151
|
Bi C, Maestre JP, Li H, Zhang G, Givehchi R, Mahdavi A, Kinney KA, Siegel J, Horner SD, Xu Y. Phthalates and organophosphates in settled dust and HVAC filter dust of U.S. low-income homes: Association with season, building characteristics, and childhood asthma. ENVIRONMENT INTERNATIONAL 2018; 121:916-930. [PMID: 30347374 DOI: 10.1016/j.envint.2018.09.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 05/20/2023]
Abstract
Phthalates and organophosphates are ubiquitous indoor semi-volatile organic contaminants (SVOCs) that have been widely used as plasticizers and flame retardants in consumer products. Although many studies have assessed their levels in house dust, only a few used dust samples captured by filters of building heating, ventilation, and air conditioning (HVAC) systems. HVAC filters collect particles from large volumes of air over a long period of time (potentially known) and thus provide a spatially and temporally integrated concentration. This study measured concentrations of phthalates and organophosphates in HVAC filter dust and settled floor dust collected from low-income homes in Texas, United States, in both the summer and winter seasons. The most frequently detected compounds were benzyl butyl phthalate (BBzP), di-(2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DnOP), tris (1-chloro-2-propyl) phosphate (TCIPP), triphenyl phosphate (TPHP), and tris (1,3-dichloroisopropyl) phosphate (TDCIPP). The median level of TCIPP in settled dust was 3- to 180-times higher than levels reported in other studies of residential homes. Significantly higher concentrations were observed in HVAC filter dust as compared to settled dust for most of the frequently detected compounds in both seasons, except for several phthalates in the winter. SVOC concentrations in settled dust in winter were generally higher than in summer, while different seasonality patterns were found for HVAC filter dust. Settled dust samples from homes with vinyl flooring contained significantly higher levels of BBzP and DEHP as compared to homes with other types of floor material. The concentration of DEHP and TDCIPP in settled dust also significantly associated with the presence of carpet in homes. Cleaning activities to remove dust from furniture actually increased the levels of certain compounds in HVAC filter dust, while frequent vacuuming of carpet helped to decrease the concentrations of some compounds in settled dust. Additionally, the size and age of a given house also correlated with the levels of some pollutants in dust. A statistically significant association between DEHP concentration in HVAC filter dust in summer and the severity of asthma in children was observed. These results suggest that HVAC filter dust represents a useful sampling medium to monitor indoor SVOC concentrations with high sensitivity; in contrast, when using settled dust, in addition to consideration of seasonal influences, it is critical to know the sampling location because the type and level of SVOCs may be related to local materials used there.
Collapse
Affiliation(s)
- Chenyang Bi
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, TX, USA
| | - Juan P Maestre
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, TX, USA
| | - Hongwan Li
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, TX, USA
| | - Ge Zhang
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, TX, USA; Department of Building Environment and Energy Application Engineering, University of Science and Technology Beijing, Beijing, China
| | - Raheleh Givehchi
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Canada
| | - Alireza Mahdavi
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Canada
| | - Kerry A Kinney
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, TX, USA
| | - Jeffrey Siegel
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Sharon D Horner
- School of Nursing, The University of Texas at Austin, TX, USA
| | - Ying Xu
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, TX, USA; Department of Building Science, Tsinghua University, Beijing, China.
| |
Collapse
|
152
|
Fu Z, Chen J, Wang Y, Hong H, Xie H. Quantum chemical simulations revealed the toxicokinetic mechanisms of organic phosphorus flame retardants catalyzed by P450 enzymes. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2018; 36:272-291. [PMID: 30457030 DOI: 10.1080/10590501.2018.1537564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The metabolic fate and toxicokinetics of organic phosphorus flame retardants catalyzed by cytochrome P450 enzymes (CYPs) are here investigated by in silico simulations, leveraging an active center model to mimic the CYPs, triphenyl phosphate (TPHP), tris(2-butoxyethyl) phosphate and tris(1,3-dichloro-2-propyl) phosphate as substrates. Our calculations elucidated key main pathways and predicted products, which were corroborated by current in vitro data. Results showed that alkyl OPFRs are eliminated faster than aryl and halogenated alkyl-substituted OPFRs. In addition, we discovered a proton shuttle pathway for aryl hydroxylation of TPHP and P = O bond-assisted H-transfer mechanisms (rather than nonenzymatic hydrolysis) that lead to O-dealkylation/dearylation of phosphotriesters.
Collapse
Affiliation(s)
- Zhiqiang Fu
- a Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology , Dalian University of Technology , Dalian , China
| | - Jingwen Chen
- a Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology , Dalian University of Technology , Dalian , China
| | - Yong Wang
- b State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP) , Chinese Academy of Sciences , Lanzhou , China
| | - Huixiao Hong
- c National Center for Toxicological Research , U.S. Food and Drug Administration , Jefferson , Arkansas , USA
| | - Hongbin Xie
- a Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology , Dalian University of Technology , Dalian , China
| |
Collapse
|
153
|
He C, Wang X, Tang S, Thai P, Li Z, Baduel C, Mueller JF. Concentrations of Organophosphate Esters and Their Specific Metabolites in Food in Southeast Queensland, Australia: Is Dietary Exposure an Important Pathway of Organophosphate Esters and Their Metabolites? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12765-12773. [PMID: 30303374 DOI: 10.1021/acs.est.8b03043] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
There were several studies that measured organophosphate esters (OPEs) in foods to assess the dietary intake of OPEs but none has measured OPE metabolites (mOPEs) in the same samples. In this study, we measured the concentrations of OPEs and mOPEs in 87 food samples and in five tap water samples collected in Queensland, Australia belonging to eight food groups. Tris(2-chloroisopropyl) phosphate (TCIPP) (detection frequency (DF), 77%) and tributyl phosphate (TBP) (DF, 71%), were the most frequently detected OPEs, while dibutyl phosphate (DBP) (DF, 84%) and diphenyl phosphate (DPhP) (DF, 86%) were the most frequently detected mOPEs. Vegetables had the highest concentrations of both ∑9OPEs and ∑11mOPEs, with the mean concentrations of 2.6 and 17 ng/g wet weight. Compared with dust ingestion and inhalation, dietary intake was the most important exposure pathway for tris(2-chloroethyl) phosphate (TCEP) (4.1 ng/kg bw/day), TCIPP (25 ng/kg bw/day), and TBP (6.7 ng/kg bw/day), accounting for >75% of total intake. Furthermore, we found that the intakes of some mOPEs, that is, bis(1,3-dichloroisopropyl) phosphate (BDCIPP) and DPhP from diet were typically higher than that of their parent OPEs. Such high levels of mOPE intakes could interfere with the utilization of mOPEs as biomarkers for assessing OPE exposure and warrant further investigation.
Collapse
Affiliation(s)
- Chang He
- QAEHS, Queensland Alliance for Environmental Health Science , The University of Queensland , 4102 , Brisbane , Australia
| | - Xianyu Wang
- QAEHS, Queensland Alliance for Environmental Health Science , The University of Queensland , 4102 , Brisbane , Australia
| | - Shaoyu Tang
- QAEHS, Queensland Alliance for Environmental Health Science , The University of Queensland , 4102 , Brisbane , Australia
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy , South China University of Technology , Guangzhou 510006 , Guangdong China
| | - Phong Thai
- QAEHS, Queensland Alliance for Environmental Health Science , The University of Queensland , 4102 , Brisbane , Australia
| | - Zongrui Li
- QAEHS, Queensland Alliance for Environmental Health Science , The University of Queensland , 4102 , Brisbane , Australia
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640 , China
| | - Christine Baduel
- QAEHS, Queensland Alliance for Environmental Health Science , The University of Queensland , 4102 , Brisbane , Australia
- Université Grenoble Alpes , IRD, CNRS, Grenoble INP, IGE , 38400 Grenoble , France
| | - Jochen F Mueller
- QAEHS, Queensland Alliance for Environmental Health Science , The University of Queensland , 4102 , Brisbane , Australia
| |
Collapse
|
154
|
Naccarato A, Tassone A, Moretti S, Elliani R, Sprovieri F, Pirrone N, Tagarelli A. A green approach for organophosphate ester determination in airborne particulate matter: Microwave-assisted extraction using hydroalcoholic mixture coupled with solid-phase microextraction gas chromatography-tandem mass spectrometry. Talanta 2018; 189:657-665. [DOI: 10.1016/j.talanta.2018.07.077] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 01/15/2023]
|
155
|
Hammel SC, Phillips AL, Hoffman K, Stapleton HM. Evaluating the Use of Silicone Wristbands To Measure Personal Exposure to Brominated Flame Retardants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11875-11885. [PMID: 30216050 PMCID: PMC6445795 DOI: 10.1021/acs.est.8b03755] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Biomarkers remain the gold standard for assessing chemical exposure. However, silicone wristbands may provide some added benefits for characterizing personal exposures compared to single biomarker measurements, such as decreased costs, noninvasive sampling, and increased ease of analysis. Previously, we validated their use in characterizing exposure to organophosphate flame retardants (PFRs). However, it is unclear whether these results would extend to chemicals like polybrominated diphenyl ethers (PBDEs), which biomagnify and have longer half-lives than PFRs in the body. This study sought to determine if accumulation of PBDEs on wristbands was correlated to serum biomarkers. Adult participants ( n = 30) provided serum samples and wore wristbands for 7 days. PBDEs and 6 novel brominated flame retardants (BFRs) were measured on wristbands, and serum samples were analyzed for PBDE biomarkers. Like most PBDE congeners, 5 of 6 novel BFRs were frequently detected on wristbands (≥90% of bands). In particular, decabromodiphenyl ethane (DBDPE) was detected in all wristbands in this study and was significantly correlated with BDE-209, suggesting a similar source and exposure pathway. Wristband levels of BDE-47, -99, -100, and -153 were significantly and positively associated with respective serum biomarkers ( rs = 0.39-0.57, p < 0.05). This study demonstrates that silicone wristbands can accurately detect personal PBDE exposures.
Collapse
Affiliation(s)
- Stephanie C. Hammel
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States
| | - Allison L. Phillips
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States
| | - Kate Hoffman
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States
| | - Heather M. Stapleton
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States
| |
Collapse
|
156
|
Alzualde A, Behl M, Sipes NS, Hsieh JH, Alday A, Tice RR, Paules RS, Muriana A, Quevedo C. Toxicity profiling of flame retardants in zebrafish embryos using a battery of assays for developmental toxicity, neurotoxicity, cardiotoxicity and hepatotoxicity toward human relevance. Neurotoxicol Teratol 2018; 70:40-50. [PMID: 30312655 DOI: 10.1016/j.ntt.2018.10.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/03/2018] [Accepted: 10/08/2018] [Indexed: 01/02/2023]
Abstract
Following the voluntary phase-out of brominated flame retardants (BFRs) due to their environmental persistence and toxicity, the organophosphorus flame retardants (OPFRs) are emerging replacements. However, there is limited information on the potential human health effects of the OPFRs. Zebrafish embryos are a viable vertebrate model organism with many advantages for high throughput testing toward human hazard assessment. We utilized zebrafish embryos to assess developmental toxicity, neurotoxicity, cardiotoxicity and hepatotoxicity, of eight replacement OPFRs: (triphenyl phosphate [TPHP], isopropylated phenyl phosphate [IPP], 2-ethylhexyl diphenyl phosphate [EHDP], tert-butylated phenyl diphenyl phosphate [BPDP], trimethyl phenyl phosphate [TMPP], isodecyl diphenyl phosphate [IDDP], tris(1,3-dichloroisopropyl) phosphate [TDCIPP], and tris(2-chloroethyl) phosphate [TCEP]) and two BFRs (3,3',5,5'- tetrabromobisphenol A [TBBPA] and 2,2'4,4'-brominated diphenyl ether [BDE-47]). To determine potential effects on teratogenicity, embryos were exposed to flame retardants (FRs) at 4 h post fertilization (hpf) to 4 days post fertilization (dpf) and morphological alterations and corresponding survival were evaluated at 2 and 4 dpf. Internal concentrations were measured in larvae used in this assay by liquid chromatography-mass spectrometry. Locomotor activity was assessed in larvae treated for 48 h (from 3 dpf to 5 dpf), followed by hepatotoxicity evaluation. Finally, alterations in heart rate and rhythmicity were assessed to determine cardiotoxicity in 48 hpf embryos exposed to compounds for 3 h. Results suggest that several OPFRs (BPDP, EHDP; IPP, TMPP; TPHP and TDCIPP) produced adverse effects in multiple target organs at concentrations comparable to the two BFRs. As these OPFRs have the capacity to disrupt an integrated vertebrate model, they potentially have the capacity to affect mammalian biology. Then, we compared the lowest effective levels (LEL) in zebrafish with estimated or measured human plasma concentrations using biomonitoring data (human plasma, breast milk, handwipe samples and house dust) and a high throughput toxicokinetic (HTTK) model. Results indicate that for some compounds, the nominal LELs were within the range of human exposures, while internal LELs in zebrafish are above internal exposures in humans. These findings demonstrate the value of the zebrafish model as a relevant screening tool and support the need for further hazard characterization of the OPFRs.
Collapse
Affiliation(s)
| | - Mamta Behl
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States of America
| | - Nisha S Sipes
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States of America
| | - Jui-Hua Hsieh
- Kelly Government Solutions, Research Triangle Park, NC, United States of America
| | | | - Raymond R Tice
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States of America
| | - Richard S Paules
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States of America
| | | | | |
Collapse
|
157
|
Tan H, Chen D, Peng C, Liu X, Wu Y, Li X, Du R, Wang B, Guo Y, Zeng EY. Novel and Traditional Organophosphate Esters in House Dust from South China: Association with Hand Wipes and Exposure Estimation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11017-11026. [PMID: 30199231 DOI: 10.1021/acs.est.8b02933] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The present study investigated the occurrence of 20 organophosphate esters (OPEs) in house dust from 51 South China homes and the risks of human exposure to OPEs via two pathways: dust ingestion and hand-to-mouth contact. In addition to several traditional OPEs, five out of six novel OPEs, including bisphenol A bis(deiphenyl phosphate) (BPA-BDPP), t-butylphenyl diphenyl phosphate (BPDPP), cresyl diphenyl phosphate (CDP), isodecyl diphenyl phosphate (IDDPP), and resorcinol-bis(diphenyl)phosphate (RDP), were frequently detected in house dust (median concentration: 59.7-531 ng/g). Eight of the 20 target OPEs were frequently detected in hand wipes collected from adults and children ( n = 51 and 31, respectively), which in combination (referred to as Σ8OPEs) had a median mass of 76.9 and 58.9 ng, respectively. Increasing dust concentrations of Σ8OPEs or three individual substances among these eight OPEs, including tris(1-chloro-2-propyl) phosphate (TCIPP), tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), and triphenyl phosphate (TPHP), were strongly associated with their levels in children's hand wipes ( p < 0.05 in all cases). By contrast, in adults' hand wipes only TPHP exhibited a marginally significant association with dust concentrations ( p = 0.04). Levels of Σ8OPEs in hand wipes from children, but not adults, were inversely influenced by hand washing frequency ( p = 0.002), while indoor temperature was inversely associated with hand wipe levels of Σ8OPEs from both children and adults ( p = 0.01 and 0.002, respectively). Exposure estimation suggests that hand-to-mouth contact represents another important pathway in addition to dust ingestion and that children are subjected to higher OPE exposure than adults.
Collapse
Affiliation(s)
- Hongli Tan
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou , 510632 , China
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou , 510632 , China
| | - Changfeng Peng
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou , 510632 , China
| | - Xiaotu Liu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou , 510632 , China
| | - Yan Wu
- Cooperative Wildlife Research Laboratory and Department of Zoology , Southern Illinois University , Carbondale , Illinois 62901 , United States
| | - Xue Li
- Institute of Mass Spectrometer and Atmospheric Environment , Jinan University , Guangzhou , 510632 , China
| | - Rui Du
- Institute of Mass Spectrometer and Atmospheric Environment , Jinan University , Guangzhou , 510632 , China
| | - Bin Wang
- Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Institute of Reproductive and Child Health , Peking University , Beijing 100191 , China
- Department of Epidemiology and Biostatistics, School of Public Health , Peking University , Beijing 100191 , China
| | - Ying Guo
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou , 510632 , China
| | - Eddy Y Zeng
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou , 510632 , China
| |
Collapse
|
158
|
Hoffman K, Hammel SC, Phillips AL, Lorenzo AM, Chen A, Calafat AM, Ye X, Webster TF, Stapleton HM. Biomarkers of exposure to SVOCs in children and their demographic associations: The TESIE Study. ENVIRONMENT INTERNATIONAL 2018; 119:26-36. [PMID: 29929048 PMCID: PMC6472953 DOI: 10.1016/j.envint.2018.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/07/2018] [Accepted: 06/07/2018] [Indexed: 05/19/2023]
Abstract
Semi-volatile organic compounds (SVOCs) are used extensively in consumer and personal care products; electronics; furniture; and building materials and are detected in most indoor environments. As a result, human exposure to mixtures of SVOCs is wide-spread. However, very few studies have measured biomarkers of exposure to multiple SVOC classes, and exposure determinants have not been thoroughly explored, particularly for young children. In this study, we investigated biomarkers of exposure to SVOCs among children (age 3-6 years), who may experience higher exposures and be more susceptible to adverse health outcomes than other age groups. We enrolled 203 participants in the Toddlers Exposure to SVOCs in Indoor Environments (TESIE) study (181 provided urine samples and 90 provided serum samples).We quantified 44 biomarkers of exposure to phthalates, organophosphate esters (OPEs), parabens, phenols, antibacterial agents and per- and polyfluoroalkyl substances (PFASs); we detected 29 of the 44 biomarkers in >95% of samples, and many biomarkers were detected at higher median concentrations than those previously reported in the U.S. general population. Demographic characteristics were associated with differences in concentrations. In general, non-Hispanic white race and higher maternal education were associated with lower concentrations, even after adjusting for other potential confounding variables. Our results suggest that outdoor temperature at the time of biospecimen collection may be a particularly important and under-evaluated predictor of biomarker concentrations; statistically significant relationships were observed between 10 biomarkers and outdoor temperature at the time of collection. A complex correlation structure was also observed among the biomarkers assessed. By and large, statistically significant correlations between biomarkers of exposure to phthalates, parabens, phenols, and OPEs were positive. Conversely, although PFASs were positively correlated with one another, they tended to be negatively correlated with other biomarkers where significant associations were observed. Taken together, our results provide evidence that the assessments of SVOC-associated health impacts should focus on chemical mixtures.
Collapse
Affiliation(s)
- Kate Hoffman
- Nicholas School of the Environment, Duke University, Durham, NC, USA.
| | | | | | - Amelia M Lorenzo
- Nicholas School of the Environment, Duke University, Durham, NC, USA.
| | - Albert Chen
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | | | - Xiaoyun Ye
- Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Thomas F Webster
- Boston University School of Public Health, Boston University, Boston, MA, USA.
| | | |
Collapse
|
159
|
Dasgupta S, Cheng V, Vliet SMF, Mitchell CA, Volz DC. Tris(1,3-dichloro-2-propyl) Phosphate Exposure During the Early-Blastula Stage Alters the Normal Trajectory of Zebrafish Embryogenesis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10820-10828. [PMID: 30157643 PMCID: PMC6169527 DOI: 10.1021/acs.est.8b03730] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is an organophosphate flame retardant used around the world. Within zebrafish, we previously showed that initiation of TDCIPP exposure during cleavage (0.75 h post-fertilization, hpf) results in epiboly disruption at 6 hpf, leading to dorsalized embryos by 24 hpf, a phenotype that mimics the effects of dorsomorphin (DMP), a bone morphogenetic protein (BMP) antagonist that dorsalizes embryos in the absence of epiboly defects. The objective of this study was to (1) investigate the role of BMP signaling in TDCIPP-induced toxicity during early embryogenesis, (2) identify other pathways and processes targeted by TDCIPP, and (3) characterize the downstream impacts of early developmental defects. Using zebrafish as a model, we first identified a sensitive window for TDCIPP-induced effects following exposure initiation at 0.75 hpf. We then investigated the effects of TDCIPP on the transcriptome during the first 24 h of development using mRNA sequencing and amplicon sequencing. Finally, we relied on whole-mount immunohistochemistry, dye-based labeling, and morphological assessments to study abnormalities later in embryonic development. Overall, our data suggest that the initiation of TDCIPP exposure during early blastula alters the normal trajectory of early embryogenesis by inducing gastrulation defects and aberrant germ-layer formation, leading to abnormal tissue and organ development within the embryo.
Collapse
Affiliation(s)
- Subham Dasgupta
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Vanessa Cheng
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| | - Sara M. F. Vliet
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| | - Constance A. Mitchell
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| | - David C. Volz
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
- Phone: (951) 827-4450; Fax: (951) 827 3993;
| |
Collapse
|
160
|
Liu X, Cao Z, Yu G, Wu M, Li X, Zhang Y, Wang B, Huang J. Estimation of Exposure to Organic Flame Retardants via Hand Wipe, Surface Wipe, and Dust: Comparability of Different Assessment Strategies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9946-9953. [PMID: 30099872 DOI: 10.1021/acs.est.8b02723] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study aimed to investigate the exposure of three occupational populations (i.e., office worker, taxi drivers, and security guards) to flame retardants by comparing different sampling approaches (i.e., hand wipe, surface wipe, and dust). Hand wipe samples were collected from 68 participants from three populations in Beijing, China. Dust and/or surface wipes were also sampled from their respective occupational workplaces. Ten phosphorus flame retardants (PFRs), two novel brominated flame retardants (NBFRs) and eight polybrominated diphenyl ethers (PBDEs) were analyzed. BDE209, decabromodiphenylethane (DBDPE), tris(chloropropyl) phosphate isomers (∑TCPP), tris(2-chloroethyl) phosphate (TCEP) and triphenyl phosphate (TPHP) were detected in at least 95% of the samples, collectively accounting for over 90% of the total concentrations in each type of samples. Concentrations and composition profiles of flame retardants differed in hand wipes of the three populations with summed level of all target compounds (∑FRs) ranked as taxi drivers > office workers > security guards. Most FRs in hand wipes were significantly correlated with those in surface wipes, whereas the correlations between hand wipes and dust are weak. Estimated exposure to FRs via dust ingestion and dermal absorption for each population varied when using different types of samples for exposure assessment, suggesting the importance of sampling strategy selection. Estimation via hand wipes indicated that taxi drivers were subjected to greater exposure to PFRs among three populations, while office workers were subjected to greater BFR exposure. Our data suggest hand wipes have the potential of being standardized into a noninvasive method for evaluating human exposure to environmental contaminants across different populations.
Collapse
Affiliation(s)
- Xiaotu Liu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC) , Tsinghua University , Beijing 100084 , China
- School of Environment , Jinan University , Guangzhou , Guangdong 510632 , China
| | - Zhiguo Cao
- School of Environment, Henan Normal University , Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control , Xinxiang 453007 , China
| | - Gang Yu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC) , Tsinghua University , Beijing 100084 , China
| | - Min Wu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC) , Tsinghua University , Beijing 100084 , China
| | - Xiaoxiao Li
- School of Environment, Henan Normal University , Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control , Xinxiang 453007 , China
| | - Yacai Zhang
- School of Environment, Henan Normal University , Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control , Xinxiang 453007 , China
| | - Bin Wang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC) , Tsinghua University , Beijing 100084 , China
| | - Jun Huang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC) , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
161
|
Liu R, Mabury SA. Unexpectedly High Concentrations of a Newly Identified Organophosphate Ester, Tris(2,4-di- tert-butylphenyl) Phosphate, in Indoor Dust from Canada. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9677-9683. [PMID: 30074770 DOI: 10.1021/acs.est.8b03061] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Organophosphate esters (OPEs) represent a group of additives with significant levels of production and significant application to various household and industrial products. Given their potential adverse effects on human health, accurate analysis of novel OPEs in indoor dust is crucial. In this study, the novel tris(2,4-di- tert-butylphenyl) phosphate (AO168═O) and six well-known OPEs were investigated. The seven target OPEs were detected in 100% of the office and home dust samples, with ∑OPEs (sum of the OPE concentrations) ranging from 2.92 to 124 μg/g [geometric mean (GM) of 12.3 μg/g]. Surprisingly, the novel AO168═O (0.10-11.1 μg/g, GM of 1.97 μg/g) was among the highest-concentration congeners, contributing 1.36-65.5% to ∑OPEs (mean of 20.7%). AO168═O was the dominant congener in the home dust samples, indicating it is an important OPE congener overlooked previously. AO168═O was also detected in Standard Reference Material 2585 (indoor dust) at an elevated concentration of 10.9 μg/g, which was significantly higher than the concentrations of the other target OPEs (0.38-2.17 μg/g). Despite the high concentrations measured in this study, no industrial production or application could be identified for AO168═O. The precursor of AO168═O, tris(2,4-di- tert-butylphenyl) phosphite, was detected in 50% of the dust samples, with a GM concentration of 1.48 ng/g. This study demonstrates that human OPE exposure in indoor environments is greater than was previously reported. This is the first report of the occurrence of AO168═O, its precursor, and its hydrolysis products in the environment.
Collapse
Affiliation(s)
- Runzeng Liu
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto M5S 3H6 , Ontario , Canada
| | - Scott A Mabury
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto M5S 3H6 , Ontario , Canada
| |
Collapse
|
162
|
Salthammer T, Zhang Y, Mo J, Koch HM, Weschler CJ. Erfassung der Humanexposition mit organischen Verbindungen in Innenraumumgebungen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tunga Salthammer
- Fachbereich Materialanalytik und Innenluftchemie; Fraunhofer WKI; 38108 Braunschweig Bienroder Weg 54E Deutschland
| | - Yinping Zhang
- Department of Building Science; Tsinghua University; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control; Beijing 100084 PR China
| | - Jinhan Mo
- Department of Building Science; Tsinghua University; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control; Beijing 100084 PR China
| | - Holger M. Koch
- Institut für Prävention und Arbeitsmedizin der Deutschen Gesetzlichen Unfallversicherung (IPA); Institut der Ruhr-Universität Bochum; 44789 Bochum Bürkle-de-la-Camp Platz 1 Deutschland
| | - Charles J. Weschler
- Environmental and Occupational Health Sciences Institute (EOHSI); Rutgers University; 170 Frelinghuysen Road Piscataway NJ 08854 USA
| |
Collapse
|
163
|
Salthammer T, Zhang Y, Mo J, Koch HM, Weschler CJ. Assessing Human Exposure to Organic Pollutants in the Indoor Environment. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/anie.201711023] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tunga Salthammer
- Department of Material Analysis and Indoor Chemistry; Fraunhofer WKI; 38108 Braunschweig Bienroder Weg 54E Germany
| | - Yinping Zhang
- Department of Building Science; Tsinghua University; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control; Beijing 100084 PR China
| | - Jinhan Mo
- Department of Building Science; Tsinghua University; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control; Beijing 100084 PR China
| | - Holger M. Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance (IPA); Institute of the Ruhr-University Bochum; 44789 Bochum Bürkle-de-la-Camp Platz 1 Germany
| | - Charles J. Weschler
- Environmental and Occupational Health Sciences Institute (EOHSI); Rutgers University; 170 Frelinghuysen Road Piscataway NJ 08854 USA
| |
Collapse
|
164
|
Saillenfait AM, Ndaw S, Robert A, Sabaté JP. Recent biomonitoring reports on phosphate ester flame retardants: a short review. Arch Toxicol 2018; 92:2749-2778. [PMID: 30097699 DOI: 10.1007/s00204-018-2275-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/30/2018] [Indexed: 11/28/2022]
Abstract
Organophosphate triesters (PEFRs) are used increasingly as flame retardants and plasticizers in a variety of applications, such as building materials, textiles, and electric and electronic equipment. They have been proposed as alternatives to brominated flame retardants. This updated review shows that biomonitoring has gained incrementally greater importance in evaluating human exposure to PEFRs, and it holds the advantage of taking into account the multiple potential sources and various intake pathways of PEFRs. Simultaneous and extensive internal exposure to a broad range of PEFRs have been reported worldwide. Their metabolites, mainly dialkyl or diaryl diesters, have been used as biomarkers of exposure and have been ubiquitously detected in the urine of adults and children in the general population. Concentrations and profiles of PEFR urinary metabolites are seen to be variable and are highly dependent on individual and environmental factors, including age, country regulation of flame retardants, and types and quantities of emissions in microenvironments, as well as analytical procedures. Additional large biomonitoring studies, using a broad range of urinary diesters and hydroxylated metabolites, would be useful to improve the validity of the biomarkers and to refine assessments of human exposure to PEFRs.
Collapse
Affiliation(s)
- Anne-Marie Saillenfait
- Institut National de Recherche et de Sécurité, Rue du Morvan, CS, 60027, 54519, Vandoeuvre Cedex, France.
| | - Sophie Ndaw
- Institut National de Recherche et de Sécurité, Rue du Morvan, CS, 60027, 54519, Vandoeuvre Cedex, France
| | - Alain Robert
- Institut National de Recherche et de Sécurité, Rue du Morvan, CS, 60027, 54519, Vandoeuvre Cedex, France
| | - Jean-Philippe Sabaté
- Institut National de Recherche et de Sécurité, Rue du Morvan, CS, 60027, 54519, Vandoeuvre Cedex, France
| |
Collapse
|
165
|
Ceballos DM, Broadwater K, Page E, Croteau G, La Guardia MJ. Occupational exposure to polybrominated diphenyl ethers (PBDEs) and other flame retardant foam additives at gymnastics studios: Before, during and after the replacement of pit foam with PBDE-free foams. ENVIRONMENT INTERNATIONAL 2018; 116:1-9. [PMID: 29630944 PMCID: PMC9191751 DOI: 10.1016/j.envint.2018.03.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 05/08/2023]
Abstract
Coaches spend long hours training gymnasts of all ages aided by polyurethane foam used in loose blocks, mats, and other padded equipment. Polyurethane foam can contain flame retardant additives such as polybrominated diphenyl ethers (PBDEs), to delay the spread of fires. However, flame retardants have been associated with endocrine disruption and carcinogenicity. The National Institute for Occupational Safety and Health (NIOSH) evaluated employee exposure to flame retardants in four gymnastics studios utilized by recreational and competitive gymnasts. We evaluated flame retardant exposure at the gymnastics studios before, during, and after the replacement of foam blocks used in safety pits with foam blocks certified not to contain several flame retardants, including PBDEs. We collected hand wipes on coaches to measure levels of flame retardants on skin before and after their work shift. We measured flame retardant levels in the dust on window glass in the gymnastics areas and office areas, and in the old and new foam blocks used throughout the gymnastics studios. We found statistically higher levels of 9 out of 13 flame retardants on employees' hands after work than before, and this difference was reduced after the foam replacement. Windows in the gymnastics areas had higher levels of 3 of the 13 flame retardants than windows outside the gymnastics areas, suggesting that dust and vapor containing flame retardants became airborne. Mats and other padded equipment contained levels of bromine consistent with the amount of brominated flame retardants in foam samples analyzed in the laboratory. New blocks did not contain PBDEs, but did contain the flame retardants 2-ethylhexyl 2,3,4,5-tetrabromobenzoate and 2-ethylhexyl 2,3,4,5-tetrabromophthalate. We conclude that replacing the pit foam blocks eliminated a source of PBDEs, but not 2-ethylhexyl 2,3,4,5-tetrabromobenzoate and 2-ethylhexyl 2,3,4,5-tetrabromophthalate. We recommend ways to further minimize employee exposure to flame retardants at work and acknowledge the challenges consumers have identifying chemical contents of new products.
Collapse
Affiliation(s)
- Diana M Ceballos
- Harvard T.H. Chan School of Public Health, Department of Environmental Health, Boston, MA, USA
| | - Kendra Broadwater
- National Institute for Occupational Safety and Health, Division of Surveillance, Hazard Evaluations, and Field Studies, Cincinnati, OH, USA; Corresponding author at: 1090 Tusculum Avenue Mailstop R-11, Cincinnati, Ohio 45226, USA..
| | - Elena Page
- National Institute for Occupational Safety and Health, Division of Surveillance, Hazard Evaluations, and Field Studies, Cincinnati, OH, USA
| | - Gerry Croteau
- Field Research and Consultation Group, Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Mark J La Guardia
- Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, VA, USA
| |
Collapse
|
166
|
He C, English K, Baduel C, Thai P, Jagals P, Ware RS, Li Y, Wang X, Sly PD, Mueller JF. Concentrations of organophosphate flame retardants and plasticizers in urine from young children in Queensland, Australia and associations with environmental and behavioural factors. ENVIRONMENTAL RESEARCH 2018; 164:262-270. [PMID: 29525639 DOI: 10.1016/j.envres.2018.02.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/22/2018] [Accepted: 02/28/2018] [Indexed: 05/24/2023]
Abstract
In recent years, the production and usage volumes of organophosphate flame retardants (OPFRs) has increased substantially. Certain OPFRs are suspected reproductive toxins, carcinogenic, and neurotoxic. Insufficient information is available on human exposure pathways to these chemicals, particularly in Australia. We aim to assess the association between OPFR concentrations in the urine of children to environmental and behavioural risk factors. Concentrations of eight OPFRs and eleven metabolites were measured in the urine of 51 children, aged 3-29 months, in Southeast Queensland, Australia and compared to their behavioural and environmental risk factor data obtained by an online questionnaire. Of the 11 OPFR metabolites analysed, 55% were frequently detected in the majority (> 80%) of samples. The most frequently detected metabolite was bis(1,3-dichloroisopropyl) phosphate (BDCIPP) (detected in 100% of samples), followed by 1-hydroxy-2-propyl bis(1-chloro-2-propyl) phosphate (BCIPHIPP) (96%), diphenyl phosphate (DPHP) (94%) and bis(1-chloroisopropyl) phosphate (BCIPP) (86%). In multivariable modelling, age was positively associated with concentrations of bis(2-butoxyethyl) phosphate (BBOEP) and negatively associated with concentrations of BCIPP and BCIPHIPP. Other non-age related factors, including vacuuming frequency, hand-washing frequency and presence and number of some electrical appliances in the home were also associated with concentrations of OPFR metabolites.
Collapse
Affiliation(s)
- Chang He
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, 4108 Brisbane, Australia
| | - Karin English
- School of Medicine, The University of Queensland, Australia; Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, Australia
| | - Christine Baduel
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, 4108 Brisbane, Australia; Université Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Phong Thai
- International Laboratory for Air Quality and Health, Queensland University of Technology, 4000 Brisbane, Australia
| | - Paul Jagals
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, Australia
| | - Robert S Ware
- Menzies Health Institute Queensland, Griffith University Brisbane, Australia
| | - Yan Li
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, 4108 Brisbane, Australia
| | - Xianyu Wang
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, 4108 Brisbane, Australia
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, Australia
| | - Jochen F Mueller
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, 4108 Brisbane, Australia
| |
Collapse
|
167
|
Stubbings WA, Schreder ED, Thomas MB, Romanak K, Venier M, Salamova A. Exposure to brominated and organophosphate ester flame retardants in U.S. childcare environments: Effect of removal of flame-retarded nap mats on indoor levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:1056-1068. [PMID: 29703676 DOI: 10.1016/j.envpol.2018.03.083] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/13/2018] [Accepted: 03/23/2018] [Indexed: 05/06/2023]
Abstract
We assessed exposure to 39 brominated and 16 organophosphate ester flame retardants (FRs) from both dust and indoor air at seven childcare centres in Seattle, USA, and investigated the importance of nap mats as a source of these chemicals. Many childcare centres serving young children use polyurethane foam mats for the children's naptime. Until recently, the vast majority of these mats sold in the United States contained flame-retarded polyurethane foam to meet California Technical Bulletin 117 (TB117) requirements. With the 2013 update of TB117, allowing manufacturers to meet flammability standards without adding FRs to filling materials, FR-free nap mats have become widely available. We conducted an intervention study by actively switching out FR-treated nap mats with FR-free nap mats and measuring FR levels in indoor air and dust before and after the switch-out. The predominant FRs found in dust and indoor air were 2-ethylhexyl tetrabromobenzoate (EHTBB) and tris(1-chloro-2-propyl) phosphate (TCIPP), respectively. Nap mat samples analysed from four of the six centres contained a Firemaster® mixture, while one mat was predominantly treated with tris(1,3-dichloroisopropyl) phosphate (TDCIPP) and the other contained no detectable target FRs. After replacement, there was a significant decrease (p = 0.03-0.09) in median dust concentrations for bis(2-ethylhexyl) tetrabromophthalate (BEHTBP), EHTBB, tris(4-butylphenyl) phosphate (TBPP), and TDCIPP with reductions of 90%, 79%, 65%, and 42%, respectively. These findings suggest that the nap mats were an important source of these FRs to dust in the investigated childcare environments and that a campaign of swapping out flame-retarded mats for FR-free ones would reduce exposure to these chemicals. While calculated exposure estimates to the investigated FRs via inhalation, dust ingestion, and dermal absorption were below established reference dose values, they are likely underestimated when considering the toddlers' direct contact to the mats and personal cloud effects.
Collapse
Affiliation(s)
- W A Stubbings
- School of Public and Environmental Affairs, Indiana University, Bloomington, IN, 47405, United States
| | - E D Schreder
- Toxic-free Future, 4649 Sunnyside Ave N., Suite 540, Seattle, WA, 98103, United States
| | - M B Thomas
- Toxic-free Future, 4649 Sunnyside Ave N., Suite 540, Seattle, WA, 98103, United States
| | - K Romanak
- School of Public and Environmental Affairs, Indiana University, Bloomington, IN, 47405, United States
| | - M Venier
- School of Public and Environmental Affairs, Indiana University, Bloomington, IN, 47405, United States
| | - A Salamova
- School of Public and Environmental Affairs, Indiana University, Bloomington, IN, 47405, United States.
| |
Collapse
|
168
|
Phillips AL, Hammel SC, Hoffman K, Lorenzo AM, Chen A, Webster TF, Stapleton HM. Children's residential exposure to organophosphate ester flame retardants and plasticizers: Investigating exposure pathways in the TESIE study. ENVIRONMENT INTERNATIONAL 2018; 116:176-185. [PMID: 29689464 PMCID: PMC5980657 DOI: 10.1016/j.envint.2018.04.013] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Following the phase-out of polybrominated diphenyl ethers (PBDEs), organophosphate esters (OPEs) have been increasingly used in consumer products and building materials for their flame retardant and plasticizing properties. As a result, human exposure to these chemicals is widespread as evidenced by common detection of their metabolites in urine. However, little is known about the major exposure pathways, or factors that influence children's exposure to OPEs. Furthermore, little data is available on exposure to the novel aryl OPEs. OBJECTIVES To examine predictors of children's internal exposure, we assessed relationships between OPEs in house dust and on hand wipes and levels of their corresponding metabolites in paired urine samples (n = 181). We also examined associations between urinary metabolites and potential covariates, including child's age and sex, mother's educational attainment and race, and average outdoor air temperature. METHODS Children aged 3 to 6 years provided urine and hand wipe samples. Mothers or legal guardians completed questionnaires, and a house dust sample was taken from the main living area during home visits. Alkyl chlorinated and aryl OPEs were measured in dust and hand wipes, and composite urine samples were analyzed for several metabolites. RESULTS Tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP), tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), 2-ethylhexyl diphenyl phosphate (EHDPHP), triphenyl phosphate (TPHP), and 2-isopropylphenyl diphenyl phosphate (2IPPDPP) were detected frequently in hand wipes and dust (>80%), indicating that these compounds were near-ubiquitous in indoor environments. Additionally, bis(1-chloro-2-propyl) 1-hydroxy-2-propyl phosphate (BCIPHIPP), bis(1,3-dichloro-2-propyl) phosphate (BDCIPP), diphenyl phosphate (DPHP), mono-isopropyl phenyl phenyl phosphate (ip-PPP), and mono-tert-butyl phenyl phenyl phosphate (tb-PPP) were detected in >94% of tested urine samples, signifying that TESIE participants were widely exposed to OPEs. Contrary to PBDEs, house dust OPE concentrations were generally not correlated with urinary OPE metabolite levels; however, hand wipe levels of OPEs were associated with internal dose. For example, children with the highest mass of TDCIPP on hand wipes had BDCIPP levels that were 2.73 times those of participants with the lowest levels (95% CI: 1.67, 4.48, p < 0.0001). Of the variables examined, hand wipe level was the most consistent and strongest predictor of OPE urinary metabolite concentrations. Outdoor air temperature was also a significant predictor of urinary BDCIPP concentrations, with a 1 °C increase in temperature corresponding to a 4% increase in urinary BDCIPP (p < 0.0001). CONCLUSIONS OPE exposures are highly prevalent, and data provided herein further substantiate hand-to-mouth contact and dermal absorption as important pathways of OPE exposure, especially for young children.
Collapse
Affiliation(s)
- Allison L Phillips
- Nicholas School of the Environment, Duke University, Durham, NC, United States.
| | - Stephanie C Hammel
- Nicholas School of the Environment, Duke University, Durham, NC, United States.
| | - Kate Hoffman
- Nicholas School of the Environment, Duke University, Durham, NC, United States.
| | - Amelia M Lorenzo
- Nicholas School of the Environment, Duke University, Durham, NC, United States.
| | - Albert Chen
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Thomas F Webster
- Boston University School of Public Health, Boston University, Boston, MA, United States.
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, NC, United States.
| |
Collapse
|
169
|
Sun Y, Gong X, Lin W, Liu Y, Wang Y, Wu M, Kannan K, Ma J. Metabolites of organophosphate ester flame retardants in urine from Shanghai, China. ENVIRONMENTAL RESEARCH 2018; 164:507-515. [PMID: 29604578 DOI: 10.1016/j.envres.2018.03.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 05/22/2023]
Abstract
The metabolites of nine organophosphate ester (OPE) flame retardants were measured in 180 urine samples collected from a population (including adults and children) in western Shanghai, China, using liquid chromatography-tandem spectrometry (LC-MS/MS). The total urinary concentrations of nine OPE metabolites ranged 100-23800 pg/mL, with a geometric mean (GM) value of 1450 pg/mL. The concentrations of alkyl-OPE metabolites (879 pg/mL) were approximately an order of magnitude higher than those of aryl-OPE (53.7 pg/mL) and chlorinated-OPE metabolites (52.7 pg/mL). Diphenyl phosphate (DPHP), diethyl phosphate (DEP), di-n-butyl phosphate (DNBP), bis(2-ethylhexyl) phosphate (BEHP), and bis(2-butoxyethyl) phosphate (BBOEP) were the dominant OPE metabolites found in urine. The results showed that an increase in age was associated with a significant decrease in urinary DPHP (r = -0.278, p < 0.01) and DNBP (r = -0.314, p < 0.01) concentrations. The highest concentrations of DPHP (GM = 80.7 pg/mL) and DNBP (GM = 16.9 pg/mL) were found in urine from people living in homes that were less than 10 years old. The urinary DNBP concentration was significantly associated with self-reported symptoms of allergy. Our result establishes baseline value for OPE exposure in a population in China for comparison in future studies.
Collapse
Affiliation(s)
- Yan Sun
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xia Gong
- Department of Ultrasound, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Wanlong Lin
- Shanghai No.3 Rehabilitation Hospital, Shanghai 200436, China
| | - Ye Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yujie Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Minghong Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY 12201-0509, United States.
| | - Jing Ma
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
170
|
Been F, Bastiaensen M, Lai FY, Libousi K, Thomaidis NS, Benaglia L, Esseiva P, Delémont O, van Nuijs ALN, Covaci A. Mining the Chemical Information on Urban Wastewater: Monitoring Human Exposure to Phosphorus Flame Retardants and Plasticizers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6996-7005. [PMID: 29798668 DOI: 10.1021/acs.est.8b01279] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
At the individual level, exposure to contaminants is generally assessed through the analysis of specific biomarkers in biological matrices. However, these studies are costly and logistically demanding, limiting their applicability to monitor population-wide exposure over time and space. By focusing on a selection of exposure biomarkers to phosphorus flame retardants and plasticizers (PFRs), this study aims to explore the possibility of using wastewater as a complementary source of information about exposure. Wastewater samples were collected from five cities in Europe and analyzed using a previously established method. Substantial differences in biomarker levels were observed between the investigated catchments, suggesting differences in exposure. Time trends in biomarkers observed between 2013 and 2016 were found to agree with results from human biomonitoring studies and reports about production volumes. Using Monte Carlo simulations, average urinary concentrations were estimated. These were generally higher compared to results from human biomonitoring studies. Various explanations for these differences were formulated (i.e., other excretion routes, external sources and different sampling approaches). Obtained results show that wastewater analysis provides unique information about geographical and temporal differences in exposure, which would be difficult to gather using other monitoring tools.
Collapse
Affiliation(s)
- Frederic Been
- Toxicological Centre , University of Antwerp , Universiteitsplein 1 , 2610 Wilrijk , Belgium
| | - Michiel Bastiaensen
- Toxicological Centre , University of Antwerp , Universiteitsplein 1 , 2610 Wilrijk , Belgium
| | - Foon Yin Lai
- Toxicological Centre , University of Antwerp , Universiteitsplein 1 , 2610 Wilrijk , Belgium
| | - Katerina Libousi
- Laboratory of Analytical Chemistry, Department of Chemistry , University of Athens , Panepistimiopolis Zografou , 15771 Athens , Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry , University of Athens , Panepistimiopolis Zografou , 15771 Athens , Greece
| | - Lisa Benaglia
- Ecole des Sciences Criminelles , University of Lausanne , 1015 Lausanne-Dorigny, Switzerland
| | - Pierre Esseiva
- Ecole des Sciences Criminelles , University of Lausanne , 1015 Lausanne-Dorigny, Switzerland
| | - Olivier Delémont
- Ecole des Sciences Criminelles , University of Lausanne , 1015 Lausanne-Dorigny, Switzerland
| | - Alexander L N van Nuijs
- Toxicological Centre , University of Antwerp , Universiteitsplein 1 , 2610 Wilrijk , Belgium
| | - Adrian Covaci
- Toxicological Centre , University of Antwerp , Universiteitsplein 1 , 2610 Wilrijk , Belgium
| |
Collapse
|
171
|
Niu D, Qiu Y, Li L, Zhou Y, Du X, Zhu Z, Chen L, Lin Z. Occurrence of polybrominated diphenyl ethers in floor and elevated surface house dust from Shanghai, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:18049-18058. [PMID: 29691743 PMCID: PMC6677682 DOI: 10.1007/s11356-018-1968-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/04/2018] [Indexed: 05/04/2023]
Abstract
House dust is the main source of human exposure to flame retardants by ingestion. This study investigated the occurrence of polybrominated diphenyl ethers (PBDEs) in indoor dust from 22 houses in Shanghai, China. House dust was separately collected from the floor and elevated furnishings surface (mostly between 0.5 and 2 m height) for comparison. The concentrations of ∑22 PBDEs ranged from 19.4 to 3280 ng/g (with a geometric mean of 203 ng/g) and from 55.1 to 792 ng/g (with a geometric mean of 166 ng/g) in floor dust (FD) and elevated surface dust (ESD), respectively. BDE-209 was the predominant congener, accounting for about 73.1% of total PBDE burdens. In terms of congener profiles, the comparison of FD and ESD revealed no significant differences except for the ratio of BDE-47/BDE-99. ESD samples displayed a ratio of BDE-47/BDE-99 very similar to commercial penta-BDE products DE-71 while the ratio in FD was exceptionally higher. Significant correlation was found between concentrations of commercial penta-BDE compositions in FD and ESD (p < 0.05). Except for some occasional values, PBDE levels in house dust exhibited temporal stability. Human exposure to PBDEs via dust ingestion was estimated. The highest daily intake of PBDEs was for toddlers by using 95th percentile concentrations of PBDEs via high dust ingestion in FD (23.07 ng/kg bw/day). About 20-fold difference in exposure estimates between toddlers and adults supports that toddlers are facing greater risk from indoor floor dust. Expectedly, this study highlighted the point that residents in Shanghai were exposed to low doses of PBDEs in house dust.
Collapse
Affiliation(s)
- Dong Niu
- Key laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yanling Qiu
- Key laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Li Li
- Key laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yihui Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xinyu Du
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhiliang Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhifen Lin
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
172
|
Tay JH, Sellström U, Papadopoulou E, Padilla-Sánchez JA, Haug LS, de Wit CA. Assessment of dermal exposure to halogenated flame retardants: Comparison using direct measurements from hand wipes with an indirect estimation from settled dust concentrations. ENVIRONMENT INTERNATIONAL 2018; 115:285-294. [PMID: 29621716 DOI: 10.1016/j.envint.2018.03.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
There are few studies estimating dermal exposure to halogenated flame retardants in adults. To fill this gap, sixty-one hand wipe samples were collected from a Norwegian adult cohort using gauze pads immersed in isopropanol. BDE-47, BDE-209, bis(2‑ethyl‑hexyl)‑3,4,5,6‑tetrabromophthalate (BEH-TEBP) and decabromodiphenylethane (DBDPE) were the most frequently detected chemicals. The highest median mass in hand wipes was that of sumEHFR (570 ng), followed by sumHBCDD (180 ng) and sumPBDE (2.9 ng). The high EHFR level was mainly driven by tetrabromobisphenol A (TBBPA) which accounted for 77% of the total mass. Positive and significant correlations were observed between FR levels in hand wipes and settled dust (0.26 < r < 0.56, p < 0.05), as well as between FR levels in hand wipes and the number of electronic consumer products at home (0.27 < r < 0.40, p < 0.05). Significant bivariate associations with number of laptops/tablets and phones/mobiles were further confirmed by multivariate linear regression analyses. Dermal exposure was estimated using the levels measured in handwipes. The estimated median dermal exposure was 2600, 840 and 6.2 pg/kg bw/d for sumEHFR, sumHBCDD and sumPBDE, respectively. Further, we compared these results with the dermal exposure as estimated indirectly by utilizing previously reported FR levels in settled dust collected from the residences of the same studied cohort. With the indirect approach, higher dermal exposures to sumPBDE but lower exposures to sumEHFR and sumHBCDD were observed compared to the direct dermal exposure estimated via hand wipes. Comparable exposure estimates between hand wipes and the indirect method were obtained for α‑, β‑tetrabromoethylcyclohexane (DBE-DBCH), DBDPE, BDE-28, -35, -49, -99, -153, 154, and -183. For other individual HFRs, the exposure estimates obtained from the two approaches were significantly different (Mann-Whitney U test, p < 0.05). Both methods gave similar dermal exposure estimates for many individual FRs. However, it is important to be aware of the value and limitations of each method when using them to estimate human exposure.
Collapse
Affiliation(s)
- Joo Hui Tay
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Ulla Sellström
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-106 91 Stockholm, Sweden
| | - Eleni Papadopoulou
- Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health (NIPH), Lovisenberggata 8, Oslo, Norway
| | - Juan Antonio Padilla-Sánchez
- Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health (NIPH), Lovisenberggata 8, Oslo, Norway
| | - Line Småstuen Haug
- Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health (NIPH), Lovisenberggata 8, Oslo, Norway
| | - Cynthia A de Wit
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
173
|
Kurt-Karakus P, Alegria H, Birgul A, Gungormus E, Jantunen L. Organophosphate ester (OPEs) flame retardants and plasticizers in air and soil from a highly industrialized city in Turkey. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:555-565. [PMID: 29291570 DOI: 10.1016/j.scitotenv.2017.12.307] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 12/23/2017] [Accepted: 12/26/2017] [Indexed: 06/07/2023]
Abstract
Passive air samples were collected at eight sites in Bursa, Turkey during five sampling periods between February-December 2014. Locations encompassed urban, suburban, industrial, rural and background environments. Soil samples (n=8) were collected at each site during February 2014. Six OPEs were detected in samples: tris(2-chloroethyl) phosphate (TCEP), tris(chloropropyl) phosphate (TCPP), triphenyl phosphate (TPHP), tris(2-butoxyethyl) phosphate (TBOEP), tris(2-ethylhexyl) phosphate (TEHP), and tris(2-isopropylphenyl) phosphate (T2iPPP). Frequency of detection in air samples was TCPP and TPHP (100%)>TBOEP (88%)>TCEP (85%)>TEHP (78%)>T2iPPP (20%). Total OPEs in air per site by sampling period (excluding non-detects) ranged from 529 to 19,139pg/m3. In soil, total OPEs ranged from 38 to 468ng/g dw. In air, alkylated OPEs dominated followed by halogenated and aryl OPEs. In air, annual mean concentrations were TBOEP>TCPP>TPHP>T2iPPP>TEHP>TCEP. In soils, alkylated OPEs were dominant at six sites and chlorinated OPEs at two sites. A comparison of OPE profiles between air and soil suggests that soils may be partly a source of OPEs to air. Mean concentrations in air were not directly proportional to temperature, and there were differences between alkylated compared to halogenated and aryl OPEs. In air, total and alkylated OPEs levels were fairly uniform, whereas more variability was found for the halogenated and aryl compounds. The relative contribution to total OPEs decreases for alkylated OPEs and increases for halogenated OPEs in samples going from background to suburban to urban and industrial sites. Levels of individual OPEs were all positively correlated between air and soils. In air, correlations between individual compounds were weak to moderate and were only statistically significant for TBOEP and TPHP. In soils, correlations were generally stronger and statistically significant only for TPHP and T2iPPP.
Collapse
Affiliation(s)
- Perihan Kurt-Karakus
- Bursa Technical University, Department of Environmental Engineering, Faculty of Natural Sciences, Architecture and Engineering, Mimar Sinan Mah., Mimar Sinan Bulv., Eflak Cad. No:177, 16310 Yıldırım/Bursa/, Turkey
| | - Henry Alegria
- University of South Florida St Petersburg, Department of Environmental Science, Policy & Geography, 140 7th Avenue South, St. Petersburg, FL 33701, USA.
| | - Askin Birgul
- Bursa Technical University, Department of Environmental Engineering, Faculty of Natural Sciences, Architecture and Engineering, Mimar Sinan Mah., Mimar Sinan Bulv., Eflak Cad. No:177, 16310 Yıldırım/Bursa/, Turkey
| | - Elif Gungormus
- Izmir Institute of Technology, Department of Chemical Engineering, Gülbahçe, Urla 35430, İzmir, Turkey
| | - Liisa Jantunen
- Air Quality Processes Research Section, Environment and Climate Change Canada, 6248 8th Line, Egbert, Ontario, Canada
| |
Collapse
|
174
|
Gu Y, Yang Y, Wan B, Li M, Guo LH. Inhibition of O-linked N-acetylglucosamine transferase activity in PC12 cells – A molecular mechanism of organophosphate flame retardants developmental neurotoxicity. Biochem Pharmacol 2018; 152:21-33. [DOI: 10.1016/j.bcp.2018.03.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/14/2018] [Indexed: 01/17/2023]
|
175
|
Wang D, Zhu W, Chen L, Yan J, Teng M, Zhou Z. Neonatal triphenyl phosphate and its metabolite diphenyl phosphate exposure induce sex- and dose-dependent metabolic disruptions in adult mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:10-17. [PMID: 29466770 DOI: 10.1016/j.envpol.2018.01.047] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/03/2018] [Accepted: 01/16/2018] [Indexed: 06/08/2023]
Abstract
The widespread application of organophosphorous flame retardants (OPFRs) has led to considerable human exposure, with major concerns regarding their health risks. Herein, we investigate the effects of triphenyl phosphate (TPP), one of the most widely used OPFRs, and one of its main metabolite diphenyl phosphate (DPP) on the endocrine systems and metabolic profiles after neonatal exposure from postnatal days 1-10 at two dosages (2 and 200 μg per day). Both TPP and DPP had no negative effect on uterine weight, glucose tolerance, and estradiol. 1H-NMR-based metabolomics revealed a sex-specific metabolic disturbance of TPP. Specifically, low dose of TPP altered the metabolic profiles of male mice while exerting no significant effects on female ones. Furthermore, a dose-dependent effect of TPP in male mice was observed, where a low toxicity dose up-regulated lipid-related metabolites, while a high toxicity dose down-regulated the pyruvate metabolism and TCA cycles. These results highlight the importance of carefully assessing the health impact of TPP on infants.
Collapse
Affiliation(s)
- Dezhen Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Wentao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Li Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Jin Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Miaomiao Teng
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
176
|
Tao Y, Shang Y, Li J, Feng J, He Z, Covaci A, Wang P, Luo J, Mao X, Shi B, Hu L, Luo D, Mei S. Exposure to organophosphate flame retardants of hotel room attendants in Wuhan City, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:626-633. [PMID: 29433103 DOI: 10.1016/j.envpol.2018.01.079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
Indoor environments provide sources of exposure to organophosphate flame retardants (PFRs), which are artificially synthesized fire-protecting agents used as additives in interior products. As public spaces, hotels are required to meet stricter fire-precaution criteria. As such, room attendants may be exposed to higher levels of PFRs. Our goal was to characterize the exposure of hotel room attendants to PFRs by measuring metabolites in their urine and the corresponding parent PFRs in dust and hand-wipes collected from 27 hotels located in Wuhan City, China. The exposure of the attendants was found to be omnipresent: urinary metabolites of PFRs, such as DPHP (diphenyl phosphate), BDCIPP (bis(1,3-dichloro-2-propyl) phosphate), and DoCP (di-o-cresyl phosphate) & DpCP (di-p-cresyl phosphate) were detected with high frequency (87%, 79% and 87%, respectively). We observed that metabolites in post-shift urine were consistently present at higher levels than those in the first morning voids (p < 0.05 for BDCIPP and DPHP). Regarding external exposure, 10 PFRs were determined in both dust samples and hand-wipes, with TCIPP (tris(2-chloroisopropyl) phosphate) being the most abundant compound in both matrices. The levels of PFRs in hand-wipes and dust samples were not correlated. PFRs in dust and their corresponding urinary metabolites were not significantly correlated, while a moderate significant correlation of TDCIPP (tris(1,3-dichloro-2-propyl) phosphate) in hand-wipes and its urinary metabolite, BDCIPP, was observed in both morning void samples (p = 0.01) and post-shift urine (p = 0.002). Moreover, we found that participants from high-rise buildings (defined as > 7 stories) had significantly higher BDCIPP and DPHP concentrations than those from low-rise buildings. A possible reason is that high-rise buildings may use high-grade fireproof building materials to meet stricter fire restrictions. Overall, these results indicate that PFRs exposure in hotels is a contributor to the personal exposure of hotel room attendants.
Collapse
Affiliation(s)
- Yun Tao
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Yinzhu Shang
- Hubei Entry-Exit Inspection and Quarantine Bureau, Wuhan 430022, China
| | - Jing Li
- Hubei Entry-Exit Inspection and Quarantine Bureau, Wuhan 430022, China
| | - Jingwen Feng
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Zhenyu He
- Wuhan Centers for Disease Prevention and Control, Wuhan 430022, Hubei, China
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Peng Wang
- Hubei Entry-Exit Inspection and Quarantine Bureau, Wuhan 430022, China
| | - Jing Luo
- Hubei Entry-Exit Inspection and Quarantine Bureau, Wuhan 430022, China
| | - Xiang Mao
- Wuhan Centers for Disease Prevention and Control, Wuhan 430022, Hubei, China
| | - Bin Shi
- Wuhan Centers for Disease Prevention and Control, Wuhan 430022, Hubei, China
| | - Liqin Hu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Dan Luo
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China.
| |
Collapse
|
177
|
Pang L, Ge L, Yang P, He H, Zhang H. Degradation of organophosphate esters in sewage sludge: Effects of aerobic/anaerobic treatments and bacterial community compositions. BIORESOURCE TECHNOLOGY 2018; 255:16-21. [PMID: 29414162 DOI: 10.1016/j.biortech.2018.01.104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/16/2018] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
In this study, the degradation of organophosphate esters (OPEs) in sewage sludge with aerobic composting and anaerobic digestion was investigated. The total concentrations of six OPEs (ΣOPEs) in the whole treatment process reduced in the order of anaerobic digestion combined with pig manure (T3) > aerobic composting combined with pig manure (T1) > aerobic composting (T2) > anaerobic digestion (T4). The addition of pig manure significantly enhanced the removal rate of OPEs in both aerobic and anaerobic treatments. The abundance and diversity of bacterial community reduced after the treatment process. Shannon index, principal component analysis, network analysis, and heat map further confirmed the variation of bacterial community compositions among different treatments. Five genera (i.e., Flavobacterium, Bacillus, Alcaligene, Pseudomonas, and Bacillus megaterium) might be responsible for the degradation of OPE compounds in sewage sludge.
Collapse
Affiliation(s)
- Long Pang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China; Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou 450001, People's Republic of China.
| | - Liming Ge
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China
| | - Peijie Yang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China
| | - Han He
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China
| | - Hongzhong Zhang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China; Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
178
|
Vuong AM, Yolton K, Dietrich KN, Braun JM, Lanphear BP, Chen A. Exposure to polybrominated diphenyl ethers (PBDEs) and child behavior: Current findings and future directions. Horm Behav 2018; 101:94-104. [PMID: 29137973 DOI: 10.1016/j.yhbeh.2017.11.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/19/2017] [Accepted: 11/10/2017] [Indexed: 12/13/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are recognized neurotoxicants, but the extent to which PBDEs influence various domains of behavior in children is not fully understood. As such, we reviewed epidemiologic studies published to date to provide an overview of the current state of knowledge on PBDEs' potential role in behavioral development. We identified 19 epidemiologic studies reporting on associations of prenatal and childhood concentrations of PBDEs with behaviors assessed in children from 1 to 12years, including executive function, attention, externalizing and internalizing behaviors, adaptive skills, and social behaviors/Autism Spectrum Disorder (ASD). While the mechanisms of PBDE neurotoxicity in humans are still not clearly elucidated, findings from this review indicate that PBDE exposure during fetal development is associated with impairments in executive function and poorer attentional control in children. Results from large prospective cohorts demonstrate that prenatal and postnatal PBDE exposure adversely impacts externalizing behavior (e.g., hyperactivity and conduct problems). Additional studies are needed to determine whether PBDEs are associated with internalizing problems, adaptive skills, and social behaviors/ASD in children. Future studies will help better understand the potential neurotoxic effects of PBDE exposures during adolescence, possible sex-dependent effects, and the impact of exposure to BDE-209 and alternative flame retardants. Future studies should also examine chemical mixtures to capture real-world exposures when examining PBDEs and their impact on various behavioral domains in the context of multiple chemical exposures.
Collapse
Affiliation(s)
- Ann M Vuong
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, P.O. Box 670056, Cincinnati, OH 45267, USA.
| | - Kimberly Yolton
- Division of General and Community Pediatrics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7035, Cincinnati, OH 45229, USA
| | - Kim N Dietrich
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, P.O. Box 670056, Cincinnati, OH 45267, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University School of Public Health, 121 South Main St, Box G-S121-2, Providence, RI 02912, USA
| | - Bruce P Lanphear
- BC Children's Hospital Research Institute, Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Aimin Chen
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, P.O. Box 670056, Cincinnati, OH 45267, USA
| |
Collapse
|
179
|
Larsson K, de Wit CA, Sellström U, Sahlström L, Lindh CH, Berglund M. Brominated Flame Retardants and Organophosphate Esters in Preschool Dust and Children's Hand Wipes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:4878-4888. [PMID: 29569442 DOI: 10.1021/acs.est.8b00184] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Children spend a considerable part of their day in preschool, where they may be exposed to hazardous chemicals in indoor dust. In this study, brominated flame retardants (BFRs) and organophosphate esters (OPEs) were analyzed in preschool dust ( n = 100) and children's hand wipe samples ( n = 100), and diphenyl phosphate (DPHP) was analyzed in urine ( n = 113). Here we assessed children's exposure via dust, identified predictors for chemicals in dust, and studied correlations between different exposure measures. The most abundant BFRs in dust were decabromodiphenyl ether (BDE-209) and decabromodiphenyl ethane (DBDPE) found at median levels of 270 and 110 ng/g dust, respectively. Tris(2-butoxyethyl) phosphate (TBOEP) was the most abundant OPE, found at a median level of 79 000 ng/g dust. For all OPEs and some BFRs, there were significant correlations between the levels in dust and hand wipes. In addition, triphenyl phosphate (TPHP) in preschool dust was significantly correlated with the corresponding metabolite DPHP in children's urine. The levels of pentaBDEs in dust were higher in older preschools compared with newer, whereas levels of DBDPE were higher in newer preschools. Children's estimated intakes of individual BFRs and OPEs via preschool dust were below available health-based reference values. However, there are uncertainties about the potential health effects of some emerging BFRs and OPEs.
Collapse
Affiliation(s)
- Kristin Larsson
- Institute of Environmental Medicine, Karolinska Institutet , Box 210, 171 77 Stockholm , Sweden
| | - Cynthia A de Wit
- Department of Environmental Science and Analytical Chemistry (ACES) , Stockholm University , 106 91 Stockholm , Sweden
| | - Ulla Sellström
- Department of Environmental Science and Analytical Chemistry (ACES) , Stockholm University , 106 91 Stockholm , Sweden
| | - Leena Sahlström
- Department of Environmental Science and Analytical Chemistry (ACES) , Stockholm University , 106 91 Stockholm , Sweden
| | - Christian H Lindh
- Division of Occupational and Environmental Medicine , Lund University , 221 85 Lund , Sweden
| | - Marika Berglund
- Institute of Environmental Medicine, Karolinska Institutet , Box 210, 171 77 Stockholm , Sweden
| |
Collapse
|
180
|
Bloszies CS, Fiehn O. Using untargeted metabolomics for detecting exposome compounds. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2018.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
181
|
Frederiksen M, Stapleton HM, Vorkamp K, Webster TF, Jensen NM, Sørensen JA, Nielsen F, Knudsen LE, Sørensen LS, Clausen PA, Nielsen JB. Dermal uptake and percutaneous penetration of organophosphate esters in a human skin ex vivo model. CHEMOSPHERE 2018; 197:185-192. [PMID: 29353672 DOI: 10.1016/j.chemosphere.2018.01.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/04/2018] [Accepted: 01/09/2018] [Indexed: 05/22/2023]
Abstract
Organophosphate esters (OPEs) are used as flame retardants, plasticizers, and as hydraulic fluids. They are present in indoor environments in high concentrations compared with other flame retardants, and human exposure is ubiquitous. In this study we provide data for estimating dermal uptake for eight OPEs and ranking in OPEs risk assessment. Dermal uptake and percutaneous penetration of the OPEs were studied in a Franz diffusion cell system using human skin dosed with a mixture of OPEs in an ethanol:toluene (4:1) solution. Large variation in penetration profiles was observed between the OPEs. The chlorinated OPEs tris(2-chloroisopropyl) phosphate (TCIPP), and in particular tris(2-chloroethyl) phosphate (TCEP), penetrated the skin quite rapidly while tris(1,3-dichlor-2-propyl) phosphate (TDCIPP) and triphenyl phosphate (TPHP) tended to build up in the skin tissue and only smaller amounts permeated through the skin. For tris(isobutyl) phosphate (TIBP), tris(n-butyl) phosphate (TNBP), and tris(methylphenyl) phosphate (TMPP) the mass balance was not stable over time indicating possible degradation during the experimental period of 72 h. The rates at which OPEs permeated through the skin decreased in the order TCEP > TCIPP ≥ TBOEP > TIBP ≥ TNBP > TDCIPP > TPHP > TMPP. Generally, the permeation coefficient, kp, decreased with increasing log Kow, whereas lag time and skin deposition increased with log Kow. The present data indicate that dermal uptake is a non-negligible human exposure pathway for the majority of the studied OPEs.
Collapse
Affiliation(s)
- Marie Frederiksen
- Danish Building Research Institute, Aalborg University, A.C. Meyers Vænge 15, 2400, Copenhagen SV, Denmark; National Research Centre for the Working Environment, Lersø Parkallé 105, 2100, Copenhagen Ø, Denmark.
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, LSRC Box 90328, Durham, NC 27708, USA
| | - Katrin Vorkamp
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Thomas F Webster
- Department of Environmental Health, Boston University School of Public Health, 715 Albany St, Boston, MA 02118, USA
| | - Niels Martin Jensen
- Department of Plastic and Reconstructive Surgery, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense C, Denmark
| | - Jens Ahm Sørensen
- Department of Plastic and Reconstructive Surgery, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense C, Denmark
| | - Flemming Nielsen
- Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9B, 5000, Odense C, Denmark
| | - Lisbeth E Knudsen
- Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, 2100, Copenhagen Ø, Denmark
| | - Lars S Sørensen
- Danish Building Research Institute, Aalborg University, A.C. Meyers Vænge 15, 2400, Copenhagen SV, Denmark
| | - Per Axel Clausen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100, Copenhagen Ø, Denmark
| | - Jesper B Nielsen
- Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9B, 5000, Odense C, Denmark
| |
Collapse
|
182
|
Chen Y, Fang J, Ren L, Fan R, Zhang J, Liu G, Zhou L, Chen D, Yu Y, Lu S. Urinary metabolites of organophosphate esters in children in South China: Concentrations, profiles and estimated daily intake. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:358-364. [PMID: 29306213 DOI: 10.1016/j.envpol.2017.12.092] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/18/2017] [Accepted: 12/23/2017] [Indexed: 05/24/2023]
Abstract
Organophosphate esters (OPEs) are widely used in household products as flame retardants or plasticizers and have become ubiquitous pollutants in environmental media. However, little is known about OPE metabolites in humans, especially in children. In this study, eight OPE metabolites were measured in 411 urine samples collected from 6 to 14-year-old children in South China. Bis(2-chloroethyl) phosphate (BCEP), bis(1-chloro-2-propyl) phosphate (BCIPP) and diphenyl phosphate (DPHP) were the dominant OPE metabolites, and their median concentrations were 1.04, 0.15 and 0.28 μg/L, respectively. The levels of urinary OPE metabolites in the present study were much lower than those in participants from other countries, with the exception of BCEP, suggesting widespread exposure to tris(2-chlorethyl) phosphate (TCEP, the parent chemical of BCEP) in South China. No significant difference in the concentrations of any of the OPE metabolites was observed between males and females (p > .05). Significant negative correlations were observed between age and BCEP, BCIPP, bis(1,3-dichloro-2-propyl) phosphate (BDCIPP), di-o-cresyl phosphate (DoCP) and di-p-cresyl phosphate (DpCP) (DCP), or DPHP (p < .05). Pearson correlation coefficients between urinary OPE metabolites indicated multiple sources and OPE exposure pathways in children. The estimated daily intake suggested that children in South China have a relatively high exposure level to TCEP. To the best of our knowledge, this is the first study to report the urinary levels of OPE metabolites in Chinese children.
Collapse
Affiliation(s)
- Yi Chen
- School of Chemistry and Environment, South China Normal University, Guangzhou, 510006, China; Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jianzhang Fang
- School of Chemistry and Environment, South China Normal University, Guangzhou, 510006, China
| | - Lu Ren
- School of Chemistry and Environment, South China Normal University, Guangzhou, 510006, China; Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Ruifang Fan
- School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Jianqing Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Guihua Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Li Zhou
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Dingyan Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yingxin Yu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Shaoyou Lu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| |
Collapse
|
183
|
Björnsdotter MK, Romera-García E, Borrull J, de Boer J, Rubio S, Ballesteros-Gómez A. Presence of diphenyl phosphate and aryl-phosphate flame retardants in indoor dust from different microenvironments in Spain and the Netherlands and estimation of human exposure. ENVIRONMENT INTERNATIONAL 2018; 112:59-67. [PMID: 29268159 DOI: 10.1016/j.envint.2017.11.028] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/24/2017] [Accepted: 11/29/2017] [Indexed: 05/21/2023]
Abstract
Phosphate flame retardants (PFRs) are ubiquitous chemicals in the indoor environment. Diphenyl phosphate (DPHP) is a major metabolite and a common biomarker of aryl-PFRs. Since it is used as a chemical additive and it is a common impurity of aryl-PFRs as well as a degradation product, its presence in indoor dust as an additional source of exposure should not be easily ruled out. In this study, DPHP (and TPHP) are measured in indoor dust in samples collected in Spain and in the Netherlands (n=80). Additionally, the presence of other emerging aryl-PFRs was monitored by target screening. TPHP and DPHP were present in all samples in the ranges 169-142,459ng/g and 106-79,661ng/g, respectively. DPHP concentrations were strongly correlated to the TPHP levels (r=0.90, p<0.01), suggesting that DPHP could be present as degradation product of TPHP or other aryl-PFRs. Estimated exposures for adults and toddlers in Spain to TPHP and DPHP via dust ingestion (country for which the number of samples was higher) were much lower than the estimated reference dose (US EPA) for TPHP. However, other routes of exposure may contribute to the overall internal exposure (diet, dermal contact with dust/consumer products and inhalation of indoor air). The estimated urinary DPHP levels for adults and toddlers in Spain (0.002-0.032ng/mL) as a result of dust ingestion were low in comparison with the reported levels, indicating a low contribution of this source of contamination to the overall DPHP exposure. Other aryl-PFRs, namely cresyl diphenyl phosphate (CDP), resorcinol bis(diphenyl phosphate) (RDP), 2-ethylhexyl diphenyl phosphate (EDPHP), isodecyl diphenyl phosphate (IDP) and bisphenol A bis(diphenyl phosphate) (BDP), were all detected in indoor dust, however, with lower frequency.
Collapse
Affiliation(s)
- Maria K Björnsdotter
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building (Annex), Campus of Rabanales, University of Córdoba, 14071, Spain
| | - Encarnación Romera-García
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building (Annex), Campus of Rabanales, University of Córdoba, 14071, Spain
| | - Josep Borrull
- Vrije Universiteit Amsterdam, Environment and Health, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Jacob de Boer
- Vrije Universiteit Amsterdam, Environment and Health, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Soledad Rubio
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building (Annex), Campus of Rabanales, University of Córdoba, 14071, Spain
| | - Ana Ballesteros-Gómez
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building (Annex), Campus of Rabanales, University of Córdoba, 14071, Spain.
| |
Collapse
|
184
|
Shen B, Whitehead TP, Gill R, Dhaliwal J, Brown FR, Petreas M, Patton S, Hammond SK. Organophosphate flame retardants in dust collected from United States fire stations. ENVIRONMENT INTERNATIONAL 2018; 112:41-48. [PMID: 29247842 DOI: 10.1016/j.envint.2017.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 05/12/2023]
Abstract
Firefighters are exposed to chemicals during fire events and we previously demonstrated that fire station dust has high levels of polybrominated diphenyl ethers (PBDEs). In conducting the Fire Station Dust Study, we sought to further characterize the chemicals to which firefighters could be exposed - measuring the emerging class of phosphorous-containing flame retardants (PFRs) in fire stations, for the first time, as well as PBDEs. Dust samples from 26 fire stations in five states were collected from vacuum-cleaner bags and analyzed for PFRs and PBDEs. PFR concentrations were found to be on the same order of magnitude as PBDE concentrations (maximum PFR: 218,000ng/g; maximum PBDE: 351,000ng/g). Median concentrations of tri-n-butyl phosphate (TNBP), tris (2-chloroisopropyl) phosphate (TCIPP), and tris(1,3-dichloroisopropyl)phosphate (TDCIPP) in dust from fire stations were higher than those previously reported in homes and other occupational settings around the world. Total PFR levels did not vary significantly among states. Levels of TDCIPP were higher in stations where vacuum cleaners were used to clean surfaces other than the floor. PBDE levels were comparable to those found in our previous study of 20 California fire stations and much higher than levels in California residences. PFR and PBDE levels in fire station dust are higher than in other occupational and residential settings, underscoring the need to identify and control sources of this contamination.
Collapse
Affiliation(s)
- Beverly Shen
- School of Public Health, University of California, 50 University Hall, Berkeley, CA, USA.
| | - Todd P Whitehead
- School of Public Health, University of California, 50 University Hall, Berkeley, CA, USA
| | - Ranjit Gill
- Environmental Chemistry Laboratory, California Department of Toxic Substances Control, 700 Heinz Avenue, Berkeley, CA, USA
| | - Joginder Dhaliwal
- Environmental Chemistry Laboratory, California Department of Toxic Substances Control, 700 Heinz Avenue, Berkeley, CA, USA
| | - F Reber Brown
- Environmental Chemistry Laboratory, California Department of Toxic Substances Control, 700 Heinz Avenue, Berkeley, CA, USA
| | - Myrto Petreas
- Environmental Chemistry Laboratory, California Department of Toxic Substances Control, 700 Heinz Avenue, Berkeley, CA, USA
| | - Sharyle Patton
- Biomonitoring Resource Center, Commonweal, 451 Mesa Road, Bolinas, CA, USA
| | - S Katharine Hammond
- School of Public Health, University of California, 50 University Hall, Berkeley, CA, USA
| |
Collapse
|
185
|
Takeuchi S, Tanaka-Kagawa T, Saito I, Kojima H, Jin K, Satoh M, Kobayashi S, Jinno H. Differential determination of plasticizers and organophosphorus flame retardants in residential indoor air in Japan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:7113-7120. [PMID: 26099596 DOI: 10.1007/s11356-015-4858-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 06/08/2015] [Indexed: 06/04/2023]
Abstract
A variety of chemicals have been used in a wide range of indoor materials, such as wallpaper and furniture, and some of them are released into the indoor air. The level of consumption as well as the diversity of these chemicals has been increasing. The particle size of the materials in the air is known to affect the depth of human exposure, e.g., particles >10 μm can only reach the nasal cavity, whereas particles 2.5-10 μm can reach the respiratory tract and particles <2.5 μm can reach the bottom of the lungs. However, information on the concentrations and form of these chemicals in indoor air is very limited. In this study, we measured 54 compounds, including plasticizers (phthalates, adipates, and others) and organophosphorus flame retardants, in indoor air samples from the living rooms of 21 dwellings in 11 prefectures across Japan. For sampling, we used a four-stage air sampler (multi-nozzle cascade impactor) equipped with three quartz fiber filters to capture chemical particulates in three size ranges (<2.5, 2.5-10, and >10 μm) and a C18 solid-phase extraction disk to capture chemicals that exist in a gas phase in indoor air. Each of the chemicals in the three particulate phases and single gas phase was extracted by acetone and measured separately using GC/MS. Of the 54 compounds tested, 37 were detected in the indoor air samples. The highest concentration observed was that of 2-ethyl-1-hexanol (5.1 μg/m3), which was detected in samples from all 21 houses. The 37 compounds were captured in the four fractions at different rates roughly based on their molecular sizes. Compounds with a smaller molecular size were commonly detected as a gas phase, whereas compounds with a larger molecular size were detected as one or more of the three particulate phases in the indoor air samples. Among the three particulate phases, many of the compounds were detected from the filter capturing the smallest (<2.5 μm) particles. Therefore, these results suggest that the chemicals measured in this study might penetrate deeply into the lungs as many of them tend to exist as a gas and/or as particles smaller than 2.5 μm.
Collapse
Affiliation(s)
- Shinji Takeuchi
- Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo, 060-0819, Japan.
| | - Toshiko Tanaka-Kagawa
- National Institute of Health Sciences, 1-18-1, Kami-yoga, Setagaya-ku, Tokyo, 158-8501, Japan
| | - Ikue Saito
- Tokyo Metropolitan Institute of Public Health, 3-24-1, Hyakunin-cho, Shinjyuku-ku, Tokyo, 169-0073, Japan
| | - Hiroyuki Kojima
- Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo, 060-0819, Japan
| | - Kazuo Jin
- Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo, 060-0819, Japan
| | - Masayuki Satoh
- Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo, 060-0819, Japan
| | - Satoshi Kobayashi
- Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo, 060-0819, Japan
| | - Hideto Jinno
- National Institute of Health Sciences, 1-18-1, Kami-yoga, Setagaya-ku, Tokyo, 158-8501, Japan
| |
Collapse
|
186
|
Yadav IC, Devi NL, Li J, Zhang G, Covaci A. Concentration and spatial distribution of organophosphate esters in the soil-sediment profile of Kathmandu Valley, Nepal: Implication for risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 613-614:502-512. [PMID: 28923753 DOI: 10.1016/j.scitotenv.2017.09.039] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/11/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
Despite the fact that soil and sediments, which act as a sink or potential source of organic pollutants, have been polluted with organophosphate esters (OPEs) around the globe, extremely constrained data is accessible on environmental concentration and fate of OPEs in solid matrices in whole of the South Asia particularly if there should be an occurrence in Nepal. In this study, surface soil (N=19) and sediments samples (N=20) were analyzed for eight different OPE in Kathmandu Valley during October 2014. The concentration of ∑8OPE measured in sediments samples was 12 times higher than soil and ranged 983-7460ng/g dw (median 2210ng/g dw) and 65-27,500ng/g dw (186ng/g dw), respectively. TMPP was most abundant in soil followed by TCIPP, TEHP and EHDPHP and ranged 17-25,300ng/g dw (41.3ng/g dw), 11.2-911ng/g dw (31.7ng/g dw), 8.52-858ng/g dw (26.1ng/g dw) and 10.2-114ng/g dw (25.6ng/g dw), respectively. TEHP was most prevalent in sediments followed by TMPP and EHDPHP and were in the range of 657-3020ng/g dw (median 1140ng/g dw), 267-2630ng/g dw (median 815g/g dw), 34-418ng/g (median 131ng/g dw), respectively. The sources of the high level of OPEs in soil was related to the end point use of consumer materials, traffic emission, and close proximity to commercial and industrial areas; while domestic sewage discharges and effluents from carpet industry were identified as the possible entry of OPE in sediments. Total organic carbon (TOC) and black carbon (BC) content in soil were moderately and positively correlated with ∑8OPE indicating more or less influence of soil organic carbon. The health risk assessment suggested dermal absorption of OPEs via soil is the primary pathway of human exposure to the general population. The significantly high-risk quotient (RQ) estimated for ∑8OPEs especially TMPP and TPHP suggested significant potential adverse risk for aquatic organisms.
Collapse
Affiliation(s)
- Ishwar Chandra Yadav
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Department of International Environmental and Agricultural Science (IEAS), Tokyo University of Agriculture and Technology (TUAT) 3-5-8, Saiwai-Cho, Fuchu-Shi, Tokyo 1838509, Japan.
| | | | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
187
|
He C, Toms LML, Thai P, Van den Eede N, Wang X, Li Y, Baduel C, Harden FA, Heffernan AL, Hobson P, Covaci A, Mueller JF. Urinary metabolites of organophosphate esters: Concentrations and age trends in Australian children. ENVIRONMENT INTERNATIONAL 2018; 111:124-130. [PMID: 29195135 DOI: 10.1016/j.envint.2017.11.019] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/30/2017] [Accepted: 11/21/2017] [Indexed: 05/24/2023]
Abstract
There is growing concern around the use of organophosphate esters (OPEs) due to their suspected reproductive toxicity, carcinogenicity, and neurotoxicity. OPEs are used as flame retardants and plasticizers, and due to their extensive application in consumer products, are found globally in the indoor environment. Early life exposure to OPEs is an important risk factor for children's health, but poorly understood. To study age and sex trends of OPE exposures in infants and young children, we collected, pooled, and analysed urine samples from children aged 0-5years from Queensland, Australia for 9 parent OPEs and 11 metabolites. Individual urine samples (n=400) were stratified by age and sex, and combined into 20 pools. Three individual breast milk samples were also analysed to provide a preliminary estimate on the contribution of breast milk to the intake of OPEs. Bis(1-chloroisopropyl) phosphate (BCIPP), 1-hydroxy-2-propyl bis(1-chloro-2-propyl) phosphate (BCIPHIPP), bis(1,3-dichloroisopropyl) phosphate (BDCIPP), dibutyl phosphate (DBP), diphenyl phosphate (DPHP), bis(2-butoxyethyl) phosphate (BBOEP), bis(2-butoxyethyl) 3-hydroxyl-2-butoxyethyl phosphate (3OH-TBOEP), and bis(2-butoxyethyl) hydroxyethyl phosphate (BBOEHEP) were detected in all urine samples, followed by bis(methylphenyl) phosphate (80%), and bis(2-ethylhexyl) phosphate (BEHP, 20%), and bis(2-chloroethyl) phosphate (BCEP, 15%). Concentrations of tris(2-chloroethyl) phosphate (TCEP), BCEP, tris(2-ethylhexyl) phosphate (TEHP), and DBP decreased with age, while bis(methylphenyl) phosphate (BMPP) increased with age. Significantly higher concentrations of DPHP (p=0.039), and significantly lower concentrations of TEHP (p=0.006) were found in female samples compared to males. The estimated daily intakes (EDIs) via breastfeeding, were 4.6, 26 and 76ng/kg/day for TCEP, TBP and TEHP, respectively, and were higher than that via air and dust, suggesting higher exposure through consumption of breast milk.
Collapse
Affiliation(s)
- Chang He
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, 4108 Brisbane, Australia.
| | - Leisa-Maree L Toms
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, 4000 Brisbane, QLD, Australia
| | - Phong Thai
- International Laboratory for Air Quality and Health, Queensland University of Technology, 4000 Brisbane, Australia
| | - Nele Van den Eede
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Xianyu Wang
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, 4108 Brisbane, Australia
| | - Yan Li
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, 4108 Brisbane, Australia
| | - Christine Baduel
- Université Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France; QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, 4108 Brisbane, Australia
| | | | - Amy L Heffernan
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, 4108 Brisbane, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 3000 Melbourne, VIC, Australia
| | - Peter Hobson
- Sullivan Nicolaides Pathology, Taringa, Brisbane, Australia
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Jochen F Mueller
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, 4108 Brisbane, Australia
| |
Collapse
|
188
|
Schecter A, Kincaid J, Quynh HT, Lanceta J, Tran HTT, Crandall R, Shropshire W, Birnbaum LS. Biomonitoring of Metals, Polybrominated Diphenyl Ethers, Polychlorinated Biphenyls, and Persistent Pesticides in Vietnamese Female Electronic Waste Recyclers. J Occup Environ Med 2018; 60:191-197. [PMID: 29099469 PMCID: PMC6108319 DOI: 10.1097/jom.0000000000001200] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Electronic waste is increasing. It is frequently recycled in developing countries. This is the first study to report metals, polybrominated diphenyl-ethers (PBDEs), polychlorinated biphenyls (PCBs), 2,2-bis(4-chlorophenyl)-1,1,1-trichloroethane (p,p'-DDT), and p,p'-DDE concentrations in female e-waste workers. METHODS Female Vietnamese recyclers and non-recyclers were studied. Metals and halogenated organics were measured in blood and urine, and compared with levels in women in the US National Health and Nutrition Examination Survey (NHANES). RESULTS Recyclers had higher serum PBDE than nonrecyclers. PCB-138/158 and PCB-153 were higher in 18 to less than 38-year-old nonrecyclers. Median urinary arsenic in both cohorts was six to seven-fold higher than NHANES. Median lead in blood and urine was 40% to 60% higher in recyclers than nonrecyclers. Lead in nonrecyclers was four to six-fold higher than NHANES. Both cohorts had higher arsenic and mercury than NHANES. CONCLUSION Occupational exposure to PBDEs and lead occurred in recyclers. Environmental exposure to arsenic, lead, and mercury occurred in both cohorts. Occupational and environmental remediation are recommended.
Collapse
Affiliation(s)
- Arnold Schecter
- University of Louisville School of Medicine, Department of Pharmacology and Toxicology, and School of Public Health and Information Sciences, Louisville, Kentucky (Dr Schecter, Mr Crandall); Keck School of Medicine at the University of Southern California, Los Angeles, California (Dr Kincaid); Centre for Ecologically Sustainable Agriculture, Hanoi, Vietnam (Dr Quynh); University of Louisville School of Medicine, Department of Internal Medicine, Louisville, Kentucky (Dr Lanceta); Hanoi School of Public Health, Hanoi, Vietnam (Dr Tran); University of Texas School of Public Health, Houston, Texas (Mr Shropshire); and National Cancer Institute, National Institutes of Health, Research Triangle Park, North Carolina (Dr Birnbaum)
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Al-Omran LS, Harrad S. Within-room and within-home spatial and temporal variability in concentrations of legacy and "novel" brominated flame retardants in indoor dust. CHEMOSPHERE 2018; 193:1105-1112. [PMID: 29874738 DOI: 10.1016/j.chemosphere.2017.11.147] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/21/2017] [Accepted: 11/23/2017] [Indexed: 06/08/2023]
Abstract
To test the hypothesis that assessments of human exposure to PBDEs and NBFRs (PBEB, EH-TBB, BEH-TEBP, BTBPE and DBDPE) via dust ingestion should take into account spatial and temporal variability in dust contamination; 238 dust samples were collected from nine different rooms within three homes in Birmingham UK. In each room, three different dust samples were taken at monthly intervals for nine months, one sample from elevated surfaces and two samples from two different floor areas. Substantial within-room and within-home spatial variability in BFR concentrations was apparent between two floor areas and between different rooms due to the varying distances of sampled surfaces from potential BFR sources. With the exception of DBDPE, BFR concentrations in elevated surface dust exceeded significantly those in floor dust. Considerable within-room and within-home temporal variability in BFR concentrations was also apparent over a nine month sampling period. This is likely attributable to changes in room contents. Based on observed spatial and temporal variability, exposure estimates based on analysis of a single dust sample taken from one specific floor area at one specific point in time may not be entirely representative of human exposure in that room. Noticeable variability in BFR concentrations was also observed between colder and warmer seasons. In 13 out of 17 floor areas, concentrations of Σ8tri-deca-BDEs were higher in colder seasons, while those of Σ5NBFRs were higher in warmer seasons. Significant negative correlation was observed in two rooms between concentrations of BDE-99, Σ7tri-hepta-BDEs and BEH-TEBP and dust loading (g/m2).
Collapse
Affiliation(s)
- Layla Salih Al-Omran
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK; Division of Ecology, College of Science, University of Basrah, Basrah, Iraq.
| | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
190
|
Ding J, Deng T, Xu M, Wang S, Yang F. Residuals of organophosphate esters in foodstuffs and implication for human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:986-991. [PMID: 29037495 DOI: 10.1016/j.envpol.2017.09.092] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 05/25/2023]
Abstract
Foodstuffs may be contaminated by organophosphate esters (OPEs) and become an important source of human exposure since OPEs are ubiquitous in the environment. In the present study, 10 OPEs were analyzed in various food matrices collected from a city in Eastern China including chicken, pork, fishes, vegetables, tofu, eggs, milk and cereals. The concentrations of Σ10OPEs ranged from 1.1 to 9.6 ng g-1 fresh weight (fw) in the foodstuffs. Cereals had the highest residual level of total OPEs with a mean value of 5.7 ng g-1 fw. Tris(2-ethylhexyl) phosphate was detected in all foodstuff samples and showed the highest median residual concentration of 1.3 ng g-1 fw among the OPE analogs. The daily dietary intake of OPEs was calculated as 3.6 and 2.4 μg d-1 for adults and children. Cereals were identified as the major contributor to the total OPEs among different types of foodstuffs. Preliminary exposure assessment revealed that the current non-cancer health risks of OPEs via dietary intake were in the range of 10-5-10-3, indicating low risk levels. Moreover, the hazard index of OPEs indicated that the risk for children (3 × 10-3) was higher than adults (2 × 10-3).
Collapse
Affiliation(s)
- Jinjian Ding
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, 310058 Hangzhou, China; Laboratory of Environmental Monitoring, Research Institute of Zhejiang University-Taizhou, 318000 Taizhou, China
| | - Tongqing Deng
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, 310058 Hangzhou, China
| | - Mengmeng Xu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, 310058 Hangzhou, China
| | - Shen Wang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, 310058 Hangzhou, China
| | - Fangxing Yang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, 310058 Hangzhou, China.
| |
Collapse
|
191
|
Carignan CC, Mínguez-Alarcón L, Williams PL, Meeker JD, Stapleton HM, Butt CM, Toth TL, Ford JB, Hauser R. Paternal urinary concentrations of organophosphate flame retardant metabolites, fertility measures, and pregnancy outcomes among couples undergoing in vitro fertilization. ENVIRONMENT INTERNATIONAL 2018; 111:232-238. [PMID: 29241080 PMCID: PMC5800983 DOI: 10.1016/j.envint.2017.12.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/20/2017] [Accepted: 12/04/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND Use of organophosphate flame retardants (PFRs) has increased over the past decade following the phase out of some brominated flame retardants, leading to increased human exposure. We recently reported that increasing maternal PFR exposure is associated with poorer pregnancy outcomes among women from a fertility clinic. Because a small epidemiologic study previously reported an inverse association between male PFR exposures and sperm motility, we sought to examine associations of paternal urinary concentrations of PFR metabolites and their partner's pregnancy outcomes. METHODS This analysis included 201 couples enrolled in the Environment and Reproductive Health (EARTH) prospective cohort study (2005-2015) who provided one or two urine samples per IVF cycle. In both the male and female partner, we measured five urinary PFR metabolites [bis(1,3-dichloro-2-propyl) phosphate (BDCIPP), diphenyl phosphate (DPHP), isopropylphenyl phenyl phosphate (ip-PPP), tert-butylphenyl phenyl phosphate (tb-PPP) and bis(1-chloro-2-propyl) phosphate (BCIPP)] using negative electrospray ionization liquid chromatography tandem mass spectrometry (LC-MS/MS). The sum of the molar concentrations of the urinary PFR metabolites was calculated. We used multivariable generalized linear mixed models to evaluate the association of urinary concentrations of paternal PFR metabolites with IVF outcomes, accounting for multiple in vitro fertilization (IVF) cycles per couple. Models were adjusted for year of IVF treatment cycle, primary infertility diagnosis, and maternal urinary PFR metabolites as well as paternal and maternal age, body mass index, and race/ethnicity. RESULTS Detection rates were high for paternal urinary concentrations of BDCIPP (84%), DPHP (87%) and ip-PPP (76%) but low for tb-PPP (12%) and zero for BCIPP (0%). We observed a significant 12% decline in the proportion of fertilized oocytes from the first to second quartile of male urinary ΣPFR and a 47% decline in the number of best quality embryos from the first to third quartile of male urinary BDCIPP in our adjusted models. An 8% decline in fertilization was observed for the highest compared to lowest quartile of urinary BDCIPP concentrations (95% CI: 0.01, 0.12, p-trend=0.06). CONCLUSIONS Using IVF as a model to investigate human reproduction and pregnancy outcomes, we found that paternal urinary concentrations of BDCIPP were associated with reduced fertilization. In contrast to previously reported findings for the female partners, the paternal urinary PFR metabolites were not associated with the proportion of cycles resulting in successful implantation, clinical pregnancy, and live birth. These results indicate that paternal preconception exposure to TDCIPP may adversely impact successful oocyte fertilization, whereas female preconception exposure to ΣPFRs may be more relevant to adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Courtney C Carignan
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Food Science and Human Nutrition, Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA.
| | - Lidia Mínguez-Alarcón
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Paige L Williams
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| | | | - Craig M Butt
- Nicholas School of the Environment, Duke University, Durham, NC, USA; SCIEX, Framingham, MA, USA.
| | - Thomas L Toth
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Jennifer B Ford
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
192
|
Hao C, Helm PA, Morse D, Reiner EJ. Liquid chromatography-tandem mass spectrometry direct injection analysis of organophosphorus flame retardants in Ontario surface water and wastewater effluent. CHEMOSPHERE 2018; 191:288-295. [PMID: 29040943 DOI: 10.1016/j.chemosphere.2017.10.060] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/08/2017] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
Organophosphorus flame retardants (OPFRs) started to be used in plastics, electronics and furnishings back in the 1960s and became popular again last decade. They are now widely present in the environment and regarded as "new" emerging organic pollutants. An effective liquid chromatography-tandem mass spectrometry (LC-MS/MS) direct injection analysis (DIA) method was developed to monitor OPFR levels in aquatic environment. The removal of sample extraction and concentration steps not only improved operation efficiency, but also reduced the potential contamination commonly observed during the sample preparation process before. Positive background signals from the analytical instrument were eliminated by employing a "trap" column in front of the sample injector while an ACE C18 and an ACE C18-PFP column were compared for the separation of OPFRs. Nineteen OPFR related compounds were evaluated and rapid signal drops were observed for seven of them including TOTP, TMTP, TPTP, TEHP, T35DMPP, T2iPPP and EHDP, due to their low water solubility. The other twelve compounds, TMP, TEP, TPrP, TiPP, TBP, TCEP, TCPP, TDCPP, TPP, TBEP, BDCP and BEHP, were included for the measurement of OPFRs in drinking water, surface water, ground water and wastewater effluent samples. The instrumental detection limits of these twelve OPFRs at signal-to-noise ≥3 were in the 1.5-30 ng/L range. The method was applied for the determination of OPFRs in surface water and wastewater samples in Ontario, Canada, and BEHP, TBEP, TBP, TCEP, TCPP, TDCPP, and TEP were commonly detected.
Collapse
Affiliation(s)
- Chunyan Hao
- Laboratory Services Branch, Ontario Ministry of the Environment and Climate Change, 125 Resources Road, Etobicoke, Ontario, M9P 3V6, Canada.
| | - Paul A Helm
- Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment and Climate Change, 125 Resources Road, Etobicoke, Ontario, M9P 3V6, Canada
| | - David Morse
- Laboratory Services Branch, Ontario Ministry of the Environment and Climate Change, 125 Resources Road, Etobicoke, Ontario, M9P 3V6, Canada
| | - Eric J Reiner
- Laboratory Services Branch, Ontario Ministry of the Environment and Climate Change, 125 Resources Road, Etobicoke, Ontario, M9P 3V6, Canada
| |
Collapse
|
193
|
Ospina M, Jayatilaka NK, Wong LY, Restrepo P, Calafat AM. Exposure to organophosphate flame retardant chemicals in the U.S. general population: Data from the 2013-2014 National Health and Nutrition Examination Survey. ENVIRONMENT INTERNATIONAL 2018; 110:32-41. [PMID: 29102155 PMCID: PMC6261284 DOI: 10.1016/j.envint.2017.10.001] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/05/2017] [Accepted: 10/05/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND Use of organophosphate flame retardants (OPFRs) including tris(1,3-dichloro-2-propyl) phosphate, triphenyl phosphate, tris(1-chloro-2-propyl) phosphate, and tris-2-chloroethyl phosphate, in consumer products is on the rise because of the recent phase out of polybrominated diphenyl ether (PBDE) flame retardants. Some of these chemicals are also used as plasticizers or lubricants in many consumer products. OBJECTIVES To assess human exposure to these chlorinated and non-chlorinated organophosphates, and non-PBDE brominated chemicals in a representative sample of the U.S. general population 6years and older from the 2013-2014 National Health and Nutrition Examination Survey (NHANES). METHODS We used solid-phase extraction coupled to isotope dilution high-performance liquid chromatography-tandem mass spectrometry after enzymatic hydrolysis of conjugates to analyze 2666 NHANES urine samples for nine biomarkers: diphenyl phosphate (DPHP), bis(1,3-dichloro-2-propyl) phosphate (BDCIPP), bis-(1-chloro-2-propyl) phosphate (BCIPP), bis-2-chloroethyl phosphate (BCEP), di-n-butyl phosphate (DNBP), di-p-cresylphosphate (DpCP), di-o-cresylphosphate (DoCP), dibenzyl phosphate (DBzP), and 2,3,4,5-tetrabromobenzoic acid (TBBA). We calculated the geometric mean (GM) and distribution percentiles for the urinary concentrations (both in micrograms per liter [μg/L] and in micrograms per gram of creatinine). We only calculated GMs for analytes with an overall weighted frequency of detection >60%. For those analytes, we also a) determined weighted Pearson correlations among the log10-transformed concentrations, and b) used regression models to evaluate associations of various demographic parameters with urinary concentrations of these biomarkers. RESULTS We detected BDCIPP and DPHP in approximately 92% of study participants, BCEP in 89%, DNBP in 81%, and BCIPP in 61%. By contrast, we detected the other biomarkers much less frequently: DpCP (13%), DoCP (0.1%), TBBA (5%), and did not detect DBzP in any of the participants. Concentration ranges were highest for DPHP (<0.16-193μg/L), BDCIPP (<0.11-169μg/L), and BCEP (<0.08-110μg/L). Regardless of race/ethnicity, 6-11year old children had significantly higher BCEP adjusted GMs than other age groups. Females had significantly higher DPHP and BDCIPP adjusted GM than males, and were more likely than males to have DPHP concentrations above the 95th percentile (odds ratio=3.61; 95% confidence interval, 2.01-6.48). CONCLUSIONS Our results confirm findings from previous studies suggesting human exposure to OPFRs, and demonstrate, for the first time, widespread exposure to several OPFRs among a representative sample of the U.S. general population 6years of age and older. The observed differences in concentrations of certain OPFRs biomarkers by race/ethnicity, in children compared to other age groups, and in females compared to males may reflect differences in lifestyle and exposure patterns. These NHANES data can be used to stablish a nationally representative baseline of exposures to OPFRs and when combined with future 2-year survey data, to evaluate exposure trends.
Collapse
Affiliation(s)
- Maria Ospina
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, MS F17, Atlanta, GA 30341, USA.
| | - Nayana K Jayatilaka
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, MS F17, Atlanta, GA 30341, USA
| | - Lee-Yang Wong
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, MS F17, Atlanta, GA 30341, USA
| | - Paula Restrepo
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, MS F17, Atlanta, GA 30341, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, MS F17, Atlanta, GA 30341, USA
| |
Collapse
|
194
|
Dasgupta S, Vliet SM, Kupsco A, Leet JK, Altomare D, Volz DC. Tris(1,3-dichloro-2-propyl) phosphate disrupts dorsoventral patterning in zebrafish embryos. PeerJ 2017; 5:e4156. [PMID: 29259843 PMCID: PMC5733366 DOI: 10.7717/peerj.4156] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/21/2017] [Indexed: 12/02/2022] Open
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is a high-production volume organophosphate flame retardant widely used within the United States. Within zebrafish, initiation of TDCIPP exposure at 0.75 h post-fertilization (hpf) results in genome-wide alterations in methylation during cleavage (2 hpf) as well as epiboly delay or arrest (at higher concentrations) during late-blastula and early-gastrula (4–6 hpf). To determine whether these TDCIPP-induced effects were associated with impacts on the transcriptome, embryos were exposed to vehicle (0.1% DMSO) or 2 µM TDCIPP from 0.75 hpf to 6 hpf, and total RNA was extracted from triplicate embryo pools per treatment and hybridized onto duplicate Affymetrix Zebrafish Gene 1.0 ST Arrays per RNA sample. Based on transcriptome-wide profiling, TDCIPP resulted in a significant impact on biological processes involved in dorsoventral patterning and bone morphogenetic protein (BMP) signaling. Consistent with these responses, TDCIPP exposure also resulted in strongly dorsalized embryos by 24 hpf—a phenotype that mimicked the effects of dorsomorphin, a potent and selective BMP inhibitor. Moreover, the majority of dorsalized embryos were preceded by epiboly arrest at 6 hpf. Our microarray data also revealed that the expression of sizzled (szl)—a gene encoding a secreted Frizzled-related protein that limits BMP signaling—was significantly decreased by nearly 4-fold at 6 hpf. Therefore, we used a splice-blocking morpholino to test the hypothesis that knockdown of szl phenocopies TDCIPP-induced delays in epiboly progression. Interestingly, contrary to our hypothesis, injection of szl MOs did not affect epiboly progression but, similar to chordin (chd) morphants, resulted in mildly ventralized embryos by 24 hpf. Overall, our findings suggest that TDCIPP-induced epiboly delay may not be driven by decreased szl expression, and that TDCIPP-induced dorsalization may—similar to dorsomorphin—be due to interference with BMP signaling during early zebrafish development.
Collapse
Affiliation(s)
- Subham Dasgupta
- Department of Environmental Sciences, University of California, Riverside, CA, United States of America
| | - Sara M Vliet
- Department of Environmental Sciences, University of California, Riverside, CA, United States of America.,Environmental Toxicology Graduate Program, University of California, Riverside, CA, United States of America
| | - Allison Kupsco
- Department of Environmental Sciences, University of California, Riverside, CA, United States of America
| | - Jessica K Leet
- University of South Carolina, Columbia, SC, United States of America
| | - Diego Altomare
- University of South Carolina, Columbia, SC, United States of America
| | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, CA, United States of America
| |
Collapse
|
195
|
Fu L, Du B, Wang F, Lam JCW, Zeng L, Zeng EY. Organophosphate Triesters and Diester Degradation Products in Municipal Sludge from Wastewater Treatment Plants in China: Spatial Patterns and Ecological Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13614-13623. [PMID: 29083881 DOI: 10.1021/acs.est.7b04106] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Little is known about the occurrences, distributions, sources, and potential risks of organophosphate (OP) triesters and diester degradation products in municipal sludge from wastewater treatment plants (WWTPs). In this study, we conducted the first nationwide survey to simultaneously determine a suite of 11 OP triesters and six diester degradation products in sludge from WWTPs across China. All OP triesters were detected and three diesters were identified for the first time in sludge samples. Total concentrations of OP triesters and diester degradation products were in the ranges of 43.9-2160 and 17.0-1300 ng (g of dry weight)-1, respectively, indicating relatively low pollution levels in China compared with those of several developed countries. A distinct geographical variation of higher concentrations of OP triesters and diesters in East China than in Central and West China was observed, suggesting that regional levels of organophosphate esters are associated with the magnitudes of regional economic development. Source analysis revealed nonchlorinated OP diesters are mainly derived from degradation in WWTPs, while chlorinated OP diesters were largely sourced from outside WWTPs. The estimated total emission fluxes of OP triesters and diesters via land-application sludge in China were approximately 330 and 134 kg/year, respectively. Further risk assessment based on risk quotient values in sludge-applied soils indicated low to medium risks for most OP triesters and diesters except tris(methylphenyl) phosphate. The significant accumulation of OP triesters and widespread occurrence of diester degradation products in sludge raise environmental concerns about these contaminants.
Collapse
Affiliation(s)
- Lingfang Fu
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University , Guangzhou 510632, China
| | - Bibai Du
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University , Guangzhou 510632, China
| | - Fei Wang
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University , Guangzhou 510632, China
| | - James C W Lam
- Department of Science and Environmental Studies, The Education University of Hong Kong , Hong Kong SAR, China
| | - Lixi Zeng
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University , Guangzhou 510632, China
| | - Eddy Y Zeng
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University , Guangzhou 510632, China
| |
Collapse
|
196
|
Castorina R, Bradman A, Stapleton HM, Butt C, Avery D, Harley KG, Gunier RB, Holland N, Eskenazi B. Current-use flame retardants: Maternal exposure and neurodevelopment in children of the CHAMACOS cohort. CHEMOSPHERE 2017; 189:574-580. [PMID: 28963974 PMCID: PMC6353563 DOI: 10.1016/j.chemosphere.2017.09.037] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 09/07/2017] [Accepted: 09/09/2017] [Indexed: 05/06/2023]
Abstract
Flame retardants are commonly used in consumer products found in U.S. households. Restrictions on the use of polybrominated diphenyl ether flame retardants have resulted in increased use of replacement chemicals, including Firemaster 550® (FM 550®) and organophosphate flame retardants (PFRs): tris(1,3- dichloro-2-propyl) phosphate (TDCIPP); tris(chloropropyl) phosphate (TCIPP); tris(2-chloroethyl) phosphate (TCEP); and triphenyl phosphate (TPHP). Animal research suggests that PFRs may affect neurodevelopment through noncholinergic mechanisms similar to some organophosphate (OP) pesticides. Despite the widespread presence of these compounds in home environments, and their structural similarity to neurotoxic OP pesticides, understanding of human exposure and health effects of PFRs is limited. We measured four urinary PFR metabolites from pregnant women in the CHAMACOS birth cohort study (n = 310) and assessed neurodevelopment of their children at age 7. Metabolites of TDCIPP (BDCIPP: bis(1,3-dichloro-2-propyl) phosphate) and TPHP (DPHP: diphenyl phosphate) were detected in >75% of urine samples, and isopropylphenyl phenyl phosphate (ip-PPP), a metabolite of one component of FM 550®, was detected in 72% of urine samples. We observed decreases of 2.9 points (95% Confidence Interval (CI): -6.3, 0.5) and 3.9 points (95% CI: -7.3,-0.5) in Full-Scale intelligence quotient and Working Memory, respectively, for each ten-fold increase in DPHP in adjusted regression models (n = 248). Decreases in Full-Scale IQ and Working Memory were greater in models of the molar sum of the PFR metabolites compared to the DPHP models. This is the first study to examine PFR and FM 550® exposures and potential neurodevelopmental outcomes in pregnant women and children. Additional research is warranted.
Collapse
Affiliation(s)
- Rosemary Castorina
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA.
| | - Asa Bradman
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | | | - Craig Butt
- Duke University, Nicholas School of the Environment, Durham, NC, USA
| | - Dylan Avery
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Kim G Harley
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Robert B Gunier
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Nina Holland
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| |
Collapse
|
197
|
Ginsberg GL, Belleggia G. Use of Monte Carlo analysis in a risk-based prioritization of toxic constituents in house dust. ENVIRONMENT INTERNATIONAL 2017; 109:101-113. [PMID: 28890219 DOI: 10.1016/j.envint.2017.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/07/2017] [Accepted: 06/10/2017] [Indexed: 06/07/2023]
Abstract
Many chemicals have been detected in house dust with exposures to the general public and particularly young children of potential health concern. House dust is also an indicator of chemicals present in consumer products and the built environment that may constitute a health risk. The current analysis compiles a database of recent house dust concentrations from the United States and Canada, focusing upon semi-volatile constituents. Seven constituents from the phthalate and flame retardant categories were selected for risk-based screening and prioritization: diethylhexyl phthalate (DEHP), butyl benzyl phthalate (BBzP), diisononyl phthalate (DINP), a pentabrominated diphenyl ether congener (BDE-99), hexabromocyclododecane (HBCDD), tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and tris(2-chloroethyl) phosphate (TCEP). Monte Carlo analysis was used to represent the variability in house dust concentration as well as the uncertainty in the toxicology database in the estimation of children's exposure and risk. Constituents were prioritized based upon the percentage of the distribution of risk results for cancer and non-cancer endpoints that exceeded a hazard quotient (HQ) of 1. The greatest percent HQ exceedances were for DEHP (cancer and non-cancer), BDE-99 (non-cancer) and TDCIPP (cancer). Current uses and the potential for reducing levels of these constituents in house dust are discussed. Exposure and risk for other phthalates and flame retardants in house dust may increase if they are used to substitute for these prioritized constituents. Therefore, alternative assessment and green chemistry solutions are important elements in decreasing children's exposure to chemicals of concern in the indoor environment.
Collapse
Affiliation(s)
- Gary L Ginsberg
- Department of Community Medicine, MPH Program, University of Connecticut Health Center School of Medicine, Farmington, CT, USA.
| | - Giuliana Belleggia
- Department of Community Medicine, MPH Program, University of Connecticut Health Center School of Medicine, Farmington, CT, USA
| |
Collapse
|
198
|
Soubry A. Epigenetics as a Driver of Developmental Origins of Health and Disease: Did We Forget the Fathers? Bioessays 2017; 40. [PMID: 29168895 DOI: 10.1002/bies.201700113] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/04/2017] [Indexed: 12/15/2022]
Abstract
What are the effects of our environment on human development and the next generation? Numerous studies have provided ample evidence that a healthy environment and lifestyle of the mother is important for her offspring. Biological mechanisms underlying these environmental influences have been proposed to involve alterations in the epigenome. Is there enough evidence to suggest a similar contribution from the part of the father? Animal models provide proof of a transgenerational epigenetic effect through the paternal germ line, but can this be translated to humans? To date, literature on fathers is scarce. Human studies do not always incorporate appropriate tools to evaluate paternal influences or epigenetic effects. In reviewing the literature, I stress the need to explore and recognize paternal contributions to offspring's health within the Developmental Origins of Health and Disease hypothesis, and coin this new concept the Paternal Origins of Health and Disease paradigm (POHaD). A better understanding of preconceptional origins of disease through the totality of paternal exposures, or the paternal exposome, will provide evidence-based public health recommendations for future fathers.
Collapse
Affiliation(s)
- Adelheid Soubry
- Epidemiology Research Group, Department of Public Health and Primary Care, Faculty of Medicine, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
199
|
Hoffman K, Lorenzo A, Butt CM, Hammel SC, Henderson BB, Roman SA, Scheri RP, Stapleton HM, Sosa JA. Exposure to flame retardant chemicals and occurrence and severity of papillary thyroid cancer: A case-control study. ENVIRONMENT INTERNATIONAL 2017; 107:235-242. [PMID: 28772138 DOI: 10.1016/j.envint.2017.06.021] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/01/2017] [Accepted: 06/28/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Thyroid cancer is the fastest increasing cancer in the U.S., and papillary thyroid cancer (PTC) accounts for >80% of incident cases. Increasing exposure to flame retardant chemicals (FRs) has raised concerns about their possible role in this 'epidemic'. The current study was designed to test the hypothesis that higher exposure to FRs is associated with increased odds of PTC. METHODS PTC patients at the Duke Cancer Institute were approached and invited to participate. Age- and gender-matched controls were recruited from the Duke Health System and surrounding communities. Because suitable biomarkers of long-term exposure do not exist for many common FRs, and levels of FRs in dust are significantly correlated with exposure, relationships between FRs in household dust and PTC were evaluated in addition to available biomarkers. PTC status, measures of aggressiveness (e.g. tumor size) and BRAF V600E mutation were included as outcomes. RESULTS Higher levels of some FRs, particularly decabromodiphenyl ether (BDE-209) and tris(2-chloroethyl) phosphate in dust, were associated with increased odds of PTC. Participants with dust BDE-209 concentrations above the median level were 2.29 times as likely to have PTC [95% confidence interval: 1.03, 5.08] compared to those with low BDE-209 concentrations. Associations varied based on tumor aggressiveness and mutation status; TCEP was more strongly associated with larger, more aggressive tumors and BDE-209 was associated with smaller, less aggressive tumors. CONCLUSIONS Taken together, these results suggest exposure to FRs in the home, particularly BDE-209 and TCEP, may be associated with PTC occurrence and severity, and warrant further study.
Collapse
Affiliation(s)
- Kate Hoffman
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States
| | - Amelia Lorenzo
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States
| | - Craig M Butt
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States
| | - Stephanie C Hammel
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States
| | - Brittany Bohinc Henderson
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, Wake Forest University Baptist Medical Center and Wake Forest Comprehensive Cancer Center, Winston-Salem, NC 27157, United States
| | - Sanziana A Roman
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, United States
| | - Randall P Scheri
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, United States
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States
| | - Julie Ann Sosa
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States; Department of Surgery, Duke University Medical Center, Durham, NC 27710, United States; Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, United States; Duke Clinical Research Institute, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
200
|
Yadav IC, Devi NL, Zhong G, Li J, Zhang G, Covaci A. Occurrence and fate of organophosphate ester flame retardants and plasticizers in indoor air and dust of Nepal: Implication for human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:668-678. [PMID: 28704803 DOI: 10.1016/j.envpol.2017.06.089] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/27/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
The present study was carried out in Nepal, a landlocked country located between world's two most populous countries i.e. India and China. In this study, the occurrence, profiles, spatial distributions and fate of eight organophosphate ester flame retardants (OPFRs) were investigated in indoor air and house dust. Overall, the concentrations of ∑OPFR were in the range of 153-12100 ng/g (median732 ng/g) and 0.32-64 ng/m3 (median 5.2 ng/m3) in house dust and indoor air, respectively. The sources of high OPFR in the indoor environment could be from locally used wide variety of consumer products and building materials in Nepalese houses. Significantly, high concentration of tri-cresyl phosphate (TMPP) was found both in air and dust, while tri (2-ethylhexyl) phosphate (TEHP) had the highest concentration in air samples. It might be due to fact that the high concentrations of TMPP are related to intense traffic and/or nearby airports. On the other hand, significantly high concentration of TEHP could be due to anthropogenic activities. Only TEHP showed positive correlation between indoor air and house dust (Rho = 0.517, p < 0.01), while rest of compounds were either less correlated or not correlated at all. The estimated human exposure to ∑OPFR via different pathway of intake suggested dermal absorption via indoor dust as major pathway of human exposure to both children and adult population. However, other pathways of OPFR intake such as dietary or dermal absorption via soil may still be significant in case of Nepal.
Collapse
Affiliation(s)
- Ishwar Chandra Yadav
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China.
| | | | - Guangcai Zhong
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|