Porto, Portugal
- ICBAS School of Medicine and Biomedical Sciences, University of Porto (UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
- Fernando Pessoa Research, Innovation and Development Institute (I3ID FFP), Fernando Pessoa University (UFP), Praça 9 de Abril 349, 4249-004 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
156
|
Mahindran E, Wan Kamarul Zaman WS, Ahmad Amin Noordin KB, Tan YF, Nordin F. Mesenchymal Stem Cell-Derived Extracellular Vesicles: Hype or Hope for Skeletal Muscle Anti-Frailty. Int J Mol Sci 2023; 24:ijms24097833. [PMID: 37175537 PMCID: PMC10178115 DOI: 10.3390/ijms24097833] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Steadily rising population ageing is a global demographic trend due to the advancement of new treatments and technologies in the medical field. This trend also indicates an increasing prevalence of age-associated diseases, such as loss of muscle mass (sarcopenia), which tends to afflict the older population. The deterioration in muscle function can cause severe disability and seriously affects a patient's quality of life. Currently, there is no treatment to prevent and reverse age-related skeletal muscle ageing frailty. Existing interventions mainly slow down and control the signs and symptoms. Mesenchymal stem cell-derived extracellular vesicle (MSC-EV) therapy is a promising approach to attenuate age-related skeletal muscle ageing frailty. However, more studies, especially large-scale randomised clinical trials need to be done in order to determine the adequacy of MSC-EV therapy in treating age-related skeletal muscle ageing frailty. This review compiles the present knowledge of the causes and changes regarding skeletal muscle ageing frailty and the potential of MSC-EV transplantation as a regenerative therapy for age-related skeletal muscle ageing frailty and its clinical trials.
Collapse
Affiliation(s)
- Elancheleyen Mahindran
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | | | | | - Yuen-Fen Tan
- PPUKM-MAKNA Cancer Center, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long Campus, Bandar Sungai Long, Kajang 43000, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
157
|
Thompson W, Papoutsakis ET. The role of biomechanical stress in extracellular vesicle formation, composition and activity. Biotechnol Adv 2023; 66:108158. [PMID: 37105240 DOI: 10.1016/j.biotechadv.2023.108158] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
Extracellular vesicles (EVs) are cornerstones of intercellular communication with exciting fundamental, clinical, and more broadly biotechnological applications. However, variability in EV composition, which results from the culture conditions used to generate the EVs, poses significant fundamental and applied challenges and a hurdle for scalable bioprocessing. Thus, an understanding of the relationship between EV production (and for clinical applications, manufacturing) and EV composition is increasingly recognized as important and necessary. While chemical stimulation and culture conditions such as cell density are known to influence EV biology, the impact of biomechanical forces on the generation, properties, and biological activity of EVs remains poorly understood. Given the omnipresence of these forces in EV preparation and in biomanufacturing, expanding the understanding of their impact on EV composition-and thus, activity-is vital. Although several publications have examined EV preparation and bioprocessing and briefly discussed biomechanical stresses as variables of interest, this review represents the first comprehensive evaluation of the impact of such stresses on EV production, composition and biological activity. We review how EV biogenesis, cargo, efficacy, and uptake are uniquely affected by various types, magnitudes, and durations of biomechanical forces, identifying trends that emerge both generically and for individual cell types. We also describe implications for scalable bioprocessing, evaluating processes inherent in common EV production and isolation methods, and propose a path forward for rigorous EV quality control.
Collapse
Affiliation(s)
- Will Thompson
- Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA
| | - Eleftherios Terry Papoutsakis
- Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA.
| |
Collapse
|
158
|
Gupta D, Wiklander OP, Wood MJ, El-Andaloussi S. Biodistribution of therapeutic extracellular vesicles. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:170-190. [PMID: 39697988 PMCID: PMC11648525 DOI: 10.20517/evcna.2023.12] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 12/20/2024]
Abstract
The field of extracellular vesicles (EVs) has seen a tremendous paradigm shift in the past two decades, from being regarded as cellular waste bags to being considered essential mediators in intercellular communication. Their unique ability to transfer macromolecules across cells and biological barriers has made them a rising star in drug delivery. Mounting evidence suggests that EVs can be explored as efficient drug delivery vehicles for a range of therapeutic macromolecules. In contrast to many synthetic delivery systems, these vesicles appear exceptionally well tolerated in vivo. This tremendous development in the therapeutic application of EVs has been made through technological advancement in labelling and understanding the in vivo biodistribution of EVs. Here in this review, we have summarised the recent findings in EV in vivo pharmacokinetics and discussed various biological barriers that need to be surpassed to achieve tissue-specific delivery.
Collapse
Affiliation(s)
- Dhanu Gupta
- Department of Paediatrics. University of Oxford, Oxford OX3 7TY, UK
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge 14151, Sweden
| | - Oscar P.B Wiklander
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge 14151, Sweden
| | - Matthew J.A Wood
- Department of Paediatrics. University of Oxford, Oxford OX3 7TY, UK
| | - Samir El-Andaloussi
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge 14151, Sweden
| |
Collapse
|
159
|
Yuan Q, Su K, Li S, Long X, Liu L, Sun J, Yuan X, Yang M, Tian R, Zhang W, Deng Z, Li Q, Ke C, He Y, Cheng C, Yuan J, Wen Z, Zhou W, Yuan Z. Selective CDK9 knockdown sensitizes TRAIL response by suppression of antiapoptotic factors and NF-kappaB pathway. Apoptosis 2023:10.1007/s10495-023-01842-4. [PMID: 37060507 DOI: 10.1007/s10495-023-01842-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2023] [Indexed: 04/16/2023]
Abstract
The aberrantly up-regulated CDK9 can be targeted for cancer therapy. The CDK inhibitor dinaciclib (Dina) has been found to drastically sensitizes cancer response to TRAIL-expressing extracellular vesicle (EV-T). However, the low selectivity of Dina has limited its application for cancer. We propose that CDK9-targeted siRNA (siCDK9) may be a good alternative to Dina. The siCDK9 molecules were encapsulated into EV-Ts to prepare a complexed nanodrug (siEV-T). It was shown to efficiently suppress CDK9 expression and overcome TRAIL resistance to induce strikingly augmented apoptosis in lung cancer both in vitro and in vivo, with a mechanism related to suppression of both anti-apoptotic factors and nuclear factor-kappa B pathway. Therefore, siEV-T potentially constitutes a novel, highly effective and safe therapy for cancers.
Collapse
Affiliation(s)
- Qian Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Kui Su
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Shuyi Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Xinyi Long
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Lang Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Jianwu Sun
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Xin Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Minghui Yang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Rui Tian
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Wanting Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Zhujie Deng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Quanjiang Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Changhong Ke
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Yue He
- Jinhang Bio-Science and Biotechnology Co. Ltd, Guangzhou, 510630, People's Republic of China
| | - Chunming Cheng
- Jinhang Bio-Science and Biotechnology Co. Ltd, Guangzhou, 510630, People's Republic of China
| | - Jingna Yuan
- Jinhang Bio-Science and Biotechnology Co. Ltd, Guangzhou, 510630, People's Republic of China
| | - Zhuohao Wen
- Jinhang Bio-Science and Biotechnology Co. Ltd, Guangzhou, 510630, People's Republic of China
| | - Wei Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Zhengqiang Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
160
|
Kalluri R, McAndrews KM. The role of extracellular vesicles in cancer. Cell 2023; 186:1610-1626. [PMID: 37059067 PMCID: PMC10484374 DOI: 10.1016/j.cell.2023.03.010] [Citation(s) in RCA: 229] [Impact Index Per Article: 114.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 04/16/2023]
Abstract
Intercellular communication is a key feature of cancer progression and metastasis. Extracellular vesicles (EVs) are generated by all cells, including cancer cells, and recent studies have identified EVs as key mediators of cell-cell communication via packaging and transfer of bioactive constituents to impact the biology and function of cancer cells and cells of the tumor microenvironment. Here, we review recent advances in understanding the functional contribution of EVs to cancer progression and metastasis, as cancer biomarkers, and the development of cancer therapeutics.
Collapse
Affiliation(s)
- Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| | - Kathleen M McAndrews
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
161
|
Halbrook CJ, Lyssiotis CA, Pasca di Magliano M, Maitra A. Pancreatic cancer: Advances and challenges. Cell 2023; 186:1729-1754. [PMID: 37059070 PMCID: PMC10182830 DOI: 10.1016/j.cell.2023.02.014] [Citation(s) in RCA: 445] [Impact Index Per Article: 222.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/17/2023] [Accepted: 02/08/2023] [Indexed: 04/16/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest cancers. Significant efforts have largely defined major genetic factors driving PDAC pathogenesis and progression. Pancreatic tumors are characterized by a complex microenvironment that orchestrates metabolic alterations and supports a milieu of interactions among various cell types within this niche. In this review, we highlight the foundational studies that have driven our understanding of these processes. We further discuss the recent technological advances that continue to expand our understanding of PDAC complexity. We posit that the clinical translation of these research endeavors will enhance the currently dismal survival rate of this recalcitrant disease.
Collapse
Affiliation(s)
- Christopher J Halbrook
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868, USA.
| | - Costas A Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Marina Pasca di Magliano
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Anirban Maitra
- Department of Translational Molecular Pathology, Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
162
|
Lotfy A, AboQuella NM, Wang H. Mesenchymal stromal/stem cell (MSC)-derived exosomes in clinical trials. Stem Cell Res Ther 2023; 14:66. [PMID: 37024925 PMCID: PMC10079493 DOI: 10.1186/s13287-023-03287-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/16/2023] [Indexed: 04/08/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are widely utilized in cell therapy because of their robust immunomodulatory and regenerative properties. Their paracrine activity is one of the most important features that contribute to their efficacy. Recently, it has been demonstrated that the production of various factors via extracellular vesicles, especially exosomes, governs the principal efficacy of MSCs after infusion in experimental models. Compared to MSCs themselves, MSC-derived exosomes (MSC-Exos) have provided significant advantages by efficiently decreasing unfavorable adverse effects, such as infusion-related toxicities. MSC-Exos is becoming a promising cell-free therapeutic tool and an increasing number of clinical studies started to assess the therapeutic effect of MSC-Exos in different diseases. In this review, we summarized the ongoing and completed clinical studies using MSC-Exos for immunomodulation, regenerative medicine, gene delivery, and beyond. Additionally, we summarized MSC-Exos production methods utilized in these studies with an emphasis on MSCs source, MSC-Exos isolation methods, characterization, dosage, and route of administration. Lastly, we discussed the current challenges and future directions of exosome utilization in different clinical studies as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Ahmed Lotfy
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Noha M AboQuella
- International Graduate Program Medical Neuroscience, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| |
Collapse
|
163
|
Anwar S, Mir F, Yokota T. Enhancing the Effectiveness of Oligonucleotide Therapeutics Using Cell-Penetrating Peptide Conjugation, Chemical Modification, and Carrier-Based Delivery Strategies. Pharmaceutics 2023; 15:pharmaceutics15041130. [PMID: 37111616 PMCID: PMC10140998 DOI: 10.3390/pharmaceutics15041130] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Oligonucleotide-based therapies are a promising approach for treating a wide range of hard-to-treat diseases, particularly genetic and rare diseases. These therapies involve the use of short synthetic sequences of DNA or RNA that can modulate gene expression or inhibit proteins through various mechanisms. Despite the potential of these therapies, a significant barrier to their widespread use is the difficulty in ensuring their uptake by target cells/tissues. Strategies to overcome this challenge include cell-penetrating peptide conjugation, chemical modification, nanoparticle formulation, and the use of endogenous vesicles, spherical nucleic acids, and smart material-based delivery vehicles. This article provides an overview of these strategies and their potential for the efficient delivery of oligonucleotide drugs, as well as the safety and toxicity considerations, regulatory requirements, and challenges in translating these therapies from the laboratory to the clinic.
Collapse
Affiliation(s)
- Saeed Anwar
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Farin Mir
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
164
|
Qi Y, Zhao X, Dong Y, Wang M, Wang J, Fan Z, Weng Q, Yu H, Li J. Opportunities and challenges of natural killer cell-derived extracellular vesicles. Front Bioeng Biotechnol 2023; 11:1122585. [PMID: 37064251 PMCID: PMC10102538 DOI: 10.3389/fbioe.2023.1122585] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Extracellular vesicles (EVs) are increasingly recognized as important intermediaries of intercellular communication. They have significant roles in many physiological and pathological processes and show great promise as novel biomarkers of disease, therapeutic agents, and drug delivery tools. Existing studies have shown that natural killer cell-derived EVs (NEVs) can directly kill tumor cells and participate in the crosstalk of immune cells in the tumor microenvironment. NEVs own identical cytotoxic proteins, cytotoxic receptors, and cytokines as NK cells, which is the biological basis for their application in antitumor therapy. The nanoscale size and natural targeting property of NEVs enable precisely killing tumor cells. Moreover, endowing NEVs with a variety of fascinating capabilities via common engineering strategies has become a crucial direction for future research. Thus, here we provide a brief overview of the characteristics and physiological functions of the various types of NEVs, focusing on their production, isolation, functional characterization, and engineering strategies for their promising application as a cell-free modality for tumor immunotherapy.
Collapse
Affiliation(s)
- Yuchen Qi
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiang Zhao
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Xiang Zhao, ; Hua Yu, ; Jianjun Li,
| | - Yan Dong
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Min Wang
- Department of General Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junyi Wang
- Department of General Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhichao Fan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qin Weng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hua Yu
- Department of General Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiang Zhao, ; Hua Yu, ; Jianjun Li,
| | - Jianjun Li
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Xiang Zhao, ; Hua Yu, ; Jianjun Li,
| |
Collapse
|
165
|
Zhu X, Gao M, Yang Y, Li W, Bao J, Li Y. The CRISPR/Cas9 System Delivered by Extracellular Vesicles. Pharmaceutics 2023; 15:pharmaceutics15030984. [PMID: 36986843 PMCID: PMC10053467 DOI: 10.3390/pharmaceutics15030984] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) systems can precisely manipulate DNA sequences to change the characteristics of cells and organs, which has potential in the mechanistic research on genes and the treatment of diseases. However, clinical applications are restricted by the lack of safe, targeted and effective delivery vectors. Extracellular vesicles (EVs) are an attractive delivery platform for CRISPR/Cas9. Compared with viral and other vectors, EVs present several advantages, including safety, protection, capacity, penetrating ability, targeting ability and potential for modification. Consequently, EVs are profitably used to deliver the CRISPR/Cas9 in vivo. In this review, the advantages and disadvantages of the delivery form and vectors of the CRISPR/Cas9 are concluded. The favorable traits of EVs as vectors, such as the innate characteristics, physiological and pathological functions, safety and targeting ability of EVs, are summarized. Furthermore, in terms of the delivery of the CRISPR/Cas9 by EVs, EV sources and isolation strategies, the delivery form and loading methods of the CRISPR/Cas9 and applications have been concluded and discussed. Finally, this review provides future directions of EVs as vectors of the CRISPR/Cas9 system in clinical applications, such as the safety, capacity, consistent quality, yield and targeting ability of EVs.
Collapse
Affiliation(s)
- Xinglong Zhu
- Key Laboratory of Transplant Engineering and Immunology, Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mengyu Gao
- Key Laboratory of Transplant Engineering and Immunology, Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongfeng Yang
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu 610041, China
- Precision Medicine Key Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weimin Li
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu 610041, China
- Precision Medicine Key Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ji Bao
- Key Laboratory of Transplant Engineering and Immunology, Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Li
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu 610041, China
- Precision Medicine Key Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
166
|
Shekari F, Abyadeh M, Meyfour A, Mirzaei M, Chitranshi N, Gupta V, Graham SL, Salekdeh GH. Extracellular Vesicles as reconfigurable therapeutics for eye diseases: Promises and hurdles. Prog Neurobiol 2023; 225:102437. [PMID: 36931589 DOI: 10.1016/j.pneurobio.2023.102437] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
A large number of people worldwide suffer from visual impairment. However, most available therapies rely on impeding the development of a particular eye disorder. Therefore, there is an increasing demand for effective alternative treatments, specifically regenerative therapies. Extracellular vesicles, including exosomes, ectosomes, or microvesicles, are released by cells and play a potential role in regeneration. Following an introduction to EV biogenesis and isolation methods, this integrative review provides an overview of our current knowledge about EVs as a communication paradigm in the eye. Then, we focused on the therapeutic applications of EVs derived from conditioned medium, biological fluid, or tissue and highlighted some recent developments in strategies to boost the innate therapeutic potential of EVs by loading various kinds of drugs or being engineered at the level of producing cells or EVs. Challenges faced in the development of safe and effective translation of EV-based therapy into clinical settings for eye diseases are also discussed to pave the road toward reaching feasible regenerative therapies required for eye-related complications.
Collapse
Affiliation(s)
- Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | | | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Mirzaei
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Stuart L Graham
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
| | | |
Collapse
|
167
|
The Role of Exosomes in Pancreatic Ductal Adenocarcinoma Progression and Their Potential as Biomarkers. Cancers (Basel) 2023; 15:cancers15061776. [PMID: 36980662 PMCID: PMC10046651 DOI: 10.3390/cancers15061776] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common pancreatic malignancy, is an aggressive and lethal cancer with a dismal five-year survival rate. Despite remarkable improvements in cancer therapeutics, the clinical outcome of PDAC patients remains poor due to late diagnosis of the disease. This highlights the importance of early detection, wherein biomarker evaluation including exosomes would be helpful. Exosomes, small extracellular vesicles (sEVs), are cell-secreted entities with diameters ranging from 50 to 150 nm that deliver cellular contents (e.g., proteins, lipids, and nucleic acids) from parent cells to regulate the cellular processes of targeted cells. Recently, an increasing number of studies have reported that exosomes serve as messengers to facilitate stromal-immune crosstalk within the PDAC tumor microenvironment (TME), and their contents are indicative of disease progression. Moreover, evidence suggests that exosomes with specific surface markers are capable of distinguishing patients with PDAC from healthy individuals. Detectable exosomes in bodily fluids (e.g., blood, urine, saliva, and pancreatic juice) are omnipresent and may serve as promising biomarkers for improving early detection and evaluating patient prognosis. In this review, we shed light on the involvement of exosomes and their cargos in processes related to disease progression, including chemoresistance, angiogenesis, invasion, metastasis, and immunomodulation, and their potential as prognostic markers. Furthermore, we highlight feasible clinical applications and the limitations of exosomes in liquid biopsies as tools for early diagnosis as well as disease monitoring. Taking advantage of exosomes to improve diagnostic capacity may provide hope for PDAC patients, although further investigation is urgently needed.
Collapse
|
168
|
Zhang L, Lin Y, Li S, Guan X, Jiang X. In Situ Reprogramming of Tumor-Associated Macrophages with Internally and Externally Engineered Exosomes. Angew Chem Int Ed Engl 2023; 62:e202217089. [PMID: 36658634 DOI: 10.1002/anie.202217089] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
The reprogramming of tumor-associated macrophages (TAMs) has emerged as an efficient strategy for immunotherapy. However, most of the approaches did not allow the in situ reprogramming of TAM because their low efficiency, non-specificity, or potential side effects. Herein, we produced exosomes with the clustered regularly interspaced short palindromic repeats interference (CRISPRi) internally engineered and the TAM specific peptide externally engineered onto the exosome membrane. The internally and externally engineered exosomes (IEEE, also named as I3E) allowed the selective homing to tumor tissue and targeted to M2-like TAMs, which nearly repressed the expression of PI-3 kinase gamma (PI3Kγ) completely, and induced the TAMs polarizing to M1 both in vitro and in vivo. The polarized M1 macrophages awakened the "hot" tumor-immunity, causing the increase of T lymphocyte infiltration and the decrease of myeloid-derived suppressor cells, and inhibiting the tumor growth significantly. I3E reprogramed TAMs in situ precisely and efficiently.
Collapse
Affiliation(s)
- Lingmin Zhang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, 518055, Shenzhen, Guangdong, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, 511436, Guangzhou, Guangdong, China
| | - Yinshan Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, 511436, Guangzhou, Guangdong, China
| | - Songpei Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, 511436, Guangzhou, Guangdong, China
| | - Xiaoling Guan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, 511436, Guangzhou, Guangdong, China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, 518055, Shenzhen, Guangdong, China
| |
Collapse
|
169
|
Lu S, Cui Q, Zheng H, Ma Y, Kang Y, Tang K. Challenges and Opportunities for Extracellular Vesicles in Clinical Oncology Therapy. Bioengineering (Basel) 2023; 10:bioengineering10030325. [PMID: 36978715 PMCID: PMC10045216 DOI: 10.3390/bioengineering10030325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound vesicles that can be released by all cell types. They may have different biogenesis, physical features, and cargo. EVs are important biomarkers for the diagnosis and prediction of many diseases due to their essential role in intercellular communication, their highly variable cargoes, and their accumulation in various body fluids. These natural particles have been investigated as potential therapeutic materials for many diseases. In our previous studies, the clinical usage of tumor-cell-derived microparticles (T-MPs) as a novel medication delivery system was examined. This review summarizes the clinical translation of EVs and related clinical trials, aiming to provide suggestions for safer and more effective oncology therapeutic systems, particularly in biotherapeutic and immunotherapeutic systems.
Collapse
Affiliation(s)
- Shuya Lu
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qingfa Cui
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huan Zheng
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuan Ma
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanchun Kang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Tang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence:
| |
Collapse
|
170
|
Paganini C, Boyce H, Libort G, Arosio P. High-Yield Production of Extracellular Vesicle Subpopulations with Constant Quality Using Batch-Refeed Cultures. Adv Healthc Mater 2023; 12:e2202232. [PMID: 36479632 PMCID: PMC11468747 DOI: 10.1002/adhm.202202232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/29/2022] [Indexed: 12/12/2022]
Abstract
The conventional manufacturing of extracellular vesicles (EVs) is characterized by low yields and batch-to-batch variability, hampering fundamental research on EVs and their practical applications. Perfusion operations have huge potential to address these limitations and increase the productivity and quality of EVs. In this study, perfusion cultures are simulated with batch-refeed systems and their productivity is compared with that achieved using batch cultures. It is shown that a shift from batch to batch-refeed system can increase the space-time yields of a target EV subpopulation characterized by CD81 and CD63 biomarkers by threefold. Moreover, it is demonstrated that the method facilitates the consistent production of the target EVs from cells maintained under constant conditions for 13 days. These results indicate that the use of perfusion cultures is a promising strategy to increase the manufacturing yield of EVs and control the production of specific EV subpopulations with constant quality attributes, thereby improving reproducibility.
Collapse
Affiliation(s)
- Carolina Paganini
- Department of Chemistry and Applied BiosciencesInstitute for Chemical and BioengineeringETH ZurichVladimir‐Prelog‐Weg 1–5/10Zurich8093Switzerland
| | - Hannah Boyce
- Department of Chemistry and Applied BiosciencesInstitute for Chemical and BioengineeringETH ZurichVladimir‐Prelog‐Weg 1–5/10Zurich8093Switzerland
| | - Gabriela Libort
- Department of Chemistry and Applied BiosciencesInstitute for Chemical and BioengineeringETH ZurichVladimir‐Prelog‐Weg 1–5/10Zurich8093Switzerland
| | - Paolo Arosio
- Department of Chemistry and Applied BiosciencesInstitute for Chemical and BioengineeringETH ZurichVladimir‐Prelog‐Weg 1–5/10Zurich8093Switzerland
| |
Collapse
|
171
|
Tatischeff I. Extracellular Vesicle-DNA: The Next Liquid Biopsy Biomarker for Early Cancer Diagnosis? Cancers (Basel) 2023; 15:cancers15051456. [PMID: 36900248 PMCID: PMC10000627 DOI: 10.3390/cancers15051456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
After a short introduction about the history of liquid biopsy, aimed to noninvasively replace the common tissue biopsy as a help for cancer diagnosis, this review is focused on extracellular vesicles (EVs), as the main third component, which is now coming into the light of liquid biopsy. Cell-derived EV release is a recently discovered general cellular property, and EVs harbor many cellular components reflecting their cell of origin. This is also the case for tumoral cells, and their cargoes might therefore be a "treasure chest" for cancer biomarkers. This has been extensively explored for a decade, but the EV-DNA content escaped this worldwide query until recently. The aim of this review is to gather the pilot studies focused on the DNA content of circulating cell-derived EVs, and the following five years of studies about the circulating tumor EV-DNA. The recent preclinical studies about the circulating tEV-derived gDNA as a potential cancer biomarker developed into a puzzling controversy about the presence of DNA into exosomes, coupled with an increased unexpected non vesicular complexity of the extracellular environment. This is discussed in the present review, together with the challenges that need to be solved before any efficient clinical transfer of EV-DNA as a quite promising cancer diagnosis biomarker.
Collapse
Affiliation(s)
- Irène Tatischeff
- Honorary CNRS and UPMC Research Director, Founder of RevInterCell, a Scientific Consulting Service, 91400 Orsay, France
| |
Collapse
|
172
|
Mahadevan KK, McAndrews KM, LeBleu VS, Yang S, Lyu H, Li B, Sockwell AM, Kirtley ML, Morse SJ, Moreno Diaz BA, Kim MP, Feng N, Lopez AM, Guerrero PA, Sugimoto H, Arian KA, Ying H, Barekatain Y, Kelly PJ, Maitra A, Heffernan TP, Kalluri R. Oncogenic Kras G12D specific non-covalent inhibitor reprograms tumor microenvironment to prevent and reverse early pre-neoplastic pancreatic lesions and in combination with immunotherapy regresses advanced PDAC in a CD8 + T cells dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528757. [PMID: 36824971 PMCID: PMC9948969 DOI: 10.1101/2023.02.15.528757] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with mutations in Kras, a known oncogenic driver of PDAC; and the KRAS G12D mutation is present in nearly half of PDAC patients. Recently, a non-covalent small molecule inhibitor (MRTX1133) was identified with specificity to the Kras G12D mutant protein. Here we explore the impact of Kras G12D inhibition by MRTX1133 on advanced PDAC and its influence on the tumor microenvironment. Employing different orthotopic xenograft and syngeneic tumor models, eight different PDXs, and two different autochthonous genetic models, we demonstrate that MRTX1133 reverses early PDAC growth, increases intratumoral CD8 + effector T cells, decreases myeloid infiltration, and reprograms cancer associated fibroblasts. Autochthonous genetic mouse models treated with MRTX1133 leads to regression of both established PanINs and advanced PDAC. Regression of advanced PDAC requires CD8 + T cells and immune checkpoint blockade therapy (iCBT) synergizes with MRTX1133 to eradicate PDAC and prolong overall survival. Mechanistically, inhibition of mutant Kras in advanced PDAC and human patient derived organoids (PDOs) induces Fas expression in cancer cells and facilitates CD8 + T cell mediated death. These results demonstrate the efficacy of MRTX1133 in different mouse models of PDAC associated with reprogramming of stromal fibroblasts and a dependency on CD8 + T cell mediated tumor clearance. Collectively, this study provides a rationale for a synergistic combination of MRTX1133 with iCBT in clinical trials.
Collapse
|
173
|
Zhou B, Mo Z, Lai G, Chen X, Li R, Wu R, Zhu J, Zheng F. Targeting tumor exosomal circular RNA cSERPINE2 suppresses breast cancer progression by modulating MALT1-NF-𝜅B-IL-6 axis of tumor-associated macrophages. J Exp Clin Cancer Res 2023; 42:48. [PMID: 36797769 PMCID: PMC9936722 DOI: 10.1186/s13046-023-02620-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have important regulatory functions in cancer, but the role of circRNAs in the tumor microenvironment (TME) remains unclear. Moreover, we also explore the effects of si-circRNAs loaded in nanoparticles as therapeutic agent for anti-tumor in vivo. METHODS We conducted bioinformatics analysis, qRT-PCR, EdU assays, Transwell assays, co-culture system and multiple orthotopic xenograft models to investigate the expression and function of circRNAs. Additionally, PLGA-based nanoparticles loaded with si-circRNAs were used to evaluate the potential of nanotherapeutic strategy in anti-tumor response. RESULTS We identified oncogene SERPINE2 derived circRNA, named as cSERPINE2, which was notably elevated in breast cancer and was closely related to poor clinical outcome. Functionally, tumor exosomal cSERPINE2 was shuttled to tumor associated macrophages (TAMs) and enhanced the secretion of Interleukin-6 (IL-6), leading to increased proliferation and invasion of breast cancer cells. Furthermore, IL-6 in turn increased the EIF4A3 and CCL2 levels within tumor cells in a positive feedback mechanism, further enhancing tumor cSERPINE2 biogenesis and promoting the recruitment of TAMs. More importantly, we developed a PLGA-based nanoparticle loaded with si-cSERPINE2, which effectively attenuated breast cancer progression in vivo. CONCLUSIONS Our study illustrates a novel mechanism that tumor exosomal cSERPINE2 mediates a positive feedback loop between tumor cells and TAMs to promote cancer progression, which may serve as a promising nanotherapeutic strategy for the treatment of breast cancer.
Collapse
Affiliation(s)
- Boxuan Zhou
- grid.452437.3Department of Breast Surgery, the First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000 China ,grid.412536.70000 0004 1791 7851Medical Research Center and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Zhaohong Mo
- grid.412558.f0000 0004 1762 1794Department of Hepatobiliary Surgery, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630 China
| | - Guie Lai
- grid.452437.3Department of Breast Surgery, the First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000 China
| | - Xiaohong Chen
- grid.452437.3Department of Laboratory, the First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000 China
| | - Ruixi Li
- grid.12981.330000 0001 2360 039XDepartment of Hepatobiliary and Pancreatic Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033 China
| | - Runxin Wu
- grid.12981.330000 0001 2360 039XZhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080 China
| | - Jia Zhu
- Department of Breast Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, 330000, China.
| | - Fang Zheng
- Medical Research Center and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
174
|
Wu T, Liu Y, Ali NM, Zhang B, Cui X. Effects of Exosomes on Tumor Bioregulation and Diagnosis. ACS OMEGA 2023; 8:5157-5168. [PMID: 36816660 PMCID: PMC9933233 DOI: 10.1021/acsomega.2c06567] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Exosomes are lipid bilayer vesicles in biological fluids, which can participate in biological processes by mediating intercellular communication and activating intracellular signaling pathways, especially cancerogenic processes, such as proliferation, metastasis, invasion, and immune regulation of cancer cells. Besides, cancer-derived exosomes are also involved in tumor diagnosis and therapy as biomarkers and nanotransport devices. This article reviews the latest research progress on the biological regulation and disease diagnosis of exosomes in tumors, with the aim of providing new ideas for the clinical treatment of cancers.
Collapse
Affiliation(s)
- Tong Wu
- Department
of Oncology, First Affiliated Hospital of
Dalian Medical University, Dalian 116011, P.R. China
| | - Ying Liu
- Department
of Oncology, First Affiliated Hospital of
Dalian Medical University, Dalian 116011, P.R. China
- Department
of Oncology, Affiliated Zhongshan Hospital
of Dalian University, Dalian 116011, P.R. China
| | - Nasra Mohamoud Ali
- Department
of Oncology, First Affiliated Hospital of
Dalian Medical University, Dalian 116011, P.R. China
| | - Bin Zhang
- Department
of Oncology, First Affiliated Hospital of
Dalian Medical University, Dalian 116011, P.R. China
| | - Xiaonan Cui
- Department
of Oncology, First Affiliated Hospital of
Dalian Medical University, Dalian 116011, P.R. China
| |
Collapse
|
175
|
Exosome-Based Carrier for RNA Delivery: Progress and Challenges. Pharmaceutics 2023; 15:pharmaceutics15020598. [PMID: 36839920 PMCID: PMC9964211 DOI: 10.3390/pharmaceutics15020598] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
In the last few decades, RNA-based drugs have emerged as a promising candidate to specifically target and modulate disease-relevant genes to cure genetic defects. The key to applying RNA therapy in clinical trials is developing safe and effective delivery systems. Exosomes have been exploited as a promising vehicle for drug delivery due to their nanoscale size, high stability, high biocompatibility, and low immunogenicity. We reviewed and summarized the progress in the strategy and application of exosome-mediated RNA therapy. The challenges of exosomes as a carrier for RNA drug delivery are also elucidated in this article. RNA molecules can be loaded into exosomes and then delivered to targeted cells or tissues via various biochemical or physical approaches. So far, exosome-mediated RNA therapy has shown potential in the treatment of cancer, central nervous system disorders, COVID-19, and other diseases. To further exploit the potential of exosomes for RNA delivery, more efforts should be made to overcome both technological and logistic problems.
Collapse
|
176
|
Draguet F, Bouland C, Dubois N, Bron D, Meuleman N, Stamatopoulos B, Lagneaux L. Potential of Mesenchymal Stromal Cell-Derived Extracellular Vesicles as Natural Nanocarriers: Concise Review. Pharmaceutics 2023; 15:pharmaceutics15020558. [PMID: 36839879 PMCID: PMC9964668 DOI: 10.3390/pharmaceutics15020558] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Intercellular communication, through direct and indirect cell contact, is mandatory in multicellular organisms. These last years, the microenvironment, and in particular, transfer by extracellular vesicles (EVs), has emerged as a new communication mechanism. Different biological fluids and cell types are common sources of EVs. EVs play different roles, acting as signalosomes, biomarkers, and therapeutic agents. As therapeutic agents, MSC-derived EVs display numerous advantages: they are biocompatible, non-immunogenic, and stable in circulation, and they are able to cross biological barriers. Furthermore, EVs have a great potential for drug delivery. Different EV isolation protocols and loading methods have been tested and compared. Published and ongoing clinical trials, and numerous preclinical studies indicate that EVs are safe and well tolerated. Moreover, the latest studies suggest their applications as nanocarriers. The current review will describe the potential for MSC-derived EVs as drug delivery systems (DDS) in disease treatment, and their advantages. Thereafter, we will outline the different EV isolation methods and loading techniques, and analyze relevant preclinical studies. Finally, we will describe ongoing and published clinical studies. These elements will outline the benefits of MSC-derived EV DDS over several aspects.
Collapse
Affiliation(s)
- Florian Draguet
- Laboratory of Clinical Cell Therapy (LCCT), Jules Bordet Institute, Université Libre de Bruxelles (ULB), 90 Rue Meylemeersch, 1070 Brussels, Belgium
- Correspondence:
| | - Cyril Bouland
- Laboratory of Clinical Cell Therapy (LCCT), Jules Bordet Institute, Université Libre de Bruxelles (ULB), 90 Rue Meylemeersch, 1070 Brussels, Belgium
- Department of Stomatology and Maxillofacial Surgery, Saint-Pierre Hospital, 322 Rue Haute, 1000 Brussels, Belgium
- Department of Maxillofacial and Reconstructive Surgery, Grand Hôpital de Charleroi, 3 Grand’Rue, 6000 Charleroi, Belgium
| | - Nathan Dubois
- Laboratory of Clinical Cell Therapy (LCCT), Jules Bordet Institute, Université Libre de Bruxelles (ULB), 90 Rue Meylemeersch, 1070 Brussels, Belgium
| | - Dominique Bron
- Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles (ULB), 90 Rue Meylemeersch, 1070 Brussels, Belgium
| | - Nathalie Meuleman
- Laboratory of Clinical Cell Therapy (LCCT), Jules Bordet Institute, Université Libre de Bruxelles (ULB), 90 Rue Meylemeersch, 1070 Brussels, Belgium
- Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles (ULB), 90 Rue Meylemeersch, 1070 Brussels, Belgium
- Medicine Faculty, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Basile Stamatopoulos
- Laboratory of Clinical Cell Therapy (LCCT), Jules Bordet Institute, Université Libre de Bruxelles (ULB), 90 Rue Meylemeersch, 1070 Brussels, Belgium
- Medicine Faculty, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy (LCCT), Jules Bordet Institute, Université Libre de Bruxelles (ULB), 90 Rue Meylemeersch, 1070 Brussels, Belgium
| |
Collapse
|
177
|
Heydari Z, Peshkova M, Gonen ZB, Coretchi I, Eken A, Yay AH, Dogan ME, Gokce N, Akalin H, Kosheleva N, Galea-Abdusa D, Ulinici M, Vorojbit V, Shpichka A, Groppa S, Vosough M, Todiras M, Butnaru D, Ozkul Y, Timashev P. EVs vs. EVs: MSCs and Tregs as a source of invisible possibilities. J Mol Med (Berl) 2023; 101:51-63. [PMID: 36527475 PMCID: PMC9759062 DOI: 10.1007/s00109-022-02276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/11/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
Extracellular vesicles (EVs) are produced by various cells and exist in most biological fluids. They play an important role in cell-cell signaling, immune response, and tumor metastasis, and also have theranostic potential. They deliver many functional biomolecules, including DNA, microRNAs (miRNA), messenger RNA (mRNA), long non-coding RNA (lncRNA), lipids, and proteins, thus affecting different physiological processes in target cells. Decreased immunogenicity compared to liposomes or viral vectors and the ability to cross through physiological barriers such as the blood-brain barrier make them an attractive and innovative option as diagnostic biomarkers and therapeutic carriers. Here, we highlighted two types of cells that can produce functional EVs, namely, mesenchymal stem/stromal cells (MSCs) and regulatory T cells (Tregs), discussing MSC/Treg-derived EV-based therapies for some specific diseases including acute respiratory distress syndrome (ARDS), autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Zahra Heydari
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Maria Peshkova
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia
| | | | - Ianos Coretchi
- Department of Pharmacology and Clinical Pharmacology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Ahmet Eken
- Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey.,Department of Medical Biology, Erciyes University School of Medicine, Kayseri, Turkey
| | - Arzu Hanım Yay
- Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey.,Department of Histology and Embryology, Erciyes University School of Medicine, Kayseri, Turkey
| | - Muhammet Ensar Dogan
- Department of Medical Genetic, Erciyes University School of Medicine, Kayseri, Turkey
| | - Nuriye Gokce
- Department of Medical Genetic, Erciyes University School of Medicine, Kayseri, Turkey
| | - Hilal Akalin
- Department of Medical Genetic, Erciyes University School of Medicine, Kayseri, Turkey
| | - Nastasia Kosheleva
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Daniela Galea-Abdusa
- Genetics Laboratory, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Mariana Ulinici
- Department of Microbiology and Immunology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Valentina Vorojbit
- Department of Microbiology and Immunology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia.,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Stanislav Groppa
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Moldova.,Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Moldova
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.
| | - Mihail Todiras
- Drug Research Center, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | | | - Yusuf Ozkul
- Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey. .,Department of Medical Genetic, Erciyes University School of Medicine, Kayseri, Turkey.
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia. .,World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia. .,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
178
|
Sanz-Ros J, Mas-Bargues C, Romero-García N, Huete-Acevedo J, Dromant M, Borrás C. Extracellular Vesicles as Therapeutic Resources in the Clinical Environment. Int J Mol Sci 2023; 24:2344. [PMID: 36768664 PMCID: PMC9917082 DOI: 10.3390/ijms24032344] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
The native role of extracellular vesicles (EVs) in mediating the transfer of biomolecules between cells has raised the possibility to use them as therapeutic vehicles. The development of therapies based on EVs is now expanding rapidly; here we will describe the current knowledge on different key points regarding the use of EVs in a clinical setting. These points are related to cell sources of EVs, isolation, storage, and delivery methods, as well as modifications to the releasing cells for improved production of EVs. Finally, we will depict the application of EVs therapies in clinical trials, considering the impact of the COVID-19 pandemic on the development of these therapies, pointing out that although it is a promising therapy for human diseases, we are still in the initial phase of its application to patients.
Collapse
Affiliation(s)
- Jorge Sanz-Ros
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
- Department of Cardiology, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | - Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Nekane Romero-García
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
- Department of Anesthesiology and Surgical Trauma Intensive Care, Hospital Clinic Universitari de Valencia, University of Valencia, 46010 Valencia, Spain
| | - Javier Huete-Acevedo
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Mar Dromant
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| |
Collapse
|
179
|
Jakl V, Ehmele M, Winkelmann M, Ehrenberg S, Eiseler T, Friemert B, Rojewski MT, Schrezenmeier H. A novel approach for large-scale manufacturing of small extracellular vesicles from bone marrow-derived mesenchymal stromal cells using a hollow fiber bioreactor. Front Bioeng Biotechnol 2023; 11:1107055. [PMID: 36761296 PMCID: PMC9904364 DOI: 10.3389/fbioe.2023.1107055] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are promising therapeutic candidates in a variety of diseases due to having immunomodulatory and pro-regenerative properties. In recent years, MSC-derived small extracellular vesicles (sEVs) have attracted increasing interest as a possible alternative to conventional cell therapy. However, translational processes of sEVs for clinical applications are still impeded by inconsistencies regarding isolation procedures and culture conditions. We systematically compared different methods for sEV isolation from conditioned media of ex vivo expanded bone marrow-derived MSCs and demonstrated considerable variability of quantity, purity, and characteristics of sEV preparations obtained by these methods. The combination of cross flow filtration with ultracentrifugation for sEV isolation resulted in sEVs with similar properties as compared to isolation by differential centrifugation combined with ultracentrifugation, the latter is still considered as gold standard for sEV isolation. In contrast, sEV isolation by a combination of precipitation with polyethylene glycol and ultracentrifugation as well as cross flow filtration and size exclusion chromatography resulted in sEVs with different characteristics, as shown by surface antigen expression patterns. The MSC culture requires a growth-promoting supplement, such as platelet lysate, which contains sEVs itself. We demonstrated that MSC culture with EV-depleted platelet lysate does not alter MSC characteristics, and conditioned media of such MSC cultures provide sEV preparations enriched for MSC-derived sEVs. The results from the systematic stepwise evaluation of various aspects were combined with culture of MSCs in a hollow fiber bioreactor. This resulted in a strategy using cross flow filtration with subsequent ultracentrifugation for sEV isolation. In conclusion, this workflow provides a semi-automated, efficient, large-scale-applicable, and good manufacturing practice (GMP)-grade approach for the generation of sEVs for clinical use. The use of EV-depleted platelet lysate is an option to further increase the purity of MSC-derived sEVs.
Collapse
Affiliation(s)
- Viktoria Jakl
- Institute for Transfusion Medicine, University Hospital Ulm, Ulm, Germany
| | - Melanie Ehmele
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg—Hessia and University Hospital Ulm, Ulm, Germany
| | - Martina Winkelmann
- Institute for Transfusion Medicine, University Hospital Ulm, Ulm, Germany
| | - Simon Ehrenberg
- Institute for Transfusion Medicine, University Hospital Ulm, Ulm, Germany
| | - Tim Eiseler
- Clinic of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Benedikt Friemert
- Clinic for Trauma Surgery and Orthopedics, Army Hospital Ulm, Ulm, Germany
| | - Markus Thomas Rojewski
- Institute for Transfusion Medicine, University Hospital Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg—Hessia and University Hospital Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, University Hospital Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg—Hessia and University Hospital Ulm, Ulm, Germany
| |
Collapse
|
180
|
Lu ZG, Shen J, Yang J, Wang JW, Zhao RC, Zhang TL, Guo J, Zhang X. Nucleic acid drug vectors for diagnosis and treatment of brain diseases. Signal Transduct Target Ther 2023; 8:39. [PMID: 36650130 PMCID: PMC9844208 DOI: 10.1038/s41392-022-01298-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
Nucleic acid drugs have the advantages of rich target selection, simple in design, good and enduring effect. They have been demonstrated to have irreplaceable superiority in brain disease treatment, while vectors are a decisive factor in therapeutic efficacy. Strict physiological barriers, such as degradation and clearance in circulation, blood-brain barrier, cellular uptake, endosome/lysosome barriers, release, obstruct the delivery of nucleic acid drugs to the brain by the vectors. Nucleic acid drugs against a single target are inefficient in treating brain diseases of complex pathogenesis. Differences between individual patients lead to severe uncertainties in brain disease treatment with nucleic acid drugs. In this Review, we briefly summarize the classification of nucleic acid drugs. Next, we discuss physiological barriers during drug delivery and universal coping strategies and introduce the application methods of these universal strategies to nucleic acid drug vectors. Subsequently, we explore nucleic acid drug-based multidrug regimens for the combination treatment of brain diseases and the construction of the corresponding vectors. In the following, we address the feasibility of patient stratification and personalized therapy through diagnostic information from medical imaging and the manner of introducing contrast agents into vectors. Finally, we take a perspective on the future feasibility and remaining challenges of vector-based integrated diagnosis and gene therapy for brain diseases.
Collapse
Affiliation(s)
- Zhi-Guo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| | - Jie Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jun Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jing-Wen Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Rui-Chen Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Tian-Lu Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Jing Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| |
Collapse
|
181
|
Kim B, Kim KM. Role of Exosomes and Their Potential as Biomarkers in Epstein-Barr Virus-Associated Gastric Cancer. Cancers (Basel) 2023; 15:cancers15020469. [PMID: 36672418 PMCID: PMC9856651 DOI: 10.3390/cancers15020469] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Exosomes are a subtype of extracellular vesicles ranging from 30 to 150 nm and comprising many cellular components, including DNA, RNA, proteins, and metabolites, encapsulated in a lipid bilayer. Exosomes are secreted by many cell types and play important roles in intercellular communication in cancer. Viruses can hijack the exosomal pathway to regulate viral propagation, cellular immunity, and the microenvironment. Cells infected with Epstein-Barr virus (EBV), one of the most common oncogenic viruses, have also been found to actively secrete exosomes, and studies on their roles in EBV-related malignancies are ongoing. In this review, we focus on the role of exosomes in EBV-associated gastric cancer and their clinical applicability in diagnosis and treatment.
Collapse
Affiliation(s)
- Binnari Kim
- Department of Pathology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44610, Republic of Korea
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
- Center of Companion Diagnostics, Samsung Medical Center, Seoul 06351, Republic of Korea
- Correspondence: ; Tel.: +82-2-3410-2807; Fax: +82-2-3410-6396
| |
Collapse
|
182
|
Kia V, Eshaghi-Gorji R, Mansour RN, Hassannia H, Hasanzadeh E, Gheibi M, Mellati A, Enderami SE. Mesenchymal Stromal Cells and their EVs as Potential Leads for SARSCoV2 Treatment. Curr Stem Cell Res Ther 2023; 18:35-53. [PMID: 35473518 DOI: 10.2174/1574888x17666220426115831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/17/2021] [Accepted: 01/28/2022] [Indexed: 11/22/2022]
Abstract
In December 2019, a betacoronavirus was isolated from pneumonia cases in China and rapidly turned into a pandemic of COVID-19. The virus is an enveloped positive-sense ssRNA and causes a severe respiratory syndrome along with a cytokine storm, which is the main cause of most complications. Therefore, treatments that can effectively control the inflammatory reactions are necessary. Mesenchymal Stromal Cells and their EVs are well-known for their immunomodulatory effects, inflammation reduction, and regenerative potentials. These effects are exerted through paracrine secretion of various factors. Their EVs also transport various molecules such as microRNAs to other cells and affect recipient cells' behavior. Scores of research and clinical trials have indicated the therapeutic potential of EVs in various diseases. EVs also seem to be a promising approach for severe COVID-19 treatment. EVs have also been used to develop vaccines since EVs are biocompatible nanoparticles that can be easily isolated and engineered. In this review, we have focused on the use of Mesenchymal Stromal Cells and their EVs for the treatment of COVID-19, their therapeutic capabilities, and vaccine development.
Collapse
Affiliation(s)
- Vahid Kia
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Reza Eshaghi-Gorji
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Hadi Hassannia
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Amol Faculty of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elham Hasanzadeh
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mobina Gheibi
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amir Mellati
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Ehsan Enderami
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Biotechnology, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
183
|
Ivosevic Z, Ljujic B, Pavlovic D, Matovic V, Gazdic Jankovic M. Mesenchymal Stem Cell-Derived Extracellular Vesicles: New Soldiers in the War on Immune-Mediated Diseases. Cell Transplant 2023; 32:9636897231207194. [PMID: 37882092 PMCID: PMC10605687 DOI: 10.1177/09636897231207194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/11/2023] [Accepted: 09/27/2023] [Indexed: 10/27/2023] Open
Abstract
Inflammatory diseases are a group of debilitating disorders with varying degrees of long-lasting functional impairment of targeted system. New therapeutic agents that will attenuate on-going inflammation and, at the same time, promote regeneration of injured organ are urgently needed for the treatment of autoimmune and inflammatory disorders. During the last decade numerous studies have demonstrated that crucial therapeutic benefits of mesenchymal stem cells (MSCs) in inflammatory diseases are based on the effects of MSC-produced paracrine mediators and not on the activity of engrafted cells themselves. Thus, to overcome the limitations of stem cell transplantation, MSC-derived extracellular vesicles (MSC-EVs) have been rigorously investigated, as a promising cell-free pharmaceutical component. In this review, we focus on the mechanisms of MSC-EV covering the current knowledge on their potential therapeutic applications for immune-mediated diseases.
Collapse
Affiliation(s)
- Zeljko Ivosevic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Biljana Ljujic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragica Pavlovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vesna Matovic
- Cardiology Clinic, University Clinical Center Kragujevac, Kragujevac, Serbia
| | - Marina Gazdic Jankovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
184
|
Lucci C, De Groef L. On the other end of the line: Extracellular vesicle-mediated communication in glaucoma. Front Neuroanat 2023; 17:1148956. [PMID: 37113676 PMCID: PMC10126352 DOI: 10.3389/fnana.2023.1148956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
In the last decade, extracellular vesicles (EVs) have emerged as a promising field of research due to their ability to participate in cell-to-cell communication via the transfer of their very diverse and complex cargo. The latter reflects the nature and physiological state of the cell of origin and, as such, EVs may not only play a pivotal role in the cellular events that culminate into disease, but also hold great potential as drug delivery vehicles and biomarkers. Yet, their role in glaucoma, the leading cause of irreversible blindness worldwide, has not been fully studied. Here, we provide an overview of the different EV subtypes along with their biogenesis and content. We elaborate on how EVs released by different cell types can exert a specific function in the context of glaucoma. Finally, we discuss how these EVs provide opportunities to be used as biomarkers for diagnosis and monitoring of disease.
Collapse
|
185
|
Byts N, Makieieva O, Zhyvolozhnyi A, Bart G, Korvala J, Hekkala J, Salmi S, Samoylenko A, Reunanen J. Purification of Bacterial-Enriched Extracellular Vesicle Samples from Feces by Density Gradient Ultracentrifugation. Methods Mol Biol 2023; 2668:211-226. [PMID: 37140799 DOI: 10.1007/978-1-0716-3203-1_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Commensal microbiota has huge impact on the maintenance of human health, its dysregulation being associated with the development of a plethora of diseases. Release of bacterial extracellular vesicles (BEVs) is a fundamental mechanism of systemic microbiome influence on the host organism. Nevertheless, due to the technical challenges of isolation methods, BEV composition and functions remain poorly characterized. Hereby, we describe the up-to-date protocol for isolation of BEV-enriched samples from human feces. Fecal extracellular vesicles (EVs) are purified through the orthogonal implementation of filtration, size-exclusion chromatography (SEC), and density gradient ultracentrifugation. EVs are first separated from bacteria, flagella, and cell debris by size. In the next steps, BEVs are separated from host-derived EVs by density. The quality of vesicle preparation is estimated via immuno-TEM (transmission electron microscopy) for the presence of vesicle-like structures expressing EV markers and via NTA (nanoparticle tracking analysis) for assaying particle concentration and size. Distribution of EVs of human origin in gradient fractions is estimated using antibodies against human exosomal markers with Western blot and ExoView R100 imaging platform. The enrichment for BEVs in vesicle preparation is estimated by Western blot for the presence of bacterial OMVs (outer membrane vesicles) marker and OmpA (outer membrane protein A). Taken together, our study describes a detailed protocol for EV preparation with enrichment for BEVs from feces with a purity level suitable for bioactivity functional assays.
Collapse
Affiliation(s)
- Nadiya Byts
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Olha Makieieva
- Laboratory of Developmental Biology, Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu and Kvantum Institute, Oulu, Finland
| | - Artem Zhyvolozhnyi
- Laboratory of Developmental Biology, Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu and Kvantum Institute, Oulu, Finland
| | - Genevieve Bart
- Laboratory of Developmental Biology, Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu and Kvantum Institute, Oulu, Finland
| | - Johanna Korvala
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Jenni Hekkala
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Sonja Salmi
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, Oulu, Finland
- Laboratory of Developmental Biology, Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu and Kvantum Institute, Oulu, Finland
| | - Anatoliy Samoylenko
- Laboratory of Developmental Biology, Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu and Kvantum Institute, Oulu, Finland
| | - Justus Reunanen
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
186
|
Motallebnezhad M, Omraninava M, Esmaeili Gouvarchin Ghaleh H, Jonaidi-Jafari N, Hazrati A, Malekpour K, Bagheri Y, Izadi M, Ahmadi M. Potential therapeutic applications of extracellular vesicles in the immunopathogenesis of COVID-19. Pathol Res Pract 2023; 241:154280. [PMID: 36580795 PMCID: PMC9759301 DOI: 10.1016/j.prp.2022.154280] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19) which has emerged as a global health crisis. Recently, more than 50 different types of potential COVID-19 vaccines have been developed to elicit a strong immune response against SARS-CoV-2. However, genetic mutations give rise to the new variants of SARS-CoV-2 which is highly associated with the reduced effectiveness of COVID-19 vaccines. There is still no efficient antiviral agent to specifically target the SARS-CoV-2 infection and treatment of COVID-19. Therefore, understanding the molecular mechanisms underlying the pathogenesis of SARS-CoV-2 may contribute to discovering a novel potential therapeutic approach to the management of COVID-19. Recently, extracellular vesicle (EV)-based therapeutic strategies have received great attention on account of their potential benefits in the administration of viral diseases. EVs are extracellular vesicles containing specific biomolecules which play an important role in cell-to-cell communications. It has been revealed that EVs are involved in the pathogenesis of different inflammatory diseases such as cancer and viral infections. EVs are released from virus-infected cells which could mediate the interaction of infected and uninfected host cells. Hence, these extracellular nanoparticles have been considered a novel approach for drug delivery to mediate the treatment of a wide range of diseases including, COVID-19. EVs are considered a cell-free therapeutic strategy that could ameliorate the cytokine storm and its complications in COVID-19 patients. Furthermore, EV-based cargo delivery such as immunomodulatory agents in combination with antiviral drugs may have therapeutic benefits in patients with SARS-CoV-2 infection. In this review, we will highlight the potential of EVs as a therapeutic candidate in the diagnosis and treatment of COVID-19. Also, we will discuss the future perspectives regarding the beneficial effects of Evs in the development of COVID-19 vaccines.
Collapse
Affiliation(s)
- Morteza Motallebnezhad
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Melodi Omraninava
- Department of Infectious Disease, Faculty of Medical Sciences, Sari Branch, Islamic Azad University, Sari, Iran
| | | | - Nematollah Jonaidi-Jafari
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yasser Bagheri
- Immunology Department, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Morteza Izadi
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
187
|
Qu Q, Fu B, Long Y, Liu ZY, Tian XH. Current Strategies for Promoting the Large-scale Production of Exosomes. Curr Neuropharmacol 2023; 21:1964-1979. [PMID: 36797614 PMCID: PMC10514529 DOI: 10.2174/1570159x21666230216095938] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/21/2022] [Accepted: 11/05/2022] [Indexed: 02/18/2023] Open
Abstract
Exosomes, as nanoscale biological vesicles, have been shown to have great potential for biomedical applications. However, the low yield of exosomes limits their application. In this review, we focus on methods to increase exosome yield. Two main strategies are used to increase exosome production, one is based on genetic manipulation of the exosome biogenesis and release pathway, and the other is by pretreating parent cells, changing the culture method or adding different components to the medium. By applying these strategies, exosomes can be produced on a large scale to facilitate their practical application in the clinic.
Collapse
Affiliation(s)
- Qing Qu
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang, 110122, China
| | - Bin Fu
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang, 110122, China
| | - Yong Long
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang, 110122, China
| | - Zi-Yu Liu
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang, 110122, China
| | - Xiao-Hong Tian
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang, 110122, China
| |
Collapse
|
188
|
Bader J, Narayanan H, Arosio P, Leroux JC. Improving extracellular vesicles production through a Bayesian optimization-based experimental design. Eur J Pharm Biopharm 2023; 182:103-114. [PMID: 36526027 DOI: 10.1016/j.ejpb.2022.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
With the growing demand and diversity of biological drugs, developing optimal processes for their accelerated production with minimal resource utilization is a pressing challenge. Typically, such optimization involves multiple target properties, such as production yield, biological activity, and product purity. Therefore, strategic experimental design techniques that can characterize the parameter space while simultaneously arriving at the optimal process satisfying multiple target properties are required. To achieve this, we propose the use of a multi-objective batch Bayesian optimization (MOBBO) algorithm and illustrate its successful application for the production of extracellular vesicles (EVs) from a 3D culture of mesenchymal stem cells (MSCs) considering three objectives, namely to maximize the vesicle-to-protein ratio, maximize the enzymatic activity of the MSC-EV protein CD73, and minimize the amount of calregulin impurities. We show that the optimal combination of the process parameters to address the intended objectives could be achieved with only 32 experiments. For the four parameters considered (i.e., microcarrier concentration, seeding density, centrifugation time, and impeller speed), this number of experiments is comparable to or lower than the classical design of experiments (DoE) and the traditional one-factor-at-a-time (OFAT) approach. We illustrate how the algorithm adaptively samples in the process parameter space, selectively excluding unfavorable regions, thus minimizing the number of experiments required to reach optimal conditions. Finally, we compare the obtained solutions to the literature data and present possible applications of the collected data for other modeling activities such as Quality by Design, process monitoring, control, and scale-up.
Collapse
Affiliation(s)
- Johannes Bader
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Harini Narayanan
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Paolo Arosio
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
189
|
Wu M, Wang M, Jia H, Wu P. Extracellular vesicles: emerging anti-cancer drugs and advanced functionalization platforms for cancer therapy. Drug Deliv 2022; 29:2513-2538. [PMID: 35915054 PMCID: PMC9347476 DOI: 10.1080/10717544.2022.2104404] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Increasing evidences show that unmodified extracellular vesicles (EVs) derived from various cells can effectively inhibit the malignant progression of different types of tumors by delivering the bioactive molecules. Therefore, EVs are expected to be developed as emerging anticancer drugs. Meanwhile, unmodified EVs as an advanced and promising nanocarrier that is frequently used in targeted delivery therapeutic cargos and personalized reagents for the treatment and diagnosis of cancer. To improve the efficacy of EV-based treatments, researchers are trying to engineering EVs as an emerging nanomedicine translational therapy platform through biological, physical and chemical approaches, which can be broaden and altered to enhance their therapeutic capability. EVs loaded with therapeutic components such as tumor suppressor drugs, siRNAs, proteins, peptides, and conjugates exhibit significantly enhanced anti-tumor effects. Moreover, the design and preparation of tumor-targeted modified EVs greatly enhance the specificity and effectiveness of tumor therapy, and these strategies are expected to become novel ideas for tumor precision medicine. This review will focus on reviewing the latest research progress of functionalized EVs, clarifying the superior biological functions and powerful therapeutic potential of EVs, for researchers to explore new design concepts based on EVs and build next-generation nanomedicine therapeutic platforms.
Collapse
Affiliation(s)
- Manling Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of UST C, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
- Anhui Provincial Children’s Hospital, Hefei, Anhui, P.R. China
| | - Min Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Haoyuan Jia
- Department of Clinical Laboratory, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, P.R. China
| | - Peipei Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of UST C, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
- Anhui Provincial Children’s Hospital, Hefei, Anhui, P.R. China
| |
Collapse
|
190
|
Akbari A, Nazari-Khanamiri F, Ahmadi M, Shoaran M, Rezaie J. Engineered Exosomes for Tumor-Targeted Drug Delivery: A Focus on Genetic and Chemical Functionalization. Pharmaceutics 2022; 15:pharmaceutics15010066. [PMID: 36678695 PMCID: PMC9865907 DOI: 10.3390/pharmaceutics15010066] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Cancer is the main cause of death worldwide. The limitations in traditional cancer therapies provoked the advance and use of several nanotechnologies for more effective and nontoxic cancer treatment. Along with synthetic nanocarriers, extracellular vesicles (EVs)-mediated drug delivery systems have aroused substantial interest. The term EVs refers to cell-derived nanovesicles, such as exosomes, with phospholipid-bound structures, participating in cell-to-cell communication. Exosomes are 30-150 nm vesicles that can transfer many biological molecules between cells. From a drug delivery standpoint, exosomes can be loaded with various therapeutic cargo, with the several advantages of low immunogenicity, high biocompatibility, transformative, and effective tumor targeting aptitude. The exosomal surface can be functionalized to improve tumor targeting ability of them. Researchers have genetically expressed or chemically linked various molecules on the surface of exosomes. Despite extensive investigation, clinical translation of exosome-based drug delivery remains challenging. In this review, we discuss various methods used to loading exosomes with therapeutic cargo. We describe examples of functionalized exosomes surface using genetic and chemical modification methods. Finally, this review attempts to provide future outlooks for exosome-based targeted drug delivery.
Collapse
Affiliation(s)
- Ali Akbari
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| | - Fereshteh Nazari-Khanamiri
- Hematology, Immune Cell Therapy, and Stem Cells Transplantation Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| | - Mahdi Ahmadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5665665811, Iran
| | - Maryam Shoaran
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz 5665665811, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
- Hematology, Immune Cell Therapy, and Stem Cells Transplantation Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
- Correspondence: ; Tel.: +98-914-854-8503; Fax: +98-443-222-2010
| |
Collapse
|
191
|
Menu E, Vanderkerken K. Exosomes in multiple myeloma: from bench to bedside. Blood 2022; 140:2429-2442. [PMID: 35271699 PMCID: PMC10653045 DOI: 10.1182/blood.2021014749] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 12/16/2022] Open
Abstract
Multiple myeloma (MM) remains an incurable plasma cell malignancy that develops in the bone marrow (BM). This BM is partially responsible for protecting the MM cells against current standard-of-care therapies and for accommodating MM-related symptoms such as bone resorption and immune suppression. Increasing evidence has implicated extracellular vesicles (EV), including exosomes in the different processes within the BM. Exosomes are <150-nm-sized vesicles secreted by different cell types including MM cells. These vesicles contain protein and RNA cargo that they deliver to the recipient cell. In this way, they have been implicated in MM-related processes including osteolysis, angiogenesis, immune suppression, and drug resistance. Targeting exosome secretion could therefore potentially block these different processes. In this review, we will summarize the current findings of exosome-related processes in the BM and describe not only the current treatment strategies to counter them but also how exosomes can be harnessed to deliver toxic payloads. Finally, an overview of the different clinical studies that investigate EV cargo as potential MM biomarkers in liquid biopsies will be discussed.
Collapse
Affiliation(s)
- Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
192
|
Tsuchiya A, Terai S, Horiguchi I, Homma Y, Saito A, Nakamura N, Sato Y, Ochiya T, Kino-oka M. Basic points to consider regarding the preparation of extracellular vesicles and their clinical applications in Japan. Regen Ther 2022; 21:19-24. [PMID: 35619946 PMCID: PMC9127121 DOI: 10.1016/j.reth.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/23/2022] Open
Abstract
In recent years, extracellular vesicles (EVs)1 have attracted attention as a new therapeutic tool. In Europe, the United States, and Asia, there is an accelerating trend of moving beyond basic research on clinical trials. However, treatment using EVs is still in the research and development stage, and the general public has insufficient awareness and understanding of the risks involved in ensuring safety and efficacy, the status of laws and regulations, and global research and development trends regarding their use. The Japanese Society for Regenerative Medicine, which has promoted the research and development of regenerative medicine, an innovative medical technology based on the principle of delivering it safely, effectively, and promptly, including the establishment of laws and regulations, would like to express two positions in light of the rapid development of therapies using EVs: 1) concern about treatments that are based solely on the discretion of medical practitioners, and 2) active promotion of treatments based on sound scientific evidence. Because EVs are released from cells, there are many similarities between EVs and processed cells2 in terms of manufacturing processes and safety hazards. As for efficacy, the mechanism of action of EVs is still unclear, as is the case with specified processed cellsb; in such cases, it is difficult to measure potency, identify efficacy-related quality attributes, and evaluate the comparability of quality before and after a change in the manufacturing process. In other words, the number of quality attributes that can be obtained for EVs is limited because of their complex characteristics, and it is difficult to grasp their quality through specifications and characterization. Therefore, while designing a quality control strategy for EVs, it is important to ensure the quality of the final product (EVs) by controlling the raw materials and manufacturing process. On the contrary, since EVs do not contain living cell components and are not classified into specified processed cells, non-commercial clinical research on treatments using EVs and individual medical treatments with EVs at the discretion of medical practitioners are out of the scope of the Act on the Safety of Regenerative Medicine of Japan3. At present, there are no relevant laws or regulations for the use of EVs other than the Medical Practitioners’ Act and the Medical Care Act in Japan. Therefore, there is a concern that treatment will be performed without sufficient objective evaluation of the scientific basis for safety and efficacy. Despite these concerns, the development of therapies using EVs is underway worldwide. This could potentially lead to a wide variety of new therapeutic areas if the methods needed to stably secure and mass cultivate cells as raw materials and the technologies needed for the mass production of EVs can be developed, in addition to understanding the risks involved and developing relevant laws and regulations. As part of the Japanese Society for Regenerative Medicine, we will continue to work on the development of these methods and technologies and hope that such a promising field will be promoted with a high level of safety before reaching the public.
Collapse
Affiliation(s)
- Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Corresponding author. Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan.
| | - Ikki Horiguchi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Yasuhiro Homma
- Department of Orthopaedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Atsuhiro Saito
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Norimasa Nakamura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
- Institute for Medical Science in Sports, Osaka Health Science University, Osaka, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - Yoji Sato
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo, Japan
| | - Masahiro Kino-oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
- Corresponding author. Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | | |
Collapse
|
193
|
Haltom AR, Hassen WE, Hensel J, Kim J, Sugimoto H, Li B, McAndrews KM, Conner MR, Kirtley ML, Luo X, Xie B, Volpert OV, Olalekan S, Maltsev N, Basu A, LeBleu VS, Kalluri R. Engineered exosomes targeting MYC reverse the proneural-mesenchymal transition and extend survival of glioblastoma. EXTRACELLULAR VESICLE 2022; 1:100014. [PMID: 37503329 PMCID: PMC10373511 DOI: 10.1016/j.vesic.2022.100014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Dysregulated Myc signaling is a key oncogenic pathway in glioblastoma multiforme (GBM). Yet, effective therapeutic targeting of Myc continues to be challenging. Here, we demonstrate that exosomes generated from human bone marrow mesenchymal stem cells (MSCs) engineered to encapsulate siRNAs targeting Myc (iExo-Myc) localize to orthotopic GBM tumors in mice. Treatment of late stage GBM tumors with iExo-Myc inhibits proliferation and angiogenesis, suppresses tumor growth, and extends survival. Transcriptional profiling of tumors reveals that the mesenchymal transition and estrogen receptor signaling pathways are impacted by Myc inhibition. Single nuclei RNA sequencing (snRNA-seq) shows that iExo-Myc treatment induces transcriptional repression of multiple growth factor and interleukin signaling pathways, triggering a mesenchymal to proneural transition and shifting the cellular landscape of the tumor. These data confirm that Myc is an effective anti-glioma target and that iExo-Myc offers a feasible, readily translational strategy to inhibit challenging oncogene targets for the treatment of brain tumors.
Collapse
Affiliation(s)
- Amanda R. Haltom
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Wafa E. Hassen
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Janine Hensel
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jiha Kim
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hikaru Sugimoto
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Bingrui Li
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kathleen M. McAndrews
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Meagan R. Conner
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michelle L. Kirtley
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Xin Luo
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Bioengineering, Rice University, Houston, TX
| | - Bingqing Xie
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL
| | - Olga V. Volpert
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Susan Olalekan
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL
| | - Natalia Maltsev
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL
| | - Anindita Basu
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL
| | - Valerie S. LeBleu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
- Feinberg School of Medicine & Kellogg School of Management, Northwestern University, Chicago, IL
| | - Raghu Kalluri
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
- James P. Allison Institute at MD Anderson, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Department of Bioengineering, Rice University, Houston, TX
| |
Collapse
|
194
|
Astrocyte-derived sEVs alleviate fibrosis and promote functional recovery after spinal cord injury in rats. Int Immunopharmacol 2022; 113:109322. [DOI: 10.1016/j.intimp.2022.109322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
|
195
|
Almeria C, Kreß S, Weber V, Egger D, Kasper C. Heterogeneity of mesenchymal stem cell-derived extracellular vesicles is highly impacted by the tissue/cell source and culture conditions. Cell Biosci 2022; 12:51. [PMID: 35501833 PMCID: PMC9063275 DOI: 10.1186/s13578-022-00786-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/10/2022] [Indexed: 12/19/2022] Open
Abstract
AbstractExtracellular vesicles (EVs) are cell-derived membrane structures exerting major effects in physiological as well as pathological processes by functioning as vehicles for the delivery of biomolecules to their target cells. An increasing number of effects previously attributed to cell-based therapies have been recognized to be actually mediated by EVs derived from the respective cells, suggesting the administration of purified EVs instead of living cells for cell-based therapies. In this review, we focus on the heterogeneity of EVs derived from mesenchymal stem/stromal cells (MSC) and summarize upstream process parameters that crucially affect the resulting therapeutic properties and biological functions. Hereby, we discuss the effects of the cell source, medium composition, 3D culture, bioreactor culture and hypoxia. Furthermore, aspects of the isolation and storage strategies influences EVs are described. Conclusively, optimization of upstream process parameters should focus on controlling MSC-derived EV heterogeneity for specific therapeutic applications.
Graphical Abstract
Collapse
|
196
|
Yuan Y, Sun J, You T, Shen W, Xu W, Dong Q, Cui M. Extracellular Vesicle-Based Therapeutics in Neurological Disorders. Pharmaceutics 2022; 14:pharmaceutics14122652. [PMID: 36559145 PMCID: PMC9783774 DOI: 10.3390/pharmaceutics14122652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/26/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Neurological diseases remain some of the major causes of death and disability in the world. Few types of drugs and insufficient delivery across the blood-brain barrier limit the treatment of neurological disorders. The past two decades have seen the rapid development of extracellular vesicle-based therapeutics in many fields. As the physiological and pathophysiological roles of extracellular vesicles are recognized in neurological diseases, they have become promising therapeutics and targets for therapeutic interventions. Moreover, advanced nanomedicine technologies have explored the potential of extracellular vesicles as drug delivery systems in neurological diseases. In this review, we discussed the preclinical strategies for extracellular vesicle-based therapeutics in neurological disorders and the struggles involved in their clinical application.
Collapse
Affiliation(s)
- Yiwen Yuan
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200031, China
| | - Jian Sun
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200031, China
| | - Tongyao You
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200031, China
| | - Weiwei Shen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200031, China
| | - Wenqing Xu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200031, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200031, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200031, China
- Correspondence: (Q.D.); (M.C.)
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200031, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200031, China
- Correspondence: (Q.D.); (M.C.)
| |
Collapse
|
197
|
Martin R, Lei R, Zeng Y, Zhu J, Chang H, Ye H, Cui Z. Membrane Applications in Autologous Cell Therapy. MEMBRANES 2022; 12:1182. [PMID: 36557091 PMCID: PMC9788437 DOI: 10.3390/membranes12121182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Stem cell and cell therapies, particularly autologous cell therapies, are becoming a common practice. However, in order for these technologies to achieve wide-scale clinical application, the prohibitively high cost associated with these therapies must be addressed through creative engineering. Membranes can be a disruptive technology to reshape the bioprocessing and manufacture of cellular products and significantly reduce the cost of autologous cell therapies. Examples of successful membrane applications include expansions of CAR-T cells, various human stem cells, and production of extracellular vesicles (EVs) using hollow fibre membrane bioreactors. Novel membranes with tailored functions and surface properties and novel membrane modules that can accommodate the changing needs for surface area and transport properties are to be developed to fulfil this key role.
Collapse
Affiliation(s)
- Risto Martin
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK
| | - Rui Lei
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK
| | - Yida Zeng
- Oxford Suzhou Centre for Advanced Research (OSCAR), University of Oxford, Suzhou 215123, China
| | - Jiachen Zhu
- Oxford Suzhou Centre for Advanced Research (OSCAR), University of Oxford, Suzhou 215123, China
| | - Hong Chang
- Oxford Suzhou Centre for Advanced Research (OSCAR), University of Oxford, Suzhou 215123, China
| | - Hua Ye
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK
- Oxford Suzhou Centre for Advanced Research (OSCAR), University of Oxford, Suzhou 215123, China
| | - Zhanfeng Cui
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK
- Oxford Suzhou Centre for Advanced Research (OSCAR), University of Oxford, Suzhou 215123, China
| |
Collapse
|
198
|
Recent Advances in Gene Therapy for Familial Hypercholesterolemia: An Update Review. J Clin Med 2022; 11:jcm11226773. [PMID: 36431249 PMCID: PMC9699383 DOI: 10.3390/jcm11226773] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Existing lipid-lowering therapies have difficulty in achieving lipid target levels in patients with familial hypercholesterolemia (FH), especially in the treatment of patients with homozygous familial hypercholesterolemia. (2) Method: All of the literature data containing "Familial hypercholesterolemia" and "Gene Therapy" in PubMed and Clinical Trials from 2018 to 2022 were selected. (3) Results: The rapid development of gene therapy technology in recent years is expected to change the treatment status of FH patients. As emerging gene therapy vectors, the optimized adeno-associated viruses, exosomes, and lipid nanoparticles have demonstrated an improved safety and higher transfection efficiency. Various RNA-targeted therapies are in phase 1-3 clinical trials, such as small interfering RNA-based drugs inclisiran, ARO-ANG3, ARO-APOC3, olpasiran, SLN360, and antisense oligonucleotide-based drugs AZD8233, vupanorsen, volanesorsen, IONIS-APO(a)Rx, etc., all of which have demonstrated excellent lipid-lowering effects. With gene editing technologies, such as CRISPR-Cas 9 and meganuclease, completing animal experiments in mice or cynomolgus monkeys and demonstrating lasting lipid-lowering effects, patients with FH are expected to reach a permanent cure in the future. (4) Conclusion: Gene therapy is being widely used for the lipid-lowering treatment of FH patients and has shown excellent therapeutic promise, but the current delivery efficiency, economic burden, immunogenicity and the precision of gene therapy can be further optimized.
Collapse
|
199
|
de Almeida Fuzeta M, Gonçalves PP, Fernandes-Platzgummer A, Cabral JMS, Bernardes N, da Silva CL. From Promise to Reality: Bioengineering Strategies to Enhance the Therapeutic Potential of Extracellular Vesicles. Bioengineering (Basel) 2022; 9:675. [PMID: 36354586 PMCID: PMC9687169 DOI: 10.3390/bioengineering9110675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
Extracellular vesicles (EVs) have been the focus of great attention over the last decade, considering their promising application as next-generation therapeutics. EVs have emerged as relevant mediators of intercellular communication, being associated with multiple physiological processes, but also in the pathogenesis of several diseases. Given their natural ability to shuttle messages between cells, EVs have been explored both as inherent therapeutics in regenerative medicine and as drug delivery vehicles targeting multiple diseases. However, bioengineering strategies are required to harness the full potential of EVs for therapeutic use. For that purpose, a good understanding of EV biology, from their biogenesis to the way they are able to shuttle messages and establish interactions with recipient cells, is needed. Here, we review the current state-of-the-art on EV biology, complemented by representative examples of EVs roles in several pathophysiological processes, as well as the intrinsic therapeutic properties of EVs and paradigmatic strategies to produce and develop engineered EVs as next-generation drug delivery systems.
Collapse
Affiliation(s)
- Miguel de Almeida Fuzeta
- iBB–Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Pedro P. Gonçalves
- iBB–Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana Fernandes-Platzgummer
- iBB–Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Joaquim M. S. Cabral
- iBB–Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Nuno Bernardes
- iBB–Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Cláudia L. da Silva
- iBB–Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
200
|
Jin S, Lv Z, Kang L, Wang J, Tan C, Shen L, Wang L, Liu J. Next generation of neurological therapeutics: Native and bioengineered extracellular vesicles derived from stem cells. Asian J Pharm Sci 2022; 17:779-797. [PMID: 36600903 PMCID: PMC9800941 DOI: 10.1016/j.ajps.2022.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/20/2022] [Accepted: 10/10/2022] [Indexed: 11/19/2022] Open
Abstract
Extracellular vesicles (EVs)-based cell-free therapy, particularly stem cell-derived extracellular vesicles (SC-EVs), offers new insights into treating a series of neurological disorders and becomes a promising candidate for alternative stem cell regenerative therapy. Currently, SC-EVs are considered direct therapeutic agents by themselves and/or dynamic delivery systems as they have a similar regenerative capacity of stem cells to promote neurogenesis and can easily load many functional small molecules to recipient cells in the central nervous system. Meanwhile, as non-living entities, SC-EVs avoid the uncontrollability and manufacturability limitations of live stem cell products in vivo (e.g., low survival rate, immune response, and tumorigenicity) and in vitro (e.g., restricted sources, complex preparation processes, poor quality control, low storage, shipping instability, and ethical controversy) by strict quality control system. Moreover, SC-EVs can be engineered or designed to enhance further overall yield, increase bioactivity, improve targeting, and extend their half-life. Here, this review provides an overview on the biological properties of SC-EVs, and the current progress in the strategies of native or bioengineered SC-EVs for nerve injury repairing is presented. Then we further summarize the challenges of recent research and perspectives for successful clinical application to advance SC-EVs from bench to bedside in neurological diseases.
Collapse
Affiliation(s)
- Shilin Jin
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Engineering Research Center for Genetic Variation Detection of Infectious Pathogenic Microorganisms, Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian 116085, China
| | - Zhongyue Lv
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Engineering Research Center for Genetic Variation Detection of Infectious Pathogenic Microorganisms, Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian 116085, China
| | - Lin Kang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Engineering Research Center for Genetic Variation Detection of Infectious Pathogenic Microorganisms, Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian 116085, China
| | - Jiayi Wang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Engineering Research Center for Genetic Variation Detection of Infectious Pathogenic Microorganisms, Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian 116085, China
| | - Chengcheng Tan
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Engineering Research Center for Genetic Variation Detection of Infectious Pathogenic Microorganisms, Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian 116085, China
| | - Liming Shen
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Engineering Research Center for Genetic Variation Detection of Infectious Pathogenic Microorganisms, Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian 116085, China
| | - Liang Wang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Engineering Research Center for Genetic Variation Detection of Infectious Pathogenic Microorganisms, Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian 116085, China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Engineering Research Center for Genetic Variation Detection of Infectious Pathogenic Microorganisms, Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian 116085, China
| |
Collapse
|