151
|
Yi W, Zhang Y, Liu B, Zhou Y, Liao D, Qiao X, Gao D, Xie T, Yao Q, Zhang Y, Qiu Y, Huang G, Chen Z, Chen C, Ju Z. Protein S-nitrosylation regulates proteostasis and viability of hematopoietic stem cell during regeneration. Cell Rep 2021; 34:108922. [PMID: 33789111 PMCID: PMC9204508 DOI: 10.1016/j.celrep.2021.108922] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/16/2020] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
Hematopoietic stem cells (HSCs) regenerate blood cells upon hematopoietic injuries. During homeostasis, HSCs are maintained in a low reactive oxygen species (ROS) state to prevent exhaustion. However, the role of nitric oxide (NO) in controlling HSC regeneration is still unclear. Here, we find increased NO during HSC regeneration with an accumulation of protein aggregation. S-nitrosoglutathione reductase (GSNOR)-deleted HSCs exhibit a reduced reconstitution capacity and loss of self-renewal after chemotherapeutic injury, which is resolved by inhibition of NO synthesis. Deletion of GSNOR enhances protein S-nitrosylation, resulting in an accumulation of protein aggregation and activation of unfolded protein response (UPR). Treatment of taurocholic acid (TCA), a chemical chaperone, rescues the regeneration defect of Gsnor-/- HSCs after 5-fluorouracil (5-FU) treatment. Deletion of C/EBP homologous protein (Chop) restores the reconstitution capacity of Gsnor-/- HSCs. These findings establish a link between S-nitrosylation and protein aggregation in HSC in the context of blood regeneration.
Collapse
Affiliation(s)
- Weiwei Yi
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou 310036, China
| | - Yuying Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Liu
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Yuanyuan Zhou
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Dandan Liao
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Dan Gao
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Ting Xie
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qin Yao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yao Zhang
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou 310036, China
| | - Yugang Qiu
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, Shandong 261053, China
| | - Gang Huang
- Division of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
152
|
Yamaguchi T, Kawamoto E, Gaowa A, Park EJ, Shimaoka M. Remodeling of Bone Marrow Niches and Roles of Exosomes in Leukemia. Int J Mol Sci 2021; 22:ijms22041881. [PMID: 33668652 PMCID: PMC7918833 DOI: 10.3390/ijms22041881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/23/2021] [Accepted: 02/11/2021] [Indexed: 12/15/2022] Open
Abstract
Leukemia is a hematological malignancy that originates from hematopoietic stem cells in the bone marrow. Significant progress has made in understanding its pathogensis and in establishing chemotherapy and hematopoietic stem cell transplantation therapy (HSCT). However, while the successive development of new therapies, such as molecular-targeted therapy and immunotherapy, have resulted in remarkable advances, the fact remains that some patients still cannot be saved, and resistance to treatment and relapse are still problems that need to be solved in leukemia patients. The bone marrow (BM) niche is a microenvironment that includes hematopoietic stem cells and their supporting cells. Leukemia cells interact with bone marrow niches and modulate them, not only inducing molecular and functional changes but also switching to niches favored by leukemia cells. The latter are closely associated with leukemia progression, suppression of normal hematopoiesis, and chemotherapy resistance, which is precisely the area of ongoing study. Exosomes play an important role in cell-to-cell communication, not only with cells in close proximity but also with those more distant due to the nature of exosomal circulation via body fluids. In leukemia, exosomes play important roles in leukemogenesis, disease progression, and organ invasion, and their usefulness in the diagnosis and treatment of leukemia has recently been reported. The interaction between leukemia cell-derived exosomes and the BM microenvironment has received particular attention. Their interaction is believed to play a very important role; in addition to their diagnostic value, exosomes could serve as a marker for monitoring treatment efficacy and as an aid in overcoming drug resistance, among the many problems in leukemia patients that have yet to be overcome. In this paper, we will review bone marrow niches in leukemia, findings on leukemia-derived exosomes, and exosome-induced changes in bone marrow niches.
Collapse
Affiliation(s)
- Takanori Yamaguchi
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City, Mie 514-8507, Japan; (T.Y.); (E.K.); (A.G.); (E.J.P.)
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City, Mie 514-8507, Japan
| | - Eiji Kawamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City, Mie 514-8507, Japan; (T.Y.); (E.K.); (A.G.); (E.J.P.)
- Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City, Mie 514-8507, Japan
| | - Arong Gaowa
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City, Mie 514-8507, Japan; (T.Y.); (E.K.); (A.G.); (E.J.P.)
| | - Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City, Mie 514-8507, Japan; (T.Y.); (E.K.); (A.G.); (E.J.P.)
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City, Mie 514-8507, Japan; (T.Y.); (E.K.); (A.G.); (E.J.P.)
- Correspondence: ; Tel.: +81-59-232-5036; Fax: +81-59-231-5209
| |
Collapse
|
153
|
González-Espinoza G, Arce-Gorvel V, Mémet S, Gorvel JP. Brucella: Reservoirs and Niches in Animals and Humans. Pathogens 2021; 10:pathogens10020186. [PMID: 33572264 PMCID: PMC7915599 DOI: 10.3390/pathogens10020186] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 01/18/2023] Open
Abstract
Brucella is an intracellular bacterium that causes abortion, reproduction failure in livestock and leads to a debilitating flu-like illness with serious chronic complications if untreated in humans. As a successful intracellular pathogen, Brucella has developed strategies to avoid recognition by the immune system of the host and promote its survival and replication. In vivo, Brucellae reside mostly within phagocytes and other cells including trophoblasts, where they establish a preferred replicative niche inside the endoplasmic reticulum. This process is central as it gives Brucella the ability to maintain replicating-surviving cycles for long periods of time, even at low bacterial numbers, in its cellular niches. In this review, we propose that Brucella takes advantage of the environment provided by the cellular niches in which it resides to generate reservoirs and disseminate to other organs. We will discuss how the favored cellular niches for Brucella infection in the host give rise to anatomical reservoirs that may lead to chronic infections or persistence in asymptomatic subjects, and which may be considered as a threat for further contamination. A special emphasis will be put on bone marrow, lymph nodes, reproductive and for the first time adipose tissues, as well as wildlife reservoirs.
Collapse
|
154
|
Abstract
Obesity and obesity-related diseases like type 2 diabetes (T2D) are prominent global health issues; therefore, there is a need to better understand the mechanisms underlying these conditions. The onset of obesity is characterized by accumulation of proinflammatory cells, including Ly6chi monocytes (which differentiate into proinflammatory macrophages) and neutrophils, in metabolic tissues. This shift toward chronic, low-grade inflammation is an obese-state hallmark and highly linked to metabolic disorders and other obesity comorbidities. The mechanisms that induce and maintain increased inflammatory myelopoiesis are of great interest, with a recent focus on how obesity affects more primitive hematopoietic cells. The hematopoietic system is constantly replenished by proper regulation of hematopoietic stem and progenitor (HSPC) pools in the BM. While early research suggests that chronic obesity promotes expansion of myeloid-skewed HSPCs, the involvement of the hematopoietic stem cell (HSC) niche in regulating obesity-induced myelopoiesis remains undefined. In this review, we explore the role of the multicellular HSC niche in hematopoiesis and inflammation, and the potential contribution of this niche to the hematopoietic response to obesity. This review further aims to summarize the potential HSC niche involvement as a target of obesity-induced inflammation and a driver of obesity-induced myelopoiesis.
Collapse
|
155
|
Yahara Y, Ma X, Gracia L, Alman BA. Monocyte/Macrophage Lineage Cells From Fetal Erythromyeloid Progenitors Orchestrate Bone Remodeling and Repair. Front Cell Dev Biol 2021; 9:622035. [PMID: 33614650 PMCID: PMC7889961 DOI: 10.3389/fcell.2021.622035] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/12/2021] [Indexed: 12/21/2022] Open
Abstract
A third of the population sustains a bone fracture, and the pace of fracture healing slows with age. The slower pace of repair is responsible for the increased morbidity in older individuals who sustain a fracture. Bone healing progresses through overlapping phases, initiated by cells of the monocyte/macrophage lineage. The repair process ends with remodeling. This last phase is controlled by osteoclasts, which are bone-specific multinucleated cells also of the monocyte/macrophage lineage. The slower rate of healing in aging can be rejuvenated by macrophages from young animals, and secreted proteins from macrophage regulate undifferentiated mesenchymal cells to become bone-forming osteoblasts. Macrophages can derive from fetal erythromyeloid progenitors or from adult hematopoietic progenitors. Recent studies show that fetal erythromyeloid progenitors are responsible for the osteoclasts that form the space in bone for hematopoiesis and the fetal osteoclast precursors reside in the spleen postnatally, traveling through the blood to participate in fracture repair. Differences in secreted proteins between macrophages from old and young animals regulate the efficiency of osteoblast differentiation from undifferentiated mesenchymal precursor cells. Interestingly, during the remodeling phase osteoclasts can form from the fusion between monocyte/macrophage lineage cells from the fetal and postnatal precursor populations. Data from single cell RNA sequencing identifies specific markers for populations derived from the different precursor populations, a finding that can be used in future studies. Here, we review the diversity of macrophages and osteoclasts, and discuss recent finding about their developmental origin and functions, which provides novel insights into their roles in bone homeostasis and repair.
Collapse
Affiliation(s)
- Yasuhito Yahara
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States.,Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, Japan.,Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Xinyi Ma
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| | - Liam Gracia
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| | - Benjamin A Alman
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
156
|
Spampinato M, Giallongo C, Romano A, Longhitano L, La Spina E, Avola R, Scandura G, Dulcamare I, Bramanti V, Di Rosa M, Vicario N, Parenti R, Li Volti G, Tibullo D, Palumbo GA. Focus on Osteosclerotic Progression in Primary Myelofibrosis. Biomolecules 2021; 11:biom11010122. [PMID: 33477816 PMCID: PMC7832894 DOI: 10.3390/biom11010122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/09/2021] [Accepted: 01/16/2021] [Indexed: 12/22/2022] Open
Abstract
Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by hematopoietic stem-cell-derived clonal proliferation, leading to bone marrow (BM) fibrosis. Hematopoiesis alterations are closely associated with modifications of the BM microenvironment, characterized by defective interactions between vascular and endosteal niches. As such, neoangiogenesis, megakaryocytes hyperplasia and extensive bone marrow fibrosis, followed by osteosclerosis and bone damage, are the most relevant consequences of PMF. Moreover, bone tissue deposition, together with progressive fibrosis, represents crucial mechanisms of disabilities in patients. Although the underlying mechanisms of bone damage observed in PMF are still unclear, the involvement of cytokines, growth factors and bone marrow microenvironment resident cells have been linked to disease progression. Herein, we focused on the role of megakaryocytes and their alterations, associated with cytokines and chemokines release, in modulating functions of most of the bone marrow cell populations and in creating a complex network where impaired signaling strongly contributes to progression and disabilities.
Collapse
Affiliation(s)
- Mariarita Spampinato
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.); (L.L.); (R.A.); (D.T.)
| | - Cesarina Giallongo
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| | - Alessandra Romano
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. “Policlinico-Vittorio Emanuele”, University of Catania, 95123 Catania, Italy; (A.R.); (E.L.S.); (G.S.); (I.D.)
| | - Lucia Longhitano
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.); (L.L.); (R.A.); (D.T.)
| | - Enrico La Spina
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. “Policlinico-Vittorio Emanuele”, University of Catania, 95123 Catania, Italy; (A.R.); (E.L.S.); (G.S.); (I.D.)
| | - Roberto Avola
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.); (L.L.); (R.A.); (D.T.)
| | - Grazia Scandura
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. “Policlinico-Vittorio Emanuele”, University of Catania, 95123 Catania, Italy; (A.R.); (E.L.S.); (G.S.); (I.D.)
| | - Ilaria Dulcamare
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. “Policlinico-Vittorio Emanuele”, University of Catania, 95123 Catania, Italy; (A.R.); (E.L.S.); (G.S.); (I.D.)
| | - Vincenzo Bramanti
- Division of Clinical Pathology, “Giovanni Paolo II” Hospital–A.S.P. Ragusa, 97100 Ragusa, Italy;
| | - Michelino Di Rosa
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Nunzio Vicario
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.V.); (R.P.)
| | - Rosalba Parenti
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.V.); (R.P.)
| | - Giovanni Li Volti
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.); (L.L.); (R.A.); (D.T.)
- Correspondence: (G.L.V.); (G.A.P.)
| | - Daniele Tibullo
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.); (L.L.); (R.A.); (D.T.)
| | - Giuseppe A. Palumbo
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
- Correspondence: (G.L.V.); (G.A.P.)
| |
Collapse
|
157
|
Spampinato M, Giallongo C, Romano A, Longhitano L, La Spina E, Avola R, Scandura G, Dulcamare I, Bramanti V, Di Rosa M, Vicario N, Parenti R, Li Volti G, Tibullo D, Palumbo GA. Focus on Osteosclerotic Progression in Primary Myelofibrosis. Biomolecules 2021. [PMID: 33477816 DOI: 10.3390/biom11010122.pmid:33477816;pmcid:pmc7832894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by hematopoietic stem-cell-derived clonal proliferation, leading to bone marrow (BM) fibrosis. Hematopoiesis alterations are closely associated with modifications of the BM microenvironment, characterized by defective interactions between vascular and endosteal niches. As such, neoangiogenesis, megakaryocytes hyperplasia and extensive bone marrow fibrosis, followed by osteosclerosis and bone damage, are the most relevant consequences of PMF. Moreover, bone tissue deposition, together with progressive fibrosis, represents crucial mechanisms of disabilities in patients. Although the underlying mechanisms of bone damage observed in PMF are still unclear, the involvement of cytokines, growth factors and bone marrow microenvironment resident cells have been linked to disease progression. Herein, we focused on the role of megakaryocytes and their alterations, associated with cytokines and chemokines release, in modulating functions of most of the bone marrow cell populations and in creating a complex network where impaired signaling strongly contributes to progression and disabilities.
Collapse
Affiliation(s)
- Mariarita Spampinato
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Cesarina Giallongo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| | - Alessandra Romano
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, 95123 Catania, Italy
| | - Lucia Longhitano
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Enrico La Spina
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, 95123 Catania, Italy
| | - Roberto Avola
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Grazia Scandura
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, 95123 Catania, Italy
| | - Ilaria Dulcamare
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, 95123 Catania, Italy
| | - Vincenzo Bramanti
- Division of Clinical Pathology, "Giovanni Paolo II" Hospital-A.S.P. Ragusa, 97100 Ragusa, Italy
| | - Michelino Di Rosa
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Nunzio Vicario
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Rosalba Parenti
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giovanni Li Volti
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Daniele Tibullo
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giuseppe A Palumbo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| |
Collapse
|
158
|
Heshusius S, Heideveld E, von Lindern M, van den Akker E. CD14+ monocytes repress gamma globin expression at early stages of erythropoiesis. Sci Rep 2021; 11:1507. [PMID: 33452379 PMCID: PMC7810836 DOI: 10.1038/s41598-021-81060-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 11/18/2020] [Indexed: 12/05/2022] Open
Abstract
In β-hemoglobinopathies, reactivation of gamma- at the expense of beta-globin is a prominent therapeutic option. Expression of the globin genes is not strictly intrinsically regulated during erythropoiesis, supported by the observation that fetal erythroid cells switch to adult hemoglobin expression when injected in mice. We show cultured erythroblasts are a mix of HbA restrictive and HbA/HbF expressing cells and that the proportion of cells in the latter population depends on the starting material. Cultures started from CD34+ cells contain more HbA/HbF expressing cells compared to erythroblasts cultured from total peripheral blood mononuclear cells (PBMC). Depletion of CD14+ cells from PBMC resulted in higher HbF/HbA percentages. Conversely, CD34+ co-culture with CD14+ cells reduced the HbF/HbA population through cell–cell proximity, indicating that CD14+ actively repressed HbF expression in adult erythroid cultures. RNA-sequencing showed that HbA and HbA/HbF populations contain a limited number of differentially expressed genes, aside from HBG1/2. Co-culture of CD14+ cells with sorted uncommitted hematopoietic progenitors and CD34-CD36+ erythroblasts showed that hematopoietic progenitors prior to the hemoglobinized erythroid stages are more readily influenced by CD14+ cells to downregulate expression of HBG1/2, suggesting temporal regulation of these genes. This possibly provides a novel therapeutic avenue to develop β-hemoglobinopathies treatments.
Collapse
Affiliation(s)
- Steven Heshusius
- Department of Hematopoiesis, Sanquin Research, Plesmanlaan 125, 1066CX, Amsterdam, The Netherlands.,Landsteiner Laboratory, Academic University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Esther Heideveld
- Department of Hematopoiesis, Sanquin Research, Plesmanlaan 125, 1066CX, Amsterdam, The Netherlands.,Landsteiner Laboratory, Academic University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Marieke von Lindern
- Department of Hematopoiesis, Sanquin Research, Plesmanlaan 125, 1066CX, Amsterdam, The Netherlands.,Landsteiner Laboratory, Academic University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Emile van den Akker
- Department of Hematopoiesis, Sanquin Research, Plesmanlaan 125, 1066CX, Amsterdam, The Netherlands. .,Landsteiner Laboratory, Academic University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
159
|
Zhan H, Kaushansky K. The Hematopoietic Microenvironment in Myeloproliferative Neoplasms: The Interplay Between Nature (Stem Cells) and Nurture (the Niche). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1273:135-145. [PMID: 33119879 DOI: 10.1007/978-3-030-49270-0_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hematopoietic stem cells (HSCs) rely on instructive cues from the marrow microenvironment for their maintenance and function. Accumulating evidence indicates that the survival and proliferation of hematopoietic neoplasms are dependent not only on cell-intrinsic, genetic mutations, and other molecular alterations present within neoplastic stem cells, but also on the ability of the surrounding microenvironmental cells to nurture and promote the malignancy. It is anticipated that a better understanding of the molecular and cellular events responsible for these microenvironmental features of neoplastic hematopoiesis will lead to improved treatment for patients. This review will focus on the myeloproliferative neoplasms (MPNs), polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), in which an acquired signaling kinase mutation (JAK2V617F) plays a central, pathogenetic role in 50-100% of patients with these disorders. Evidence is presented that the development of an MPN requires both an abnormal, mutation-bearing (i.e., neoplastic) HSC and an abnormal, mutation-bearing microenvironment.
Collapse
Affiliation(s)
- Huichun Zhan
- Division of Hematology-Oncology, Department of Medicine, Stony Brook School of Medicine, Stony Brook, NY, USA. .,Northport VA Medical Center, Northport, NY, USA.
| | | |
Collapse
|
160
|
Ju W, Lu W, Bao Y, Sun T, Adzraku SY, Fu C, Qi K, Zhang X, Li Z, Xu K, Qiao J, Zeng L. Clodronate-liposomes aggravate irradiation-induced myelosuppression by promoting myeloid differentiation. Int J Radiat Biol 2021; 97:240-248. [PMID: 33253621 DOI: 10.1080/09553002.2021.1857452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE Clodronate-liposomes (Clod-Lip) is an effective candidate drug for treating chronic myelomonocytic leukemia, autoimmune hemolytic anemia and immune thrombocytopenic purpura in mice experiments. But its role in hematopoietic recovery after acute myelosuppression is still unknown. We aim to explore the function and underlining mechanisms of Clod-Lip on hematopoietic reconstitution after sublethal dose irradiation in mice. MATERIALS AND METHODS Mice at 8-10 weeks received a total-body sublethal dose γ-irradiation (TBI) and injected with Clod-Lip or PBS-Liposomes (PBS-Lip) every 4 days after TBI. The survival rate of each group was recorded. Flow cytometry was used to analyze changes in hematopoietic stem cells and their progenies in bone marrow. ELISA and RT-qPCR were used for the analysis of hematopoietic regulatory factors. Regarding IL-1β inhibition, 25 mg/kg diacerein or an equal volume of DMSO was intraperitoneally injected into mice every day after TBI. RESULTS In sublethal dose-irradiated mice, Clod-Lip reduced the survival rate, the total number of bone marrow and hematopoietic stem cells, delayed peripheral blood recovery of red blood cells and platelets. However, it could increase the number of CMP, MEP and myeloid cells, which suggested that Clod-Lip could induce HSC to myeloid differentiation in vivo. We further verified that Clod-Lip may induce myeloid differentiation by bone marrow microenvironmental factor IL-1β. CONCLUSIONS In summary, this study suggested that Clod-Lip may aggravate inhibitor effect of hematopoietic function and promote myeloid differentiation in myelosuppression mice model.
Collapse
Affiliation(s)
- Wen Ju
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wenyi Lu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yurong Bao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Tiantian Sun
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Pneumology, Beilun People's Hospital, Ningbo, China
| | - Seyram Yao Adzraku
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chunling Fu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kunming Qi
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zhenyu Li
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
161
|
The Role of Tumor Microenvironment in Multiple Myeloma Development and Progression. Cancers (Basel) 2021; 13:cancers13020217. [PMID: 33435306 PMCID: PMC7827690 DOI: 10.3390/cancers13020217] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Multiple Myeloma (MM) is a hematologic malignancy caused by aberrant plasma cell proliferation in the bone marrow (BM) and constitutes the second most common hematological disease after non-Hodgkin lymphoma. The disease progression is drastically regulated by the immunosuppressive tumor microenvironment (TME) generated by soluble factors and different cells that naturally reside in the BM. This microenvironment does not remain unchanged and alterations favor cancer dissemination. Despite therapeutic advances over the past 15 years, MM remains incurable and therefore understanding the elements that control the TME in MM would allow better-targeted therapies to cure this disease. In this review, we discuss the main events and changes that occur in the BM milieu during MM development. Abstract Multiple myeloma (MM) is a hematologic cancer characterized by clonal proliferation of plasma cells in the bone marrow (BM). The progression, from the early stages of the disease as monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM) to MM and occasionally extramedullary disease, is drastically affected by the tumor microenvironment (TME). Soluble factors and direct cell–cell interactions regulate MM plasma cell trafficking and homing to the BM niche. Mesenchymal stromal cells, osteoclasts, osteoblasts, myeloid and lymphoid cells present in the BM create a unique milieu that favors MM plasma cell immune evasion and promotes disease progression. Moreover, TME is implicated in malignant cell protection against anti-tumor therapy. This review describes the main cellular and non-cellular components located in the BM, which condition the immunosuppressive environment and lead the MM establishment and progression.
Collapse
|
162
|
Kaur S, Sehgal A, Wu AC, Millard SM, Batoon L, Sandrock CJ, Ferrari-Cestari M, Levesque JP, Hume DA, Raggatt LJ, Pettit AR. Stable colony-stimulating factor 1 fusion protein treatment increases hematopoietic stem cell pool and enhances their mobilisation in mice. J Hematol Oncol 2021; 14:3. [PMID: 33402221 PMCID: PMC7786999 DOI: 10.1186/s13045-020-00997-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Background Prior chemotherapy and/or underlying morbidity commonly leads to poor mobilisation of hematopoietic stem cells (HSC) for transplantation in cancer patients. Increasing the number of available HSC prior to mobilisation is a potential strategy to overcome this deficiency. Resident bone marrow (BM) macrophages are essential for maintenance of niches that support HSC and enable engraftment in transplant recipients. Here we examined potential of donor treatment with modified recombinant colony-stimulating factor 1 (CSF1) to influence the HSC niche and expand the HSC pool for autologous transplantation. Methods We administered an acute treatment regimen of CSF1 Fc fusion protein (CSF1-Fc, daily injection for 4 consecutive days) to naive C57Bl/6 mice. Treatment impacts on macrophage and HSC number, HSC function and overall hematopoiesis were assessed at both the predicted peak drug action and during post-treatment recovery. A serial treatment strategy using CSF1-Fc followed by granulocyte colony-stimulating factor (G-CSF) was used to interrogate HSC mobilisation impacts. Outcomes were assessed by in situ imaging and ex vivo standard and imaging flow cytometry with functional validation by colony formation and competitive transplantation assay. Results CSF1-Fc treatment caused a transient expansion of monocyte-macrophage cells within BM and spleen at the expense of BM B lymphopoiesis and hematopoietic stem and progenitor cell (HSPC) homeostasis. During the recovery phase after cessation of CSF1-Fc treatment, normalisation of hematopoiesis was accompanied by an increase in the total available HSPC pool. Multiple approaches confirmed that CD48−CD150+ HSC do not express the CSF1 receptor, ruling out direct action of CSF1-Fc on these cells. In the spleen, increased HSC was associated with expression of the BM HSC niche macrophage marker CD169 in red pulp macrophages, suggesting elevated spleen engraftment with CD48−CD150+ HSC was secondary to CSF1-Fc macrophage impacts. Competitive transplant assays demonstrated that pre-treatment of donors with CSF1-Fc increased the number and reconstitution potential of HSPC in blood following a HSC mobilising regimen of G-CSF treatment. Conclusion These results indicate that CSF1-Fc conditioning could represent a therapeutic strategy to overcome poor HSC mobilisation and subsequently improve HSC transplantation outcomes.
Collapse
Affiliation(s)
- Simranpreet Kaur
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Anuj Sehgal
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Andy C Wu
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Susan M Millard
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Lena Batoon
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Cheyenne J Sandrock
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Michelle Ferrari-Cestari
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Jean-Pierre Levesque
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - David A Hume
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Liza J Raggatt
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Allison R Pettit
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia.
| |
Collapse
|
163
|
Macrophages in multiple myeloma: key roles and therapeutic strategies. Cancer Metastasis Rev 2021; 40:273-284. [PMID: 33404860 DOI: 10.1007/s10555-020-09943-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022]
Abstract
Macrophages are a vital component of the tumour microenvironment and crucial mediators of tumour progression. In the last decade, significant strides have been made in understanding the crucial functional roles played by macrophages in the development of the plasma cell (PC) malignancy, multiple myeloma (MM). Whilst the interaction between MM PC and stromal cells within the bone marrow (BM) microenvironment has been extensively studied, we are only just starting to appreciate the multifaceted roles played by macrophages in disease progression. Accumulating evidence demonstrates that macrophage infiltration is associated with poor overall survival in MM. Indeed, macrophages influence numerous pathways critical for the initiation and progression of MM, including homing of malignant cells to BM, tumour cell growth and survival, drug resistance, angiogenesis and immune suppression. As such, therapeutic strategies aimed at targeting macrophages within the BM niche have promise in the clinical setting. This review will discuss the functions elicited by macrophages throughout different stages of MM and provide a comprehensive evaluation of potential macrophage-targeted therapies.
Collapse
|
164
|
Otsuka H, Endo Y, Ohtsu H, Inoue S, Noguchi S, Nakamura M, Soeta S. Histidine decarboxylase deficiency inhibits NBP-induced extramedullary hematopoiesis by modifying bone marrow and spleen microenvironments. Int J Hematol 2021; 113:348-361. [PMID: 33398631 DOI: 10.1007/s12185-020-03051-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 01/03/2023]
Abstract
Histidine decarboxylase (HDC), a histamine synthase, is expressed in various hematopoietic cells and is induced by hematopoietic cytokines such as granulocyte colony-stimulating factor (G-CSF). We previously showed that nitrogen-containing bisphosphonate (NBP)-treatment induces extramedullary hematopoiesis via G-CSF stimulation. However, the function of HDC in NBP-induced medullary and extramedullary hematopoiesis remains unclear. Here, we investigated changes in hematopoiesis in wild-type and HDC-deficient (HDC-KO) mice. NBP treatment did not induce anemia in wild-type or HDC-KO mice, but did produce a gradual increase in serum G-CSF levels in wild-type mice. NBP treatment also enhanced Hdc mRNA expression and erythropoiesis in the spleen and reduced erythropoiesis in bone marrow and the number of vascular adhesion molecule 1 (VCAM-1)-positive macrophages in wild-type mice, as well as increased the levels of hematopoietic progenitor cells and proliferating cells in the spleen and enhanced expression of bone morphogenetic protein 4 (Bmp4), CXC chemokine ligand 12 (Cxcl12), and hypoxia inducible factor 1 (Hif1) in the spleen. However, such changes were not observed in HDC-KO mice. These results suggest that histamine may affect hematopoietic microenvironments of the bone marrow and spleen by changing hematopoiesis-related factors in NBP-induced extramedullary hematopoiesis.
Collapse
Affiliation(s)
- Hirotada Otsuka
- Laboratory of Veterinary Anatomy, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho,Musashino-shi, Tokyo, 180-8602, Japan
| | - Yasuo Endo
- Division of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai-shi, Miyagi, 980-8575, Japan
| | - Hiroshi Ohtsu
- Tekiju Rehabilitation Hospital, 2-11-32 Hanayamacho, Nagata-ku, Kobe-shi, Hyogo, 653-0876, Japan.,Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai-shi, Miyagi, 980-8575, Japan
| | - Satoshi Inoue
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Syunya Noguchi
- Department of Molecular Medicine and Anatomy, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Masanori Nakamura
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Satoshi Soeta
- Laboratory of Veterinary Anatomy, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho,Musashino-shi, Tokyo, 180-8602, Japan.
| |
Collapse
|
165
|
Yuan S, Sun G, Zhang Y, Dong F, Cheng H, Cheng T. Understanding the "SMART" features of hematopoietic stem cells and beyond. SCIENCE CHINA. LIFE SCIENCES 2021; 64:2030-2044. [PMID: 34341896 PMCID: PMC8328818 DOI: 10.1007/s11427-021-1961-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023]
Abstract
Since the huge success of bone marrow transplantation technology in clinical practice, hematopoietic stem cells (HSCs) have become the gold standard for defining the properties of adult stem cells (ASCs). Here, we describe the "self-renewal, multi-lineage differentiation, apoptosis, rest, and trafficking" or "SMART" model, which has been developed based on data derived from studies of HSCs as the most well-characterized stem cell type. Given the potential therapeutic applications of ASCs, we delineate the key characteristics of HSCs using this model and speculate on the physiological relevance of stem cells identified in other tissues. Great strides are being made in understanding the biology of ASCs, and efforts are now underway to develop safe and effective ASC-based therapies in this emerging area.
Collapse
Affiliation(s)
- Shiru Yuan
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Guohuan Sun
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Yawen Zhang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Fang Dong
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China ,grid.506261.60000 0001 0706 7839Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, 300020 China ,grid.506261.60000 0001 0706 7839Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, 300020 China
| | - Hui Cheng
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China ,grid.506261.60000 0001 0706 7839Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, 300020 China ,grid.506261.60000 0001 0706 7839Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, 300020 China
| | - Tao Cheng
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China ,grid.506261.60000 0001 0706 7839Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, 300020 China ,grid.506261.60000 0001 0706 7839Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, 300020 China
| |
Collapse
|
166
|
Abstract
PURPOSE OF REVIEW The bone marrow is the main site for hematopoiesis. It contains a unique microenvironment that provides niches that support self-renewal and differentiation of hematopoietic stem cells (HSC), multipotent progenitors (MPP), and lineage committed progenitors to produce the large number of blood cells required to sustain life. The bone marrow is notoriously difficult to image; because of this the anatomy of blood cell production -- and how local signals spatially organize hematopoiesis -- are not well defined. Here we review our current understanding of the spatial organization of the mouse bone marrow with a special focus in recent advances that are transforming our understanding of this tissue. RECENT FINDINGS Imaging studies of HSC and their interaction with candidate niches have relied on ex-vivo imaging of fixed tissue. Two recent manuscripts demonstrating live imaging of subsets of HSC in unperturbed bone marrow have revealed unexpected HSC behavior and open the door to examine HSC regulation, in situ, over time. We also discuss recent findings showing that the bone marrow contains distinct microenvironments, spatially organized, that regulate unique aspects of hematopoiesis. SUMMARY Defining the spatial architecture of hematopoiesis in the bone marrow is indispensable to understand how this tissue ensures stepwise, balanced, differentiation to meet organism demand; for deciphering alterations to hematopoiesis during disease; and for designing organ systems for blood cell production ex vivo.
Collapse
Affiliation(s)
- Daniel Lucas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical center
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
167
|
Gao X, Zhang D, Xu C, Li H, Caron KM, Frenette PS. Nociceptive nerves regulate haematopoietic stem cell mobilization. Nature 2021; 589:591-596. [PMID: 33361809 PMCID: PMC7856173 DOI: 10.1038/s41586-020-03057-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/19/2020] [Indexed: 11/17/2022]
Abstract
Haematopoietic stem cells (HSCs) reside in specialized microenvironments in the bone marrow-often referred to as 'niches'-that represent complex regulatory milieux influenced by multiple cellular constituents, including nerves1,2. Although sympathetic nerves are known to regulate the HSC niche3-6, the contribution of nociceptive neurons in the bone marrow remains unclear. Here we show that nociceptive nerves are required for enforced HSC mobilization and that they collaborate with sympathetic nerves to maintain HSCs in the bone marrow. Nociceptor neurons drive granulocyte colony-stimulating factor (G-CSF)-induced HSC mobilization via the secretion of calcitonin gene-related peptide (CGRP). Unlike sympathetic nerves, which regulate HSCs indirectly via the niche3,4,6, CGRP acts directly on HSCs via receptor activity modifying protein 1 (RAMP1) and the calcitonin receptor-like receptor (CALCRL) to promote egress by activating the Gαs/adenylyl cyclase/cAMP pathway. The ingestion of food containing capsaicin-a natural component of chili peppers that can trigger the activation of nociceptive neurons-significantly enhanced HSC mobilization in mice. Targeting the nociceptive nervous system could therefore represent a strategy to improve the yield of HSCs for stem cell-based therapeutic agents.
Collapse
Affiliation(s)
- Xin Gao
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, USA.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Dachuan Zhang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, USA.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA.,These authors contributed equally
| | - Chunliang Xu
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, USA.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA.,These authors contributed equally
| | - Huihui Li
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, USA.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kathleen M. Caron
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Paul S. Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, USA.,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
168
|
Zorina T, Black L. Mesenchymal–Hematopoietic Stem Cell Axis: Applications for Induction of Hematopoietic Chimerism and Therapies for Malignancies. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
169
|
Chen K, Jiao Y, Liu L, Huang M, He C, He W, Hou J, Yang M, Luo X, Li C. Communications Between Bone Marrow Macrophages and Bone Cells in Bone Remodeling. Front Cell Dev Biol 2020; 8:598263. [PMID: 33415105 PMCID: PMC7783313 DOI: 10.3389/fcell.2020.598263] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/27/2020] [Indexed: 01/15/2023] Open
Abstract
The mammalian skeleton is a metabolically active organ that continuously undergoes bone remodeling, a process of tightly coupled bone resorption and formation throughout life. Recent studies have expanded our knowledge about the interactions between cells within bone marrow in bone remodeling. Macrophages resident in bone (BMMs) can regulate bone metabolism via secreting numbers of cytokines and exosomes. This review summarizes the current understanding of factors, exosomes, and hormones that involved in the communications between BMMs and other bone cells including mensenchymal stem cells, osteoblasts, osteocytes, and so on. We also discuss the role of BMMs and potential therapeutic approaches targeting BMMs in bone remodeling related diseases such as osteoporosis, osteoarthritis, rheumatoid arthritis, and osteosarcoma.
Collapse
Affiliation(s)
- Kaixuan Chen
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Yurui Jiao
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Ling Liu
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Mei Huang
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Chen He
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Wenzhen He
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Jing Hou
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
170
|
Janagama D, Hui SK. 3-D Cell Culture Systems in Bone Marrow Tissue and Organoid Engineering, and BM Phantoms as In Vitro Models of Hematological Cancer Therapeutics-A Review. MATERIALS 2020; 13:ma13245609. [PMID: 33316977 PMCID: PMC7763362 DOI: 10.3390/ma13245609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022]
Abstract
We review the state-of-the-art in bone and marrow tissue engineering (BMTE) and hematological cancer tissue engineering (HCTE) in light of the recent interest in bone marrow environment and pathophysiology of hematological cancers. This review focuses on engineered BM tissue and organoids as in vitro models of hematological cancer therapeutics, along with identification of BM components and their integration as synthetically engineered BM mimetic scaffolds. In addition, the review details interaction dynamics of various BM and hematologic cancer (HC) cell types in co-culture systems of engineered BM tissues/phantoms as well as their relation to drug resistance and cytotoxicity. Interaction between hematological cancer cells and their niche, and the difference with respect to the healthy niche microenvironment narrated. Future perspectives of BMTE for in vitro disease models, BM regeneration and large scale ex vivo expansion of hematopoietic and mesenchymal stem cells for transplantation and therapy are explained. We conclude by overviewing the clinical application of biomaterials in BM and HC pathophysiology and its challenges and opportunities.
Collapse
|
171
|
Alexander KA, Tseng HW, Salga M, Genêt F, Levesque JP. When the Nervous System Turns Skeletal Muscles into Bones: How to Solve the Conundrum of Neurogenic Heterotopic Ossification. Curr Osteoporos Rep 2020; 18:666-676. [PMID: 33085000 DOI: 10.1007/s11914-020-00636-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Neurogenic heterotopic ossification (NHO) is the abnormal formation of extra-skeletal bones in periarticular muscles after damage to the central nervous system (CNS) such as spinal cord injury (SCI), traumatic brain injury (TBI), stroke, or cerebral anoxia. The purpose of this review is to summarize recent developments in the understanding of NHO pathophysiology and pathogenesis. Recent animal models of NHO and recent findings investigating the communication between CNS injury, tissue inflammation, and upcoming NHO therapeutics are discussed. RECENT FINDINGS Animal models of NHO following TBI or SCI have shown that NHO requires the combined effects of a severe CNS injury and soft tissue damage, in particular muscular inflammation and the infiltration of macrophages into damaged muscles plays a key role. In the context of a CNS injury, the inflammatory response to soft tissue damage is exaggerated and persistent with excessive signaling via substance P-, oncostatin M-, and TGF-β1-mediated pathways. This review provides an overview of the known animal models and mechanisms of NHO and current therapeutic interventions for NHO patients. While some of the inflammatory mechanisms leading to NHO are common with other forms of traumatic and genetic heterotopic ossifications (HO), NHOs uniquely involve systemic changes in response to CNS injury. Future research into these CNS-mediated mechanisms is likely to reveal new targetable pathways to prevent NHO development in patients.
Collapse
Affiliation(s)
- Kylie A Alexander
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia
| | - Hsu-Wen Tseng
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia
| | - Marjorie Salga
- Department of Physical Medicine and Rehabilitation, CIC 1429, Raymond Poincaré Hospital, APHP, Garches, France
- END:ICAP U1179 INSERM, University of Versailles Saint Quentin en Yvelines, UFR Simone Veil-Santé, Montigny le Bretonneux, France
| | - François Genêt
- Department of Physical Medicine and Rehabilitation, CIC 1429, Raymond Poincaré Hospital, APHP, Garches, France
- END:ICAP U1179 INSERM, University of Versailles Saint Quentin en Yvelines, UFR Simone Veil-Santé, Montigny le Bretonneux, France
| | - Jean-Pierre Levesque
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia.
| |
Collapse
|
172
|
Gerashchenko BI, Nikolaev VG. Tackling the acute radiation syndrome: Hemoperfusion with activated carbon revisited. Med Hypotheses 2020; 146:110430. [PMID: 33279325 DOI: 10.1016/j.mehy.2020.110430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/07/2020] [Accepted: 11/23/2020] [Indexed: 11/27/2022]
Abstract
Almost three decades ago Dr. Nikolaev and co-authors reported a remarkable finding that a single-course low-volume hemoperfusion through uncoated spherical activated carbon led to a significant increase in survival of dogs acutely irradiated with X-rays of the dose of 5.25 Gy (Artif. Organs. 1993; 17: 362-8). In those studies, the adsorptive detoxification, which is characteristic for carbon adsorbents, was less likely to play a predominant role in radioprotection, thus prompting the authors to assume that some other, unknown, mechanisms were involved. This article is aimed to interpret the radioprotective effect of activated carbon, based on the mounting evidence that it is capable of reducing the oxidative stress and promoting the recovery in various tissues and organs (including hematopoietic) with an active involvement of relatively radioresistant tissue-resident macrophages.
Collapse
Affiliation(s)
- Bogdan I Gerashchenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Vasylkivska Str. 45, Kyiv 03022, Ukraine.
| | - Vladimir G Nikolaev
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Vasylkivska Str. 45, Kyiv 03022, Ukraine
| |
Collapse
|
173
|
Johnson CB, Zhang J, Lucas D. The Role of the Bone Marrow Microenvironment in the Response to Infection. Front Immunol 2020; 11:585402. [PMID: 33324404 PMCID: PMC7723962 DOI: 10.3389/fimmu.2020.585402] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/26/2020] [Indexed: 01/22/2023] Open
Abstract
Hematopoiesis in the bone marrow (BM) is the primary source of immune cells. Hematopoiesis is regulated by a diverse cellular microenvironment that supports stepwise differentiation of multipotent stem cells and progenitors into mature blood cells. Blood cell production is not static and the bone marrow has evolved to sense and respond to infection by rapidly generating immune cells that are quickly released into the circulation to replenish those that are consumed in the periphery. Unfortunately, infection also has deleterious effects injuring hematopoietic stem cells (HSC), inefficient hematopoiesis, and remodeling and destruction of the microenvironment. Despite its central role in immunity, the role of the microenvironment in the response to infection has not been systematically investigated. Here we summarize the key experimental evidence demonstrating a critical role of the bone marrow microenvironment in orchestrating the bone marrow response to infection and discuss areas of future research.
Collapse
Affiliation(s)
- Courtney B Johnson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, United States
| | - Jizhou Zhang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, United States
| | - Daniel Lucas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
174
|
Li ZZ, Wang H, Jia DL, Wang JH, Xu JM, Ma L, Guo JR. Exploration on the effect of predeposit autotransfusion on bone marrow hematopoiesis after femoral shaft fracture. Transfus Clin Biol 2020; 28:25-29. [PMID: 33227454 DOI: 10.1016/j.tracli.2020.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/27/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE By observing the changes in the number and activity of CD34+ cells in bone marrow after predeposit autotransfusion (PAT) to patients with femoral shaft fracture (FSF), to evaluate the effects of PAT on hematopoietic function and hematopoietic stem cells in bone marrow. METHODS Selected FSF patients were randomly divided into 2 groups: the control group (patients did not receive blood transfusion after surgery) and PAT group (patients received PAT after surgery). The content of RBC and Plt in blood samples were counted by blood routine. The cell cycle and proportion of CD34+ myelinated cells in blood samples was analyzed by flow cytometry. The telomere DNA length of hematopoietic stem cells (HSCs) in the control groups and PAT group at postoperation 24 was analyzed by southern blot. RESULTS The content of RBC and Plt in postoperation 6h and 24h in the control group was evidently higher compared to that in PAT group, while Hb content in control group was significantly lower compared to that in PAT group. The proportion of CD34+ myelinated cells in post-transfusion 6h and postoperation 24h in PAT group was evidently higher compared to that in the control group. In PAT group, S phase at postoperation 24h was significantly larger compared to that at post-transfusion 6h. The telomere DNA length of HSCs in PAT group was longer than that in the control group. CONCLUSION PAT can increase the number of HSC, while does not cause the abnormal aging of HSCs. PAT is suitable for postoperative blood transfusion of patients with FSF.
Collapse
Affiliation(s)
- Zhen-Zhou Li
- Ningxia Medical University, Gongli Hospital of Shanghai Pudong New Area Training Base, Shanghai 200135, PR China
| | - Huan Wang
- Ningxia Medical University, Gongli Hospital of Shanghai Pudong New Area Training Base, Shanghai 200135, PR China
| | - Dong-Lin Jia
- Department of Pain Medicine, Peking University Third Hospital, Beijing 100191, PR China
| | - Jin-Huo Wang
- Department of Anesthesiology, Shanghai Gongli Hospital, the Naval Military Medical University, Shanghai 200135, PR China
| | - Jia-Ming Xu
- Department of Anesthesiology, Shanghai Gongli Hospital, the Naval Military Medical University, Shanghai 200135, PR China
| | - Li Ma
- Department of Anesthesiology, Shanghai Gongli Hospital, the Naval Military Medical University, Shanghai 200135, PR China
| | - Jian-Rong Guo
- Ningxia Medical University, Gongli Hospital of Shanghai Pudong New Area Training Base, Shanghai 200135, PR China; Department of Anesthesiology, Shanghai Gongli Hospital, the Naval Military Medical University, Shanghai 200135, PR China.
| |
Collapse
|
175
|
Zhang L, Mack R, Breslin P, Zhang J. Molecular and cellular mechanisms of aging in hematopoietic stem cells and their niches. J Hematol Oncol 2020; 13:157. [PMID: 33228751 PMCID: PMC7686726 DOI: 10.1186/s13045-020-00994-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
Aging drives the genetic and epigenetic changes that result in a decline in hematopoietic stem cell (HSC) functioning. Such changes lead to aging-related hematopoietic/immune impairments and hematopoietic disorders. Understanding how such changes are initiated and how they progress will help in the development of medications that could improve the quality life for the elderly and to treat and possibly prevent aging-related hematopoietic diseases. Here, we review the most recent advances in research into HSC aging and discuss the role of HSC-intrinsic events, as well as those that relate to the aging bone marrow niche microenvironment in the overall processes of HSC aging. In addition, we discuss the potential mechanisms by which HSC aging is regulated.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Ryan Mack
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Peter Breslin
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Department of Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA. .,Department of Pathology, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
176
|
Chen YF, Goodheart C, Rua D. The Body's Cellular and Molecular Response to Protein-Coated Medical Device Implants: A Review Focused on Fibronectin and BMP Proteins. Int J Mol Sci 2020; 21:ijms21228853. [PMID: 33238458 PMCID: PMC7700595 DOI: 10.3390/ijms21228853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/24/2022] Open
Abstract
Recent years have seen a marked rise in implantation into the body of a great variety of devices: hip, knee, and shoulder replacements, pacemakers, meshes, glucose sensors, and many others. Cochlear and retinal implants are being developed to restore hearing and sight. After surgery to implant a device, adjacent cells interact with the implant and release molecular signals that result in attraction, infiltration of the tissue, and attachment to the implant of various cell types including monocytes, macrophages, and platelets. These cells release additional signaling molecules (chemokines and cytokines) that recruit tissue repair cells to the device site. Some implants fail and require additional revision surgery that is traumatic for the patient and expensive for the payer. This review examines the literature for evidence to support the possibility that fibronectins and BMPs could be coated on the implants as part of the manufacturing process so that the proteins could be released into the tissue surrounding the implant and improve the rate of successful implantation.
Collapse
Affiliation(s)
- Yi-Fan Chen
- Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, USA;
| | | | - Diego Rua
- Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, USA;
- Correspondence:
| |
Collapse
|
177
|
Involvement of GPx-3 in the Reciprocal Control of Redox Metabolism in the Leukemic Niche. Int J Mol Sci 2020; 21:ijms21228584. [PMID: 33202543 PMCID: PMC7696155 DOI: 10.3390/ijms21228584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022] Open
Abstract
The bone marrow (BM) microenvironment plays a crucial role in the development and progression of leukemia (AML). Intracellular reactive oxygen species (ROS) are involved in the regulation of the biology of leukemia-initiating cells, where the antioxidant enzyme GPx-3 could be involved as a determinant of cellular self-renewal. Little is known however about the role of the microenvironment in the control of the oxidative metabolism of AML cells. In the present study, a coculture model of BM mesenchymal stromal cells (MSCs) and AML cells (KG1a cell-line and primary BM blasts) was used to explore this metabolic pathway. MSC-contact, rather than culture with MSC-conditioned medium, decreases ROS levels and inhibits the Nrf-2 pathway through overexpression of GPx3 in AML cells. The decrease of ROS levels also inactivates p38MAPK and reduces the proliferation of AML cells. Conversely, contact with AML cells modifies MSCs in that they display an increased oxidative stress and Nrf-2 activation, together with a concomitant lowered expression of GPx-3. Altogether, these experiments suggest that a reciprocal control of oxidative metabolism is initiated by direct cell–cell contact between MSCs and AML cells. GPx-3 expression appears to play a crucial role in this cross-talk and could be involved in the regulation of leukemogenesis.
Collapse
|
178
|
Tseng HW, Kulina I, Salga M, Fleming W, Vaquette C, Genêt F, Levesque JP, Alexander KA. Neurogenic Heterotopic Ossifications Develop Independently of Granulocyte Colony-Stimulating Factor and Neutrophils. J Bone Miner Res 2020; 35:2242-2251. [PMID: 32568412 DOI: 10.1002/jbmr.4118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/05/2020] [Accepted: 06/17/2020] [Indexed: 12/25/2022]
Abstract
Neurogenic heterotopic ossifications (NHOs) are incapacitating heterotopic bones in periarticular muscles that frequently develop following traumatic brain or spinal cord injuries (SCI). Using our unique model of SCI-induced NHO, we have previously established that mononucleated phagocytes infiltrating injured muscles are required to trigger NHO via the persistent release of the pro-inflammatory cytokine oncostatin M (OSM). Because neutrophils are also a major source of OSM, we investigated whether neutrophils also play a role in NHO development after SCI. We now show that surgery transiently increased granulocyte colony-stimulating factor (G-CSF) levels in blood of operated mice, and that G-CSF receptor mRNA is expressed in the hamstrings of mice developing NHO. However, mice defective for the G-CSF receptor gene Csf3r, which are neutropenic, have unaltered NHO development after SCI compared to C57BL/6 control mice. Because the administration of recombinant human G-CSF (rhG-CSF) has been trialed after SCI to increase neuroprotection and neuronal regeneration and has been shown to suppress osteoblast function at the endosteum of skeletal bones in human and mice, we investigated the impact of a 7-day rhG-CSF treatment on NHO development. rhG-CSF treatment significantly increased neutrophils in the blood, bone marrow, and injured muscles. However, there was no change in NHO development compared to saline-treated controls. Overall, our results establish that unlike monocytes/macrophages, neutrophils are dispensable for NHO development following SCI, and rhG-CSF treatment post-SCI does not impact NHO development. Therefore, G-CSF treatment to promote neuroregeneration is unlikely to adversely promote or affect NHO development in SCI patients. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Hsu-Wen Tseng
- Mater Research Institute, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Irina Kulina
- Mater Research Institute, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Marjorie Salga
- Mater Research Institute, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, Australia.,Department of Physical Medicine and Rehabilitation, Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Garches, France
| | - Whitney Fleming
- Mater Research Institute, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Cedryck Vaquette
- School of Dentistry, The University of Queensland, Herston, QLD, Australia.,Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - François Genêt
- Department of Physical Medicine and Rehabilitation, Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Garches, France.,Evolution of Neuromuscular Diseases: Innovative Concepts and Practice (END:ICAP) U1179 Institut Natational de la Santé et de la Recherche Médicale, Unité de Formation et de Recherche Simone Veil-Santé, University of Versailles Saint Quentin en Yvelines, Montigny-le-Bretonneux, France
| | - Jean-Pierre Levesque
- Mater Research Institute, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Kylie A Alexander
- Mater Research Institute, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, Australia
| |
Collapse
|
179
|
Hematopoietic stem and progenitor cell signaling in the niche. Leukemia 2020; 34:3136-3148. [PMID: 33077865 DOI: 10.1038/s41375-020-01062-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/09/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are responsible for lifelong maintenance of hematopoiesis through self-renewal and differentiation into mature blood cell lineages. Traditional models hold that HSPCs guard homeostatic function and adapt to regenerative demand by integrating cell-autonomous, intrinsic programs with extrinsic cues from the niche. Despite the biologic significance, little is known about the active roles HSPCs partake in reciprocally shaping the function of their microenvironment. Here, we review evidence of signals emerging from HSPCs through secreted autocrine or paracrine factors, including extracellular vesicles, and via direct contact within the niche. We also discuss the functional impact of direct cellular interactions between hematopoietic elements on niche occupancy in the context of leukemic infiltration. The aggregate data support a model whereby HSPCs are active participants in the dynamic adaptation of the stem cell niche unit during development and homeostasis, and under inflammatory stress, malignancy, or transplantation.
Collapse
|
180
|
Consiglio CR, Gollnick SO. Androgen Receptor Signaling Positively Regulates Monocytic Development. Front Immunol 2020; 11:519383. [PMID: 33193298 PMCID: PMC7604537 DOI: 10.3389/fimmu.2020.519383] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 09/28/2020] [Indexed: 11/13/2022] Open
Abstract
Myeloid cells are critical cells involved in the orchestration of innate and adaptive immune responses. Most myeloid cells derive from the adult bone marrow in a process called myelopoiesis, a tightly controlled process that ensures constant production of myeloid cells. Sex differences in myeloid cell development have been observed; males exhibit greater monocytic differentiation in the bone marrow, and men have increased blood monocyte numbers when compared to women. Here we use a genetic mouse model of myeloid androgen receptor (AR) knockout (MARKO) and pharmacological inhibition of AR to investigate the role of androgen signaling in monocytic differentiation. We observe that although myeloid AR signaling does not influence total bone marrow cell numbers, it does affect the composition of the bone marrow myeloid population in both homeostatic and emergency settings. Genetic deletion of AR in myeloid cells led to reduced monocytic development in vivo. Similarly, pharmacologic inhibition of AR signaling in vitro reduced monocytic development. However, alteration in monocytic differentiation in the absence of AR signaling did not lead to reduced numbers of circulating myeloid cells, although MARKO male mice display reduced ratio of classical to non-classical monocytes in the blood, implying that blood monocyte subsets are skewed upon myeloid AR deletion. Our results suggest that the sex differences observed in monocytic differentiation are partly attributed to the positive role of the androgen-AR axis in regulating monocytic development directly at the myeloid cell level. Furthermore, we have identified a novel role for AR in regulating blood mature monocyte subset turnover. Investigating how androgen signaling affects monocytic development and monocyte subset heterogeneity will advance our understanding of sex differences in monocytic function at homeostasis and disease and can ultimately impact future therapeutic design targeting monocytes in the clinic.
Collapse
Affiliation(s)
- Camila Rosat Consiglio
- Roswell Park Comprehensive Cancer Center, Department of Immunology, Buffalo, NY, United States
| | - Sandra O Gollnick
- Roswell Park Comprehensive Cancer Center, Department of Immunology, Buffalo, NY, United States.,Roswell Park Comprehensive Cancer Center, Department of Cell Stress, Buffalo, NY, United States
| |
Collapse
|
181
|
Bisht K, Tay J, Wellburn RN, McGirr C, Fleming W, Nowlan B, Barbier V, Winkler IG, Levesque JP. Bacterial Lipopolysaccharides Suppress Erythroblastic Islands and Erythropoiesis in the Bone Marrow in an Extrinsic and G- CSF-, IL-1-, and TNF-Independent Manner. Front Immunol 2020; 11:583550. [PMID: 33123170 PMCID: PMC7573160 DOI: 10.3389/fimmu.2020.583550] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022] Open
Abstract
Anemia of inflammation (AI) is the second most prevalent anemia after iron deficiency anemia and results in persistent low blood erythrocytes and hemoglobin, fatigue, weakness, and early death. Anemia of inflammation is common in people with chronic inflammation, chronic infections, or sepsis. Although several studies have reported the effect of inflammation on stress erythropoiesis and iron homeostasis, the mechanisms by which inflammation suppresses erythropoiesis in the bone marrow (BM), where differentiation and maturation of erythroid cells from hematopoietic stem cells (HSCs) occurs, have not been extensively studied. Here we show that in a mouse model of acute sepsis, bacterial lipopolysaccharides (LPS) suppress medullary erythroblastic islands (EBIs) and erythropoiesis in a TLR-4- and MyD88-dependent manner with concomitant mobilization of HSCs. LPS suppressive effect on erythropoiesis is indirect as erythroid progenitors and erythroblasts do not express TLR-4 whereas EBI macrophages do. Using cytokine receptor gene knock-out mice LPS-induced mobilization of HSCs is G-CSF-dependent whereas LPS-induced suppression of medullary erythropoiesis does not require G- CSF-, IL- 1-, or TNF-mediated signaling. Therefore suppression of medullary erythropoiesis and mobilization of HSCs in response to LPS are mechanistically distinct. Our findings also suggest that EBI macrophages in the BM may sense innate immune stimuli in response to acute inflammation or infections to rapidly convert to a pro-inflammatory function at the expense of their erythropoietic function.
Collapse
Affiliation(s)
- Kavita Bisht
- Mater Research Institute - The University of Queensland, Woolloongabba, QLD, Australia
| | - Joshua Tay
- Mater Research Institute - The University of Queensland, Woolloongabba, QLD, Australia
| | - Rebecca N Wellburn
- Mater Research Institute - The University of Queensland, Woolloongabba, QLD, Australia
| | - Crystal McGirr
- Mater Research Institute - The University of Queensland, Woolloongabba, QLD, Australia
| | - Whitney Fleming
- Mater Research Institute - The University of Queensland, Woolloongabba, QLD, Australia
| | - Bianca Nowlan
- Mater Research Institute - The University of Queensland, Woolloongabba, QLD, Australia
| | - Valerie Barbier
- Mater Research Institute - The University of Queensland, Woolloongabba, QLD, Australia
| | - Ingrid G Winkler
- Mater Research Institute - The University of Queensland, Woolloongabba, QLD, Australia
| | - Jean-Pierre Levesque
- Mater Research Institute - The University of Queensland, Woolloongabba, QLD, Australia
| |
Collapse
|
182
|
Ayturk UM, Scollan JP, Goz Ayturk D, Suh ES, Vesprey A, Jacobsen CM, Divieti Pajevic P, Warman ML. Single-Cell RNA Sequencing of Calvarial and Long-Bone Endocortical Cells. J Bone Miner Res 2020; 35:1981-1991. [PMID: 32427356 PMCID: PMC8265023 DOI: 10.1002/jbmr.4052] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 12/25/2022]
Abstract
Single-cell RNA sequencing (scRNA-Seq) is emerging as a powerful technology to examine transcriptomes of individual cells. We determined whether scRNA-Seq could be used to detect the effect of environmental and pharmacologic perturbations on osteoblasts. We began with a commonly used in vitro system in which freshly isolated neonatal mouse calvarial cells are expanded and induced to produce a mineralized matrix. We used scRNA-Seq to compare the relative cell type abundances and the transcriptomes of freshly isolated cells to those that had been cultured for 12 days in vitro. We observed that the percentage of macrophage-like cells increased from 6% in freshly isolated calvarial cells to 34% in cultured cells. We also found that Bglap transcripts were abundant in freshly isolated osteoblasts but nearly undetectable in the cultured calvarial cells. Thus, scRNA-Seq revealed significant differences between heterogeneity of cells in vivo and in vitro. We next performed scRNA-Seq on freshly recovered long bone endocortical cells from mice that received either vehicle or sclerostin-neutralizing antibody for 1 week. We were unable to detect significant changes in bone anabolism-associated transcripts in immature and mature osteoblasts recovered from mice treated with sclerostin-neutralizing antibody; this might be a consequence of being underpowered to detect modest changes in gene expression, because only 7% of the sequenced endocortical cells were osteoblasts and a limited portion of their transcriptomes were sampled. We conclude that scRNA-Seq can detect changes in cell abundance, identity, and gene expression in skeletally derived cells. In order to detect modest changes in osteoblast gene expression at the single-cell level in the appendicular skeleton, larger numbers of osteoblasts from endocortical bone are required. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ugur M Ayturk
- Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY, USA.,Department of Orthopaedic Surgery, Weill Cornell Medical College, New York, NY, USA.,Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Joseph P Scollan
- Department of Orthopaedic Surgery, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Didem Goz Ayturk
- Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY, USA
| | - Eun Sung Suh
- Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY, USA
| | - Alexander Vesprey
- Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY, USA
| | - Christina M Jacobsen
- Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, MA, USA.,Divisions of Endocrinology and Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Paola Divieti Pajevic
- Department of Translational Dental Medicine, Boston University Goldman School of Dental Medicine, Boston, MA, USA
| | - Matthew L Warman
- Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
183
|
Muñoz J, Akhavan NS, Mullins AP, Arjmandi BH. Macrophage Polarization and Osteoporosis: A Review. Nutrients 2020; 12:nu12102999. [PMID: 33007863 PMCID: PMC7601854 DOI: 10.3390/nu12102999] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
Over 200 million people suffer from osteoporosis worldwide. Individuals with osteoporosis have increased rates of bone resorption while simultaneously having impaired osteogenesis. Most current treatments for osteoporosis focus on anti-resorptive methods to prevent further bone loss. However, it is important to identify safe and cost-efficient treatments that not only inhibit bone resorption, but also stimulate anabolic mechanisms to upregulate osteogenesis. Recent data suggest that macrophage polarization may contribute to osteoblast differentiation and increased osteogenesis as well as bone mineralization. Macrophages exist in two major polarization states, classically activated macrophages (M1) and alternatively activated macrophage (M2) macrophages. The polarization state of macrophages is dependent on molecules in the microenvironment including several cytokines and chemokines. Mechanistically, M2 macrophages secrete osteogenic factors that stimulate the differentiation and activation of pre-osteoblastic cells, such as mesenchymal stem cells (MSC’s), and subsequently increase bone mineralization. In this review, we cover the mechanisms by which M2 macrophages contribute to osteogenesis and postulate the hypothesis that regulating macrophage polarization states may be a potential treatment for the treatment of osteoporosis.
Collapse
|
184
|
A Review of the Action of Magnesium on Several Processes Involved in the Modulation of Hematopoiesis. Int J Mol Sci 2020; 21:ijms21197084. [PMID: 32992944 PMCID: PMC7582682 DOI: 10.3390/ijms21197084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022] Open
Abstract
Magnesium (Mg2+) is an essential mineral for the functioning and maintenance of the body. Disturbances in Mg2+ intracellular homeostasis result in cell-membrane modification, an increase in oxidative stress, alteration in the proliferation mechanism, differentiation, and apoptosis. Mg2+ deficiency often results in inflammation, with activation of inflammatory pathways and increased production of proinflammatory cytokines by immune cells. Immune cells and others that make up the blood system are from hematopoietic tissue in the bone marrow. The hematopoietic tissue is a tissue with high indices of renovation, and Mg2+ has a pivotal role in the cell replication process, as well as DNA and RNA synthesis. However, the impact of the intra- and extracellular disturbance of Mg2+ homeostasis on the hematopoietic tissue is little explored. This review deals specifically with the physiological requirements of Mg2+ on hematopoiesis, showing various studies related to the physiological requirements and the effects of deficiency or excess of this mineral on the hematopoiesis regulation, as well as on the specific process of erythropoiesis, granulopoiesis, lymphopoiesis, and thrombopoiesis. The literature selected includes studies in vitro, in animal models, and in humans, giving details about the impact that alterations of Mg2+ homeostasis can have on hematopoietic cells and hematopoietic tissue.
Collapse
|
185
|
Sims NA. The JAK1/STAT3/SOCS3 axis in bone development, physiology, and pathology. Exp Mol Med 2020; 52:1185-1197. [PMID: 32788655 PMCID: PMC8080635 DOI: 10.1038/s12276-020-0445-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/03/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022] Open
Abstract
Bone growth and the maintenance of bone structure are controlled by multiple endocrine and paracrine factors, including cytokines expressed locally within the bone microenvironment and those that are elevated, both locally and systemically, under inflammatory conditions. This review focuses on those bone-active cytokines that initiate JAK–STAT signaling, and outlines the discoveries made from studying skeletal defects caused by induced or spontaneous modifications in this pathway. Specifically, this review describes defects in JAK1, STAT3, and SOCS3 signaling in mouse models and in humans, including mutations designed to modify these pathways downstream of the gp130 coreceptor. It is shown that osteoclast formation is generally stimulated indirectly by these pathways through JAK1 and STAT3 actions in inflammatory and other accessory cells, including osteoblasts. In addition, in bone remodeling, osteoblast differentiation is increased secondary to stimulated osteoclast formation through an IL-6-dependent pathway. In growth plate chondrocytes, STAT3 signaling promotes the normal differentiation process that leads to bone lengthening. Within the osteoblast lineage, STAT3 signaling promotes bone formation in normal physiology and in response to mechanical loading through direct signaling in osteocytes. This activity, particularly that of the IL-6/gp130 family of cytokines, must be suppressed by SOCS3 for the normal formation of cortical bone. Maintaining normal bone structure and strength depends on a group of signaling proteins called cytokines that bind to receptor molecules on cell surfaces. Natalie Sims at St. Vincent’s Institute of Medical Research and The University of Melbourne in Australia reviews the role of cytokines in a specific signaling pathway in bone development and disease. Two of the proteins in this pathway respond to cytokine activity, whereas the third inhibits the cytokines’ effects. Studies in mice and humans have identified links between specific bone defects and spontaneous or experimentally induced mutations in the genes that code for the three proteins. The review covers the significance of recent findings to several types of cells that form new bone, degrade bone as part of normal bone turnover, and sustain the structure of bone and cartilage.
Collapse
Affiliation(s)
- Natalie A Sims
- St. Vincent's Institute of Medical Research, and Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
186
|
Migliorini F, Maffulli N, Trivellas A, Eschweiler J, Tingart M, Driessen A. Bone metastases: a comprehensive review of the literature. Mol Biol Rep 2020; 47:6337-6345. [PMID: 32749632 DOI: 10.1007/s11033-020-05684-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/26/2020] [Indexed: 12/17/2022]
Abstract
The last report of the World Health Organization (WHO) stated that approximately four million people experience bone pain due to malignant diseases. Among them, metastatic bone pain is one of the most important sources of complaint. The estimated median survival in the presence of bone metastases ranks from 10 to 12 weeks. Bone represents a potential target of distant metastases for the majority of malignant tumours. However, the exact incidence of bone metastases is unknown. Bone metastases have an important socio-economic impact, and due to the enhancement of the overall survivorship, their incidence is increasing. Malignant neoplasms such as lung, thyroid, renal cancer, multiple myeloma, and melanoma often metastasize to the bone. Bone metastases commonly localize to the spinal column, pelvis, shoulder, and distal femur. The proper treatment for painful skeletal metastases is still unknown. Hence, the purpose of this review of the literature was to update current evidence concerning the aetiogenesis, biological behaviour, and treatment algorithms for painful skeletal metastases.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Orthopaedics, University Clinic Aachen, RWTH Aachen University Clinic, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081, Baronissi, Salerno, Italy.,Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, Queen Mary University of London, 275 Bancroft Road, London, E1 4DG, England.,School of Pharmacy and Bioengineering, Keele University Faculty of Medicine, Thornburrow Drive, Stoke on Trent, England
| | - Andromahi Trivellas
- Department of Orthopaedics, David Geffen School of Medicine At UCLA, Suite 755, Los Angeles, CA, 90095, USA
| | - Jörg Eschweiler
- Department of Orthopaedics, University Clinic Aachen, RWTH Aachen University Clinic, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Markus Tingart
- Department of Orthopaedics, University Clinic Aachen, RWTH Aachen University Clinic, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Arne Driessen
- Department of Orthopaedics, University Clinic Aachen, RWTH Aachen University Clinic, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|
187
|
Seif F, Sharifi L, Khoshmirsafa M, Mojibi Y, Mohsenzadegan M. A Review of Preclinical Experiments Toward Targeting M2 Macrophages in Prostate Cancer. Curr Drug Targets 2020; 20:789-798. [PMID: 30674255 DOI: 10.2174/1389450120666190123141553] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/18/2019] [Accepted: 01/20/2019] [Indexed: 12/20/2022]
Abstract
Prostate cancer is malignant cancer leading to high mortality in the male population. The existence of suppressive cells referred to as tumor-associated macrophages (TAM) is a major obstacle in prostate cancer immunotherapy. TAMs contribute to the immunosuppressive microenvironment that promotes tumor growth and metastasis. In fact, they are main regulators of the complicated interactions between tumor and surrounding microenvironment. M2 macrophages, as a type of TAMs, are involved in the growth and progression of prostate cancer. Recently, they have gained remarkable importance as therapeutic candidates for solid tumors. In this review, we will discuss the roles of M2 macrophages and worth of their potential targeting in prostate cancer treatment. In the following, we will introduce important factors resulting in M2 macrophage promotion and also experimental therapeutic agents that may cause the inhibition of prostate cancer tumor growth.
Collapse
Affiliation(s)
- Farhad Seif
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Laleh Sharifi
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Khoshmirsafa
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Yasaman Mojibi
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Monireh Mohsenzadegan
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
188
|
An Overview of Different Strategies to Recreate the Physiological Environment in Experimental Erythropoiesis. Int J Mol Sci 2020; 21:ijms21155263. [PMID: 32722249 PMCID: PMC7432157 DOI: 10.3390/ijms21155263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
Human erythropoiesis is a complex process leading to the production of mature, enucleated erythrocytes (RBCs). It occurs mainly at bone marrow (BM), where hematopoietic stem cells (HSCs) are engaged in the early erythroid differentiation to commit into erythroid progenitor cells (burst-forming unit erythroid (BFU-E) and colony-forming unit erythroid (CFU-E)). Then, during the terminal differentiation, several erythropoietin-induced signaling pathways trigger the differentiation of CFU-E on successive stages from pro-erythroblast to reticulocytes. The latter are released into the circulation, finalizing their maturation into functional RBCs. This process is finely regulated by the physiological environment including the erythroblast-macrophage interaction in the erythroblastic island (EBI). Several human diseases have been associated with ineffective erythropoiesis, either by a defective or an excessive production of RBCs, as well as an increase or a hemoglobinization defect. Fully understanding the production of mature red blood cells is crucial for the comprehension of erythroid pathologies as well as to the field of transfusion. Many experimental approaches have been carried out to achieve a complete differentiation in vitro to produce functional biconcave mature RBCs. However, the various protocols usually fail to achieve enough quantities of completely mature RBCs. In this review, we focus on the evolution of erythropoiesis studies over the years, taking special interest in efforts that were made to include the microenvironment and erythroblastic islands paradigm. These more physiological approaches will contribute to a deeper comprehension of erythropoiesis, improve the treatment of dyserythropoietic disorders, and break through the barriers in massive RBCs production for transfusion.
Collapse
|
189
|
Seyfried AN, Maloney JM, MacNamara KC. Macrophages Orchestrate Hematopoietic Programs and Regulate HSC Function During Inflammatory Stress. Front Immunol 2020; 11:1499. [PMID: 32849512 PMCID: PMC7396643 DOI: 10.3389/fimmu.2020.01499] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
The bone marrow contains distinct cell types that work in coordination to generate blood and immune cells, and it is the primary residence of hematopoietic stem cells (HSCs) and more committed multipotent progenitors (MPPs). Even at homeostasis the bone marrow is a dynamic environment where billions of cells are generated daily to replenish short-lived immune cells and produce the blood factors and cells essential for hemostasis and oxygenation. In response to injury or infection, the marrow rapidly adapts to produce specific cell types that are in high demand revealing key insight to the inflammatory nature of "demand-adapted" hematopoiesis. Here we focus on the role that resident and monocyte-derived macrophages play in driving these hematopoietic programs and how macrophages impact HSCs and downstream MPPs. Macrophages are exquisite sensors of inflammation and possess the capacity to adapt to the environment, both promoting and restraining inflammation. Thus, macrophages hold great potential for manipulating hematopoietic output and as potential therapeutic targets in a variety of disease states where macrophage dysfunction contributes to or is necessary for disease. We highlight essential features of bone marrow macrophages and discuss open questions regarding macrophage function, their role in orchestrating demand-adapted hematopoiesis, and mechanisms whereby they regulate HSC function.
Collapse
Affiliation(s)
- Allison N Seyfried
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Jackson M Maloney
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Katherine C MacNamara
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| |
Collapse
|
190
|
Cersosimo F, Lonardi S, Bernardini G, Telfer B, Mandelli GE, Santucci A, Vermi W, Giurisato E. Tumor-Associated Macrophages in Osteosarcoma: From Mechanisms to Therapy. Int J Mol Sci 2020; 21:E5207. [PMID: 32717819 PMCID: PMC7432207 DOI: 10.3390/ijms21155207] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
Osteosarcomas (OSs) are bone tumors most commonly found in pediatric and adolescent patients characterized by high risk of metastatic progression and recurrence after therapy. Effective therapeutic management of this disease still remains elusive as evidenced by poor patient survival rates. To achieve a more effective therapeutic management regimen, and hence patient survival, there is a need to identify more focused targeted therapies for OSs treatment in the clinical setting. The role of the OS tumor stroma microenvironment plays a significant part in the development and dissemination of this disease. Important components, and hence potential targets for treatment, are the tumor-infiltrating macrophages that are known to orchestrate many aspects of OS stromal signaling and disease progression. In particular, increased infiltration of M2-like tumor-associated macrophages (TAMs) has been associated with OS metastasis and poor patient prognosis despite currently used aggressive therapies regimens. This review aims to provide a summary update of current macrophage-centered knowledge and to discuss the possible roles that macrophages play in the process of OS metastasis development focusing on the potential influence of stromal cross-talk signaling between TAMs, cancer-stem cells and additional OSs tumoral microenvironment factors.
Collapse
Affiliation(s)
- Francesca Cersosimo
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (F.C.); (G.B.); (A.S.)
| | - Silvia Lonardi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.L.); (G.E.M.); (W.V.)
| | - Giulia Bernardini
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (F.C.); (G.B.); (A.S.)
| | - Brian Telfer
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK;
| | - Giulio Eugenio Mandelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.L.); (G.E.M.); (W.V.)
| | - Annalisa Santucci
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (F.C.); (G.B.); (A.S.)
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.L.); (G.E.M.); (W.V.)
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emanuele Giurisato
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (F.C.); (G.B.); (A.S.)
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
191
|
Mitroulis I, Kalafati L, Bornhäuser M, Hajishengallis G, Chavakis T. Regulation of the Bone Marrow Niche by Inflammation. Front Immunol 2020; 11:1540. [PMID: 32849521 PMCID: PMC7396603 DOI: 10.3389/fimmu.2020.01540] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Hematopoietic stem cells (HSC) reside in the bone marrow (BM) within a specialized micro-environment, the HSC niche, which comprises several cellular constituents. These include cells of mesenchymal origin, endothelial cells and HSC progeny, such as megakaryocytes and macrophages. The BM niche and its cell populations ensure the functional preservation of HSCs. During infection or systemic inflammation, HSCs adapt to and respond directly to inflammatory stimuli, such as pathogen-derived signals and elicited cytokines, in a process termed emergency myelopoiesis, which includes HSC activation, expansion, and enhanced myeloid differentiation. The cell populations of the niche participate in the regulation of emergency myelopoiesis, in part through secretion of paracrine factors in response to pro-inflammatory stimuli, thereby indirectly affecting HSC function. Here, we review the crosstalk between HSCs and cell populations in the BM niche, specifically focusing on the adaptation of the HSC niche to inflammation and how this inflammatory adaptation may, in turn, regulate emergency myelopoiesis.
Collapse
Affiliation(s)
- Ioannis Mitroulis
- First Department of Internal Medicine, Department of Haematology and Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lydia Kalafati
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Martin Bornhäuser
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine I, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - George Hajishengallis
- Laboratory of Innate Immunity and Inflammation, Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| |
Collapse
|
192
|
Kulkarni R, Kale V. Physiological Cues Involved in the Regulation of Adhesion Mechanisms in Hematopoietic Stem Cell Fate Decision. Front Cell Dev Biol 2020; 8:611. [PMID: 32754597 PMCID: PMC7366553 DOI: 10.3389/fcell.2020.00611] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022] Open
Abstract
Hematopoietic stem cells (HSC) could have several fates in the body; viz. self-renewal, differentiation, migration, quiescence, and apoptosis. These fate decisions play a crucial role in maintaining homeostasis and critically depend on the interaction of the HSCs with their micro-environmental constituents. However, the physiological cues promoting these interactions in vivo have not been identified to a great extent. Intense research using various in vitro and in vivo models is going on in various laboratories to understand the mechanisms involved in these interactions, as understanding of these mechanistic would greatly help in improving clinical transplantations. However, though these elegant studies have identified the molecular interactions involved in the process, harnessing these interactions to the recipients' benefit would ultimately depend on manipulation of environmental cues initiating them in vivo: hence, these need to be identified at the earliest. HSCs reside in the bone marrow, which is a very complex tissue comprising of various types of stromal cells along with their secreted cytokines, extra-cellular matrix (ECM) molecules and extra-cellular vesicles (EVs). These components control the HSC fate decision through direct cell-cell interactions - mediated via various types of adhesion molecules -, cell-ECM interactions - mediated mostly via integrins -, or through soluble mediators like cytokines and EVs. This could be a very dynamic process involving multiple transient interactions acting concurrently or sequentially, and the adhesion molecules involved in various fate determining situations could be different. If the switch mechanisms governing these dynamic states in vivo are identified, they could be harnessed for the development of novel therapeutics. Here, in addition to reviewing the adhesion molecules involved in the regulation of HSCs, we also touch upon recent advances in our understanding of the physiological cues known to initiate specific adhesive interactions of HSCs with the marrow stromal cells or ECM molecules and EVs secreted by them.
Collapse
Affiliation(s)
- Rohan Kulkarni
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell Research, Symbiosis International University, Pune, India
| |
Collapse
|
193
|
Kazianka L, Staber PB. The Bone's Role in Myeloid Neoplasia. Int J Mol Sci 2020; 21:E4712. [PMID: 32630305 PMCID: PMC7369750 DOI: 10.3390/ijms21134712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/16/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
The interaction of hematopoietic stem and progenitor cells with their direct neighboring cells in the bone marrow (the so called hematopoietic niche) evolves as a key principle for understanding physiological and malignant hematopoiesis. Significant progress in this matter has recently been achieved making use of emerging high-throughput techniques that allow characterization of the bone marrow microenvironment at single cell resolution. This review aims to discuss these single cell findings in the light of other conventional niche studies that together define the current notion of the niche's implication in i) normal hematopoiesis, ii) myeloid neoplasms and iii) disease-driving pathways that can be exploited to establish novel therapeutic strategies in the future.
Collapse
Affiliation(s)
| | - Philipp B Staber
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria;
| |
Collapse
|
194
|
Yang X, Chen D, Long H, Zhu B. The mechanisms of pathological extramedullary hematopoiesis in diseases. Cell Mol Life Sci 2020; 77:2723-2738. [PMID: 31974657 PMCID: PMC11104806 DOI: 10.1007/s00018-020-03450-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/24/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023]
Abstract
Extramedullary hematopoiesis (EMH) is the expansion and differentiation of hematopoietic stem and progenitor cells outside of the bone marrow. In postnatal life, as a compensatory mechanism for ineffective hematopoiesis of the bone marrow, pathological EMH is triggered by hematopoietic disorders, insufficient hematopoietic compensation, and other pathological stress conditions, such as infection, advanced tumors, anemia, and metabolic stress. Pathological EMH has been reported in many organs, and the sites of pathological EMH may be related to reactivation of the embryonic hematopoietic structure in these organs. As a double-edged sword (blood and immune cell supplementation as well as clinical complications), pathological EMH has been widely studied in recent years. In particular, pathological EMH induced by late-stage tumors contributes to tumor immunosuppression. Thus, a deeper understanding of the mechanism of pathological EMH may be conducive to the development of therapies against the pathological processes that induce EMH. This article reviews the recent progress of research on the cellular and molecular mechanisms of pathological EMH in specific diseases.
Collapse
Affiliation(s)
- Xinxin Yang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Degao Chen
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Haixia Long
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
- Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
195
|
Abstract
The success of targeted therapies and immunotherapies has created optimism that cancers may be curable. However, not all patients respond, drug resistance is common and many patients relapse owing to dormant cancer cells. These rare and elusive cells can disseminate early and hide in specialized niches in distant organs before being reactivated to cause disease relapse after successful treatment of the primary tumour. Despite their importance, we are yet to leverage knowledge generated from experimental models and translate the potential of targeting dormant cancer cells to prevent disease relapse in the clinic. This is due, at least in part, to the lack of adherence to consensus definitions by researchers, limited models that faithfully recapitulate this stage of metastatic spread and an absence of interdisciplinary approaches. However, the application of new high-resolution, single-cell technologies is starting to revolutionize the field and transcend classical reductionist models of studying individual cell types or genes in isolation to provide a global view of the complex underlying cellular ecosystem and transcriptional landscape that controls dormancy. In this Perspective, we synthesize some of these recent advances to describe the hallmarks of cancer cell dormancy and how the dormant cancer cell life cycle offers opportunities to target not only the cancer but also its environment to achieve a durable cure for seemingly incurable cancers.
Collapse
Affiliation(s)
- Tri Giang Phan
- Immunology, Garvan Institute of Medical Research, Sydney, NSW, Australia.
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia.
| | - Peter I Croucher
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia.
- Bone Biology, Garvan Institute of Medical Research, Sydney, NSW, Australia.
| |
Collapse
|
196
|
Søe K, Delaisse JM, Borggaard XG. Osteoclast formation at the bone marrow/bone surface interface: Importance of structural elements, matrix, and intercellular communication. Semin Cell Dev Biol 2020; 112:8-15. [PMID: 32563679 DOI: 10.1016/j.semcdb.2020.05.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/28/2022]
Abstract
Osteoclasts, the multinucleated cells responsible for bone resorption, have an enormous destructive power which demands to be kept under tight control. Accordingly, the identification of molecular signals directing osteoclastogenesis and switching on their resorptive activity have received much attention. Mandatory factors were identified, but a very essential aspect of the control mechanism of osteoclastic resorption, i.e. its spatial control, remains poorly understood. Under physiological conditions, multinucleated osteoclasts are only detected on the bone surface, while their mono-nucleated precursors are only in the bone marrow. How are pre-osteoclasts targeted to the bone surface? How is their progressive differentiation coordinated with their approach to the bone surface sites to be resorbed, which is where they finally fuse? Here we review the information on the bone marrow distribution of differentiating pre-osteoclasts relative to the position of the mandatory factors for their differentiation as well as relative to physical entities that may affect their access to the remodelling sites. This info allows recognizing an "osteoclastogenesis route" through the bone marrow and leading to the coincident fusion/resorption site - but also points to what still remains to be clarified regarding this route and regarding the restriction of fusion at the resorption site. Finally, we discuss the mechanism responsible for the start of resorption and its spatial extension. This review underscores that fully understanding the control of bone resorption requires to consider it in both space and time - which demands taking into account the context of bone tissue.
Collapse
Affiliation(s)
- Kent Søe
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, 5000 Odense C, Denmark; Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark; Department of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark.
| | - Jean-Marie Delaisse
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, 5000 Odense C, Denmark; Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark; Department of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark.
| | - Xenia Goldberg Borggaard
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, 5000 Odense C, Denmark; Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark; Department of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark.
| |
Collapse
|
197
|
Gomes AC, Saraiva M, Gomes MS. The bone marrow hematopoietic niche and its adaptation to infection. Semin Cell Dev Biol 2020; 112:37-48. [PMID: 32553581 DOI: 10.1016/j.semcdb.2020.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
Abstract
Hematopoiesis is responsible for the formation of all blood cells from hematopoietic stem cells (HSC) in the bone marrow (BM). It is a highly regulated process, in order to adapt its cellular output to changing body requirements. Specific microenvironmental conditions within the BM must exist in order to maintain HSC pluripotency and self-renewal, as well as to ensure appropriate differentiation of progenitor cells towards each hematopoietic lineage. Those conditions were coined "the hematopoietic niche" and their identity in terms of cell types, location and soluble molecular components has been the subject of intense research in the last decades. Infections are one of the environmental challenges to which hematopoiesis must respond, to feed the immune system with functional cell components and compensate for cellular losses. However, how infections impact the bone marrow hematopoietic niche(s) remains elusive and most of the mechanisms involved are still largely unknown. Here, we review the most recent advances on our knowledge on the hematopoietic niche composition and regulation during homeostasis and also on how the niche responds to infectious stress.
Collapse
Affiliation(s)
- Ana Cordeiro Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Margarida Saraiva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Maria Salomé Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
198
|
Ramdas B, Mali RS, Palam LR, Pandey R, Cai Z, Pasupuleti SK, Burns SS, Kapur R. Driver Mutations in Leukemia Promote Disease Pathogenesis through a Combination of Cell-Autonomous and Niche Modulation. Stem Cell Reports 2020; 15:95-109. [PMID: 32502465 PMCID: PMC7363747 DOI: 10.1016/j.stemcr.2020.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 01/15/2023] Open
Abstract
Studies of patients with acute myeloid leukemia (AML) have led to the identification of mutations that affect different cellular pathways. Some of these have been classified as preleukemic, and a stepwise evolution program whereby cells acquire additional mutations has been proposed in the development of AML. How the timing of acquisition of these mutations and their impact on transformation and the bone marrow (BM) microenvironment occurs has only recently begun to be investigated. We show that constitutive and early loss of the epigenetic regulator, TET2, when combined with constitutive activation of FLT3, results in transformation of chronic myelomonocytic leukemia-like or myeloproliferative neoplasm-like phenotype to AML, which is more pronounced in double-mutant mice relative to mice carrying mutations in single genes. Furthermore, we show that in preleukemic and leukemic mice there are alterations in the BM niche and secreted cytokines, which creates a permissive environment for the growth of mutation-bearing cells relative to normal cells. Ubiquitous loss of Tet2 followed by expression of Flt3ITD/ITD results in lethal AML Tet2−/− cells when exposed to leukemic environment manifest MPN-like features Hyperproliferation of Flt3ITD donor cells in preleukemic Tet2−/− microenvironment
Collapse
Affiliation(s)
- Baskar Ramdas
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, R4, 1044 West Walnut Street, Indianapolis, IN 46202, USA.
| | - Raghuveer Singh Mali
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, R4, 1044 West Walnut Street, Indianapolis, IN 46202, USA
| | - Lakshmi Reddy Palam
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, R4, 1044 West Walnut Street, Indianapolis, IN 46202, USA
| | - Ruchi Pandey
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, R4, 1044 West Walnut Street, Indianapolis, IN 46202, USA
| | - Zhigang Cai
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, R4, 1044 West Walnut Street, Indianapolis, IN 46202, USA
| | - Santhosh Kumar Pasupuleti
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, R4, 1044 West Walnut Street, Indianapolis, IN 46202, USA
| | - Sarah S Burns
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, R4, 1044 West Walnut Street, Indianapolis, IN 46202, USA
| | - Reuben Kapur
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, R4, 1044 West Walnut Street, Indianapolis, IN 46202, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Molecular Biology and Biochemistry, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
199
|
Muire PJ, Mangum LH, Wenke JC. Time Course of Immune Response and Immunomodulation During Normal and Delayed Healing of Musculoskeletal Wounds. Front Immunol 2020; 11:1056. [PMID: 32582170 PMCID: PMC7287024 DOI: 10.3389/fimmu.2020.01056] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/01/2020] [Indexed: 12/20/2022] Open
Abstract
Single trauma injuries or isolated fractures are often manageable and generally heal without complications. In contrast, high-energy trauma results in multi/poly-trauma injury patterns presenting imbalanced pro- and anti- inflammatory responses often leading to immune dysfunction. These injuries often exhibit delayed healing, leading to fibrosis of injury sites and delayed healing of fractures depending on the intensity of the compounding traumas. Immune dysfunction is accompanied by a temporal shift in the innate and adaptive immune cells distribution, triggered by the overwhelming release of an arsenal of inflammatory mediators such as complements, cytokines and damage associated molecular patterns (DAMPs) from necrotic cells. Recent studies have implicated this dysregulated inflammation in the poor prognosis of polytraumatic injuries, however, interventions focusing on immunomodulating inflammatory cellular composition and activation, if administered incorrectly, can result in immune suppression and unintended outcomes. Immunomodulation therapy is promising but should be conducted with consideration for the spatial and temporal distribution of the immune cells during impaired healing. This review describes the current state of knowledge in the spatiotemporal distribution patterns of immune cells at various stages during musculoskeletal wound healing, with a focus on recent advances in the field of Osteoimmunology, a study of the interface between the immune and skeletal systems, in long bone fractures. The goals of this review are to (1) discuss wound and fracture healing processes of normal and delayed healing in skeletal muscles and long bones; (2) provide a balanced perspective on temporal distributions of immune cells and skeletal cells during healing; and (3) highlight recent therapeutic interventions used to improve fracture healing. This review is intended to promote an understanding of the importance of inflammation during normal and delayed wound and fracture healing. Knowledge gained will be instrumental in developing novel immunomodulatory approaches for impaired healing.
Collapse
Affiliation(s)
- Preeti J. Muire
- Orthopaedic Trauma Research Department, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| | | | | |
Collapse
|
200
|
Walker EC, Truong K, McGregor NE, Poulton IJ, Isojima T, Gooi JH, Martin TJ, Sims NA. Cortical bone maturation in mice requires SOCS3 suppression of gp130/STAT3 signalling in osteocytes. eLife 2020; 9:e56666. [PMID: 32458800 PMCID: PMC7253175 DOI: 10.7554/elife.56666] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/01/2020] [Indexed: 12/23/2022] Open
Abstract
Bone strength is determined by its dense cortical shell, generated by unknown mechanisms. Here we use the Dmp1Cre:Socs3f/f mouse, with delayed cortical bone consolidation, to characterise cortical maturation and identify control signals. We show that cortical maturation requires a reduction in cortical porosity, and a transition from low to high density bone, which continues even after cortical shape is established. Both processes were delayed in Dmp1Cre:Socs3f/f mice. SOCS3 (suppressor of cytokine signalling 3) inhibits signalling by leptin, G-CSF, and IL-6 family cytokines (gp130). In Dmp1Cre:Socs3f/f bone, STAT3 phosphorylation was prolonged in response to gp130-signalling cytokines, but not G-CSF or leptin. Deletion of gp130 in Dmp1Cre:Socs3f/f mice suppressed STAT3 phosphorylation in osteocytes and osteoclastic resorption within cortical bone, leading to rescue of the corticalisation defect, and restoration of compromised bone strength. We conclude that cortical bone development includes both pore closure and accumulation of high density bone, and that these processes require suppression of gp130-STAT3 signalling in osteocytes.
Collapse
Affiliation(s)
- Emma C Walker
- St. Vincent’s Institute of Medical ResearchFitzroyAustralia
| | - Kim Truong
- St. Vincent’s Institute of Medical ResearchFitzroyAustralia
- University of Melbourne, Department of Medicine at St. Vincent’s HospitalFitzroyAustralia
| | | | | | - Tsuyoshi Isojima
- St. Vincent’s Institute of Medical ResearchFitzroyAustralia
- Department of Pediatrics, Teikyo University School of MedicineTokyoJapan
| | - Jonathan H Gooi
- St. Vincent’s Institute of Medical ResearchFitzroyAustralia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of MelbourneParkvilleAustralia
| | - T John Martin
- St. Vincent’s Institute of Medical ResearchFitzroyAustralia
- University of Melbourne, Department of Medicine at St. Vincent’s HospitalFitzroyAustralia
| | - Natalie A Sims
- St. Vincent’s Institute of Medical ResearchFitzroyAustralia
- University of Melbourne, Department of Medicine at St. Vincent’s HospitalFitzroyAustralia
| |
Collapse
|