151
|
Affiliation(s)
- Donald J Kyle
- Discovery Research, Purdue Pharma L.P., 6 Cedar Brook Drive, Cranbury, New Jersey 08512, USA.
| | | |
Collapse
|
152
|
Kennedy JD. Neuropathic Pain: Molecular Complexity Underlies Continuing Unmet Medical Need. J Med Chem 2007; 50:2547-56. [PMID: 17489577 DOI: 10.1021/jm061023c] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jeffrey D Kennedy
- Neuroscience Discovery, Wyeth Research, CN 8000, Princeton, New Jersey 08543-8000, USA.
| |
Collapse
|
153
|
Abstract
Neuropathic pain occurs as a result of some form of injury to the nervous system. Although the basis of the disease remains to be fully elucidated, numerous studies have suggested a major role for ion channels in the pathogenesis of neuropathic pain. As Na+ channels play a fundamental role in not only the generation but also in the conduction of an action potential, they have received considerable attention in the aetiology of pain sensation and have become important pharmacological targets. In this review, the authors discuss the importance of specific Na+ channel isoforms in the pathophysiology of neuropathic pain and the present use of Na+ channel antagonists in the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Nicholas James Hargus
- University of Virginia Health System, Department of Anesthesiology, Neuroscience Graduate Program, 1 Hospital Drive, Old Medical School, Charlottesville, VA 22908, USA
| | | |
Collapse
|
154
|
Kleibeuker W, Ledeboer A, Eijkelkamp N, Watkins LR, Maier SF, Zijlstra J, Heijnen CJ, Kavelaars A. A role for G protein-coupled receptor kinase 2 in mechanical allodynia. Eur J Neurosci 2007; 25:1696-704. [PMID: 17408432 DOI: 10.1111/j.1460-9568.2007.05423.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Inflammation and nerve injury can both induce mechanical allodynia via mechanisms involving the production of pro-inflammatory cytokines and increased neuronal activity. Many neurotransmitters involved in pain signal via G protein-coupled receptors (GPCRs). GPCR kinase (GRK)2 is a member of the GRK family that regulates agonist-induced desensitization and signalling of GPCRs. Low intracellular GRK2 levels are associated with increased receptor signalling. The aim of this study was to investigate whether mechanical allodynia is associated with decreased spinal cord GRK2 expression and whether reduced GRK2 increases inflammation-induced mechanical allodynia. Mechanical allodynia was induced in rats by chronic constriction injury of the sciatic nerve. After 2 weeks, neuronal GRK2 expression was decreased bilaterally in the superficial layers of the lumbar spinal cord dorsal horn. Moreover, interleukin-1beta significantly reduced GRK2 expression ex vivo in spinal cord slices. To investigate whether reduced GRK2 potentiates inflammation-induced mechanical allodynia, we used GRK2(+/-) animals expressing decreased GRK2. At baseline, the threshold for mechanical stimulation did not differ between GRK2(+/-) and wild-type mice. However, GRK2(+/-) animals were more sensitive to mechanical stimulation than wild-type animals after intraplantar lambda-carrageenan injection. We propose cytokine-induced down-regulation of spinal cord neuronal GRK2 expression as a novel mechanism that contributes to increased neuronal signalling in mechanical allodynia.
Collapse
Affiliation(s)
- Wendy Kleibeuker
- University Medical Center Utrecht, Laboratory of Psychoneuroimmunology, KC03.068.0, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
155
|
Finnerup NB, Sindrup SH, Jensen TS. Chronic neuropathic pain: mechanisms, drug targets and measurement. Fundam Clin Pharmacol 2007; 21:129-36. [PMID: 17391285 DOI: 10.1111/j.1472-8206.2007.00474.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neuropathic pain is common in many diseases or injuries of the peripheral or central nervous system, and has a substantial impact on quality of life and mood. Lesions of the nervous system may lead to potentially irreversible changes and imbalance between excitatory and inhibitory systems. Preclinical research provides several promising targets for treatment such as sodium and calcium channels, glutamate receptors, monoamines and neurotrophic factors; however, treatment is often insufficient. A mechanism-based treatment approach is suggested to improve treatment. Valid and reliable tools to assess various symptoms and signs in neuropathic pain and knowledge of drug mechanisms are prerequisites for pursuing this approach. The present review summarizes mechanisms of neuropathic pain, targets of currently used drugs, and measures used in neuropathic pain trials.
Collapse
Affiliation(s)
- Nanna B Finnerup
- Department of Neurology, Danish Pain Research Center, Aarhus University Hospital, DK-8000 Aarhus, Denmark.
| | | | | |
Collapse
|
156
|
Hentall ID, Hargraves WA, Sagen J. Inhibition by the chromaffin cell-derived peptide serine-histogranin in the rat's dorsal horn. Neurosci Lett 2007; 419:88-92. [PMID: 17442490 PMCID: PMC1945824 DOI: 10.1016/j.neulet.2007.03.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 02/23/2007] [Accepted: 03/28/2007] [Indexed: 11/19/2022]
Abstract
The heptadecapeptide histogranin, synthesized by adrenal chromaffin cells, is implicated in the analgesia produced by transplanting chromaffin cells into the spinal cord, including block of hyperalgesia mediated by NMDA-subtype glutamate receptors. To examine the neurophysiological basis for this analgesia, we applied the stable analog [Ser(1)]-histogranin (SHG) by iontophoresis near extracellularly recorded wide-dynamic range (WDR) neurons in anesthetized rats. When SHG was applied during peripheral electrical stimulation of A and C fibers at 0.1Hz, the C-fiber response was significantly inhibited but the A-fiber response was unaffected. SHG also opposed the NMDA-receptor-dependent post-tetanic facilitation (wind-up) of C-fiber responses produced by increasing the rate of peripheral afferent stimulation to 1Hz for 20s. To test whether block of NMDA-subtype receptors could be wholly or partially responsible for this suppression, SHG was applied during sequential pulsed iontophoresis of three agonists targeting distinct excitatory synaptic receptors: NMDA, kainate and substance P. All three excitatory effects were reversed by SHG; this reversal outlasted the 10-30min observation period when higher SHG doses were applied (>60nA). Histogranin therefore probably produces prolonged spinal analgesia by opposing the basal and potentiating synaptic effects of C-fibers on dorsal horn neurons. Actions besides or in addition to NMDA-receptor antagonism (e.g., agonism at inhibitory postsynaptic receptors or block of voltage-gated cation channels on C-fibers) are implied by the diversity of excitatory transmitters opposed by SHG.
Collapse
Affiliation(s)
- Ian D Hentall
- The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, R-48, Miami, FL 33136, United States.
| | | | | |
Collapse
|
157
|
Abstract
In this article, we review the key basic mechanisms associated with this phenomena and more recently identified mechanisms that are current areas of interest. Although many of these pain mechanisms apply throughout the body, we attempt to describe these mechanisms in the context of trigeminal pain.
Collapse
Affiliation(s)
- Michael A Henry
- Department of Endodontics, University of Texas Health Science Center at San Antonio School of Dentistry, Mail Code 7892, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | | |
Collapse
|
158
|
Abstract
Neuropathic pain remains a large unmet medical need. A number of therapeutic options exist, but efficacy and tolerability are less than satisfactory. Based on animal models and limited data from human patients, the pain and hypersensitivity that characterize neuropathic pain are associated with spontaneous discharges of normally quiescent nociceptors. Sodium channel blockers inhibit this spontaneous activity, reverse nerve injury-induced pain behavior in animals and alleviate neuropathic pain in humans. Several sodium channel subtypes are expressed primarily in sensory neurons and may contribute to the efficacy of sodium channel blockers. In this report, the authors review the current understanding of the role of sodium channels and of specific sodium channel subtypes in neuropathic pain signaling.
Collapse
Affiliation(s)
- Birgit T Priest
- Merck Research Laboratories, Department of Ion Channels, Rahway, NJ 07065, USA.
| | | |
Collapse
|
159
|
Nassar MA, Baker MD, Levato A, Ingram R, Mallucci G, McMahon SB, Wood JN. Nerve injury induces robust allodynia and ectopic discharges in Nav1.3 null mutant mice. Mol Pain 2006; 2:33. [PMID: 17052333 PMCID: PMC1630424 DOI: 10.1186/1744-8069-2-33] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 10/19/2006] [Indexed: 01/21/2023] Open
Abstract
Changes in sodium channel activity and neuronal hyperexcitability contribute to neuropathic pain, a major clinical problem. There is strong evidence that the re-expression of the embryonic voltage-gated sodium channel subunit Nav1.3 underlies neuronal hyperexcitability and neuropathic pain. Here we show that acute and inflammatory pain behaviour is unchanged in global Nav1.3 mutant mice. Surprisingly, neuropathic pain also developed normally in the Nav1.3 mutant mouse. To rule out any genetic compensation mechanisms that may have masked the phenotype, we investigated neuropathic pain in two conditional Nav1.3 mutant mouse lines. We used Nav1.8-Cre mice to delete Nav1.3 in nociceptors at E14 and NFH-Cre mice to delete Nav1.3 throughout the nervous system postnatally. Again normal levels of neuropathic pain developed after nerve injury in both lines. Furthermore, ectopic discharges from damaged nerves were unaffected by the absence of Nav1.3 in global knock-out mice. Our data demonstrate that Nav1.3 is neither necessary nor sufficient for the development of nerve-injury related pain.
Collapse
Affiliation(s)
- Mohammed A Nassar
- Molecular Nociception Group, Department of Biology, University College London WC1E 6BT, UK
| | - Mark D Baker
- Molecular Nociception Group, Department of Biology, University College London WC1E 6BT, UK
| | - Alessandra Levato
- Molecular Nociception Group, Department of Biology, University College London WC1E 6BT, UK
| | - Rachel Ingram
- Centre for Neuroscience Research, Kings College London, London SE1 7EH, UK
| | - Giovanna Mallucci
- MRC Prion Unit and Department of Neurodegeneration. Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Stephen B McMahon
- Centre for Neuroscience Research, Kings College London, London SE1 7EH, UK
| | - John N Wood
- Molecular Nociception Group, Department of Biology, University College London WC1E 6BT, UK
| |
Collapse
|
160
|
Abstract
Our knowledge of the ion channels, receptors and signalling mechanisms involved in pain pathophysiology, and which specific channels play a role in subtypes of pain such as neuropathic and inflammatory pain, has expanded considerably in recent years. It is now clear that in the neuropathic state the expression of certain channels is modified, and that these changes underlie the plasticity of responses that occur to generate inappropriate pain signals from normally trivial inputs. Pain is modulated by a subset of the voltage-gated sodium channels, including Nav1.3, Nav1.7, Nav1.8 and Nav1.9. These isoforms display unique expression patterns within specific tissues, and are either up- or down-regulated upon injury to the nervous system. Here we describe our current understanding of the roles of sodium channels in pain and nociceptive information processing, with a particular emphasis on neuropathic pain and drugs useful for the treatment of neuropathic pain that act through mechanisms involving block of sodium channels. One of the future challenges in the development of novel sodium channel blockers is to design and synthesise isoform-selective channel inhibitors. This should provide substantial benefits over existing pain treatments.
Collapse
Affiliation(s)
- Marc Rogers
- Xention Ltd., Iconix Park, Pampisford, Cambridge CB2 4EF, United Kingdom
| | | | | | | |
Collapse
|
161
|
Baron R. Mechanisms of disease: neuropathic pain--a clinical perspective. ACTA ACUST UNITED AC 2006; 2:95-106. [PMID: 16932531 DOI: 10.1038/ncpneuro0113] [Citation(s) in RCA: 507] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 07/27/2005] [Indexed: 12/19/2022]
Abstract
Neuropathic pain syndromes-pain after a lesion or disease of the peripheral or central nervous system-are clinically characterized by spontaneous and evoked types of pain, which are underpinned by various distinct pathophysiological mechanisms in the peripheral and central nervous systems. In some patients, the nerve lesion triggers molecular changes in nociceptive neurons, which become abnormally sensitive and develop pathological spontaneous activity. Inflammatory reactions of the damaged nerve trunk can induce ectopic nociceptor activity, causing spontaneous pain. The hyperactivity in nociceptors induces secondary changes in processing neurons in the spinal cord and brain, so that input from mechanoreceptive A-fibers is perceived as pain. Neuroplastic changes in the central pain modulatory systems can lead to further hyperexcitability. The treatment of neuropathic pain is still unsatisfactory, and a new hypothetical concept has been proposed, in which pain is analyzed on the basis of underlying mechanisms. The increased knowledge of pain-generating mechanisms and their translation into symptoms and signs might eventually allow a dissection of the mechanisms that operate in each patient. If a precise clinical phenotypic characterization of the neuropathic pain is combined with a selection of drugs that act on those mechanisms, it should ultimately be possible to design optimal treatments for individuals. This review discusses the conceptual framework of the novel mechanism-based classification, encouraging the reader to see neuropathic pain as a clinical entity rather than a compilation of single disease states.
Collapse
Affiliation(s)
- Ralf Baron
- Department of Neurological Pain Research and Therapy, Christian-Albrechts-Universität Kiel, Germany.
| |
Collapse
|
162
|
Zhao P, Waxman SG, Hains BC. Sodium channel expression in the ventral posterolateral nucleus of the thalamus after peripheral nerve injury. Mol Pain 2006; 2:27. [PMID: 16916452 PMCID: PMC1563449 DOI: 10.1186/1744-8069-2-27] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 08/17/2006] [Indexed: 11/10/2022] Open
Abstract
Peripheral nerve injury is known to up-regulate the expression of rapidly-repriming Nav1.3 sodium channel within first-order dorsal root ganglion neurons and second-order dorsal horn nociceptive neurons, but it is not known if pain-processing neurons higher along the neuraxis also undergo changes in sodium channel expression. In this study, we hypothesized that after peripheral nerve injury, third-order neurons in the ventral posterolateral (VPL) nucleus of the thalamus undergo changes in expression of sodium channels. To test this hypothesis, adult male Sprague-Dawley rats underwent chronic constriction injury (CCI) of the sciatic nerve. Ten days after CCI, when allodynia and hyperalgesia were evident, in situ hybridization and immunocytochemical analysis revealed up-regulation of Nav1.3 mRNA, but no changes in expression of Nav1.1, Nav1.2, or Nav1.6 in VPL neurons, and unit recordings demonstrated increased background firing, which persisted after spinal cord transection, and evoked hyperresponsiveness to peripheral stimuli. These results demonstrate that injury to the peripheral nervous system induces alterations in sodium channel expression within higher-order VPL neurons, and suggest that misexpression of the Nav1.3 sodium channel increases the excitability of VPL neurons injury, contributing to neuropathic pain.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Bryan C Hains
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| |
Collapse
|
163
|
Sah DY, Porreca F, Ossipov MH. Modulation of neurotrophic growth factors as a therapeutic strategy for neuropathic pain. Drug Dev Res 2006. [DOI: 10.1002/ddr.20102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
164
|
Hains BC, Saab CY, Waxman SG. Alterations in Burst Firing of Thalamic VPL Neurons and Reversal by Nav1.3 Antisense After Spinal Cord Injury. J Neurophysiol 2006; 95:3343-52. [PMID: 16481457 DOI: 10.1152/jn.01009.2005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recently showed that spinal cord contusion injury (SCI) at the thoracic level induces pain-related behaviors and increased spontaneous discharges, hyperresponsiveness to innocuous and noxious peripheral stimuli, and enlarged receptive fields in neurons in the ventral posterolateral (VPL) nucleus of the thalamus. These changes are linked to the abnormal expression of Nav1.3, a rapidly repriming voltage-gated sodium channel. In this study, we examined the burst firing properties of VPL neurons after SCI. Adult male Sprague–Dawley rats underwent contusion SCI at the T9 level. Four weeks later, when Nav1.3 protein was upregulated within VPL neurons, extracellular unit recordings were made from VPL neurons in intact animals, those with SCI, and in SCI animals after receiving lumbar intrathecal injections of Nav1.3 antisense or mismatch oligodeoxynucleotides for 4 days. After SCI, VPL neurons with identifiable peripheral receptive fields showed rhythmic oscillatory burst firing with changes in discrete burst properties, and alternated among single-spike, burst, silent, and spindle wave firing modes. Nav1.3 antisense, but not mismatch, partially reversed alterations in burst firing after SCI. These results demonstrate several newly characterized changes in spontaneous burst firing properties of VPL neurons after SCI and suggest that abnormal expression of Nav1.3 contributes to these phenomena.
Collapse
Affiliation(s)
- Bryan C Hains
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
165
|
Amir R, Argoff CE, Bennett GJ, Cummins TR, Durieux ME, Gerner P, Gold MS, Porreca F, Strichartz GR. The Role of Sodium Channels in Chronic Inflammatory and Neuropathic Pain. THE JOURNAL OF PAIN 2006; 7:S1-29. [PMID: 16632328 DOI: 10.1016/j.jpain.2006.01.444] [Citation(s) in RCA: 243] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2005] [Revised: 01/13/2006] [Accepted: 01/20/2006] [Indexed: 11/25/2022]
Abstract
UNLABELLED Clinical and experimental data indicate that changes in the expression of voltage-gated sodium channels play a key role in the pathogenesis of neuropathic pain and that drugs that block these channels are potentially therapeutic. Clinical and experimental data also suggest that changes in voltage-gated sodium channels may play a role in inflammatory pain, and here too sodium-channel blockers may have therapeutic potential. The sodium-channel blockers of interest include local anesthetics, used at doses far below those that block nerve impulse propagation, and tricyclic antidepressants, whose analgesic effects may at least partly be due to blockade of sodium channels. Recent data show that local anesthetics may have pain-relieving actions via targets other than sodium channels, including neuronal G protein-coupled receptors and binding sites on immune cells. Some of these actions occur with nanomolar drug concentrations, and some are detected only with relatively long-term drug exposure. There are 9 isoforms of the voltage-gated sodium channel alpha-subunit, and several of the isoforms that are implicated in neuropathic and inflammatory pain states are expressed by somatosensory primary afferent neurons but not by skeletal or cardiovascular muscle. This restricted expression raises the possibility that isoform-specific drugs might be analgesic and lacking the cardiotoxicity and neurotoxicity that limit the use of current sodium-channel blockers. PERSPECTIVE Changes in the expression of neuronal voltage-gated sodium channels may play a key role in the pathogenesis of both chronic neuropathic and chronic inflammatory pain conditions. Drugs that block these channels may have therapeutic efficacy with doses that are far below those that impair nerve impulse propagation or cardiovascular function.
Collapse
Affiliation(s)
- Ron Amir
- Department of Cell and Animal Biology, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Curatolo M, Arendt-Nielsen L, Petersen-Felix S. Central Hypersensitivity in Chronic Pain: Mechanisms and Clinical Implications. Phys Med Rehabil Clin N Am 2006; 17:287-302. [PMID: 16616268 DOI: 10.1016/j.pmr.2005.12.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The available literature consistently shows increased pain sensitivity after sensory stimulation of healthy tissues in patients who have various chronic pain conditions. This indicates a state of hypersensitivity of the CNS that amplifies the nociceptive input arising from damaged tissues. Experimental data indicate that central hypersensitivity is probably induced primarily by nociceptive input arising from a diseased tissue. In patients, imbalance of descending modulatory systems connected with psychologic distress may play a role. There is experimental support in animal studies for the persistence of central hypersensitivity after complete resolution of tissue damage. This is particularly true for neuropathic pain conditions, whereby potentially irreversible plasticity changes of the CNS have been documented in animal studies. Whether such changes are present in musculoskeletal pain states is at present uncertain. Despite the likely importance of central hypersensitivity in the pathophysiology of chronic pain, this mechanism should not be used to justify the lack of understanding on the anatomic origin of the pain complaints in several pain syndromes, which is mostly due to limitations of the available diagnostic tools. Treatment strategies for central hypersensitivity in patients have been investigated mostly in neuropathic pain states. Possible therapy modalities for central hypersensitivity in chronic pain of musculoskeletal origin are largely unexplored. The limited evidence available and everyday practice show, at best, modest efficacy of the available treatment modalities for central hypersensitivity. The gap between basic knowledge and clinical benefits remains large and should stimulate further intensive research.
Collapse
Affiliation(s)
- Michele Curatolo
- Department of Anesthesiology, Division of Pain Therapy, Inselspital, 3010 Bern, Switzerland.
| | | | | |
Collapse
|
167
|
Chen S, Velardez MO, Warot X, Yu ZX, Miller SJ, Cros D, Corfas G. Neuregulin 1-erbB signaling is necessary for normal myelination and sensory function. J Neurosci 2006; 26:3079-86. [PMID: 16554459 PMCID: PMC6674097 DOI: 10.1523/jneurosci.3785-05.2006] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To investigate the role of erbB signaling in the interactions between peripheral axons and myelinating Schwann cells, we generated transgenic mice expressing a dominant-negative erbB receptor in these glial cells. Mutant mice have delayed onset of myelination, thinner myelin, shorter internodal length, and smaller axonal caliber in adulthood. Consistent with the morphological defects, transgenic mice also have slower nerve conduction velocity and defects in their responses to mechanical stimulation. Molecular analysis indicates that erbB signaling may contribute to myelin formation by regulating transcription of myelin genes. Analysis of sciatic nerves showed a reduction in the levels of expression of myelin genes in mutant mice. In vitro assays revealed that neuregulin-1 (NRG1) induces expression of myelin protein zero (P0). Furthermore, we found that the effects of NRG1 on P0 expression depend on the NRG1 isoform used. When NRG1 is presented to Schwann cells in the context of cell-cell contact, type III but not type I NRG1 regulates P0 gene expression. These results suggest that disruption of the NRG1-erbB signaling pathway could contribute to the pathogenesis of peripheral neuropathies with hypomyelination and neuropathic pain.
Collapse
|
168
|
Balasubramanyan S, Stemkowski PL, Stebbing MJ, Smith PA. Sciatic chronic constriction injury produces cell-type-specific changes in the electrophysiological properties of rat substantia gelatinosa neurons. J Neurophysiol 2006; 96:579-90. [PMID: 16611846 DOI: 10.1152/jn.00087.2006] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Peripheral nerve injury increases spontaneous action potential discharge in spinal dorsal horn neurons and augments their response to peripheral stimulation. This "central hypersensitivity, " which relates to the onset and persistence of neuropathic pain, reflects spontaneous activity in primary afferent fibers as well as long-term changes in the intrinsic properties of the dorsal horn (centralization). To isolate and investigate cellular mechanisms underlying "centralization," sciatic nerves of 20-day-old rats were subjected to 13-25 days of chronic constriction injury (CCI; Mosconi-Kruger polyethylene cuff model). Spinal cord slices were then acutely prepared from sham-operated or CCI animals, and whole cell recording was used to compare the properties of five types of substantia gelatinosa neuron. These were defined as tonic, irregular, phasic, transient, or delay according to their discharge pattern in response to depolarizing current. CCI did not affect resting membrane potential, rheobase, or input resistance in any neuron type but increased the amplitude and frequency of spontaneous and miniature excitatory postsynaptic currents (EPSCs) in delay, transient, and irregular cells. These changes involved alterations in the action potential-independent neurotransmitter release machinery and possible increases in the postsynaptic effectiveness of glutamate. By contrast, in tonic cells, CCI reduced the amplitude and frequency of spontaneous and miniature EPSCs. Such changes may relate to the putative role of tonic cells as inhibitory GABAergic interneurons, whereas increased synaptic drive to delay cells may relate to their putative role as the excitatory output neurons of the substantia gelatinosa. Complementary changes in synaptic excitation of inhibitory and excitatory neurons may thus contribute to pain centralization.
Collapse
Affiliation(s)
- Sridhar Balasubramanyan
- Department of Pharmacology and Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
169
|
Pertin M, Ji RR, Berta T, Powell AJ, Karchewski L, Tate SN, Isom LL, Woolf CJ, Gilliard N, Spahn DR, Decosterd I. Upregulation of the voltage-gated sodium channel beta2 subunit in neuropathic pain models: characterization of expression in injured and non-injured primary sensory neurons. J Neurosci 2006; 25:10970-80. [PMID: 16306410 PMCID: PMC6725885 DOI: 10.1523/jneurosci.3066-05.2005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The development of abnormal primary sensory neuron excitability and neuropathic pain symptoms after peripheral nerve injury is associated with altered expression of voltage-gated sodium channels (VGSCs) and a modification of sodium currents. To investigate whether the beta2 subunit of VGSCs participates in the generation of neuropathic pain, we used the spared nerve injury (SNI) model in rats to examine beta2 subunit expression in selectively injured (tibial and common peroneal nerves) and uninjured (sural nerve) afferents. Three days after SNI, immunohistochemistry and Western blot analysis reveal an increase in the beta2 subunit in both the cell body and peripheral axons of injured neurons. The increase persists for >4 weeks, although beta2 subunit mRNA measured by real-time reverse transcription-PCR and in situ hybridization remains unchanged. Although injured neurons show the most marked upregulation,beta2 subunit expression is also increased in neighboring non-injured neurons and a similar pattern of changes appears in the spinal nerve ligation model of neuropathic pain. That increased beta2 subunit expression in sensory neurons after nerve injury is functionally significant, as demonstrated by our finding that the development of mechanical allodynia-like behavior in the SNI model is attenuated in beta2 subunit null mutant mice. Through its role in regulating the density of mature VGSC complexes in the plasma membrane and modulating channel gating, the beta2 subunit may play a key role in the development of ectopic activity in injured and non-injured sensory afferents and, thereby, neuropathic pain.
Collapse
Affiliation(s)
- Marie Pertin
- Anesthesiology Pain Research Group, Department of Anesthesiology, Lausanne University Hospital, CH-1011 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
|
171
|
Waxman SG, Hains BC. Fire and phantoms after spinal cord injury: Na+ channels and central pain. Trends Neurosci 2006; 29:207-15. [PMID: 16494954 DOI: 10.1016/j.tins.2006.02.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 01/10/2006] [Accepted: 02/09/2006] [Indexed: 10/25/2022]
Abstract
Neuropathic pain and phantom phenomena occur commonly after spinal cord injury (SCI) but their molecular basis is not yet fully understood. Recent findings demonstrate abnormal expression of the Nav1.3 Na(+) channel within second-order spinal cord dorsal horn neurons and third-order thalamic neurons along the pain pathway after SCI, and suggest that this change makes these neurons hyperexcitable so that they act as pain amplifiers and generators. Delineation of molecular changes that contribute to hyperexcitability of pain-signaling neurons might lead to identification of molecular targets that will be useful in the treatment of neuropathic pain after SCI and related nervous system injuries.
Collapse
Affiliation(s)
- Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA.
| | | |
Collapse
|
172
|
Lindia JA, Köhler MG, Martin WJ, Abbadie C. Relationship between sodium channel NaV1.3 expression and neuropathic pain behavior in rats. Pain 2006; 117:145-53. [PMID: 16061326 DOI: 10.1016/j.pain.2005.05.027] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 05/09/2005] [Accepted: 05/27/2005] [Indexed: 11/21/2022]
Abstract
A multitude of voltage-gated sodium channel subtypes (NaV1) are expressed in primary sensory neurons where they influence excitability via their role in the generation and propagation of action potentials. Peripheral nerve injury alters the expression of several NaV1subtypes, but among these only NaV1.3 is up-regulated in dorsal root ganglia (DRG) neurons. The increased expression of NaV1.3 implicates this subtype in the development and maintenance of neuropathic pain, but its contribution to neuropathic pain behavior has not been examined. Using the spared nerve injury (SNI) model, we found that peripheral nerve lesion increased NaV1.3-like immunoreactivity (-LI) in DRG neurons and that mechanical allodynia was partially alleviated following oral administration of two NaV1 blockers, mexiletine (30 and 100 mg/kg, p.o.) and lamotrigine (30 and 100 mg/kg, p.o.). Intrathecal administration of antisense oligonucleotides (4 days) selective for NaV1.3 decreased NaV1.3 immunostaining in the DRG by 50% in the SNI model, but did not attenuate mechanical or cold allodynia. Moreover, we found that only 18% of NaV1.3 positive neurons also expressed activated transcription factor-3 (ATF3), a marker of injured neurons. We then selectively axotomized a cutaneous nerve (sural) and a muscle nerve (gastrocnemius) in order to identify if NaV1.3 up-regulation is dependent on cutaneous and/or muscle afferent activation and found that the numbers of neurons expressing NaV1.3 was proportional to the magnitude of the injury, but independent of the nature of innervation. These results suggest that NaV1.3 increases in primary sensory neurons that are not directly damaged in response to injury. Thus, although NaV1.3 is up-regulated in a subpopulation of DRG neurons after injury, reduction in the expression of NaV1.3 subtype alone is not sufficient to influence the NaV1-dependent behavioral hypersensitivity associated with nerve injury.
Collapse
Affiliation(s)
- Jill A Lindia
- Merck Research Laboratories, Department of Pharmacology, P.O. Box 2000, Rahway, NJ 07065, USA
| | | | | | | |
Collapse
|
173
|
Magerl W, Klein T. Chapter 33 Experimental human models of neuropathic pain. HANDBOOK OF CLINICAL NEUROLOGY 2006; 81:503-516. [PMID: 18808855 DOI: 10.1016/s0072-9752(06)80037-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
174
|
Vierck CJ, Acosta-Rua AJ, Johnson RD. Bilateral chronic constriction of the sciatic nerve: a model of long-term cold hyperalgesia. THE JOURNAL OF PAIN 2005; 6:507-17. [PMID: 16084465 DOI: 10.1016/j.jpain.2005.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 02/27/2005] [Accepted: 03/01/2005] [Indexed: 11/24/2022]
Abstract
UNLABELLED Effects of chronic constriction injury (CCI) and sham surgery of both sciatic nerves were evaluated for reflex lick/guard (L/G) and operant escape responses to thermal stimulation of rats. Experiment 1 compared L/G and escape responses to 0.3 degrees C, 43 degrees C, and 47 degrees C stimulation during a period of 60 days after CCI. Experiment 2 evaluated escape from 44 degrees C, 47 degrees C, and 10 degrees C for 100 days after CCI. The rats escaped from heat or cold stimulation of the paws in a dark compartment by climbing on a thermally neutral platform in a brightly lit compartment. For reflex testing, a single compartment provided no escape option. There was no significant effect of bilateral CCI on reflex or escape responses to nociceptive heat. However, there were long-term increases in the duration of L/G responding during trials of 0.3 degrees C stimulation and in the duration of escape responding to 10 degrees C. Hyperalgesia for cold was confirmed by a preference test, with a 2-compartment shuttle box with one floor heated (45 degrees C) and the other floor cooled (10 degrees C). Occupancy of the heated compartment was significantly increased by CCI (indicating a relative aversion for cold). PERSPECTIVE For preclinical testing of treatments for allodynia/hyperalgesia after nerve injury, it is crucial to use methods of testing that are sensitive to effects on nociception throughout the neuraxis. Operant escape testing satisfies this criterion and is sensitive to bilateral CCI of rats, which avoids asymmetric postural/motor influences of unilateral CCI.
Collapse
Affiliation(s)
- Charles J Vierck
- Department of Neuroscience, University of Florida College of Medicine, FL 32610-0244 , USA.
| | | | | |
Collapse
|
175
|
Tanabe M, Sakaue A, Takasu K, Honda M, Ono H. Centrally mediated antihyperalgesic and antiallodynic effects of zonisamide following partial nerve injury in the mouse. Naunyn Schmiedebergs Arch Pharmacol 2005; 372:107-14. [PMID: 16217643 DOI: 10.1007/s00210-005-0006-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Accepted: 08/22/2005] [Indexed: 10/25/2022]
Abstract
Some antiepileptic drugs are used clinically to relieve neuropathic pain. We have evaluated the effects and investigated the possible mechanisms of action of zonisamide, an antiepileptic drug, on thermal hyperalgesia and tactile allodynia in a murine chronic pain model that was prepared by partial ligation of the sciatic nerve. Subcutaneously administered zonisamide (10 and 30 mg/kg) produced antihyperalgesic and antiallodynic effects in a dose-dependent manner; these effects were manifested by elevation of the withdrawal threshold in response to a thermal (plantar test) or mechanical (von Frey) stimulus, respectively. Similar analgesic effects were obtained in both the plantar and von Frey tests when zonisamide was injected either intracerebroventricularly (i.c.v., 10 and 30 microg) or intrathecally (i.t., 10 and 30 microg). It is thought that this elevation of the thermal and mechanical withdrawal thresholds after local injection of zonisamide is not generated secondarily via impaired motor activity, since zonisamide (30 microg, i.c.v. or i.t.) did not affect locomotor activity, as assessed in sciatic-nerve-ligated mice. Moreover, the nitric oxide synthase inhibitor L-NAME, when injected either i.c.v. or i.t., potentiated the analgesic effects of zonisamide. In contrast, neither i.c.v. nor i.t. zonisamide produced antinociceptive effects against acute thermal and mechanical nociception in non-ligated mice. Together, following peripheral nerve injury, it appears that zonisamide produces centrally mediated antihyperalgesic and antiallodynic effects partly via the blockade of nitric oxide synthesis.
Collapse
Affiliation(s)
- Mitsuo Tanabe
- Laboratory of CNS Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.
| | | | | | | | | |
Collapse
|
176
|
Abstract
Neuropathic pain might best be considered as a collection of various pain states with a common feature, that being symptoms suggestive of dysfunction of peripheral nerves. The development of therapeutic options for the treatment of neuropathic pain is complicated significantly by several factors. Neuropathic pain may arise from widely diverse etiologies such as physical trauma, disease, infection, or chemotherapy. Symptoms indicative of neuropathic pain may also arise in individuals with no evidence of any type of nerve trauma (idiopathic). Although neuropathic pain is a substantial health care issue, it is relatively uncommon and only occurs in a small fraction (<10%) of individuals with these initiating factors. Moreover, the efficacy of treatment protocols, even against the same type of symptoms, differ depending on the underlying initiating cause of the neuropathy. Although these observations strongly suggest that there are predisposing factors that may impart susceptibility to the development of neuropathic pain, no common predisposing factors or genetic markers have been satisfactorily identified. Because of these vagaries, treatment of neuropathic pain has been based on trial and error. However, recent progress in the understanding of neurophysiologic changes that accompany peripheral nerve dysfunction indicate that regulation of ion channels that maintain membrane potentials or generate action potentials may provide an important therapeutic approach. Neuropathic pain is accompanied by increased activity of peripheral nociceptors, which is produced in part by changes in levels of specific calcium and sodium channels. The identification of sodium and/or calcium channels subtypes that are expressed almost exclusively on nociceptors may provide a way of regulating the activity of exaggerated nociceptor function without altering other sensory modalities. Thus, the selective targeting of ion channels may represent a viable therapeutic target for the management of the neuropathic pain state, regardless of etiology.
Collapse
Affiliation(s)
- Michael H Ossipov
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, USA
| | | |
Collapse
|
177
|
Abstract
Neuropathic pain is responsible for a significant amount of the morbidity associated with generalized and focal peripheral neuropathies. It is a consequence of alterations in neuronal function, chemistry, and structure that occur secondary to nerve injury. These manifestations of neuronal plasticity occur in the peripheral nerve, spinal cord, and brain. A variety of agents from diverse pharmacologic classes, the so-called adjuvant analgesics, have been used to treat neuropathic pain. These include antidepressants, first- and second-generation anticonvulsants, antiarrhythmic agents, topical agents, N-methyl-D-aspartate receptor antagonists, and opioid analgesics. The use of these adjuvant analgesics, either alone or in combination, should result in the alleviation of neuropathic pain in most patients. Recent advances in the understanding of pain mechanisms at multiple central nervous system levels should pave the way toward more effective treatment modalities.
Collapse
Affiliation(s)
- Roy Freeman
- Department of Neurology, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
178
|
Hains BC, Saab CY, Waxman SG. Changes in electrophysiological properties and sodium channel Nav1.3 expression in thalamic neurons after spinal cord injury. ACTA ACUST UNITED AC 2005; 128:2359-71. [PMID: 16109750 DOI: 10.1093/brain/awh623] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Spinal cord contusion injury (SCI) is known to induce pain-related behaviour, as well as hyperresponsiveness in lumbar dorsal horn nociceptive neurons associated with the aberrant expression of Na(v)1.3, a rapidly repriming voltage-gated sodium channel. Many of these second-order dorsal horn neurons project to third-order neurons in the ventrobasal complex of the thalamus. In this study we hypothesized that, following SCI, neurons in the thalamus undergo electrophysiological changes linked to aberrant expression of Na(v)1.3. Adult male Sprague-Dawley rats underwent contusion SCI at the T9 thoracic level. Four weeks post-SCI, Na(v)1.3 protein was upregulated within thalamic neurons in ventroposterior lateral (VPL) and ventroposterior medial nuclei, where extracellular unit recordings revealed increased spontaneous discharge, afterdischarge, hyperresponsiveness to innocuous and noxious peripheral stimuli, and expansion of peripheral receptive fields. Altered electrophysiological properties of VPL neurons persisted after interruption of ascending spinal barrage by spinal cord transection above the level of the injury. Lumbar intrathecal administration of specific antisense oligodeoxynucleotides generated against Na(v)1.3 caused a significant reduction in Na(v)1.3 expression in thalamic neurons and reversed electrophysiological alterations. These results show, for the first time, a change in sodium channel expression within neurons in the thalamus after injury to the spinal cord, and suggest that these changes contribute to altered processing of somatosensory information after SCI.
Collapse
Affiliation(s)
- Bryan C Hains
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
179
|
Abstract
Neuropathic pain (NeP) is initiated by a lesion or dysfunction in the nervous system. Unlike physiological pain it serves no useful purpose and is usually sustained and chronic. NeP encompasses a wide range of pain syndromes of diverse aetiologies which together account for > 12 million sufferers in the US. Currently, there are a number of therapies available for NeP, including gabapentin, pregabalin, anticonvulsants (tiagabine HCl), tricyclic antidepressants (amitriptyline, nortriptyline) and acetaminophen/opioid combination products (Vicodin, Tylenol #3). However, these products do not provide sufficient pain relief and a significant proportion of sufferers are refractory (60%). Therefore, there is a need for new therapies that provide more predictable efficacy in all patients with improved tolerability. Over the last decade, understanding of the basic mechanisms contributing to the generation of NeP in preclinical animal models has greatly improved. Together with the completion of the various genome sequencing projects and significant advances in microarray and target validation strategies, new therapeutic approaches are being rigourously pursued. This article reviews the rationale behind a number of these mechanism-based approaches, briefly discusses specific challenges that they face, and finally, speculates on the potential of emerging technologies as alternative therapeutic strategies to the traditional 'small-molecule' approach.
Collapse
Affiliation(s)
- Ross A Kinloch
- Pfizer Global Research and Development, Ramsgate Road, Sandwich, Kent, CT13 9NJ, UK.
| | | |
Collapse
|
180
|
Stummann TC, Salvati P, Fariello RG, Faravelli L. The anti-nociceptive agent ralfinamide inhibits tetrodotoxin-resistant and tetrodotoxin-sensitive Na+ currents in dorsal root ganglion neurons. Eur J Pharmacol 2005; 510:197-208. [PMID: 15763243 DOI: 10.1016/j.ejphar.2005.01.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 01/05/2005] [Accepted: 01/20/2005] [Indexed: 02/08/2023]
Abstract
Tetrodotoxin-resistant and tetrodotoxin-sensitive Na+ channels contribute to the abnormal spontaneous firing in dorsal root ganglion neurons associated with neuropathic pain. Effects of the anti-nociceptive agent ralfinamide on tetrodotoxin-resistant and tetrodotoxin-sensitive currents in rat dorsal root ganglion neurons were therefore investigated by patch clamp experiments. Ralfinamide inhibition was voltage-dependent showing highest potency towards inactivated channels. IC50 values for tonic block of half-maximal inactivated tetrodotoxin-resistant and tetrodotoxin-sensitive currents were 10 microM and 22 microM. Carbamazepine, an anticonvulsant used in the treatment of pain, showed significantly lower potency. Ralfinamide produced a hyperpolarising shift in the steady-state inactivation curves of both currents confirming the preferential interaction with inactivated channels. Additionally, ralfinamide use and frequency dependently inhibited both currents and significantly delayed repriming from inactivation. All effects were more pronounced for tetrodotoxin-resistant than tetrodotoxin-sensitive currents. The potency and mechanisms of actions of ralfinamide provide a hypothesis for the anti-nociceptive properties found in animal models.
Collapse
Affiliation(s)
- Tina C Stummann
- Research and Development, Newron Pharmaceuticals S.p.A., Via L. Ariosto 21, I-20091 Bresso, Milan, Italy
| | | | | | | |
Collapse
|
181
|
Cummins TR, Dib-Hajj SD, Waxman SG. Electrophysiological properties of mutant Nav1.7 sodium channels in a painful inherited neuropathy. J Neurosci 2005; 24:8232-6. [PMID: 15385606 PMCID: PMC6729696 DOI: 10.1523/jneurosci.2695-04.2004] [Citation(s) in RCA: 276] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Although the physiological basis of erythermalgia, an autosomal dominant painful neuropathy characterized by redness of the skin and intermittent burning sensation of extremities, is not known, two mutations of Na(v)1.7, a sodium channel that produces a tetrodotoxin-sensitive, fast-inactivating current that is preferentially expressed in dorsal root ganglia (DRG) and sympathetic ganglia neurons, have recently been identified in patients with primary erythermalgia. Na(v)1.7 is preferentially expressed in small-diameter DRG neurons, most of which are nociceptors, and is characterized by slow recovery from inactivation and by slow closed-state inactivation that results in relatively large responses to small, subthreshold depolarizations. Here we show that these mutations in Na(v)1.7 produce a hyperpolarizing shift in activation and slow deactivation. We also show that these mutations cause an increase in amplitude of the current produced by Na(v)1.7 in response to slow, small depolarizations. These observations provide the first demonstration of altered sodium channel function associated with an inherited painful neuropathy and suggest that these physiological changes, which confer hyperexcitability on peripheral sensory and sympathetic neurons, contribute to symptom production in hereditary erythermalgia.
Collapse
Affiliation(s)
- Theodore R Cummins
- Department of Pharmacology and Toxicology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
182
|
Thimmapaya R, Neelands T, Niforatos W, Davis-Taber RA, Choi W, Putman CB, Kroeger PE, Packer J, Gopalakrishnan M, Faltynek CR, Surowy CS, Scott VE. Distribution and functional characterization of human Nav1.3 splice variants. Eur J Neurosci 2005; 22:1-9. [PMID: 16029190 DOI: 10.1111/j.1460-9568.2005.04155.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The focus of the present study is the molecular and functional characterization of four splice variants of the human Nav1.3 alpha subunit. These subtypes arise due to the use of alternative splice donor sites of exon 12, which encodes a region of the alpha subunit that resides in the intracellular loop between domains I and II. This region contains several important phosphorylation sites that modulate Na+ channel kinetics in related sodium channels, i.e. Nav1.2. While three of the four Nav1.3 isoforms, 12v1, 12v3 and 12v4 have been previously identified in human, 12v2 has only been reported in rat. Herein, we evaluate the distribution of these splice variants in human tissues and the functional characterization of each of these subtypes. We demonstrate by reverse transcriptase-polymerase chain reaction (RT-PCR) that each subtype is expressed in the spinal cord, thalamus, amygdala, cerebellum, adult and fetal whole brain and heart. To investigate the functional properties of these different splice variants, each alpha subunit isoform was cloned by RT-PCR from human fetal brain and expressed in Xenopus oocytes. Each isoform exhibited functional voltage-dependent Na+ channels with similar sensitivities to tetrodotoxin (TTX) and comparable current amplitudes. Subtle shifts in the V 1/2 of activation and inactivation (2-3 mV) were observed among the four isoforms, although the functional significance of these differences remains unclear. This study has demonstrated that all four human splice variants of the Nav1.3 channel alpha subunit are widely expressed and generate functional TTX-sensitive Na+ channels that likely modulate cellular excitability.
Collapse
Affiliation(s)
- R Thimmapaya
- Neuroscience Research, Abbott Laboratories, Abbott Park, IL 60064, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Sabido-David C, Faravelli L, Salvati P. The therapeutic potential of Na+and Ca2+channel blockers in pain management. Expert Opin Investig Drugs 2005; 13:1249-61. [PMID: 15461555 DOI: 10.1517/13543784.13.10.1249] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chronic pain affects a large percentage of the population, representing a socio-economic burden. Current treatments are characterised by suboptimal efficacy and/or side effects that limit their use. Among several approaches to treating chronic pain, voltage-sensitive Ca(2+) and Na(+) channels are promising targets. This review evaluates the preclinical evidence that supports the involvement of these targets, with specific attention to those subtypes that appear more strictly correlated with pain generation and sustainment, as well as those compounds that modulate the activity of Ca(2+) and/or Na(+) channels that are currently in clinical development for chronic pain conditions.
Collapse
Affiliation(s)
- Cibele Sabido-David
- Newron Pharmaceuticals, Discovery Research, Via Ludovico, Ariosto, 21, 20091 Bresso, MI, Italy.
| | | | | |
Collapse
|