151
|
Vitalis T, Fouquet C, Alvarez C, Seif I, Price D, Gaspar P, Cases O. Developmental expression of monoamine oxidases A and B in the central and peripheral nervous systems of the mouse. J Comp Neurol 2002; 442:331-47. [PMID: 11793338 DOI: 10.1002/cne.10093] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Monoamine oxidases A (MAOA) and B (MAOB) are key players in the inactivation pathway of biogenic amines. Their cellular localization has been well established in the mature brain, but nothing is known concerning the localization of both enzymes during development. We have combined in situ hybridization and histochemistry to localize MAOA and MAOB in the developing nervous system of mice. Our observations can be summarized as five key features. (1) MAOA is tightly linked to catecholaminergic traits. MAOA is expressed in all noradrenergic and adrenergic neurons early on, and in several dopaminergic cell groups such as the substantia nigra. MAOA is also expressed in all the neurons that display a transient tyrosine hydroxylase expression in the brainstem and the amygdala and in neurons with transient dopamine-beta-hydroxylase expression in the cranial sensory ganglia. (2) MAOA and MAOB are coexpressed in the serotoninergic neurons of the raphe from E12 to P7. During postnatal life, MAOA expression declines, whereas MAOB expression remains stable. (3) MAOA is transiently expressed in the cholinergic motor nuclei of the hindbrain, and MAOB is expressed in the forebrain cholinergic neurons. (4) MAOA- and MAOB-expressing neurons are also detected in structures that do not contain aminergic neurons, such as the thalamus, hippocampus, and claustrum. (5) Starting at birth, MAOB expression is found in a variety of nonneuronal cells, the choroid plexus, the ependyma, and astrocytes. These localizations are of importance for understanding the effects of monoaminergic transmission during development.
Collapse
Affiliation(s)
- Tania Vitalis
- Department of Biomedical Sciences, Edinburgh EH8 9XD, Scotland, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
152
|
Hong SJ, Kim CH, Kim KS. Structural and functional characterization of the 5' upstream promoter of the human Phox2a gene: possible direct transactivation by transcription factor Phox2b. J Neurochem 2001; 79:1225-36. [PMID: 11752063 DOI: 10.1046/j.1471-4159.2001.00672.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The specification of neurotransmitter identity is a critical step in neural development. Recent progresses have indicated that the closely related homeodomain factors Phox2a and 2b are essential for development of noradrenergic (NA) neuron differentiation, and may directly determine the neurotransmitter identity. With a long-term goal of understanding the regulatory cascade of NA phenotype determination, we isolated and characterized a hPhox2a genomic clone encompassing approximately 7.5 kb of the 5' upstream promoter region, the entire exon-intron structure, and approximately 4 kb of the 3' flanking region. Using mRNAs isolated from the Phox2a-expressing human cell line, both primer extension and 5'-rapid amplification of cDNA ends analyses identified a single transcription start site that resides 172 nucleotides upstream of the start codon. The transcription start site was preceded by a TATA-like sequence motif and transcripts from this site contained an additional G residue at the 5' position, supporting the authenticity of this site as the transcriptional start site of hPhox2a. We assembled hPhox2a-luciferase reporter constructs containing different lengths of the 5' upstream sequences. Transient transfection assays of these reporter constructs in both hPhox2a-positive and -negative cell lines show that 1.3-kb or longer upstream sequences of the hPhox2a gene may confer NA cell-specific reporter gene expression. Furthermore, cotransfection assays in the Phox2a-negative HeLa cell line show that forced expression of Phox2b, but not that of Phox2a or MASH1, significantly transactivates the transcriptional activity of hPhox2a. This study will provide a frame to further delineate the regulatory cascade of NA neuron differentiation.
Collapse
Affiliation(s)
- S J Hong
- Molecular Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478, USA
| | | | | |
Collapse
|
153
|
Wallén A A, Castro DS, Zetterström RH, Karlén M, Olson L, Ericson J, Perlmann T. Orphan nuclear receptor Nurr1 is essential for Ret expression in midbrain dopamine neurons and in the brain stem. Mol Cell Neurosci 2001; 18:649-63. [PMID: 11749040 DOI: 10.1006/mcne.2001.1057] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The orphan nuclear receptor Nurr1 is essential for development of midbrain dopamine (DA) cells. In Nurr1-deficient mice, DA precursor cells fail to migrate normally, are unable to innervate target areas, and only transiently express DA cell marker genes. In the search for Nurr1-regulated genes that might explain this developmental phenotype, we found that expression of the receptor tyrosine kinase Ret is deregulated in these cells of Nurr1-deficient embryos. In addition, our analyses establish Nurr1 as an early marker for the dorsal motor nucleus (DMN) of the vagus nerve. Interestingly, Ret expression is absent also in these cells in Nurr1-targeted mice. Neuronal innervation of vagus nerve target areas appeared normal apart from a subtle disorganization of the DMN-derived nerve fibers. In conclusion, regulation of Ret by Nurr1 in midbrain DA neurons and in the DMN has implications for both embryonal development and adult physiology in which signaling by neurotrophic factors plays important roles.
Collapse
Affiliation(s)
- A Wallén A
- Ludwig Institute for Cancer Research, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
154
|
Nakano M, Yamada K, Fain J, Sener EC, Selleck CJ, Awad AH, Zwaan J, Mullaney PB, Bosley TM, Engle EC. Homozygous mutations in ARIX(PHOX2A) result in congenital fibrosis of the extraocular muscles type 2. Nat Genet 2001; 29:315-20. [PMID: 11600883 DOI: 10.1038/ng744] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Isolated strabismus affects 1-5% of the general population. Most forms of strabismus are multifactorial in origin; although there is probably an inherited component, the genetics of these disorders remain unclear. The congenital fibrosis syndromes (CFS) represent a subset of monogenic isolated strabismic disorders that are characterized by restrictive ophthalmoplegia, and include congenital fibrosis of the extraocular muscles (CFEOM) and Duane syndrome (DURS). Neuropathologic studies indicate that these disorders may result from the maldevelopment of the oculomotor (nIII), trochlear (nIV) and abducens (nVI) cranial nerve nuclei. To date, five CFS loci have been mapped (FEOM1, FEOM2, FEOM3, DURS1 and DURS2), but no genes have been identified. Here, we report three mutations in ARIX (also known as PHOX2A) in four CFEOM2 pedigrees. ARIX encodes a homeodomain transcription factor protein previously shown to be required for nIII/nIV development in mouse and zebrafish. Two of the mutations are predicted to disrupt splicing, whereas the third alters an amino acid within the conserved brachyury-like domain. These findings confirm the hypothesis that CFEOM2 results from the abnormal development of nIII/nIV (ref. 7) and emphasize a critical role for ARIX in the development of these midbrain motor nuclei.
Collapse
Affiliation(s)
- M Nakano
- Genetics, The Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Enders 5, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Enomoto H, Crawford PA, Gorodinsky A, Heuckeroth RO, Johnson EM, Milbrandt J. RET signaling is essential for migration, axonal growth and axon guidance of developing sympathetic neurons. Development 2001; 128:3963-74. [PMID: 11641220 DOI: 10.1242/dev.128.20.3963] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sympathetic axons use blood vessels as an intermediate path to reach their final target tissues. The initial contact between differentiating sympathetic neurons and blood vessels occurs following the primary sympathetic chain formation, where precursors of sympathetic neurons migrate and project axons along or toward blood vessels. We demonstrate that, in Ret-deficient mice, neuronal precursors throughout the entire sympathetic nervous system fail to migrate and project axons properly. These primary deficits lead to mis-routing of sympathetic nerve trunks and accelerated cell death of sympathetic neurons later in development. Artemin is expressed in blood vessels during periods of early sympathetic differentiation, and can promote and attract axonal growth of the sympathetic ganglion in vitro. This analysis identifies RET and artemin as central regulators of early sympathetic innervation.
Collapse
Affiliation(s)
- H Enomoto
- Departments of Pathology and Internal Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Box 8118, St Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
156
|
Qian Y, Fritzsch B, Shirasawa S, Chen CL, Choi Y, Ma Q. Formation of brainstem (nor)adrenergic centers and first-order relay visceral sensory neurons is dependent on homeodomain protein Rnx/Tlx3. Genes Dev 2001; 15:2533-45. [PMID: 11581159 PMCID: PMC312792 DOI: 10.1101/gad.921501] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Brainstem visceral sensory and (nor)adrenergic neurons play crucial roles in modulating cardiovascular and respiratory functions. The origins and formation of these neurons are poorly understood. Here we show that these two classes of neurons are derived from Mash1-positive precursor cells, and can be prospectively identified by combinatorial expression of two homeobox genes, Rnx and Phox2 (Phox2a or Phox2b). It was previously shown that Rnx-deficient mice die from respiratory failure. Here we show that Rnx function is required for formation of first-order relay visceral sensory neurons in the brainstem. In addition, as in Phox2b-deficient mice, the development of most (nor)adrenergic centers is compromised in Rnx mutants. We also provide genetic evidence to show that Rnx and Phox2 proteins may function independently to specify the (nor)adrenergic phenotype. Our studies reveal a surprising ontogenetic relationship between relay visceral sensory and (nor)adrenergic neurons, and suggest that it may be a common theme in the developing nervous system that the same set of transcriptional regulators is associated with formation of multiple components within a neuronal network.
Collapse
Affiliation(s)
- Y Qian
- The Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
157
|
Hwang DY, Carlezon WA, Isacson O, Kim KS. A high-efficiency synthetic promoter that drives transgene expression selectively in noradrenergic neurons. Hum Gene Ther 2001; 12:1731-40. [PMID: 11560767 DOI: 10.1089/104303401750476230] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene promoter systems that drive high-level, long-term, and cell-specific transgene expression are of great interest because of their potential utility for gene therapy. To generate an efficient promoter system specific for noradrenergic (NA) neurons, we multimerized an NA-specific cis-regulatory element (PRS2) identified in the human dopamine beta-hydroxylase (hDBH) promoter, and combined it with a minimal promoter (containing a TATA box and transcription start site). Forms of this synthetic promoter that contain 8 or more copies of PRS2 were >50 times more effective than the 1.15-kb hDBH promoter at driving reporter gene expression in cell lines originated from NA neurons. Neither the synthetic promoter nor the 1.15-kb hDBH promoter drove reporter gene expression in nonneuronal cells. Microinjections of an adenoviral vector containing the synthetic promoter directly into rat brain caused more strict NA-specific reporter gene expression than that caused by a vector containing the 1.15-kb hDBH promoter when the targeted region contained large numbers of NA neurons (locus coeruleus). Furthermore, the vector containing the synthetic promoter caused less nonspecific ("leaky") reporter gene expression than that caused by the vector containing the 1.15-kb hDBH promoter when the targeted region was devoid of NA neurons (cerebellum, dentate gyrus). Together, these studies provide in vitro and in vivo evidence that this novel synthetic promoter can target transgene expression to NA neurons even more efficiently and selectively than the naturally occurring, 1.15-kb hDBH promoter.
Collapse
Affiliation(s)
- D Y Hwang
- Molecular Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | | | | | | |
Collapse
|
158
|
Flora A, Lucchetti H, Benfante R, Goridis C, Clementi F, Fornasari D. Sp proteins and Phox2b regulate the expression of the human Phox2a gene. J Neurosci 2001; 21:7037-45. [PMID: 11549713 PMCID: PMC6763013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
Abstract
Phox2a is a vertebrate homeodomain transcription factor that is involved in the specification of the autonomic nervous system. We have isolated the 5' regulatory region of the human Phox2a gene and studied the transcriptional mechanisms underlying its expression. We first identified the minimal gene promoter by means of molecular and functional criteria and demonstrated that its activity relies on a degenerate TATA box and a canonical Sp1 site. We then concentrated on the region immediately upstream of the promoter and found that it stimulates transcription in a neurospecific manner because its deletion caused a substantial decline in reporter gene expression only in neuronal cells. This DNA region contains a putative binding site for homeodomain transcription factors, and its mutation severely affects the transcriptional activity of the entire 5' regulatory region, thus indicating that this site is necessary for the expression of Phox2a in this cellular context. The use of the electrophoretic mobility shift assay showed that Phox2b/PMX2b is capable of specifically interacting with this site, and cotransfection experiments demonstrated that it is capable of transactivating the human Phox2a promoter. Many data obtained from knock-out mice support the hypothesis that Phox2a acts downstream of Phox2b during the development of most of the autonomic nervous system. We have provided the first molecular evidence that Phox2b can regulate the expression of Phox2a by directly binding to its 5' regulatory region.
Collapse
Affiliation(s)
- A Flora
- Department of Medical Pharmacology, University of Milan and Consiglio Nazionale delle Ricerche Cellular and Molecular Pharmacology Center, 20129 Milan, Italy
| | | | | | | | | | | |
Collapse
|
159
|
Chen ZF, Rebelo S, White F, Malmberg AB, Baba H, Lima D, Woolf CJ, Basbaum AI, Anderson DJ. The paired homeodomain protein DRG11 is required for the projection of cutaneous sensory afferent fibers to the dorsal spinal cord. Neuron 2001; 31:59-73. [PMID: 11498051 DOI: 10.1016/s0896-6273(01)00341-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cutaneous sensory neurons that detect noxious stimuli project to the dorsal horn of the spinal cord, while those innervating muscle stretch receptors project to the ventral horn. DRG11, a paired homeodomain transcription factor, is expressed in both the developing dorsal horn and in sensory neurons, but not in the ventral spinal cord. Mouse embryos deficient in DRG11 display abnormalities in the spatio-temporal patterning of cutaneous sensory afferent fiber projections to the dorsal, but not the ventral spinal cord, as well as defects in dorsal horn morphogenesis. These early developmental abnormalities lead, in adults, to significantly attenuated sensitivity to noxious stimuli. In contrast, locomotion and sensori-motor functions appear normal. Drg11 is thus required for the formation of spatio-temporally appropriate projections from nociceptive sensory neurons to their central targets in the dorsal horn of the spinal cord.
Collapse
Affiliation(s)
- Z F Chen
- Division of Biology 216-76 and, Howard Hughes Medical Institute, California Institute of Technology, 91125, Pasadena, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Jacob J, Hacker A, Guthrie S. Mechanisms and molecules in motor neuron specification and axon pathfinding. Bioessays 2001; 23:582-95. [PMID: 11462212 DOI: 10.1002/bies.1084] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The vertebrate nervous system performs the most complex functions of any organ system. This feat is mediated by dedicated assemblies of neurons that must be precisely connected to one another and to peripheral tissues during embryonic development. Motor neurons, which innervate muscle and regulate autonomic functions, form an integral part of this neural circuitry. The first part of this review describes the remarkable progress in our understanding of motor neuron differentiation, which is arguably the best understood model of neuronal differentiation to date. During development, the coordinate actions of inductive signals from adjacent non-neural tissues initiate the differentiation of distinct motor neuron subclasses, with specific projection patterns, at stereotypical locations within the neural tube. Underlying this specialisation is the expression of specific homeodomain proteins, which act combinatorially to confer motor neurons with both their generic and subtype-specific properties. Ensuring that specific motor neuron subtypes innervate the correct target structure, however, requires precise motor axon guidance mechanisms. The second half of this review focuses on how distinct motor neuron subtypes pursue highly specific projection patterns by responding differentially to spatially discrete attractive and repulsive molecular cues. The tight link between motor neuron specification and axon pathfinding appears to be established by the dominant role of homeodomain proteins in dictating the ways that navigating motor axons interpret the plethora of guidance cues impinging on growth cones.
Collapse
Affiliation(s)
- J Jacob
- MRC Centre for Developmental Neurobiology, King's College, London
| | | | | |
Collapse
|
161
|
Abstract
Cranial placodes are focal regions of thickened ectoderm in the head of vertebrate embryos that give rise to a wide variety of cell types, including elements of the paired sense organs and neurons in cranial sensory ganglia. They are essential for the formation of much of the cranial sensory nervous system. Although relatively neglected today, interest in placodes has recently been reawakened with the isolation of molecular markers for different stages in their development. This has enabled a more finely tuned approach to the understanding of placode induction and development and in some cases has resulted in the isolation of inducing molecules for particular placodes. Both morphological and molecular data support the existence of a preplacodal domain within the cranial neural plate border region. Nonetheless, multiple tissues and molecules (where known) are involved in placode induction, and each individual placode is induced at different times by a different combination of these tissues, consistent with their diverse fates. Spatiotemporal changes in competence are also important in placode induction. Here, we have tried to provide a comprehensive review that synthesises the highlights of a century of classical experimental research, together with more modern evidence for the tissues and molecules involved in the induction of each placode.
Collapse
Affiliation(s)
- C V Baker
- Division of Biology 139-74, California Institute of Technology, Pasadena, California, 91125, USA.
| | | |
Collapse
|
162
|
Pasqualetti M, Rijli FM. Homeobox gene mutations and brain-stem developmental disorders: learning from knockout mice. Curr Opin Neurol 2001; 14:177-84. [PMID: 11262732 DOI: 10.1097/00019052-200104000-00007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Analysis of mice that carry targeted inactivations of Hox, Nkx and Phox2 homeobox genes revealed their involvement in regional patterning of brain-stem territories, in specification of neuronal identity, in establishment of appropriate patterns of connectivity and in control of neurotransmission. The specific abnormalities generated by such mutations may provide clues to the genetic basis and cellular mechanisms that are involved in human brain-stem developmental disorders.
Collapse
Affiliation(s)
- M Pasqualetti
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Collège de France, C.U. de Strasbourg, France
| | | |
Collapse
|
163
|
Young HM, Newgreen D. Enteric neural crest-derived cells: origin, identification, migration, and differentiation. THE ANATOMICAL RECORD 2001; 262:1-15. [PMID: 11146424 DOI: 10.1002/1097-0185(20010101)262:1<1::aid-ar1006>3.0.co;2-2] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- H M Young
- Department of Anatomy and Cell Biology, University of Melbourne, 3010, VIC, Australia.
| | | |
Collapse
|
164
|
Dubreuil V, Hirsch MR, Pattyn A, Brunet JF, Goridis C. The Phox2b transcription factor coordinately regulates neuronal cell cycle exit and identity. Development 2000; 127:5191-201. [PMID: 11060244 DOI: 10.1242/dev.127.23.5191] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the vertebrate neural tube, cell cycle exit of neuronal progenitors is accompanied by the expression of transcription factors that define their generic and sub-type specific properties, but how the regulation of cell cycle withdrawal intersects with that of cell fate determination is poorly understood. Here we show by both loss- and gain-of-function experiments that the neuronal-subtype-specific homeodomain transcription factor Phox2b drives progenitor cells to become post-mitotic. In the absence of Phox2b, post-mitotic neuronal precursors are not generated in proper numbers. Conversely, forced expression of Phox2b in the embryonic chick spinal cord drives ventricular zone progenitors to become post-mitotic neurons and to relocate to the mantle layer. In the neurons thus generated, ectopic expression of Phox2b is sufficient to initiate a programme of motor neuronal differentiation characterised by expression of Islet1 and of the cholinergic transmitter phenotype, in line with our previous results showing that Phox2b is an essential determinant of cranial motor neurons. These results suggest that Phox2b coordinates quantitative and qualitative aspects of neurogenesis, thus ensuring that neurons of the correct phenotype are generated in proper numbers at the appropriate times and locations.
Collapse
Affiliation(s)
- V Dubreuil
- Laboratoire de Génétique et Physiologie du Développement, IBDM, CNRS-INSERM-Université de la Méditerranée-AP de Marseille, Campus de Luminy case 907, France
| | | | | | | | | |
Collapse
|
165
|
Affiliation(s)
- H M Young
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, 3052, Victoria, Australia.
| | | | | |
Collapse
|
166
|
Enomoto H, Heuckeroth RO, Golden JP, Johnson EM, Milbrandt J. Development of cranial parasympathetic ganglia requires sequential actions of GDNF and neurturin. Development 2000; 127:4877-89. [PMID: 11044402 DOI: 10.1242/dev.127.22.4877] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The neurotrophic factors that influence the development and function of the parasympathetic branch of the autonomic nervous system are obscure. Recently, neurturin has been found to provide trophic support to neurons of the cranial parasympathetic ganglion. Here we show that GDNF signaling via the RET/GFR(alpha)1 complex is crucial for the development of cranial parasympathetic ganglia including the submandibular, sphenopalatine and otic ganglia. GDNF is required early for proliferation and/or migration of the neuronal precursors for the sphenopalatine and otic ganglia. Neurturin exerts its effect later and is required for further development and maintenance of these neurons. This switch in ligand dependency during development is at least partly governed by the altered expression of GFR(α) receptors, as evidenced by the predominant expression of GFR(α)2 in these neurons after ganglion formation.
Collapse
Affiliation(s)
- H Enomoto
- Department of Pathology and Internal Medicine, Washington University School of Medicine, Box 8118, St Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
167
|
Howard MJ, Stanke M, Schneider C, Wu X, Rohrer H. The transcription factor dHAND is a downstream effector of BMPs in sympathetic neuron specification. Development 2000; 127:4073-81. [PMID: 10952904 DOI: 10.1242/dev.127.18.4073] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The dHAND basic helix-loop-helix transcription factor is expressed in neurons of sympathetic ganglia and has previously been shown to induce the differentiation of catecholaminergic neurons in avian neural crest cultures. We now demonstrate that dHAND expression is sufficient to elicit the generation of ectopic sympathetic neurons in vivo. The expression of the dHAND gene is controlled by bone morphogenetic proteins (BMPs), as suggested by BMP4 overexpression in vivo and in vitro, and by noggin-mediated inhibition of BMP function in vivo. The timing of dHAND expression in sympathetic ganglion primordia, together with the induction of dHAND expression in response to Phox2b implicate a role for dHAND as transcriptional regulator downstream of Phox2b in BMP-induced sympathetic neuron differentiation.
Collapse
Affiliation(s)
- M J Howard
- Department of Anatomy and Neurobiology, Medical College of Ohio, Toledo, OH 43614, USA
| | | | | | | | | |
Collapse
|
168
|
Adachi M, Browne D, Lewis EJ. Paired-like homeodomain proteins Phox2a/Arix and Phox2b/NBPhox have similar genetic organization and independently regulate dopamine beta-hydroxylase gene transcription. DNA Cell Biol 2000; 19:539-54. [PMID: 11034547 DOI: 10.1089/104454900439773] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The homeodomain transcription factors Arix/Phox2a and NBPhox/Phox2b play a role in the specification of the noradrenergic phenotype of central and peripheral neurons. To better understand the functions of these two factors, we have compared the genetic organization, chromosomal location, and transcriptional regulatory properties of Arix and NBPhox. The gene structure is very similar, with each gene containing three exons and two introns, extending a total of approximately 5 kb. Arix and NBPhox are unlinked in human and mouse genomes. NBPhox is located on human Chromosome 4p12 and mouse Chromosome 5, while Arix is located on human Chromosome 11q13 and mouse Chromosome 7. Both proteins bind to three sites in the promoter proximal region of the rat dopamine beta-hydroxylase gene (DBH). In vitro, Arix and NBPhox form DNA-independent multimers and exhibit cooperative binding to the DB1 regulatory element, which contains two homeodomain recognition sites. Both proteins regulate transcription from the rat DBH promoter, and transcription is synergistically increased in the presence of the protein kinase A catalytic subunit (PKA) plus either Arix or NBPhox. The transcription factors exhibit similar concentration-dependent efficacies, and when they are coexpressed, transcription is stimulated to a value approximately equal to that seen with either factor alone. The N-terminal segment of Arix is essential for transcriptional regulatory activity, and this region bears 50% identity with NBPhox, suggesting a similar mechanism of transcriptional activation of the DBH gene. We conclude from this study that Arix and NBPhox exhibit indistinguishable and independent transcriptional regulatory properties on the DBH promoter.
Collapse
Affiliation(s)
- M Adachi
- Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland 97201, USA
| | | | | |
Collapse
|
169
|
Brodski C, Schnürch H, Dechant G. Neurotrophin-3 promotes the cholinergic differentiation of sympathetic neurons. Proc Natl Acad Sci U S A 2000; 97:9683-8. [PMID: 10931939 PMCID: PMC16925 DOI: 10.1073/pnas.160080697] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurotrophins influence the epigenetic shaping of the vertebrate nervous system by regulating neuronal numbers during development and synaptic plasticity. Here we attempt to determine whether these growth factors can also regulate neurotransmitter plasticity. As a model system we used the selection between noradrenergic and cholinergic neurotransmission by paravertebral sympathetic neurons. Developing sympathetic neurons express the neurotrophin receptors TrkA and TrkC, two highly related receptor tyrosine kinases. Whereas the TrkA ligand nerve growth factor (NGF) has long been known to regulate both the survival and the expression of noradrenergic traits in sympathetic neurons, the role of TrkC and of its ligand neurotrophin-3 (NT3) has remained unclear. We found that TrkC expression in the avian sympathetic chain overlaps substantially with that of choline acetyltransferase. In sympathetic chain explants, transcripts of the cholinergic marker genes choline acetyltransferase and vasoactive intestinal polypeptide were strongly enriched in the presence of NT3 compared with NGF, whereas the noradrenergic markers tyrosine hydroxylase and norepinephrine transporter were reduced. The transcription factor chicken achaete scute homolog 1 was coexpressed with cholinergic markers. The effects of NT3 are reversed and antagonized by NGF. They are independent of neuronal survival and developmentally regulated. These results suggest a role for NT3 as a differentiation factor for cholinergic neurons and establish a link between neurotrophins and neurotransmitter plasticity.
Collapse
Affiliation(s)
- C Brodski
- Department of Neurobiochemistry, Max Planck Institute of Neurobiology, Martinsried, Germany
| | | | | |
Collapse
|
170
|
Pujol N, Torregrossa P, Ewbank JJ, Brunet JF. The homeodomain protein CePHOX2/CEH-17 controls antero-posterior axonal growth in C. elegans. Development 2000; 127:3361-71. [PMID: 10887091 DOI: 10.1242/dev.127.15.3361] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An essential aspect of a neuron's identity is the pattern of its axonal projections. In C. elegans, axons extend either longitudinally or circumferentially in response to distinct molecular cues, some of which have been identified. It is currently unclear, however, how the differential capacity to respond to these cues is transcriptionally implemented in distinct neuronal subtypes. Here, we characterise a C. elegans paired-like homeobox gene, CePhox2/ceh-17, expressed in five head neurons, ALA and the 4 SIAs, all of which project axons towards the tail along the lateral and sublateral cords. Abrogation of ceh-17 function, while leaving intact many phenotypic traits of these neurons, disrupts their antero-posterior axonal elongation beyond the mid-body region. Conversely, ectopic expression of ceh-17 in the mechanoreceptors, several of which are known to pioneer their tract, leads to exaggerated longitudinal axonal outgrowth. Thus, ceh-17 is a novel gene involved in fasciculation-independent longitudinal axonal navigation.
Collapse
Affiliation(s)
- N Pujol
- Laboratoire de Génétique et Physiologie du Développement, Developmental Biology Institute of Marseille, CNRS/INSERM/Université de la Méditerranée/AP de Marseille, Luminy Case 907, France
| | | | | | | |
Collapse
|
171
|
Abstract
The central nervous system (CNS) is divided into diverse embryological and functional compartments. The early embryonic CNS consists of a series of transverse subdivisions (neuromeres) and longitudinal domains. These embryonic subdivisions represent histogenetic fields in which neurons are born and aggregate in distinct cell groups (brain nuclei and layers). Different subsets of these aggregates become selectively connected by nerve fiber tracts and, finally, by synapses, thus forming the neural circuits of the functional systems in the CNS. Recent work has shown that 30 or more members of the cadherin family of morphoregulatory molecules are differentially expressed in the developing and mature brain at almost all stages of development. In a regionally specific fashion, most cadherins studied to date are expressed by the embryonic subdivisions of the early embryonic brain, by developing brain nuclei, cortical layers and regions, and by fiber tracts, neural circuits and synapses. Each cadherin shows a unique expression pattern that is distinct from that of other cadherins. Experimental evidence suggests that cadherins contribute to CNS regionalization, morphogenesis and fiber tract formation, possibly by conferring preferentially homotypic adhesiveness (or other types of interactions) between the diverse structural elements of the CNS. Cadherin-mediated adhesive specificity may thus provide a molecular code for early embryonic CNS regionalization as well as for the development and maintenance of functional structures in the CNS, from embryonic subdivisions to brain nuclei, cortical layers and neural circuits, down to the level of individual synapses.
Collapse
Affiliation(s)
- C Redies
- Institute of Anatomy, University of Essen Medical School, Hufelandstrasse 55, Germany.
| |
Collapse
|
172
|
Chauvet S, Maurel-Zaffran C, Miassod R, Jullien N, Pradel J, Aragnol D. dlarp, a new candidate Hox target in Drosophila whose orthologue in mouse is expressed at sites of epithelium/mesenchymal interactions. Dev Dyn 2000; 218:401-13. [PMID: 10878606 DOI: 10.1002/1097-0177(200007)218:3<401::aid-dvdy1009>3.0.co;2-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Hox complex genes are key developmental regulators highly conserved throughout evolution. They encode transcription factors that initiate genetic programs of diversified morphogenesis along the anteroposterior embryonic axis. We report the characterization of the novel Drosophila Hox target gene dlarp, isolated from a further screen of a previously described library of genomic DNA fragments associated in vivo with Ultrabithorax proteins. The dlarp spatio-temporal pattern of transcription in wild-type and homeotic mutant embryos is consistent with a positive regulation by Sex combs reduced and Ultrabithorax in the parasegment 2 ectoderm and the abdominal mesoderm, respectively. The teashirt gene product, thought to act in concert with Hox proteins, is also required for the transcriptional control of this target. Search in databases revealed that dlarp has been highly conserved during evolution. The embryonic expression pattern of the mouse orthologue does not support a function downstream of Hox proteins. It is mainly transcribed in neural structures and in developing organs characterized by epithelial-mesenchymal interactions.
Collapse
Affiliation(s)
- S Chauvet
- Laboratoire de Génétique et Physiologie du Développement, Institut de Biologie du Développement de Marseille, CNRS/Université de la Méditerranée, Parc Scientifique de Luminy, Marseille, France
| | | | | | | | | | | |
Collapse
|
173
|
Jacob J, Tiveron MC, Brunet JF, Guthrie S. Role of the target in the pathfinding of facial visceral motor axons. Mol Cell Neurosci 2000; 16:14-26. [PMID: 10882479 DOI: 10.1006/mcne.2000.0855] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Axon navigation depends, in part, on guidance cues emanating from the target. We have investigated the possible role of the target in the pathfinding of visceral motor axons to cranial parasympathetic ganglia. Mice homozygous for a tau-LacZ transgene targeted in the Phox2a locus lack the sphenopalatine ganglion, which is the normal target of visceral motor axons of the facial nerve. We found that in these mutants, facial visceral motor axon pathfinding was disrupted, and some axons were misrouted to an alternative parasympathetic ganglion. Moreover, the absence of correct facial visceral motor pathways was concomitant with defects in the pathfinding of rostrally-projecting sympathetic axons.
Collapse
Affiliation(s)
- J Jacob
- MRC Centre for Developmental Neurobiology, King's College, Guy's Campus, 4th Floor New Hunt's House, London, SE1 9RT, United Kingdom
| | | | | | | |
Collapse
|
174
|
Sieber-Blum M. Factors controlling lineage specification in the neural crest. INTERNATIONAL REVIEW OF CYTOLOGY 2000; 197:1-33. [PMID: 10761114 DOI: 10.1016/s0074-7696(00)97001-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The neural crest is a transitory tissue of the vertebrate embryo that originates in the neural folds, populates the embryo, and gives rise to many different cell types and tissues of the adult organism. When neural crest cells initiate their migration, a large fraction of them are still pluripotent, that is, capable of generating progeny that consists of two or more distinct phenotypes. To elucidate the cellular and molecular mechanisms by which neural crest cells become committed to a particular lineage is therefore crucial to the understanding of neural crest development and represents a major challenge in current neural crest research. This chapter discusses selected aspects of neural crest cell differentiation into components of the peripheral nervous system. Topics include sympathetic neurons, the adrenal medulla, primary sensory neurons of the spinal ganglia, some of their mechanoreceptive and proprioceptive end organs, and the enteric nervous system.
Collapse
Affiliation(s)
- M Sieber-Blum
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee 53226, USA
| |
Collapse
|
175
|
Lim KC, Lakshmanan G, Crawford SE, Gu Y, Grosveld F, Engel JD. Gata3 loss leads to embryonic lethality due to noradrenaline deficiency of the sympathetic nervous system. Nat Genet 2000; 25:209-12. [PMID: 10835639 DOI: 10.1038/76080] [Citation(s) in RCA: 249] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mouse embryos deficient in Gata3 die by 11 days post coitum (d.p.c.) from pathology of undetermined origin. We recently showed that Gata3-directed lacZ expression of a 625-kb Gata3 YAC transgene in mice mimics endogenous Gata3 expression, except in thymus and the sympathoadrenal system. As this transgene failed to overcome embryonic lethality (unpublished data and ref. 3) in Gata3-/- mice, we hypothesized that a neuroendocrine deficiency in the sympathetic nervous system (SNS) might cause embryonic lethality in these mutants. We find here that null mutation of Gata3 leads to reduced accumulation of Th (encoding tyrosine hydroxylase, Th) and Dbh (dopamine beta-hydroxylase, Dbh) mRNA, whereas several other SNS genes are unaffected. We show that Th and Dbh deficiencies lead to reduced noradrenaline in the SNS, and that noradrenaline deficiency is a proximal cause of death in mutants by feeding catechol intermediates to pregnant dams, thereby partially averting Gata3 mutation-induced lethality. These older, pharmacologically rescued mutants revealed abnormalities that previously could not be detected in untreated mutants. These late embryonic defects include renal hypoplasia and developmental defects in structures derived from cephalic neural crest cells. Thus we have shown that Gata3 has a role in the differentiation of multiple cell lineages during embryogenesis.
Collapse
Affiliation(s)
- K C Lim
- Department of Biochemistry, Molecular Biology & Cell Biology, Northwestern University, Evanston, Illinois, USA
| | | | | | | | | | | |
Collapse
|
176
|
Wendling O, Dennefeld C, Chambon P, Mark M. Retinoid signaling is essential for patterning the endoderm of the third and fourth pharyngeal arches. Development 2000; 127:1553-62. [PMID: 10725232 DOI: 10.1242/dev.127.8.1553] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The requirement of retinoic acid (RA) in the initial formation of the pharyngeal arches was investigated by treating headfold-stage mouse embryos with a pan-RAR antagonist in vitro and in vivo. This results in a complete absence of mesenchyme, arteries, nerves and epibranchial placodes of the 3rd and 4th pharyngeal arches, complete agenesis of the 3rd and 4th pouches and consistent lack of the 6th arch artery. Mesodermally derived endothelial cells are absent from the 3rd and 4th pharyngeal arch region and the distribution domain of EphA2 transcripts in mesodermal cells is shifted caudally. In situ hybridization with CRABPI, kreisler and EphA4 probes and the pattern of expression of a Wnt1-lacZ transgene show that neural crest cells (NCC) normally destined to the 3rd and 4th arches migrate ectopically. Most interestingly, the appearance of the 3rd and 4th arches is prevented by the antagonist only during a very narrow window of time, which does not correspond to the period of post-otic NCC migration. Both the timing of appearance and the nature of the defects in RAR antagonist-treated embryos indicate that migrating NCC and mesodermal cells destined to the caudal pharyngeal arches do not represent primary targets of RA action. Alterations in the endodermal expression pattern of Hoxa1, Hoxb1, Pax1, Pax9, Fgf3 and Fgf8 in response to the antagonist-induced block in RA signal transduction demonstrate for the first time that RA signaling is indispensable for the specification of the pharyngeal endoderm and suggest that this signaling is necessary to provide a permissive environment locally for the migration of NCC and mesodermal cells. Our study also indicates that the formation of the 2nd pharyngeal arch and that of the 3rd and 4th pharyngeal arches probably involve distinct RA-dependent developmental processes.
Collapse
Affiliation(s)
- O Wendling
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP/Collège de France, BP 163, CU de Strasbourg, France
| | | | | | | |
Collapse
|
177
|
Ernsberger U, Reissmann E, Mason I, Rohrer H. The expression of dopamine beta-hydroxylase, tyrosine hydroxylase, and Phox2 transcription factors in sympathetic neurons: evidence for common regulation during noradrenergic induction and diverging regulation later in development. Mech Dev 2000; 92:169-77. [PMID: 10727856 DOI: 10.1016/s0925-4773(99)00336-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During differentiation of sympathetic neurons in chick embryos, tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH) mRNAs become detectable during the same developmental period and are both induced by BMP 4. Later during sympathetic ganglion development, DBH is detectable in TH-positive and -negative cells. Moreover, BMPs reduce DBH mRNA in cultures of sympathetic neurons while leaving TH unaffected. The data provide evidence for a common regulation of TH and DBH early during sympathetic neuron differentiation and indicate that BMPs promote their initial expression but not the maintenance during later development. The time course of Phox2a and 2b expression suggests an evolutionary conserved role in noradrenergic induction. In addition, Phox2a, Phox2b, and c-ret may be involved in the differentiation of cholinergic sympathetic neurons.
Collapse
Affiliation(s)
- U Ernsberger
- Max-Planck-Institut für Hirnforschung, Deutschordenstrasse 46, D-60528, Frankfurt, Germany.
| | | | | | | |
Collapse
|
178
|
Pattyn A, Hirsch M, Goridis C, Brunet JF. Control of hindbrain motor neuron differentiation by the homeobox gene Phox2b. Development 2000; 127:1349-58. [PMID: 10704382 DOI: 10.1242/dev.127.7.1349] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Motor neurons are a widely studied model of vertebrate neurogenesis. They can be subdivided in somatic, branchial and visceral motor neurons. Recent studies on the dorsoventral patterning of the rhombencephalon have implicated the homeobox genes Pax6 and Nkx2.2 in the early divergence of the transcriptional programme of hindbrain somatic and visceral motor neuronal differentiation. We provide genetic evidence that the paired-like homeodomain protein Phox2b is required for the formation of all branchial and visceral, but not somatic, motor neurons in the hindbrain. In mice lacking Phox2b, both the generic and subtype-specific programs of motoneuronal differentiation are disrupted at an early stage. Most motor neuron precursors die inside the neuroepithelium while those that emigrate to the mantle layer fail to switch on early postmitotic markers and to downregulate neuroepithelial markers. Thus, the loss of function of Phox2b in hindbrain motor neurons exemplifies a novel control point in the generation of CNS neurons.
Collapse
Affiliation(s)
- A Pattyn
- Laboratoire de Génétique et Physiologie du Développement, Developmental Biology Institute of Marseille, CNRS/INSERM/Univ Méditerranée/AP de Marseille, Luminy Case 907, France
| | | | | | | |
Collapse
|
179
|
Bezin L, Marcel D, Desgeorges S, Pujol JF, Weissmann D. Singular subsets of locus coeruleus neurons may recover tyrosine hydroxylase phenotype transiently expressed during development. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 76:275-81. [PMID: 10762702 DOI: 10.1016/s0169-328x(00)00007-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The number of tyrosine hydroxylase (TH)-expressing neurons appears to be precisely determined in basal conditions within the noradrenergic pontine nucleus locus coeruleus (LC). However, additional neurons exhibiting TH phenotype have been observed in the adult rat LC following a single administration of RU 24722, a potent inducer of TH expression specific to the LC. The neurons acquiring TH phenotype following treatment had a topographical localization similar to that of the neurons, which transiently expressed TH during postnatal development and lost TH phenotype during the third postnatal week. The idea that the fluctuation of TH phenotype in singular subsets of LC neurons during development may be selectively restored in adults is of particular interest. The present study attempted to determine whether the cells in which TH expression was repressed during the third postnatal week could correspond to those which exhibited TH phenotype in response to RU 24722 treatment in adults. We first verified that no massive cell death occurred in the LC during the period ranging from days 13 to 30. Then, we observed that both cell populations exhibited the same altered steady-state concentration of TH-mRNA as compared to cells that permanently expressed TH. Finally, we demonstrated the presence of TH-negative neurons expressing the homeodomain transcription factor Phox2a, specific for the determination of noradrenergic phenotype, providing further evidence that "resting-noradrenergic" neurons exist in the adult rat LC under basal conditions. These neurons provide interesting prospective for gain of noradrenergic function when classical noradrenergic LC neurons are impaired.
Collapse
Affiliation(s)
- L Bezin
- Laboratoire de Neuropharmacologie Moléculaire, CNRS/Université Claude Bernard Lyon I/ERS 2022, Faculté de Médecine R.T.H. Laënnec, Rue G. Paradin, F-69372, Lyon, France.
| | | | | | | | | |
Collapse
|
180
|
Pattyn A, Goridis C, Brunet JF. Specification of the central noradrenergic phenotype by the homeobox gene Phox2b. Mol Cell Neurosci 2000; 15:235-43. [PMID: 10736201 DOI: 10.1006/mcne.1999.0826] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The closely related homeobox genes Phox2a and Phox2b are expressed in all central and peripheral noradrenergic neurons. Our previous results have shown that Phox2a controls the differentiation of the main noradrenergic center of the brain, the locus coeruleus, but leaves unaffected the other noradrenergic centers. Here, we report that Phox2b has a wider and overlapping role, in that it is required for the differentiation of all noradrenergic centers in the brain, including the locus coeruleus. Together with the previously reported lack of dopamine-b-hydroxylase and tyrosine hydroxylase expression in the peripheral nervous system of Phox2b knock-out embryos, our present findings make Phox2b a master regulator of all central and peripheral noradrenergic differentiation. We discuss the nonredundancy of Phox2 genes and their complex partnership with the bHLH transcription factor Mash1, which is also required for the differentiation of most noradrenergic cell types.
Collapse
Affiliation(s)
- A Pattyn
- Laboratoire de Génétique et Physiologie du Développement, Developmental Biology Institute of Marseille, CNRS/INSERM/Université de la Méditerranée/AP de Marseille, Luminy Case 907, Marseille Cedex 9, 13288, France
| | | | | |
Collapse
|
181
|
Hoover F, Kielland A, Glover JC. RXR? gene is expressed by discrete cell columns within the alar plate of the brainstem of the chicken embryo. J Comp Neurol 2000. [DOI: 10.1002/(sici)1096-9861(20000124)416:4<417::aid-cne1>3.0.co;2-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
182
|
Affiliation(s)
- F Guillemot
- IGBMC, CNRS/INSERM, Université Louis Pasteur, Illkirch Cédex, CU de Strasbourg, 67404, France.
| |
Collapse
|
183
|
Hendricks T, Francis N, Fyodorov D, Deneris ES. The ETS domain factor Pet-1 is an early and precise marker of central serotonin neurons and interacts with a conserved element in serotonergic genes. J Neurosci 1999; 19:10348-56. [PMID: 10575032 PMCID: PMC6782418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/1999] [Revised: 09/13/1999] [Accepted: 09/22/1999] [Indexed: 02/14/2023] Open
Abstract
Serotonin (5-HT) plays a crucial neuromodulatory role in numerous physiological and behavioral functions, and dysfunction of the serotonergic system has been implicated in several psychiatric disorders. Despite the widespread importance of the central serotonergic neurotransmitter system, little is known about the molecular mechanisms controlling the development of 5-HT neurons. We previously identified an ETS domain transcription factor, Pet-1, that is expressed in a small number of tissues, including the brain. Here, we show that expression of Pet-1 RNA in the brain is restricted to, and marks, the entire rostrocaudal extent of rat serotonergic hindbrain raphe nuclei. Remarkably, Pet-1 RNA colocalizes with tryptophan hydroxylase-positive neurons in raphe nuclei but not with their nonserotonergic neuron or non-neuronal neighbors. Pet-1 RNA is limited to two domains in the developing hindbrain, which precedes the appearance of 5-HT in each domain by approximately a half day. Conserved Pet-1 binding sites are present in or near the promoter regions of the human and mouse 5-HT1a receptor, serotonin transporter, tryptophan hydroxylase, and aromatic L-amino acid decarboxylase genes whose expression is characteristic of the serotonergic neuron phenotype. These sites are capable of supporting transcriptional activation through interactions with the Pet-1 ETS domain and can function as enhancers. Together, our findings establish Pet-1 as an early and precise marker of 5-HT neurons and suggest that it functions specifically in the differentiation and maintenance of these neurons.
Collapse
Affiliation(s)
- T Hendricks
- Case Western Reserve University, Department of Neurosciences, School of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
184
|
Guo S, Brush J, Teraoka H, Goddard A, Wilson SW, Mullins MC, Rosenthal A. Development of noradrenergic neurons in the zebrafish hindbrain requires BMP, FGF8, and the homeodomain protein soulless/Phox2a. Neuron 1999; 24:555-66. [PMID: 10595509 DOI: 10.1016/s0896-6273(00)81112-5] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We report that the zebrafish mutation soulless, in which the development of locus coeruleus (LC) noradrenergic (NA) neurons failed to occur, disrupts the homeodomain protein Phox2a. Phox2a is not only necessary but also sufficient to induce Phox2b+ dopamine-beta-hydroxylase+ and tyrosine hydroxylase+ NA neurons in ectopic locations. Phox2a is first detected in LC progenitors in the dorsal anterior hindbrain, and its expression there is dependent on FGF8 from the mid/hindbrain boundary and on optimal concentrations of BMP signal from the epidermal ectoderm/future dorsal neural plate junction. These findings suggest that Phox2a coordinates the specification of LC in part through the induction of Phox2b and in response to cooperating signals that operate along the mediolateral and anteroposterior axes of the neural plate.
Collapse
Affiliation(s)
- S Guo
- Department of Neuroscience, Genentech, Incorporated, South San Francisco, California 94080, USA
| | | | | | | | | | | | | |
Collapse
|
185
|
Young HM, Ciampoli D, Hsuan J, Canty AJ. Expression of Ret-, p75(NTR)-, Phox2a-, Phox2b-, and tyrosine hydroxylase-immunoreactivity by undifferentiated neural crest-derived cells and different classes of enteric neurons in the embryonic mouse gut. Dev Dyn 1999; 216:137-52. [PMID: 10536054 DOI: 10.1002/(sici)1097-0177(199910)216:2<137::aid-dvdy5>3.0.co;2-6] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Cells of the enteric nervous system are derived from the neural crest. Probes to a number of molecules identify neural crest-derived cells within the gastrointestinal tract of embryonic mice prior to their differentiation into neurons and glial cells. However, it is unclear whether the different markers are identifying all neural crest-derived cells. In this study the distribution of p75(NTR)-immunoreactivity was compared with that of Ret-, Phox2a-, Phox2b-, and tyrosine hydroxylase (TH) in undifferentiated neural crest-derived cells in the E10.5-E13.5 mouse intestine. Neural crest-derived cells colonise the embryonic mouse gut in a rostral-to-caudal wave between E9.5-E14, and differentiation into enteric neurons also occurs in a rostral-to-caudal wave. Thus, the most caudal neural crest-derived cells within the gut are undifferentiated. These most caudal neural crest-derived cells co-expressed p75(NTR)-, Phox2b- and Ret-immunoreactivity; at E10.5 a sub-population was also TH-positive. The most caudal cells did not show Phox2a-immunoreactivity at any stage. However, a sub-population of cells, which was rostral to the undifferentiated neural crest-derived cells, was Phox2a-positive, and these are likely to be cells beginning to differentiate along a neuronal lineage. The expression of Ret-, Phox2a-, Phox2b- and p75(NTR)-immunoreactivity by two classes of enteric neurons that differentiate prior to birth was also examined. Nitric oxide synthase (NOS) neurons showed Phox2b and Ret immunoreactivity at all ages, and Phox2a and p75(NTR) immunoreactivity only transiently. Calcitonin gene-related peptide (CGRP) neurons showed Phox2b and Ret-immunoreactivity, but not Phox2a immunoreactivity. It is concluded that all undifferentiated neural crest-derived cells initially express Phox2b, Ret, and p75(NTR); a sub-population of these cells also expresses TH transiently. Those cells that are beginning to differentiate along a neuronal lineage maintain their expression of Phox2b and Ret, and they start to express Phox2a, but down-regulate p75(NTR); those cells that differentiate along a glial lineage down-regulate Ret and maintain their expression of p75(NTR). Dev Dyn 1999;216:137-152.
Collapse
Affiliation(s)
- H M Young
- Department of Anatomy & Cell Biology, University of Melbourne, Parkville, Australia.
| | | | | | | |
Collapse
|
186
|
Malosio ML, Benfante R, Racchetti G, Borgonovo B, Rosa P, Meldolesi J. Neurosecretory cells without neurosecretion: evidence of an independently regulated trait of the cell phenotype. J Physiol 1999; 520 Pt 1:43-52. [PMID: 10517799 PMCID: PMC2269568 DOI: 10.1111/j.1469-7793.1999.t01-1-00043.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Neurosecretion competence is a fundamental property that enables differentiated neurones and professional neurosecretory cells to store neurotransmitters and hormones in specialized organelles, the synaptic-like vesicles and dense granules, and to release them by regulated exocytosis. In our laboratory, the study of rat phaeochromocytoma (PC12) clones that fail to express the above organelles or any other components involved in neurosecretion, whilst maintaining most of the general markers of the parental population, has served to demonstrate that this trait is controlled independently from the rest of the phenotype. The present review focuses on recent advances in elucidating the molecular mechanisms governing neurosecretion competence. Moreover, the opportunities that such neurosecretion-defective PC12 clones offer for the investigation of new aspects of regulated exocytosis and the localization of its components are summarized.
Collapse
Affiliation(s)
- M L Malosio
- DIBIT, Department of Neurosciences, San Raffaele Institute, Department of Pharmacology, B. Ceccarelli Neurobiology Centre, University of Milan, 20132 Milan, Italy
| | | | | | | | | | | |
Collapse
|
187
|
Sakurada K, Ohshima-Sakurada M, Palmer TD, Gage FH. Nurr1, an orphan nuclear receptor, is a transcriptional activator of endogenous tyrosine hydroxylase in neural progenitor cells derived from the adult brain. Development 1999; 126:4017-26. [PMID: 10457011 DOI: 10.1242/dev.126.18.4017] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Adult rat-derived hippocampal progenitor cells express many of the molecules implicated in midbrain dopaminergic determination, including FGF receptors 1, 2 and 3, the sonic hedgehog receptor components Smo and Ptc, and the region-specific transcription factors Ptx3 and Nurr1. Here we use undifferentiated progenitors to probe the events leading to the dopaminergic phenotype and find that the influences of Nurr1 can be temporally and mechanistically uncoupled from the patterning influences of sonic hedgehog and FGF-8 or the more generic process of neuronal differentiation itself. In gain-of-function experiments, Nurr1 is able to activate transcription of the tyrosine hydroxylase gene by binding a response element within a region of the tyrosine hydroxylase promoter necessary for midbrain-specific expression. This activation is mediated through a retinoid X receptor independent mechanism and occurs in all precursors, regardless of differentiation status. Overexpression of Nurr1 does not affect proliferation or stimulate neuronal differentiation and has no influence on the expression of other dopaminergic markers. This uncoupling of tyrosine hydroxylase expression from other dopaminergic markers suggests that the midbrain dopaminergic identity is dictated by a combination of pan-dopaminergic (e.g., Shh/FGF-8) and region-specific (Nurr1) mechanisms.
Collapse
Affiliation(s)
- K Sakurada
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
188
|
Stanke M, Junghans D, Geissen M, Goridis C, Ernsberger U, Rohrer H. The Phox2 homeodomain proteins are sufficient to promote the development of sympathetic neurons. Development 1999; 126:4087-94. [PMID: 10457017 DOI: 10.1242/dev.126.18.4087] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The development of sympathetic neurons is controlled by a network of transcriptional regulators, including the paired homeodomain proteins Phox2a and Phox2b. To understand the role of Phox2 proteins in more detail, the effect of Phox2 overexpression was analysed in the avian peripheral nervous system. Phox2a expression in neural crest cultures elicited a strong increase in the number of sympathoadrenergic cells. Expression of Phox2a in the chick embryo promoted the generation of additional neurons expressing the noradrenergic marker genes DBH and TH, pan-neuronal genes SCG10 and NF160 and cholinergic genes ChAT and VAChT. Phox2a-induced neurons were found in ectopic locations such as dorsal root ganglia and peripheral nerve. Sympathoadrenergic development could be elicited in cultures of E5 dorsal root ganglia, demonstrating the presence of Phox2a-responsive cells in non-autonomic peripheral ganglia. Phox2b induced ectopic neurons in the chick embryo in the same way as Phox2a. These results show that Phox2 proteins are sufficient to promote sympathetic neuron generation and control, directly or indirectly, the expression of a large number of genes characteristic for sympathetic neurons.
Collapse
Affiliation(s)
- M Stanke
- Max-Planck-Institut für Hirnforschung, Abt. Neurochemie, Deutschordenstrasse 46, Germany
| | | | | | | | | | | |
Collapse
|
189
|
Greenwood AL, Turner EE, Anderson DJ. Identification of dividing, determined sensory neuron precursors in the mammalian neural crest. Development 1999; 126:3545-59. [PMID: 10409501 DOI: 10.1242/dev.126.16.3545] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sensory and autonomic neurons of the vertebrate peripheral nervous system are derived from the neural crest. Here we use the expression of lineage-specific transcription factors as a means to identify neuronal subtypes that develop in rat neural crest cultures grown in a defined medium. Sensory neurons, identified by expression of the POU-domain transcription factor Brn-3.0, develop from dividing precursors that differentiate within 2 days following emigration from the neural tube. Most of these precursors generate sensory neurons even when challenged with BMP2, a factor that induces autonomic neurogenesis in many other cells in the explants. Moreover, BMP2 fails to prevent expression of the sensory-specific basic helix-loop-helix (bHLH) transcription factors neurogenin1, neurogenin2 and neuroD, although it induces expression of the autonomic-specific bHLH factor MASH1 and the paired homeodomain factor Phox2a in other cells. These data suggest that there are mitotically active precursors in the mammalian neural crest that can generate sensory neurons even in the presence of a strong autonomic-inducing cue. Further characterization of the neurons generated from such precursors indicates that, under these culture conditions, they exhibit a proprioceptive and/or mechanosensory, but not nociceptive, phenotype. Such precursors may therefore correspond to a lineally (Frank, E. and Sanes, J. (1991) Development 111, 895–908) and genetically (Ma, Q., Fode, C., Guillemot, F. and Anderson, D. J. (1999) Genes Dev. 13, in press) distinct subset of early-differentiating precursors of large-diameter sensory neurons identified in vivo.
Collapse
Affiliation(s)
- A L Greenwood
- Division of Biology 216-76, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
190
|
Finotto S, Krieglstein K, Schober A, Deimling F, Lindner K, Brühl B, Beier K, Metz J, Garcia-Arraras JE, Roig-Lopez JL, Monaghan P, Schmid W, Cole TJ, Kellendonk C, Tronche F, Schütz G, Unsicker K. Analysis of mice carrying targeted mutations of the glucocorticoid receptor gene argues against an essential role of glucocorticoid signalling for generating adrenal chromaffin cells. Development 1999; 126:2935-44. [PMID: 10357937 DOI: 10.1242/dev.126.13.2935] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Molecular mechanisms underlying the generation of distinct cell phenotypes is a key issue in developmental biology. A major paradigm of determination of neural cell fate concerns the development of sympathetic neurones and neuroendocrine chromaffin cells from a common sympathoadrenal (SA) progenitor cell. Two decades of in vitro experiments have suggested an essential role of glucocorticoid receptor (GR)-mediated signalling in generating chromaffin cells. Targeted mutation of the GR should consequently abolish chromaffin cells. The present analysis of mice lacking GR gene product demonstrates that animals have normal numbers of adrenal chromaffin cells. Moreover, there are no differences in terms of apoptosis and proliferation or in expression of several markers (e.g. GAP43, acetylcholinesterase, adhesion molecule L1) of chromaffin cells in GR-deficient and wild-type mice. However, GR mutant mice lack the adrenaline-synthesizing enzyme PNMT and secretogranin II. Chromaffin cells of GR-deficient mice exhibit the typical ultrastructural features of this cell phenotype, including the large chromaffin granules that distinguish them from sympathetic neurones. Peripherin, an intermediate filament of sympathetic neurones, is undetectable in chromaffin cells of GR mutants. Finally, when stimulated with nerve growth factor in vitro, identical proportions of chromaffin cells from GR-deficient and wild-type mice extend neuritic processes. We conclude that important phenotypic features of chromaffin cells that distinguish them from sympathetic neurones develop normally in the absence of GR-mediated signalling. Most importantly, chromaffin cells in GR-deficient mice do not convert to a neuronal phenotype. These data strongly suggest that the dogma of an essential role of glucocorticoid signalling for the development of chromaffin cells must be abandoned.
Collapse
Affiliation(s)
- S Finotto
- Neuroanatomy, University of Heidelberg, D-69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Yokoyama M, Watanabe H, Nakamura M. Genomic structure and functional characterization of NBPhox (PMX2B), a homeodomain protein specific to catecholaminergic cells that is involved in second messenger-mediated transcriptional activation. Genomics 1999; 59:40-50. [PMID: 10395798 DOI: 10.1006/geno.1999.5845] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Homeodomain proteins play essential roles in basic processes during embryogenesis and development. NBPhox, a vertebrate paired-like homeodomain protein specific to catecholaminergic cells, may have a fundamental role in determining and maintaining the catecholaminergic phenotype. Here we describe the human and mouse genomic structures and the functional characterization of NBPhox. The genomic structure of NBPhox is highly conserved at the nucleotide level between human and mouse and is also quite similar to that of other paired-like homeodomain proteins, Arix/Phox2a, CRX, OTX1, and OTX2. The human NBPhox gene (HGMW-approved symbol PMX2B) maps to chromosomal region 5p12-p13. When the NBPhox expression plasmid was introduced into PC12h cells, the transcription from the promoter of the dopamine beta-hydroxylase (DBH) gene was slightly stimulated. However, NBPhox substantially enhances second messenger-mediated activation of the DBH promoter by forskolin and/or phorbol ester. Furthermore, we found that NBPhox can also enhance second messenger-mediated activation of the c-fos promoter and several enhancers, including cyclic AMP-response element, the binding site for activator protein 1, and serum-response element. Our findings provide strong evidence that a homeodomain protein is involved in the activation of several genetic regulatory elements responsive to second messenger-mediated signals. These data suggest that this family of proteins may be involved in determining and maintaining a cell-specific phenotype through regulation of certain genes responsive to second messenger-mediated signals.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Catecholamines/metabolism
- Chromosome Mapping
- Chromosomes, Human, Pair 5/genetics
- DNA/chemistry
- DNA/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Dopamine beta-Hydroxylase/genetics
- Enhancer Elements, Genetic
- Exons
- Gene Expression
- Homeodomain Proteins/genetics
- Homeodomain Proteins/physiology
- Humans
- Introns
- Mice
- Molecular Sequence Data
- Nerve Tissue Proteins/genetics
- Neurons/cytology
- Neurons/metabolism
- Otx Transcription Factors
- Promoter Regions, Genetic
- Proto-Oncogene Proteins c-fos/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Second Messenger Systems/physiology
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Trans-Activators/genetics
- Transcription Factors
- Transcriptional Activation
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- M Yokoyama
- Pharmaceutical Frontier Research Laboratories, Japan Tobacco, Inc., 13-2, Fukuura 1-chome, Kanazawa-ku, Yokohama, Kanagawa, 236, Japan.
| | | | | |
Collapse
|
192
|
Pattyn A, Morin X, Cremer H, Goridis C, Brunet JF. The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 1999; 399:366-70. [PMID: 10360575 DOI: 10.1038/20700] [Citation(s) in RCA: 636] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The sympathetic, parasympathetic and enteric ganglia are the main components of the peripheral autonomic nervous system, and are all derived from the neural crest. The factors needed for these structures to develop include the transcription factor Mash1, the glial-derived neurotrophic factor GNDF and its receptor subunits, and the neuregulin signalling system, each of which is essential for the differentiation and survival of subsets of autonomic neurons. Here we show that all autonomic ganglia fail to form properly and degenerate in mice lacking the homeodomain transcription factor Phox2b, as do the three cranial sensory ganglia that are part of the autonomic reflex circuits. In the anlagen of the enteric nervous system and the sympathetic ganglia, Phox2b is needed for the expression of the GDNF-receptor subunit Ret and for maintaining Mash1 expression. Mutant ganglionic anlagen also fail to switch on the genes that encode two enzymes needed for the biosynthesis of the neurotransmitter noradrenaline, dopamine-beta-hydroxylase and tyrosine hydroxylase, demonstrating that Phox2b regulates the noradrenergic phenotype in vertebrates.
Collapse
Affiliation(s)
- A Pattyn
- Laboratoire de Génétique et Physiologie du Développement, Developmental Biology Institute of Marseille, CNRS/INSERM/Université de la Méditterranée/AP de Marseille, France
| | | | | | | | | |
Collapse
|
193
|
Abstract
The development of the sympathetic nervous system can be divided into three overlapping stages. First, the precursors of sympathetic neurons arise from undifferentiated neural crest cells that migrate ventrally, aggregate adjacent to the dorsal aorta, and ultimately differentiate into catecholaminergic neurons. Second, cell number is refined during a period of cell death when neurotrophic factors determine the number of neuronal precursors and neurons that survive. The final stage of sympathetic development is the establishment and maturation of synaptic connections, which for sympathetic neurons can include alterations in neurotransmitter phenotype. Considerable progress has been made recently in elucidating the cellular and molecular mechanisms that direct each of these developmental decisions. We review the current understanding of each of these, focusing primarily on events in the peripheral nervous system of rodents.
Collapse
Affiliation(s)
- N J Francis
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.
| | | |
Collapse
|
194
|
Iacopetti P, Michelini M, Stuckmann I, Oback B, Aaku-Saraste E, Huttner WB. Expression of the antiproliferative gene TIS21 at the onset of neurogenesis identifies single neuroepithelial cells that switch from proliferative to neuron-generating division. Proc Natl Acad Sci U S A 1999; 96:4639-44. [PMID: 10200315 PMCID: PMC16385 DOI: 10.1073/pnas.96.8.4639] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
At the onset of mammalian neurogenesis, neuroepithelial (NE) cells switch from proliferative to neuron-generating divisions. Understanding the molecular basis of this switch requires the ability to distinguish between these two types of division. Here we show that in the mouse ventricular zone, expression of the mRNA of the antiproliferative gene TIS21 (PC3, BTG2) (i) starts at the onset of neurogenesis, (ii) is confined to a subpopulation of NE cells that increases in correlation with the progression of neurogenesis, and (iii) is not detected in newborn neurons. Expression of the TIS21 mRNA in the NE cells occurs transiently during the cell cycle, i.e., in the G1 phase. In contrast to the TIS21 mRNA, the TIS21 protein persists through the division of NE cells and is inherited by the neurons, where it remains detectable during neuronal migration and the initial phase of differentiation. Our observations indicate that the TIS21 gene is specifically expressed in those NE cells that, at their next division, will generate postmitotic neurons, but not in proliferating NE cells. Using TIS21 as a marker, we find that the switch from proliferative to neuron-generating divisions is initiated in single NE cells rather than in synchronized neighboring cells.
Collapse
Affiliation(s)
- P Iacopetti
- Department of Neurobiology, University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
195
|
Abstract
Vertebrates express scores of bHLH proteins during neural development. Earlier studies inspired by the established role of "proneural" genes in fly neurogenesis, as well as by the vertebrate bHLH myogenic program, focused on the reconstruction of bHLH gene cascades, which are thought to control successive steps leading to neuronal differentiation. Little attention has been paid thus far to the relationship between the diversity of neural bHLH genes and the diversity of neuronal phenotypes. This article reviews recent evidence that, akin to their fly counterparts, vertebrate neural bHLH genes probably confer not only "generic" neuronal properties, but also neuronal type-specific properties, inextricably linking neural determination and the specification of neuronal identity. We also speculate on the relations between positional information and gene activity, and on the evolutionary significance of the diversity of bHLH genes.
Collapse
Affiliation(s)
- J F Brunet
- Institut de Biologie du Développement de Marseille, CNRS-INSERM-Université de la Méditerranée, France
| | | |
Collapse
|
196
|
Lo L, Morin X, Brunet JF, Anderson DJ. Specification of neurotransmitter identity by Phox2 proteins in neural crest stem cells. Neuron 1999; 22:693-705. [PMID: 10230790 DOI: 10.1016/s0896-6273(00)80729-1] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have investigated the specification of noradrenergic neurotransmitter identity in neural crest stem cells (NCSCs). Retroviral expression of both wild-type and dominant-negative forms of the paired homeodomain transcription factor Phox2a indicates a crucial and direct role for this protein (and/or the closely related Phox2b) in the regulation of endogenous tyrosine hydroxylase (TH) and dopamine-beta hydroxylase (DBH) gene expression in these cells. In collaboration with cAMP, Phox2a can induce expression of TH but not of DBH or of panneuronal genes. Phox2 proteins are, moreover, necessary for the induction of both TH and DBH by bone morphogenetic protein 2 (BMP2) (which induces Phox2a/b) and forskolin. They are also necessary for neuronal differentiation. These data suggest that Phox2a/b coordinates the specification of neurotransmitter identity and neuronal fate by cooperating environmental signals in sympathetic neuroblasts.
Collapse
Affiliation(s)
- L Lo
- Division of Biology, Howard Hughes Medical Institute, California Institute of Technology, Pasadena 91125, USA
| | | | | | | |
Collapse
|
197
|
Kim CH, Kim HS, Cubells JF, Kim KS. A previously undescribed intron and extensive 5' upstream sequence, but not Phox2a-mediated transactivation, are necessary for high level cell type-specific expression of the human norepinephrine transporter gene. J Biol Chem 1999; 274:6507-18. [PMID: 10037744 DOI: 10.1074/jbc.274.10.6507] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The synaptic action of norepinephrine is terminated by NaCl-dependent uptake into presynaptic noradrenergic nerve endings, mediated by the norepinephrine transporter (NET). NET is expressed only in neuronal tissues that synthesize and secrete norepinephrine and in most cases is co-expressed with the norepinephrine-synthetic enzyme dopamine beta-hydroxylase (DBH). To understand the molecular mechanisms regulating human NET (hNET) gene expression, we isolated and characterized an hNET genomic clone encompassing approximately 9. 5 kilobase pairs of the 5' upstream promoter region. Here we demonstrate that the hNET gene contains an as-yet-unidentified intron of 476 base pairs within the 5'-untranslated region. Furthermore, both primer extension and 5'-rapid amplification of cDNA ends analyses identified multiple transcription start sites from mRNAs expressed only in NET-expressing cell lines. The start sites clustered in two subdomains, each preceded by a TATA-like sequence motif. As expected for mature mRNAs, transcripts from most of these sites each contained an additional G residue at the 5' position. Together, the data strongly support the authenticity of these sites as the transcriptional start sites of hNET. We assembled hNET-chloramphenicol acetyltransferase reporter constructs containing different lengths of hNET 5' sequence in the presence or the absence of the first intron. Transient transfection assays indicated that the combination of the 5' upstream sequence and the first intron supported the highest level of noradrenergic cell-specific transcription. Forced expression of the paired-like homeodomain transcription factor Phox2a did not affect hNET promoter activity in NET-negative cell lines, in marked contrast to its effect on a DBH-chloramphenicol acetyltransferase reporter construct. Together with our previous studies suggesting a critical role of Phox2a for noradrenergic-specific expression of the DBH gene, these data support a model in which distinct, or partially distinct, molecular mechanisms regulate cell-specific expression of the NET and DBH genes.
Collapse
Affiliation(s)
- C H Kim
- Department of Neurology and Department of Anatomy and Neurobiology, University of Tennessee College of Medicine, Memphis, Tennessee 38163, USA
| | | | | | | |
Collapse
|
198
|
Abstract
The cranial sensory ganglia, in contrast to those of the trunk, have a dual embryonic origin arising from both neurogenic placodes and neural crest. Neurogenic placodes are focal thickenings of ectoderm, found exclusively in the head of vertebrate embryos. These structures can be split into two groups based on the positions that they occupy within the embryo, dorsolateral and epibranchial. The dorsolateral placodes develop alongside the central nervous system, while the epibranchial placodes are located close to the top of the clefts between the branchial arches. Importantly, previous studies have shown that the neurogenic placodes form under the influence of the surrounding cranial tissues. In this paper, we have analysed the nature of the inductive signal underlying the formation of the epibranchial placodes. We find that epibranchial placodes do not require neural crest for their induction, but rather that it is the pharyngeal endoderm that is the source of the inductive signal. We also find that, while cranial ectoderm is competent to respond to this inductive signal, trunk ectoderm is not. We have further identified the signalling molecule Bmp7 as the mediator of this inductive interaction. This molecule is expressed in a manner consistent with it playing such a role and, when added to ectoderm explants, it will promote the formation of epibranchial neuronal cells. Moreover, the Bmp7 antagonist follstatin will block the ability of pharyngeal endoderm to induce placodal neuronal cells, demonstrating that Bmp7 is required for this inductive interaction. This work answers the long standing question regarding the induction of the epibranchial placodes, and represents the first elucidation of an inductive mechanism, and a molecular effector, underlying the formation of any primary sensory neurons in higher vertebrates.
Collapse
Affiliation(s)
- J Begbie
- Department of Experimental Pathology, GKT Medical School, Kings College London, Guys Campus, London SE1 9RT, UK
| | | | | | | |
Collapse
|
199
|
Abstract
The specification of neurotransmitter phenotype is an important aspect of neuronal fate determination. Recent studies have begun to define essential transcriptional regulators involved in controlling the mode of neurotransmission in vertebrates and invertebrates, and to examine their regulation by cell-extrinsic factors. An emerging concept is that the control of transmitter choice is intimately linked to that of other aspects of the neuronal phenotype.
Collapse
Affiliation(s)
- C Goridis
- Laboratoire de Génétique et Physiologie du Développement Developmental Biology Institute of Marseille CNRS/INSERM Université de la Méditerranée AP de Marseille Campus de Luminy, Marseille Cedex 9 France.
| | | |
Collapse
|
200
|
Affiliation(s)
- A K Groves
- Division of Biology, California Institute of Technology, Pasadena 91125, USA
| | | |
Collapse
|