151
|
Yuan Q, Bie J, Wang J, Ghosh SS, Ghosh S. Cooperation between hepatic cholesteryl ester hydrolase and scavenger receptor BI for hydrolysis of HDL-CE. J Lipid Res 2013; 54:3078-84. [PMID: 23990661 DOI: 10.1194/jlr.m040998] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Liver is the sole organ responsible for the final elimination of cholesterol from the body either as biliary cholesterol or bile acids. High density lipoprotein (HDL)-derived cholesterol is the major source of biliary sterols and represents a mechanism for the removal of cholesterol from peripheral tissues including artery wall-associated macrophage foam cells. Via selective uptake through scavenger receptor BI (SR-BI), HDL-cholesterol is thought to be directly secreted into bile, and HDL cholesteryl esters (HDL-CEs) enter the hepatic metabolic pool and need to be hydrolyzed prior to conversion to bile acids. However, the identity of hepatic CE hydrolase (CEH) as well as the role of SR-BI in bile acid synthesis remains elusive. In this study we examined the role of human hepatic CEH (CES1) in facilitating hydrolysis of SR-BI-delivered HDL-CEs. Over-expression of CEH led to increased hydrolysis of HDL-[³H]CE in primary hepatocytes and SR-BI expression was required for this process. Intracellular CEH associated with BODIPY-CE delivered by selective uptake via SR-BI. CEH and SR-BI expression enhanced the movement of [³H]label from HDL-[³H]CE to bile acids in vitro and in vivo. Taken together, these studies demonstrate that SR-BI-delivered HDL-CEs are hydrolyzed by hepatic CEH and utilized for bile acid synthesis.
Collapse
Affiliation(s)
- Quan Yuan
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298-0050
| | | | | | | | | |
Collapse
|
152
|
Canton J, Neculai D, Grinstein S. Scavenger receptors in homeostasis and immunity. Nat Rev Immunol 2013; 13:621-34. [PMID: 23928573 DOI: 10.1038/nri3515] [Citation(s) in RCA: 563] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Scavenger receptors were originally identified by their ability to recognize and to remove modified lipoproteins; however, it is now appreciated that they carry out a striking range of functions, including pathogen clearance, lipid transport, the transport of cargo within the cell and even functioning as taste receptors. The large repertoire of ligands recognized by scavenger receptors and their broad range of functions are not only due to the wide range of receptors that constitute this family but also to their ability to partner with various co-receptors. The ability of individual scavenger receptors to associate with different co-receptors makes their responsiveness extremely versatile. This Review highlights recent insights into the structural features that determine the function of scavenger receptors and the emerging role that these receptors have in immune responses, notably in macrophage polarization and in the pathogenesis of diseases such as atherosclerosis and Alzheimer's disease.
Collapse
Affiliation(s)
- Johnathan Canton
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | |
Collapse
|
153
|
Challenges in using cultured primary rodent hepatocytes or cell lines to study hepatic HDL receptor SR-BI regulation by its cytoplasmic adaptor PDZK1. PLoS One 2013; 8:e69725. [PMID: 23936087 PMCID: PMC3720616 DOI: 10.1371/journal.pone.0069725] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 06/12/2013] [Indexed: 12/15/2022] Open
Abstract
Background PDZK1 is a four PDZ-domain containing cytoplasmic protein that binds to a variety of membrane proteins via their C-termini and can influence the abundance, localization and/or function of its target proteins. One of these targets in hepatocytes in vivo is the HDL receptor SR-BI. Normal hepatic expression of SR-BI protein requires PDZK1 - <5% of normal hepatic SR-BI is seen in the livers of PDZK1 knockout mice. Progress has been made in identifying features of PDZK1 required to control hepatic SR-BI in vivo using hepatic expression of wild-type and mutant forms of PDZK1 in wild-type and PDZK1 KO transgenic mice. Such in vivo studies are time consuming and expensive, and cannot readily be used to explore many features of the underlying molecular and cellular mechanisms. Methodology/Principal Findings Here we have explored the potential to use either primary rodent hepatocytes in culture using 2D collagen gels with newly developed optimized conditions or PDZK1/SR-BI co-transfected cultured cell lines (COS, HEK293) for such studies. SR-BI and PDZK1 protein and mRNA expression levels fell rapidly in primary hepatocyte cultures, indicating this system does not adequately mimic hepatocytes in vivo for analysis of the PDZK1 dependence of SR-BI. Although PDZK1 did alter SR-BI protein expression in the cell lines, its influence was independent of SR-BI’s C-terminus, and thus is not likely to occur via the same mechanism as that which occurs in hepatocytes in vivo. Conclusions/Significance Caution must be exercised in using primary hepatocytes or cultured cell lines when studying the mechanism underlying the regulation of hepatic SR-BI by PDZK1. It may be possible to use SR-BI and PDZK1 expression as sensitive markers for the in vivo-like state of hepatocytes to further improve primary hepatocyte cell culture conditions.
Collapse
|
154
|
Hu YW, Ma X, Huang JL, Mao XR, Yang JY, Zhao JY, Li SF, Qiu YR, Yang J, Zheng L, Wang Q. Dihydrocapsaicin Attenuates Plaque Formation through a PPARγ/LXRα Pathway in apoE(-/-) Mice Fed a High-Fat/High-Cholesterol Diet. PLoS One 2013; 8:e66876. [PMID: 23840542 PMCID: PMC3694162 DOI: 10.1371/journal.pone.0066876] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 05/10/2013] [Indexed: 12/26/2022] Open
Abstract
Aims Atherosclerosis is a chronic inflammatory disease and represents the major cause of cardiovascular morbidity and mortality. There is evidence that dihydrocapsaicin (DHC) can exert multiple pharmacological and physiological effects. Here, we explored the effect of DHC in atherosclerotic plaque progression in apoE−/− mice fed a high-fat/high-cholesterol diet. Methods and Results apoE−/− mice were randomly divided into two groups and fed a high-fat/high-cholesterol diet with or without DHC for 12 weeks. We demonstrated that cellular cholesterol content was significantly decreased while apoA1-mediated cholesterol efflux was significantly increased following treatment with DHC in THP-1 macrophage-derived foam cells. We also observed that plasma levels of TG, LDL-C, VLDL-C, IL-1β, IL-6, TNF-α and CRP were markedly decreased while plasma levels of apoA1 and HDL-C were significantly increased, and consistent with this, atherosclerotic lesion development was significantly inhibited by DHC treatment of apoE−/− mice fed a high-fat/high-cholesterol diet. Moreover, treatment with both LXRα siRNA and PPARγ siRNA made the up-regulation of DHC on ABCA1, ABCG1, ABCG5, SR-B1, NPC1, CD36, LDLR, HMGCR, apoA1 and apoE expression notably abolished while made the down-regulation of DHC on SRA1 expression markedly compensated. And treatment with PPARγ siRNA made the DHC-induced up-regulation of LXRα expression notably abolished while treatment with LXRα siRNA had no effect on DHC-induced PPARγ expression. Conclusion These observations provide direct evidence that DHC can significantly decrease atherosclerotic plaque formation involving in a PPARγ/LXRα pathway and thus DHC may represent a promising candidate for a therapeutic agent for the treatment or prevention of atherosclerosis.
Collapse
Affiliation(s)
- Yan-Wei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xin Ma
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jin-Lan Huang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xin-Ru Mao
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jun-Yao Yang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jia-Yi Zhao
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shu-Fen Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu-Rong Qiu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jia Yang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Zheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- * E-mail: (LZ); (QW)
| | - Qian Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- * E-mail: (LZ); (QW)
| |
Collapse
|
155
|
Tsukamoto K, Wales TE, Daniels K, Pal R, Sheng R, Cho W, Stafford W, Engen JR, Krieger M, Kocher O. Noncanonical role of the PDZ4 domain of the adaptor protein PDZK1 in the regulation of the hepatic high density lipoprotein receptor scavenger receptor class B, type I (SR-BI). J Biol Chem 2013; 288:19845-60. [PMID: 23720744 DOI: 10.1074/jbc.m113.460170] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The four PDZ (PDZ1 to PDZ4) domain-containing adaptor protein PDZK1 controls the expression, localization, and function of the HDL receptor scavenger receptor class B, type I (SR-BI), in hepatocytes in vivo. This control depends on both the PDZ4 domain and the binding of SR-BI's cytoplasmic C terminus to the canonical peptide-binding sites of either the PDZ1 or PDZ3 domain (no binding to PDZ2 or PDZ4). Using transgenic mice expressing in the liver domain deletion (ΔPDZ2 or ΔPDZ3), domain replacement (PDZ2→1), or target peptide binding-negative (PDZ4(G389P)) mutants of PDZK1, we found that neither PDZ2 nor PDZ3 nor the canonical target peptide binding activity of PDZ4 were necessary for hepatic SR-BI regulatory activity. Immunohistochemical studies established that the localization of PDZK1 on hepatocyte cell surface membranes in vivo is dependent on its PDZ4 domain and the presence of SR-BI. Analytical ultracentrifugation and hydrogen deuterium exchange mass spectrometry suggested that the requirement of PDZ4 for localization and SR-BI regulation is not due to PDZ4-mediated oligomerization or induction of conformational changes in the PDZ123 portion of PDZK1. However, surface plasmon resonance analysis showed that PDZ4, but not the other PDZ domains, can bind vesicles that mimic the plasma membrane. Thus, PDZ4 may potentiate PDZK1's regulation of SR-BI by promoting its lipid-mediated attachment to the cytoplasmic membrane. Our results show that not all of the PDZ domains of a multi-PDZ domain-containing adaptor protein are required for its biological activities and that both canonical target peptide binding and noncanonical (peptide binding-independent) capacities of PDZ domains may be employed by a single such adaptor for optimal in vivo activity.
Collapse
Affiliation(s)
- Kosuke Tsukamoto
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Westhaus S, Bankwitz D, Ernst S, Rohrmann K, Wappler I, Agné C, Luchtefeld M, Schieffer B, Sarrazin C, Manns MP, Pietschmann T, Ciesek S, von Hahn T. Characterization of the inhibition of hepatitis C virus entry by in vitro-generated and patient-derived oxidized low-density lipoprotein. Hepatology 2013; 57:1716-24. [PMID: 23212706 DOI: 10.1002/hep.26190] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 11/14/2012] [Accepted: 11/15/2012] [Indexed: 12/14/2022]
Abstract
UNLABELLED Oxidized low-density lipoprotein (oxLDL) has been reported as an inhibitor of hepatitis C virus (HCV) cell entry, making it the only known component of human lipid metabolism with an antiviral effect on HCV. However, several questions remain open, including its effect on full-length cell-culture-grown HCV (HCVcc) of different genotypes or on other steps of the viral replication cycle, its mechanism of action, and whether endogenous oxLDL shares the anti-HCV properties of in vitro-generated oxLDL. We combined molecular virology tools with oxLDL serum measurements in different patient cohorts to address these questions. We found that oxLDL inhibits HCVcc at least as potently as HCV pseudoparticles. There was moderate variation between genotypes, with genotype 4 appearing the most oxLDL sensitive. Intracellular RNA replication and assembly and release of new particles were unaffected. HCV particles entering target cells lost oxLDL sensitivity with time kinetics parallel to anti-SR-BI (scavenger receptor class B type I), but significantly earlier than anti-CD81, suggesting that oxLDL acts by perturbing interaction between HCV and SR-BI. Finally, in chronically HCV-infected individuals, endogenous serum oxLDL levels did not correlate with viral load, but in HCV-negative sera, high endogenous oxLDL had a negative effect on HCV infectivity in vitro. CONCLUSION oxLDL is a potent pangenotype HCV entry inhibitor that maintains its activity in the context of human serum and targets an early step of HCV entry.
Collapse
Affiliation(s)
- Sandra Westhaus
- Institute for Molecular Biology, Medizinische Hochschule Hannover, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Binder V, Ljubojevic S, Haybaeck J, Holzer M, El-Gamal D, Schicho R, Pieske B, Heinemann A, Marsche G. The myeloperoxidase product hypochlorous acid generates irreversible high-density lipoprotein receptor inhibitors. Arterioscler Thromb Vasc Biol 2013; 33:1020-7. [PMID: 23493288 DOI: 10.1161/atvbaha.113.301235] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Elevated levels of advanced oxidation protein products have been described in several chronic inflammatory diseases, like chronic renal insufficiency, rheumatoid arthritis, and atherosclerosis. Recent findings revealed that advanced oxidation protein products are inhibitors of the major high-density lipoprotein receptor, scavenger receptor class B, type 1 (SR-BI). Here, we investigated which oxidation-induced structural alterations convert plasma albumin into a high-density lipoprotein-receptor inhibitor. APPROACH AND RESULTS Exposure of albumin to the physiological oxidant, hypochlorous acid, generated high-affinity SR-BI ligands. Protection of albumin-lysine residues before exposure to hypochlorous acid as well as regeneration of N-chloramines after oxidation of albumin completely prevented binding of oxidized albumin to SR-BI, indicating that modification of albumin-lysine residues is required to generate SR-BI ligands. Of particular interest, N-chloramines within oxidized albumin promoted irreversible binding to SR-BI, resulting in permanent receptor blockade. We observed that the SR-BI inhibitory activity of albumin isolated from chronic kidney disease patients correlated with the content of the myeloperoxidase-specific oxidation product 3-chlorotyrosine and was associated with alterations in the composition of high-density lipoprotein. CONCLUSIONS Given that several potential atheroprotective activities of high-density lipoprotein are mediated by SR-BI, the present results raise the possibility that oxidized plasma albumin, through permanent SR-BI blockade, contributes to the pathophysiology of cardiovascular disease.
Collapse
Affiliation(s)
- Veronika Binder
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4 8010 Graz, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Hu Z, Hu J, Zhang Z, Shen WJ, Yun CC, Berlot CH, Kraemer FB, Azhar S. Regulation of expression and function of scavenger receptor class B, type I (SR-BI) by Na+/H+ exchanger regulatory factors (NHERFs). J Biol Chem 2013; 288:11416-35. [PMID: 23482569 DOI: 10.1074/jbc.m112.437368] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Scavenger receptor class B, type I (SR-BI) binds HDL and mediates selective delivery of cholesteryl esters (CEs) to the liver, adrenals, and gonads for product formation (bile acids and steroids). Because relatively little is known about SR-BI posttranslational regulation in steroidogenic cells, we examined the roles of Na(+)/H(+) exchanger regulatory factors (NHERFs) in regulating SR-BI expression, SR-BI-mediated selective CE uptake, and steroidogenesis. NHERF1 and NHERF2 mRNA and protein are expressed at varying levels in model steroidogenic cell lines and the adrenal, with only low expression of PDZK1 (NHERF3) and NHERF4. Dibutyryl cyclic AMP decreased NHERF1 and NHERF2 and increased SR-BI mRNA expression in primary rat granulosa cells and MLTC-1 cells, whereas ACTH had no effect on NHERF1 and NHERF2 mRNA levels but decreased their protein levels in rat adrenals. Co-immunoprecipitation, colocalization, bimolecular fluorescence complementation, and mutational analysis indicated that SR-BI associates with NHERF1 and NHERF2. NHERF1 and NHERF2 down-regulated SR-BI protein expression through inhibition of its de novo synthesis. NHERF1 and NHERF2 also inhibited SR-BI-mediated selective CE transport and steroidogenesis, which were markedly attenuated by partial deletions of the PDZ1 or PDZ2 domain of NHERF1, the PDZ2 domain of NHERF2, or the MERM domains of NHERF1/2 or by gene silencing of NHERF1/2. Moreover, an intact COOH-terminal PDZ recognition motif (EAKL) in SR-BI is needed. Transient transfection of hepatic cell lines with NHERF1 or NHERF2 caused a significant reduction in endogenous protein levels of SR-BI. Collectively, these data establish NHERF1 and NHERF2 as SR-BI protein binding partners that play a negative role in the regulation of SR-BI expression, selective CE transport, and steroidogenesis.
Collapse
Affiliation(s)
- Zhigang Hu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, USA
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Stanislovaitiene D, Lesauskaite V, Zaliuniene D, Smalinskiene A, Gustiene O, Zaliaduonyte-Peksiene D, Tamosiunas A, Luksiene D, Petkeviciene J, Zaliunas R. SCARB1 single nucleotide polymorphism (rs5888) is associated with serum lipid profile and myocardial infarction in an age- and gender-dependent manner. Lipids Health Dis 2013; 12:24. [PMID: 23510561 PMCID: PMC3599926 DOI: 10.1186/1476-511x-12-24] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 02/28/2013] [Indexed: 01/28/2023] Open
Abstract
Background Mutation in SCARB1 gene, exon 8 rs5888, has been associated with altered lipid levels and cardiovascular risk in humans though the results have been inconsistent. We analysed the impact of SCARB1 single nucleotide polymorphism (SNP) rs5888 with plasma lipid profile and association with coronary artery disease (CAD) in a Lithuanian population characterized by high morbidity and mortality from CAD and high prevalence of hypercholesterolemia. Methods The study included 1976 subjects from a random sample (reference group) and an myocardial infarction (MI) group of 463 patients. Genotyping of SCARB1 (rs5888) was carried out using the real-time polymerase chain reaction method. Results/principal findings Analysis of rs5888 C/T gene polymorphism in the reference group revealed that male TT genotype carriers (25–74 years) had significantly higher total cholesterol and triglyceride concentrations (5.70 mmol/l vs. 5.49 mmol/l; p = 0.036, and 1.70 mmol/l vs. 1.40 mmol/l, p = 0.023, respectively) than CT carriers and the oldest males (65–74 years) TT carriers had significantly higher high density lipoprotein cholesterol concentrations in comparison to heterozygous (1.52 mmol/l vs. 1.36 mmol/l, p = 0.033). The youngest female (25–44 years) TT genotype carriers had significantly lower low density lipoprotein cholesterol concentrations in comparison to C homozygous (2.59 mmol/l vs. 2.92 mmol/l, p = 0.023). The frequency of the SCARB1 TT genotype in the oldest male MI group (65–74 years) was significantly lower than in the corresponding reference group subjects (9.4% vs. 22.3%, p = 0.006). SCARB1 TT genotype was associated with decreased odds of MI in males aged 65–75 years (OR = 0.24, 95% CI 0.10-0.56, p = 0.001). Conclusions/significance SCARB1 polymorphism is associated with lipid metabolism and CAD in an age- and gender- dependent manner. Analysis of SCARB1 SNP rs5888 C/T genotypes revealed an atheroprotective phenotype of lipid profile in older men and in young women TT genotype carriers in the reference group. SCARB1 TT genotype was associated with decreased odds of MI in aged men.
Collapse
Affiliation(s)
- Daiva Stanislovaitiene
- Department of Ophthalmology, Medicine Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Li H, Ooi SQ, Heng CK. The role of NF-кB in SAA-induced peroxisome proliferator-activated receptor γ activation. Atherosclerosis 2013; 227:72-8. [DOI: 10.1016/j.atherosclerosis.2012.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 11/19/2012] [Accepted: 12/09/2012] [Indexed: 12/11/2022]
|
161
|
Cortes VA, Busso D, Mardones P, Maiz A, Arteaga A, Nervi F, Rigotti A. Retracted: Advances in the physiological and pathological implications of cholesterol. Biol Rev Camb Philos Soc 2013; 88:825-43. [DOI: 10.1111/brv.12025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 01/22/2013] [Accepted: 01/25/2013] [Indexed: 01/07/2023]
Affiliation(s)
- Victor A. Cortes
- Department of Nutrition Diabetes and Metabolism; School of Medicine; Faculty of Medicine; Pontificia Universidad Catolica de Chile; Marcoleta 367 Edifico de Gastroenterologia 4 piso Santiago Chile
| | - Dolores Busso
- Department of Nutrition Diabetes and Metabolism; School of Medicine; Faculty of Medicine; Pontificia Universidad Catolica de Chile; Marcoleta 367 Edifico de Gastroenterologia 4 piso Santiago Chile
| | - Pablo Mardones
- Department of Nutrition Diabetes and Metabolism; School of Medicine; Faculty of Medicine; Pontificia Universidad Catolica de Chile; Marcoleta 367 Edifico de Gastroenterologia 4 piso Santiago Chile
| | - Alberto Maiz
- Department of Nutrition Diabetes and Metabolism; School of Medicine; Faculty of Medicine; Pontificia Universidad Catolica de Chile; Marcoleta 367 Edifico de Gastroenterologia 4 piso Santiago Chile
| | - Antonio Arteaga
- Department of Nutrition Diabetes and Metabolism; School of Medicine; Faculty of Medicine; Pontificia Universidad Catolica de Chile; Marcoleta 367 Edifico de Gastroenterologia 4 piso Santiago Chile
| | - Flavio Nervi
- Department of Gastroenterology; School of Medicine; Faculty of Medicine; Pontificia Universidad Catolica de Chile; Santiago Chile
| | - Attilio Rigotti
- Department of Nutrition Diabetes and Metabolism; School of Medicine; Faculty of Medicine; Pontificia Universidad Catolica de Chile; Marcoleta 367 Edifico de Gastroenterologia 4 piso Santiago Chile
| |
Collapse
|
162
|
Hoekstra M, van der Sluis RJ, Van Eck M, Van Berkel TJ. Adrenal-Specific Scavenger Receptor BI Deficiency Induces Glucocorticoid Insufficiency and Lowers Plasma Very-Low-Density and Low-Density Lipoprotein Levels in Mice. Arterioscler Thromb Vasc Biol 2013. [DOI: 10.1161/atvbaha.112.300784] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
We determined the physiological consequences of adrenocortical-specific deletion of scavenger receptor BI (SR-BI) function in C57BL/6 wild-type mice.
Methods and Results—
One adrenal from 10-day-old SR-BI knockout (KO) mice or wild-type controls was transplanted under the renal capsule of adrenalectomized C57BL/6 recipient mice. The fasting plasma corticosterone level increased over time in transplanted mice. Corticosterone values in SR-BI KO transplanted mice remained ≈50% lower (
P
<0.001) as compared with wild-type transplanted mice, which coincided with adrenocortical lipid depletion. A 6.5-fold higher (
P
<0.01) plasma adrenocorticotropic hormone level was present in SR-BI KO transplanted mice reminiscent of primary glucocorticoid insufficiency. On feeding with cholic acid-containing high cholesterol/high fat diet, SR-BI KO transplanted mice exhibited a 26% (
P
<0.05) reduction in their liver triglyceride level. Hepatic myosin regulatory light chain interacting protein/inducible degrader of the low-density lipoprotein receptor mRNA expression was 48% (
P
<0.01) decreased in adrenal-specific SR-BI KO mice, which was paralleled by a marked decrease (–46%;
P
<0.01) in proatherogenic very-low-density and low-density lipoprotein levels.
Conclusion—
Adrenal-specific disruption of SR-BI function induces glucocorticoid insufficiency and lowers plasma very-low-density and low-density lipoprotein levels in atherogenic diet-fed C57BL/6 mice. These findings further highlight the interaction between adrenal high-density lipoprotein-cholesterol uptake by SR-BI, adrenal steroidogenesis, and the regulation of hepatic lipid metabolism.
Collapse
Affiliation(s)
- Menno Hoekstra
- From the Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands
| | - Ronald J. van der Sluis
- From the Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands
| | - Miranda Van Eck
- From the Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands
| | - Theo J.C. Van Berkel
- From the Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands
| |
Collapse
|
163
|
Abstract
New therapies that challenge existing paradigms are needed for the treatment of cancer. We report a nanoparticle-enabled therapeutic approach to B-cell lymphoma using synthetic high density lipoprotein nanoparticles (HDL-NPs). HDL-NPs are synthesized using a gold nanoparticle template to control conjugate size and ensure a spherical shape. Like natural HDLs, biomimetic HDL-NPs target scavenger receptor type B-1, a high-affinity HDL receptor expressed by lymphoma cells. Functionally, compared with natural HDL, the gold NP template enables differential manipulation of cellular cholesterol flux in lymphoma cells, promoting cellular cholesterol efflux and limiting cholesterol delivery. This combination of scavenger receptor type B-1 binding and relative cholesterol starvation selectively induces apoptosis. HDL-NP treatment of mice bearing B-cell lymphoma xenografts selectively inhibits B-cell lymphoma growth. As such, HDL-NPs are biofunctional therapeutic agents, whose mechanism of action is enabled by the presence of a synthetic nanotemplate. HDL-NPs are active in B-cell lymphomas and potentially, other malignancies or diseases of pathologic cholesterol accumulation.
Collapse
|
164
|
Abstract
Free radical-induced oxidation of membrane phospholipids generates complex mixtures of oxidized phospholipids (oxPLs). The combinatorial operation of a few dozen reaction types on a few dozen phospholipid structures results in the production of a dauntingly vast diversity of oxPL molecular species. Structural identification of the individual oxPL in these mixtures is a redoubtable challenge that is absolutely essential to allow determination of the biological activities of individual species. With an emphasis on cardiovascular consequences, this Review focuses on biological activities of oxPLs whose molecular structures are known and highlights 2 diametrically opposite approaches that were used to determine those structures, that is, (1) the classic approach from bioactivity of a complex mixture to isolation and structural characterization of the active molecule followed by confirmation of the structure by unambiguous chemical synthesis and (2) hypothesis of products that are likely to be generated by lipid oxidation, followed by synthesis, and then detection in vivo guided by the availability of authentic standards, and last, characterization of biological activities. Especially important for the application of the second paradigm is the capability of LC-MS/MS and derivatizations to selectively detect and quantify specific oxPL in complex mixtures, without the need for their isolation or complete separation. This technology can provide strong evidence for identity by comparisons with pure, well-characterized samples available by chemical syntheses. Those pure samples are critical for determining the biological activities attributable to specific molecular species of oxPLs in the complex mixtures generated in vivo as a consequence of oxidative stress.
Collapse
Affiliation(s)
- Robert G Salomon
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
165
|
Park Y, Carr TP. Unsaturated fatty acids and phytosterols regulate cholesterol transporter genes in Caco-2 and HepG2 cell lines. Nutr Res 2012; 33:154-61. [PMID: 23399666 DOI: 10.1016/j.nutres.2012.11.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 11/18/2012] [Accepted: 11/20/2012] [Indexed: 12/21/2022]
Abstract
Dietary consumption of phytosterols and certain fatty acids has been shown to reduce cholesterol absorption and plasma cholesterol concentrations. However, it has not been fully elucidated whether phytosterols or fatty acids can alter the expression of cholesterol transporters by functioning as signaling molecules. This study tested the hypothesis that various fatty acids and phytosterols commonly found in the food supply can modulate the expression of transporters including Niemann-Pick C1-like 1, low-density lipoprotein receptor, and scavenger receptor class B type I and 3-hydroxy-3-methylglutaryl-coenzyme A reductase in the intestine and liver. Caco-2 cells were used as models of enterocytes, and HepG2 cells were used as a model of hepatocytes. The cells were treated for 18 hours with 100 μmol/L of a fatty acid, or for 24 hours with 10 μmol/L of 25α-hydroxycholesterol, or 100 μmol/L of cholesterol, sitosterol, and stigmasterol to measure expression of genes involved in cholesterol transport using quantitative real-time polymerase chain reaction. Polyunsaturated fatty acids in Caco-2 cells and sterols in HepG2 cells significantly reduced the messenger RNA expression levels of Niemann-Pick C1-like 1, scavenger receptor class B type I, low-density lipoprotein receptor, and 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Importantly, sitosterol and stigmasterol reduced the messenger RNA levels of genes to a similar extent as cholesterol. The data support the hypothesis that unsaturated fatty acid and phytosterols can act as signaling molecules and alter the expression of genes involved in cholesterol transport and metabolism.
Collapse
Affiliation(s)
- Youngki Park
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE 68583-0806, USA
| | | |
Collapse
|
166
|
Yu M, Lau TY, Carr SA, Krieger M. Contributions of a disulfide bond and a reduced cysteine side chain to the intrinsic activity of the high-density lipoprotein receptor SR-BI. Biochemistry 2012. [PMID: 23205738 DOI: 10.1021/bi301203x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The high-density lipoprotein (HDL) receptor scavenger receptor class B, type I (SR-BI), binds HDL and mediates selective cholesteryl ester uptake. SR-BI's structure and mechanism are poorly understood. We used mass spectrometry to assign the two disulfide bonds in SR-BI that connect cysteines within the conserved Cys(321)-Pro(322)-Cys(323) (CPC) motif and connect Cys(280) to Cys(334). We used site-specific mutagenesis to evaluate the contributions of the CPC motif and the side chain of extracellular Cys(384) to HDL binding and lipid uptake. The effects of CPC mutations on activity were context-dependent. Full wild-type (WT) activity required Pro(322) and Cys(323) only when Cys(321) was present. Reduced intrinsic activities were observed for CXC and CPX, but not XXC, XPX, or XXX mutants (X ≠ WT residue). Apparently, a free thiol side chain at position 321 that cannot form an intra-CPC disulfide bond with Cys(323) is deleterious, perhaps because of aberrant disulfide bond formation. Pro(322) may stabilize an otherwise strained CPC disulfide bond, thus supporting WT activity, but this disulfide bond is not absolutely required for normal activity. C(384)X (X = S, T, L, Y, G, or A) mutants exhibited altered activities that varied with the side chain's size: larger side chains phenocopied WT SR-BI treated with its thiosemicarbazone inhibitor BLT-1 (enhanced binding, weakened uptake); smaller side chains produced almost inverse effects (increased uptake:binding ratio). C(384)X mutants were BLT-1-resistant, supporting the proposal that Cys(384)'s thiol interacts with BLT-1. We discuss the implications of our findings on the functions of the extracellular loop cysteines in SR-BI and compare our results to those presented by other laboratories.
Collapse
Affiliation(s)
- Miao Yu
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
167
|
Santander NG, Contreras-Duarte S, Awad MF, Lizama C, Passalacqua I, Rigotti A, Busso D. Developmental abnormalities in mouse embryos lacking the HDL receptor SR-BI. Hum Mol Genet 2012; 22:1086-96. [DOI: 10.1093/hmg/dds510] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
168
|
Hu Z, Shen WJ, Kraemer FB, Azhar S. MicroRNAs 125a and 455 repress lipoprotein-supported steroidogenesis by targeting scavenger receptor class B type I in steroidogenic cells. Mol Cell Biol 2012; 32:5035-45. [PMID: 23045399 PMCID: PMC3510537 DOI: 10.1128/mcb.01002-12] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 10/03/2012] [Indexed: 12/25/2022] Open
Abstract
We sought to identify and characterize microRNA (miRNAs) that posttranscriptionally regulate the expression of scavenger receptor class B type I (SR-BI) and SR-BI-linked selective high-density lipoprotein (HDL) cholesteryl ester (CE) transport and steroidogenesis. Four miRNAs (miRNA-125a, miRNA-125b, miRNA-145, and miRNA-455) with a potential to regulate SR-BI were identified in silico and validated by quantitative real-time PCR (qRT-PCR), Western blot analysis, and SR-BI 3' untranslated region (UTR) reporter assays. In vitro treatment of primary rat granulosa cells and MLTC-1 cells with cyclic AMP (cAMP) or in vivo treatment of rat adrenals with adrenocorticotropic hormone (ACTH) decreased the expression of miRNA-125a, miRNA-125b, and miRNA-455 and reciprocally increased SR-BI expression. Using luciferase constructs containing the 3' untranslated region of SR-BI combined with miRNA overexpression and mutagenesis, we have provided evidence that steroidogenic SR-BI is a direct target of miRNA-125a and miRNA-455. Moreover, the transfection of Leydig tumor cells with precursor miRNA 125a (pre-miRNA-125a) or pre-miRNA-455 resulted in the suppression of SR-BI at both the transcript and protein levels and reduced selective HDL CE uptake and HDL-stimulated progesterone production. Transfection of liver Hepa 1-6 cells with pre-miRNA-125a significantly reduced SR-BI expression and its selective transport function. In contrast, overexpression of miRNA-145 did not affect SR-BI expression or selective HDL CE uptake mediated by SR-BI in steroidogenic cell lines. These data suggest that a trophic hormone and cAMP inversely regulate the expression of SR-BI and miRNA-125a and miRNA-455 in steroidogenic tissues/cells and that both miRNA-125a and miRNA-455, by targeting steroidogenic SR-BI, negatively regulate selective HDL CE uptake and HDL CE-supported steroid hormone production.
Collapse
Affiliation(s)
- Zhigang Hu
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California, USA
- Division of Endocrinology
| | - Wen-Jun Shen
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California, USA
- Division of Endocrinology
| | - Fredric B. Kraemer
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California, USA
- Division of Endocrinology
| | - Salman Azhar
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California, USA
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, California, USA
| |
Collapse
|
169
|
Chen J, Zhang X, Kusumo H, Costa LG, Guizzetti M. Cholesterol efflux is differentially regulated in neurons and astrocytes: implications for brain cholesterol homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:263-75. [PMID: 23010475 DOI: 10.1016/j.bbalip.2012.09.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 09/05/2012] [Accepted: 09/14/2012] [Indexed: 11/15/2022]
Abstract
Disruption of cholesterol homeostasis in the central nervous system (CNS) has been associated with neurological, neurodegenerative, and neurodevelopmental disorders. The CNS is a closed system with regard to cholesterol homeostasis, as cholesterol-delivering lipoproteins from the periphery cannot pass the blood-brain-barrier and enter the brain. Different cell types in the brain have different functions in the regulation of cholesterol homeostasis, with astrocytes producing and releasing apolipoprotein E and lipoproteins, and neurons metabolizing cholesterol to 24(S)-hydroxycholesterol. We present evidence that astrocytes and neurons adopt different mechanisms also in regulating cholesterol efflux. We found that in astrocytes cholesterol efflux is induced by both lipid-free apolipoproteins and lipoproteins, while cholesterol removal from neurons is triggered only by lipoproteins. The main pathway by which apolipoproteins induce cholesterol efflux is through ABCA1. By upregulating ABCA1 levels and by inhibiting its activity and silencing its expression, we show that ABCA1 is involved in cholesterol efflux from astrocytes but not from neurons. Furthermore, our results suggest that ABCG1 is involved in cholesterol efflux to apolipoproteins and lipoproteins from astrocytes but not from neurons, while ABCG4, whose expression is much higher in neurons than astrocytes, is involved in cholesterol efflux from neurons but not astrocytes. These results indicate that different mechanisms regulate cholesterol efflux from neurons and astrocytes, reflecting the different roles that these cell types play in brain cholesterol homeostasis. These results are important in understanding cellular targets of therapeutic drugs under development for the treatments of conditions associated with altered cholesterol homeostasis in the CNS.
Collapse
Affiliation(s)
- Jing Chen
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt way NE, Seattle, WA 98105, USA
| | | | | | | | | |
Collapse
|
170
|
Casado ME, Huerta L, Ortiz AI, Pérez-Crespo M, Gutiérrez-Adán A, Kraemer FB, Lasunción MÁ, Busto R, Martín-Hidalgo A. HSL-knockout mouse testis exhibits class B scavenger receptor upregulation and disrupted lipid raft microdomains. J Lipid Res 2012; 53:2586-97. [PMID: 22988039 DOI: 10.1194/jlr.m028076] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
There is a tight relationship between fertility and changes in cholesterol metabolism during spermatogenesis. In the testis, class B scavenger receptors (SR-B) SR-BI, SR-BII, and LIMP II mediate the selective uptake of cholesterol esters from HDL, which are hydrolyzed to unesterified cholesterol by hormone-sensitive lipase (HSL). HSL is critical because HSL knockout (KO) male mice are sterile. The aim of the present work was to determine the effects of the lack of HSL in testis on the expression of SR-B, lipid raft composition, and related cell signaling pathways. HSL-KO mouse testis presented altered spermatogenesis associated with decreased sperm counts, sperm motility, and infertility. In wild-type (WT) testis, HSL is expressed in elongated spermatids; SR-BI, in Leydig cells and spermatids; SR-BII, in spermatocytes and spermatids but not in Leydig cells; and LIMP II, in Sertoli and Leydig cells. HSL knockout male mice have increased expression of class B scavenger receptors, disrupted caveolin-1 localization in lipid raft plasma membrane microdomains, and activated phospho-ERK, phospho-AKT, and phospho-SRC in the testis, suggesting that class B scavenger receptors are involved in cholesterol ester uptake for steroidogenesis and spermatogenesis in the testis.
Collapse
Affiliation(s)
- María Emilia Casado
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Ding Y, Wang W, Feng M, Wang Y, Zhou J, Ding X, Zhou X, Liu C, Wang R, Zhang Q. A biomimetic nanovector-mediated targeted cholesterol-conjugated siRNA delivery for tumor gene therapy. Biomaterials 2012; 33:8893-905. [PMID: 22979990 DOI: 10.1016/j.biomaterials.2012.08.057] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 08/23/2012] [Indexed: 12/11/2022]
Abstract
RNA interference holds tremendous potential as a therapeutic approach of malignant tumors. However, safe and efficient nanovectors are extremely lack for systemic delivery of small interfering RNA (siRNA). The study aimed to develop a biomimetic nanovector, reconstituted high density lipoprotein (rHDL), mediating targeted cholesterol-conjugated siRNA (Chol-siRNA) delivery for Pokemon gene silencing therapy. Chol-siRNA-loaded rHDL nanoparticles (rHDL/Chol-siRNA complexes) were prepared using thin-film dispersion method and their characteristics were investigated in detail. RHDL/Chol-siRNA complexes at the optimal volume ratio (lipid: Chol-siRNA) exhibited high Chol-siRNA-loading efficiency (~99%), desirable nanoparticle size and excellent stability in serum. In addition, by analyzing Chol-siRNA release profile, rHDL/Chol-siRNA complexes displayed sustained-release characteristic and storage stability. Observations from FACS and confocal microscopic analyses revealed that rHDL-mediated carboxyfluorescein tagged Chol-siRNA (FAM-Chol-siRNA) transfection resulted in highly efficient uptake and specific cytoplasmic delivery of FAM-Chol-siRNA into human hepatocellular carcinoma cell line HepG2 via HDL-receptor mediated mechanism. In vitro cytotoxicity, apoptosis and Western-blot analyses revealed significant cellular growth inhibition and decrease of Pokemon and Bcl-2 protein expression in HepG2 cells treated with Chol-siRNA-Pokemon-loaded rHDL nanoparticles (rHDL/Chol-siRNA-Pokemon complexes), respectively. In in vivo studies, the near-infrared (NIR) dye Cy5 labeled Chol-siRNA-loaded rHDL nanoparticles (rHDL/Cy5-Chol-siRNA complexes) obviously accumulated in tumor of nude mice after i.v. administration as compared with Cy5-Chol-siRNA-loaded lipoplexes (Lipos/Cy5-Chol-siRNA complexes). Morover, rHDL/Chol-siRNA-Pokemon complexes demonstrated great tumor growth inhibition and significant decrease of Pokemon and Bcl-2 protein expression in vivo. These results suggested that rHDL should be an ideal non-viral tumor-targeting vector for Chol-siRNA transfer, and rHDL-mediated Chol-siRNA-Pokemon delivery might be a promising new strategy for gene therapy in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yang Ding
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Beppu F, Hosokawa M, Niwano Y, Miyashita K. Effects of dietary fucoxanthin on cholesterol metabolism in diabetic/obese KK-A(y) mice. Lipids Health Dis 2012; 11:112. [PMID: 22962999 PMCID: PMC3477094 DOI: 10.1186/1476-511x-11-112] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 09/03/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fucoxanthin is a xanthophyll present in brown seaweeds and has several beneficial effects, including anti-obesity and anti-diabetic effects. However, we and another group previously observed that fucoxanthin increases serum cholesterol levels in rodents. Cholesterol is an important component of cell membranes and biosynthesis of bile acids. Serum cholesterol levels are also closely associated with atherosclerosis. Therefore, we sought to identify the mechanism underlying the increase in serum cholesterol levels by fucoxanthin. METHODS Diabetic/obese KK-A(y) mice were fed a diet containing 0.2% fucoxanthin for 4 weeks. The mice were sacrificed, and total blood samples were collected for the measurement of serum total cholesterol, HDL-cholesterol and non-HDL-cholesterol levels. Cholesterol content in tissues was also analyzed. Real-time PCR and Western blotting were performed to determine hepatic mRNA and protein expression of genes involved in cholesterol metabolism, respectively. RESULTS Dietary fucoxanthin significantly increased serum HDL and non-HDL cholesterol levels, and reduced hepatic cholesterol content. In liver, the expression of SREBP1, SREBP2 and their target genes involved in cholesterol biosynthesis significantly increased and tended to increase in the fucoxanthin-fed mice, respectively. In contrast, hepatic levels of LDLR and SR-B1 proteins which is important factors for LDL-cholesterol and HDL-cholesterol uptake in the liver from serum, decreased to 60% and 80% in the fucoxanthin-fed mice, respectively, compared with the control mice. Further, we found that dietary fucoxanthin significantly increased the mRNA expression of proprotein convertase subtilisin/kexin type 9 (PCSK9), which enhances intracellular degradation of LDLR in lysosomes. CONCLUSIONS Fucoxanthin increased HDL-cholesterol and non-HDL-cholesterol levels in KK-A(y) mice by inducing SREBP expression and reduced cholesterol uptake in the liver via down-regulation of LDLR and SR-B1, resulted in increased serum cholesterol in the mice.
Collapse
Affiliation(s)
- Fumiaki Beppu
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato Hakodate, Hokkaido 041-8611, Japan
| | | | | | | |
Collapse
|
173
|
Hochreiter J, Lapham J, Wong-Staal F, McKelvy J, Sulkowski M, Glesby MJ, Johnson VA, Morse GD. ITX 5061 quantitation in human plasma with reverse phase liquid chromatography and mass spectrometry detection. Antivir Ther 2012; 18:329-36. [PMID: 22954720 DOI: 10.3851/imp2354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND ITX 5061 is a highly potent small molecule inhibitor of scavenger receptor-B1, an integral transmembrane protein that is found in liver cells and is actively involved in the transport of HCV into hepatocytes. Currently, ITX 5061 is being investigated in monoinfected hepatitis C patients in a proof-of-concept clinical trial carried out by the AIDS Clinical Trial Group (ACTG). METHODS To provide quantitative results in human plasma for pharmacokinetic analysis, an assay for ITX 5061 was validated. ITX 5061 and the internal standard, a deuterated analogue, were separated by isocratic reverse phase chromatography using a Polar RP column (Phenomenex Synergi(™); 2.0 mm × 50 mm, 4 µm) and detected via electrospray coupled to a triple quadrupole mass spectrometer with a run time of 5 min. Multiple reaction monitoring in positive mode was used with ITX 5061 at 585/114 m/z and the internal standard at 592/122 m/z with a linear range of 2.50-5,000 ng/ml. Human plasma was extracted using a protein precipitation combing 400 µl of acetonitrile with 100 µl of EDTA plasma. RESULTS The interassay variation ranged from 1.19 to 13.2%, while the intraassay variation ranged from 0.394 to 12.9% over 6 days of testing. The method was successfully applied to the samples collected for the ACTG Protocol A5277. Plasma concentrations at 1 h and 24 h following 150 mg ITX 5061 daily in HCV monoinfected patients (n=3) ranged from 138 to 518 ng/ml and 33 to 111 ng/ml, respectively. CONCLUSIONS The ITX 5061 assay is accurate and reproducible with a wide linear range and will be used for pharmacokinetic analysis and dose-finding studies in HCV-monoinfected patients.
Collapse
Affiliation(s)
- Jill Hochreiter
- AIDS Clinical Trials Group Pharmacology Specialty Laboratory, Translational Pharmacology Research Core, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
174
|
Vercauteren K, Leroux-Roels G, Meuleman P. Blocking HCV entry as potential antiviral therapy. Future Virol 2012. [DOI: 10.2217/fvl.12.47] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
175
|
Brill A, Yesilaltay A, De Meyer SF, Kisucka J, Fuchs TA, Kocher O, Krieger M, Wagner DD. Extrahepatic high-density lipoprotein receptor SR-BI and apoA-I protect against deep vein thrombosis in mice. Arterioscler Thromb Vasc Biol 2012; 32:1841-7. [PMID: 22652597 DOI: 10.1161/atvbaha.112.252130] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Deep vein thrombosis (DVT) and pulmonary embolism are frequent causes of morbidity and mortality. The goal of our study was to determine whether plasma high-density lipoprotein (HDL), which inversely correlates with the risk of cardiovascular events, affects DVT. METHODS AND RESULTS Using a murine DVT model of inferior vena cava stenosis, we demonstrated that deficiency of the HDL receptor, scavenger receptor class B type I (SR-BI), promotes venous thrombosis. As SR-BI(-/-) mice have increased plasma cholesterol levels and abnormal HDL particles, we tested SR-BI(-/-) mice with an SR-BI liver transgene that normalizes both parameters. These mice also exhibited increased susceptibility to DVT, indicating a protective role of extrahepatic SR-BI. Mice lacking the major HDL apolipoprotein apoA-I or endothelial nitric oxide synthase (eNOS) (a downstream target of endothelial SR-BI signaling) also had a prothrombotic phenotype. Intravenous infusion of human apoA-I, an HDL component and SR-BI ligend, prevented DVT in wild-type but not SR-BI(-/-) or eNOS(-/-) mice, suggesting that its effect is mediated by SR-BI and eNOS. Intravenous apoA-I infusion abolished histamine-induced platelet-endothelial interactions, which are important for DVT initiation. CONCLUSIONS An apoA-I (HDL)-SR-BI-eNOS axis is highly protective in DVT and may provide new targets for prophylaxis and treatment of venous thrombosis.
Collapse
Affiliation(s)
- Alexander Brill
- Immune Disease Institute, Children’s Hospital Boston, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Cai L, Wang Z, Meyer JM, Ji A, van der Westhuyzen DR. Macrophage SR-BI regulates LPS-induced pro-inflammatory signaling in mice and isolated macrophages. J Lipid Res 2012; 53:1472-81. [PMID: 22589557 DOI: 10.1194/jlr.m023234] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Scavenger receptor BI (SR-BI), an HDL receptor, plays a key role in reverse cholesterol transport. In mice, disruption of SR-BI results in hypersensitivity to lipopolysaccharide (LPS) and bacteria-induced septic shock due to adrenal insufficiency and abnormal hepatic pathogen clearance. In this study, we identify an anti-inflammatory role of macrophage SR-BI. Using bone marrow transplantation, we report an enhanced pro-inflammatory response to LPS in wild-type (WT) mice receiving SR-BI-null compared with WT bone marrow cells and a reduced response in SR-BI-null mice receiving WT compared with SR-BI-null cells. Although significant, SR-BI deficiency limited to bone marrow-derived cells promoted a relatively modest enhancement of the inflammatory response to LPS in mice compared with the effect of whole-body SR-BI deletion. Consistent with earlier findings, SR-BI-null primary macrophages exhibited a greater inflammatory cytokine response to LPS than control macro phages. In addition, we showed that overexpression of SR-BI in J774 macrophages attenuated the inflammatory response to LPS. The LPS-induced cytokine expression in both WT and SR-BI-null macrophages was dependent not only on NFκB as previously reported but also on JNK and P38 cell signaling pathways. The increased inflammatory signaling in SR-BI-null cells was not related to alterations in cellular cholesterol content. We conclude that SR-BI plays an important function in regulating the macrophage inflammatory response to LPS.
Collapse
Affiliation(s)
- Lei Cai
- Department of Veterans Affairs Medical Center, Lexington, KY, USA
| | | | | | | | | |
Collapse
|
177
|
Cigarette smoke affects keratinocytes SRB1 expression and localization via H2O2 production and HNE protein adducts formation. PLoS One 2012; 7:e33592. [PMID: 22442701 PMCID: PMC3307738 DOI: 10.1371/journal.pone.0033592] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 02/11/2012] [Indexed: 11/19/2022] Open
Abstract
Scavenger Receptor B1 (SR-B1), also known as HDL receptor, is involved in cellular cholesterol uptake. Stratum corneum (SC), the outermost layer of the skin, is composed of more than 25% cholesterol. Several reports support the view that alteration of SC lipid composition may be the cause of impaired barrier function which gives rise to several skin diseases. For this reason the regulation of the genes involved in cholesterol uptake is of extreme significance for skin health. Being the first shield against external insults, the skin is exposed to several noxious substances and among these is cigarette smoke (CS), which has been recently associated with various skin pathologies. In this study we first have shown the presence of SR-B1 in murine and human skin tissue and then by using immunoblotting, immunoprecipitation, RT-PCR, and confocal microscopy we have demonstrated the translocation and the subsequent lost of SR-B1 in human keratinocytes (cell culture model) after CS exposure is driven by hydrogen peroxide (H2O2) that derives not only from the CS gas phase but mainly from the activation of cellular NADPH oxidase (NOX). This effect was reversed when the cells were pretreated with NOX inhibitors or catalase. Furthermore, CS caused the formation of SR-B1-aldheydes adducts (acrolein and 4-hydroxy-2-nonenal) and the increase of its ubiquitination, which could be one of the causes of SR-B1 loss. In conclusion, exposure to CS, through the production of H2O2, induced post-translational modifications of SR-B1 with the consequence lost of the receptor and this may contribute to the skin physiology alteration as a consequence of the variation of cholesterol uptake.
Collapse
|
178
|
Zhu H, Wong-Staal F, Lee H, Syder A, McKelvy J, Schooley RT, Wyles DL. Evaluation of ITX 5061, a scavenger receptor B1 antagonist: resistance selection and activity in combination with other hepatitis C virus antivirals. J Infect Dis 2012; 205:656-62. [PMID: 22279172 DOI: 10.1093/infdis/jir802] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
ITX 5061 is a scavenger receptor B1 antagonist that has entered phase 1 clinical trials in hepatitis C virus (HCV)-infected humans. We evaluated ITX 5061 in combination with interferon-α, ribavirin, and HCV protease and polymerase inhibitors in a genotype 2a infectious virus system. ITX 5061 is a potent inhibitor of HCV replication and is additive to synergistic with interferon-α, ribavirin, BILN2061, VX950, VX1, and 2'-C-methyladenosine. Resistance selection experiments were performed using a Jc1-FEO virus co-culture system and intermittent ITX 5061 exposure under neomycin selection. We identified a mutant virus with a substitution of aspartic acid for asparagine at the highly conserved position 415 in E2 (N415D). Introduction of this mutation into wild-type virus conferred high-level resistance to ITX 5061. There was no cross-resistance between ITX 5061 and HCV protease inhibitors or interferon-α. These results suggest that ITX 5061 is a promising compound for study in combination with other HCV inhibitors.
Collapse
Affiliation(s)
- Haihong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Institute of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
179
|
Walsh SW, Mehta JP, McGettigan PA, Browne JA, Forde N, Alibrahim RM, Mulligan FJ, Loftus B, Crowe MA, Matthews D, Diskin M, Mihm M, Evans ACO. Effect of the metabolic environment at key stages of follicle development in cattle: focus on steroid biosynthesis. Physiol Genomics 2012; 44:504-17. [PMID: 22414914 DOI: 10.1152/physiolgenomics.00178.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cellular mechanisms that contribute to low estradiol concentrations produced by the preovulatory ovarian follicle in cattle with a compromised metabolic status are largely unknown. To gain insight into the main metabolic mechanisms affecting preovulatory follicle function, two different animal models were used. Experiment 1 compared Holstein-Friesian nonlactating heifers (n = 17) and lactating cows (n = 16) at three stages of preovulatory follicle development: 1) newly selected dominant follicle in the luteal phase (Selection), 2) follicular phase before the LH surge (Differentiation), and 3) preovulatory phase after the LH surge (Luteinization). Experiment 2 compared newly selected dominant follicles in the luteal phase in beef heifers fed a diet of 1.2 times maintenance (M, n = 8) or 0.4 M (n = 11). Lactating cows and 0.4 M beef heifers had higher concentrations of β-hydroxybutyrate, and lower concentrations of glucose, insulin, and IGF-I compared with dairy heifers and 1.2 M beef heifers, respectively. In lactating cows this altered metabolic environment was associated with reduced dominant follicle estradiol and progesterone synthesis during Differentiation and Luteinization, respectively, and in 0.4 M beef heifers with reduced dominant follicle estradiol synthesis. Using a combination of RNA sequencing, Ingenuity Pathway Analysis, and qRT-PCR validation, we identified several important molecular markers involved in steroid biosynthesis, such as the expression of steroidogenic acute regulatory protein (STAR) within developing dominant follicles, to be downregulated by the catabolic state. Based on this, we propose that the adverse metabolic environment caused by lactation or nutritional restriction decreases preovulatory follicle function mainly by affecting cholesterol transport into the mitochondria to initiate steroidogenesis.
Collapse
Affiliation(s)
- S W Walsh
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Wyatt AR, Yerbury JJ, Berghofer P, Greguric I, Katsifis A, Dobson CM, Wilson MR. Clusterin facilitates in vivo clearance of extracellular misfolded proteins. Cell Mol Life Sci 2011; 68:3919-31. [PMID: 21505792 PMCID: PMC11115182 DOI: 10.1007/s00018-011-0684-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Revised: 02/15/2011] [Accepted: 03/31/2011] [Indexed: 10/18/2022]
Abstract
The extracellular deposition of misfolded proteins is a characteristic of many debilitating age-related disorders. However, little is known about the specific mechanisms that act to suppress this process in vivo. Clusterin (CLU) is an extracellular chaperone that forms stable and soluble complexes with misfolded client proteins. Here we explore the fate of complexes formed between CLU and misfolded proteins both in vitro and in a living organism. We show that proteins injected into rats are cleared more rapidly from circulation when complexed with CLU as a result of their more efficient localization to the liver and that this clearance is delayed by pre-injection with the scavenger receptor inhibitor fucoidan. The CLU-client complexes were found to bind preferentially, in a fucoidan-inhibitable manner, to human peripheral blood monocytes and isolated rat hepatocytes and in the latter cell type were internalized and targeted to lysosomes for degradation. The data suggest, therefore, that CLU plays a key role in an extracellular proteostasis system that recognizes, keeps soluble, and then rapidly mediates the disposal of misfolded proteins.
Collapse
Affiliation(s)
- Amy R. Wyatt
- School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 Australia
| | - Justin J. Yerbury
- School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 Australia
| | - Paula Berghofer
- Radiopharmaceutical Research Institute, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234 Australia
| | - Ivan Greguric
- Radiopharmaceutical Research Institute, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234 Australia
| | - Andrew Katsifis
- Radiopharmaceutical Research Institute, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234 Australia
| | - Christopher M. Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Mark R. Wilson
- School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 Australia
| |
Collapse
|
181
|
Hu J, Zhang Z, Shen WJ, Nomoto A, Azhar S. Differential roles of cysteine residues in the cellular trafficking, dimerization, and function of the high-density lipoprotein receptor, SR-BI. Biochemistry 2011; 50:10860-75. [PMID: 22097902 DOI: 10.1021/bi201264y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The scavenger receptor, class B, type I (SR-BI) binds high-density lipoprotein (HDL) and mediates selective delivery of cholesteryl esters (CEs) to the liver and steroidogenic cells of the adrenal glands and gonads. Although it is clear that the large extracellular domain (ECD) of SR-BI binds HDL, the role of ECD in the selective HDL-CE transport remains poorly understood. In this study, we used a combination of mutational and chemical approaches to systematically evaluate the contribution of cysteine residues, especially six cysteine residues of ECD, in SR-BI-mediated selective HDL-CE uptake, intracellular trafficking, and SR-BI dimerization. Pretreatment of SR-BI-overexpressing COS-7 cells with a disulfide (S-S) bond reducing agent, β-mercaptoethanol (100 mM) or dithiothreitol (DTT) (10 mM), modestly but significantly impaired SR-BI-mediated selective HDL-CE uptake. Treatment of SR-BI-overexpressing COS-7 cells with the optimal doses of membrane permeant alkyl methanethiosulfonate (MTS) reagents, positively charged MTSEA or neutral MMTS, that specifically react with the free sulfhydryl group of cysteine reduced the rate of SR-BI-mediated selective HDL-CE uptake, indicating that certain intracellular free cysteine residues may also be critically involved in the selective cholesterol transport process. In contrast, use of membrane impermeant MTS reagent, positively charged MTSET and negatively charged MTSES, showed no such effect. Next, the importance of eight cysteine residues in SR-BI expression, cell surface expression, dimer formation, and selective HDL-derived CE transport was evaluated. These cysteine residues were replaced either singly or in pairs with serine, and the mutant SR-BIs were expressed in either COS-7 or CHO cells. Four mutations, C280S, C321S, C323S, and C334S, of the ECD, either singly or in various pair combinations, resulted in significant decreases in SR-BI (HDL) binding activity, selective CE uptake, and trafficking to the cell surface. Surprisingly, we found that mutation of the two remaining cysteine residues, C251 and C384 of the ECD, had no effect on either SR-BI expression or function. Other cysteine mutations and substitutions were also without effect. Western blot data indicated that single and double mutations at C280, C321, C323, and C334 residues strongly favor dimer formation. However, they are rendered nonfunctional presumably because of mutation-induced formation of aberrant disulfide linkages resulting in inhibition of optimal HDL binding and, thus, selective HDL-CE uptake. These results provide novel insights into the functional role of four cysteine residues, C280, C321, C323, and C334, of the SR-BI ECD in SR-BI expression and trafficking to the cell surface, its dimerization, and associated selective CE transport function.
Collapse
Affiliation(s)
- Jie Hu
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California 94304, United States
| | | | | | | | | |
Collapse
|
182
|
Abstract
All animals endowed with the ability to detect light through visual pigments must have evolved pathways in which dietary precursors for the involved chromophore are absorbed, transported, and metabolized. Knowledge about this metabolism has exponentially increased over the past decade. Genetic manipulation of animal models provided insights into the metabolic flow of these compounds through the body and in the eyes, unraveling their regulatory aspects and aberrant side reactions. The scheme that emerges reveals a common origin of key components for chromophore metabolism that have been adapted to the specific requirements of retinoid biology in different animal classes.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| |
Collapse
|
183
|
Dominiczak MH, Caslake MJ. Apolipoproteins: metabolic role and clinical biochemistry applications. Ann Clin Biochem 2011; 48:498-515. [PMID: 22028427 DOI: 10.1258/acb.2011.011111] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lipoprotein metabolism is dependent on apolipoproteins, multifunctional proteins that serve as templates for the assembly of lipoprotein particles, maintain their structure and direct their metabolism through binding to membrane receptors and regulation of enzyme activity. The three principal functions of lipoproteins are contribution to interorgan fuel (triglyceride) distribution (by means of the fuel transport pathway), to the maintenance of the extracellular cholesterol pool (by means of the overflow pathway) and reverse cholesterol transport. The most important clinical application of apolipoprotein measurements in the plasma is in the assessment of cardiovascular risk. Concentrations of apolipoprotein B and apolipoprotein AI (and their ratio) seem to be better markers of cardiovascular risk than conventional markers such as total cholesterol and LDL-cholesterol. Apolipoprotein measurements are also better standardized than the conventional tests. We suggest that measurements of apolipoprotein AI and apolipoprotein B are included as a part of the specialist lipid profile. We also suggest that lipoprotein (a) should be measured as part of the initial assessment of dyslipidaemias because of its consistent association with cardiovascular risk. Genotyping of apolipoprotein E isoforms remains useful in the investigation of mixed dyslipidaemias. Lastly, the role of postprandial metabolism is increasingly recognized in the context of atherogenesis, obesity and diabetes. This requires better markers of chylomicrons, very-low-density lipoproteins and remnant particles. Measurements of apolipoprotein B48 and remnant lipoprotein cholesterol are currently the key tests in this emerging field.
Collapse
Affiliation(s)
- Marek H Dominiczak
- NHS Greater Glasgow and Clyde Clinical Biochemistry Service and College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 0YN, UK.
| | | |
Collapse
|
184
|
Valacchi G, Sticozzi C, Lim Y, Pecorelli A. Scavenger receptor class B type I: a multifunctional receptor. Ann N Y Acad Sci 2011; 1229:E1-7. [DOI: 10.1111/j.1749-6632.2011.06205.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
185
|
Miller WL, Bose HS. Early steps in steroidogenesis: intracellular cholesterol trafficking. J Lipid Res 2011; 52:2111-2135. [PMID: 21976778 DOI: 10.1194/jlr.r016675] [Citation(s) in RCA: 368] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Steroid hormones are made from cholesterol, primarily derived from lipoproteins that enter cells via receptor-mediated endocytosis. In endo-lysosomes, cholesterol is released from cholesterol esters by lysosomal acid lipase (LAL; disordered in Wolman disease) and exported via Niemann-Pick type C (NPC) proteins (disordered in NPC disease). These diseases are characterized by accumulated cholesterol and cholesterol esters in most cell types. Mechanisms for trans-cytoplasmic cholesterol transport, membrane insertion, and retrieval from membranes are less clear. Cholesterol esters and "free" cholesterol are enzymatically interconverted in lipid droplets. Cholesterol transport to the cholesterol-poor outer mitochondrial membrane (OMM) appears to involve cholesterol transport proteins. Cytochrome P450scc (CYP11A1) then initiates steroidogenesis by converting cholesterol to pregnenolone on the inner mitochondrial membrane (IMM). Acute steroidogenic responses are regulated by cholesterol delivery from OMM to IMM, triggered by the steroidogenic acute regulatory protein (StAR). Chronic steroidogenic capacity is determined by CYP11A1 gene transcription. StAR mutations cause congenital lipoid adrenal hyperplasia, with absent steroidogenesis, potentially lethal salt loss, and 46,XY sex reversal. StAR mutations initially destroy most, but not all steroidogenesis; low levels of StAR-independent steroidogenesis are lost later due to cellular damage, explaining the clinical findings. Rare P450scc mutations cause a similar syndrome. This review addresses these early steps in steroid biosynthesis.
Collapse
Affiliation(s)
- Walter L Miller
- Department of Pediatrics, School of Medicine, University of California, San Francisco, CA 94143; UCSF Benioff Children's Hospital, San Francisco, CA 94143.
| | - Himangshu S Bose
- Department of Biochemistry, Mercer University School of Medicine, Savannah, GA 31404; and; Memorial University Medical Center, Savannah, GA 31404
| |
Collapse
|
186
|
Salomon RG, Gu X. Critical insights into cardiovascular disease from basic research on the oxidation of phospholipids: the γ-hydroxyalkenal phospholipid hypothesis. Chem Res Toxicol 2011; 24:1791-802. [PMID: 21870852 DOI: 10.1021/tx200207z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Basic research, exploring the hypothesis that γ-hydroxyalkenal phospholipids are generated in vivo through oxidative cleavage of polyunsaturated phospholipids, is delivering a bonanza of molecular mechanistic insights into cardiovascular disease. Rather than targeting a specific pathology, these studies were predicated on the presumption that a fundamental understanding of lipid oxidation is likely to provide critical insights into disease processes. This investigational approach, from the chemistry of biomolecules to disease phenotype, that complements the more common opposite paradigm, is proving remarkably productive.
Collapse
Affiliation(s)
- Robert G Salomon
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106-7078, USA.
| | | |
Collapse
|
187
|
Mechanisms regulating hepatic SR-BI expression and their impact on HDL metabolism. Atherosclerosis 2011; 217:299-307. [DOI: 10.1016/j.atherosclerosis.2011.05.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 05/11/2011] [Accepted: 05/26/2011] [Indexed: 11/22/2022]
|
188
|
Kocher O, Birrane G, Yesilaltay A, Shechter S, Pal R, Daniels K, Krieger M. Identification of the PDZ3 domain of the adaptor protein PDZK1 as a second, physiologically functional binding site for the C terminus of the high density lipoprotein receptor scavenger receptor class B type I. J Biol Chem 2011; 286:25171-86. [PMID: 21602281 PMCID: PMC3137089 DOI: 10.1074/jbc.m111.242362] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 04/21/2011] [Indexed: 12/11/2022] Open
Abstract
The normal expression, cell surface localization, and function of the murine high density lipoprotein receptor scavenger receptor class B type I (SR-BI) in hepatocytes in vivo, and thus normal lipoprotein metabolism, depend on its four PDZ domain (PDZ1-PDZ4) containing cytoplasmic adaptor protein PDZK1. Previous studies showed that the C terminus of SR-BI ("target peptide") binds directly to PDZ1 and influences hepatic SR-BI protein expression. Unexpectedly an inactivating mutation in PDZ1 (Tyr(20) → Ala) only partially, rather than completely, suppresses the ability of PDZK1 to control hepatic SR-BI. We used isothermal titration calorimetry to show that PDZ3, but not PDZ2 or PDZ4, can also bind the target peptide (K(d) = 37.0 μm), albeit with ∼10-fold lower affinity than PDZ1. This binding is abrogated by a Tyr(253) → Ala substitution. Comparison of the 1.5-Å resolution crystal structure of PDZ3 with its bound target peptide ((505)QEAKL(509)) to that of peptide-bound PDZ1 indicated fewer target peptide stabilizing atomic interactions (hydrogen bonds and hydrophobic interactions) in PDZ3. A double (Tyr(20) → Ala (PDZ1) + Tyr(253) → Ala (PDZ3)) substitution abrogated all target peptide binding to PDZK1. In vivo hepatic expression of a singly substituted (Tyr(253) → Ala (PDZ3)) PDZK1 transgene (Tg) was able to correct all of the SR-BI-related defects in PDZK1 knock-out mice, whereas the doubly substituted [Tyr(20) → Ala (PDZ1) + Tyr(253) → Ala (PDZ3)]Tg was unable to correct these defects. Thus, we conclude that PDZK1-mediated control of hepatic SR-BI requires direct binding of the SR-BI C terminus to either the PDZ1 or PDZ3 domains, and that binding to both domains simultaneously is not required for PDZK1 control of hepatic SR-BI.
Collapse
Affiliation(s)
- Olivier Kocher
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | |
Collapse
|
189
|
Exoplasmic cysteine Cys384 of the HDL receptor SR-BI is critical for its sensitivity to a small-molecule inhibitor and normal lipid transport activity. Proc Natl Acad Sci U S A 2011; 108:12243-8. [PMID: 21746906 DOI: 10.1073/pnas.1109078108] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The HDL receptor, scavenger receptor, class B, type I (SR-BI), is a homooligomeric cell surface glycoprotein that controls HDL structure and metabolism by mediating the cellular selective uptake of lipids, mainly cholesteryl esters, from HDL. The mechanism underlying SR-BI-mediated lipid transfer, which differs from classic receptor-mediated endocytosis, involves a two-step process (binding followed by lipid transport) that is poorly understood. Our previous structure/activity analysis of the small-molecule inhibitor blocker of lipid transport 1 (BLT-1), which potently (IC(50) ∼ 50 nM) blocks SR-BI-mediated lipid transport, established that the sulfur in BLT-1's thiosemicarbazone moiety was essential for activity. Here we show that BLT-1 is an irreversible inhibitor of SR-BI, raising the possibility that cysteine(s) in SR-BI interact with BLT-1. Mass spectrometric analysis of purified SR-BI showed two of its six exoplasmic cysteines have free thiol groups (Cys251 and Cys384). Converting Cys384 (but not Cys251) to serine resulted in complete BLT-1 insensitivity, establishing that the unique molecular target of BLT-1 inhibition of cellular SR-BI dependent lipid transport is SR-BI itself. The C384S substitution reduced the receptor's intrinsic lipid uptake activity by approximately 60% without dramatically altering its surface expression, homooligomerization, or HDL binding. Thus, a small-molecule screening approach identified a key residue in SR-BI involved in lipid transport, providing a powerful springboard into the analyses of the structure and mechanism of SR-BI, and highlighting the power of this approach for such analyses.
Collapse
|
190
|
Sharma NR, Mateu G, Dreux M, Grakoui A, Cosset FL, Melikyan GB. Hepatitis C virus is primed by CD81 protein for low pH-dependent fusion. J Biol Chem 2011; 286:30361-30376. [PMID: 21737455 DOI: 10.1074/jbc.m111.263350] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) entry into permissive cells is a complex process that involves interactions with at least four co-factors followed by endocytosis and low pH-dependent fusion with endosomes. The precise sequence of receptor engagement and their roles in promoting HCV E1E2 glycoprotein-mediated fusion are poorly characterized. Because cell-free HCV tolerates an acidic environment, we hypothesized that binding to one or more receptors on the cell surface renders E1E2 competent to undergo low pH-induced conformational changes and promote fusion with endosomes. To test this hypothesis, we examined the effects of low pH and of the second extracellular loop (ECL2) of CD81, one of the four entry factors, on HCV infectivity. Pretreatment with an acidic buffer or with ECL2 enhanced infection through changing the E1E2 conformation, as evidenced by the altered reactivity of these proteins with conformation-specific antibodies and stable association with liposomes. However, neither of the two treatments alone permitted direct fusion with the cell plasma membrane. Sequential HCV preincubation with ECL2 and acidic buffer in the absence of target cells resulted in a marked loss of infectivity, implying that the receptor-bound HCV is primed for low pH-dependent conformational changes. Indeed, soluble receptor-pretreated HCV fused with the cell plasma membrane at low pH under conditions blocking an endocytic entry pathway. These findings suggest that CD81 primes HCV for low pH-dependent fusion early in the entry process. The simple triggering paradigm and intermediate conformations of E1E2 identified in this study could help guide future vaccine and therapeutic efforts to block HCV infection.
Collapse
Affiliation(s)
- Nishi R Sharma
- Division of Pediatric Infectious Diseases, Emory University Children's Center, Atlanta, Georgia 30322
| | - Guaniri Mateu
- Division of Infectious Diseases, Department of Medicine, Lyon, F-69007, France
| | - Marlene Dreux
- Université de Lyon, UCB-Lyon1, IFR128, Lyon, F-69007, France; INSERM, U758, Lyon, F-69364, France; Ecole Normale Supérieure de Lyon, Lyon, F-69364, France
| | - Arash Grakoui
- Division of Infectious Diseases, Department of Medicine, Lyon, F-69007, France
| | - François-Loïc Cosset
- Université de Lyon, UCB-Lyon1, IFR128, Lyon, F-69007, France; INSERM, U758, Lyon, F-69364, France; Ecole Normale Supérieure de Lyon, Lyon, F-69364, France
| | - Gregory B Melikyan
- Division of Pediatric Infectious Diseases, Emory University Children's Center, Atlanta, Georgia 30322; Children's Healthcare of Atlanta, Atlanta, Georgia 30322.
| |
Collapse
|
191
|
Cigarette smoke exposure causes changes in Scavenger Receptor B1 level and distribution in lung cells. Int J Biochem Cell Biol 2011; 43:1065-70. [DOI: 10.1016/j.biocel.2009.05.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 05/19/2009] [Accepted: 05/23/2009] [Indexed: 02/07/2023]
|
192
|
Gaidukov L, Nager AR, Xu S, Penman M, Krieger M. Glycine dimerization motif in the N-terminal transmembrane domain of the high density lipoprotein receptor SR-BI required for normal receptor oligomerization and lipid transport. J Biol Chem 2011; 286:18452-64. [PMID: 21454587 PMCID: PMC3099662 DOI: 10.1074/jbc.m111.229872] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 03/23/2011] [Indexed: 12/15/2022] Open
Abstract
Scavenger receptor class B, type I (SR-BI), a CD36 superfamily member, is an oligomeric high density lipoprotein (HDL) receptor that mediates negatively cooperative HDL binding and selective lipid uptake. We identified in the N-terminal transmembrane (N-TM) domain of SR-BI a conserved glycine dimerization motif, G(15)X(2)G(18)X(3)AX(2)G(25), of which the submotif G(18)X(3)AX(2)G(25) significantly contributes to homodimerization and lipid uptake activity. SR-BI variants were generated by mutations (single or multiple Gly → Leu substitutions) or by replacing the N-TM domain with those from other CD36 superfamily members containing (croquemort) or lacking (lysosomal integral membrane protein (LIMP) II) this glycine motif (chimeras). None of the SR-BI variants exhibited altered surface expression (based on antibody binding) or HDL binding. However, the G15L/G18L/G25L triple mutant exhibited reductions in cell surface homo-oligomerization (>10-fold) and the rate of selective lipid uptake (∼ 2-fold). Gly(18) and Gly(25) were necessary for normal lipid uptake activity of SR-BI and the SR-BI/croquemort chimera. The lipid uptake activity of the glycine motif-deficient SR-BI/LIMP II chimera was low but could be increased by introducing glycines at positions 18 and 25. The rate of lipid uptake mediated by SR-BI/LIMP II chimeras was proportional to the extent of receptor oligomerization. Thus, the glycine dimerization motif G(18)X(3)AX(2)G(25) in the N-TM domain of SR-BI contributes substantially to the homo-oligomerization and lipid transport activity of SR-BI but does not influence the negative cooperativity of HDL binding. Oligomerization-independent binding cooperativity suggests that classic allostery is not involved and that the negative cooperativity is probably the consequence of a "lattice effect" (interligand steric interference accompanying binding to adjacent receptors).
Collapse
Affiliation(s)
- Leonid Gaidukov
- From the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Andrew R. Nager
- From the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Shangzhe Xu
- From the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Marsha Penman
- From the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Monty Krieger
- From the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
193
|
Yates M, Kolmakova A, Zhao Y, Rodriguez A. Clinical impact of scavenger receptor class B type I gene polymorphisms on human female fertility. Hum Reprod 2011; 26:1910-6. [PMID: 21531995 DOI: 10.1093/humrep/der124] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The goal of this study was to evaluate the association of SCARB1 single nucleotide polymorphisms (SNPs) and fertility outcomes in women undergoing IVF. METHODS Between November 2007 and March 2010, granulosa cells and follicular fluid were collected from women undergoing IVF. Five SCARB1 SNPs were sequenced and progesterone levels were measured in the follicular fluid. Fertility measurements were defined as the presence of gestational sac(s) and fetal heartbeat(s). RESULTS The study group consisted of 274 women (mean age of 36.4 ± 4.6 years). The racial/ethnic composition was 55% Caucasian (n = 152), 25% African-American (n = 68), 12% Asian (n = 34), 5% Hispanic, (n = 14) and 2% other (n = 6). There was a significant difference in the genotype frequencies of the SCARB1 SNPs across the groups. Subjects who were homozygous for the minor allele in the rs5888 SNP had higher follicular progesterone levels than those who were homozygous for the major allele (P = 0.03). In the Caucasian group, carriers of the minor A allele of the rs4238001 SNP had lower follicular progesterone levels compared with homozygous carriers of the major G allele (P = 0.04). In this group, follicular progesterone levels were highly predictive of the rs4238001 SNP (P = 0.03). In the entire cohort, minor allele carriers of rs4238001 did not have any viable fetuses at Day 42 following embryo transfers (P = 0.04). In the African-American group in particular, there was also an association between rs10846744 and gestational sac(s) (P = 0.006), and fetal heartbeat(s) (P = 0.005). CONCLUSIONS In part, SCARB1 rs4238001 and rs10846744 SNPs may contribute to human female infertility.
Collapse
Affiliation(s)
- Melissa Yates
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
194
|
Ji A, Meyer JM, Cai L, Akinmusire A, de Beer MC, Webb NR, van der Westhuyzen DR. Scavenger receptor SR-BI in macrophage lipid metabolism. Atherosclerosis 2011; 217:106-12. [PMID: 21481393 DOI: 10.1016/j.atherosclerosis.2011.03.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 03/07/2011] [Accepted: 03/11/2011] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To investigate the mechanisms by which macrophage scavenger receptor BI (SR-BI) regulates macrophage cholesterol homeostasis and protects against atherosclerosis. METHODS AND RESULTS The expression and function of SR-BI was investigated in cultured mouse bone marrow-derived macrophages (BMM). SR-BI, the other scavenger receptors SRA and CD36 and the ATP-binding cassette transporters ABCA1 and ABCG1 were each distinctly regulated during BMM differentiation. SR-BI levels increased transiently to significant levels during culture. SR-BI expression in BMM was reversibly down-regulated by lipid loading with modified LDL; SR-BI was shown to be present both on the cell surface as well as intracellularly. BMM exhibited selective HDL CE uptake, however, this was not dependent on SR-BI or another potential candidate glycosylphosphatidylinositol anchored high density lipoprotein binding protein 1 (GPIHBP1). SR-BI played a significant role in facilitating bidirectional cholesterol flux in non lipid-loaded cells. SR-BI expression enhanced both cell cholesterol efflux and cholesterol influx from HDL, but did not lead to altered cellular cholesterol mass. SR-BI-dependent efflux occurred to larger HDL particles but not to smaller HDL(3). Following cholesterol loading, ABCA1 and ABCG1 were up-regulated and served as the major contributors to cholesterol efflux, while SR-BI expression was down-regulated. CONCLUSION Our results suggest that SR-BI plays a significant role in macrophage cholesterol flux that may partly account for its effects on atherogenesis.
Collapse
Affiliation(s)
- Ailing Ji
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA.
| | | | | | | | | | | | | |
Collapse
|
195
|
Shahzad MMK, Mangala LS, Han HD, Lu C, Bottsford-Miller J, Nishimura M, Mora EM, Lee JW, Stone RL, Pecot CV, Thanapprapasr D, Roh JW, Gaur P, Nair MP, Park YY, Sabnis N, Deavers MT, Lee JS, Ellis LM, Lopez-Berestein G, McConathy WJ, Prokai L, Lacko AG, Sood AK. Targeted delivery of small interfering RNA using reconstituted high-density lipoprotein nanoparticles. Neoplasia 2011; 13:309-19. [PMID: 21472135 PMCID: PMC3071079 DOI: 10.1593/neo.101372] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 01/22/2011] [Accepted: 01/24/2011] [Indexed: 12/12/2022]
Abstract
RNA interference holds tremendous potential as a therapeutic approach, especially in the treatment of malignant tumors. However, efficient and biocompatible delivery methods are needed for systemic delivery of small interfering RNA (siRNA). To maintain a high level of growth, tumor cells scavenge high-density lipoprotein (HDL) particles by overexpressing its receptor: scavenger receptor type B1 (SR-B1). In this study, we exploited this cellular characteristic to achieve efficient siRNA delivery and established a novel formulation of siRNA by incorporating it into reconstituted HDL (rHDL) nanoparticles. Here, we demonstrate that rHDL nanoparticles facilitate highly efficient systemic delivery of siRNA in vivo, mediated by the SR-B1. Moreover, in therapeutic proof-of-concept studies, these nanoparticles were effective in silencing the expression of two proteins that are key to cancer growth and metastasis (signal transducer and activator of transcription 3 and focal adhesion kinase) in orthotopic mouse models of ovarian and colorectal cancer. These data indicate that an rHDL nanoparticle is a novel and highly efficient siRNA carrier, and therefore, this novel technology could serve as the foundation for new cancer therapeutic approaches.
Collapse
Affiliation(s)
- Mian M K Shahzad
- Department of Gynecologic Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Nieland TJ, Xu S, Penman M, Krieger M. Negatively cooperative binding of high-density lipoprotein to the HDL receptor SR-BI. Biochemistry 2011; 50:1818-30. [PMID: 21254782 PMCID: PMC3065119 DOI: 10.1021/bi101657j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Scavenger receptor class B, type I (SR-BI), is a high-density lipoprotein (HDL) receptor, which also binds low-density lipoprotein (LDL), and mediates the cellular selective uptake of cholesteryl esters from lipoproteins. SR-BI also is a coreceptor for hepatitis C virus and a signaling receptor that regulates cell metabolism. Many investigators have reported that lipoproteins bind to SR-BI via a single class of independent (not interacting), high-affinity binding sites (one site model). We have reinvestigated the ligand concentration dependence of (125)I-HDL binding to SR-BI and SR-BI-mediated specific uptake of [(3)H]CE from [(3)H]CE-HDL using an expanded range of ligand concentrations (<1 μg of protein/mL, lower than previously reported). Scatchard and nonlinear least-squares model fitting analyses of the binding and uptake data were both inconsistent with a single class of independent binding sites binding univalent lipoprotein ligands. The data are best fit by models in which SR-BI has either two independent classes of binding sites or one class of sites exhibiting negative cooperativity due to either classic allostery or ensemble effects ("lattice model"). Similar results were observed for LDL. Application of the "infinite dilution" dissociation rate method established that the binding of (125)I-HDL to SR-BI at 4 °C exhibits negative cooperativity. The unexpected complexity of the interactions of lipoproteins with SR-BI should be taken into account when interpreting the results of experiments that explore the mechanism(s) by which SR-BI mediates ligand binding, lipid transport, and cell signaling.
Collapse
Affiliation(s)
- Thomas J.F. Nieland
- Department of Biology, Massachusetts Institute of Technology, Room 68-483, 77 Massachusetts Avenue, Cambridge, MA 02139
- Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142
| | - Shangzhe Xu
- Department of Biology, Massachusetts Institute of Technology, Room 68-483, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Marsha Penman
- Department of Biology, Massachusetts Institute of Technology, Room 68-483, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Monty Krieger
- Department of Biology, Massachusetts Institute of Technology, Room 68-483, 77 Massachusetts Avenue, Cambridge, MA 02139
| |
Collapse
|
197
|
Nieland TJF, Xu S, Penman M, Krieger M. Negatively cooperative binding of high-density lipoprotein to the HDL receptor SR-BI. Biochemistry 2011. [PMID: 21254782 DOI: 10.1021/bi1011657j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Scavenger receptor class B, type I (SR-BI), is a high-density lipoprotein (HDL) receptor, which also binds low-density lipoprotein (LDL), and mediates the cellular selective uptake of cholesteryl esters from lipoproteins. SR-BI also is a coreceptor for hepatitis C virus and a signaling receptor that regulates cell metabolism. Many investigators have reported that lipoproteins bind to SR-BI via a single class of independent (not interacting), high-affinity binding sites (one site model). We have reinvestigated the ligand concentration dependence of (125)I-HDL binding to SR-BI and SR-BI-mediated specific uptake of [(3)H]CE from [(3)H]CE-HDL using an expanded range of ligand concentrations (<1 μg of protein/mL, lower than previously reported). Scatchard and nonlinear least-squares model fitting analyses of the binding and uptake data were both inconsistent with a single class of independent binding sites binding univalent lipoprotein ligands. The data are best fit by models in which SR-BI has either two independent classes of binding sites or one class of sites exhibiting negative cooperativity due to either classic allostery or ensemble effects ("lattice model"). Similar results were observed for LDL. Application of the "infinite dilution" dissociation rate method established that the binding of (125)I-HDL to SR-BI at 4 °C exhibits negative cooperativity. The unexpected complexity of the interactions of lipoproteins with SR-BI should be taken into account when interpreting the results of experiments that explore the mechanism(s) by which SR-BI mediates ligand binding, lipid transport, and cell signaling.
Collapse
Affiliation(s)
- Thomas J F Nieland
- Department of Biology, Massachusetts Institute of Technology, Room 68-483, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | | | | | | |
Collapse
|
198
|
Vergeer M, Korporaal SJA, Franssen R, Meurs I, Out R, Hovingh GK, Hoekstra M, Sierts JA, Dallinga-Thie GM, Motazacker MM, Holleboom AG, Van Berkel TJC, Kastelein JJP, Van Eck M, Kuivenhoven JA. Genetic variant of the scavenger receptor BI in humans. N Engl J Med 2011; 364:136-45. [PMID: 21226579 DOI: 10.1056/nejmoa0907687] [Citation(s) in RCA: 257] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND In mice, the scavenger receptor class B type I (SR-BI) is essential for the delivery of high-density lipoprotein (HDL) cholesterol to the liver and steroidogenic organs. Paradoxically, elevated HDL cholesterol levels are associated with increased atherosclerosis in SR-BI-knockout mice. It is unclear what role SR-BI plays in human metabolism. METHODS We sequenced the gene encoding SR-BI in persons with elevated HDL cholesterol levels and identified a family with a new missense mutation (P297S). The functional effects of the P297S mutation on HDL binding, cellular cholesterol uptake and efflux, atherosclerosis, platelet function, and adrenal function were studied. RESULTS Cholesterol uptake from HDL by primary murine hepatocytes that expressed mutant SR-BI was reduced to half of that of hepatocytes expressing wild-type SR-BI. Carriers of the P297S mutation had increased HDL cholesterol levels (70.4 mg per deciliter [1.8 mmol per liter], vs. 53.4 mg per deciliter [1.4 mmol per liter] in noncarriers; P<0.001) and a reduced capacity for efflux of cholesterol from macrophages, but the carotid artery intima-media thickness was similar in carriers and in family noncarriers. Platelets from carriers had increased unesterified cholesterol content and impaired function. In carriers, adrenal steroidogenesis was attenuated, as evidenced by decreased urinary excretion of sterol metabolites, a decreased response to corticotropin stimulation, and symptoms of diminished adrenal function. CONCLUSIONS We identified a family with a functional mutation in SR-BI. The mutation carriers had increased HDL cholesterol levels and a reduction in cholesterol efflux from macrophages but no significant increase in atherosclerosis. Reduced SR-BI function was associated with altered platelet function and decreased adrenal steroidogenesis. (Funded by the European Community and others.).
Collapse
Affiliation(s)
- Menno Vergeer
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Syder AJ, Lee H, Zeisel MB, Grove J, Soulier E, Macdonald J, Chow S, Chang J, Baumert TF, McKeating JA, McKelvy J, Wong-Staal F. Small molecule scavenger receptor BI antagonists are potent HCV entry inhibitors. J Hepatol 2011; 54:48-55. [PMID: 20932595 DOI: 10.1016/j.jhep.2010.06.024] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 06/10/2010] [Accepted: 06/14/2010] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS ITX 5061 is a clinical stage small molecule compound that promotes high-density lipoprotein (HDL) levels in animals and patients by targeting the scavenger receptor BI protein pathway. Since SR-BI is a known co-receptor for HCV infection, we evaluated these compounds for their effects on HCV entry. METHODS We obtained ITX 5061 and related compounds to characterize their interaction with SR-BI and effects on HCV entry and infection. RESULTS We confirmed that a tritium-labeled compound analog (ITX 7650) binds cells expressing SR-BI, and both ITX 5061 and ITX 7650 compete for HDL-mediated lipid transfer in an SR-BI dependent manner. Both molecules inhibit HCVcc and HCVpp infection of primary human hepatocytes and/or human hepatoma cell lines and have minimal effects on HCV RNA replication. Kinetic studies suggest that the compounds act at an early post-binding step. CONCLUSIONS These results suggest that the ITX compounds inhibit HCV infection with a mechanism of action distinct from other HCV therapies under development. Since ITX 5061 has already been evaluated in over 280 patients with good pharmacokinetic and safety profiles, it warrants proof-of-concept clinical studies in HCV infected patients.
Collapse
Affiliation(s)
- Andrew J Syder
- iTherX Pharmaceuticals, Inc., San Diego, CA 92191-0530, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Scavenger receptor class B type I (SR-BI) regulates perivascular macrophages and modifies amyloid pathology in an Alzheimer mouse model. Proc Natl Acad Sci U S A 2010; 107:20816-21. [PMID: 21076037 DOI: 10.1073/pnas.1005888107] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Scavenger receptor class B type I (SR-BI) is a high-density lipoprotein receptor that regulates cholesterol efflux from the peripheral tissues to the liver. SR-BI has been identified on astrocytes and vascular smooth muscle cells in Alzheimer's disease brain and has been shown to mediate adhesion of microglia to fibrillar amyloid-β (Aβ). Here we report that SR-BI mediates perivascular macrophage response and regulates Aβ-related pathology and cerebral amyloid angiopathy in an Alzheimer's mouse model. Reduction or deletion of SR-BI gene in heterozygous or homozygous deficient mice (SR-BI(+/-), (-/-)) resulted in a significant increase in perivascular macrophages in the brain. SR-BI deletion had no effect on apolipoprotein E or apolipoprotein AI levels in the mouse brain. Our analysis revealed increased levels of SR-BI expression in the brains of human amyloid precursor protein (Swedish, Indiana) transgenic mice (J20 line). To evaluate the role of SR-BI in Alzheimer's disease pathogenesis, we inactivated one SR-BI allele in J20 transgenic mice. SR-BI reduction in J20/SR-BI(+/-) mice enhanced fibrillar amyloid deposition and cerebral amyloid angiopathy and also exacerbated learning and memory deficits compared with J20 littermates. Immunohistochemical analysis revealed localization of SR-BI on perivascular macrophages in tight association with Aβ deposits. Our data suggest that SR-BI reduction impairs the response of perivascular macrophages to Aβ and enhances the Aβ-related phenotype and cerebral amyloid angiopathy in J20 mice. These results reveal that SR-BI, a scavenger receptor primarily involved in high-density lipoprotein cholesterol transport, plays an essential role in Alzheimer's disease and cerebral amyloid angiopathy.
Collapse
|