151
|
Rajh M, Dolinar K, Miš K, Pavlin M, Pirkmajer S. Medium Renewal Blocks Anti-Proliferative Effects of Metformin in Cultured MDA-MB-231 Breast Cancer Cells. PLoS One 2016; 11:e0154747. [PMID: 27135408 PMCID: PMC4852933 DOI: 10.1371/journal.pone.0154747] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/18/2016] [Indexed: 12/13/2022] Open
Abstract
Epidemiological studies indicate that metformin, a widely used type 2 diabetes drug, might reduce breast cancer risk and mortality in patients with type 2 diabetes. Metformin might protect against breast cancer indirectly by ameliorating systemic glucose homeostasis. Alternatively, it might target breast cancer cells directly. However, experiments using MDA-MB-231 cells, a standard in vitro breast cancer model, produced inconsistent results regarding effectiveness of metformin as a direct anti-cancer agent. Metformin treatments in cultured MDA-MB-231 cells are usually performed for 48-96 hours, but protocols describing renewal of cell culture medium during these prolonged treatments are rarely reported. We determined whether medium renewal protocol might alter sensitivity of MDA-MB-231 cells treated with metformin. Using the MTS assay, BrdU incorporation and Hoechst staining we found that treatment with metformin for 48-72 hours failed to suppress viability and proliferation of MDA-MB-231 cells if low-glucose (1 g/L) medium was renewed every 24 hours. Conversely, metformin suppressed their viability and proliferation if medium was not renewed. Without renewal glucose concentration in the medium was reduced to 0.1 g/L in 72 hours, which likely explains increased sensitivity to metformin under these conditions. We also examined whether 2-deoxy-D-glucose (2-DG) reduces resistance to metformin. In the presence of 2-DG metformin reduced viability and proliferation of MDA-MB-231 cells with or without medium renewal, thus demonstrating that 2-DG reduces their resistance to metformin. In sum, we show that medium renewal blocks anti-proliferative effects of metformin during prolonged treatments in low-glucose medium. Differences in medium renewal protocols during prolonged treatments might therefore lead to apparently inconsistent results as regards effectiveness of metformin as a direct anti-cancer agent. Finally, our results indicate that co-therapy with 2-DG and metformin might provide an effective strategy to overcome metformin resistance of breast cancer cells.
Collapse
Affiliation(s)
- Maruša Rajh
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Klemen Dolinar
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katarina Miš
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mojca Pavlin
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
152
|
Yung MMH, Ngan HYS, Chan DW. Targeting AMPK signaling in combating ovarian cancers: opportunities and challenges. Acta Biochim Biophys Sin (Shanghai) 2016; 48:301-17. [PMID: 26764240 PMCID: PMC4886241 DOI: 10.1093/abbs/gmv128] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/29/2015] [Indexed: 12/25/2022] Open
Abstract
The development and strategic application of effective anticancer therapies have turned out to be one of the most critical approaches of managing human cancers. Nevertheless, drug resistance is the major obstacle for clinical management of these diseases especially ovarian cancer. In the past years, substantial studies have been carried out with the aim of exploring alternative therapeutic approaches to enhance efficacy of current chemotherapeutic regimes and reduce the side effects caused in order to produce significant advantages in overall survival and to improve patients' quality of life. Targeting cancer cell metabolism by the application of AMP-activated protein kinase (AMPK)-activating agents is believed to be one of the most plausible attempts. AMPK activators such as 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside, A23187, metformin, and bitter melon extract not only prevent cancer progression and metastasis but can also be applied as a supplement to enhance the efficacy of cisplatin-based chemotherapy in human cancers such as ovarian cancer. However, because of the undesirable outcomes along with the frequent toxic side effects of most pharmaceutical AMPK activators that have been utilized in clinical trials, attentions of current studies have been aimed at the identification of replaceable reagents from nutraceuticals or traditional medicines. However, the underlying molecular mechanisms of many nutraceuticals in anticancer still remain obscure. Therefore, better understanding of the functional characterization and regulatory mechanism of natural AMPK activators would help pharmaceutical development in opening an area to intervene ovarian cancer and other human cancers.
Collapse
Affiliation(s)
- Mingo M H Yung
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hextan Y S Ngan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - David W Chan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
153
|
Smith S, Boitz J, Chidambaram ES, Chatterjee A, Ait-Tihyaty M, Ullman B, Jardim A. The cystathionine-β-synthase domains on the guanosine 5''-monophosphate reductase and inosine 5'-monophosphate dehydrogenase enzymes from Leishmania regulate enzymatic activity in response to guanylate and adenylate nucleotide levels. Mol Microbiol 2016; 100:824-40. [PMID: 26853689 DOI: 10.1111/mmi.13352] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2016] [Indexed: 01/24/2023]
Abstract
The Leishmania guanosine 5'-monophosphate reductase (GMPR) and inosine 5'-monophosphate dehydrogenase (IMPDH) are purine metabolic enzymes that function maintaining the cellular adenylate and guanylate nucleotide. Interestingly, both enzymes contain a cystathionine-β-synthase domain (CBS). To investigate this metabolic regulation, the Leishmania GMPR was cloned and shown to be sufficient to complement the guaC (GMPR), but not the guaB (IMPDH), mutation in Escherichia coli. Kinetic studies confirmed that the Leishmania GMPR catalyzed a strict NADPH-dependent reductive deamination of GMP to produce IMP. Addition of GTP or high levels of GMP induced a marked increase in activity without altering the Km values for the substrates. In contrast, the binding of ATP decreased the GMPR activity and increased the GMP Km value 10-fold. These kinetic changes were correlated with changes in the GMPR quaternary structure, induced by the binding of GMP, GTP, or ATP to the GMPR CBS domain. The capacity of these CBS domains to mediate the catalytic activity of the IMPDH and GMPR provides a regulatory mechanism for balancing the intracellular adenylate and guanylate pools.
Collapse
Affiliation(s)
- Sabrina Smith
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Jan Boitz
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Ehzilan Subramanian Chidambaram
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Abhishek Chatterjee
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Maria Ait-Tihyaty
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Buddy Ullman
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Armando Jardim
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| |
Collapse
|
154
|
Zhang Y, Halder S, Kerr RA, Parrell D, Ruotolo B, Kroos L. Complex Formed between Intramembrane Metalloprotease SpoIVFB and Its Substrate, Pro-σK. J Biol Chem 2016; 291:10347-62. [PMID: 26953342 DOI: 10.1074/jbc.m116.715508] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Indexed: 11/06/2022] Open
Abstract
Intramembrane metalloproteases (IMMPs) are conserved from bacteria to humans and control many important signaling pathways, but little is known about how IMMPs interact with their substrates. SpoIVFB is an IMMP that cleaves Pro-σ(K) during Bacillus subtilis endospore formation. When catalytically inactive SpoIVFB was coexpressed with C-terminally truncated Pro-σ(K)(1-126) (which can be cleaved by active SpoIVFB) in Escherichia coli, the substrate dramatically improved solubilization of the enzyme from membranes with mild detergents. Both the Pro(1-20) and σ(K)(21-126) parts contributed to improving SpoIVFB solubilization from membranes, but only the σ(K) part was needed to form a stable complex with SpoIVFB in a pulldown assay. The last 10 residues of SpoIVFB were required for improved solubilization from membranes by Pro-σ(K)(1-126) and for normal interaction with the substrate. The inactive SpoIVFB·Pro-σ(K)(1-126)-His6 complex was stable during affinity purification and gel filtration chromatography. Disulfide cross-linking of the purified complex indicated that it resembled the complex formed in vivo Ion mobility-mass spectrometry analysis resulted in an observed mass consistent with a 4:2 SpoIVFB·Pro-σ(K)(1-126)-His6 complex. Stepwise photobleaching of SpoIVFB fused to a fluorescent protein supported the notion that the enzyme is tetrameric during B. subtilis sporulation. The results provide the first evidence that an IMMP acts as a tetramer, give new insights into how SpoIVFB interacts with its substrate, and lay the foundation for further biochemical analysis of the enzyme·substrate complex and future structural studies.
Collapse
Affiliation(s)
- Yang Zhang
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 and
| | - Sabyasachi Halder
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 and
| | - Richard A Kerr
- the Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Daniel Parrell
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 and
| | - Brandon Ruotolo
- the Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Lee Kroos
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 and
| |
Collapse
|
155
|
Hardie DG, Schaffer BE, Brunet A. AMPK: An Energy-Sensing Pathway with Multiple Inputs and Outputs. Trends Cell Biol 2016; 26:190-201. [PMID: 26616193 PMCID: PMC5881568 DOI: 10.1016/j.tcb.2015.10.013] [Citation(s) in RCA: 657] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/15/2015] [Accepted: 10/22/2015] [Indexed: 12/20/2022]
Abstract
AMP-activated protein kinase (AMPK) is a key regulator of energy balance expressed ubiquitously in eukaryotic cells. Here we review the canonical adenine nucleotide-dependent mechanism that activates AMPK when cellular energy status is compromised, as well as other, noncanonical activation mechanisms. Once activated, AMPK acts to restore energy homeostasis by promoting catabolic pathways, resulting in ATP generation, and inhibiting anabolic pathways that consume ATP. We also review the various hypothesis-driven and unbiased approaches that have been used to identify AMPK substrates and have revealed substrates involved in both metabolic and non-metabolic processes. We particularly focus on methods for identifying the AMPK target recognition motif and how it can be used to predict new substrates.
Collapse
Affiliation(s)
- D Grahame Hardie
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| | - Bethany E Schaffer
- Department of Genetics and the Cancer Biology Program, Stanford University, 300 Pasteur Drive, Stanford, CA, USA
| | - Anne Brunet
- Department of Genetics and the Cancer Biology Program, Stanford University, 300 Pasteur Drive, Stanford, CA, USA
| |
Collapse
|
156
|
Liu Y, Xue Y, Wu S, Hu D. Inherited Wolff‐Parkinson‐White Syndrome. CARDIOVASCULAR INNOVATIONS AND APPLICATIONS 2016. [DOI: 10.15212/cvia.2016.0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
157
|
Yu B, Pulit SL, Hwang SJ, Brody JA, Amin N, Auer PL, Bis JC, Boerwinkle E, Burke GL, Chakravarti A, Correa A, Dreisbach AW, Franco OH, Ehret GB, Franceschini N, Hofman A, Lin DY, Metcalf GA, Musani SK, Muzny D, Palmas W, Raffel L, Reiner A, Rice K, Rotter JI, Veeraraghavan N, Fox E, Guo X, North KE, Gibbs RA, van Duijn CM, Psaty BM, Levy D, Newton-Cheh C, Morrison AC. Rare Exome Sequence Variants in CLCN6 Reduce Blood Pressure Levels and Hypertension Risk. CIRCULATION. CARDIOVASCULAR GENETICS 2016; 9:64-70. [PMID: 26658788 PMCID: PMC4771070 DOI: 10.1161/circgenetics.115.001215] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 12/10/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Rare genetic variants influence blood pressure (BP). METHODS AND RESULTS Whole-exome sequencing was performed on DNA samples from 17 956 individuals of European ancestry and African ancestry (14 497, first-stage discovery and 3459, second-stage discovery) to examine the effect of rare variants on hypertension and 4 BP traits: systolic BP, diastolic BP, pulse pressure, and mean arterial pressure. Tests of ≈170 000 common variants (minor allele frequency, ≥1%; statistical significance, P≤2.9×10(-7)) and gene-based tests of rare variants (minor allele frequency, <1%; ≈17 000 genes; statistical significance, P≤1.5×10(-6)) were evaluated for each trait and ancestry, followed by multiethnic meta-analyses. In the first-stage discovery, rare coding variants (splicing, stop-gain, stop-loss, nonsynonymous variants, or indels) in CLCN6 were associated with lower diastolic BP (cumulative minor allele frequency, 1.3%; β=-3.20; P=4.1×10(-6)) and were independent of a nearby common variant (rs17367504) previously associated with BP. CLCN6 rare variants were also associated with lower systolic BP (β=-4.11; P=2.8×10(-4)), mean arterial pressure (β=-3.50; P=8.9×10(-6)), and reduced hypertension risk (odds ratio, 0.72; P=0.017). Meta-analysis of the 2-stage discovery samples showed that CLCN6 was associated with lower diastolic BP at exome-wide significance (cumulative minor allele frequency, 1.1%; β=-3.30; P=5.0×10(-7)). CONCLUSIONS These findings implicate the effect of rare coding variants in CLCN6 in BP variation and offer new insights into BP regulation.
Collapse
Affiliation(s)
- Bing Yu
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX
| | - Sara L. Pulit
- Department of Medical Genetics, University Medical Centre Utrecht, Utrecht, Netherlands
- Broad Institute of Harvard & MIT, Cambridge
| | - Shih-Jen Hwang
- Framingham Heart Study, Framingham, MA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC, Rotterdam, Netherlands
| | - Paul L. Auer
- School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Gregory L. Burke
- Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Aravinda Chakravarti
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS
| | - Albert W. Dreisbach
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS
| | - Oscar H. Franco
- Department of Epidemiology, Erasmus MC, Rotterdam, Netherlands
| | - Georg B. Ehret
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Cardiology, Department of Specialties of Internal Medicine, Geneva University Hospitals, Genève, Switzerland
| | | | - Albert Hofman
- Department of Epidemiology, Erasmus MC, Rotterdam, Netherlands
| | - Dan-Yu Lin
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ginger A. Metcalf
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Solomon K. Musani
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS
| | - Donna Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Walter Palmas
- Department of Medicine, Columbia University Medical Center, New York, NY
| | - Leslie Raffel
- Medical Genetics Research Institute & UCLA Clinical & Translational Science Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Alex Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Ken Rice
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Jerome I. Rotter
- Institute for Translational Genomics & Population Sciences, Los Angeles Biomedical Research Institute at Harbor- University of California Los Angeles Medical Center, Torrance, CA
| | | | - Ervin Fox
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS
| | - Xiuqing Guo
- Institute for Translational Genomics & Population Sciences, Los Angeles Biomedical Research Institute at Harbor- University of California Los Angeles Medical Center, Torrance, CA
| | - Kari E. North
- Department of Epidemiology & Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | | | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
- Departments of Epidemiology & Health Science, University of Washington, Seattle, WA
- Group Health Research Institute, Group Health Cooperative, Seattle, WA
| | - Daniel Levy
- Framingham Heart Study, Framingham, MA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
- Boston University School of Medicine
| | - Christopher Newton-Cheh
- Broad Institute of Harvard & MIT, Cambridge
- Cardiovascular Research Center & Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
| | - Alanna C. Morrison
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX
| |
Collapse
|
158
|
Bessho T, Okada T, Kimura C, Shinohara T, Tomiyama A, Imamura A, Kuwamura M, Nishimura K, Fujimori K, Shuto S, Ishibashi O, Kubata BK, Inui T. Novel Characteristics of Trypanosoma brucei Guanosine 5'-monophosphate Reductase Distinct from Host Animals. PLoS Negl Trop Dis 2016; 10:e0004339. [PMID: 26731263 PMCID: PMC4701174 DOI: 10.1371/journal.pntd.0004339] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/08/2015] [Indexed: 12/02/2022] Open
Abstract
The metabolic pathway of purine nucleotides in parasitic protozoa is a potent drug target for treatment of parasitemia. Guanosine 5’-monophosphate reductase (GMPR), which catalyzes the deamination of guanosine 5’-monophosphate (GMP) to inosine 5’-monophosphate (IMP), plays an important role in the interconversion of purine nucleotides to maintain the intracellular balance of their concentration. However, only a few studies on protozoan GMPR have been reported at present. Herein, we identified the GMPR in Trypanosoma brucei, a causative protozoan parasite of African trypanosomiasis, and found that the GMPR proteins were consistently localized to glycosomes in T. brucei bloodstream forms. We characterized its recombinant protein to investigate the enzymatic differences between GMPRs of T. brucei and its host animals. T. brucei GMPR was distinct in having an insertion of a tandem repeat of the cystathionine β-synthase (CBS) domain, which was absent in mammalian and bacterial GMPRs. The recombinant protein of T. brucei GMPR catalyzed the conversion of GMP to IMP in the presence of NADPH, and showed apparent affinities for both GMP and NADPH different from those of its mammalian counterparts. Interestingly, the addition of monovalent cations such as K+ and NH4+ to the enzymatic reaction increased the GMPR activity of T. brucei, whereas none of the mammalian GMPR’s was affected by these cations. The monophosphate form of the purine nucleoside analog ribavirin inhibited T. brucei GMPR activity, though mammalian GMPRs showed no or only a little inhibition by it. These results suggest that the mechanism of the GMPR reaction in T. brucei is distinct from that in the host organisms. Finally, we demonstrated the inhibitory effect of ribavirin on the proliferation of trypanosomes in a dose-dependent manner, suggesting the availability of ribavirin to develop a new therapeutic agent against African trypanosomiasis. Only a limited number of therapeutics for human African trypanosomiasis also known as African sleeping sickness is available today, and it narrows the choice of the drugs to escape from the side effects and the emergence of drug-resistant pathogens. The parasitic protozoa Trypanosoma brucei is the causative reagent of African trypanosomiasis, and is infective to various mammalian species. T. brucei and its mammalian hosts share almost the same metabolic machinery, and therefore it is important to understand the differences in biochemical properties of the metabolic enzymes between T. brucei and its hosts. Here we report that guanosine 5’-monophosphate reductase (GMPR) of T. brucei showed apparent differences in its primary structure and biochemical properties from those of its host counterparts, and was more sensitive to purine nucleotide analogs such as monophosphate forms of ribavirin and mizoribine than were the host GMPRs. Furthermore, ribavirin prevented the proliferation of trypanosomes in vitro. Our present findings may imply the availability of ribavirin and/or its derivatives in a treatment of African trypanosomiasis.
Collapse
Affiliation(s)
- Tomoaki Bessho
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Tetsuya Okada
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Chihiro Kimura
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Takahiro Shinohara
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Ai Tomiyama
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Akira Imamura
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Kazuhiko Nishimura
- Laboratory of Toxicology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Ko Fujimori
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Satoshi Shuto
- Laboratory of Organic Chemistry for Drug Development, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Osamu Ishibashi
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | | | - Takashi Inui
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
- * E-mail:
| |
Collapse
|
159
|
Grahame Hardie D. Regulation of AMP-activated protein kinase by natural and synthetic activators. Acta Pharm Sin B 2016; 6:1-19. [PMID: 26904394 PMCID: PMC4724661 DOI: 10.1016/j.apsb.2015.06.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/28/2015] [Indexed: 12/11/2022] Open
Abstract
The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that is almost universally expressed in eukaryotic cells. While it appears to have evolved in single-celled eukaryotes to regulate energy balance in a cell-autonomous manner, during the evolution of multicellular animals its role has become adapted so that it also regulates energy balance at the whole body level, by responding to hormones that act primarily on the hypothalamus. AMPK monitors energy balance at the cellular level by sensing the ratios of AMP/ATP and ADP/ATP, and recent structural analyses of the AMPK heterotrimer that have provided insight into the complex mechanisms for these effects will be discussed. Given the central importance of energy balance in diseases that are major causes of morbidity or death in humans, such as type 2 diabetes, cancer and inflammatory disorders, there has been a major drive to develop pharmacological activators of AMPK. Many such activators have been described, and the various mechanisms by which these activate AMPK will be discussed. A particularly large class of AMPK activators are natural products of plants derived from traditional herbal medicines. While the mechanism by which most of these activate AMPK has not yet been addressed, I will argue that many of them may be defensive compounds produced by plants to deter infection by pathogens or grazing by insects or herbivores, and that many of them will turn out to be inhibitors of mitochondrial function.
Collapse
Affiliation(s)
- David Grahame Hardie
- Division of Cell Signaling & Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
160
|
Plant SnRK1 Kinases: Structure, Regulation, and Function. EXPERIENTIA SUPPLEMENTUM 2016; 107:403-438. [DOI: 10.1007/978-3-319-43589-3_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
161
|
Abstract
AMPK is an evolutionary conserved energy sensor involved in the regulation of energy metabolism. Based on biochemical studies, AMPK has brought much of interest in recent years due to its potential impact on metabolic disorders. Suitable animal models are therefore essential to promote our understanding of the molecular and functional roles of AMPK but also to bring novel information for the development of novel therapeutic strategies. The organism systems include pig (Sus scrofa), mouse (Mus musculus), fly (Drosophila melanogaster), worm (Caenorhabditis elegans), and fish (Danio rerio) models. These animal models have provided reliable experimental evidence demonstrating the crucial role of AMPK in the regulation of metabolism but also of cell polarity, autophagy, and oxidative stress. In this chapter, we update the new development in the generation and application of animal models for the study of AMPK biology. We also discuss recent breakthroughs from studies in mice, flies, and worms showing how AMPK has a primary role in initiating or promoting pathological or beneficial impact on health.
Collapse
Affiliation(s)
- Benoit Viollet
- INSERM U1016, Institut Cochin, Paris, France. .,CNRS UMR 8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Marc Foretz
- INSERM U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
162
|
Probing the enzyme kinetics, allosteric modulation and activation of α1- and α2-subunit-containing AMP-activated protein kinase (AMPK) heterotrimeric complexes by pharmacological and physiological activators. Biochem J 2015; 473:581-92. [PMID: 26635351 PMCID: PMC4764975 DOI: 10.1042/bj20151051] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/03/2015] [Indexed: 11/17/2022]
Abstract
We have studied enzyme kinetics, nucleotide binding and allosteric modulation of six recombinant AMP-activated protein kinase (AMPK) isoforms by known allosteric activators. α1-Complexes exhibited higher specific activities and lower Km values for a peptide substrate, but α2-complexes were more readily activated by AMP. AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase that serves as a pleotropic regulator of whole body energy homoeostasis. AMPK exists as a heterotrimeric complex, composed of a catalytic subunit (α) and two regulatory subunits (β and γ), each present as multiple isoforms. In the present study, we compared the enzyme kinetics and allosteric modulation of six recombinant AMPK isoforms, α1β1γ1, α1β2γ1, α1β2γ3, α2β1γ1, α2β2γ1 and α2β2γ3 using known activators, A769662 and AMP. The α1-containing complexes exhibited higher specific activities and lower Km values for a widely used peptide substrate (SAMS) compared with α2-complexes. Surface plasmon resonance (SPR)-based direct binding measurements revealed biphasic binding modes with two distinct equilibrium binding constants for AMP, ADP and ATP across all isoforms tested. The α2-complexes were ∼25-fold more sensitive than α1-complexes to dephosphorylation of a critical threonine on their activation loop (pThr172/174). However, α2-complexes were more readily activated by AMP than α1-complexes. Compared with β1-containing heterotrimers, β2-containing AMPK isoforms are less sensitive to activation by A769662, a synthetic activator. These data demonstrate that ligand induced activation of AMPK isoforms may vary significantly based on their AMPK subunit composition. Our studies provide insights for the design of isoform-selective AMPK activators for the treatment of metabolic diseases.
Collapse
|
163
|
Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases. Nat Commun 2015; 6:8923. [PMID: 26558346 PMCID: PMC4660370 DOI: 10.1038/ncomms9923] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/16/2015] [Indexed: 12/26/2022] Open
Abstract
Inosine-5′-monophosphate dehydrogenase (IMPDH) plays key roles in purine nucleotide metabolism and cell proliferation. Although IMPDH is a widely studied therapeutic target, there is limited information about its physiological regulation. Using Ashbya gossypii as a model, we describe the molecular mechanism and the structural basis for the allosteric regulation of IMPDH by guanine nucleotides. We report that GTP and GDP bind to the regulatory Bateman domain, inducing octamers with compromised catalytic activity. Our data suggest that eukaryotic and prokaryotic IMPDHs might have developed different regulatory mechanisms, with GTP/GDP inhibiting only eukaryotic IMPDHs. Interestingly, mutations associated with human retinopathies map into the guanine nucleotide-binding sites including a previously undescribed non-canonical site and disrupt allosteric inhibition. Together, our results shed light on the mechanisms of the allosteric regulation of enzymes mediated by Bateman domains and provide a molecular basis for certain retinopathies, opening the door to new therapeutic approaches. IMP dehydrogenase (IMPDH) plays essential roles in purine metabolism and cell proliferation. Here Buey et al. describe a guanine nucleotides regulated molecular mechanism for allosteric communication between the regulatory and catalytic domains of IMPDH.
Collapse
|
164
|
Novikova DS, Garabadzhiu AV, Melino G, Barlev NA, Tribulovich VG. AMP-activated protein kinase: structure, function, and role in pathological processes. BIOCHEMISTRY (MOSCOW) 2015; 80:127-44. [PMID: 25756529 DOI: 10.1134/s0006297915020017] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recently, AMP-activated protein kinase (AMPK) has emerged as a key regulator of energy balance at cellular and whole-body levels. Due to the involvement in multiple signaling pathways, AMPK efficiently controls ATP-consuming/ATP-generating processes to maintain energy homeostasis under stress conditions. Loss of the kinase activity or attenuation of its expression leads to a variety of metabolic disorders and increases cancer risk. In this review, we discuss recent findings on the structure of AMPK, its activation mechanisms, as well as the consequences of its targets in regulation of metabolism. Particular attention is given to low-molecular-weight compounds that activate or inhibit AMPK; the perspective of therapeutic use of such modulators in treatment of several common diseases is discussed.
Collapse
Affiliation(s)
- D S Novikova
- Saint Petersburg State Technological Institute (Technical University), St. Petersburg, 190013, Russia.
| | | | | | | | | |
Collapse
|
165
|
Differential regulation by AMP and ADP of AMPK complexes containing different γ subunit isoforms. Biochem J 2015; 473:189-99. [PMID: 26542978 PMCID: PMC4700476 DOI: 10.1042/bj20150910] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/05/2015] [Indexed: 11/17/2022]
Abstract
AMPK complexes containing γ1, γ2 or γ3 subunit isoforms were generated by expression in human cells. They displayed differences in all three effects by which adenine nucleotides cause regulation, i.e. in allosteric activation, promotion of phosphorylation and inhibition of dephosphorylation The γ subunits of heterotrimeric AMPK complexes contain the binding sites for the regulatory adenine nucleotides AMP, ADP and ATP. We addressed whether complexes containing different γ isoforms display different responses to adenine nucleotides by generating cells stably expressing FLAG-tagged versions of the γ1, γ2 or γ3 isoform. When assayed at a physiological ATP concentration (5 mM), γ1- and γ2-containing complexes were allosterically activated almost 10-fold by AMP, with EC50 values one to two orders of magnitude lower than the ATP concentration. By contrast, γ3 complexes were barely activated by AMP under these conditions, although we did observe some activation at lower ATP concentrations. Despite this, all three complexes were activated, due to increased Thr172 phosphorylation, when cells were incubated with mitochondrial inhibitors that increase cellular AMP. With γ1 complexes, activation and Thr172 phosphorylation induced by the upstream kinase LKB1 [liver kinase B1; but not calmodulin-dependent kinase kinase (CaMKKβ)] in cell-free assays was markedly promoted by AMP and, to a smaller extent and less potently, by ADP. However, effects of AMP or ADP on activation and phosphorylation of the γ2 and γ3 complexes were small or insignificant. Binding of AMP or ADP protected all three γ subunit complexes against inactivation by Thr172 dephosphorylation; with γ2 complexes, ADP had similar potency to AMP, but with γ1 and γ3 complexes, ADP was less potent than AMP. Thus, AMPK complexes containing different γ subunit isoforms respond differently to changes in AMP, ADP or ATP. These differences may tune the responses of the isoforms to fit their differing physiological roles.
Collapse
|
166
|
Abstract
We review literature on the metabolism of ribo- and deoxyribonucleotides, nucleosides, and nucleobases in Escherichia coli and Salmonella,including biosynthesis, degradation, interconversion, and transport. Emphasis is placed on enzymology and regulation of the pathways, at both the level of gene expression and the control of enzyme activity. The paper begins with an overview of the reactions that form and break the N-glycosyl bond, which binds the nucleobase to the ribosyl moiety in nucleotides and nucleosides, and the enzymes involved in the interconversion of the different phosphorylated states of the nucleotides. Next, the de novo pathways for purine and pyrimidine nucleotide biosynthesis are discussed in detail.Finally, the conversion of nucleosides and nucleobases to nucleotides, i.e.,the salvage reactions, are described. The formation of deoxyribonucleotides is discussed, with emphasis on ribonucleotidereductase and pathways involved in fomation of dUMP. At the end, we discuss transport systems for nucleosides and nucleobases and also pathways for breakdown of the nucleobases.
Collapse
|
167
|
Anashkin VA, Salminen A, Tuominen HK, Orlov VN, Lahti R, Baykov AA. Cystathionine β-Synthase (CBS) Domain-containing Pyrophosphatase as a Target for Diadenosine Polyphosphates in Bacteria. J Biol Chem 2015; 290:27594-603. [PMID: 26400082 DOI: 10.1074/jbc.m115.680272] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Indexed: 11/06/2022] Open
Abstract
Among numerous proteins containing pairs of regulatory cystathionine β-synthase (CBS) domains, family II pyrophosphatases (CBS-PPases) are unique in that they generally contain an additional DRTGG domain between the CBS domains. Adenine nucleotides bind to the CBS domains in CBS-PPases in a positively cooperative manner, resulting in enzyme inhibition (AMP or ADP) or activation (ATP). Here we show that linear P(1),P(n)-diadenosine 5'-polyphosphates (ApnAs, where n is the number of phosphate residues) bind with nanomolar affinity to DRTGG domain-containing CBS-PPases of Desulfitobacterium hafniense, Clostridium novyi, and Clostridium perfringens and increase their activity up to 30-, 5-, and 7-fold, respectively. Ap4A, Ap5A, and Ap6A bound noncooperatively and with similarly high affinities to CBS-PPases, whereas Ap3A bound in a positively cooperative manner and with lower affinity, like mononucleotides. All ApnAs abolished kinetic cooperativity (non-Michaelian behavior) of CBS-PPases. The enthalpy change and binding stoichiometry, as determined by isothermal calorimetry, were ~10 kcal/mol nucleotide and 1 mol/mol enzyme dimer for Ap4A and Ap5A but 5.5 kcal/mol and 2 mol/mol for Ap3A, AMP, ADP, and ATP, suggesting different binding modes for the two nucleotide groups. In contrast, Eggerthella lenta and Moorella thermoacetica CBS-PPases, which contain no DRTGG domain, were not affected by ApnAs and showed no enthalpy change, indicating the importance of the DTRGG domain for ApnA binding. These findings suggest that ApnAs can control CBS-PPase activity and hence affect pyrophosphate level and biosynthetic activity in bacteria.
Collapse
Affiliation(s)
- Viktor A Anashkin
- From the Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland and the Belozersky Institute of Physico-Chemical Biology and Department of Chemistry, Lomonosov Moscow State University, Moscow 119899, Russia
| | - Anu Salminen
- From the Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland and
| | - Heidi K Tuominen
- From the Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland and
| | - Victor N Orlov
- the Belozersky Institute of Physico-Chemical Biology and Department of Chemistry, Lomonosov Moscow State University, Moscow 119899, Russia
| | - Reijo Lahti
- From the Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland and
| | - Alexander A Baykov
- the Belozersky Institute of Physico-Chemical Biology and Department of Chemistry, Lomonosov Moscow State University, Moscow 119899, Russia
| |
Collapse
|
168
|
Hardie DG. Molecular Pathways: Is AMPK a Friend or a Foe in Cancer? Clin Cancer Res 2015; 21:3836-40. [PMID: 26152739 PMCID: PMC4558946 DOI: 10.1158/1078-0432.ccr-14-3300] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/09/2015] [Indexed: 12/19/2022]
Abstract
The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status expressed in essentially all eukaryotic cells. Once activated by energetic stress via a mechanism that detects increases in AMP:ATP and ADP:ATP ratios, AMPK acts to restore energy homeostasis by switching on catabolic pathways that generate ATP, while switching off ATP-consuming processes, including anabolic pathways required for cell growth and proliferation. AMPK activation promotes the glucose-sparing, oxidative metabolism utilized by most quiescent cells, rather than the rapid glucose uptake and glycolysis used by most proliferating cells. Numerous pharmacologic activators of AMPK are known, including drugs in long use such as salicylate and metformin, and there is evidence that regular use of either of the latter provides protection against development of cancer. Tumor cells appear to be under selection pressure to downregulate AMPK, thus limiting its restraining influence on cell growth and proliferation, and several interesting mechanisms by which this occurs are discussed. Paradoxically, however, a complete loss of AMPK function, which appears to be rare in human cancers, may be deleterious to survival of tumor cells. AMPK can therefore be either a friend or a foe in cancer, depending on the context.
Collapse
Affiliation(s)
- D Grahame Hardie
- Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom.
| |
Collapse
|
169
|
Labesse G, Alexandre T, Gelin M, Haouz A, Munier-Lehmann H. Crystallographic studies of two variants ofPseudomonas aeruginosaIMPDH with impaired allosteric regulation. ACTA ACUST UNITED AC 2015; 71:1890-9. [DOI: 10.1107/s1399004715013115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/07/2015] [Indexed: 11/10/2022]
Abstract
Inosine-5′-monophosphate dehydrogenases (IMPDHs), which are the rate-limiting enzymes in guanosine-nucleotide biosynthesis, are important therapeutic targets. Despite in-depth functional and structural characterizations of various IMPDHs, the role of the Bateman domain containing two CBS motifs remains controversial. Their involvement in the allosteric regulation ofPseudomonas aeruginosaIMPDH by Mg-ATP has recently been reported. To better understand the function of IMPDH and the importance of the CBS motifs, the structure of a variant devoid of these modules (ΔCBS) was solved at high resolution in the apo form and in complex with IMP. In addition, a single amino-acid substitution variant, D199N, was also structurally characterized: the mutation corresponds to the autosomal dominant mutant D226N of human IMPDH1, which is responsible for the onset of the retinopathy adRP10. These new structures shed light onto the possible mechanism of regulation of the IMPDH enzymatic activity. In particular, three conserved loops seem to be key players in this regulation as they connect the tetramer–tetramer interface with the active site and show significant modification upon substrate binding.
Collapse
|
170
|
Ha J, Guan KL, Kim J. AMPK and autophagy in glucose/glycogen metabolism. Mol Aspects Med 2015; 46:46-62. [PMID: 26297963 DOI: 10.1016/j.mam.2015.08.002] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/04/2015] [Indexed: 12/14/2022]
Abstract
Glucose/glycogen metabolism is a primary metabolic pathway acting on a variety of cellular needs, such as proliferation, growth, and survival against stresses. The multiple regulatory mechanisms underlying a specific metabolic fate have been documented and explained the molecular basis of various pathophysiological conditions, including metabolic disorders and cancers. AMP-activated protein kinase (AMPK) has been appreciated for many years as a central metabolic regulator to inhibit energy-consuming pathways as well as to activate the compensating energy-producing programs. In fact, glucose starvation is a potent physiological AMPK activating condition, in which AMPK triggers various subsequent metabolic events depending on cells or tissues. Of note, the recent studies show bidirectional interplay between AMPK and glycogen. A growing number of studies have proposed additional level of metabolic regulation by a lysosome-dependent catabolic program, autophagy. Autophagy is a critical degradative pathway not only for maintenance of cellular homeostasis to remove potentially dangerous constituents, such as protein aggregates and dysfunctional subcellular organelles, but also for adaptive responses to metabolic stress, such as nutrient starvation. Importantly, many lines of evidence indicate that autophagy is closely connected with nutrient signaling modules, including AMPK, to fine-tune the metabolic pathways in response to many different cellular cues. In this review, we introduce the studies demonstrating the role of AMPK and autophagy in glucose/glycogen metabolism. Also, we describe the recent advances on their contributions to the metabolic disorders.
Collapse
Affiliation(s)
- Joohun Ha
- Department of Biochemistry and Molecular Biology, Medical Research Center and Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Kun-Liang Guan
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Joungmok Kim
- Department of Oral Biochemistry and Molecular Biology, Research Center for Tooth and Periodontal Tissue Regeneration, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
171
|
Internal sense of direction: sensing and signaling from cytoplasmic chemoreceptors. Microbiol Mol Biol Rev 2015; 78:672-84. [PMID: 25428939 DOI: 10.1128/mmbr.00033-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
SUMMARY Chemoreceptors sense environmental signals and drive chemotactic responses in Bacteria and Archaea. There are two main classes of chemoreceptors: integral inner membrane and soluble cytoplasmic proteins. The latter were identified more recently than integral membrane chemoreceptors and have been studied much less thoroughly. These cytoplasmic chemoreceptors are the subject of this review. Our analysis determined that 14% of bacterial and 43% of archaeal chemoreceptors are cytoplasmic, based on currently sequenced genomes. Cytoplasmic chemoreceptors appear to share the same key structural features as integral membrane chemoreceptors, including the formations of homodimers, trimers of dimers, and 12-nm hexagonal arrays within the cell. Cytoplasmic chemoreceptors exhibit varied subcellular locations, with some localizing to the poles and others appearing both cytoplasmic and polar. Some cytoplasmic chemoreceptors adopt more exotic locations, including the formations of exclusively internal clusters or moving dynamic clusters that coalesce at points of contact with other cells. Cytoplasmic chemoreceptors presumably sense signals within the cytoplasm and bear diverse signal input domains that are mostly N terminal to the domain that defines chemoreceptors, the so-called MA domain. Similar to the case for transmembrane receptors, our analysis suggests that the most common signal input domain is the PAS (Per-Arnt-Sim) domain, but a variety of other N-terminal domains exist. It is also common, however, for cytoplasmic chemoreceptors to have C-terminal domains that may function for signal input. The most common of these is the recently identified chemoreceptor zinc binding (CZB) domain, found in 8% of all cytoplasmic chemoreceptors. The widespread nature and diverse signal input domains suggest that these chemoreceptors can monitor a variety of cytoplasmically based signals, most of which remain to be determined.
Collapse
|
172
|
Chantranupong L, Wolfson RL, Sabatini DM. Nutrient-sensing mechanisms across evolution. Cell 2015; 161:67-83. [PMID: 25815986 DOI: 10.1016/j.cell.2015.02.041] [Citation(s) in RCA: 237] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Indexed: 12/11/2022]
Abstract
For organisms to coordinate their growth and development with nutrient availability, they must be able to sense nutrient levels in their environment. Here, we review select nutrient-sensing mechanisms in a few diverse organisms. We discuss how these mechanisms reflect the nutrient requirements of specific species and how they have adapted to the emergence of multicellularity in eukaryotes.
Collapse
Affiliation(s)
- Lynne Chantranupong
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Rachel L Wolfson
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
173
|
Neutrophil-Derived MMP-8 Drives AMPK-Dependent Matrix Destruction in Human Pulmonary Tuberculosis. PLoS Pathog 2015; 11:e1004917. [PMID: 25996154 PMCID: PMC4440706 DOI: 10.1371/journal.ppat.1004917] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 04/27/2015] [Indexed: 02/07/2023] Open
Abstract
Pulmonary cavities, the hallmark of tuberculosis (TB), are characterized by high mycobacterial load and perpetuate the spread of M. tuberculosis. The mechanism of matrix destruction resulting in cavitation is not well defined. Neutrophils are emerging as key mediators of TB immunopathology and their influx are associated with poor outcomes. We investigated neutrophil-dependent mechanisms involved in TB-associated matrix destruction using a cellular model, a cohort of 108 patients, and in separate patient lung biopsies. Neutrophil-derived NF-kB-dependent matrix metalloproteinase-8 (MMP-8) secretion was up-regulated in TB and caused matrix destruction both in vitro and in respiratory samples of TB patients. Collagen destruction induced by TB infection was abolished by doxycycline, a licensed MMP inhibitor. Neutrophil extracellular traps (NETs) contain MMP-8 and are increased in samples from TB patients. Neutrophils lined the circumference of human pulmonary TB cavities and sputum MMP-8 concentrations reflected TB radiological and clinical disease severity. AMPK, a central regulator of catabolism, drove neutrophil MMP-8 secretion and neutrophils from AMPK-deficient patients secrete lower MMP-8 concentrations. AMPK-expressing neutrophils are present in human TB lung biopsies with phospho-AMPK detected in nuclei. These data demonstrate that neutrophil-derived MMP-8 has a key role in the immunopathology of TB and is a potential target for host-directed therapy in this infectious disease.
Collapse
|
174
|
Yang G, Zhou H, Wang R, Hickford J. Variation in the ovine PRKAG3 gene. Gene 2015; 567:251-4. [PMID: 25967386 DOI: 10.1016/j.gene.2015.05.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 04/08/2015] [Accepted: 05/02/2015] [Indexed: 10/23/2022]
Abstract
The 5'AMP-activated protein kinase (AMPK) is a heterotrimeric enzyme that controls cellular energy homeostasis in response to environmental or nutritional stress. The PRKAG3 gene (PRKAG3) encodes the γ3 subunit of the AMPK. Variation in this gene has been found to be associated with meat quality traits in pigs. In this study, we used polymerase chain reaction-single stranded conformational polymorphism (PCR-SSCP) to investigate variation in exon 3 and exons 4-6 of ovine PRKAG3. In 160 New Zealand Suffolk sheep, two variant sequences (named a and b) were identified in the exon 3 region of the gene and three variant sequences (named A, B and C) were identified in the exon 4-6 region of the gene, respectively. A total of three nucleotide substitutions were revealed and these were located in intron 4, exon 4 and intron 5, respectively. The nucleotide substitution identified in the exon 4 (g.2656 C>T) could nominally lead to an amino acid substitution of tryptophan to arginine at position 230 (R230W) in ovine PRKAG3. In comparison with the PRKAG3 amino acid sequences in other species, this R230W substitution appeared to occur only in sheep. This is the first report of genetic variation in ovine PRKAG3, and the variation found in this study could be functionally important for AMPK activity, which in turn may affect meat quality traits in sheep.
Collapse
Affiliation(s)
- Guo Yang
- Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China; Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, P.O. Box 84, Lincoln University, Lincoln 7647, New Zealand
| | - Huitong Zhou
- Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, P.O. Box 84, Lincoln University, Lincoln 7647, New Zealand
| | - Ruoyu Wang
- Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Jon Hickford
- Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, P.O. Box 84, Lincoln University, Lincoln 7647, New Zealand.
| |
Collapse
|
175
|
Lv Q, Zhen Q, Liu L, Gao R, Yang S, Zhou H, Goswami R, Li Q. AMP-kinase pathway is involved in tumor necrosis factor alpha-induced lipid accumulation in human hepatoma cells. Life Sci 2015; 131:23-9. [PMID: 25817233 DOI: 10.1016/j.lfs.2015.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/20/2015] [Accepted: 03/02/2015] [Indexed: 11/17/2022]
Abstract
AIM It is well known that lipid accumulation and inflammation are two important steps in pathogenesis and progress of nonalcoholic fatty liver disease (NAFLD). However, fewer studies have explored the direct relationship between lipid accumulation and inflammation in early NAFLD. Tumor necrosis factor alpha (TNF-α) is one of the classical inflammatory cytokines. AMP-activated protein kinase (AMPK) is known as a critical regulator of energy homeostasis in metabolic processes. This study aims to investigate the role of TNF-α on lipid deposition of HepG2 cells and examine the modification of AMPK pathway. MAIN METHODS TNF-α was added in HepG2 cells and lipid accumulation was analyzed by Oil Red O staining and quantitative test of triglyceride (TG). The expressions of phosphorylated AMPK and its pathway (including mTOR and SREBP-1) were determined. Furthermore, an AMPK agonist (metformin or AICAR) or antagonist (compound C) was co-administrated with TNF-α in HepG2 cells to investigate its effect on TNF-α induced lipid deposition. KEY FINDINGS A significant increment of TG content in HepG2 cells was observed after TNF-α treatment. Meanwhile, substantially suppressed AMPK and ACC phosphorylation, enhanced mTOR and p70S6K phosphorylation, and increased protein expression of FAS and SREBP-1 were found. Co-treatment with metformin or AICAR decreased the TNF-α-induced intracellular TG, accompanied by significantly enhanced AMPK and ACC phosphorylation, suppressed mTOR and p70S6K phosphorylation, and reduced SREBP-1 and FAS expressions. On the contrary, while co-incubated with compound C, AMPK and ACC phosphorylation were suppressed and the inhibitory effect of metformin on HepG2 cell lipid deposition was also attenuated. SIGNIFICANCE Our results suggest that TNF-α directly induces lipid accumulation in HepG2 cells, at least in part, through the inhibition of AMPK/mTOR/SREBP-1 pathway.
Collapse
Affiliation(s)
- Qiong Lv
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qianna Zhen
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lulu Liu
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Rufei Gao
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Laboratory of Lipids and Glucose Metabolism, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shumin Yang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Huang Zhou
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Richa Goswami
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qifu Li
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
176
|
Chuang HC, Chou CC, Kulp SK, Chen CS. AMPK as a potential anticancer target - friend or foe? Curr Pharm Des 2015; 20:2607-18. [PMID: 23859619 DOI: 10.2174/13816128113199990485] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/24/2013] [Indexed: 02/08/2023]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is a key player in maintaining energy homeostasis in response to metabolic stress. Beyond diabetes and metabolic syndrome, there is a growing interest in the therapeutic exploitation of the AMPK pathway in cancer treatment in light of its unique ability to regulate cancer cell proliferation through the reprogramming of cell metabolism. Although many studies support the tumor-suppressive role of AMPK, emerging evidence suggests that the metabolic checkpoint function of AMPK might be overridden by stress or oncogenic signals so that tumor cells use AMPK activation as a survival strategy to gain growth advantage. These findings underscore the complexity in the cellular function of AMPK in maintaining energy homeostasis under physiological versus pathological conditions. Thus, this review aims to provide an overview of recent findings on the functional interplay of AMPK with different cell metabolic and signaling effectors, particularly histone deacetylases, in mediating downstream tumor suppressive or promoting mechanisms in different cell systems. Although AMPK activation inhibits tumor growth by targeting multiple signaling pathways relevant to tumorigenesis, under certain cellular contexts or certain stages of tumor development, AMPK might act as a protective response to metabolic stresses, such as nutrient deprivation, low oxygen, and low pH, or as downstream effectors of oncogenic proteins, including androgen receptor, hypoxia-inducible factor-1α, c-Src, and MYC. Thus, investigations to define at which stage(s) of tumorigenesis and cancer progression or for which genetic aberrations AMPK inhibition might represent a more relevant strategy than AMPK activation for cancer treatment are clearly warranted.
Collapse
Affiliation(s)
| | | | | | - Ching-Shih Chen
- Rm 336, Parks Hall, College of Pharmacy, The Ohio State University, 500 W. 12th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
177
|
Alexandre T, Rayna B, Munier-Lehmann H. Two classes of bacterial IMPDHs according to their quaternary structures and catalytic properties. PLoS One 2015; 10:e0116578. [PMID: 25706619 PMCID: PMC4338043 DOI: 10.1371/journal.pone.0116578] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/10/2014] [Indexed: 11/19/2022] Open
Abstract
Inosine-5'-monophosphate dehydrogenase (IMPDH) occupies a key position in purine nucleotide metabolism. In this study, we have performed the biochemical and physico-chemical characterization of eight bacterial IMPDHs, among which six were totally unexplored. This study led to a classification of bacterial IMPDHs according to the regulation of their catalytic properties and their quaternary structures. Class I IMPDHs are cooperative enzymes for IMP, which are activated by MgATP and are octameric in all tested conditions. On the other hand, class II IMPDHs behave as Michaelis-Menten enzymes for both substrates and are tetramers in their apo state or in the presence of IMP, which are shifted to octamers in the presence of NAD or MgATP. Our work provides new insights into the IMPDH functional regulation and a model for the quaternary structure modulation is proposed.
Collapse
Affiliation(s)
- Thomas Alexandre
- Institut Pasteur, Unité de Chimie et Biocatalyse, Département de Biologie Structurale et Chimie, 28 rue du Dr Roux, F-75015, Paris, France
- Centre Nationale de la Recherche Scientifique, Unité Mixte de Recherche 3523, F-75015, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, F-75205, Paris, France
| | - Bertrand Rayna
- Institut Pasteur, Proteopole, Plateforme de biophysique des macromolecules et de leurs interactions, 25 rue du Dr Roux, F-75015, Paris, France
- Centre Nationale de la Recherche Scientifique, Unité Mixte de Recherche 3528, F-75015, Paris, France
| | - Hélène Munier-Lehmann
- Institut Pasteur, Unité de Chimie et Biocatalyse, Département de Biologie Structurale et Chimie, 28 rue du Dr Roux, F-75015, Paris, France
- Centre Nationale de la Recherche Scientifique, Unité Mixte de Recherche 3523, F-75015, Paris, France
| |
Collapse
|
178
|
Niu WN, Yadav PK, Adamec J, Banerjee R. S-glutathionylation enhances human cystathionine β-synthase activity under oxidative stress conditions. Antioxid Redox Signal 2015; 22:350-61. [PMID: 24893130 PMCID: PMC4307034 DOI: 10.1089/ars.2014.5891] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
AIMS Cystathionine β-synthase (CBS) catalyzes the first and rate-limiting step in the two-step trans-sulfuration pathway that converts homocysteine to cysteine. It is also one of three major enzymes responsible for the biogenesis of H2S, a signaling molecule. We have previously demonstrated that CBS is activated in cells challenged by oxidative stress, but the underlying molecular mechanism of this regulation has remained unclear. RESULTS Here, we demonstrate that S-glutathionylation of CBS enhances its activity ∼2-fold in vitro. Loss of this post-translational modification in the presence of dithiothreitol results in reversal to basal activity. Cys346 was identified as the site for S-glutathionylation by a combination of mass spectrometric, mutagenesis, and activity analyses. To test the physiological relevance of S-glutathionylation-dependent regulation of CBS, HEK293 cells were oxidatively challenged with peroxide, which is known to enhance the trans-sulfuration flux. Under these conditions, CBS glutathionylation levels increased and were correlated with a ∼3-fold increase in CBS activity. INNOVATION Collectively, our results reveal a novel post-translational modification of CBS, that is, glutathionylation, which functions as an allosteric activator under oxidative stress conditions permitting enhanced synthesis of both cysteine and H2S. CONCLUSIONS Our study elucidates a molecular mechanism for increased cysteine and therefore glutathione, synthesis via glutathionylation of CBS. They also demonstrate the potential for increased H2S production under oxidative stress conditions, particularly in tissues where CBS is a major source of H2S.
Collapse
Affiliation(s)
- Wei-Ning Niu
- 1 The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an, China
| | | | | | | |
Collapse
|
179
|
Nucleotide binding triggers a conformational change of the CBS module of the magnesium transporter CNNM2 from a twisted towards a flat structure. Biochem J 2015; 464:23-34. [PMID: 25184538 DOI: 10.1042/bj20140409] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Recent studies suggest CNNM2 (cyclin M2) to be part of the long-sought basolateral Mg2+ extruder at the renal distal convoluted tubule, or its regulator. In the present study, we explore structural features and ligand-binding capacities of the Bateman module of CNNM2 (residues 429-584), an intracellular domain structurally equivalent to the region involved in Mg2+ handling by the bacterial Mg2+ transporter MgtE, and AMP binding by the Mg2+ efflux protein CorC. Additionally, we studied the structural impact of the pathogenic mutation T568I located in this region. Our crystal structures reveal that nucleotides such as AMP, ADP or ATP bind at only one of the two cavities present in CNNM2429-584. Mg2+ favours ATP binding by alleviating the otherwise negative charge repulsion existing between acidic residues and the polyphosphate group of ATP. In crystals CNNM2429-584 forms parallel dimers, commonly referred to as CBS (cystathionine β-synthase) modules. Interestingly, nucleotide binding triggers a conformational change in the CBS module from a twisted towards a flat disc-like structure that mostly affects the structural elements connecting the Bateman module with the transmembrane region. We furthermore show that the T568I mutation, which causes dominant hypomagnesaemia, mimics the structural effect induced by nucleotide binding. The results of the present study suggest that the T568I mutation exerts its pathogenic effect in humans by constraining the conformational equilibrium of the CBS module of CNNM2, which becomes 'locked' in its flat form.
Collapse
|
180
|
Galactose metabolic genes in yeast respond to a ratio of galactose and glucose. Proc Natl Acad Sci U S A 2015; 112:1636-41. [PMID: 25605920 DOI: 10.1073/pnas.1418058112] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Natural environments are filled with multiple, often competing, signals. In contrast, biological systems are often studied in "well-controlled" environments where only a single input is varied, potentially missing important interactions between signals. Catabolite repression of galactose by glucose is one of the best-studied eukaryotic signal integration systems. In this system, it is believed that galactose metabolic (GAL) genes are induced only when glucose levels drop below a threshold. In contrast, we show that GAL gene induction occurs at a constant external galactose:glucose ratio across a wide range of sugar concentrations. We systematically perturbed the components of the canonical galactose/glucose signaling pathways and found that these components do not account for ratio sensing. Instead we provide evidence that ratio sensing occurs upstream of the canonical signaling pathway and results from the competitive binding of the two sugars to hexose transporters. We show that a mutant that behaves as the classical model expects (i.e., cannot use galactose above a glucose threshold) has a fitness disadvantage compared with wild type. A number of common biological signaling motifs can give rise to ratio sensing, typically through negative interactions between opposing signaling molecules. We therefore suspect that this previously unidentified nutrient sensing paradigm may be common and overlooked in biology.
Collapse
|
181
|
Kim J, Shin J, Ha J. Screening methods for AMP-activated protein kinase modulators: a patent review. Expert Opin Ther Pat 2014; 25:261-77. [PMID: 25535089 DOI: 10.1517/13543776.2014.995626] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION AMP-activated protein kinase (AMPK) functions as a cellular energy gauge that maintains cellular homeostasis and has been suggested to play important roles in tumorigenesis, lifespan and autophagy. Accordingly, AMPK is a potential target of drugs for controlling a growing number of human diseases ranging from metabolic disorders to cancer, highlighting the need for rational and robust screening systems for identifying compounds that modulate AMPK. AREAS COVERED The relevant screening methods in the patent and scientific literature were analyzed, and key features of direct AMPK modulators are discussed in the context of their physiological relevance and the three-dimensional structure of the AMPK complex. EXPERT OPINION The mechanism of action of modulators is important in designing drugs with enhanced efficacy, specificity and stability. Most patented assay formats for identifying AMPK modulators are based on classical enzyme assays that monitor AMPK activity or changes in AMPK-dependent cellular physiology. However, these systems do not provide information about underlying mechanisms. Two patented assay systems use a specific domain or the three-dimensional structure of AMPK to identify AMPK modulators. The recent identification of two AMPK modulators, A-769662 and C-2 (or its prodrug, C-13), suggests the promise of structure-based assays in discovering more potent and specific modulators of AMPK.
Collapse
Affiliation(s)
- Joungmok Kim
- Kyung Hee University, School of Dentistry, Oral Biochemistry and Molecular Biology , Seoul , Republic of Korea
| | | | | |
Collapse
|
182
|
Abstract
The AMP-activated protein kinase (AMPK) is a sensor of cellular energy and nutrient status, expressed almost universally in eukaryotes as heterotrimeric complexes comprising catalytic (α) and regulatory (β and γ) subunits. Along with the mechanistic target of rapamycin complex-1 (mTORC1), AMPK may have been one of the earliest signaling pathways to have arisen during eukaryotic evolution. Recent crystal structures have provided insights into the mechanisms by which AMPK is regulated by phosphorylation and allosteric activators. Another recent development has been the realization that activation of AMPK by the upstream kinase LKB1 may primarily occur not in the cytoplasm, but at the surface of the lysosome, where AMPK and mTORC1 are regulated in a reciprocal manner by the availability of nutrients. It is also becoming clear that there is a substantial amount of crosstalk between the AMPK pathway and other signaling pathways that promote cell growth and proliferation, and this will be discussed.
Collapse
Affiliation(s)
- D Grahame Hardie
- Division of Cell Signalling & Immunology, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH Scotland, UK.
| |
Collapse
|
183
|
Grahame Hardie D. AMP-activated protein kinase: a key regulator of energy balance with many roles in human disease. J Intern Med 2014; 276:543-59. [PMID: 24824502 PMCID: PMC5705060 DOI: 10.1111/joim.12268] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that regulates cellular and whole-body energy balance. A recently reported crystal structure has illuminated the complex regulatory mechanisms by which AMP and ADP cause activation of AMPK, involving phosphorylation by the upstream kinase LKB1. Once activated by falling cellular energy status, AMPK activates catabolic pathways that generate ATP whilst inhibiting anabolic pathways and other cellular processes that consume ATP. A role of AMPK is implicated in many human diseases. Mutations in the γ2 subunit cause heart disease due to excessive glycogen storage in cardiac myocytes, leading to ventricular pre-excitation. AMPK-activating drugs reverse many of the metabolic defects associated with insulin resistance, and recent findings suggest that the insulin-sensitizing effects of the widely used antidiabetic drug metformin are mediated by AMPK. The upstream kinase LKB1 is a tumour suppressor, and AMPK may exert many of its antitumour effects. AMPK activation promotes the oxidative metabolism typical of quiescent cells, rather than the aerobic glycolysis observed in tumour cells and cells involved in inflammation, explaining in part why AMPK activators have both antitumour and anti-inflammatory effects. Salicylate (the major in vivo metabolite of aspirin) activates AMPK, and this could be responsible for at least some of the anticancer and anti-inflammatory effects of aspirin. In addition to metformin and salicylates, novel drugs that modulate AMPK are likely to enter clinical trials soon. Finally, AMPK may be involved in viral infection: downregulation of AMPK during hepatitis C virus infection appears to be essential for efficient viral replication.
Collapse
Affiliation(s)
- D Grahame Hardie
- Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Scotland, UK
| |
Collapse
|
184
|
Sureka K, Choi PH, Precit M, Delince M, Pensinger DA, Huynh TN, Jurado AR, Goo YA, Sadilek M, Iavarone AT, Sauer JD, Tong L, Woodward JJ. The cyclic dinucleotide c-di-AMP is an allosteric regulator of metabolic enzyme function. Cell 2014; 158:1389-1401. [PMID: 25215494 DOI: 10.1016/j.cell.2014.07.046] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/09/2014] [Accepted: 07/29/2014] [Indexed: 12/13/2022]
Abstract
Cyclic di-adenosine monophosphate (c-di-AMP) is a broadly conserved second messenger required for bacterial growth and infection. However, the molecular mechanisms of c-di-AMP signaling are still poorly understood. Using a chemical proteomics screen for c-di-AMP-interacting proteins in the pathogen Listeria monocytogenes, we identified several broadly conserved protein receptors, including the central metabolic enzyme pyruvate carboxylase (LmPC). Biochemical and crystallographic studies of the LmPC-c-di-AMP interaction revealed a previously unrecognized allosteric regulatory site 25 Å from the active site. Mutations in this site disrupted c-di-AMP binding and affected catalytic activity of LmPC as well as PC from pathogenic Enterococcus faecalis. C-di-AMP depletion resulted in altered metabolic activity in L. monocytogenes. Correction of this metabolic imbalance rescued bacterial growth, reduced bacterial lysis, and resulted in enhanced bacterial burdens during infection. These findings greatly expand the c-di-AMP signaling repertoire and reveal a central metabolic regulatory role for a cyclic dinucleotide.
Collapse
Affiliation(s)
- Kamakshi Sureka
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Philip H Choi
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Mimi Precit
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Matthieu Delince
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Daniel A Pensinger
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - TuAnh Ngoc Huynh
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Ashley R Jurado
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Young Ah Goo
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21201, USA
| | - Martin Sadilek
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Anthony T Iavarone
- QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, CA 94720, USA
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | - Joshua J Woodward
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
185
|
Almabrouk TAM, Ewart MA, Salt IP, Kennedy S. Perivascular fat, AMP-activated protein kinase and vascular diseases. Br J Pharmacol 2014; 171:595-617. [PMID: 24490856 DOI: 10.1111/bph.12479] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 10/04/2013] [Accepted: 10/16/2013] [Indexed: 12/15/2022] Open
Abstract
Perivascular adipose tissue (PVAT) is an active endocrine and paracrine organ that modulates vascular function, with implications for the pathophysiology of cardiovascular disease (CVD). Adipocytes and stromal cells contained within PVAT produce mediators (adipokines, cytokines, reactive oxygen species and gaseous compounds) with a range of paracrine effects modulating vascular smooth muscle cell contraction, proliferation and migration. However, the modulatory effect of PVAT on the vascular system in diseases, such as obesity, hypertension and atherosclerosis, remains poorly characterized. AMP-activated protein kinase (AMPK) regulates adipocyte metabolism, adipose biology and vascular function, and hence may be a potential therapeutic target for metabolic disorders such as type 2 diabetes mellitus (T2DM) and the vascular complications associated with obesity and T2DM. The role of AMPK in PVAT or the actions of PVAT have yet to be established, however. Activation of AMPK by pharmacological agents, such as metformin and thiazolidinediones, may modulate the activity of PVAT surrounding blood vessels and thereby contribute to their beneficial effect in cardiometabolic diseases. This review will provide a current perspective on how PVAT may influence vascular function via AMPK. We will also attempt to demonstrate how modulating AMPK activity using pharmacological agents could be exploited therapeutically to treat cardiometabolic diseases.
Collapse
Affiliation(s)
- T A M Almabrouk
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | |
Collapse
|
186
|
Hurtado de Llera A, Martin-Hidalgo D, Gil M, Garcia-Marin L, Bragado M. AMPK up-activation reduces motility and regulates other functions of boar spermatozoa. Mol Hum Reprod 2014; 21:31-45. [DOI: 10.1093/molehr/gau091] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
187
|
Abstract
AMPK (AMP-activated protein kinase) is a cellular energy sensor that monitors the ratio of AMP/ATP, and possibly also ADP/ATP, inside cells. Once activated by falling cellular energy levels, it acts to restore energy homoeostasis by switching on catabolic pathways that generate ATP, while switching off anabolic pathways and other processes consuming ATP. AMPK is switched on by increases in AMP via three mechanisms, all of which are antagonized by ATP: (i) promotion of phosphorylation of Thr172 by upstream activating kinases; (ii) inhibition of dephosphorylation of Thr172 by phosphatases; and (iii) allosteric activation of the phosphorylated kinase. Recently, it has been proposed that the first two mechanisms are also triggered by ADP, which might be the physiological signal rather than AMP, and that the third mechanism may not be physiologically significant. We have re-evaluated these questions, and found that only mechanism (ii) is mimicked by ADP, and that ADP is also less potent than AMP, which we still believe to be the primary signal. We have also provided evidence that mechanism (iii), i.e. allosteric activation by AMP, is a quantitatively significant mechanism in intact cells.
Collapse
|
188
|
Ronnebaum SM, Patterson C, Schisler JC. Minireview: hey U(PS): metabolic and proteolytic homeostasis linked via AMPK and the ubiquitin proteasome system. Mol Endocrinol 2014; 28:1602-15. [PMID: 25099013 DOI: 10.1210/me.2014-1180] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
One of the master regulators of both glucose and lipid cellular metabolism is 5'-AMP-activated protein kinase (AMPK). As a metabolic pivot that dynamically responds to shifts in nutrient availability and stress, AMPK dysregulation is implicated in the underlying molecular pathology of a variety of diseases, including cardiovascular diseases, diabetes, cancer, neurological diseases, and aging. Although the regulation of AMPK enzymatic activity by upstream kinases is an active area of research, less is known about regulation of AMPK protein stability and activity by components of the ubiquitin-proteasome system (UPS), the cellular machinery responsible for both the recognition and degradation of proteins. Furthermore, there is growing evidence that AMPK regulates overall proteasome activity and individual components of the UPS. This review serves to identify the current understanding of the interplay between AMPK and the UPS and to promote further exploration of the relationship between these regulators of energy use and amino acid availability within the cell.
Collapse
Affiliation(s)
- Sarah M Ronnebaum
- McAllister Heart Institute (S.M.R., J.C.S.) and Department of Pharmacology (J.C.S.), The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599; and Presbyterian Hospital/Weill-Cornell Medical Center (C.P.), New York, New York 10065
| | | | | |
Collapse
|
189
|
Mendes MIS, Santos AS, Smith DEC, Lino PR, Colaço HG, de Almeida IT, Vicente JB, Salomons GS, Rivera I, Blom HJ, Leandro P. Insights into the regulatory domain of cystathionine Beta-synthase: characterization of six variant proteins. Hum Mutat 2014; 35:1195-202. [PMID: 25044645 DOI: 10.1002/humu.22616] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 06/30/2014] [Indexed: 11/07/2022]
Abstract
Cystathionine beta-synthase (CBS) catalyzes the formation of cystathionine from homocysteine and serine. CBS is allosterically activated by S-adenosylmethionine (SAM), which binds to its C-terminal regulatory domain. Mutations in this domain lead to variants with high residual activity but lacking SAM activation. We characterized six C-terminal CBS variants (p.P427L, p.D444N, p.V449G, p.S500L, p.K523Sfs*18, and p.L540Q). To understand the effect of C-terminal mutations on the functional/structural properties of CBS, we performed dynamic light scattering, differential scanning fluorimetry, limited proteolysis, enzymatic characterization, and determination of SAM-binding affinity. Kinetic data confirm that the enzymatic function of these variants is not impaired. Although lacking SAM activation, the p.P427L and p.S500L were able to bind SAM at a lower extent than the wild type (WT), confirming that SAM binding and activation can be two independent events. At the structural level, the C-terminal variants presented various effects, either showing catalytic core instability and increased susceptibility toward aggregation or presenting with similar or higher stability than the WT. Our study highlights as the common feature to the C-terminal variants an impaired binding of SAM and no increase in enzymatic activity with physiological concentrations of the activator, suggesting the loss of regulation by SAM as a potential pathogenic mechanism.
Collapse
Affiliation(s)
- Marisa I S Mendes
- Metabolism and Genetics Group, Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal; Metabolic Unit, Department of Clinical Chemistry, VU University Medical Centre, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Lei L, Lixian Z. Effect of 24 h Fasting on Gene Expression of AMPK, Appetite Regulation Peptides and Lipometabolism Related Factors in the Hypothalamus of Broiler Chicks. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 25:1300-8. [PMID: 25049694 PMCID: PMC4092945 DOI: 10.5713/ajas.2012.12153] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/13/2012] [Accepted: 06/02/2012] [Indexed: 12/20/2022]
Abstract
The 5’-adenosine monophosphate-activated protein kinase (AMPK) is a key part of a kinase-signaling cascade that acts to maintain energy homeostasis. The objective of this experiment was to investigate the possible effects of fasting and refeeding on the gene expression of hypothalamic AMPK, some appetitive regulating peptides and lipid metabolism related enzymes. Seven-day-old male broiler (Arbor Acres) chicks were allocated into three equal treatments: fed ad libitum (control); fasted for 24 h; fasted for 24 h and then refed for 24 h. Compared with the control, the hypothalamic gene expression of AMPKα2, AMPKβ1, AMPKβ2, AMPKγ1, Ste20-related adaptor protein β (STRADβ), mouse protein 25α (MO25α) and agouti-related peptide (AgRP) were increased after fasting for 24 h. No significant difference among treatments was observed in mRNA levels of AMPKα1, AMPKγ2, LKB1 and neuropeptide Y (NPY). However, the expression of MO25β, pro-opiomelanocortin (POMC), corticotropin-releasing hormone (CRH), ghrelin, fatty acid synthase (FAS), acetyl-CoA carboxylase α (ACCα), carnitine palmitoyltransferase 1 (CPT-1) and sterol regulatory element binding protein-1 (SREBP-1) were significantly decreased. The present results indicated that 24 h fasting altered gene expression of AMPK subunits, appetite regulation peptides and lipometabolism related factors in chick’s hypothalamus; the hypothalamic FAS signaling pathway might be involved in the AMPK regulated energy homeostasis and/or appetite regulation in poultry.
Collapse
|
191
|
Sahdeo S, Tomilov A, Komachi K, Iwahashi C, Datta S, Hughes O, Hagerman P, Cortopassi G. High-throughput screening of FDA-approved drugs using oxygen biosensor plates reveals secondary mitofunctional effects. Mitochondrion 2014; 17:116-25. [PMID: 25034306 DOI: 10.1016/j.mito.2014.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/11/2014] [Accepted: 07/01/2014] [Indexed: 10/25/2022]
Abstract
Repurposing of FDA-approved drugs with effects on mitochondrial function might shorten the critical path to mitochondrial disease drug development. We improved a biosensor-based assay of mitochondrial O2 consumption, and identified mitofunctional defects in cell models of LHON and FXTAS. Using this platform, we screened a 1600-compound library of clinically used drugs. The assay identified drugs known to affect mitochondrial function, such as metformin and decoquinate. We also identified several drugs not previously known to affect mitochondrial respiration including acarbose, metaraminol, gallamine triethiodide, and acamprosate. These previously unknown 'mitoactives' represent novel links to targets for mitochondrial regulation and potentially therapy, for mitochondrial disease.
Collapse
Affiliation(s)
- Sunil Sahdeo
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, Davis, CA 95616, United States
| | - Alexey Tomilov
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, Davis, CA 95616, United States
| | - Kelly Komachi
- Eon Research, 707 4th Street, Suite 305, Davis, CA 95616, United States
| | - Christine Iwahashi
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, 4455 Tupper Hall, Davis, CA 95616, United States
| | - Sandipan Datta
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, Davis, CA 95616, United States
| | - Owen Hughes
- Eon Research, 707 4th Street, Suite 305, Davis, CA 95616, United States
| | - Paul Hagerman
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, 4455 Tupper Hall, Davis, CA 95616, United States
| | - Gino Cortopassi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, Davis, CA 95616, United States
| |
Collapse
|
192
|
Salminen A, Anashkin VA, Lahti M, Tuominen HK, Lahti R, Baykov AA. Cystathionine β-synthase (CBS) domains confer multiple forms of Mg2+-dependent cooperativity to family II pyrophosphatases. J Biol Chem 2014; 289:22865-22876. [PMID: 24986864 DOI: 10.1074/jbc.m114.589473] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulated family II pyrophosphatases (CBS-PPases) contain a nucleotide-binding insert comprising a pair of cystathionine β-synthase (CBS) domains, termed a Bateman module. By binding with high affinity to the CBS domains, AMP and ADP usually inhibit the enzyme, whereas ATP activates it. Here, we demonstrate that AMP, ADP, and ATP bind in a positively cooperative manner to CBS-PPases from four bacteria: Desulfitobacterium hafniense, Clostridium novyi, Clostridium perfringens, and Eggerthella lenta. Enzyme interaction with substrate as characterized by the Michaelis constant (Km) also exhibited positive catalytic cooperativity that decreased in magnitude upon nucleotide binding. The degree of both types of cooperativity increased with increasing concentration of the cofactor Mg(2+) except for the C. novyi PPase where Mg(2+) produced the opposite effect on kinetic cooperativity. Further exceptions from these general rules were ADP binding to C. novyi PPase and AMP binding to E. lenta PPase, neither of which had any effect on activity. A genetically engineered deletion variant of D. hafniense PPase lacking the regulatory insert was fully active but differed from the wild-type enzyme in that it was insensitive to nucleotides and bound substrate non-cooperatively and with a smaller Km value. These results indicate that the regulatory insert acts as an internal inhibitor and confers dual positive cooperativity to CBS domain-containing PPases, making them highly sensitive regulators of the PPi level in response to the changes in cell energy status that control adenine nucleotide distribution. These regulatory features may be common among other CBS domain-containing proteins.
Collapse
Affiliation(s)
- Anu Salminen
- Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland and
| | - Viktor A Anashkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119899, Russia
| | - Matti Lahti
- Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland and
| | - Heidi K Tuominen
- Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland and
| | - Reijo Lahti
- Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland and.
| | - Alexander A Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119899, Russia.
| |
Collapse
|
193
|
Reid CA, Mullen S, Kim TH, Petrou S. Epilepsy, energy deficiency and new therapeutic approaches including diet. Pharmacol Ther 2014; 144:192-201. [PMID: 24924701 DOI: 10.1016/j.pharmthera.2014.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 02/08/2023]
Abstract
Metabolic dysfunction leading to epilepsy is well recognised. Dietary therapy, in particular the ketogenic diet, is now considered an effective option. Recent genetic studies have highlighted the central role that metabolism can play in setting seizure susceptibility. Here we discuss various metabolic disorders implicated in epilepsy focusing on energy deficiency due to genetic and environmental causes. We argue that low, uncompensated brain glucose levels can precipitate seizures. We will also explore mechanisms of disease and therapy in an attempt to identify common metabolic pathways involved in modulating seizure susceptibility. Finally, newer therapeutic approaches based on diet manipulation in the context of energy deficiency are discussed.
Collapse
Affiliation(s)
- Christopher A Reid
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia.
| | - Saul Mullen
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Tae Hwan Kim
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia; Centre for Neural Engineering, The University of Melbourne, Parkville, Melbourne, Australia; Department of Electrical Engineering, The University of Melbourne, Parkville, Melbourne, Australia
| |
Collapse
|
194
|
Abstract
The adenosine monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway arose early during evolution of eukaryotic cells, when it appears to have been involved in the response to glucose starvation and perhaps also in monitoring the output of the newly acquired mitochondria. Due to the advent of hormonal regulation of glucose homeostasis, glucose starvation is a less frequent event for mammalian cells than for single-celled eukaryotes. Nevertheless, the AMPK system has been preserved in mammals where, by monitoring cellular AMP:adenosine triphosphate (ATP) and adenosine diphosphate (ADP):ATP ratios and balancing the rates of catabolism and ATP consumption, it maintains energy homeostasis at a cell-autonomous level. In addition, hormones involved in maintaining energy balance at the whole-body level interact with AMPK in the hypothalamus. AMPK is activated by two widely used clinical drugs, metformin and aspirin, and also by many natural products of plants that are either derived from traditional medicines or are promoted as "nutraceuticals."
Collapse
Affiliation(s)
- D Grahame Hardie
- Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, United Kingdom;
| |
Collapse
|
195
|
Hardman SE, Hall DE, Cabrera AJ, Hancock CR, Thomson DM. The effects of age and muscle contraction on AMPK activity and heterotrimer composition. Exp Gerontol 2014; 55:120-8. [PMID: 24747582 DOI: 10.1016/j.exger.2014.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/05/2014] [Accepted: 04/10/2014] [Indexed: 01/06/2023]
Abstract
Sarcopenia is characterized by increased skeletal muscle atrophy due in part to alterations in muscle metabolism. AMP-activated protein kinase (AMPK) is a master regulator of skeletal muscle metabolic pathways which regulate many cellular processes that are disrupted in old-age. Functional AMPK is a heterotrimer composed of α, β and γ subunits, and each subunit can be represented in the heterotrimer by one of two (α1/α2, β1/β2) or three (γ1/γ2/γ3) isoforms. Altered isoform composition affects AMPK localization and function. Previous work has shown that overall AMPK activation with endurance-type exercise is blunted in old vs. young skeletal muscle. However, details regarding the activation of the specific isoforms of AMPK, as well as the heterotrimeric composition of AMPK in old skeletal muscle, are unknown. Our purpose here, therefore, was to determine the effect of old-age on 1) the activation of the α1 and α2 catalytic subunits of AMPK in skeletal muscle by a continuous contraction bout, and 2) the heterotrimeric composition of skeletal muscle AMPK. We studied gastrocnemius (GAST) and tibialis anterior (TA) muscles from young adult (YA; 8months old) and old (O; 30months old) male Fischer344×Brown Norway F1 hybrid rats after an in situ bout of endurance-type contractions produced via electrical stimulation of the sciatic nerve (STIM). AMPKα phosphorylation and AMPKα1 and α2 activities were unaffected by age at rest. However, AMPKα phosphorylation and AMPKα2 protein content and activity were lower in O vs. YA after STIM. Conversely, AMPKα1 content was greater in O vs. YA muscle, and α1 activity increased with STIM in O but not YA muscles. AMPKγ3 overall concentration and its association with AMPKα1 and α2 were lower in O vs. YA GAST. We conclude that activation of AMPKα1 is enhanced, while activation of α2 is suppressed immediately after repeated skeletal muscle contractions in O vs. YA skeletal muscle. These changes are associated with changes in the AMPK heterotrimer composition. Given the known roles of AMPK α1, α2 and γ3, this may contribute to sarcopenia and associated muscle metabolic dysfunction.
Collapse
Affiliation(s)
- Shalene E Hardman
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Derrick E Hall
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Alyssa J Cabrera
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Chad R Hancock
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, 84602, USA
| | - David M Thomson
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, 84602, USA.
| |
Collapse
|
196
|
Hawley S, Ross F, Gowans G, Tibarewal P, Leslie N, Hardie DG. Phosphorylation by Akt within the ST loop of AMPK-α1 down-regulates its activation in tumour cells. Biochem J 2014; 459:275-87. [PMID: 24467442 PMCID: PMC4052680 DOI: 10.1042/bj20131344] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/16/2014] [Accepted: 01/27/2014] [Indexed: 12/18/2022]
Abstract
The insulin/IGF-1 (insulin-like growth factor 1)-activated protein kinase Akt (also known as protein kinase B) phosphorylates Ser487 in the 'ST loop' (serine/threonine-rich loop) within the C-terminal domain of AMPK-α1 (AMP-activated protein kinase-α1), leading to inhibition of phosphorylation by upstream kinases at the activating site, Thr172. Surprisingly, the equivalent site on AMPK-α2, Ser491, is not an Akt target and is modified instead by autophosphorylation. Stimulation of HEK (human embryonic kidney)-293 cells with IGF-1 caused reduced subsequent Thr172 phosphorylation and activation of AMPK-α1 in response to the activator A769662 and the Ca2+ ionophore A23187, effects we show to be dependent on Akt activation and Ser487 phosphorylation. Consistent with this, in three PTEN (phosphatase and tensin homologue deleted on chromosome 10)-null tumour cell lines (in which the lipid phosphatase PTEN that normally restrains the Akt pathway is absent and Akt is thus hyperactivated), AMPK was resistant to activation by A769662. However, full AMPK activation could be restored by pharmacological inhibition of Akt, or by re-expression of active PTEN. We also show that inhibition of Thr172 phosphorylation is due to interaction of the phosphorylated ST loop with basic side chains within the αC-helix of the kinase domain. Our findings reveal that a previously unrecognized effect of hyperactivation of Akt in tumour cells is to restrain activation of the LKB1 (liver kinase B1)-AMPK pathway, which would otherwise inhibit cell growth and proliferation.
Collapse
Key Words
- akt
- amp-activated protein kinase (ampk)
- cancer
- cross-talk
- tumour suppressor
- acc, acetyl-coa carboxylase
- aicar, 5-amino-4-imidazolecarboxamide riboside
- ampk, amp-activated protein kinase
- brsk, brain-specific kinase
- camkk, calmodulin-dependent kinase kinase β
- dmem, dulbecco’s modified eagle’s medium
- gsk3, glycogen synthase kinase 3
- hek, human embryonic kidney
- igf-1, insulin-like growth factor 1
- lkb1, liver kinase b1
- mef, mouse embryonic fibroblast
- mo25α, mouse protein-25α
- mtorc1, mammalian (or mechanistic) target of rapamycin complex 1
- neaa, non-essential amino acid
- pi3k, phosphoinositide 3-kinase
- pka, protein kinase a (camp-dependent protein kinase)
- pten, phosphatase and tensin homologue deleted on chromosome 10
- s6k1, s6 kinase 1
- st loop, serine/threonine-rich loop
- stradα, ste20-related adapter protein-α
- wt, wild-type
Collapse
Affiliation(s)
- Simon A. Hawley
- *Division of Cell Signalling & Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| | - Fiona A. Ross
- *Division of Cell Signalling & Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| | - Graeme J. Gowans
- *Division of Cell Signalling & Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| | - Priyanka Tibarewal
- *Division of Cell Signalling & Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| | - Nicholas R. Leslie
- *Division of Cell Signalling & Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| | - D. Grahame Hardie
- *Division of Cell Signalling & Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| |
Collapse
|
197
|
Hirata Y, Funato Y, Takano Y, Miki H. Mg2+-dependent interactions of ATP with the cystathionine-β-synthase (CBS) domains of a magnesium transporter. J Biol Chem 2014; 289:14731-9. [PMID: 24706765 DOI: 10.1074/jbc.m114.551176] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Ancient conserved domain protein/cyclin M (CNNM) family proteins are evolutionarily conserved Mg(2+) transporters. However, their biochemical mechanism of action remains unknown. Here, we show the functional importance of the commonly conserved cystathionine-β-synthase (CBS) domains and reveal their unique binding ability to ATP. Deletion mutants of CNNM2 and CNNM4, lacking the CBS domains, are unable to promote Mg(2+) efflux. Furthermore, the substitution of one amino acid residue in the CBS domains of CNNM2, which is associated with human hereditary hypomagnesemia, abrogates Mg(2+) efflux. Binding analyses reveal that the CBS domains of CNNM2 bind directly to ATP and not AMP in a manner dependent on the presence of Mg(2+), which is inhibited in a similar pattern by the disease-associated amino acid substitution. The requirement of Mg(2+) for these interactions is a unique feature among CBS domains, which can be explained by the presence of highly electronegative surface potentials around the ATP binding site on CNNM2. These results demonstrate that the CBS domains play essential roles in Mg(2+) efflux, probably through interactions with ATP. Interactions with ATP, which mostly forms complexes with Mg(2+) in cells, may account for the rapid Mg(2+) transport by CNNM family proteins.
Collapse
Affiliation(s)
- Yusuke Hirata
- From the Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan and
| | - Yosuke Funato
- From the Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan and
| | - Yu Takano
- the Laboratory of Protein Informatics, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroaki Miki
- From the Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan and
| |
Collapse
|
198
|
Hurtado de Llera A, Martin-Hidalgo D, Gil MC, Garcia-Marin LJ, Bragado MJ. The calcium/CaMKKalpha/beta and the cAMP/PKA pathways are essential upstream regulators of AMPK activity in boar spermatozoa. Biol Reprod 2014; 90:29. [PMID: 24389872 DOI: 10.1095/biolreprod.113.112797] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Spermatozoa successfully fertilize oocytes depending on cell energy-sensitive processes. We recently showed that the cell energy sensor, the AMP-activated protein kinase (AMPK), plays a relevant role in spermatozoa by regulating motility as well as plasma membrane organization and acrosomal integrity, and contributes to the maintenance of mitochondrial membrane potential. As the signaling pathways that control AMPK activity have been studied exclusively in somatic cells, our aim is to investigate the intracellular pathways that regulate AMPK phosphorylation at Thr(172) (activity) in male germ cells. Boar spermatozoa were incubated under different conditions in the presence or absence of Ca(2+), 8Br-cAMP, IBMX, PMA, the AMPK activator A769662, or inhibitors of PKA, PKC, or CaMKKalpha/beta. AMPK phosphorylation was evaluated by Western blot using anti-phospho-Thr(172)-AMPK antibody. Data show that AMPK phosphorylation in spermatozoa is potently stimulated by an elevation of cAMP levels through the activation of PKA, as the PKA inhibitor H89 blocks phospho-Thr(172)-AMPK. Another mechanism to potently activate AMPK is Ca(2+) that acts through two pathways, PKA (blocked by H89) and CaMKKalpha/beta (blocked by STO-609). Moreover, phospho-Thr(172)-AMPK levels greatly increased upon PKC activation induced by PMA, and the PKC inhibitor Ro-32-0432 inhibits TCM-induced AMPK activation. Different stimuli considered as cell stresses (rotenone, cyanide, sorbitol, and complete absence of intracellular Ca(2+) by BAPTA-AM) also cause AMPK phosphorylation in spermatozoa. In summary, AMPK activity in boar spermatozoa is regulated upstream by different kinases, such as PKA, CaMKKalpha/beta, and PKC, as well as by the essential intracellular messengers for spermatozoan function, Ca(2+) and cAMP levels.
Collapse
Affiliation(s)
- Ana Hurtado de Llera
- Research Group of Intracellular Signaling and Technology of Reproduction, School of Veterinary Medicine, University of Extremadura, Caceres, Spain
| | | | | | | | | |
Collapse
|
199
|
Kim M, Hunter RW, Garcia-Menendez L, Gong G, Yang YY, Kolwicz SC, Xu J, Sakamoto K, Wang W, Tian R. Mutation in the γ2-subunit of AMP-activated protein kinase stimulates cardiomyocyte proliferation and hypertrophy independent of glycogen storage. Circ Res 2014; 114:966-75. [PMID: 24503893 DOI: 10.1161/circresaha.114.302364] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RATIONALE AMP-activated protein kinase is a master regulator of cell metabolism and an attractive drug target for cancer and metabolic and cardiovascular diseases. Point mutations in the regulatory γ2-subunit of AMP-activated protein kinase (encoded by Prkag2 gene) caused a unique form of human cardiomyopathy characterized by cardiac hypertrophy, ventricular preexcitation, and glycogen storage. Understanding the disease mechanisms of Prkag2 cardiomyopathy is not only beneficial for the patients but also critical to the use of AMP-activated protein kinase as a drug target. OBJECTIVE We sought to identify the pro-growth-signaling pathway(s) triggered by Prkag2 mutation and to distinguish it from the secondary response to glycogen storage. METHODS AND RESULTS In a mouse model of N488I mutation of the Prkag2 gene (R2M), we rescued the glycogen storage phenotype by genetic inhibition of glucose-6-phosphate-stimulated glycogen synthase activity. Ablation of glycogen storage eliminated the ventricular preexcitation but did not affect the excessive cardiac growth in R2M mice. The progrowth effect in R2M hearts was mediated via increased insulin sensitivity and hyperactivity of Akt, resulting in activation of mammalian target of rapamycin and inactivation of forkhead box O transcription factor-signaling pathways. Consequently, cardiac myocyte proliferation during the postnatal period was enhanced in R2M hearts followed by hypertrophic growth in adult hearts. Inhibition of mammalian target of rapamycin activity by rapamycin or restoration of forkhead box O transcription factor activity by overexpressing forkhead box O transcription factor 1 rescued the abnormal cardiac growth. CONCLUSIONS Our study reveals a novel mechanism for Prkag2 cardiomyopathy, independent of glycogen storage. The role of γ2-AMP-activated protein kinase in cell growth also has broad implications in cardiac development, growth, and regeneration.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/genetics
- AMP-Activated Protein Kinases/physiology
- Animals
- Cardiomyopathy, Hypertrophic, Familial/enzymology
- Cardiomyopathy, Hypertrophic, Familial/genetics
- Cardiomyopathy, Hypertrophic, Familial/metabolism
- Cardiomyopathy, Hypertrophic, Familial/physiopathology
- Cell Division
- Cell Enlargement
- Disease Models, Animal
- Forkhead Box Protein O1
- Forkhead Transcription Factors/biosynthesis
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/physiology
- Gene Knock-In Techniques
- Genetic Complementation Test
- Glucose-6-Phosphate/metabolism
- Glucose-6-Phosphate/pharmacology
- Glycogen/biosynthesis
- Glycogen Storage Disease/genetics
- Glycogen Storage Disease/metabolism
- Glycogen Storage Disease/physiopathology
- Glycogen Synthase/genetics
- Glycogen Synthase/physiology
- Insulin Resistance/genetics
- Mice
- Myocardium/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Pre-Excitation Syndromes/genetics
- Proto-Oncogene Proteins c-akt/physiology
- Signal Transduction/genetics
- Signal Transduction/physiology
- Sirolimus/pharmacology
- TOR Serine-Threonine Kinases/physiology
Collapse
Affiliation(s)
- Maengjo Kim
- From the Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle (M.K., L.G.-M., G.G., Y.-Y.Y., S.C.K., J.X., W.W., R.T.); and MRC Protein Phosphorylation unit, College of Life Sciences, University of Dundee, Dundee, United Kingdom (R.W.H., K.S.). R.W.H. and K.S. are currently affiliated with Nestlé Institute of Health Sciences SA, Campus EPFL, Innovation Park, bâtiment G, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Mohannath G, Jackel JN, Lee YH, Buchmann RC, Wang H, Patil V, Adams AK, Bisaro DM. A complex containing SNF1-related kinase (SnRK1) and adenosine kinase in Arabidopsis. PLoS One 2014; 9:e87592. [PMID: 24498147 PMCID: PMC3907550 DOI: 10.1371/journal.pone.0087592] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 12/30/2013] [Indexed: 12/22/2022] Open
Abstract
SNF1-related kinase (SnRK1) in plants belongs to a conserved family that includes sucrose non-fermenting 1 kinase (SNF1) in yeast and AMP-activated protein kinase (AMPK) in animals. These kinases play important roles in the regulation of cellular energy homeostasis and in response to stresses that deplete ATP, they inhibit energy consuming anabolic pathways and promote catabolism. Energy stress is sensed by increased AMP:ATP ratios and in plants, 5′-AMP inhibits inactivation of phosphorylated SnRK1 by phosphatase. In previous studies, we showed that geminivirus pathogenicity proteins interact with both SnRK1 and adenosine kinase (ADK), which phosphorylates adenosine to generate 5′-AMP. This suggested a relationship between SnRK1 and ADK, which we investigate in the studies described here. We demonstrate that SnRK1 and ADK physically associate in the cytoplasm, and that SnRK1 stimulates ADK in vitro by an unknown, non-enzymatic mechanism. Further, altering SnRK1 or ADK activity in transgenic plants altered the activity of the other kinase, providing evidence for in vivo linkage but also revealing that in vivo regulation of these activities is complex. This study establishes the existence of SnRK1-ADK complexes that may play important roles in energy homeostasis and cellular responses to biotic and abiotic stress.
Collapse
Affiliation(s)
- Gireesha Mohannath
- Department of Molecular Genetics, Center for Applied Plant Sciences, and Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Jamie N. Jackel
- Department of Molecular Genetics, Center for Applied Plant Sciences, and Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Youn Hyung Lee
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, Korea
| | - R. Cody Buchmann
- Department of Molecular Genetics, Center for Applied Plant Sciences, and Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Hui Wang
- Department of Molecular Genetics, Center for Applied Plant Sciences, and Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Veena Patil
- Department of Molecular Genetics, Center for Applied Plant Sciences, and Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Allie K. Adams
- Department of Molecular Genetics, Center for Applied Plant Sciences, and Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - David M. Bisaro
- Department of Molecular Genetics, Center for Applied Plant Sciences, and Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|