151
|
Tangvarasittichai S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes 2015; 6:456-480. [PMID: 25897356 PMCID: PMC4398902 DOI: 10.4239/wjd.v6.i3.456] [Citation(s) in RCA: 758] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/21/2014] [Accepted: 01/12/2015] [Indexed: 02/05/2023] Open
Abstract
Oxidative stress is increased in metabolic syndrome and type 2 diabetes mellitus (T2DM) and this appears to underlie the development of cardiovascular disease, T2DM and diabetic complications. Increased oxidative stress appears to be a deleterious factor leading to insulin resistance, dyslipidemia, β-cell dysfunction, impaired glucose tolerance and ultimately leading to T2DM. Chronic oxidative stress, hyperglycemia and dyslipidemia are particularly dangerous for β-cells from lowest levels of antioxidant, have high oxidative energy requirements, decrease the gene expression of key β-cell genes and induce cell death. If β-cell functioning is impaired, it results in an under production of insulin, impairs glucose stimulated insulin secretion, fasting hyperglycemia and eventually the development of T2DM.
Collapse
|
152
|
Smith LE, White MY. The role of post-translational modifications in acute and chronic cardiovascular disease. Proteomics Clin Appl 2015; 8:506-21. [PMID: 24961403 DOI: 10.1002/prca.201400052] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 05/27/2014] [Accepted: 06/17/2014] [Indexed: 12/22/2022]
Abstract
Cardiovascular disease (CVD) in one of the leading causes of mortality and morbidity worldwide, accounting for both primary diseases of the heart and vasculature and arising as a co-morbidity with numerous pathologies, including type 2 diabetes mellitus (T2DM). There has been significant emphasis on the role of the genome in CVD, aiding in the definition of 'at-risk' patients. The extent of disease penetrance however, can be influenced by environmental factors that are not detectable by investigating the genome alone. By targeting the transcriptome in response to CVD, the interplay between genome and environment is more apparent, however this implies the level of protein expression without reference to proteolytic turnover, or potentially more importantly, without defining the role of PTMs in the development of disease. Here, we discuss the role of both brief and irreversible PTMs in the setting of myocardial ischemia/reperfusion injury. Key proteins involved in calcium regulation have been observed as differentially modified by phosphorylation/O-GlcNAcylation or phosphorylation/redox modifications, with the level of interplay dependent on the physiological or pathophysiological state. The ability to modify crucial sites to produce the desired functional output is modulated by the presence of other PTMs as exemplified in the T2DM heart, where hyperglycemia results in aberrant O-GlcNAcylation and advanced glycation end products. By using the signalling events predicted to be critical to post-conditioning, an intervention with great promise for the cardioprotection of the ischemia/reperfusion injured heart, as an example, we discuss the level of PTMs and their interplay. The inability of post-conditioning to protect the diabetic heart may be regulated by aberrant PTMs influencing those sites necessary for protection.
Collapse
Affiliation(s)
- Lauren E Smith
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
153
|
The receptor for advanced glycation end products (RAGE) contributes to the progression of emphysema in mice. PLoS One 2015; 10:e0118979. [PMID: 25781626 PMCID: PMC4364508 DOI: 10.1371/journal.pone.0118979] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 01/27/2015] [Indexed: 01/11/2023] Open
Abstract
Several recent clinical studies have implied a role for the receptor for advanced glycation end products (RAGE) and its variants in chronic obstructive pulmonary disease (COPD). In this study we have defined a role for RAGE in the pathogenesis of emphysema in mice. RAGE deficient mice (RAGE-/-) exposed to chronic cigarette smoke were significantly protected from smoke induced emphysema as determined by airspace enlargement and had no significant reduction in lung tissue elastance when compared to their air exposed controls contrary to their wild type littermates. The progression of emphysema has been largely attributed to an increased inflammatory cell-mediated elastolysis. Acute cigarette smoke exposure in RAGE-/- mice revealed an impaired early recruitment of neutrophils, approximately a 6-fold decrease compared to wild type mice. Hence, impaired neutrophil recruitment with continued cigarette smoke exposure reduces elastolysis and consequent emphysema.
Collapse
|
154
|
Nowotny K, Jung T, Höhn A, Weber D, Grune T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules 2015; 5:194-222. [PMID: 25786107 PMCID: PMC4384119 DOI: 10.3390/biom5010194] [Citation(s) in RCA: 748] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/06/2015] [Accepted: 03/02/2015] [Indexed: 12/25/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a very complex and multifactorial metabolic disease characterized by insulin resistance and β cell failure leading to elevated blood glucose levels. Hyperglycemia is suggested to be the main cause of diabetic complications, which not only decrease life quality and expectancy, but are also becoming a problem regarding the financial burden for health care systems. Therefore, and to counteract the continually increasing prevalence of diabetes, understanding the pathogenesis, the main risk factors, and the underlying molecular mechanisms may establish a basis for prevention and therapy. In this regard, research was performed revealing further evidence that oxidative stress has an important role in hyperglycemia-induced tissue injury as well as in early events relevant for the development of T2DM. The formation of advanced glycation end products (AGEs), a group of modified proteins and/or lipids with damaging potential, is one contributing factor. On the one hand it has been reported that AGEs increase reactive oxygen species formation and impair antioxidant systems, on the other hand the formation of some AGEs is induced per se under oxidative conditions. Thus, AGEs contribute at least partly to chronic stress conditions in diabetes. As AGEs are not only formed endogenously, but also derive from exogenous sources, i.e., food, they have been assumed as risk factors for T2DM. However, the role of AGEs in the pathogenesis of T2DM and diabetic complications—if they are causal or simply an effect—is only partly understood. This review will highlight the involvement of AGEs in the development and progression of T2DM and their role in diabetic complications.
Collapse
Affiliation(s)
- Kerstin Nowotny
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| | - Tobias Jung
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| | - Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| |
Collapse
|
155
|
Downs CA, Kreiner LH, Johnson NM, Brown LA, Helms MN. Receptor for advanced glycation end-products regulates lung fluid balance via protein kinase C-gp91(phox) signaling to epithelial sodium channels. Am J Respir Cell Mol Biol 2015; 52:75-87. [PMID: 24978055 DOI: 10.1165/rcmb.2014-0002oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The receptor for advanced glycation end-products (RAGE), a multiligand member of the Ig family, may play a crucial role in the regulation of lung fluid balance. We quantified soluble RAGE (sRAGE), a decoy isoform, and advanced glycation end-products (AGEs) from the bronchoalveolar lavage fluid of smokers and nonsmokers, and tested the hypothesis that AGEs regulate lung fluid balance through protein kinase C (PKC)-gp91(phox) signaling to the epithelial sodium channel (ENaC). Human bronchoalveolar lavage samples from smokers showed increased AGEs (9.02 ± 3.03 μg versus 2.48 ± 0.53 μg), lower sRAGE (1,205 ± 292 pg/ml versus 1,910 ± 263 pg/ml), and lower volume(s) of epithelial lining fluid (97 ± 14 ml versus 133 ± 17 ml). sRAGE levels did not predict ELF volumes in nonsmokers; however, in smokers, higher volumes of ELF were predicted with higher levels of sRAGE. Single-channel patch clamp analysis of rat alveolar epithelial type 1 cells showed that AGEs increased ENaC activity measured as the product of the number of channels (N) and the open probability (Po) (NPo) from 0.19 ± 0.08 to 0.83 ± 0.22 (P = 0.017) and the subsequent addition of 4-hydroxy-2, 2, 6, 6-tetramethylpiperidine-N-oxyl decreased ENaC NPo to 0.15 ± 0.07 (P = 0.01). In type 2 cells, human AGEs increased ENaC NPo from 0.12 ± 0.05 to 0.53 ± 0.16 (P = 0.025) and the addition of 4-hydroxy-2, 2, 6, 6-tetramethylpiperidine-N-oxyl decreased ENaC NPo to 0.10 ± 0.03 (P = 0.013). Using molecular and biochemical techniques, we observed that inhibition of RAGE and PKC activity attenuated AGE-induced activation of ENaC. AGEs induced phosphorylation of p47(phox) and increased gp91(phox)-dependent reactive oxygen species production, a response that was abrogated with RAGE or PKC inhibition. Finally, tracheal instillation of AGEs promoted clearance of lung fluid, whereas concomitant inhibition of RAGE, PKC, and gp91(phox) abrogated the response.
Collapse
|
156
|
Machado-Lima A, Iborra RT, Pinto RS, Castilho G, Sartori CH, Oliveira ER, Okuda LS, Nakandakare ER, Giannella-Neto D, Machado UF, Corrêa-Giannella MLC, Traldi P, Porcu S, Roverso M, Lapolla A, Passarelli M. In Type 2 Diabetes Mellitus Glycated Albumin Alters Macrophage Gene Expression Impairing ABCA1-Mediated Cholesterol Efflux. J Cell Physiol 2015; 230:1250-7. [DOI: 10.1002/jcp.24860] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/30/2014] [Indexed: 01/16/2023]
Affiliation(s)
- Adriana Machado-Lima
- Lipids Laboratory (LIM 10); Faculty of Medical Sciences; University of Sao Paulo; Sao Paulo Brazil
| | - Rodrigo T. Iborra
- Lipids Laboratory (LIM 10); Faculty of Medical Sciences; University of Sao Paulo; Sao Paulo Brazil
| | - Raphael S. Pinto
- Lipids Laboratory (LIM 10); Faculty of Medical Sciences; University of Sao Paulo; Sao Paulo Brazil
| | - Gabriela Castilho
- Lipids Laboratory (LIM 10); Faculty of Medical Sciences; University of Sao Paulo; Sao Paulo Brazil
| | - Camila H. Sartori
- Lipids Laboratory (LIM 10); Faculty of Medical Sciences; University of Sao Paulo; Sao Paulo Brazil
| | - Erika R. Oliveira
- Cellular and Molecular Endocrinology Laboratory (LIM 25); Faculty of Medical Sciences; University of Sao Paulo; Sao Paulo Brazil
| | - Ligia S. Okuda
- Lipids Laboratory (LIM 10); Faculty of Medical Sciences; University of Sao Paulo; Sao Paulo Brazil
| | - Edna R. Nakandakare
- Lipids Laboratory (LIM 10); Faculty of Medical Sciences; University of Sao Paulo; Sao Paulo Brazil
| | | | - Ubiratan F. Machado
- Department of Physiology and Biophysics; Institute of Biomedical Sciences; University of São Paulo; Sao Paulo Brazil
| | - Maria Lucia C. Corrêa-Giannella
- Cellular and Molecular Endocrinology Laboratory (LIM 25); Faculty of Medical Sciences; University of Sao Paulo; Sao Paulo Brazil
| | | | - Simona Porcu
- Department of Medicine; University of Padova; Padova Italy
| | - Marco Roverso
- Department of Medicine; University of Padova; Padova Italy
| | | | - Marisa Passarelli
- Lipids Laboratory (LIM 10); Faculty of Medical Sciences; University of Sao Paulo; Sao Paulo Brazil
| |
Collapse
|
157
|
D'Apolito M, Du X, Pisanelli D, Pettoello-Mantovani M, Campanozzi A, Giacco F, Maffione AB, Colia AL, Brownlee M, Giardino I. Urea-induced ROS cause endothelial dysfunction in chronic renal failure. Atherosclerosis 2015; 239:393-400. [PMID: 25682038 DOI: 10.1016/j.atherosclerosis.2015.01.034] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 01/28/2015] [Accepted: 01/28/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The pathogenic events responsible for accelerated atherosclerosis in patients with chronic renal failure (CRF) are poorly understood. Here we investigate the hypothesis that concentrations of urea associated with CRF and increased ROS production in adipocytes might also increase ROS production directly in arterial endothelial cells, causing the same pathophysiologic changes seen with hyperglycemia. METHODS Primary cultures of human aortic endothelial cells (HAEC) were exposed to 20mM urea for 48 h. C57BL/6J wild-type mice underwent 5/6 nephrectomy or a sham operation. Randomized groups of 5/6 nephrectomized mice and their controls were also injected i.p. with a SOD/catalase mimetic (MnTBAP) for 15 days starting immediately after the final surgical procedure. RESULTS Urea at concentrations seen in CRF induced mitochondrial ROS production in cultured HAEC. Urea-induced ROS caused the activation of endothelial pro-inflammatory pathways through the inhibition of GAPDH, including increased protein kinase C isoforms activity, increased hexosamine pathway activity, and accumulation of intracellular AGEs (advanced glycation end products). Urea-induced ROS directly inactivated the anti-atherosclerosis enzyme PGI2 synthase and also caused ER stress. Normalization of mitochondrial ROS production prevented each of these effects of urea. In uremic mice, treatment with MnTBAP prevented aortic oxidative stress, PGI2 synthase activity reduction and increased expression of the pro-inflammatory proteins TNFα, IL-6, VCAM1, Endoglin, and MCP-1. CONCLUSIONS Taken together, these data show that urea itself, at levels common in patients with CRF, causes endothelial dysfunction and activation of proatherogenic pathways.
Collapse
Affiliation(s)
- Maria D'Apolito
- Institute of Pediatrics, University of Foggia, Foggia Viale Pinto 1, O.O.R.R., Foggia, Italy
| | - Xueliang Du
- Diabetes Research Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| | - Daniela Pisanelli
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, O.O.R.R., Foggia, Italy
| | | | - Angelo Campanozzi
- Institute of Pediatrics, University of Foggia, Foggia Viale Pinto 1, O.O.R.R., Foggia, Italy
| | - Ferdinando Giacco
- Diabetes Research Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| | - Angela Bruna Maffione
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, O.O.R.R., Foggia, Italy
| | - Anna Laura Colia
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, O.O.R.R., Foggia, Italy
| | - Michael Brownlee
- Diabetes Research Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| | - Ida Giardino
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, O.O.R.R., Foggia, Italy.
| |
Collapse
|
158
|
Abstract
In vivo modification of proteins by molecules with reactive carbonyl groups leads to intermediate and advanced glycation end products (AGE). Glucose is a significant glycation reagent due to its high physiological concentration and poorly controlled diabetics show increased albumin glycation. Increased levels of glycated and AGE-modified albumin have been linked to diabetic complications, neurodegeneration, and vascular disease. This review discusses glycated albumin formation, structural consequences of albumin glycation on drug binding, removal of circulating AGE by several scavenger receptors, as well as AGE-induced proinflammatory signaling through activation of the receptor for AGE. Analytical methods for quantitative detection of protein glycation and AGE formation are compared. Finally, the use of glycated albumin as a novel clinical marker to monitor glycemic control is discussed and compared to glycated hemoglobin (HbA1c) as long-term indicator of glycemic status.
Collapse
|
159
|
Bikbova G, Oshitari T, Baba T, Yamamoto S. Altered Expression of NF- κ B and SP1 after Exposure to Advanced Glycation End-Products and Effects of Neurotrophic Factors in AGEs Exposed Rat Retinas. J Diabetes Res 2015; 2015:543818. [PMID: 26078979 PMCID: PMC4452840 DOI: 10.1155/2015/543818] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 04/04/2015] [Accepted: 04/04/2015] [Indexed: 12/31/2022] Open
Abstract
To determine the effect of advanced glycation end-products (AGEs) on neurite regeneration, and also to determine the regenerative effects of different neurotrophic factors (NTFs) on rat retinal explants, the retinas of SD rats were cultured in three-dimensional collagen gels and incubated in 6 types of media: (1) serum-free control culture media; (2) 100 μg/mL AGEs-BSA media; (3) AGEs-BSA + 100 ng/mL neurotrophin-4 (NT-4) media; (4) AGEs-BSA + 100 ng/mL hepatocyte growth factor media; (5) AGEs-BSA + 100 ng/mL glial cell line-derived neurotrophic factor media; or (6) AGEs-BSA + 100 µM tauroursodeoxycholic acid media. After 7 days, the number of regenerating neurites was counted. The explants were immunostained for nuclear factor-κB (NF-κB) and specificity protein 1 (SP1). Statistical analyses were performed by one-way ANOVA. In retinas incubated with AGEs, the numbers of neurites were fewer than in control. All of the NTFs increased the number of neurites, and the increase was more significant in the NT-4 group. The number of NF-κB and SP1 immunopositive cells was higher in retinas exposed to AGEs than in control. All of the NTFs decreased the number of NF-κB immunopositive cells but did not significantly affect SP1 expression. These results demonstrate the potential of the NTFs as axoprotectants in AGEs exposed retinal neurons.
Collapse
Affiliation(s)
- Guzel Bikbova
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Inohana 1-8-1, Chuo-ku, Chiba, Chiba Prefecture 260-8670, Japan
| | - Toshiyuki Oshitari
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Inohana 1-8-1, Chuo-ku, Chiba, Chiba Prefecture 260-8670, Japan
- *Toshiyuki Oshitari:
| | - Takayuki Baba
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Inohana 1-8-1, Chuo-ku, Chiba, Chiba Prefecture 260-8670, Japan
| | - Shuichi Yamamoto
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Inohana 1-8-1, Chuo-ku, Chiba, Chiba Prefecture 260-8670, Japan
| |
Collapse
|
160
|
Masseau I, Bowles DK. Carotid Endothelial VCAM-1 Is an Early Marker of Carotid Atherosclerosis and Predicts Coronary Artery Disease in Swine. ACTA ACUST UNITED AC 2015; 8:789-796. [PMID: 26702331 PMCID: PMC4685706 DOI: 10.4236/jbise.2015.811075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Objective The aim was to determine if endothelial VCAM-1 (eVCAM-1) expression in the common carotid artery (CCA) would correlate with predictive markers of atherosclerotic disease, would precede reduction of markers of endothelial cell function and would predict coronary artery disease (CAD). Methods and results Carotid arterial segments (bifurcation, proximal and distal CCA) were harvested from 14 and 24 month-old male castrated familial hypercholesterolemic (FH) swine, a model of spontaneous atherosclerosis. Quantification of local expression of eVCAM-1, intimal macrophage accumulation, oxidative stress, intima-media (I/M) ratio, intima-media thickness (IMT), endothelial nitric oxide synthase (eNOS) and phosphorylated eNOS (p-eNOS) in selected regions of the carotids revealed a relationship between local inflammation and atheroscle-rotic plaque progression. Importantly, inflammation was not uniform throughout the CCA. Endo-thelial VCAM-1 expression was the greatest at the bifurcation and increased with age. Finally, eV-CAM-1 best estimated the severity of CAD compared to blood levels of glucose, hypercholestero-lemia, carotid IMT, and p-eNOS. Conclusion Our data suggested that eVCAM-1 was closely associated with atherosclerotic plaque progression and preceded impairment of EDD. Thus, this study supported the use of carotid VCAM-1 targeting agents to estimate the severity of CAD.
Collapse
Affiliation(s)
- I Masseau
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA ; Département des Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, Québec, Canada
| | - D K Bowles
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA ; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
161
|
Altaf Q, Tahrani AA. Obstructive Sleep Apnea and Diabetic Microvascular Complications. MODULATION OF SLEEP BY OBESITY, DIABETES, AGE, AND DIET 2015:213-224. [DOI: 10.1016/b978-0-12-420168-2.00023-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
162
|
Masseau I, Bowles DK. Carotid Endothelial VCAM-1 Is an Early Marker of Carotid Atherosclerosis and Predicts Coronary Artery Disease in Swine. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/jbise.2015.811073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
163
|
Himeno T, Kamiya H, Naruse K, Cheng Z, Ito S, Shibata T, Kondo M, Kato J, Okawa T, Fujiya A, Suzuki H, Kito T, Hamada Y, Oiso Y, Isobe K, Nakamura J. Angioblast Derived from ES Cells Construct Blood Vessels and Ameliorate Diabetic Polyneuropathy in Mice. J Diabetes Res 2015; 2015:257230. [PMID: 25977928 PMCID: PMC4419216 DOI: 10.1155/2015/257230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although numerous reports addressing pathological involvements of diabetic polyneuropathy have been conducted, a universally effective treatment of diabetic polyneuropathy has not yet been established. Recently, regenerative medicine studies in diabetic polyneuropathy using somatic stem/progenitor cell have been reported. However, the effectiveness of these cell transplantations was restricted because of their functional and numerical impairment in diabetic objects. Here, we investigated the efficacy of treatment for diabetic polyneuropathy using angioblast-like cells derived from mouse embryonic stem cells. METHODS AND RESULTS Angioblast-like cells were obtained from mouse embryonic stem cells and transplantation of these cells improved several physiological impairments in diabetic polyneuropathy: hypoalgesia, delayed nerve conduction velocities, and reduced blood flow in sciatic nerve and plantar skin. Furthermore, pathologically, the capillary number to muscle fiber ratios were increased in skeletal muscles of transplanted hindlimbs, and intraepidermal nerve fiber densities were ameliorated in transplanted plantar skin. Transplanted cells maintained their viabilities and differentiated to endothelial cells and smooth muscle cells around the injection sites. Moreover, several transplanted cells constructed chimeric blood vessels with recipient cells. CONCLUSIONS These results suggest that transplantation of angioblast like cells induced from embryonic stem cells appears to be a novel therapeutic strategy for diabetic polyneuropathy.
Collapse
Affiliation(s)
- Tatsuhito Himeno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hideki Kamiya
- Department of Chronic Kidney Disease Initiatives, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 21 Karimata, Yazako, Nagakute, Aichi 480-1195, Japan
- *Hideki Kamiya:
| | - Keiko Naruse
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Zhao Cheng
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Sachiko Ito
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Taiga Shibata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Masaki Kondo
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Jiro Kato
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tetsuji Okawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Atsushi Fujiya
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Department of Metabolic Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hirohiko Suzuki
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tetsutaro Kito
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yoji Hamada
- Department of Metabolic Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yutaka Oiso
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kenichi Isobe
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Jiro Nakamura
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 21 Karimata, Yazako, Nagakute, Aichi 480-1195, Japan
| |
Collapse
|
164
|
Carvalho LSF, Panzoldo N, Santos SN, Modolo R, Almeida B, Quinaglia e Silva JC, Nadruz-Jr W, de Faria EC, Sposito AC. HDL levels and oxidizability during myocardial infarction are associated with reduced endothelial-mediated vasodilation and nitric oxide bioavailability. Atherosclerosis 2014; 237:840-6. [DOI: 10.1016/j.atherosclerosis.2014.10.103] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/22/2014] [Accepted: 10/28/2014] [Indexed: 11/28/2022]
|
165
|
Barbieri L, Verdoia M, Schaffer A, Cassetti E, Di Giovine G, Marino P, Suryapranata H, De Luca G. Pre-diabetes and the risk of contrast induced nephropathy in patients undergoing coronary angiography or percutaneous intervention. Diabetes Res Clin Pract 2014; 106:458-64. [PMID: 25458324 DOI: 10.1016/j.diabres.2014.09.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/18/2014] [Accepted: 09/15/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND Contrast induced nephropathy (CIN) is a complication of coronary angiography/percutaneous intervention (PCI). It is known that diabetes is an independent risk factor for CIN, but we have no data regarding the association between CIN and glycemic levels in patients without diabetes. Aim of our study was to evaluate whether high level of glycated-haemoglobin in patients without diabetes is associated with an increased risk of CIN. METHODS A total of 1324 patients without diabetes, undergoing elective/urgent coronary angiography/angioplasty were divided according to quartiles of baseline glycated-haemoglobin. CIN was defined as an absolute ≥ 0.5mg/dL or a relative ≥ 25% increase in creatinine level at 24-48 h after the procedure. RESULTS Patients with elevated glycated-haemoglobin were older, with hypertension, metabolic syndromes, previous history of AMI, PCI and CABG. They had higher gycaemia, fasting-glycaemia and triglycerides but lower HDL-cholesterol. Patients with higher glycated-haemoglobin were more often on therapy with statins, diuretics and calcium-antagonist at admission, had higher basal, 24 and 48 h creatinine, lower creatinine clearance and lower ejection fraction. They had the highest incidence of PCI and contrast volume-eGFR rate. CIN occurred in 10.6% of patients with a linear association with glycated-haemoglobin (p=0.001). No relationship was found between glycaemia/fasting glycaemia at admission and CIN. The multivariate analysis confirmed the association between elevated glycated haemoglobin (above the median value 5.7%) and the risk of CIN after adjustment for baseline confounding factors (Adjusted OR [95% CI]=1.69 [1.14-2.51], p=0.009). In fact, the results were consistent in major high-risk subgroups. CONCLUSION This is the first study showing that among patients without diabetes undergoing coronary angiography/PCI elevated glycated-haemoglobin but not glucose levels is independently associated with the risk of CIN.
Collapse
Affiliation(s)
- Lucia Barbieri
- Division of Cardiology, Azienda Ospedaliera-Universitaria "Maggiore della Carità", Eastern Piedmont University, Novara, Italy
| | - Monica Verdoia
- Division of Cardiology, Azienda Ospedaliera-Universitaria "Maggiore della Carità", Eastern Piedmont University, Novara, Italy
| | - Alon Schaffer
- Division of Cardiology, Azienda Ospedaliera-Universitaria "Maggiore della Carità", Eastern Piedmont University, Novara, Italy
| | - Ettore Cassetti
- Division of Cardiology, Azienda Ospedaliera-Universitaria "Maggiore della Carità", Eastern Piedmont University, Novara, Italy
| | - Gabriella Di Giovine
- Division of Cardiology, Azienda Ospedaliera-Universitaria "Maggiore della Carità", Eastern Piedmont University, Novara, Italy
| | - Paolo Marino
- Division of Cardiology, Azienda Ospedaliera-Universitaria "Maggiore della Carità", Eastern Piedmont University, Novara, Italy
| | | | - Giuseppe De Luca
- Division of Cardiology, Azienda Ospedaliera-Universitaria "Maggiore della Carità", Eastern Piedmont University, Novara, Italy.
| |
Collapse
|
166
|
Polymorphisms of the receptor for advanced glycation end-products and glyoxalase I in patients with renal cancer. Tumour Biol 2014; 36:2121-6. [DOI: 10.1007/s13277-014-2821-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 11/06/2014] [Indexed: 10/24/2022] Open
|
167
|
Pierine DT, Navarro MEL, Minatel IO, Luvizotto RAM, Nascimento AF, Ferreira ALA, Yeum KJ, Corrêa CR. Lycopene supplementation reduces TNF-α via RAGE in the kidney of obese rats. Nutr Diabetes 2014; 4:e142. [PMID: 25383746 PMCID: PMC4259904 DOI: 10.1038/nutd.2014.39] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 08/28/2014] [Accepted: 09/08/2014] [Indexed: 02/07/2023] Open
Abstract
Background: The kidney is a target organ for injuries caused by advanced glycation end products (AGEs) in obesity. The receptor of AGEs (RAGE) is proinflammatory and appears to have a role in the pathogenesis of renal disease due to obesity. Objective: The aim was to verify the effect of obesity on renal damage and the effect of lycopene on these complications Design and Methods: Male Wistar rats were randomly assigned to receive a control diet (C, n=7) or a high-fat diet plus sucrose (HD+S, n=14) for 6 weeks. After this period, the HD+S animals were randomized into two groups: HD+S (n=7) and HD+S supplemented with lycopene (HD+S+L, n=7). The animals received maize oil (C and HD+S) or lycopene (HD+S+L) for a 6-week period. Results: The HD+S and HD+S+L animals demonstrated insulin resistance (OGTT glucose after 150 min; C: 117.6±3.9<HD+S: 138.1±5.1=HD+S+L: 137.8±5.2 mg dl−1; P=0.01); however, no changes were seen in fasting glucose, plasma lipids, blood pressure or renal function. Renal concentrations of RAGE and TNF-α increased in the HD+S group and lycopene supplementation restored these to control group values (RAGE: C: 3.1±0.3=DH+S+L: 3.1±0.3<DH+S: 3.6±0.4 μg g−1; P=0.014; TNF-α: C: 227.8±2.7=DH+S+L: 227.4±2.2<DH+S: 238.7±3.0 pg/ml; P=0.014). Conclusions: Lycopene may be beneficial in the prevention and treatment of oxidative stress and inflammation in the kidney due to obesity.
Collapse
Affiliation(s)
- D T Pierine
- 1] Pathology Department, Botucatu Medical School-São Paulo State University-UNESP, Botucatu, Brazil [2] Jean Mayer Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - M E L Navarro
- Pathology Department, Botucatu Medical School-São Paulo State University-UNESP, Botucatu, Brazil
| | - I O Minatel
- 1] Pathology Department, Botucatu Medical School-São Paulo State University-UNESP, Botucatu, Brazil [2] Jean Mayer Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - R A M Luvizotto
- 1] Jean Mayer Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA [2] Internal Medicine Department, Botucatu Medical School-São Paulo State University-UNESP, Botucatu, Brazil
| | - A F Nascimento
- 1] Jean Mayer Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA [2] Internal Medicine Department, Botucatu Medical School-São Paulo State University-UNESP, Botucatu, Brazil
| | - A L A Ferreira
- Internal Medicine Department, Botucatu Medical School-São Paulo State University-UNESP, Botucatu, Brazil
| | - K-J Yeum
- 1] Jean Mayer Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA [2] Food and Nutrition Major, Division of Food Bioscience, College of Biomedical and Health Sciences, Konkuk University, Glocal Campus, Seoul, South Korea
| | - C R Corrêa
- Pathology Department, Botucatu Medical School-São Paulo State University-UNESP, Botucatu, Brazil
| |
Collapse
|
168
|
Nowotny K, Jung T, Grune T, Höhn A. Reprint of "accumulation of modified proteins and aggregate formation in aging". Exp Gerontol 2014; 59:3-12. [PMID: 25308087 DOI: 10.1016/j.exger.2014.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/22/2014] [Accepted: 05/26/2014] [Indexed: 12/22/2022]
Abstract
Increasing cellular damage during the aging process is considered to be one factor limiting the lifespan of organisms. Besides the DNA and lipids, proteins are frequent targets of non-enzymatic modifications by reactive substances including oxidants and glycating agents. Non-enzymatic protein modifications may alter the protein structure often leading to impaired functionality. Although proteolytic systems ensure the removal of modified proteins, the activity of these proteases was shown to decline during the aging process. The additional age-related increase of reactive compounds as a result of impaired antioxidant systems leads to the accumulation of damaged proteins and the formation of protein aggregates. Both, non-enzymatic modified proteins and protein aggregates impair cellular functions and tissue properties by a variety of mechanisms. This is increasingly important in aging and age-related diseases. In this review, we will give an overview on oxidation and glycation of proteins and the function of modified proteins in aggregate formation. Furthermore, their effects as well as their role in aging and age-related diseases will be highlighted.
Collapse
Affiliation(s)
- Kerstin Nowotny
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Tobias Jung
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Tilman Grune
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Annika Höhn
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
| |
Collapse
|
169
|
Role of bone-marrow- and non-bone-marrow-derived receptor for advanced glycation end-products (RAGE) in a mouse model of diabetes-associated atherosclerosis. Clin Sci (Lond) 2014; 127:485-97. [PMID: 24724734 DOI: 10.1042/cs20140045] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RAGE (receptor for advanced glycation end-products) is expressed on multiple cell types implicated in the progression of atherosclerosis and plays a role in DAA (diabetes-associated atherosclerosis). The aim of the present study was to determine the relative role of either BM (bone marrow)- or non-BM-derived RAGE in the pathogenesis of STZ (streptozotocin)-induced DAA. Male ApoE (apolipoprotein E)-null (ApoE-/-:RAGE+/+) and ApoE:RAGE-null (ApoE-/-:RAGE-/-) mice at 7 weeks of age were rendered diabetic with STZ. At 8 weeks of age, ApoE-/- and ApoE-/-:RAGE-/- control and diabetic mice received BM from either RAGE-null or RAGE-bearing mice, generating various chimaeras. After 10 and 20 weeks of diabetes, mice were killed and gene expression and atherosclerotic lesion formation were evaluated respectively. Deletion of RAGE in either the BM cells or non-BM cells both resulted in a significant attenuation in DAA, which was associated with reduced VCAM-1 (vascular cell adhesion molecule-1) expression and translated into reduced adhesion in vitro. In conclusion, the results of the present study highlight the importance of both BM- and non-BM-derived RAGE in attenuating the development of DAA.
Collapse
|
170
|
Pertynska-Marczewska M, Merhi Z. Relationship of Advanced Glycation End Products With Cardiovascular Disease in Menopausal Women. Reprod Sci 2014; 22:774-82. [PMID: 25228634 DOI: 10.1177/1933719114549845] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cardiovascular disease (CVD) represents the most significant cause of death in postmenopausal women. Advanced glycation end products (AGEs) are formed by nonenzymatic modification of proteins, lipids, and nucleic acids by glucose. This review focuses on the contribution of AGEs and their receptors to the development of CVD in menopause. Advanced glycation end products circulate and activate the proinflammatory endothelial cell surface receptor called RAGE, bind to the extracellular matrix of the cardiovascular system, or bind to the circulating anti-inflammatory soluble form of RAGE (sRAGE). Data emerging from human and animal studies suggest that AGEs and both receptors (RAGE and sRAGE) are implicated in the pathophysiology of CVD. Particular emphasis has been given to the role of AGE-RAGE axis in oxidative stress, inflammation, endothelial cell toxicity, and progression of atherosclerosis in menopause. Data accruing from human and animal studies suggest that RAGE expression level and circulating sRAGE level are associated with estradiol and are correlated with CVD risk factors, such as adiposity, dyslipidemia, insulin resistance, diabetes, and metabolic syndrome. By recognizing the impact of AGEs on atherosclerosis, pharmacological strategies targeting the AGE-RAGE pathway hold therapeutic potential for CVD in menopausal women.
Collapse
Affiliation(s)
| | - Zaher Merhi
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont College of Medicine, Burlington, VT, USA
| |
Collapse
|
171
|
Mahali SK, Verma N, Manna SK. Advanced Glycation End Products Induce Lipogenesis: Regulation by Natural Xanthone through Inhibition of ERK and NF-κB. J Cell Physiol 2014; 229:1972-80. [DOI: 10.1002/jcp.24647] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 04/11/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Sidhartha K. Mahali
- Laboratory of Immunology; Centre for DNA Fingerprinting and Diagnostics; Nampally Hyderabad India
| | - Neeharika Verma
- Laboratory of Immunology; Centre for DNA Fingerprinting and Diagnostics; Nampally Hyderabad India
| | - Sunil K. Manna
- Laboratory of Immunology; Centre for DNA Fingerprinting and Diagnostics; Nampally Hyderabad India
| |
Collapse
|
172
|
Bhat S, Mary S, Banarjee R, Giri AP, Kulkarni MJ. Immune response to chemically modified proteome. Proteomics Clin Appl 2014; 8:19-34. [PMID: 24375944 DOI: 10.1002/prca.201300068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 11/10/2022]
Abstract
Both enzymatic and nonenzymatic PTMs of proteins involve chemical modifications. Some of these modifications are prerequisite for the normal functioning of cell, while other chemical modifications render the proteins as "neo-self" antigens, which are recognized as "non-self" leading to aberrant cellular and humoral immune responses. However, these modifications could be a secondary effect of autoimmune diseases, as in the case of type I diabetes, hyperglycemia leads to protein glycation. The enigma of chemical modifications and immune response is akin to the "chick-and-egg" paradox. Nevertheless, chemical modifications regulate immune response. In some of the well-known autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis, chemically modified proteins act as autoantigens forming immune complexes. In some instances, chemical modifications are also involved in regulating immune response during pathogen infection. Further, the usefulness of proteomic analysis of immune complexes is briefly discussed.
Collapse
Affiliation(s)
- Shweta Bhat
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | | | | | | | | |
Collapse
|
173
|
Wu Y, Tang L, Chen B. Oxidative stress: implications for the development of diabetic retinopathy and antioxidant therapeutic perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:752387. [PMID: 25180070 PMCID: PMC4142742 DOI: 10.1155/2014/752387] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 07/11/2014] [Indexed: 12/29/2022]
Abstract
In recent decades, localized tissue oxidative stress has been implicated as a key component in the development of diabetic retinopathy (DR). Increasing evidence shows that oxidative stress caused by diabetes-induced metabolic abnormalities is the most common mechanism associated with the pathogenesis of DR for both type 1 and type 2 diabetes. Increase in intracellular reactive oxygen species (ROS) concentrations results in the activation of several mechanisms involved in the pathogenesis of DR. In particular, damage or dysfunction caused by oxidative stress still persists even after glycemia has been normalized. Despite considerable evidence showing the beneficial effects of antioxidants in preventing the development of retinopathy, results from large-scale clinical trials on classic antioxidants are somewhat ambiguous. Scavenging reactive radicals may not be the most ideal antioxidant strategy in DR. Advances in understanding the function of ROS in the development of DR can lead to the development of new therapeutic strategies based on the mechanisms of ROS generation and scavenging. Increasing amounts of data have demonstrated the promising prospect of antioxidant therapy and its beneficial effects in vision protection. Therefore, new strategies that utilize antioxidants as additive therapy should be implemented in the treatment of DR.
Collapse
Affiliation(s)
- Ying Wu
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha 410011, China
| | - Luosheng Tang
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha 410011, China
| | - Baihua Chen
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha 410011, China
| |
Collapse
|
174
|
Kellow NJ, Coughlan MT, Savige GS, Reid CM. Effect of dietary prebiotic supplementation on advanced glycation, insulin resistance and inflammatory biomarkers in adults with pre-diabetes: a study protocol for a double-blind placebo-controlled randomised crossover clinical trial. BMC Endocr Disord 2014; 14:55. [PMID: 25011647 PMCID: PMC4099169 DOI: 10.1186/1472-6823-14-55] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 06/30/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Advanced glycation endproducts (AGEs) contribute to the development of vascular complications of diabetes and have been recently implicated in the pathogenesis of diabetes. Since AGEs are generated within foodstuffs upon food processing, it is increasingly recognised that the modern diet is replete with AGEs. AGEs are thought to stimulate chronic low-grade inflammation and promote oxidative stress and have been linked to the development of insulin resistance. Simple therapeutic strategies targeted at attenuating the progression of chronic low-grade inflammation and insulin resistance are urgently required to prevent or slow the development of type 2 diabetes in susceptible individuals. Dietary modulation of the human colonic microbiota has been shown to confer a number of health benefits to the host, but its effect on advanced glycation is unknown. The aim of this article is to describe the methodology of a double-blind placebo-controlled randomised crossover trial designed to determine the effect of 12 week consumption of a prebiotic dietary supplement on the advanced glycation pathway, insulin sensitivity and chronic low-grade inflammation in adults with pre-diabetes. METHODS/DESIGN Thirty adults with pre-diabetes (Impaired Glucose Tolerance or Impaired Fasting Glucose) aged between 40-60 years will be randomly assigned to receive either 10 grams of prebiotic (inulin/oligofructose) daily or 10 grams placebo (maltodextrin) daily for 12 weeks. After a 2-week washout period, study subjects will crossover to receive the alternative dietary treatment for 12 weeks. The primary outcome is the difference in markers of the advanced glycation pathway carboxymethyllysine (CML) and methylglyoxal (MG) between experimental and control treatments. Secondary outcomes include HbA1c, insulin sensitivity, lipid levels, blood pressure, serum glutathione, adiponectin, IL-6, E-selectin, myeloperoxidase, C-reactive protein, Toll-like Receptor 4 (TLR4), soluble receptor for AGE (sRAGE), urinary 8-isoprostanes, faecal bacterial composition and short chain fatty acid profile. Anthropometric measures including BMI and waist circumference will be collected in addition to comprehensive dietary and lifestyle data. DISCUSSION Prebiotics which selectively stimulate the growth of beneficial bacteria in the human colon might offer protection against AGE-related pathology in people at risk of developing type 2 diabetes. TRIAL REGISTRATION Australia and New Zealand Clinical Trials Register (ANZCTR): ACTRN12613000130763.
Collapse
Affiliation(s)
- Nicole J Kellow
- Department of Epidemiology & Preventive Medicine, School of Public Health & Preventive Medicine, Monash University, The Alfred Centre, Melbourne, Victoria 3004, Australia
| | - Melinda T Coughlan
- Glycation, Nutrition & Metabolism Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria 8008, Australia
- Department of Medicine, Central Clinical School, Monash University, Alfred Medical Research & Education Precinct, Melbourne, Victoria 3004, Australia
| | - Gayle S Savige
- Department of Epidemiology & Preventive Medicine, School of Public Health & Preventive Medicine, Monash University, The Alfred Centre, Melbourne, Victoria 3004, Australia
| | - Christopher M Reid
- Department of Epidemiology & Preventive Medicine, School of Public Health & Preventive Medicine, Monash University, The Alfred Centre, Melbourne, Victoria 3004, Australia
| |
Collapse
|
175
|
Verdoia M, Schaffer A, Cassetti E, Barbieri L, Di Ruocco MV, Perrone-Filardi P, Marino P, De Luca G. Glycosylated hemoglobin and coronary artery disease in patients without diabetes mellitus. Am J Prev Med 2014; 47:9-16. [PMID: 24750972 DOI: 10.1016/j.amepre.2014.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/21/2014] [Accepted: 02/04/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND Abnormal glucose metabolism is a major determinant of coronary artery disease (CAD) and mortality in developed countries. Glycosylated hemoglobin (HbA1c) is a more stable, accurate parameter of glucose homeostasis than fasting glycemia, thus providing prognostic information in diabetics. However, its role and relationship with CAD remains unclear in non-diabetics. PURPOSE To evaluate the relationship between HbA1c and CAD in a consecutive cohort of patients without diabetes mellitus. METHODS Non-diabetic patients undergoing coronary angiography between April 2007 and October 2012 were included. Additionally carotid intima-media thickness (C-IMT) was evaluated during hospitalization in a consecutive cohort of patients. RESULTS 1,703 consecutive patients were included and divided according to HbA1c tertiles (<5.5%, 5.5%-5.79%, ≥5.8%). HbA1c was associated with aging (p<0.001); hypercholesterolemia (p=0.01); renal failure (p=0.006); hypertension (p=0.002); previous myocardial infarction (p=0.004); previous percutaneous coronary intervention (p=0.01); indication to angiography (p=0.01); use of angiotensin receptor blockers (p=0.01); beta-blockers (p=0.03); nitrates (p=0.02); statins (p=0.008); calcium antagonists (p=0.01); diuretics (p<0.001); acetylsalicylic acid (p<0.001); baseline glycemia (p<0.001); triglycerides (p=0.02); and uric acid (p=0.04). HbA1c, but not fasting glycemia, was significantly associated with the prevalence of CAD (adjusted OR=1.51, 95% CI=1.15, 1.97, p=0.002), with 5.8% identified by the receiver operating characteristic (ROC) curve as the best cut-off value for CAD prediction. HbA1c was significantly associated with C-IMT and carotid plaques prevalence. CONCLUSIONS Among non-diabetic patients, higher HbA1c even within the normal range is significantly associated with the risk of CAD. Future large studies are needed to evaluate whether more aggressive cardiovascular prevention can reduce the risk of CAD among patients with HbA1c ≥ 5.8%.
Collapse
Affiliation(s)
- Monica Verdoia
- Department of Cardiology, Ospedale "Maggiore della Carità", Eastern Piedmont University, Novara, Italy
| | - Alon Schaffer
- Department of Cardiology, Ospedale "Maggiore della Carità", Eastern Piedmont University, Novara, Italy
| | - Ettore Cassetti
- Department of Cardiology, Ospedale "Maggiore della Carità", Eastern Piedmont University, Novara, Italy
| | - Lucia Barbieri
- Department of Cardiology, Ospedale "Maggiore della Carità", Eastern Piedmont University, Novara, Italy
| | - Maria Virginia Di Ruocco
- Department of Cardiology, Ospedale "Maggiore della Carità", Eastern Piedmont University, Novara, Italy
| | - Pasquale Perrone-Filardi
- Department of Medicine, Cardiovascular and Immunological Sciences, University of Naples Federico II, Naples, Italy
| | - Paolo Marino
- Department of Cardiology, Ospedale "Maggiore della Carità", Eastern Piedmont University, Novara, Italy
| | - Giuseppe De Luca
- Department of Cardiology, Ospedale "Maggiore della Carità", Eastern Piedmont University, Novara, Italy.
| | | |
Collapse
|
176
|
Abstract
Diabetic complications are the major causes of morbidity and mortality in patients with diabetes. Microvascular complications include retinopathy, nephropathy and neuropathy, which are leading causes of blindness, end‐stage renal disease and various painful neuropathies; whereas macrovascular complications involve atherosclerosis related diseases, such as coronary artery disease, peripheral vascular disease and stroke. Diabetic complications are the result of interactions among systemic metabolic changes, such as hyperglycemia, local tissue responses to toxic metabolites from glucose metabolism, and genetic and epigenetic modulators. Chronic hyperglycemia is recognized as a major initiator of diabetic complications. Multiple molecular mechanisms have been proposed to mediate hyperglycemia’s adverse effects on vascular tissues. These include increased polyol pathway, activation of the diacylglycerol/protein kinase C pathway, increased oxidative stress, overproduction and action of advanced glycation end products, and increased hexosamine pathway. In addition, the alterations of signal transduction pathways induced by hyperglycemia or toxic metabolites can also lead to cellular dysfunctions and damage vascular tissues by altering gene expression and protein function. Less studied than the toxic mechanisms, hyperglycemia might also inhibit the endogenous vascular protective factors such as insulin, vascular endothelial growth factor, platelet‐derived growth factor and activated protein C, which play important roles in maintaining vascular homeostasis. Thus, effective therapies for diabetic complications need to inhibit mechanisms induced by hyperglycemia’s toxic effects and also enhance the endogenous protective factors. The present review summarizes these multiple biochemical pathways activated by hyperglycemia and the potential therapeutic interventions that might prevent diabetic complications. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2010.00018.x, 2010)
Collapse
Affiliation(s)
- Munehiro Kitada
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Boston, MA, USA
| | - Zhaoyun Zhang
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Boston, MA, USA
| | - Akira Mima
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Boston, MA, USA
| | - George L King
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Boston, MA, USA
| |
Collapse
|
177
|
Zhang H, Wang Y, Yan S, Du F, Wu L, Yan S, Yan SS. Genetic deficiency of neuronal RAGE protects against AGE-induced synaptic injury. Cell Death Dis 2014; 5:e1288. [PMID: 24922072 PMCID: PMC4611721 DOI: 10.1038/cddis.2014.248] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/28/2014] [Accepted: 05/05/2014] [Indexed: 01/11/2023]
Abstract
Synaptic dysfunction and degeneration is an early pathological feature of aging and age-related diseases, including Alzheimer's disease (AD). Aging is associated with increased generation and deposition of advanced glycation endproducts (AGEs), resulting from nonenzymatic glycation (or oxidation) proteins and lipids. AGE formation is accelerated in diabetes and AD-affected brain, contributing to cellular perturbation. The extent of AGEs' involvement, if at all, in alterations in synaptic structure and function is currently unknown. Here we analyze the contribution of neuronal receptor of AGEs (RAGE) signaling to AGE-mediated synaptic injury using novel transgenic neuronal RAGE knockout mice specifically targeted to the forebrain and transgenic mice expressing neuronal dominant-negative RAGE (DN-RAGE). Addition of AGEs to brain slices impaired hippocampal long-term potentiation (LTP). Similarly, treatment of hippocampal neurons with AGEs significantly decreases synaptic density. Such detrimental effects are largely reversed by genetic RAGE depletion. Notably, brain slices from mice with neuronal RAGE deficiency or DN-RAGE are resistant to AGE-induced LTP deficit. Further, RAGE deficiency or DN-RAGE blocks AGE-induced activation of p38 signaling. Taken together, these data show that neuronal RAGE functions as a signal transducer for AGE-induced synaptic dysfunction, thereby providing new insights into a mechanism by which the AGEs–RAGE-dependent signaling cascade contributes to synaptic injury via the p38 MAP kinase signal transduction pathway. Thus, RAGE blockade may be a target for development of interventions aimed at preventing the progression of cognitive decline in aging and age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Hongju Zhang
- 1] Departments of Pharmacology and Toxicology and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA [2] School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yongfu Wang
- Departments of Pharmacology and Toxicology and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Shijun Yan
- Departments of Pharmacology and Toxicology and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Fang Du
- Departments of Pharmacology and Toxicology and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Long Wu
- Departments of Pharmacology and Toxicology and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Shiqiang Yan
- School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Shirley S Yan
- Departments of Pharmacology and Toxicology and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
178
|
Oxidative stress, protein glycation and nutrition--interactions relevant to health and disease throughout the lifecycle. Proc Nutr Soc 2014; 73:430-8. [PMID: 24877772 DOI: 10.1017/s0029665114000603] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Protein glycation has been studied for over a century now and plays an important role in disease pathogenesis throughout the lifecycle. Strongly related to diabetic complications, glycation of Hb has become the gold standard method for diabetes diagnosis and monitoring. It is however attracting attention in normoglycaemia as well lately. Longitudinal studies increasingly suggest a positive relationship between glycation and the risk of chronic diseases in normoglycaemic individuals, but the mechanisms behind this association remain unclear. The interaction between glycation and oxidative stress may be particularly relevant in the normoglycaemic context, as suggested by recent epidemiological and in vitro evidence. In that context nutritional and lifestyle factors with an influence on redox status, such as smoking, fruit and vegetable and antioxidants consumption, may have the capacity to promote or inhibit glycation. However, experimental data from controlled trials are lacking the quality and rigour needed to reach firm conclusions. In the present review, we discuss the importance of glycation for health through the lifecycle and focus on the importance of oxidative stress as a driver for glycation. The importance of nutrition to modulate glycation is discussed, based on the evidence available and recommendations towards higher quality future research are made.
Collapse
|
179
|
Accumulation of modified proteins and aggregate formation in aging. Exp Gerontol 2014; 57:122-31. [PMID: 24877899 DOI: 10.1016/j.exger.2014.05.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/22/2014] [Accepted: 05/26/2014] [Indexed: 12/22/2022]
Abstract
Increasing cellular damage during the aging process is considered to be one factor limiting the lifespan of organisms. Besides the DNA and lipids, proteins are frequent targets of non-enzymatic modifications by reactive substances including oxidants and glycating agents. Non-enzymatic protein modifications may alter the protein structure often leading to impaired functionality. Although proteolytic systems ensure the removal of modified proteins, the activity of these proteases was shown to decline during the aging process. The additional age-related increase of reactive compounds as a result of impaired antioxidant systems leads to the accumulation of damaged proteins and the formation of protein aggregates. Both, non-enzymatic modified proteins and protein aggregates impair cellular functions and tissue properties by a variety of mechanisms. This is increasingly important in aging and age-related diseases. In this review, we will give an overview on oxidation and glycation of proteins and the function of modified proteins in aggregate formation. Furthermore, their effects as well as their role in aging and age-related diseases will be highlighted.
Collapse
|
180
|
Nishizawa Y, Wada RI, Baba M, Takeuchi M, Hanyu-Itabashi C, Yagihashi S. Neuropathy induced by exogenously administered advanced glycation end-products in rats. J Diabetes Investig 2014; 1:40-9. [PMID: 24843407 PMCID: PMC4020676 DOI: 10.1111/j.2040-1124.2009.00002.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Aims/Introduction: Advanced glycation end‐products (AGE) have been implicated in the development of diabetic neuropathy. It still remains unknown, however, how AGE cause functional and structural changes of the peripheral nerve in diabetes. To explore the role of AGE in diabetic neuropathy, we examined the peripheral nerve by injecting AGE into normal Wistar rats. Materials and Methods: Young, normal male Wistar rats were injected intraperitoneally (i.p.) daily for 12 weeks with purified AGE prepared by incubating D‐glucose with bovine serum albumin (BSA). A control group received BSA alone. A group of rats given AGE were co‐treated with aminoguanidine (50 mg/kg/day, i.p.). Peripheral nerve function and structure, as well as nerve Na+,K+‐ATPase activity, were examined in these rats. Immunohistochemical expressions of 8‐hydroxy‐2′‐deoxyguanosine (8OHdG) and nuclear factor‐κB (NF‐κB)p65 were also examined. Results: Serum AGE levels were increased two to threefold in the AGE‐treated group compared with those in the BSA‐treated control group. AGE‐treated rats showed a marked slowing of motor nerve conduction velocity (MNCV) and decreased nerve Na+,K+‐ATPase activity compared with those in the BSA‐treated group. These changes were accompanied by intensified expressions of 8OHdG and NF‐κBp65 in endothelial cells and Schwann cells. Aminoguanidine treatment corrected MNCV delay, Na+,K+‐ATPase activity, and suppressed the expression of 8OHdG and NF‐κB, despite there being no influence on serum AGE levels. Conclusions: The results suggest that an elevated concentration of blood AGE might be one of the contributing factors to the development of neuropathic changes in diabetes.
Collapse
Affiliation(s)
- Yusuke Nishizawa
- Department of Pathology and Molecular Medicine, Graduate School of Medicine, Hirosaki University, Hirosaki
| | - Ryu-Ichi Wada
- Department of Pathology and Molecular Medicine, Graduate School of Medicine, Hirosaki University, Hirosaki
| | - Masayuki Baba
- Division of Neurology, Aomori Prefectural Hospital, Aomori
| | - Masayoshi Takeuchi
- Department of Pathophysiological Science, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan
| | - Chieko Hanyu-Itabashi
- Department of Pathology and Molecular Medicine, Graduate School of Medicine, Hirosaki University, Hirosaki
| | - Soroku Yagihashi
- Department of Pathology and Molecular Medicine, Graduate School of Medicine, Hirosaki University, Hirosaki
| |
Collapse
|
181
|
Xue J, Ray R, Singer D, Böhme D, Burz DS, Rai V, Hoffmann R, Shekhtman A. The receptor for advanced glycation end products (RAGE) specifically recognizes methylglyoxal-derived AGEs. Biochemistry 2014; 53:3327-35. [PMID: 24824951 PMCID: PMC4038343 DOI: 10.1021/bi500046t] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diabetes-induced hyperglycemia increases the extracellular concentration of methylglyoxal. Methylglyoxal-derived hydroimidazolones (MG-H) form advanced glycation end products (AGEs) that accumulate in the serum of diabetic patients. The binding of hydroimidozolones to the receptor for AGEs (RAGE) results in long-term complications of diabetes typified by vascular and neuronal injury. Here we show that binding of methylglyoxal-modified albumin to RAGE results in signal transduction. Chemically synthesized peptides containing hydroimidozolones bind specifically to the V domain of RAGE with nanomolar affinity. The solution structure of an MG-H1-V domain complex revealed that the hydroimidazolone moiety forms multiple contacts with a positively charged surface on the V domain. The high affinity and specificity of hydroimidozolones binding to the V domain of RAGE suggest that they are the primary AGE structures that give rise to AGEs-RAGE pathologies.
Collapse
Affiliation(s)
- Jing Xue
- Department of Chemistry, State University of New York at Albany , Albany, New York 12222, United States
| | | | | | | | | | | | | | | |
Collapse
|
182
|
Shalia K, Saranath D, Shah VK. Peripheral Blood Mononuclear Cell ABCA1 Transcripts and Protein Expression in Acute Myocardial Infarction. J Clin Lab Anal 2014; 29:242-9. [PMID: 24796288 DOI: 10.1002/jcla.21757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 03/03/2014] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND ATP binding cassette transporter-A1 (ABCA1) facilitates the formation of high density lipoprotein (HDL). HDL due to its anti-atherosclerotic, anti-inflammatory and anti-thrombotic activities provides protection against atherothrombosis or myocardial infarction (MI). The aim was to investigate the role of peripheral blood mononuclear cell (PBMNC) ABCA1 expression in MI. METHODS The participants comprised 29 males with acute MI (AMI) and 20 healthy controls. AMI patients were normotensive, not on statins, with triglycerides < 200mg/dl and categorized into AMI with type 2 diabetes (T2DM) (N = 12) and without T2DM (N = 17). The PBMNC ABCA1 mRNA transcripts were analysed by quantitative real-time polymerase chain reaction (qRTPCR) and protein by enzyme linked immunosorbent assay (ELISA). RESULTS PBMNC ABCA1 mRNA transcript and protein levels were not significantly different in AMI patients or when sub-grouped into with/without T2DM, as compared to controls. ABCA1 protein correlated positively with HDL-cholesterol (r = 0.655, p = 0.021) in AMI patients with T2DM and negatively with age (r = - 0.525, p = 0.031) in AMI patients without T2DM and it was more strongly associated in latter group with smoking and alcohol habit. CONCLUSION In the present study, the effects of metabolites of diabetes and ischemia were observed on PBMNC ABCA1 protein and thus on HDL-C in AMI patients. Further influence of risk factors such as smoking and alcohol consumption observed in the present study can be evaluated in larger sample size. The control of these cardiovascular associated risk factors may increase stability of PBMNC ABCA1 protein and thus HDL-C levels.
Collapse
Affiliation(s)
- Kavita Shalia
- Sir H. N. Medical Research Society, Sir H. N. Hospital and Research Centre, Mumbai, India
| | | | - Vinod K Shah
- Sir H. N. Hospital and Research Centre, Mumbai, India
| |
Collapse
|
183
|
Pallayova M, Banerjee D, Taheri S. Novel insights into metabolic sequelae of obstructive sleep apnoea: a link between hypoxic stress and chronic diabetes complications. Diabetes Res Clin Pract 2014; 104:197-205. [PMID: 24485855 DOI: 10.1016/j.diabres.2014.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 08/16/2013] [Accepted: 01/02/2014] [Indexed: 11/23/2022]
Abstract
An increasing body of evidence suggests that obstructive sleep apnoea (OSA) is independently associated with an increased risk of cardiovascular disease, glucose intolerance, and deteriorations in glycaemic control. Despite the knowledge of a multifactorial pathogenesis of long-term diabetes complications, there is a paucity of information on impact of comorbidities associated with chronic intermittent hypoxemia on development and progression of chronic diabetes complications. This review explores the clinical and scientific overlap of OSA and type 2 diabetes mellitus (T2DM) and its possible impact on the development and progression of diabetes macrovascular and microvascular complications. Multiple prospective observational cohort studies have demonstrated that OSA significantly increases the risk of cardiovascular disease independent of potential confounding risk factors. The current evidence further suggests that OSA with concurrent T2DM is associated with an increased risk of oxidative stress-induced damage of vulnerable endothelial and mesangial cells and peripheral nerves. Further studies are needed to validate the impact of OSA treatment on diabetes micro- and macrovascular complications. Since it is presently still unknown whether OSA treatment may provide a diabetes-modifying intervention that could delay or halt the progression of chronic diabetes complications, the emphasis is on early diagnosis and satisfactory treatment of both OSA and T2DM.
Collapse
Affiliation(s)
- Maria Pallayova
- Department of Human Physiology and Sleep Laboratory, Faculty of Medicine and Dentistry, PJ Safarik University, Kosice, Slovakia
| | - Dev Banerjee
- St Vincents Clinical School, University of New South Wales, St Vincents Hospital, Sydney, Australia; NHMRC Centre for Integrated Research and Understanding Sleep (CIRUS), Woolcock Institute of Medical Research, University of Sydney, Australia
| | - Shahrad Taheri
- Department of Medicine, Weill Cornell Medical College - Qatar, Doha, Qatar; Department of Medicine, King's College London, London, UK.
| |
Collapse
|
184
|
Xu J, Jiang Y, Wang J, Shi X, Liu Q, Liu Z, Li Y, Scott MJ, Xiao G, Li S, Fan L, Billiar TR, Wilson MA, Fan J. Macrophage endocytosis of high-mobility group box 1 triggers pyroptosis. Cell Death Differ 2014; 21:1229-39. [PMID: 24769733 DOI: 10.1038/cdd.2014.40] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 02/22/2014] [Accepted: 03/05/2014] [Indexed: 01/08/2023] Open
Abstract
Macrophages can be activated and regulated by high-mobility group box 1 (HMGB1), a highly conserved nuclear protein. Inflammatory functions of HMGB1 are mediated by binding to cell surface receptors, including the receptor for advanced glycation end products (RAGE), Toll-like receptor (TLR)2, TLR4, and TLR9. Pyroptosis is a caspase-1-dependent programmed cell death, which features rapid plasma membrane rupture, DNA fragmentation, and release of proinflammatory intracellular contents. Pyroptosis can be triggered by various stimuli, however, the mechanism underlying pyroptosis remains unclear. In this study, we identify a novel pathway of HMGB1-induced macrophage pyroptosis. We demonstrate that HMGB1, acting through RAGE and dynamin-dependent signaling, initiates HMGB1endocytosis, which in turn induces cell pyroptosis. The endocytosis of HMGB1 triggers a cascade of molecular events, including cathepsin B release from ruptured lysosomes followed by pyroptosome formation and caspase-1 activation. We further confirm that HMGB1-induced macrophage pyroptosis also occurs in vivo during endotoxemia, suggesting a pathophysiological significance for this form of pyroptosis in the development of inflammation. These findings shed light on the regulatory role of ligand-receptor internalization in directing cell fate, which may have an important role in the progress of inflammation following infection and injury.
Collapse
Affiliation(s)
- J Xu
- 1] Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA [2] Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Y Jiang
- Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - J Wang
- 1] Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA [2] Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - X Shi
- 1] Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA [2] Department of Pharmacology, Medical College of Xi'an Jiaotong University, Xi'an, China
| | - Q Liu
- 1] Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA [2] Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Z Liu
- 1] Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA [2] Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Y Li
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - M J Scott
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - G Xiao
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - S Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - L Fan
- University of Pittsburgh School of Arts and Science, Pittsburgh, PA, USA
| | - T R Billiar
- 1] Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA [2] McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - M A Wilson
- 1] Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA [2] Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - J Fan
- 1] Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA [2] McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA [3] Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| |
Collapse
|
185
|
Abstract
The endothelium is often viewed solely as the barrier that prevents the penetration of circulating lipoproteins into the arterial wall. However, recent research has demonstrated that the endothelium has an important part in regulating circulating fatty acids and lipoproteins, and is in turn affected by these lipids/lipoproteins in ways that appear to have important repercussions for atherosclerosis. Thus, a number of potentially toxic lipids are produced during lipolysis of lipoproteins at the endothelial cell surface. Catabolism of triglyceride-rich lipoproteins creates free fatty acids that are readily taken up by endothelial cells, and, likely through the action of acyl-CoA synthetases, exacerbate inflammatory processes. In this article, we review how the endothelium participates in lipoprotein metabolism, how lipids alter endothelial functions, and how lipids are internalized, processed, and transported into the subendothelial space. Finally, we address the many endothelial changes that might promote atherogenesis, especially in the setting of diabetes.
Collapse
Affiliation(s)
- Ira J Goldberg
- Department of Medicine, Division of Preventive Medicine & Nutrition, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY, 10032, USA,
| | | |
Collapse
|
186
|
Kiefer AS, Fleming T, Eckert GJ, Poindexter BB, Nawroth PP, Yoder MC. Methylglyoxal concentrations differ in standard and washed neonatal packed red blood cells. Pediatr Res 2014; 75:409-14. [PMID: 24346110 DOI: 10.1038/pr.2013.243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/05/2013] [Indexed: 12/23/2022]
Abstract
BACKGROUND Preterm infants have a greater risk of necrotizing enterocolitis following transfusion. It is hypothesized that high glucose concentrations in red blood cell (RBC) preservatives lead to increased methylglyoxal (MG) metabolism, causing glycation-driven damage to transfused RBCs. Such changes to the RBCs could promote a proinflammatory state in transfusion recipients. METHODS Standard and washed RBCs in Adsol-3, two common neonatal preparations, were studied. Consecutive measurements were performed of glucose, MG, reduced glutathione, glyoxalase I activity (GLO-I), and D-lactate, the stable end product of MG detoxification by glyoxalase enzymes over the 42-d storage period. RESULTS RBC units consume glucose and produceD-lactate and MG during storage. In 28/30 units, the MG concentrations showed only small variations during storage. Two units had elevated MG levels (>10 pmol/mg Hb) during the first half of storage. Washing of the RBCs significantly reduced both MG and D-lactate. CONCLUSION This study shows two patterns of MG metabolism in packed RBCs for neonatal transfusion and raises the possibility that RBC units with higher MG levels may have increased glycation-driven damage in the transfused RBCs. Whether transfused MG could trigger an inflammatory response such as necrotizing enterocolitis in preterm neonates and whether washing could prevent this require further study.
Collapse
Affiliation(s)
- Autumn S Kiefer
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Thomas Fleming
- Department of Internal Medicine and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - George J Eckert
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brenda B Poindexter
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Peter P Nawroth
- Department of Internal Medicine and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Mervin C Yoder
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
187
|
Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:1-14. [PMID: 24634591 PMCID: PMC3951818 DOI: 10.4196/kjpp.2014.18.1.1] [Citation(s) in RCA: 939] [Impact Index Per Article: 85.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/11/2013] [Accepted: 12/10/2013] [Indexed: 02/06/2023]
Abstract
During long standing hyperglycaemic state in diabetes mellitus, glucose forms covalent adducts with the plasma proteins through a non-enzymatic process known as glycation. Protein glycation and formation of advanced glycation end products (AGEs) play an important role in the pathogenesis of diabetic complications like retinopathy, nephropathy, neuropathy, cardiomyopathy along with some other diseases such as rheumatoid arthritis, osteoporosis and aging. Glycation of proteins interferes with their normal functions by disrupting molecular conformation, altering enzymatic activity, and interfering with receptor functioning. AGEs form intra- and extracellular cross linking not only with proteins, but with some other endogenous key molecules including lipids and nucleic acids to contribute in the development of diabetic complications. Recent studies suggest that AGEs interact with plasma membrane localized receptors for AGEs (RAGE) to alter intracellular signaling, gene expression, release of pro-inflammatory molecules and free radicals. The present review discusses the glycation of plasma proteins such as albumin, fibrinogen, globulins and collagen to form different types of AGEs. Furthermore, the role of AGEs in the pathogenesis of diabetic complications including retinopathy, cataract, neuropathy, nephropathy and cardiomyopathy is also discussed.
Collapse
Affiliation(s)
- Varun Parkash Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala-147002, India
| | - Anjana Bali
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala-147002, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala-147002, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala-147002, India
| |
Collapse
|
188
|
Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014. [PMID: 24634591 DOI: 10.4196/kjpp] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During long standing hyperglycaemic state in diabetes mellitus, glucose forms covalent adducts with the plasma proteins through a non-enzymatic process known as glycation. Protein glycation and formation of advanced glycation end products (AGEs) play an important role in the pathogenesis of diabetic complications like retinopathy, nephropathy, neuropathy, cardiomyopathy along with some other diseases such as rheumatoid arthritis, osteoporosis and aging. Glycation of proteins interferes with their normal functions by disrupting molecular conformation, altering enzymatic activity, and interfering with receptor functioning. AGEs form intra- and extracellular cross linking not only with proteins, but with some other endogenous key molecules including lipids and nucleic acids to contribute in the development of diabetic complications. Recent studies suggest that AGEs interact with plasma membrane localized receptors for AGEs (RAGE) to alter intracellular signaling, gene expression, release of pro-inflammatory molecules and free radicals. The present review discusses the glycation of plasma proteins such as albumin, fibrinogen, globulins and collagen to form different types of AGEs. Furthermore, the role of AGEs in the pathogenesis of diabetic complications including retinopathy, cataract, neuropathy, nephropathy and cardiomyopathy is also discussed.
Collapse
Affiliation(s)
- Varun Parkash Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala-147002, India
| | - Anjana Bali
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala-147002, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala-147002, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala-147002, India
| |
Collapse
|
189
|
Bhatwadekar A, Stitt AW. AGE and RAGE inhibitors in the treatment of diabetic retinopathy. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/17469899.2.1.105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
190
|
Oxidative Stress and Cardiovascular Disease in Diabetes. OXIDATIVE STRESS IN APPLIED BASIC RESEARCH AND CLINICAL PRACTICE 2014. [DOI: 10.1007/978-1-4899-8035-9_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
191
|
Manigrasso MB, Juranek J, Ramasamy R, Schmidt AM. Unlocking the biology of RAGE in diabetic microvascular complications. Trends Endocrinol Metab 2014; 25:15-22. [PMID: 24011512 PMCID: PMC3877224 DOI: 10.1016/j.tem.2013.08.002] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/05/2013] [Accepted: 08/08/2013] [Indexed: 02/08/2023]
Abstract
The discovery of the receptor for advanced glycation end-products (RAGE) set the stage for the elucidation of important mechanisms underpinning diabetic complications. RAGE transduces the signals of advanced glycation end-products (AGEs), proinflammatory S100/calgranulins, and high mobility group box 1 (HMGB1), and is a one of a family of receptors for lysophosphatidic acid (LPA). These ligand tales weave a theme of vascular perturbation and inflammation linked to the pathogenesis of the chronic complications of diabetes. Once deemed implausible, this concept of inflammatory cues participating in diabetic complications is now supported by a plethora of experimental evidence in the macro- and microvasculature. We review the biology of ligand-RAGE signal transduction and its roles in diabetic microvascular complications, from animal models to human subjects.
Collapse
Affiliation(s)
- Michaele B Manigrasso
- Diabetes Research Program, Division of Endocrinology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Judyta Juranek
- Diabetes Research Program, Division of Endocrinology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
192
|
Deronic A, Helmersson S, Leanderson T, Ivars F. The quinoline-3-carboxamide paquinimod (ABR-215757) reduces leukocyte recruitment during sterile inflammation: leukocyte- and context-specific effects. Int Immunopharmacol 2013; 18:290-7. [PMID: 24370393 DOI: 10.1016/j.intimp.2013.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/03/2013] [Accepted: 12/09/2013] [Indexed: 12/30/2022]
Abstract
Quinoline-3-carboxamides (Q-compounds) are currently in clinical development for both autoimmune disease and cancer. We have previously shown that the Q-compound paquinimod (ABR-215757) significantly ameliorates disease symptoms in several mouse models of human inflammatory disease. Considering that recruitment of inflammatory cells into tissue is a common denominator of these models, we have in this report investigated whether paquinimod would interfere with cell accumulation during sterile peritoneal inflammation. To mimic the cell recruitment elicited by tissue injury, we used necrotic cells to induce the acute inflammatory response. We show that per oral treatment with paquinimod significantly reduced the accumulation of Ly6C(hi) inflammatory monocytes and eosinophils, but not neutrophils, in this model, and that this correlated with reduced number of such cells also in the omentum. Treatment also reduced the accumulation of these cell populations at a subcutaneous site of inflammation. In alum-induced inflammation, however, neutrophils were the dominant cell population and paquinimod failed to reduce the accumulation of inflammatory cells. Taken together, our results indicate that paquinimod selectively inhibits cell recruitment during acute sterile inflammation, but that this effect is context-dependent. These data have important implications for the understanding of the mechanism of action of Q-compounds in both pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Adnan Deronic
- Immunology Group, Section for Immunology, Department of Experimental Medical Science, Lund University, Sweden.
| | - Sofia Helmersson
- Immunology Group, Section for Immunology, Department of Experimental Medical Science, Lund University, Sweden.
| | - Tomas Leanderson
- Immunology Group, Section for Immunology, Department of Experimental Medical Science, Lund University, Sweden.
| | - Fredrik Ivars
- Immunology Group, Section for Immunology, Department of Experimental Medical Science, Lund University, Sweden.
| |
Collapse
|
193
|
Stirban A, Gawlowski T, Roden M. Vascular effects of advanced glycation endproducts: Clinical effects and molecular mechanisms. Mol Metab 2013; 3:94-108. [PMID: 24634815 DOI: 10.1016/j.molmet.2013.11.006] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 11/17/2013] [Accepted: 11/18/2013] [Indexed: 12/17/2022] Open
Abstract
The enhanced generation and accumulation of advanced glycation endproducts (AGEs) have been linked to increased risk for macrovascular and microvascular complications associated with diabetes mellitus. AGEs result from the nonenzymatic reaction of reducing sugars with proteins, lipids, and nucleic acids, potentially altering their function by disrupting molecular conformation, promoting cross-linking, altering enzyme activity, reducing their clearance, and impairing receptor recognition. AGEs may also activate specific receptors, like the receptor for AGEs (RAGE), which is present on the surface of all cells relevant to atherosclerotic processes, triggering oxidative stress, inflammation and apoptosis. Understanding the pathogenic mechanisms of AGEs is paramount to develop strategies against diabetic and cardiovascular complications.
Collapse
Affiliation(s)
- Alin Stirban
- Profil Institut für Stoffwechselforschung GmbH, Hellersbergstrasse 9, 41460 Neuss, Germany
| | - Thomas Gawlowski
- University of Paderborn, Warburger Str. 100, 33098 Paderborn, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany ; Division of Endocrinology and Diabetology, University Clinics Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
194
|
Abstract
Physical exercise is firmly incorporated in the management of type 1 diabetes (T1DM), due to multiple recognized beneficial health effects (cardiovascular disease prevention being preeminent). When glycemic values are not excessively low or high at the time of exercise, few absolute contraindications exist; practical guidelines regarding amount, type, and duration of age-appropriate exercise are regularly updated by entities such as the American Diabetes Association and the International Society for Pediatric and Adolescent Diabetes. Practical implementation of exercise regimens, however, may at times be problematic. In the poorly controlled patient, specific structural changes may occur within skeletal muscle fiber, which is considered by some to be a disease-specific myopathy. Further, even in well-controlled patients, several homeostatic mechanisms regulating carbohydrate metabolism often become impaired, causing hypo- or hyperglycemia during and/or after exercise. Some altered responses may be related to inappropriate exogenous insulin administration, but are often also partly caused by the "metabolic memory" of prior glycemic events. In this context, prior hyperglycemia correlates with increased inflammatory and oxidative stress responses, possibly modulating key exercise-associated cardio-protective pathways. Similarly, prior hypoglycemia correlates with impaired glucose counterregulation, resulting in greater likelihood of further hypoglycemia to develop. Additional exercise responses that may be altered in T1DM include growth factor release, which may be especially important in children and adolescents. These multiple alterations in the exercise response should not discourage physical activity in patients with T1DM, but rather should stimulate the quest for the identification of the exercise formats that maximize beneficial health effects.
Collapse
Affiliation(s)
- Pietro Galassetti
- Department of Pediatrics, University of California Irvine, Irvine, California, USA.
| | | |
Collapse
|
195
|
Mesenchymal stem cell-like cells derived from mouse induced pluripotent stem cells ameliorate diabetic polyneuropathy in mice. BIOMED RESEARCH INTERNATIONAL 2013; 2013:259187. [PMID: 24319678 PMCID: PMC3844199 DOI: 10.1155/2013/259187] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/11/2013] [Indexed: 11/23/2022]
Abstract
Background. Although pathological involvements of diabetic polyneuropathy (DPN) have been reported, no dependable treatment of DPN has been achieved. Recent studies have shown that mesenchymal stem cells (MSCs) ameliorate DPN. Here we demonstrate a differentiation of induced pluripotent stem cells (iPSCs) into MSC-like cells and investigate the therapeutic potential of the MSC-like cell transplantation on DPN. Research Design and Methods. For induction into MSC-like cells, GFP-expressing iPSCs were cultured with retinoic acid, followed by adherent culture for 4 months. The MSC-like cells, characterized with flow cytometry and RT-PCR analyses, were transplanted into muscles of streptozotocin-diabetic mice. Three weeks after the transplantation, neurophysiological functions were evaluated. Results. The MSC-like cells expressed MSC markers and angiogenic/neurotrophic factors. The transplanted cells resided in hindlimb muscles and peripheral nerves, and some transplanted cells expressed S100β in the nerves. Impairments of current perception thresholds, nerve conduction velocities, and plantar skin blood flow in the diabetic mice were ameliorated in limbs with the transplanted cells. The capillary number-to-muscle fiber ratios were increased in transplanted hindlimbs of diabetic mice. Conclusions. These results suggest that MSC-like cell transplantation might have therapeutic effects on DPN through secreting angiogenic/neurotrophic factors and differentiation to Schwann cell-like cells.
Collapse
|
196
|
Ardeljan D, Chan CC. Aging is not a disease: distinguishing age-related macular degeneration from aging. Prog Retin Eye Res 2013; 37:68-89. [PMID: 23933169 PMCID: PMC3830684 DOI: 10.1016/j.preteyeres.2013.07.003] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 12/18/2022]
Abstract
Age-related macular degeneration (AMD) is a disease of the outer retina, characterized most significantly by atrophy of photoreceptors and retinal pigment epithelium accompanied with or without choroidal neovascularization. Development of AMD has been recognized as contingent on environmental and genetic risk factors, the strongest being advanced age. In this review, we highlight pathogenic changes that destabilize ocular homeostasis and promote AMD development. With normal aging, photoreceptors are steadily lost, Bruch's membrane thickens, the choroid thins, and hard drusen may form in the periphery. In AMD, many of these changes are exacerbated in addition to the development of disease-specific factors such as soft macular drusen. Para-inflammation, which can be thought of as an intermediate between basal and robust levels of inflammation, develops within the retina in an attempt to maintain ocular homeostasis, reflected by increased expression of the anti-inflammatory cytokine IL-10 coupled with shifts in macrophage plasticity from the pro-inflammatory M1 to the anti-inflammatory M2 polarization. In AMD, imbalances in the M1 and M2 populations together with activation of retinal microglia are observed and potentially contribute to tissue degeneration. Nonetheless, the retina persists in a state of chronic inflammation and increased expression of certain cytokines and inflammasomes is observed. Since not everyone develops AMD, the vital question to ask is how the body establishes a balance between normal age-related changes and the pathological phenotypes in AMD.
Collapse
Affiliation(s)
- Daniel Ardeljan
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
197
|
Luk A, Ezzat S, Butany J. Pathology, pathophysiology, and treatment strategies of endocrine disorders and their cardiac complications. Semin Diagn Pathol 2013; 30:245-62. [PMID: 24144293 DOI: 10.1053/j.semdp.2013.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The cardiovascular system is affected by a multitude of endocrine disorders, including dysfunction of the thyroid, calcium, glucocorticoids, insulin/glucose, and growth hormone axes. Since most of these changes in the cardiovascular system are reversible when treated, early diagnosis is important, as if left untreated, they may become fatal. This review focuses on the pathophysiology, clinical presentation, pathology, and treatment of patients with these endocrine diseases who present with a variety of cardiovascular manifestations. Neuroendocrine tumors presenting with the carcinoid syndrome and their cardiovascular manifestations are also discussed.
Collapse
Affiliation(s)
- Adriana Luk
- Department of Medicine, Toronto General Hospital/University Health Network, Toronto, Ontario, Canada
| | | | | |
Collapse
|
198
|
Son SM. Letter: diabetic retinopathy and endothelial dysfunction in patients with type 2 diabetes mellitus (diabetes metab j 2013;37:262-9). Diabetes Metab J 2013; 37:391-2. [PMID: 24199169 PMCID: PMC3816141 DOI: 10.4093/dmj.2013.37.5.391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Seok Man Son
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Korea
| |
Collapse
|
199
|
Receptor for advanced glycation end products and its involvement in inflammatory diseases. Int J Inflam 2013; 2013:403460. [PMID: 24102034 PMCID: PMC3786507 DOI: 10.1155/2013/403460] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 07/29/2013] [Indexed: 02/06/2023] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a transmembrane receptor of the immunoglobulin superfamily, capable of binding a broad repertoire of ligands. RAGE-ligands interaction induces a series of signal transduction cascades and lead to the activation of transcription factor NF-κB as well as increased expression of cytokines, chemokines, and adhesion molecules. These effects endow RAGE with the role in the signal transduction from pathogen substrates to cell activation during the onset and perpetuation of inflammation. RAGE signaling and downstream pathways have been implicated in a wide spectrum of inflammatory-related pathologic conditions such as arteriosclerosis, Alzheimer's disease, arthritis, acute respiratory failure, and sepsis. Despite the significant progress in other RAGE studies, the functional importance of the receptor in clinical situations and inflammatory diseases still remains to be fully realized. In this review, we will summarize current understandings and lines of evidence on the molecular mechanisms through which RAGE signaling contributes to the pathogenesis of the aforementioned inflammation-associated conditions.
Collapse
|
200
|
Suppression of Receptor for Advanced Glycation End Products Improves Angiogenic Responses to Ischemia in Diabetic Mouse Hindlimb Ischemia Model. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/908108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background. The role of the receptor for advanced glycation end products (RAGE) for the impaired angiogenic response in diabetic patients is not well known. We investigated the impact of RAGE suppression by soluble RAGE (sRAGE) on the angiogenic response in a diabetic hindlimb ischemia mouse model. Materials and Methods. Hindlimb ischemia model was prepared by ligation of femoral artery in diabetic and nondiabetic mice. Ischemia-induced angiogenic response was evaluated by laser-Doppler perfusion imaging, muscle capillary density, and protein expression of vascular endothelial growth factor (VEGF) and high-mobility group box (HMGB)-1. Results. Diabetic mice showed attenuated recovery of ischemic limb perfusion on laser-Doppler perfusion imaging compared with nondiabetic mice. The treatment with sRAGE significantly improved blood flow in the ischemic limbs of diabetic mice. The expression levels of VEGF and HMGB-1 in the limb muscle tissues of diabetic mice were lower than in those of nondiabetic mice. The treatment with sRAGE significantly increased the VEGF and HMGB-1 protein expression in the ischemic limb muscle tissues in the diabetic mice. Conclusion. The suppression of RAGE by sRAGE administration improved angiogenic response to ischemia in diabetic mice and was associated with increased HMGB-1 and VEGF levels in muscle tissues.
Collapse
|