151
|
Abstract
Tight junctions (TJs) are intercellular contacts that seal the space between the individual cells of an epithelial sheet or stratifying epithelia, such as the epidermis, so that they can collectively separate tissue compartments. Intercellular junctions, such as adherens and TJs, play a crucial role in the formation and maintenance of epithelial and endothelial barriers. A variety of components including claudins, occludin, tricellulin, zonula occluden proteins and junctional adhesion molecules have been identified in complex localization patterns in mammalian epidermis. In several skin diseases that are characterized by impaired skin barrier function, altered proliferation/differentiation of the epidermis and/or infiltration of inflammatory cells, altered expression patterns of TJ proteins have been observed. This review is aimed at providing an insight into the molecular composition, tools for identification and understanding the role of TJs in skin diseases and barrier function regulation.
Collapse
|
152
|
Abstract
Cell migration is fundamental to establishing and maintaining the proper organization of multicellular organisms. Morphogenesis can be viewed as a consequence, in part, of cell locomotion, from large-scale migrations of epithelial sheets during gastrulation, to the movement of individual cells during development of the nervous system. In an adult organism, cell migration is essential for proper immune response, wound repair, and tissue homeostasis, while aberrant cell migration is found in various pathologies. Indeed, as our knowledge of migration increases, we can look forward to, for example, abating the spread of highly malignant cancer cells, retarding the invasion of white cells in the inflammatory process, or enhancing the healing of wounds. This article is organized in two main sections. The first section is devoted to the single-cell migrating in isolation such as occurs when leukocytes migrate during the immune response or when fibroblasts squeeze through connective tissue. The second section is devoted to cells collectively migrating as part of multicellular clusters or sheets. This second type of migration is prevalent in development, wound healing, and in some forms of cancer metastasis.
Collapse
Affiliation(s)
- Xavier Trepat
- Institute for Bioengineering of Catalonia, Barcelona, Spain.
| | | | | |
Collapse
|
153
|
Function of junctional adhesion molecules (JAMs) in leukocyte migration and homeostasis. Arch Immunol Ther Exp (Warsz) 2012; 61:15-23. [PMID: 22940878 DOI: 10.1007/s00005-012-0199-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 07/23/2012] [Indexed: 01/09/2023]
Abstract
Homeostasis is a word widely used in the scientific community to refer to the property of a system to maintain its uniformity and functionality. In living organisms, the word refers to the concept enunciated 150 years ago by C. Bernard by which external variations must be compensated for in order to maintain internal conditions compatible with life. This is especially true in the case of highly dynamic system such as the hematopoietic system that requires the coordinated control of cell proliferation and death within specialized microenvironments that are anatomically distinct. As a consequence, hematopoietic cell adhesion and migration must be tightly controlled in order for hematopoietic cells to reach and to be maintained in appropriate microenvironments. The junctional adhesion molecules (JAMs) are adhesion molecules that belong to the immunoglobulin superfamily (IgSf) and that have been initially identified as important players controlling vascular permeability and leukocyte transendothelial migration. This involves the regulated localization of the JAMs at lateral endothelial cell/cell borders and their interaction with leukocyte integrins. More recently, some of the JAM family members have also been found to be expressed by stromal cells and to regulate chemokine secretion within lymphoid organs, acting not only on leukocyte transendothelial migration, but also on hematopoietic cell retention within specialized microenvironments. This review summarizes recent progress in understanding the role of the JAMs in leukocyte adhesion and migration to tentatively draw an integrated view of the homeostatic function of the JAMs within the hematopoietic system.
Collapse
|
154
|
Abstract
Claudins are tight junction integral membrane proteins that are key regulators of the paracellular pathway. The paracellular pathways in the inner ear and in the kidney are predominant routes for transepithelial cation transport. Mutations in claudin-14 cause nonsyndromic recessive deafness DFNB29. A recent genome-wide association study has identified claudin-14 as a major risk gene of hypercalciuric nephrolithiasis. In vitro analyses show that claudin-14 functions as a cation barrier in epithelial cells. The barrier function of claudin-14 is crucial for generating the K(+) gradient between perilymph and endolymph in the inner ear. However, neither homozygous individuals with DFNB29 mutations nor claudin-14 knockout mice show any renal dysfunction. In this short review, I discuss several possible mechanisms to integrate the physiological function of claudin-14 in the inner ear and the kidney.
Collapse
Affiliation(s)
- Jianghui Hou
- Renal Division, Washington University Medical School, St. Louis, Missouri, USA.
| |
Collapse
|
155
|
Aravindan RG, Fomin VP, Naik UP, Modelski MJ, Naik MU, Galileo DS, Duncan RL, Martin-Deleon PA. CASK interacts with PMCA4b and JAM-A on the mouse sperm flagellum to regulate Ca2+ homeostasis and motility. J Cell Physiol 2012; 227:3138-50. [PMID: 22020416 PMCID: PMC3383836 DOI: 10.1002/jcp.24000] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Deletion of the highly conserved gene for the major Ca(2+) efflux pump, Plasma membrane calcium/calmodulin-dependent ATPase 4b (Pmca4b), in the mouse leads to loss of progressive and hyperactivated sperm motility and infertility. Here we first demonstrate that compared to wild-type (WT), Junctional adhesion molecule-A (Jam-A) null sperm, previously shown to have motility defects and an abnormal mitochondrial phenotype reminiscent of that seen in Pmca4b nulls, exhibit reduced (P < 0.001) ATP levels, significantly (P < 0.001) greater cytosolic Ca(2+) concentration ([Ca(2+) ](c)) and ∼10-fold higher mitochondrial sequestration, indicating Ca(2+) overload. Investigating the mechanism involved, we used co-immunoprecipitation studies to show that CASK (Ca(2+) /calmodulin-dependent serine kinase), identified for the first time on the sperm flagellum where it co-localizes with both PMCA4b and JAM-A on the proximal principal piece, acts as a common interacting partner of both. Importantly, CASK binds alternatively and non-synergistically with each of these molecules via its single PDZ (PDS-95/Dlg/ZO-1) domain to either inhibit or promote efflux. In the absence of CASK-JAM-A interaction in Jam-A null sperm, CASK-PMCA4b interaction is increased, resulting in inhibition of PMCA4b's enzymatic activity, consequent Ca(2+) accumulation, and a ∼6-fold over-expression of constitutively ATP-utilizing CASK, compared to WT. Thus, CASK negatively regulates PMCA4b by directly binding to it and JAM-A positively regulates it indirectly through CASK. The decreased motility is likely due to the collateral net deficit in ATP observed in nulls. Our data indicate that Ca(2+) homeostasis in sperm is maintained by the relative ratios of CASK-PMCA4b and CASK-JAM-A interactions.
Collapse
Affiliation(s)
- Rolands G Aravindan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Powell GT, Wright GJ. Genomic organisation, embryonic expression and biochemical interactions of the zebrafish junctional adhesion molecule family of receptors. PLoS One 2012; 7:e40810. [PMID: 22815827 PMCID: PMC3399880 DOI: 10.1371/journal.pone.0040810] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 06/13/2012] [Indexed: 12/17/2022] Open
Abstract
The mammalian JAM family is composed of three cell surface receptors. Interactions between the proteins have well-characterised roles in inflammation and tight junction formation, but little is known about their function in early development. Recently, we identified a role for jamb and jamc in zebrafish myocyte fusion. Genome duplication in the teleost lineage raised the possibility that additional JAM family paralogues may also function in muscle development. To address this, we searched the zebrafish genome to identify potential paralogues and confirmed their homology, bringing the total number of zebrafish jam family members to six. We then compared the physical binding properties of each paralogue by surface plasmon resonance and determined the gene expression patterns of all zebrafish jam genes at different stages of development. Our results suggest a significant sub-functionalisation of JAM-B and JAM-C orthologues with respect to binding strength (but not specificity) and gene expression. The paralogous genes, jamb2 and jamc2, were not detected in the somites or myotome of wild-type embryos. We conclude that it is unlikely that the paralogues have a function in primary myogenesis.
Collapse
Affiliation(s)
- Gareth T. Powell
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- * E-mail: (GTP); (GJW)
| | - Gavin J. Wright
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- * E-mail: (GTP); (GJW)
| |
Collapse
|
157
|
Mandel K, Otte A, Hass R. Involvement of CD11b integrin in the alteration of metabolic factors after phorbol ester stimulation of human myeloid leukemia cells. Cell Commun Signal 2012; 10:13. [PMID: 22607136 PMCID: PMC3394204 DOI: 10.1186/1478-811x-10-13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 05/20/2012] [Indexed: 11/23/2022] Open
Abstract
Previous work has demonstrated that phorbol ester (TPA)-induced adherence of human U937 myeloid leukemia cells can be blocked upon down-modulation of the β2-integrin CD11b after stable transfection of U937 cells with a pMTH1 vector-containing the CD11b gene in antisense orientation (asCD11b-U937) [Otte et al., (2011)]. In the present study, alterations in metabolism-associated factors, particularly intra- and extracellular proteases were investigated. A measurement of telomerase activity in the leukemic cells revealed continuously decreasing telomere adducts within 72 h of TPA treatment in pMTH1-U937 cells. In contrast, telomerase activity sustained in asCD11b-U937 upon TPA-induced differentiation. Flow cytometric analysis confirmed unchanged CD11b levels in TPA-induced asCD11b-U937 in contrast to elevated levels in pMTH1-U937 whereby the expression of other β2-integrins including CD11a, CD11c and CD18 was increased in both populations after TPA treatment. Moreover, adherent pMTH1-U937 demonstrated the expression of monocytic differentiation markers including F4-80 and CD14 and an increased MIP-1α production which remained at low or undetectable in TPA-induced asCD11b-U937. These effects indicated an altered response of the different cell populations to the TPA-induced differentiation process. Indeed, Western blot analysis revealed differences in the expression levels of intracellular metabolic factors including MnSOD and p97/VCP and after measurement of 20 S proteasomal proteolytic activity. In addition, increased levels of extracellular metabolic factors including the matrix metalloproteinases MMP-1, MMP-7 and MMP-9 were observed in pMTH1-U937 cells in contrast to unaltered levels in asCD11b-U937 cells.
Collapse
Affiliation(s)
- Katharina Mandel
- Biochemistry and Tumor Biology Lab, Gynecology Research Unit, Department of Obstetrics and Gynecology, Medical University, Hannover, Germany
| | - Anna Otte
- Biochemistry and Tumor Biology Lab, Gynecology Research Unit, Department of Obstetrics and Gynecology, Medical University, Hannover, Germany
| | - Ralf Hass
- Biochemistry and Tumor Biology Lab, Gynecology Research Unit, Department of Obstetrics and Gynecology, Medical University, Hannover, Germany
- Biochemistry and Tumor Biology Lab, Gynecology Research Unit, Department of Obstetrics and Gynecology (OE 6410), Medical University Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
158
|
Sundqvist J, Andersson KL, Scarselli G, Gemzell-Danielsson K, Lalitkumar PGL. Expression of adhesion, attachment and invasion markers in eutopic and ectopic endometrium: a link to the aetiology of endometriosis. Hum Reprod 2012; 27:2737-46. [DOI: 10.1093/humrep/des220] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
159
|
The tight junction protein claudin-1 influences cranial neural crest cell emigration. Mech Dev 2012; 129:275-83. [PMID: 22771518 DOI: 10.1016/j.mod.2012.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/05/2012] [Accepted: 06/26/2012] [Indexed: 12/31/2022]
Abstract
The neural crest is a population of migratory cells that follows specific pathways during development, eventually differentiating to form parts of the face, heart, and peripheral nervous system, the latter of which includes contributions from placodal cells derived from the ectoderm. Stationary, premigratory neural crest cells acquire the capacity to migrate by undergoing an epithelial-to-mesenchymal transition that facilitates their emigration from the dorsal neural tube. This emigration involves, in part, the dismantling of cell-cell junctions, including apically localized tight junctions in the neuroepithelium. In this study, we have characterized the role of the transmembrane tight junction protein claudin-1 during neural crest and placode ontogeny. Our data indicate that claudin-1 is highly expressed in the developing neuroepithelium but is down-regulated in migratory neural crest cells, although expression persists in the ectoderm from which the placode cells arise. Depletion or overexpression of claudin-1 augments or reduces neural crest cell emigration, respectively, but does not impact the development of several cranial placodes. Taken together, our results reveal a novel function for a tight junction protein in the formation of migratory cranial neural crest cells in the developing vertebrate embryo.
Collapse
|
160
|
Avari P, Huang W, Averill S, Colom B, Imhof BA, Nourshargh S, Priestley JV. The spatiotemporal localization of JAM-C following sciatic nerve crush in adult rats. Brain Behav 2012; 2:402-14. [PMID: 22950044 PMCID: PMC3432963 DOI: 10.1002/brb3.63] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 03/27/2012] [Accepted: 04/04/2012] [Indexed: 01/09/2023] Open
Abstract
JAM-C is a junctional adhesion molecule, enriched at tight junctions on endothelial and epithelial cells, and also localized to Schwann cells at junctions between adjoining myelin end loops. The role of JAM-C following peripheral nerve injury (PNI) is currently unknown. We examined the localization of JAM-C after sciatic nerve crush injury in adult rats. JAM-C immunoreactivity was present in paranodes and incisures in sham surgery control nerve, but distal to the crush injury significantly decreased at three and 14 days. JAM-C was re-expressed at 28 days and, by 56 days, was significantly increased in the distal nerve compared to controls. In a 7-mm length of sciatic nerve sampled distal to the crush site, the densities of JAM-C immunoreactive paranodes increased in the distal direction. Conversely, the densities of JAM-C immunoreactive incisures were highest immediately distal to the crush site and decreased in the more distal direction. Further analysis revealed a strong correlation between JAM-C localization and remyelination. Fifty-six days after crush injury, greater densities of JAM-C paranodes were seen compared to the nodal marker jacalin, suggesting that paranodal JAM-C precedes node formation. Our data are the first to demonstrate a potential role of JAM-C in remyelination after PNI.
Collapse
|
161
|
Sun M, Fu H, Cheng H, Cao Q, Zhao Y, Mou X, Zhang X, Liu X, Ke Y. A dynamic real-time method for monitoring epithelial barrier function in vitro. Anal Biochem 2012; 425:96-103. [DOI: 10.1016/j.ab.2012.03.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 03/08/2012] [Accepted: 03/16/2012] [Indexed: 02/07/2023]
|
162
|
Lynn BD, Li X, Nagy JI. Under construction: building the macromolecular superstructure and signaling components of an electrical synapse. J Membr Biol 2012; 245:303-17. [PMID: 22722764 PMCID: PMC3506381 DOI: 10.1007/s00232-012-9451-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/01/2012] [Indexed: 10/28/2022]
Abstract
A great deal is now known about the protein components of tight junctions and adherens junctions, as well as how these are assembled. Less is known about the molecular framework of gap junctions, but these also have membrane specializations and are subject to regulation of their assembly and turnover. Thus, it is reasonable to consider that these three types of junctions may share macromolecular commonalities. Indeed, the tight junction scaffolding protein zonula occluden-1 (ZO-1) is also present at adherens and gap junctions, including neuronal gap junctions. On the basis of these earlier observations, we more recently found that two additional proteins, AF6 and MUPP1, known to be associated with ZO-1 at tight and adherens junctions, are also components of neuronal gap junctions in rodent brain and directly interact with connexin36 (Cx36) that forms these junctions. Here, we show by immunofluorescence labeling that the cytoskeletal-associated protein cingulin, commonly found at tight junctions, is also localized at neuronal gap junctions throughout the central nervous system. In consideration of known functions related to ZO-1, AF6, MUPP1, and cingulin, our results provide a context in which to examine functional relationships between these proteins at Cx36-containing electrical synapses in brain--specifically, how they may contribute to regulation of transmission at these synapses, and how they may govern gap junction channel assembly and/or disassembly.
Collapse
Affiliation(s)
- B. D. Lynn
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Xinbo Li
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - J. I. Nagy
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
163
|
Solecki DJ. Sticky situations: recent advances in control of cell adhesion during neuronal migration. Curr Opin Neurobiol 2012; 22:791-8. [PMID: 22560352 DOI: 10.1016/j.conb.2012.04.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/26/2012] [Accepted: 04/12/2012] [Indexed: 11/30/2022]
Abstract
The migration of neurons along glial fibers from a germinal zone (GZ) to their final laminar positions is essential for morphogenesis of the developing brain; aberrations in this process are linked to profound neurodevelopmental and cognitive disorders. During this critical morphogenic movement, neurons must navigate complex migration paths, propelling their cell bodies through the dense cellular environment of the developing nervous system to their final destinations. It is not understood how neurons can successfully migrate along their glial guides through the myriad processes and cell bodies of neighboring neurons. Although much progress has been made in understanding the substrates (Fishell G, Hatten ME: Astrotactin provides a receptor system for CNS neuronal migration. Development 1991, 113:755; Elias LA, Wang DD, Kriegstein AR: Gap junction adhesion is necessary for radial migration in the neocortex. Nature 2007, 448:901; Anton ES, Kreidberg JA, Rakic P: Distinct functions of alpha3 and alpha. (v) integrin receptors in neuronal migration and laminar organization of the cerebral cortex. Neuron 1999, 22:277; Anton ES, Marchionni MA, Lee KF, Rakic P: Role of GGF/neuregulin signaling in interactions between migrating neurons and radial glia in the developing cerebral cortex. Development 1997, 124:3501), guidance mechanisms (Polleux F, Whitford KL, Dijkhuizen PA, Vitalis T, Ghosh A: Control of cortical interneuron migration by neurotrophins and PI3-kinase signaling. Development 2002, 129:3147; Zhou P, et al.: Polarized signaling endosomes coordinate BDNF-induced chemotaxis of cerebellar precursors. Neuron 2007, 55:53; Renaud J, et al.: Plexin-A2 and its ligand, Sema6A, control nucleus-centrosome coupling in migrating granule cells. Nat Neurosci 2008, 11:440), cytoskeletal elements (Schaar BT, McConnell SK: Cytoskeletal coordination during neuronal migration. Proc Natl Acad Sci U S A 2005, 102:13652; Tsai JW, Bremner KH, Vallee RB: Dual subcellular roles for LIS1 and dynein in radial neuronal migration in live brain tissue. Nat Neurosci 2007, 10:970; Solecki DJ, et al.: Myosin II motors and F-actin dynamics drive the coordinated movement of the centrosome and soma during CNS glial-guided neuronal migration. Neuron 2009, 63:63), and post-translational modifications (Patrick GN, Zhou P, Kwon YT, Howley PM, Tsai LH: p35, the neuronal-specific activator of cyclin-dependent kinase 5 (Cdk5) is degraded by the ubiquitin-proteasome pathway. J Biol Chem 1998, 273:24057; Suetsugu S, et al.: Regulation of actin cytoskeleton by mDab1 through N-WASP and ubiquitination of mDab1. Biochem J 2004, 384:1; Karakuzu O, Wang DP, Cameron S: MIG-32 and SPAT-3A are PRC1 homologs that control neuronal migration inCaenorhabditis elegans. Development 2009, 136:943) required for neuronal migration, we have yet to elucidate how neurons regulate their cellular interactions and adhesive specificity to follow the appropriate migratory pathways. Here I will examine recent developments in our understanding of the mechanisms controlling neuronal cell adhesion and how these mechanisms interact with crucial neurodevelopmental events, such as GZ exit, migration pathway selection, multipolar-to-radial transition, and final lamination.
Collapse
Affiliation(s)
- David J Solecki
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
| |
Collapse
|
164
|
Alvarez Sedo C, Rawe VY, Chemes HE. Acrosomal biogenesis in human globozoospermia: immunocytochemical, ultrastructural and proteomic studies. Hum Reprod 2012; 27:1912-21. [DOI: 10.1093/humrep/des126] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
165
|
Cell adhesion and its endocytic regulation in cell migration during neural development and cancer metastasis. Int J Mol Sci 2012; 13:4564-4590. [PMID: 22605996 PMCID: PMC3344232 DOI: 10.3390/ijms13044564] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 02/07/2023] Open
Abstract
Cell migration is a crucial event for tissue organization during development, and its dysregulation leads to several diseases, including cancer. Cells exhibit various types of migration, such as single mesenchymal or amoeboid migration, collective migration and scaffold cell-dependent migration. The migration properties are partly dictated by cell adhesion and its endocytic regulation. While an epithelial-mesenchymal transition (EMT)-mediated mesenchymal cell migration requires the endocytic recycling of integrin-mediated adhesions after the disruption of cell-cell adhesions, an amoeboid migration is not dependent on any adhesions to extracellular matrix (ECM) or neighboring cells. In contrast, a collective migration is mediated by both cell-cell and cell-ECM adhesions, and a scaffold cell-dependent migration is regulated by the endocytosis and recycling of cell-cell adhesion molecules. Although some invasive carcinoma cells exhibit an EMT-mediated mesenchymal or amoeboid migration, other cancer cells are known to maintain cadherin-based cell-cell adhesions and epithelial morphology during metastasis. On the other hand, a scaffold cell-dependent migration is mainly utilized by migrating neurons in normal developing brains. This review will summarize the structures of cell adhesions, including adherens junctions and focal adhesions, and discuss the regulatory mechanisms for the dynamic behavior of cell adhesions by endocytic pathways in cell migration in physiological and pathological conditions, focusing particularly on neural development and cancer metastasis.
Collapse
|
166
|
Stelzer S, Worlitzer MMA, Bahnassawy L, Hemmer K, Rugani K, Werthschulte I, Schön AL, Brinkmann BF, Bunk EC, Palm T, Ebnet K, Schwamborn JC. JAM-C is an apical surface marker for neural stem cells. Stem Cells Dev 2012; 21:757-66. [PMID: 22114908 DOI: 10.1089/scd.2011.0274] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Junctional adhesion molecule-C (JAM-C) is an adhesive cell surface protein expressed in various cell types. JAM-C localizes to the apically localized tight junctions (TJs) between contacting endothelial and epithelial cells, where it contributes to cell-cell adhesions. Just as those epithelial cells, also neural stem cells are highly polarized along their apical-basal axis. The defining feature of all stem cells, including neural stem cells (NSCs) is their ability to self renew. This self-renewal depends on the tight control of symmetric and asymmetric cell divisions. In NSCs, the decision whether a division is symmetric or asymmetric largely depends on the distribution of the apical membrane and cell fate determinants on the basal pole of the cell. In this study we demonstrate that JAM-C is expressed on neural progenitor cells and neural stem cells in the embryonic as well as the adult mouse brain. Furthermore, we demonstrate that in vivo JAM-C shows enrichment at the apical surface and therefore is asymmetrically distributed during cell divisions. These results define JAM-C as a novel surface marker for neural stem cells.
Collapse
Affiliation(s)
- Sandra Stelzer
- Institute of Cell Biology, Stem Cell Biology and Regeneration Group, Westfälische Wilhelms-Universität Münster, ZMBE, Münster, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Li X, Lynn BD, Nagy JI. The effector and scaffolding proteins AF6 and MUPP1 interact with connexin36 and localize at gap junctions that form electrical synapses in rodent brain. Eur J Neurosci 2012; 35:166-81. [PMID: 22211808 DOI: 10.1111/j.1460-9568.2011.07947.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Electrical synapses formed by neuronal gap junctions composed of connexin36 (Cx36) occur in most major structures in the mammalian central nervous system. These synapses link ensembles of neurons and influence their network properties. Little is known about the macromolecular constituents of neuronal gap junctions or how transmission through electrical synapses is regulated at the level of channel conductance or gap junction assembly/disassembly. Such knowledge is a prerequisite to understanding the roles of gap junctions in neuronal circuitry. Gap junctions share similarities with tight and adhesion junctions in that all three reside at close plasma membrane appositions, and therefore may associate with similar structural and regulatory proteins. Previously, we reported that the tight junction-associated protein zonula occludens-1 (ZO-1) interacts with Cx36 and is localized at gap junctions. Here, we demonstrate that two proteins known to be associated with tight and adherens junctions, namely AF6 and MUPP1, are components of neuronal gap junctions in rodent brain. By immunofluorescence, AF6 and MUPP1 were co-localized with Cx36 in many brain areas. Co-immunoprecipitation and pull-down approaches revealed an association of Cx36 with AF6 and MUPP1, which required the C-terminus PDZ domain interaction motif of Cx36 for interaction with the single PDZ domain of AF6 and with the 10th PDZ domain of MUPP1. As AF6 is a target of the cAMP/Epac/Rap1 signalling pathway and MUPP1 is a scaffolding protein that interacts with CaMKII, the present results suggest that AF6 may be a target for cAMP/Epac/Rap1 signalling at electrical synapses, and that MUPP1 may contribute to anchoring CaMKII at these synapses.
Collapse
Affiliation(s)
- X Li
- Department of Physiology, Faculty of Medicine, University of Manitoba, 745 Bannatyne Ave., Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
168
|
Abstract
The physiology of paracellular permeation of ions and solutes in the kidney is pivotally important but poorly understood. Claudins are the key components of the paracellular pathway. Defects in claudin function result in a broad range of renal diseases, including hypomagnesemia, hypercalciuria and nephrolithiasis. This review describes recent findings on the physiological function of claudins underlying paracellular transport mechanisms with a focus on renal Ca(2+) handling. We have uncovered a molecular mechanism underlying paracellular Ca(2+) transport in the thick ascending limb of Henle (TAL) that involves the functional interplay of three important claudin genes: claudin-14, -16 and -19, all of which are associated with human kidney diseases with hypercalciuria, nephrolithiasis and bone mineral loss. The Ca(2+) sensing receptor (CaSR) signaling in the kidney has long been a mystery. By analyzing small non-coding RNA molecules in the kidney, we have uncovered a novel microRNA based signaling pathway downstream of CaSR that directly regulates claudin-14 gene expression and establishes the claudin-14 molecule as a key regulator for renal Ca(2+) homeostasis. The molecular cascade of CaSR-microRNAs-claudins forms a regulatory loop to maintain proper Ca(2+) homeostasis in the kidney.
Collapse
Affiliation(s)
- Jianghui Hou
- Renal Division, Washington University, St. Louis, MO, USA.
| |
Collapse
|
169
|
Assimakopoulos SF, Papageorgiou I, Charonis A. Enterocytes’ tight junctions: From molecules to diseases. World J Gastrointest Pathophysiol 2011; 2:123-37. [PMID: 22184542 PMCID: PMC3241743 DOI: 10.4291/wjgp.v2.i6.123] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/26/2011] [Accepted: 10/31/2011] [Indexed: 02/06/2023] Open
Abstract
Tight junctions (TJs) are structures between cells where cells appear in the closest possible contact. They are responsible for sealing compartments when epithelial sheets are generated. They regulate the permeability of ions, (macro) molecules and cells via the paracellular pathway. Their structure at the electron microscopic level has been well known since the 1970s; however, only recently has their macromolecular composition been revealed. This review first examines the major macromolecular components of the TJs (occludin, claudins, junctional adhesion molecule and tricellulin) and then the associated macromolecules at the intracellular plaque [zonula occludens (ZO)-1, ZO-2, ZO-3, AF-6, cingulin, 7H6]. Emphasis is given to their interactions in order to begin to understand the mode of assembly of TJs. The functional significance of TJs is detailed and several mechanisms and factors involved are discussed briefly. Emphasis is given to the role of intestinal TJs and the alterations observed or speculated in diverse disease states. Specifically, intestinal TJs may exert a pathogenetic role in intestinal (inflammatory bowel disease, celiac disease) and extraintestinal diseases (diabetes type 1, food allergies, autoimmune diseases). Additionally, intestinal TJs may be secondarily disrupted during the course of diverse diseases, subsequently allowing the bacterial translocation phenomenon and promoting the systemic inflammatory response, which is often associated with clinical deterioration. The major questions in the field are highlighted.
Collapse
|
170
|
Powell GT, Wright GJ. Jamb and jamc are essential for vertebrate myocyte fusion. PLoS Biol 2011; 9:e1001216. [PMID: 22180726 PMCID: PMC3236736 DOI: 10.1371/journal.pbio.1001216] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 10/27/2011] [Indexed: 12/02/2022] Open
Abstract
Jamb and Jamc are an essential cell surface receptor pair that interact to drive fusion between muscle precursor cells during zebrafish development. Cellular fusion is required in the development of several tissues, including skeletal muscle. In vertebrates, this process is poorly understood and lacks an in vivo-validated cell surface heterophilic receptor pair that is necessary for fusion. Identification of essential cell surface interactions between fusing cells is an important step in elucidating the molecular mechanism of cellular fusion. We show here that the zebrafish orthologues of JAM-B and JAM-C receptors are essential for fusion of myocyte precursors to form syncytial muscle fibres. Both jamb and jamc are dynamically co-expressed in developing muscles and encode receptors that physically interact. Heritable mutations in either gene prevent myocyte fusion in vivo, resulting in an overabundance of mononuclear, but otherwise overtly normal, functional fast-twitch muscle fibres. Transplantation experiments show that the Jamb and Jamc receptors must interact between neighbouring cells (in trans) for fusion to occur. We also show that jamc is ectopically expressed in prdm1a mutant slow muscle precursors, which inappropriately fuse with other myocytes, suggesting that control of myocyte fusion through regulation of jamc expression has important implications for the growth and patterning of muscles. Our discovery of a receptor-ligand pair critical for fusion in vivo has important implications for understanding the molecular mechanisms responsible for myocyte fusion and its regulation in vertebrate myogenesis. The fusion of precursor cells is a crucial step in many biological processes, one of which is the development of skeletal muscle. The molecular and cell biology of fusion of muscle precursors has been well described in Drosophila melanogaster larvae, leading to insights into the process in vertebrates. However, the identity and mechanism of action of essential cell surface proteins for fusion between vertebrate muscle precursors has previously been lacking. Here, we describe a vertebrate-specific cell surface receptor pair that is essential for fusion in zebrafish: Jamb and Jamc. Loss of function of either receptor causes a near-complete block in fusion, resulting in an overabundance of mononucleate muscle fibres that are otherwise overtly normal. We demonstrate that Jamb and Jamc physically interact and are co-expressed by muscle precursors. Moreover, we show that the interaction between them is essential for fusion between neighbouring precursors in an embryo. We hypothesise that binding of Jamb to Jamc is a necessary recognition and adhesion step permissive for, but not sufficient to cause, myocyte fusion. Knowledge of these molecular components in vertebrates will lead to better understanding of how fusion is controlled to pattern skeletal muscle tissue.
Collapse
Affiliation(s)
- Gareth T. Powell
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Gavin J. Wright
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
171
|
Chen Y, Pan K, Li S, Xia J, Wang W, Chen J, Zhao J, Lü L, Wang D, Pan Q, Wang Q, Li Y, He J, Li Q. Decreased expression of V-set and immunoglobulin domain containing 1 (VSIG1) is associated with poor prognosis in primary gastric cancer. J Surg Oncol 2011; 106:286-93. [PMID: 22095633 DOI: 10.1002/jso.22150] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 10/28/2011] [Indexed: 01/12/2023]
Abstract
BACKGROUND To date, the significance of altered expression of V-set and immunoglobulin domain containing 1 (VSIG1) in gastric cancer has not yet been elucidated. METHODS We examined VSIG1 expression in 30 paired gastric cancer tissues and noncancerous gastric mucosa as well as in 5 gastric cancer cell lines by real-time PCR and Western blotting. In addition, we analyzed VSIG1 expression in 232 gastric adenocarcinoma samples by immunohistochemistry. RESULTS VSIG1 expression was significantly reduced at both the mRNA and protein levels in gastric cancer tissues. Immunohistochemistry revealed that VSIG1 expression was completely lost in 126 out of the 232 (54.3%) patient samples and remarkably reduced in another 106 (45.7%) patients. Negative VSIG1 expression was significantly correlated with tumor size (P = 0.007), T (P = 0.023), and M stage (P = 0.037). Importantly, loss of VSIG1 expression was significantly correlated with poor overall survival (OS, P < 0.001) and disease-free survival (DFS, P = 0.006) in gastric cancer patients. Cox regression analyses showed that VSIG1 expression was an independent predictor of OS (P = 0.002) and DFS (P = 0.039). CONCLUSIONS Our findings suggest that silencing VSIG1 may play an important role in gastric carcinogenesis and that VSIG1 may serve as a prognostic marker as well as a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Yibing Chen
- State Key Laboratory of Oncology in Southern China and Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Possible involvement of tight junctions, extracellular matrix and nuclear receptors in epithelial differentiation. J Biomed Biotechnol 2011; 2011:253048. [PMID: 22162632 PMCID: PMC3227411 DOI: 10.1155/2011/253048] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/28/2011] [Accepted: 09/09/2011] [Indexed: 01/16/2023] Open
Abstract
Tight junctions are intercellular junctions localized at the most apical end of the lateral plasma membrane. They consist of four kinds of transmembrane proteins (occludin, claudins, junctional adhesion molecules, and tricellulin) and huge numbers of scaffolding proteins and contribute to the paracellular barrier and fence function. The mutation and deletion of these proteins impair the functions of tight junctions and cause various human diseases. In this paper, we provide an overview of recent studies on transmembrane proteins of tight junctions and highlight the functional significance of tight junctions, extracellular matrix, and nuclear receptors in epithelial differentiation.
Collapse
|
173
|
Lievens D, von Hundelshausen P. Platelets in atherosclerosis. Thromb Haemost 2011; 106:827-38. [PMID: 22012554 DOI: 10.1160/th11-08-0592] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Accepted: 10/03/2011] [Indexed: 01/04/2023]
Abstract
Beyond obvious functions in haemostasis and thrombosis, platelets are considered to be essential in proinflammatory surroundings such as atherosclerosis, allergy, rheumatoid arthritis and even cancer. In atherosclerosis, platelets facilitate the recruitment of inflammatory cells towards the lesion sites and release a plethora of inflammatory mediators, thereby enriching and boosting the inflammatory milieu. Platelets do so by interacting with endothelial cells, circulating leukocytes (monocytes, neutrophils, dendritic cells, T-cells) and progenitor cells. This cross-talk enforces leukocyte activation, adhesion and transmigration. Furthermore, platelets are known to function in innate host defense through the release of antimicrobial peptides and the expression of pattern recognition receptors. In severe sepsis, platelets are able to trigger the formation of neutrophil extracellular traps (NETs), which bind and clear pathogens. The present antiplatelet therapies that target key pathways of platelet activation and aggregation therefore hold the potential to modulate platelet-derived immune functions by reducing cellular interactions of platelets with other immune components and by reducing the secretion of inflammatory proteins into the milieu. The objective of this review is to update and discuss the current perceptions of the platelet immune constituents and their prospect as therapeutic targets in an atherosclerotic setting.
Collapse
Affiliation(s)
- D Lievens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University Munich, Munich, Germany.
| | | |
Collapse
|
174
|
Sacharidou A, Stratman AN, Davis GE. Molecular mechanisms controlling vascular lumen formation in three-dimensional extracellular matrices. Cells Tissues Organs 2011; 195:122-43. [PMID: 21997121 DOI: 10.1159/000331410] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Considerable progress has been made toward a molecular understanding of how cells form lumen and tube structures in three-dimensional (3D) extracellular matrices (ECM). This progress has occurred through work performed with endothelial and epithelial cell models using both in vitro and in vivo approaches. Despite the apparent similarities between endothelial and epithelial cell lumen and tube formation mechanisms, there are clear distinctions that directly relate to their functional differences. This review will focus on endothelial cell (EC) lumen formation mechanisms which control blood vessel formation during development and postnatal life. Of great interest is that an EC lumen signaling complex has been identified which controls human EC lumen and tube formation in 3D matrices and which coordinates integrin-ECM contacts, cell surface proteolysis, cytoskeletal rearrangements, and cell polarity. This complex consists of the collagen-binding integrin α2β1, the collagen-degrading membrane-type 1 matrix metalloproteinase (MT1-MMP), junction adhesion molecule (Jam)C, JamB, polarity proteins Par3 and Par6b, and the Rho GTPase Cdc42-GTP. These interacting proteins are necessary to stimulate 3D matrix-specific signaling events (including activation of protein kinase cascades that regulate the actin and microtubule cytoskeletons) to control the formation of EC lumens and tube networks. Also, EC lumen formation is directly coupled to the generation of vascular guidance tunnels, enzymatically generated ECM conduits that facilitate EC tube remodeling and maturation. Mural cells such as pericytes are recruited along EC tubes within these tunnel spaces to control ECM remodeling events resulting in vascular basement membrane matrix assembly, a key step in tube maturation and stabilization.
Collapse
Affiliation(s)
- Anastasia Sacharidou
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Dalton Cardiovascular Research Center, Columbia, Mo. 65212, USA
| | | | | |
Collapse
|
175
|
Waki H, Gouraud SS, Maeda M, Raizada MK, Paton JFR. Contributions of vascular inflammation in the brainstem for neurogenic hypertension. Respir Physiol Neurobiol 2011; 178:422-8. [PMID: 21601658 DOI: 10.1016/j.resp.2011.05.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 05/06/2011] [Accepted: 05/06/2011] [Indexed: 02/07/2023]
Abstract
Essential hypertension is idiopathic although it is accepted as a complex polygenic trait with underlying genetic components, which remain unknown. Our supposition is that primary hypertension involves activation of the sympathetic nervous system. One pivotal region controlling arterial pressure set point is nucleus tractus solitarii (NTS). We recently identified that pro-inflammatory molecules, such as junctional adhesion molecule-1, were over expressed in endothelial cells of the microvasculature supplying the NTS in an animal model of human hypertension (the spontaneously hypertensive rat: SHR) compared to normotensive Wistar Kyoto (WKY) rats. We have also shown endogenous leukocyte accumulation inside capillaries within the NTS of SHR but not WKY rats. Despite the inflammatory state in the NTS of SHR, transcripts of some inflammatory molecules such as chemokine (C-C motif) ligand 5 (Ccl5), and its receptors, chemokine (C-C motif) receptor 1 and 3 were down-regulated in the NTS of SHR compared to WKY rats. This may be compensatory to avoid further strong inflammatory activity. More importantly, we found that down-regulation of Ccl5 in the NTS of SHR may be pro-hypertensive since microinjection of Ccl5 into the NTS of SHR decreased arterial pressure but was less effective in WKY rats. Leukocyte accumulation of the NTS microvasculature may also induce an increase in vascular resistance and hypoperfusion within the NTS; the latter may trigger release of pro-inflammatory molecules which via paracrine signaling may affect central neural cardiovascular activity conducive to neurogenic hypertension. All told, we suggest that vascular inflammation within the brainstem contributes to neurogenic hypertension by multiple pathways.
Collapse
Affiliation(s)
- Hidefumi Waki
- Department of Physiology, Wakayama Medical University School of Medicine, Wakayama 641-8509, Japan.
| | | | | | | | | |
Collapse
|
176
|
Otte A, Mandel K, Reinstrom G, Hass R. Abolished adherence alters signaling pathways in phorbol ester-induced human U937 cells. Cell Commun Signal 2011; 9:20. [PMID: 21939515 PMCID: PMC3191470 DOI: 10.1186/1478-811x-9-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 09/22/2011] [Indexed: 12/24/2022] Open
Abstract
Phorbol ester (TPA) treatment of human U937 myeloid leukemia cells is associated with increasing adherence and monocyte-like maturation whereby the role of β2 integrin-mediated attachment for subsequent growth properties and the differentiation program remains unclear. Here, stably-transfected U937 cells with a pMTH1 vector containing the β2 integrin gene of CD11b in antisense orientation (asCD11b-U937) demonstrated a significantly reduced proliferative capacity in contrast to control vector transfectants (pMTH1-U937) or wild-type U937 cells. Phorbol ester exposure induced adherence and growth arrest in more than 90% of pMTH1-U937 and wild-type U937 cells after 72 h. In contrast, TPA-treated asCD11b-U937 failed to attach and the proliferation continued in more than 30% of the cells. Moreover, increased apoptosis appeared in asCD11b-U937 after TPA induction in contrast to pMTH1-U937 cells. In addition, non-specific inhibition of adherence on an agarose surface demonstrated internucleosomal DNA fragmentation in both, pMTH1-U937 and asCD11b-U937 after TPA treatment indicating a functional relationship between abolished adherence, regulation of proliferation and induction of apoptosis. Western blot analysis revealed differences in the expression levels and altered phosphorylation patterns of Pyk-2, pp60src and p42/p44 MAP kinases between pMTH1-U937 and asCD11b-U937 following TPA exposure which was also substantiated by Pyk-2 immunoprecipitation. These findings suggested that induced adherence predominantly mediated by a functional CD11b/CD18 integrin in U937 cells is involved in the activation of downstream signaling kinases and contributes to cell cycle regulation and apoptosis during monocytic maturation.
Collapse
Affiliation(s)
- Anna Otte
- Biochemistry and Tumor Biology Lab, Gynecology Research Unit, Dept. of Gynecology and Obstetrics, Medical University, Hannover, Germany
| | - Katharina Mandel
- Biochemistry and Tumor Biology Lab, Gynecology Research Unit, Dept. of Gynecology and Obstetrics, Medical University, Hannover, Germany
| | - Gesche Reinstrom
- Biochemistry and Tumor Biology Lab, Gynecology Research Unit, Dept. of Gynecology and Obstetrics, Medical University, Hannover, Germany
| | - Ralf Hass
- Biochemistry and Tumor Biology Lab, Gynecology Research Unit, Dept. of Gynecology and Obstetrics, Medical University, Hannover, Germany
| |
Collapse
|
177
|
Lee KW, Woon PS, Teo YY, Sim K. Genome wide association studies (GWAS) and copy number variation (CNV) studies of the major psychoses: what have we learnt? Neurosci Biobehav Rev 2011; 36:556-71. [PMID: 21946175 DOI: 10.1016/j.neubiorev.2011.09.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 09/03/2011] [Accepted: 09/13/2011] [Indexed: 12/29/2022]
Abstract
Schizophrenia (SZ) and bipolar disorder (BPD) have high heritabilities and are clinically and genetically complex. Genome wide association studies (GWAS) and studies of copy number variations (CNV) in SZ and BPD have allowed probing of their underlying genetic risks. In this systematic review, we assess extant genetic signals from published GWAS and CNV studies of SZ and BPD up till March 2011. Risk genes associated with SZ at genome wide significance level (p value<7.2 × 10(-8)) include zinc finger binding protein 804A (ZNF804A), major histocompatibility (MHC) region on chromosome 6, neurogranin (NRGN) and transcription factor 4 (TCF4). Risk genes associated with BPD include ankyrin 3, node of Ranvier (ANK3), calcium channel, voltage dependent, L type, alpha 1C subunit (CACNA1C), diacylglycerol kinase eta (DGKH), gene locus on chromosome 16p12, and polybromo-1 (PBRM1) and very recently neurocan gene (NCAN). Possible common genes underlying psychosis include ZNF804A, CACNA1C, NRGN and PBRM1. The CNV studies suggest that whilst CNVs are found in both SZ and BPD, the large deletions and duplications are more likely found in SZ rather than BPD. The validation of any genetic signal is likely confounded by genetic and phenotypic heterogeneities which are influenced by epistatic, epigenetic and gene-environment interactions. There is a pressing need to better integrate the multiple research platforms including systems biology computational models, genomics, cross disorder phenotyping studies, transcriptomics, proteomics, metabolomics, neuroimaging and clinical correlations in order to get us closer to a more enlightened understanding of the genetic and biological basis underlying these potentially crippling conditions.
Collapse
Affiliation(s)
- Kok Wei Lee
- Institute of Mental Health/Woodbridge Hospital 10, Buangkok View, Singapore 539747, Singapore
| | | | | | | |
Collapse
|
178
|
Coisne C, Engelhardt B. Tight junctions in brain barriers during central nervous system inflammation. Antioxid Redox Signal 2011; 15:1285-303. [PMID: 21338320 DOI: 10.1089/ars.2011.3929] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Homeostasis within the central nervous system (CNS) is a prerequisite to elicit proper neuronal function. The CNS is tightly sealed from the changeable milieu of the blood stream by the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCSFB). Whereas the BBB is established by specialized endothelial cells of CNS microvessels, the BCSFB is formed by the epithelial cells of the choroid plexus. Both constitute physical barriers by a complex network of tight junctions (TJs) between adjacent cells. During many CNS inflammatory disorders, such as multiple sclerosis, human immunodeficiency virus infection, or Alzheimer's disease, production of pro-inflammatory cytokines, matrix metalloproteases, and reactive oxygen species are responsible for alterations of CNS barriers. Barrier dysfunction can contribute to neurological disorders in a passive way by vascular leakage of blood-borne molecules into the CNS and in an active way by guiding the migration of inflammatory cells into the CNS. Both ways may directly be linked to alterations in molecular composition, function, and dynamics of the TJ proteins. This review summarizes current knowledge on the cellular and molecular aspects of the functional and dysfunctional TJ complexes at the BBB and the BCSFB, with a particular emphasis on CNS inflammation and the role of reactive oxygen species.
Collapse
Affiliation(s)
- Caroline Coisne
- Theodor Kocher Institute, University of Bern, Bern, Switzerland.
| | | |
Collapse
|
179
|
Abstract
Junctional adhesion molecules are transmembrane proteins that belong to the immunoglobulin superfamily. In addition to their localization in close proximity to the tight junctions in endothelial and epithelial cells, junctional adhesion molecules are also expressed in circulating cells that do not form junctions, such as leukocytes and platelets. As a consequence, these proteins are associated not only with the permeability-regulating barrier function of the tight junctions, but also with other biologic processes, such as inflammatory reactions, responses to vascular injury, and tumor angiogenesis. Furthermore, because of their transmembrane topology, junctional adhesion molecules are poised both for receiving inputs from the cell interior (their expression, localization, and function being regulated in response to inflammatory cytokines and growth factors) and for translating extracellular adhesive events into functional responses. This review focuses on the different roles of junctional adhesion molecules in normal and pathologic conditions, with emphasis on inflammatory reactions and vascular responses to injury.
Collapse
Affiliation(s)
- Gianfranco Bazzoni
- Department of Biochemistry and Molecular Pharmacology Mario Negri Institute of Pharmacological Research, Milano, Italy.
| |
Collapse
|
180
|
Ye P, Yu H, Simonian M, Hunter N. Ligation of CD24 expressed by oral epithelial cells induces kinase dependent decrease in paracellular permeability mediated by tight junction proteins. Biochem Biophys Res Commun 2011; 412:165-9. [DOI: 10.1016/j.bbrc.2011.07.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 07/18/2011] [Indexed: 11/27/2022]
|
181
|
Apical protein transport and lumen morphogenesis in polarized epithelial cells. Biosci Rep 2011; 31:245-56. [PMID: 21366541 DOI: 10.1042/bsr20100119] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Segregation of the apical and basolateral plasma membrane domains is the key distinguishing feature of epithelial cells. A series of interrelated cues and processes follow this primary polarization event, resulting in the morphogenesis of the mammalian epithelium. This review focuses on the role of the interactions between the extracellular matrix and neighbouring cells during the initiation and establishment of epithelial polarity, and the role that membrane transport and polarity complexes play in this process. An overview of the formation of the apical junctional complexes is given in relation to the generation of distinct membrane domains characterized by the asymmetric distribution of phosphoinositides and proteins. The mechanisms and machinery utilized by the trafficking pathways involved in the generation and maintenance of this apical-basolateral polarization are expounded, highlighting processes of apical-directed transport. Furthermore, the current proposed mechanisms for the organization of entire networks of cells into a structured, polarized three-dimensional structure are described, with an emphasis on the proposed mechanisms for the formation and expansion of the apical lumen.
Collapse
|
182
|
Tress O, Maglione M, Zlomuzica A, May D, Dicke N, Degen J, Dere E, Kettenmann H, Hartmann D, Willecke K. Pathologic and phenotypic alterations in a mouse expressing a connexin47 missense mutation that causes Pelizaeus-Merzbacher-like disease in humans. PLoS Genet 2011; 7:e1002146. [PMID: 21750683 PMCID: PMC3131295 DOI: 10.1371/journal.pgen.1002146] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 05/01/2011] [Indexed: 11/25/2022] Open
Abstract
Gap junction channels are intercellular conduits that allow diffusional exchange of ions, second messengers, and metabolites. Human oligodendrocytes express the gap junction protein connexin47 (Cx47), which is encoded by the GJC2 gene. The autosomal recessive mutation hCx47M283T causes Pelizaeus-Merzbacher-like disease 1 (PMLD1), a progressive leukodystrophy characterized by hypomyelination, retarded motor development, nystagmus, and spasticity. We introduced the human missense mutation into the orthologous position of the mouse Gjc2 gene and inserted the mCx47M282T coding sequence into the mouse genome via homologous recombination in embryonic stem cells. Three-week-old homozygous Cx47M282T mice displayed impaired rotarod performance but unchanged open-field behavior. 10-15-day-old homozygous Cx47M282T and Cx47 null mice revealed a more than 80% reduction in the number of cells participating in glial networks after biocytin injections into oligodendrocytes in sections of corpus callosum. Homozygous expression of mCx47M282T resulted in reduced MBP expression and astrogliosis in the cerebellum of ten-day-old mice which could also be detected in Cx47 null mice of the same age. Three-month-old homozygous Cx47M282T mice exhibited neither altered open-field behavior nor impaired rotarod performance anymore. Adult mCx47M282T expressing mice did not show substantial myelin alterations, but homozygous Cx47M282T mice, additionally deprived of connexin32, which is also expressed in oligodendrocytes, died within six weeks after birth and displayed severe myelin defects accompanied by astrogliosis and activated microglia. These results strongly suggest that PMLD1 is caused by the loss of Cx47 channel function that results in impaired panglial coupling in white matter tissue.
Collapse
Affiliation(s)
- Oliver Tress
- Institute of Genetics, Division of Molecular Genetics, University of Bonn, Bonn, Germany
| | - Marta Maglione
- Cellular Neurosciences, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Armin Zlomuzica
- Center for the Study and Treatment of Mental Health, Ruhr-Universität Bochum, Bochum, Germany
| | - Dennis May
- Institute of Genetics, Division of Molecular Genetics, University of Bonn, Bonn, Germany
| | - Nikolai Dicke
- Institute of Genetics, Division of Molecular Genetics, University of Bonn, Bonn, Germany
| | - Joachim Degen
- Institute of Genetics, Division of Molecular Genetics, University of Bonn, Bonn, Germany
| | - Ekrem Dere
- Université Pierre et Marie Curie (Paris VI), UMR 7102, Neurobiologie des Processus Adaptatifs, Paris, France
| | - Helmut Kettenmann
- Cellular Neurosciences, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Dieter Hartmann
- Department of Anatomy, Division of Neuroanatomy, University of Bonn, Bonn, Germany
| | - Klaus Willecke
- Institute of Genetics, Division of Molecular Genetics, University of Bonn, Bonn, Germany
| |
Collapse
|
183
|
Wendt MK, Tian M, Schiemann WP. Deconstructing the mechanisms and consequences of TGF-β-induced EMT during cancer progression. Cell Tissue Res 2011; 347:85-101. [PMID: 21691718 DOI: 10.1007/s00441-011-1199-1] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 06/01/2011] [Indexed: 12/14/2022]
Abstract
Transforming growth factor-β (TGF-β) is a potent pleiotropic cytokine that regulates mammalian development, differentiation, and homeostasis in essentially all cell types and tissues. TGF-β normally exerts anticancer activities by prohibiting cell proliferation and by creating cell microenvironments that inhibit cell motility, invasion, and metastasis. However, accumulating evidence indicates that the process of tumorigenesis, particularly that associated with metastatic progression, confers TGF-β with oncogenic activities, a functional switch known as the "TGF-β paradox." The molecular determinants governing the TGF-β paradox are complex and represent an intense area of investigation by researchers in academic and industrial settings. Recent findings link genetic and epigenetic events in mediating the acquisition of oncogenic activity by TGF-β, as do aberrant alterations within tumor microenvironments. These events coalesce to enable TGF-β to direct metastatic progression via the stimulation of epithelial-mesenchymal transition (EMT), which permits carcinoma cells to abandon polarized epithelial phenotypes in favor of apolar mesenchymal-like phenotypes. Attempts to deconstruct the EMT process induced by TGF-β have identified numerous signaling molecules, transcription factors, and microRNAs operant in mediating the initiation and resolution of this complex transdifferentiation event. In addition to its ability to enhance carcinoma cell invasion and metastasis, EMT also endows transitioned cells with stem-like properties, including the acquisition of self-renewal and tumor-initiating capabilities coupled to chemoresistance. Here, we review recent findings that delineate the pathophysiological mechanisms whereby EMT stimulated by TGF-β promotes metastatic progression and disease recurrence in human carcinomas.
Collapse
Affiliation(s)
- Michael K Wendt
- Case Comprehensive Cancer Center, Division of General Medical Sciences-Oncology, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
184
|
Pazirandeh A, Sultana T, Mirza M, Rozell B, Hultenby K, Wallis K, Vennström B, Davis B, Arner A, Heuchel R, Löhr M, Philipson L, Sollerbrant K. Multiple phenotypes in adult mice following inactivation of the Coxsackievirus and Adenovirus Receptor (Car) gene. PLoS One 2011; 6:e20203. [PMID: 21674029 PMCID: PMC3108585 DOI: 10.1371/journal.pone.0020203] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 04/27/2011] [Indexed: 11/18/2022] Open
Abstract
To determine the normal function of the Coxsackievirus and Adenovirus Receptor (CAR), a protein found in tight junctions and other intercellular complexes, we constructed a mouse line in which the CAR gene could be disrupted at any chosen time point in a broad spectrum of cell types and tissues. All knockouts examined displayed a dilated intestinal tract and atrophy of the exocrine pancreas with appearance of tubular complexes characteristic of acinar-to-ductal metaplasia. The mice also exhibited a complete atrio-ventricular block and abnormal thymopoiesis. These results demonstrate that CAR exerts important functions in the physiology of several organs in vivo.
Collapse
Affiliation(s)
- Ahmad Pazirandeh
- Ludwig Institutet for Cancer Research, Stockholm Branch, Stockholm, Sweden
| | - Taranum Sultana
- Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Momina Mirza
- Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Björn Rozell
- Department of Laboratory Medicine, Karolinska Institutet and University Hospital, Huddinge, Sweden
| | - Kjell Hultenby
- Department of Laboratory Medicine, Karolinska Institutet and University Hospital, Huddinge, Sweden
| | - Karin Wallis
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Björn Vennström
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ben Davis
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Anders Arner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Rainer Heuchel
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Sweden
| | - Matthias Löhr
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Sweden
| | - Lennart Philipson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kerstin Sollerbrant
- Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
185
|
Parvani JG, Taylor MA, Schiemann WP. Noncanonical TGF-β signaling during mammary tumorigenesis. J Mammary Gland Biol Neoplasia 2011; 16:127-46. [PMID: 21448580 PMCID: PMC3723114 DOI: 10.1007/s10911-011-9207-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Accepted: 03/08/2011] [Indexed: 12/16/2022] Open
Abstract
Breast cancer is a heterogeneous disease comprised of at least five major tumor subtypes that coalesce as the second leading cause of cancer death in women in the United States. Although metastasis clearly represents the most lethal characteristic of breast cancer, our understanding of the molecular mechanisms that govern this event remains inadequate. Clinically, ~30% of breast cancer patients diagnosed with early-stage disease undergo metastatic progression, an event that (a) severely limits treatment options, (b) typically results in chemoresistance and low response rates, and (c) greatly contributes to aggressive relapses and dismal survival rates. Transforming growth factor-β (TGF-β) is a pleiotropic cytokine that regulates all phases of postnatal mammary gland development, including branching morphogenesis, lactation, and involution. TGF-β also plays a prominent role in suppressing mammary tumorigenesis by preventing mammary epithelial cell (MEC) proliferation, or by inducing MEC apoptosis. Genetic and epigenetic events that transpire during mammary tumorigenesis conspire to circumvent the tumor suppressing activities of TGF-β, thereby permitting late-stage breast cancer cells to acquire invasive and metastatic phenotypes in response to TGF-β. Metastatic progression stimulated by TGF-β also relies on its ability to induce epithelial-mesenchymal transition (EMT) and the expansion of chemoresistant breast cancer stem cells. Precisely how this metamorphosis in TGF-β function comes about remains incompletely understood; however, recent findings indicate that the initiation of oncogenic TGF-β activity is contingent upon imbalances between its canonical and noncanonical signaling systems. Here we review the molecular and cellular contributions of noncanonical TGF-β effectors to mammary tumorigenesis and metastatic progression.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Disease Progression
- Epithelial-Mesenchymal Transition
- Female
- Humans
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Glands, Human/growth & development
- Mammary Glands, Human/metabolism
- Mammary Glands, Human/pathology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Signal Transduction
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Jenny G Parvani
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
186
|
Wei ZK, Cheng AG. Advances in research of intestinal epithelial tight junctions and intestinal permeability. Shijie Huaren Xiaohua Zazhi 2011; 19:394-399. [DOI: 10.11569/wcjd.v19.i4.394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Intestinal epithelial tight junctions are a structural basis for the intestinal barrier and play an important role in the regulation of intestinal permeability. Increased intestinal permeability caused by the destruction of tight junctions may result in bacterial translocation, systemic inflammatory response, and multiple organ dysfunction syndrome. In this paper, we review the structure and function of tight junctions, factors affecting intestinal permeability, and measures for improving the dysfunction in intestinal permeability.
Collapse
|
187
|
Chang EH, Pezzulo AA, Zabner J. Do cell junction protein mutations cause an airway phenotype in mice or humans? Am J Respir Cell Mol Biol 2011; 45:202-20. [PMID: 21297078 DOI: 10.1165/rcmb.2010-0498tr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cell junction proteins connect epithelial cells to each other and to the basement membrane. Genetic mutations of these proteins can cause alterations in some epithelia leading to varied phenotypes such as deafness, renal disease, skin disorders, and cancer. This review examines if genetic mutations in these proteins affect the function of lung airway epithelia. We review cell junction proteins with examples of disease mutation phenotypes in humans and in mouse knockout models. We also review which of these genes are expressed in airway epithelium by microarray expression profiling and immunocytochemistry. Last, we present a comprehensive literature review to find the lung phenotype when cell junction and adhesion genes are mutated or subject to targeted deletion. We found that in murine models, targeted deletion of cell junction and adhesion genes rarely result in a lung phenotype. Moreover, mutations in these genes in humans have no obvious lung phenotype. Our research suggests that simply because a cell junction or adhesion protein is expressed in an organ does not imply that it will exhibit a drastic phenotype when mutated. One explanation is that because a functioning lung is critical to survival, redundancy in the system is expected. Therefore mutations in a single gene might be compensated by a related function of a similar gene product. Further studies in human and animal models will help us understand the overlap in the function of cell junction gene products. Finally, it is possible that the human lung phenotype is subtle and has not yet been described.
Collapse
Affiliation(s)
- Eugene H Chang
- Department of Otolaryngology–Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, USA
| | | | | |
Collapse
|
188
|
Han X, Mann E, Gilbert S, Guan Y, Steinbrecher KA, Montrose MH, Cohen MB. Loss of guanylyl cyclase C (GCC) signaling leads to dysfunctional intestinal barrier. PLoS One 2011; 6:e16139. [PMID: 21305056 PMCID: PMC3031533 DOI: 10.1371/journal.pone.0016139] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 12/11/2010] [Indexed: 12/12/2022] Open
Abstract
Background Guanylyl Cyclase C (GCC) signaling via uroguanylin (UGN) and guanylin activation is a critical mediator of intestinal fluid homeostasis, intestinal cell proliferation/apoptosis, and tumorigenesis. As a mechanism for some of these effects, we hypothesized that GCC signaling mediates regulation of intestinal barrier function. Methodology/Principal Findings Paracellular permeability of intestinal segments was assessed in wild type (WT) and GCC deficient (GCC−/−) mice with and without lipopolysaccharide (LPS) challenge, as well as in UGN deficient (UGN−/−) mice. IFNγ and myosin light chain kinase (MLCK) levels were determined by real time PCR. Expression of tight junction proteins (TJPs), phosphorylation of myosin II regulatory light chain (MLC), and STAT1 activation were examined in intestinal epithelial cells (IECs) and intestinal mucosa. The permeability of Caco-2 and HT-29 IEC monolayers, grown on Transwell filters was determined in the absence and presence of GCC RNA interference (RNAi). We found that intestinal permeability was increased in GCC−/− and UGN−/− mice compared to WT, accompanied by increased IFNγ levels, MLCK and STAT1 activation in IECs. LPS challenge promotes greater IFNγ and STAT1 activation in IECs of GCC−/− mice compared to WT mice. Claudin-2 and JAM-A expression were reduced in GCC deficient intestine; the level of phosphorylated MLC in IECs was significantly increased in GCC−/− and UGN−/− mice compared to WT. GCC knockdown induced MLC phosphorylation, increased permeability in IEC monolayers under basal conditions, and enhanced TNFα and IFNγ-induced monolayer hyperpermeability. Conclusions/Significance GCC signaling plays a protective role in the integrity of the intestinal mucosal barrier by regulating MLCK activation and TJ disassembly. GCC signaling activation may therefore represent a novel mechanism in maintaining the small bowel barrier in response to injury.
Collapse
Affiliation(s)
- Xiaonan Han
- Division of Gastroenterology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America.
| | | | | | | | | | | | | |
Collapse
|
189
|
Davis GE, Stratman AN, Sacharidou A. Molecular Control of Vascular Tube Morphogenesis and Stabilization: Regulation by Extracellular Matrix, Matrix Metalloproteinases, and Endothelial Cell–Pericyte Interactions. BIOPHYSICAL REGULATION OF VASCULAR DIFFERENTIATION AND ASSEMBLY 2011. [DOI: 10.1007/978-1-4419-7835-6_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
190
|
Davis GE, Stratman AN, Sacharidou A, Koh W. Molecular basis for endothelial lumen formation and tubulogenesis during vasculogenesis and angiogenic sprouting. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 288:101-65. [PMID: 21482411 DOI: 10.1016/b978-0-12-386041-5.00003-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many studies reveal a fundamental role for extracellular matrix-mediated signaling through integrins and Rho GTPases as well as matrix metalloproteinases (MMPs) in the molecular control of vascular tube morphogenesis in three-dimensional (3D) tissue environments. Recent work has defined an endothelial cell (EC) lumen signaling complex of proteins that controls these vascular morphogenic events. These findings reveal a signaling interdependence between Cdc42 and MT1-MMP to control the 3D matrix-specific process of EC tubulogenesis. The EC tube formation process results in the creation of a network of proteolytically generated vascular guidance tunnels in 3D matrices that are utilized to remodel EC-lined tubes through EC motility and could facilitate processes such as flow-induced remodeling and arteriovenous EC sorting and differentiation. Within vascular guidance tunnels, key dynamic interactions occur between ECs and pericytes to affect vessel remodeling, diameter, and vascular basement membrane matrix assembly, a fundamental process necessary for endothelial tube maturation and stabilization. Thus, the EC lumen and tube formation mechanism coordinates the concomitant establishment of a network of vascular tubes within tunnel spaces to allow for flow responsiveness, EC-mural cell interactions, and vascular extracellular matrix assembly to control the development of the functional microcirculation.
Collapse
Affiliation(s)
- George E Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | | | | | | |
Collapse
|
191
|
Kremerskothen J, Stölting M, Wiesner C, Korb-Pap A, van Vliet V, Linder S, Huber TB, Rottiers P, Reuzeau E, Genot E, Pavenstädt H. Zona occludens proteins modulate podosome formation and function. FASEB J 2010; 25:505-14. [PMID: 20930113 DOI: 10.1096/fj.10-155598] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Podosomes are highly dynamic structures that are involved in cell adhesion and extracellular matrix remodeling. They present as intracellular columns composed of an actin-rich core region and a surrounding ring-like structure containing focal adhesion proteins, actin binders as well as cell signaling molecules. A key player in podosome biogenesis is the scaffolding protein cortactin, which is thought to control actin assembly at the core region. We show that the zona occludens protein 1 (ZO-1), a pivotal tight junction protein and known binding partner of cortactin, is a component of podosomes. In the smooth muscle cell line A7r5, phorbol ester treatment induced a rapid relocation of ZO-1 from the cell cortex and cytosolic pools toward newly formed podosomes. Podosomal localization was also observed for the known ZO-1-binding proteins l-afadin, α-catenin, and phospho-connexin 43. Truncation studies revealed that the actin-binding domain but not the association with cortactin is necessary for ZO-1 recruitment to podosomes. Moreover, impaired ZO-1 expression leads to significantly reduced podosome formation and concomitant decreased matrix degradation at podosomes. Our findings demonstrate that besides their known function in tight junction assembly and intercellular communication, zona occludens proteins and their binding partners may play a novel role in podosome formation and associated function, thus regulating cell adhesion and matrix remodeling.
Collapse
Affiliation(s)
- Joachim Kremerskothen
- Department for Molecular Nephrology, Internal Medicine D, University Clinic Münster, Domagkstrasse 3a, Münster, Germany 48149.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
McCrea PD, Gu D, Balda MS. Junctional music that the nucleus hears: cell-cell contact signaling and the modulation of gene activity. Cold Spring Harb Perspect Biol 2010; 1:a002923. [PMID: 20066098 DOI: 10.1101/cshperspect.a002923] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell-cell junctions continue to capture the interest of cell and developmental biologists, with an emerging area being the molecular means by which junctional signals relate to gene activity in the nucleus. Although complexities often arise in determining the direct versus indirect nature of such signal transduction, it is clear that such pathways are essential for the function of tissues and that alterations may contribute to many pathological outcomes. This review assesses a variety of cell-cell junction-to-nuclear signaling pathways, and outlines interesting areas for further study.
Collapse
Affiliation(s)
- Pierre D McCrea
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Program in Genes and Development, University of Texas Graduate School of Biomedical Sciences, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
193
|
New aspects of the molecular constituents of tissue barriers. J Neural Transm (Vienna) 2010; 118:7-21. [PMID: 20865434 DOI: 10.1007/s00702-010-0484-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 08/30/2010] [Indexed: 01/24/2023]
Abstract
Epithelial and endothelial tissue barriers are based on tight intercellular contacts (Tight Junctions, TJs) between neighbouring cells. TJs are multimeric complexes, located at the most apical border of the lateral membrane. So far, a plethora of proteins locating at tight intercellular contacts have been discovered, the role of which has just partly been unraveled. Yet, there is convincing evidence that many TJ proteins exert a dual role: They act as structural components at the junctional site and they are involved in signalling pathways leading to alterations of gene expression and cell behaviour (migration, proliferation). This review will shortly summarize the classical functions of TJs and TJ-related proteins and will introduce a new category, termed the "non-classical" functions of junctional proteins. A particular focus will be directed towards the nuclear targeting of junctional proteins and the downstream effects elicited by their intranuclear activities.
Collapse
|
194
|
Götte M, Mohr C, Koo CY, Stock C, Vaske AK, Viola M, Ibrahim SA, Peddibhotla S, Teng YHF, Low JY, Ebnet K, Kiesel L, Yip GW. miR-145-dependent targeting of junctional adhesion molecule A and modulation of fascin expression are associated with reduced breast cancer cell motility and invasiveness. Oncogene 2010; 29:6569-80. [PMID: 20818426 DOI: 10.1038/onc.2010.386] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Micro RNAs are small non-coding RNAs, which regulate fundamental cellular and developmental processes at the transcriptional and translational level. In breast cancer, miR-145 expression is downregulated compared with healthy control tissue. As several predicted targets of miR-145 potentially regulate cell motility, we aimed at investigating a potential role for miR-145 in breast cancer cell motility and invasiveness. Assisted by Affymetrix array technology, we demonstrate that overexpression of miR-145 in MDA-MB-231, MCF-7, MDA-MB-468 and SK-BR-3 breast cancer cells and in Ishikawa endometrial carcinoma cells leads to a downregulation of the cell-cell adhesion protein JAM-A and of the actin bundling protein fascin. Moreover, podocalyxin and Serpin E1 mRNA levels were downregulated, and gamma-actin, transgelin and MYL9 were upregulated upon miR-145 overexpression. These miR-145-dependent expression changes drastically decreased cancer cell motility, as revealed by time-lapse video microscopy, scratch wound closure assays and matrigel invasion assays. Immunofluorescence microscopy demonstrated restructuring of the actin cytoskeleton and a change in cell morphology by miR-145 overexpression, resulting in a more cortical actin distribution, and reduced actin stress fiber and filopodia formation. Nuclear rotation was observed in 10% of the pre-miR-145 transfected MDA-MB-231 cells, accompanied by a reduction of perinuclear actin. Luciferase activation assays confirmed direct miR-145-dependent regulation of the 3'UTR of JAM-A, whereas siRNA-mediated knockdown of JAM-A expression resulted in decreased motility and invasiveness of MDA-MB-231 and MCF-7 breast cancer cells. Our data identify JAM-A and fascin as novel targets of miR-145, firmly establishing a role for miR-145 in modulating breast cancer cell motility. Our data provide a rationale for future miR-145-targeted approaches of antimetastatic cancer therapy.
Collapse
Affiliation(s)
- M Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Witherden DA, Verdino P, Rieder SE, Garijo O, Mills RE, Teyton L, Fischer WH, Wilson IA, Havran WL. The junctional adhesion molecule JAML is a costimulatory receptor for epithelial gammadelta T cell activation. Science 2010; 329:1205-10. [PMID: 20813954 PMCID: PMC2943937 DOI: 10.1126/science.1192698] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gammadelta T cells present in epithelial tissues provide a crucial first line of defense against environmental insults, including infection, trauma, and malignancy, yet the molecular events surrounding their activation remain poorly defined. Here we identify an epithelial gammadelta T cell-specific costimulatory molecule, junctional adhesion molecule-like protein (JAML). Binding of JAML to its ligand Coxsackie and adenovirus receptor (CAR) provides costimulation leading to cellular proliferation and cytokine and growth factor production. Inhibition of JAML costimulation leads to diminished gammadelta T cell activation and delayed wound closure akin to that seen in the absence of gammadelta T cells. Our results identify JAML as a crucial component of epithelial gammadelta T cell biology and have broader implications for CAR and JAML in tissue homeostasis and repair.
Collapse
Affiliation(s)
- Deborah A. Witherden
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Petra Verdino
- Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stephanie E. Rieder
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Olivia Garijo
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robyn E. Mills
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Luc Teyton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Ian A. Wilson
- Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wendy L. Havran
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
196
|
Mayor R, Carmona-Fontaine C. Keeping in touch with contact inhibition of locomotion. Trends Cell Biol 2010; 20:319-28. [PMID: 20399659 PMCID: PMC2927909 DOI: 10.1016/j.tcb.2010.03.005] [Citation(s) in RCA: 215] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 03/24/2010] [Accepted: 03/24/2010] [Indexed: 01/01/2023]
Abstract
Contact inhibition of locomotion (CIL) is the process by which cells in vitro change their direction of migration upon contact with another cell. Here, we revisit the concept that CIL plays a central role in the migration of single cells and in collective migration, during both health and disease. Importantly, malignant cells exhibit a diminished CIL behaviour which allows them to invade healthy tissues. Accumulating evidence indicates that CIL occurs in vivo and that regulation of small Rho GTPases is important in the collapse of cell protrusions upon cell contact, the first step of CIL. Finally, we propose possible cell surface proteins that could be involved in the initial contact that regulates Rho GTPases during CIL.
Collapse
Affiliation(s)
- Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
197
|
Chen YS, Mathias RA, Mathivanan S, Kapp EA, Moritz RL, Zhu HJ, Simpson RJ. Proteomics profiling of Madin-Darby canine kidney plasma membranes reveals Wnt-5a involvement during oncogenic H-Ras/TGF-beta-mediated epithelial-mesenchymal transition. Mol Cell Proteomics 2010; 10:M110.001131. [PMID: 20511395 DOI: 10.1074/mcp.m110.001131] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) describes a process whereby polarized epithelial cells with restricted migration transform into elongated spindle-shaped mesenchymal cells with enhanced motility and invasiveness. Although there are some molecular markers for this process, including the down-regulation of E-cadherin, our understanding of plasma membrane (PM) and associated proteins involved in EMT is limited. To specifically explore molecular alterations occurring at the PM, we used the cationic colloidal silica isolation technique to purify PM fractions from epithelial Madin-Darby canine kidney cells during Ras/TGF-β-mediated EMT. Proteins in the isolated membrane fractions were separated by one-dimensional SDS-PAGE and subjected to nano-LC-MS/MS-based protein identification. In this study, the first membrane protein analysis of an EMT model, we identified 805 proteins and determined their differential expression using label-free spectral counting. These data reveal that Madin-Darby canine kidney cells switch from cadherin-mediated to integrin-mediated adhesion following Ras/TGF-β-mediated EMT. Thus, during the EMT process, E-cadherin, claudin 4, desmoplakin, desmoglein-2, and junctional adhesion molecule A were down-regulated, whereas integrins α6β1, α3β1, α2β1, α5β1, αVβ1, and αVβ3 along with their extracellular ligands collagens I and V and fibronectin had increased expression levels. Conspicuously, Wnt-5a expression was elevated in cells undergoing EMT, and transient Wnt-5a siRNA silencing attenuated both cell migration and invasion in these cells. Furthermore, Wnt-5a expression suppressed canonical Wnt signaling induced by Wnt-3a. Wnt-5a may act through the planar cell polarity pathway of the non-canonical Wnt signaling pathway as several of the components and modulators (Wnt-5a, -5b, frizzled 6, collagen triple helix repeat-containing protein 1, tyrosine-protein kinase 7, RhoA, Rac, and JNK) were found to be up-regulated during Ras/TGF-β-mediated EMT.
Collapse
Affiliation(s)
- Yuan-Shou Chen
- Ludwig Institute for Cancer Research, Parkville, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
198
|
Abstract
In the testis, tight junctions (TJs) are found between adjacent Sertoli cells at the level of the blood-testis barrier (BTB) where they coexist with basal ectoplasmic specializations and desmosome-gap junctions. The BTB physically divides the seminiferous epithelium into two distinct compartments: a basal compartment where spermatogonia and early spermatocytes are found, and an adluminal compartment where more developed germ cells are sequestered from the systemic circulation. In order for germ cells (i.e. preleptotene spermatocytes) to enter the adluminal compartment, they must cross the BTB, a cellular event requiring the participation of several molecules and signalling pathways. Still, it is not completely understood how preleptotene spermatocytes traverse the BTB at stage VIII of the seminiferous epithelial cycle. In this review, we discuss largely how TJ proteins are exploited by viruses and cancer cells to cross endothelial and epithelial cells. We also discuss how this information may apply to future studies investigating the movement of preleptotene spermatocytes across the BTB.
Collapse
Affiliation(s)
- Dolores D. Mruk
- Population Council, Center for Biomedical Research, 1230 York Avenue, New York, NY 10065, USA
| | - C. Y. Cheng
- Population Council, Center for Biomedical Research, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
199
|
Waki H, Gouraud SS, Maeda M, Paton JFR. Evidence of specific inflammatory condition in nucleus tractus solitarii of spontaneously hypertensive rats. Exp Physiol 2010; 95:595-600. [DOI: 10.1113/expphysiol.2009.047324] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
200
|
Terry S, Nie M, Matter K, Balda MS. Rho signaling and tight junction functions. Physiology (Bethesda) 2010; 25:16-26. [PMID: 20134025 DOI: 10.1152/physiol.00034.2009] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tight junctions are heteromeric protein complexes that act as signaling centers by mediating the bidirectional transmission of information between the environment and the cell interior to control paracellular permeability and differentiation. Insight into tight junction-associated signaling mechanisms is of fundamental importance for our understanding of the physiology of epithelia and endothelia in health and disease.
Collapse
Affiliation(s)
- Steve Terry
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | | | | | | |
Collapse
|