151
|
Ikeda-Matsuo Y, Ota A, Fukada T, Uematsu S, Akira S, Sasaki Y. Microsomal prostaglandin E synthase-1 is a critical factor of stroke-reperfusion injury. Proc Natl Acad Sci U S A 2006; 103:11790-5. [PMID: 16864802 PMCID: PMC1518807 DOI: 10.1073/pnas.0604400103] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although augmented prostaglandin E(2) (PGE(2)) synthesis and accumulation have been demonstrated in the lesion sites of rodent transient focal ischemia models, the role of PGE(2) in neuronal survival has been controversial, showing both protective and toxic effects. Here we demonstrate the induction of microsomal PGE synthase 1 (mPGES-1), an inducible terminal enzyme for PGE(2) synthesis, in neurons, microglia, and endothelial cells in the cerebral cortex after transient focal ischemia. In mPGES-1 knockout (KO) mice, in which the postischemic PGE(2) production in the cortex was completely absent, the infarction, edema, apoptotic cell death, and caspase-3 activation in the cortex after ischemia were all reduced compared with those in wild-type (WT) mice. Furthermore, the behavioral neurological dysfunctions observed after ischemia in WT mice were significantly ameliorated in KO mice. The ameliorated symptoms observed in KO mice after ischemia were reversed to almost the same severity as WT mice by intracerebroventricular injection of PGE(2) into KO mice. Our observations suggest that mPGES-1 may be a critical determinant of postischemic neurological dysfunctions and a valuable therapeutic target for treatment of human stroke.
Collapse
Affiliation(s)
- Yuri Ikeda-Matsuo
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan.
| | | | | | | | | | | |
Collapse
|
152
|
Takemiya T, Maehara M, Matsumura K, Yasuda S, Sugiura H, Yamagata K. Prostaglandin E2 produced by late induced COX-2 stimulates hippocampal neuron loss after seizure in the CA3 region. Neurosci Res 2006; 56:103-10. [PMID: 16837093 DOI: 10.1016/j.neures.2006.06.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 06/01/2006] [Accepted: 06/01/2006] [Indexed: 01/18/2023]
Abstract
Injection of kainic acid (KA) into the brain causes severe seizures with hippocampal neuron loss. KA has been shown to immediately induce cyclooxygenase-2 (COX-2) expression in hippocampal neurons, indicating that neuronal COX-2 might be involved in neuronal death. In this study, however, we reveal that the delayed COX-2 induction in non-neuronal cells after KA injection plays an important role in hippocampal neuron loss rather than early COX-2 expression in neurons. We find that KA microinjection into the hemilateral hippocampus shows a later induction of COX-2 expression in non-neuronal cells, such as endothelial cells and astrocytes. In the KA-injected side, PGE2 concentration gradually increases and peaks at 24 h after injection, when non-neuronal COX-2 expression also peaks. When this delayed PGE2 elevation is prevented by selective COX-2 inhibitor NS398, it can block hippocampal cell death. Moreover, COX-2 knockout mice are also resistant to neuronal death after KA treatment. These findings indicate that delayed PGE2 production by non-neuronal COX-2 may facilitate neuronal death after seizure. Inhibition of COX-2 to an extent similar to PGE2 elevation after onset of seizure may be useful to prevent neuronal death.
Collapse
Affiliation(s)
- Takako Takemiya
- Department of Neuropharmacology, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
153
|
Blatteis CM. Endotoxic fever: New concepts of its regulation suggest new approaches to its management. Pharmacol Ther 2006; 111:194-223. [PMID: 16460809 DOI: 10.1016/j.pharmthera.2005.10.013] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Accepted: 10/07/2005] [Indexed: 01/09/2023]
Abstract
Endotoxic fever is regulated by endogenous factors that provide pro- and anti-pyretic signals at different points along the febrigenic pathway, from the periphery to the brain. Current evidence indicates that the febrile response to invading Gram-negative bacteria and their products is initiated upon their arrival in the liver via the circulation and their uptake by Kupffer cells (Kc). These pathogens activate the complement cascade on contact, hence generating complement component 5a. It, in turn, very rapidly stimulates Kc to release prostaglandin (PG)E2. Pyrogenic cytokines (TNF-alpha, etc.) are produced later and are no longer considered to be the immediate triggers of fever. The Kc-generated PGE2 either (1) may be transported by the bloodstream to the ventromedial preoptic-anterior hypothalamus (POA, the locus of the temperature-regulating center), presumptively diffusing into it and acting on thermoregulatory neurons; PGE2 is thus taken to be the final, central fever mediator. Or (2) it may activate hepatic vagal afferents projecting to the medulla oblongata, thence to the POA via the ventral noradrenergic bundle. Norepinephrine consequently secreted stimulates alpha1-adrenoceptors on thermoregulatory neurons, rapidly evoking an initial rise in core temperature (Tc) not associated with any change in POA PGE2; this neural, PGE2-independent signaling pathway is quicker than the blood-borne route. Elevated POA PGE2 and a secondary Tc rise occur later, consequent to alpha2 stimulation. Endogenous counter-regulatory factors are also elaborated peripherally and centrally at different points during the course of the febrile response; they are, therefore, anti-pyretic. These multiple interacting pathways are the subject of this review.
Collapse
Affiliation(s)
- Clark M Blatteis
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, 894 Union Avenue, Memphis, 38163, USA.
| |
Collapse
|
154
|
Rummel C, Sachot C, Poole S, Luheshi GN. Circulating interleukin-6 induces fever through a STAT3-linked activation of COX-2 in the brain. Am J Physiol Regul Integr Comp Physiol 2006; 291:R1316-26. [PMID: 16809483 DOI: 10.1152/ajpregu.00301.2006] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interleukin (IL)-6 is an important humoral mediator of fever following infection and inflammation and satisfies a number of criteria for a circulating pyrogen. However, evidence supporting such a role is diminished by the moderate or even absent ability of the recombinant protein to induce fever and activate the cyclooxygenase-2 (COX-2) pathway in the brain, a prerequisite step in the initiation and maintenance of fever. In the present study, we investigated the role of endogenous circulating IL-6 in a rodent model of localized inflammation, by neutralizing its action using a specific antiserum (IL-6AS). Rats were injected with LPS (100 microg/kg) or saline into a preformed air pouch in combination with an intraperitoneal injection of either normal sheep serum or IL-6AS (1.8 ml/rat). LPS induced a febrile response, which was accompanied by a significant rise in plasma IL-6 and nuclear STAT3 translocation in endothelial cells throughout the brain 2 h after treatment, including areas surrounding the sensory circumventricular organs and the median preoptic area (MnPO), important regions in mediating fever. These responses were abolished in the presence of the IL-6AS, which also significantly inhibited the LPS-induced upregulation of mRNA expression or immunoreactivity (IR) of the inducible form of COX, the rate-limiting enzyme for PGE2-synthesis. Interestingly, nuclear signal transducer and activator of transcription (STAT)3-positive cells colocalized with COX-2-IR, signifying that IL-6-activated cells are directly involved in PGE2 production. These observations suggest that IL-6 is an important circulating pyrogen that activates the COX-2-pathway in cerebral microvasculature, most likely through a STAT3-dependent pathway.
Collapse
Affiliation(s)
- Christoph Rummel
- Douglas Hospital Research Centre, Dept. of Psychiatry, McGill Univ., 6875 Blvd. LaSalle, Verdun, Montreal, QC, H4H 1R3, Canada
| | | | | | | |
Collapse
|
155
|
Orbe J, Beloqui O, Rodriguez JA, Belzunce MS, Roncal C, Páramo JA. Protective effect of the G-765C COX-2 polymorphism on subclinical atherosclerosis and inflammatory markers in asymptomatic subjects with cardiovascular risk factors. Clin Chim Acta 2006; 368:138-43. [PMID: 16458279 DOI: 10.1016/j.cca.2005.12.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Accepted: 12/20/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Cyclooxygenase (COX)-2, a key regulatory enzyme in prostanoid synthesis, plays an important role in inflammatory processes. The -765G>C COX-2 polymorphism has been associated with lower promoter activity in vitro and reduced levels of C-reactive protein (CRP) in atherosclerotic carriers of the C allele. However, its pathophysiological relevance in vivo has not been fully elucidated. METHODS AND RESULTS We assessed the -765G>C polymorphism and COX-2 expression in 220 asymptomatic subjects free of cardiovascular disease, in relation to global vascular risk, carotid intima-media thickness (IMT), and inflammatory markers (fibrinogen, C-reactive protein [CRP], von Willebrand factor [vWF] and interleukin-6 [IL-6]). Genotype frequencies were: CC (7.7%), CG (34.5%), GG (57.7%). Among hypercholesterolemic subjects (n=140), C allele carriers had lower COX-2 expression (p<0.05), reduced carotid IMT (p<0.01) and diminished levels of inflammatory markers CRP, vWF and IL-6 (p<0.05), as compared to GG homozygous subjects. The association between carotid IMT and COX-2 polymorphism remained significant after adjusting for cardiovascular risk factors and inflammatory markers (p=0.008). CONCLUSIONS In asymptomatic hypercholesterolemic subjects the C allele of -765G>C COX-2 polymorphism was associated with lower COX-2 expression, and reduced subclinical atherosclerosis and systemic inflammation compared with GG homozygous, thus conferring atherosclerosis protection in this cardiovascular risk population.
Collapse
Affiliation(s)
- J Orbe
- Atherosclerosis Research Laboratory, Division of Cardiovascular Science, Center for Applied Medical Research, Pamplona, Spain.
| | | | | | | | | | | |
Collapse
|
156
|
Paues J, Mackerlova L, Blomqvist A. Expression of melanocortin-4 receptor by rat parabrachial neurons responsive to immune and aversive stimuli. Neuroscience 2006; 141:287-97. [PMID: 16730913 DOI: 10.1016/j.neuroscience.2006.03.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 03/15/2006] [Accepted: 03/15/2006] [Indexed: 10/24/2022]
Abstract
The pontine parabrachial nucleus is a major relay area for visceral and other interoceptive information, and has been implicated in mechanisms underlying anorexia and food aversion during disease. Thus, physiological studies have shown that peripheral immune stimuli, as well as the administration of aversive substances such as lithium chloride, evoke a prominent Fos-expression in the lateral parabrachial nucleus and behavioral experiments have demonstrated that this structure is critical for the acquisition of conditioned taste aversion. The present study examined in rats the relationship between parabrachial neurons activated by systemic administration of bacterial cell-wall lipopolysaccharide or lithium chloride and the melanocortin system, a major regulator of feeding and energy homeostasis that also has been implicated in aversive behavior. Dual-labeling in situ hybridization showed melanocortin-4 receptor expression on neurons in the external lateral parabrachial subnucleus that displayed lipopolysaccharide- or lithium chloride-induced expression of c-fos mRNA. Melanocortin-4 receptor mRNA was also co-expressed with mRNA for calcitonin gene-related peptide in this subnucleus. Taken together with previous observations showing that calcitonin gene-related peptide expressing neurons in the external lateral parabrachial subnucleus are activated by peripheral immune challenge, that lipopolysaccharide-activated external lateral parabrachial subnucleus neurons project to the amygdala, and that the amygdala-projecting neurons in the external lateral parabrachial subnucleus are calcitonin gene-related peptide-positive, the present findings suggest the presence of a melanocortin-regulated calcitonin gene-related peptide-positive pathway from the external lateral parabrachial subnucleus to the amygdala that relays information of importance to forebrain responses to certain aspects of sickness behavior. These observations may thus help explain how melanocortins can reduce feeding and influence conditioned taste aversion during inflammation and other disease conditions.
Collapse
Affiliation(s)
- J Paues
- Division of Cell Biology, Department of Biomedicine and Surgery, Faculty of Health Sciences, Linköping University, S-581 85 Linköping, Sweden
| | | | | |
Collapse
|
157
|
Chell S, Kaidi A, Kadi A, Williams AC, Paraskeva C. Mediators of PGE2 synthesis and signalling downstream of COX-2 represent potential targets for the prevention/treatment of colorectal cancer. Biochim Biophys Acta Rev Cancer 2006; 1766:104-19. [PMID: 16859832 DOI: 10.1016/j.bbcan.2006.05.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 05/18/2006] [Accepted: 05/18/2006] [Indexed: 12/25/2022]
Abstract
Colorectal cancer is a major cause of mortality and whilst up to 80% of sporadic colorectal tumours are considered preventable, trends toward increasing obesity suggest the potential for a further increase in its worldwide incidence. Novel methods of colorectal cancer prevention and therapy are therefore of considerable importance. Non-steroidal anti-inflammatory drugs (NSAIDs) are chemopreventive against colorectal cancer, mainly through their inhibitory effects on the cyclooxygenase isoform COX-2. COX enzymes represent the committed step in prostaglandin biosynthesis and it is predominantly increased COX-2-mediated prostaglandin-E2 (PGE2) production that has a strong association with colorectal neoplasia, by promoting cell survival, cell growth, migration, invasion and angiogenesis. COX-1 and COX-2 inhibition by traditional NSAIDs (for example, aspirin) although chemopreventive have some side effects due to the role of COX-1 in maintaining the integrity of the gastric mucosa. Interestingly, the use of COX-2 selective NSAIDs has also shown promise in the prevention/treatment of colorectal cancer while having a reduced impact on the gastric mucosa. However, the prolonged use of high dose COX-2 selective inhibitors is associated with a risk of cardiovascular side effects. Whilst COX-2 inhibitors may still represent viable adjuvants to current colorectal cancer therapy, there is an urgent need to further our understanding of the downstream mechanisms by which PGE2 promotes tumorigenesis and hence identify safer, more effective strategies for the prevention of colorectal cancer. In particular, PGE2 synthases and E-prostanoid receptors (EP1-4) have recently attracted considerable interest in this area. It is hoped that at the appropriate stage, selective (and possibly combinatorial) inhibition of the synthesis and signalling of those prostaglandins most highly associated with colorectal tumorigenesis, such as PGE2, may have advantages over COX-2 selective inhibition and therefore represent more suitable targets for long-term chemoprevention. Furthermore, as COX-2 is found to be overexpressed in cancers such as breast, gastric, lung and pancreatic, these investigations may also have broad implications for the prevention/treatment of a number of other malignancies.
Collapse
Affiliation(s)
- Simon Chell
- Cancer Research UK, Colorectal Tumour Biology Group, Department of Cellular and Molecular Medicine, University Walk, The Medical School, Bristol University, Bristol BS91SB, UK
| | | | | | | | | |
Collapse
|
158
|
Xia Y, Yamagata K, Krukoff TL. Differential expression of the CD14/TLR4 complex and inflammatory signaling molecules following i.c.v. administration of LPS. Brain Res 2006; 1095:85-95. [PMID: 16697357 DOI: 10.1016/j.brainres.2006.03.112] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 03/30/2006] [Accepted: 03/31/2006] [Indexed: 02/06/2023]
Abstract
The CD14/toll-like receptor 4 (TLR4) complex plays a vital role in initiating lipopolysaccharide (LPS) signaling during inflammation. In this study, we assessed innate immune responses and inflammatory transmission in the rat brain following intracerebroventricular (i.c.v.) administration of LPS. I.c.v. LPS induced the widespread increase in CD14 mRNA but did not change levels of TLR4 transcription in the brain. An increase in TLR4 immunoreactivity, coincident with cell death, leukocyte infiltration and neural tissue damage, was found in the meninges, choroid plexus and ventricular ependyma. In addition to CD14, rapid increases in gene expression of IkappaBalpha, IL-1beta, and TNF-alpha occurred along the meninges and ventricular ependyma. The response was most intense along the borders of the brain and declined in intensity in the adjacent periventricular areas and cerebral cortex. In the brain parenchyma, increased TLR4 immunoreactivity was confined to the vasculature and neighboring tissues along with strong vascular expression of IkappaBalpha and mPGES-1. These results suggest involvement of TLR4 in both brain inflammation and neural tissue injury and support the hypothesis that local diffusion and vascular transmission of inflammatory molecules are two major routes for developing inflammation in the brain.
Collapse
Affiliation(s)
- Yun Xia
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | | | | |
Collapse
|
159
|
Lazarus M. The differential role of prostaglandin E2 receptors EP3 and EP4 in regulation of fever. Mol Nutr Food Res 2006; 50:451-5. [PMID: 16534751 DOI: 10.1002/mnfr.200500207] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The innate immune system of mammals is able to detect bacteria when they infect local tissue or enter the blood stream, and initiate an immediate immune response. Prostaglandin (PG) E2 is considered as the most important link between the peripheral immune system and the brain. Due to four PGE2 receptors (EP receptors) and their differential expression in various areas of the hypothalamus and brain stem, PGE2 mediates different components of the acute phase reaction. A fever model is discussed in which the preoptic area contains the mechanisms for both hyperthermic and hypothermic responses and EP receptors in the median preoptic area (MnPO) modulate the thermogenic system. The neuron-specific modulation of EP receptors in the MnPO can be critically tested by using Cre-recombinase-mediated DNA recombination in genetically engineered mice. A concept for mice with conditional expression of EP3R and EP4R to investigate the different roles of those receptors in lipopolysaccharide (LPS)-induced fever is presented.
Collapse
Affiliation(s)
- Michael Lazarus
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
160
|
Nakano Y, Kuroda E, Kito T, Yokota A, Yamashita U. Induction of macrophagic prostaglandin E2 synthesis by glioma cells. J Neurosurg 2006; 104:574-82. [PMID: 16619662 DOI: 10.3171/jns.2006.104.4.574] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Object
It has been reported that glioma cells produce prostaglandin (PG)E2, which promotes the growth of tumor cells and possesses immunosuppressive activity, and that cyclooxygenase (COX) inhibitors impede tumor growth and infiltration. Macrophages in tumor-bearing hosts are activated to produce PGE2, which induces an immunosuppressive state. Note, however, that the precise mechanism by which PGE2 induces an immunosuppressive state is still unclear. In this study, the authors investigated the mechanism of PGE2 production in glioma-bearing hosts.
Methods
The human and murine glioma cells that were studied did not produce a significant amount of PGE2. However, the coculture of human peripheral blood mononuclear cells or murine peritoneal macrophages with glioma cells or conditioned glioma medium led to the production of a large amount of PGE2. In contrast, production of tumor necrosis factor and interleukin (IL)-12p70 by macrophages and cytotoxic T lymphocyte induction were suppressed by culturing with conditioned glioma medium; this suppression was abrogated by the addition of the COX inhibitor indomethacin. The macrophagic expression of COX-2, and particularly the expression of microsomal PGE synthase (mPGES)–1, a terminal enzyme of the arachidonate cascade, was enhanced by the glioma-derived soluble factors. Furthermore, IL-12p70 production was not clearly suppressed in macrophages from mPGES-1–deficient mice. The glioma-derived soluble factors were sensitive to treatment with heat and papain.
Conclusions
These results indicated that PGE2 production by macrophages is enhanced by glioma-derived soluble factors, which induce an immunosuppressive state in glioma-bearing hosts. Therefore, the inhibition of PGE2 synthesis, targeting COX-2 and mPGES-1, is an effective treatment for the induction of antiglioma immune responses.
Collapse
Affiliation(s)
- Yoshiteru Nakano
- Department of Neurosurgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | |
Collapse
|
161
|
Kim DK, Jang TJ. Cyclooxygenase-2 expression and effect of celecoxib in flurothyl-induced neonatal seizure. Int J Exp Pathol 2006; 87:73-8. [PMID: 16436115 PMCID: PMC2517343 DOI: 10.1111/j.0959-9673.2006.00457.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Endogenous PGE(2) dynamically regulates membrane excitability, synaptic transmission and plasticity. Neonatal seizures are associated with a number of activity-dependent changes in brain development including altered synaptogenesis and synaptic plasticity as well as reduction in neurogenesis. Thus, it is reasonable to hypothesize that alteration of cyclooxygenase-2 (COX-2) expression induced by neonatal seizure may influence brain development. We evaluated the expression of COX-2 and microsomal prostaglandin E synthase (mPGES) by Western blot analysis and immnohistochemistry in flurothyl-induced neonatal seizure and also studied the effect of celecoxib on seizure induction. Seven to 10 days old Sprague-Dawley rats were used for control (n = 18) and experimental group (n = 30). Recurrent seizure group showed more increased level of COX-2 expression than control group. However, the level of mPGES-2 expression was similar in both groups, and mPGES-1 was not detected. Hippocampus of control rats showed endogenous COX-2 expression, which was localized mainly in CA3 region. This localization pattern was similar in recurrent seizure rats, but intensity of COX-2 expression was more increased than in control rats. Celecoxib treatment significantly delayed the seizure attack and also reduced COX-2 expression. In conclusion, this study suggests that COX-2 expression is related to epileptogenesis in flurothyl-induced neonatal seizure model and shows the possibility that its inhibition lessens functional impairments that occurred in neonatal seizure.
Collapse
Affiliation(s)
- Doo Kwun Kim
- Department of Pediatrics, Dongguk University College of MedicineKyongju, Kyongbuk, Korea
| | - Tae Jung Jang
- Department of Pathology, Dongguk University College of MedicineKyongju, Kyongbuk, Korea
| |
Collapse
|
162
|
Mehrotra S, Morimiya A, Agarwal B, Konger R, Badve S. Microsomal prostaglandin E2 synthase-1 in breast cancer: a potential target for therapy. J Pathol 2006; 208:356-63. [PMID: 16353170 DOI: 10.1002/path.1907] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The anti-tumour actions of cyclooxygenases (COX) are thought to be mediated by inhibition of prostaglandin E(2) (PGE(2)) synthesis. However, COX-2 inhibition also alters cellular production of other prostaglandins such as prostacyclin (PGI(2)). The latter action is believed to be important for the development of adverse cardio-vascular events. Microsomal PGES (mPGES-1) is an enzyme downstream to COX-2 and affects PGE(2) production only. It is possible that targeting mPGES-1 could decrease PGE(2) production without affecting PGI(2) production. In order to assess the potential of mPGES-1 as a target for therapy, we analysed its expression in breast cell lines and normal and malignant breast tissues. The expression of mPGES-1 and COX-2 was correlated in tumour cells and vascular endothelium, and with prognostic parameters in breast cancer. Although not detectable in normal epithelial cells, expression was noted in areas of fibrocystic change and in situ carcinoma. mPGES-1 expression was noted in 79% of breast cancer tissues. Its expression did not correlate with COX-2 overexpression or with prognostic markers of breast cancer. Endothelial cells did not show mPGES-1 expression. Upregulation of mPGES-1 is therefore frequent in pre-malignant and malignant breast disease. In this study, coordinate over-expression of COX-2 and mPGES-1 was not observed, particularly in the endothelial cells of blood vessels. Targeting mPGES-1 might prove to be an alternative therapeutic strategy to inhibit PGE2 production.
Collapse
Affiliation(s)
- Sanjana Mehrotra
- Department of Pathology, Indiana University, Indianapolis, Indiana 46202, USA
| | | | | | | | | |
Collapse
|
163
|
Nakamura Y, Nakamura K, Matsumura K, Kobayashi S, Kaneko T, Morrison SF. Direct pyrogenic input from prostaglandin EP3 receptor-expressing preoptic neurons to the dorsomedial hypothalamus. Eur J Neurosci 2006; 22:3137-46. [PMID: 16367780 PMCID: PMC2441892 DOI: 10.1111/j.1460-9568.2005.04515.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fever is induced by a neuronal mechanism in the brain. Prostaglandin (PG) E2 acts as a pyrogenic mediator in the preoptic area (POA) probably through the EP3 subtype of PGE receptor expressed on GABAergic neurons, and this PGE2 action triggers neuronal pathways for sympathetic thermogenesis in peripheral effector organs including brown adipose tissue (BAT). To explore pyrogenic efferent pathways from the POA, we determined projection targets of EP3 receptor-expressing POA neurons with a special focus on rat hypothalamic regions including the dorsomedial hypothalamic nucleus (DMH), which is known as a center for autonomic responses to stress. Among injections of cholera toxin b-subunit (CTb), a retrograde tracer, into hypothalamic regions at the rostrocaudal level of the DMH, injections into the DMH, lateral hypothalamic area (LH) and dorsal hypothalamic area (DH) resulted in EP3 receptor immunolabelling in substantial populations of CTb-labeled neurons in the POA. Bilateral microinjections of muscimol, a GABA(A) receptor agonist, into the DMH and a ventral region of the DH, but not those into the LH, inhibited thermogenic (BAT sympathetic nerve activity, BAT temperature, core body temperature and expired CO2) and cardiovascular (arterial pressure and heart rate) responses to an intra-POA PGE2 microinjection. Further immunohistochemical observations revealed a close association of POA-derived GABAergic axon swellings with DMH neurons projecting to the medullary raphe regions where sympathetic premotor neurons for febrile and thermoregulatory responses are localized. These results suggest that a direct projection of EP3 receptor-expressing POA neurons to the DMH/DH region mediates febrile responses via a GABAergic mechanism.
Collapse
Affiliation(s)
- Yoshiko Nakamura
- Neurological Sciences Institute, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| | | | | | | | | | | |
Collapse
|
164
|
Fabricio ASC, Tringali G, Pozzoli G, Melo MC, Vercesi JA, Souza GEP, Navarra P. Interleukin-1 mediates endothelin-1-induced fever and prostaglandin production in the preoptic area of rats. Am J Physiol Regul Integr Comp Physiol 2006; 290:R1515-23. [PMID: 16455768 DOI: 10.1152/ajpregu.00604.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The intracerebroventricular injection of endothelin-1 (ET-1) induces fever and increases PG levels in the cerebrospinal fluid of rats. Likewise, the injection of IL-1 into the preoptic area (POA) of the rat hypothalamus causes both fever and increased PG production. In this study, we conducted in vivo and in vitro experiments in the rat to investigate 1) the hypothalamic region involved in ET-1-induced fever and PG biosynthesis and 2) whether hypothalamic IL-1 plays a role as a mediator of the above ET-1 activities. One hundred femtomoles of ET-1 increased body temperature when injected in the POA of conscious Wistar rats; this effect was significantly counteracted by the coinjection of 600 pmol IL-1 receptor antagonist (IL-1ra). In experiments on rat hypothalamic explants, 100 nM ET-1 caused a significant increase in PGE2 production and release from the whole hypothalamus and from the isolated POA, but not from the retrochiasmatic region, in 1-h incubations. Six nanomoles of IL-1ra or 10 nM of a cell-permeable interleukin-1 converting enzyme inhibitor completely counteracted the effect of ET-1 on PGE2 release from the POA. One hundred nanomoles ET-1 also caused a significant increase in IL-1beta immunoreactivity released into the bath solution of hypothalamic explants after 1 h of incubation, although during such time ET-1 failed to modify the gene expression of IL-1beta and other pyrogenic cytokines within the hypothalamus. In conclusion, our results show that ET-1 increases IL-1 production in the POA, and this effect appears to be correlated to ET-1-induced fever in vivo, as well as to PG production in vitro.
Collapse
Affiliation(s)
- Aline S C Fabricio
- Institute of Pharmacology, Catholic University Medical School, Largo F. Vito 1 - 00168 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
165
|
Steiner AA, Chakravarty S, Rudaya AY, Herkenham M, Romanovsky AA. Bacterial lipopolysaccharide fever is initiated via Toll-like receptor 4 on hematopoietic cells. Blood 2006; 107:4000-2. [PMID: 16403908 PMCID: PMC1895291 DOI: 10.1182/blood-2005-11-4743] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipopolysaccharide (LPS), a well-known bacterial pyrogen, is recognized by several receptors, including the Toll-like receptor 4 (TLR4), on various cells. Which of these receptors and cells are linked to fever production is unknown. By constructing 4 mouse chimeras and studying their thermoregulatory responses, we found that all 3 phases of the typical LPS fever depend on TLR4 signaling. The first phase is triggered via the TLR4 on hematopoietic cells. The second and third phases involve TLR4 signaling in both hematopoietic and nonhematopoietic cells.
Collapse
Affiliation(s)
- Alexandre A Steiner
- Systemic Inflammation Laboratory, Trauma Research, St Joseph's Hospital and Medical Center, 350 W Thomas Road, Phoenix, AZ 85013, USA
| | | | | | | | | |
Collapse
|
166
|
Waclawik A, Rivero-Muller A, Blitek A, Kaczmarek MM, Brokken LJS, Watanabe K, Rahman NA, Ziecik AJ. Molecular cloning and spatiotemporal expression of prostaglandin F synthase and microsomal prostaglandin E synthase-1 in porcine endometrium. Endocrinology 2006; 147:210-21. [PMID: 16223862 DOI: 10.1210/en.2005-0880] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Endometrial prostaglandins (PGs) and the PGE2/PGF2alpha ratio play an important role in regulating the estrous cycle and establishment of pregnancy. The enzymes downstream of cyclooxygenase-2 may determine the PGE2/PGF2alpha ratio in the porcine uterus. Thus, we have cloned porcine PGF synthase (PGFS) and microsomal PGE synthase-1 (mPGES-1) and characterized their expression in porcine endometrium during the estrous cycle and early pregnancy. PGFS and mPGES-1 amino acid sequences possessed a high degree (>67% and >77%, respectively) of identity with the other mammalian homologs. There was little modulation of mPGES-1 throughout the estrous cycle; however, PGFS expression was highly up-regulated in endometrium around the time of luteolysis. During early pregnancy, PGFS at the protein level showed a time-dependent increase (low on d 10-13, intermediate on d 14-23, and high on d 24-25). In pregnancy, expression of mPGES-1 was intermediate on d 10-11 and low on d 14-17 and then increased after d 22, reaching the maximum on d 24-25. Immunohistochemistry showed localization of PGFS and mPGES-1 proteins mainly in luminal and glandular epithelium. Concluding, the spatiotemporal expression of PGFS throughout the estrous cycle indicates an involvement of PGFS in regulating luteolysis in the pig. The comparison of endometrial PGFS and mPGES-1 expression on d 10-13 of the estrous cycle and pregnancy suggest a supportive role of these enzymes in determining the increase of uterine PGE2/PGF2alpha ratio during maternal recognition of pregnancy. Moreover, high expression of both PG synthases after initiation of implantation may indicate their significant role in placentation.
Collapse
Affiliation(s)
- Agnieszka Waclawik
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10-747 Olsztyn, Poland
| | | | | | | | | | | | | | | |
Collapse
|
167
|
Ueno N, Takegoshi Y, Kamei D, Kudo I, Murakami M. Coupling between cyclooxygenases and terminal prostanoid synthases. Biochem Biophys Res Commun 2005; 338:70-6. [PMID: 16140261 DOI: 10.1016/j.bbrc.2005.08.152] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 08/18/2005] [Accepted: 08/20/2005] [Indexed: 11/22/2022]
Abstract
Biosynthesis of prostanoids is regulated by three sequential enzymatic steps, namely phospholipase A2, cyclooxygenase (COX), and terminal prostanoid synthase. Recent evidence suggests that lineage-specific terminal prostanoid synthases, including prostaglandin (PG) E2, PGD2, PGF2alpha, PGI2, and thromboxane synthases, show distinct functional coupling with upstream COX isozymes, COX-1 and COX-2. This can account, at least in part, for segregated utilization of the two COX isozymes in distinct phases of PG-biosynthetic responses. In terms of their localization and COX preference, terminal prostanoid synthases are classified into three categories: (i) the perinuclear enzymes that prefer COX-2, (ii) the cytosolic enzyme that prefers COX-1, and (iii) the translocating enzyme that utilizes both COXs depending on the stimulus. Additionally, altered supply of arachidonic acid by phospholipase A2s significantly affects the efficiency of COX-terminal prostanoid synthase coupling. In this review, we summarize our recent understanding of the coupling profiles between the two COXs and various terminal prostanoid synthases.
Collapse
Affiliation(s)
- Noriko Ueno
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | | | | | | |
Collapse
|
168
|
DiMicco JA, Zaretsky DV. The mysterious role of prostaglandin E2 in the medullary raphé: a hot topic or not? Am J Physiol Regul Integr Comp Physiol 2005; 289:R1589-91. [PMID: 16278341 DOI: 10.1152/ajpregu.00628.2005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
169
|
Wu Z, Zhang J, Nakanishi H. Leptomeningeal cells activate microglia and astrocytes to induce IL-10 production by releasing pro-inflammatory cytokines during systemic inflammation. J Neuroimmunol 2005; 167:90-8. [PMID: 16095726 DOI: 10.1016/j.jneuroim.2005.06.025] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Accepted: 06/20/2005] [Indexed: 11/29/2022]
Abstract
The leptomeninges covering the surface of the brain parenchyma play the physical role at the cerebrospinal fluid-blood barrier. We report here that leptomeningeal cells may transduce peripheral proinflammatory signals to the central anti-inflammatory response through the activation of glial cells in the brain parenchyma. After adjuvant injection, both microglia and astrocytes in the cerebral cortex localized in the proximity of the leptomeninges were activated. The protein levels of tumor necrosis factor-alpha (TNF-alpha) and interleukin-10 (IL-10) in the cortical extracts were significantly increased at different time after adjuvant injection. The TNF-alpha immunoreactivity was most prominent in the leptomeninges covering astrocytes. On the other hand, the IL-10 immunoreactivity was observed in both activated microglia and astrocytes localized along the leptomeninges. Cultured leptomeningeal cells covering the cerebral cortex released TNF-alpha which was significantly increased by lipopolysaccharide (LPS). Upon stimulation with LPS, cultured leptomeningeal cells also secreted interleukin-1beta and interleukin-6 with differential time-courses. When primary cultured rat astrocytes and microglia were treated with the conditioned medium of LPS-activated cultured leptomeningeal cells, the immunoreactivity of IL-10 was markedly increased. These observations strongly suggest that leptomeningeal cells release pro-inflammatory cytokines to activate both microglia and astrocytes during systemic inflammation. The activated astrocytes and microglia may in turn regulate anti-inflammatory response in the brain by providing IL-10.
Collapse
Affiliation(s)
- Zhou Wu
- Laboratory of Oral Aging Science, Faculty of Dental Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
170
|
Blais V, Turrin NP, Rivest S. Cyclooxygenase 2 (COX-2) inhibition increases the inflammatory response in the brain during systemic immune stimuli. J Neurochem 2005; 95:1563-74. [PMID: 16277613 DOI: 10.1111/j.1471-4159.2005.03480.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) and inhibitors of the cyclooxygenase (COX) pathways are currently recommended for the prevention and treatment of several inflammatory diseases, including neurodegenerative disorders. However non-selective blockade of COX was found to have pro-inflammatory properties, because they have the ability to alter the plasma glucocorticoid levels that play a critical role in the control of the innate immune response. The present study investigated the role of non-selective (ketorolac or indomethacin) or specific inhibitors of COX-1 (SC-560) and COX-2 (NS-398) in these effects. Mice challenged systemically with the endotoxin lipopolysaccharide (LPS) exhibited a robust hybridization signal for numerous inflammatory genes in vascular-associated cells of the brain and microglia across the cerebral tissue. Ketorolac, indomethacin and NS-398 significantly increased the ability of LPS to trigger such an innate immune response at time 3 h post challenge, whereas SC-560 failed to change gene expression in the brain of animals treated with the endotoxin. These data together with the crucial role of COX-2-derived prostaglandin E2 (PGE2) in the increase of glucocorticoids during systemic immune stimuli provide evidence that inhibition of this pathway results in an exacerbated early innate immune reaction. This may have a major impact on the use of these drugs in diseases where inflammation is believed to be a contributing and detrimental factor.
Collapse
Affiliation(s)
- Véronique Blais
- Laboratory of Molecular Endocrinology, CHUL Research Center and Department of Anatomy and Physiology, Laval University, Québec, Canada
| | | | | |
Collapse
|
171
|
Matsuoka Y, Furuyashiki T, Yamada K, Nagai T, Bito H, Tanaka Y, Kitaoka S, Ushikubi F, Nabeshima T, Narumiya S. Prostaglandin E receptor EP1 controls impulsive behavior under stress. Proc Natl Acad Sci U S A 2005; 102:16066-71. [PMID: 16247016 PMCID: PMC1276058 DOI: 10.1073/pnas.0504908102] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Animals under stress take adaptive actions that may lead to various types of behavioral disinhibition. Such behavioral disinhibition, when expressed excessively and impulsively, can result in harm in individuals and cause a problem in our society. We now show that, under social or environmental stress, mice deficient in prostaglandin E receptor subtype EP1 (Ptger1(-/-)) manifest behavioral disinhibition, including impulsive aggression with defective social interaction, impaired cliff avoidance, and an exaggerated acoustic startle response. This phenotype was reproduced in wild-type mice by administration of an EP1-selective antagonist, whereas administration of an EP1-selective agonist suppressed electric-shock-induced impulsive aggression. Dopamine turnover in the frontal cortex and striatum was increased in Ptger1(-/-) mice, and administration of dopaminergic antagonists corrected their behavioral phenotype. These results suggest that prostaglandin E(2) acts through EP1 to control impulsive behavior under stress, a finding potentially exploitable for development of drugs that attenuate impulsive behavior in humans.
Collapse
Affiliation(s)
- Yoko Matsuoka
- Department of Pharmacology, Kyoto University Faculty of Medicine, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Gudis K, Sakamoto C. The role of cyclooxygenase in gastric mucosal protection. Dig Dis Sci 2005; 50 Suppl 1:S16-23. [PMID: 16184416 DOI: 10.1007/s10620-005-2802-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 06/06/2005] [Indexed: 12/09/2022]
Abstract
COX-1 and COX-2 are two cyclooxygenase enzymes responsible for prostanoid production. COX-2 is expressed in inflammatory cells and fibroblasts of the gastric mucosa, and through the production of various growth factors including hepatocyte growth factor (HGF) and vascular endothelial growth factor (VEGF), plays a key role in the tissue repair process. Aspirin induces and acetylates COX-2 to produce 15-(R)-epi-lipoxinA4, an anti-inflammatory mediator thought to protect the gastric mucosa against aspirin-induced injury. Recently, three different PGE synthases have been identified, that convert COX-2 metabolites into PGE2. mPGE synthase (mPGES)-1 has been shown to be inducible, and to colocalize with COX-2 in fibroblasts and macrophages infiltrating the gastric ulcer bed. cPGES and mPGES-2 have been found expressed in normal gastric mucosa, with no change in expression levels seen in gastritis or gastric ulcer tissue. Finally, this review discusses the role of these enzymes in the pathophysiology of the gastric mucosa, as well as the biologcal significance of their inhibition.
Collapse
Affiliation(s)
- Katya Gudis
- Third Department of Internal Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | | |
Collapse
|
173
|
Jang TJ, Cho MY. Cyclooxygenase-2 expression and cell proliferation are increased in MUC2-positive area of columnar-lined esophagus. Pathol Int 2005; 55:546-9. [PMID: 16143029 DOI: 10.1111/j.1440-1827.2005.01867.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Columnar-lined esophagus is composed of intestinal type and gastric type epithelium. Only the specialized or intestinal type columnar epithelium is susceptible to the development of esophageal adenocarcinoma. The aim of the present paper was to evaluate the expression of cyclooxygenase (COX) and microsomal prostaglandin E synthase (mPGES) in gastric-type and intestinal-type metaplasia in columnar-lined esophagus and compare these with cell proliferation. Biopsy specimens of 30 columnar-lined esophagus patients were collected, and immunohistochemistry was performed for secretory mucins (MUC2, MUC5AC), COX, mPGES and cell proliferation (Ki-67). The MUC2-positive area had higher COX-2 expression and cell proliferation than the MUC5AC-positive area. There was a close correlation between COX-2 expression and cell proliferation. In contrast, the expression of COX-1, mPGES-1 and -2 was similar between intestinal metaplasia and gastric metaplasia. In conclusion, intestinal-type columnar-lined esophagus possesses COX-2 expression and a higher proliferation potential, suggesting that esophageal adenocarcinoma may arise from specialized columnar-lined esophagus.
Collapse
Affiliation(s)
- Tae Jung Jang
- Department of Pathology, Dongguk University College of Medicine, Kyongbuk, Korea.
| | | |
Collapse
|
174
|
Abstract
Prostaglandin E synthase (PGES) is a recently identified terminal enzyme that acts downstream of cyclooxygenase and catalyzes the conversion of prostaglandin (PG) H2 to PGE2. At least three isozymes have been cloned so far, which are called membrane-associated PGES (mPGES)-1, mPGES-2, and cytosolic PGES. Among them, mPGES-1 is induced by various inflammatory stimuli in some cells and tissues. Induction of mPGES-1 in the component of articular tissues of patients with rheumatoid arthritis and osteoarthritis has been demonstrated in vitro. Recent studies using adjuvant induced arthritis model have shown the increase of mPGES-1 expression resulted in the increase of PGE2 production at the sites of inflammation. In addition, reports of mPGES-1-deficient mice clearly suggest the role of mPGES-1 in the process of chronic inflammation such as collagen-induced arthritis and collagen antibody induced arthritis in vivo. Thus, recent in vitro and in vivo findings suggest that mPGES-1 may be a novel therapeutic target for arthritis. This paper introduces recent advances in research about the role of PGES in the pathophysiology of arthritis.
Collapse
Affiliation(s)
- Fumiaki Kojima
- Institute of Medical Science, St Marianna University School of Medicine, Kawasaki 216-8512, Japan
| | | | | |
Collapse
|
175
|
Massé F, Guiral S, Fortin LJ, Cauchon E, Ethier D, Guay J, Brideau C. An automated multistep high-throughput screening assay for the identification of lead inhibitors of the inducible enzyme mPGES-1. ACTA ACUST UNITED AC 2005; 10:599-605. [PMID: 16103419 DOI: 10.1177/1087057105276083] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Prostaglandin E2 synthase (mPGES-1), the enzyme which catalyzes the synthesis of PGE2, is induced during the inflammatory response. For this reason, mPGES-1 could be a potential therapeutic target. A high-throughput screening assay was developed to identify potential inhibitors of mPGES-1. The assay consisted of a 30-s mPGES-1 enzymatic reaction followed by the detection of PGE2 by enzyme immunoassay (EIA). The enzymatic reaction was performed in a batch mode because the instability of the substrate (10 min) limited the number of plates assayed within a working day. The detection of the product by EIA was performed on 3 instruments requiring 14 different steps for complete automation. The authors describe here the optimization and implementation of a 2-part assay on a Thermo CRS robotic system. More than 315,000 compounds were tested, and a hit rate of 0.84% was obtained for this assay. Although the entire assay required multiple steps, the assay was successfully miniaturized and automated for a high-throughput screening campaign.
Collapse
Affiliation(s)
- Frédéric Massé
- Department of Biochemistry and Molecular Biology, Merck Frosst Centre for Therapeutic Research, Kirkland, Québec, Canada.
| | | | | | | | | | | | | |
Collapse
|
176
|
Ikeda-Matsuo Y, Ikegaya Y, Matsuki N, Uematsu S, Akira S, Sasaki Y. Microglia-specific expression of microsomal prostaglandin E2 synthase-1 contributes to lipopolysaccharide-induced prostaglandin E2 production. J Neurochem 2005; 94:1546-58. [PMID: 16000148 DOI: 10.1111/j.1471-4159.2005.03302.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microsomal prostaglandin E2 synthase (mPGES)-1 is an inducible protein recently shown to be an important enzyme in inflammatory prostaglandin E2 (PGE2) production in some peripheral inflammatory lesions. However, in inflammatory sites in the brain, the induction of mPGES-1 is poorly understood. In this study, we demonstrated the expression of mPGES-1 in the brain parenchyma in a lipopolysaccharide (LPS)-induced inflammation model. A local injection of LPS into the rat substantia nigra led to the induction of mPGES-1 in activated microglia. In neuron-glial mixed cultures, mPGES-1 was co-induced with cyclooxygenase-2 (COX-2) specifically in microglia, but not in astrocytes, oligodendrocytes or neurons. In microglia-enriched cultures, the induction of mPGES-1, the activity of PGES and the production of PGE2 were preceded by the induction of mPGES-1 mRNA and almost completely inhibited by the synthetic glucocorticoid dexamethasone. The induction of mPGES-1 and production of PGE2 were also either attenuated or absent in microglia treated with mPGES-1 antisense oligonucleotide or microglia from mPGES-1 knockout (KO) mice, respectively, suggesting the necessity of mPGES-1 for microglial PGE2 production. These results suggest that the activation of microglia contributes to PGE2 production through the concerted de novo synthesis of mPGES-1 and COX-2 at sites of inflammation of the brain parenchyma.
Collapse
Affiliation(s)
- Yuri Ikeda-Matsuo
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
177
|
Alvarez Y, Briones AM, Balfagón G, Alonso MJ, Salaices M. Hypertension increases the participation of vasoconstrictor prostanoids from cyclooxygenase-2 in phenylephrine responses. J Hypertens 2005; 23:767-77. [PMID: 15775781 DOI: 10.1097/01.hjh.0000163145.12707.63] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The present study was designed to analyse whether hypertension alters the involvement of cyclooxygenase-2-derived mediators in phenylephrine-induced vasoconstrictor responses. METHODS Vascular reactivity experiments were performed in aortic segments from normotensive, Wistar-Kyoto, and spontaneously hypertensive rats (SHR); protein expression was measured by western blot and/or immunohistochemistry, and prostaglandin F2alpha (PGF2alpha), 8-isoprostane and prostacyclin release were determined by enzyme immunoassay commercial kits. RESULTS The protein synthesis inhibitor dexamethasone (1 micromol/l), the non-selective cyclooxygenase inhibitor indomethacin (10 micromol/l), the selective cyclooxygenase-2 inhibitor NS 398 (1 micromol/l), and the thromboxane A2/prostaglandin H2 (TP) receptor antagonist SQ 29,548 (1 micromol/l), reduced the concentration-response curves to phenylephrine more in segments from hypertensive than from normotensive rats; however, the thromboxane A2 (TxA2) synthase inhibitors furegrelate (10 micromol/l) and OKY 046 (1 and 10 micromol/l) had no effect in either strain. Removing endothelium or adding dexamethasone almost abolished the NS 398 effect. Cyclooxygenase-2 protein expression, which was reduced by dexamethasone, was higher in aorta from hypertensive animals. In both strains cyclooxygenase-2 was localized mainly in endothelial cells and adventitial fibroblasts. 13,14-Dihydro-15-keto-PGF2alpha, 6-keto-PGF1alpha and 8-isoprostane levels were greater in the medium from hypertensive than from normotensive rats; NS 398 decreased levels of the three metabolites studied only in the medium from SHR. CONCLUSIONS PGF2alpha and 8-isoprostane seem to be involved in the response to phenylephrine in rat aorta; this involvement is greater in hypertensive rats, probably due to a higher endothelial induction of cyclooxygenase-2.
Collapse
Affiliation(s)
- Yolanda Alvarez
- Departamento de Farmacología y Terapéutica bDepartamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | | | | | | | | |
Collapse
|
178
|
Moore AH, Olschowka JA, Williams JP, Okunieff P, O'Banion MK. Regulation of prostaglandin E2 synthesis after brain irradiation. Int J Radiat Oncol Biol Phys 2005; 62:267-72. [PMID: 15850932 DOI: 10.1016/j.ijrobp.2005.01.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Accepted: 01/25/2005] [Indexed: 10/25/2022]
Abstract
PURPOSE A local tissue reaction, termed neuroinflammation, occurs after irradiation of brain tissue. Previous work suggested that cyclooxygenase (COX)-2 activity was important for changes in gene expression associated with neuroinflammation as well as increased prostaglandin E2 (PGE2) levels seen after radiation treatment. METHODS AND MATERIALS To begin to determine the contributions of other enzymes involved in PGE2 production, we examined protein levels of COX-1 and COX-2 as well as 2 PGE synthases (membrane and cytosolic PGES) 4 h after 35 Gy single dose irradiation to the brains of C3HeN mice. We also evaluated the effects of specific COX inhibitors on PGE2 production and PGES expression. RESULTS As expected, COX-2 expression increased after radiation exposure. Brain irradiation also increased tissue protein levels for both PGES isoforms. Specific COX-2 inhibition with NS398 lowered brain PGE2 levels by about 60%. Surprisingly, COX-1 inhibition with SC560 completely prevented the elevation of PGE2 seen after irradiation. Interestingly, NS398 reduced the membrane-associated PGES isoform, whereas SC560 treatment lowered cytosolic isoform levels below those seen in unirradiated controls. CONCLUSIONS Taken together, these data indicate that both cyclooxygenases contribute to PGE2 production in irradiated brain and reveal dependence of PGES isoforms expression on specific cyclooxygenase activities.
Collapse
Affiliation(s)
- Amy H Moore
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
179
|
Romanovsky AA. Vioxx, Celebrex, Bextra....Do we have a new target for anti-inflammatory and antipyretic therapy? Am J Physiol Regul Integr Comp Physiol 2005; 288:R1098-9. [PMID: 15821282 DOI: 10.1152/ajpregu.00106.2005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
180
|
Wood CE. Estrogen/hypothalamus-pituitary-adrenal axis interactions in the fetus: The interplay between placenta and fetal brain. ACTA ACUST UNITED AC 2005; 12:67-76. [PMID: 15695100 DOI: 10.1016/j.jsgi.2004.10.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The hormonal interactions between the placenta and the fetal hypothalamus-pituitary-adrenal (HPA) axis are reviewed. METHODS This review addresses data obtained from the chronically catheterized fetal sheep, drawing relevant comparisons to human fetuses. RESULTS In the sheep, and perhaps in primate species, parturition is initiated by an increase in the activity of the HPA axis. The endogenous mechanisms underlying the increase in activity of the fetal HPA axis are incompletely understood but might involve an interplay between placenta and fetal hypothalamus and pituitary. Various hypotheses have been proposed, involving placental secretion of prostaglandins and various components of the fetal HPA axis. In the sheep, the influence of estradiol appears to be potent, and various experiments have suggested the possibility that, in late gestation, there exists a positive feedback relationship between placental estrogen secretion and pituitary adrenocorticotropin (ACTH) secretion. Estradiol circulates in concentrations known to stimulate fetal ACTH secretion. Additionally, estradiol circulates in the form of estradiol-3-sulfate, a molecular form that is taken up by the fetal brain and deconjugated by steroid sulfatase, which is expressed in the fetal brain. Recent evidence suggests that the interaction between estradiol and ACTH might involve production of paracrine or autocrine substances in the fetal brain. One candidate mediator is prostaglandin E2 (PGE2), highlighted by the action of estradiol on the expression of prostaglandin endoperoxide synthase-2 (PGHS-2 or COX-2) in brain regions known to be important for controlling HPA activity. CONCLUSION Estradiol, secreted by the placenta in increasing amounts in late gestation, is a potent stimulator of fetal ACTH secretion. The interactions between estradiol and the fetal HPA axis might function as a positive feedback loop that increases the concentrations of both hormones before birth.
Collapse
Affiliation(s)
- Charles E Wood
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida 32610-0274, USA.
| |
Collapse
|
181
|
Fabricio ASC, Veiga FH, Cristofoletti R, Navarra P, Souza GEP. The effects of selective and nonselective cyclooxygenase inhibitors on endothelin-1-induced fever in rats. Am J Physiol Regul Integr Comp Physiol 2005; 288:R671-7. [PMID: 15539607 DOI: 10.1152/ajpregu.00532.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It was previously shown that sustained fever can be induced in rats by central injection of endothelin-1 (ET-1). This peptide appears to participate in the mechanism(s) of LPS-induced fever, which is reduced by pretreatments with ETB receptor antagonists. In this study, we compared the effects of a nonselective cyclooxygenase (COX) inhibitor, indomethacin, with those of two selective COX-2 inhibitors, celecoxib and lumiracoxib, on ET-1-induced fever in rats. Fever induced in conscious animals by ET-1 (1 pmol icv) or LPS (5 μg/kg iv) was prevented by pretreatments with celecoxib (5 and 10 mg/kg) or lumiracoxib (5 mg/kg) given by oral gavage 1 h before stimuli. Lower doses of celecoxib had partial (2.5 mg/kg) or no effect (1 mg/kg). Indomethacin (2 mg/kg ip) partially inhibited fever induced by LPS but had no effect on ET-1-induced fever. The levels of PGE2 and PGF2α in the cerebrospinal fluid (CSF) of pentobarbital sodium-anesthetized rats were significantly increased 3 h after the injection of LPS or ET-1. The latter increase was abolished by celecoxib at all tested doses and by indomethacin. In conclusion, selective COX-2 inhibitors were able to prevent ET-1-induced fever, indicating a role for COX-2 in this phenomenon. However, the fact that reduced CSF PG levels obtained with indomethacin and a low dose of celecoxib are not accompanied by changes in fever induced by ET-1, along with the lack of inhibitory effects of indomethacin on ET-1 fever, suggests that the latter might also involve COX-2-independent mechanisms.
Collapse
Affiliation(s)
- Aline S C Fabricio
- Institute of Pharmacology, Catholic University Medical School, Largo Francesco Vito 1, 00168 Rome, Italy.
| | | | | | | | | |
Collapse
|
182
|
Sapirstein A, Saito H, Texel SJ, Samad TA, O'Leary E, Bonventre JV. Cytosolic phospholipase A2alpha regulates induction of brain cyclooxygenase-2 in a mouse model of inflammation. Am J Physiol Regul Integr Comp Physiol 2005; 288:R1774-82. [PMID: 15718387 DOI: 10.1152/ajpregu.00815.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The products of arachidonic acid metabolism are key mediators of inflammatory responses in the central nervous system, and yet we do not know the mechanisms of their regulation. The phospholipase A(2) enzymes are sources of cellular arachidonic acid, and the enzymes cyclooxygenase-2 (COX-2) and microsomal PGE synthase-1 (mPGES-1) are essential for the synthesis of inflammatory PGE(2) in the brain. These studies seek to determine the function of cytosolic phospholipase A(2)alpha (cPLA(2)alpha) in inflammatory PGE(2) production in the brain. We wondered whether cPLA(2)alpha functions in inflammation to produce arachidonic acid or to modulate levels of COX-2 or mPGES-1. We investigated these questions in the brains of wild-type mice and mice deficient in cPLA(2)alpha (cPLA(2)alpha(-/-)) after systemic administration of LPS. cPLA(2)alpha(-/-) mice had significantly less brain COX-2 mRNA and protein expression in response to LPS than wild-type mice. The reduction in COX-2 was most apparent in the cells of the cerebral blood vessels and the leptomeninges. The brain PGE(2) concentration of untreated cPLA(2)alpha(-/-) mice was equal to their wild-type littermates. After LPS treatment, however, the brain concentration of PGE(2) was significantly less in cPLA(2)alpha(-/-) than in cPLA(2)alpha(+/+) mice (24.4 +/- 3.8 vs. 49.3 +/- 11.6 ng/g). In contrast to COX-2, mPGES-1 RNA levels increased equally in both mouse genotypes, and mPGES-1 protein was unaltered 6 h after LPS. We conclude that cPLA(2)alpha regulates COX-2 levels and modulates inflammatory PGE(2) levels. These results indicate that cPLA(2)alpha inhibition is a novel anti-inflammatory strategy that modulates, but does not completely prevent, eicosanoid responses.
Collapse
Affiliation(s)
- Adam Sapirstein
- Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, 600 N. Wolfe St./Meyer 297-A, Baltimore, MD 21287-7294, USA.
| | | | | | | | | | | |
Collapse
|
183
|
Gudis K, Tatsuguchi A, Wada K, Futagami S, Nagata K, Hiratsuka T, Shinji Y, Miyake K, Tsukui T, Fukuda Y, Sakamoto C. Microsomal prostaglandin E synthase (mPGES)-1, mPGES-2 and cytosolic PGES expression in human gastritis and gastric ulcer tissue. J Transl Med 2005; 85:225-36. [PMID: 15531909 DOI: 10.1038/labinvest.3700200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Recently, three different prostaglandin E2 synthases have been identified: microsomal prostaglandin E synthase (mPGES)-1, cytosolic PGES (cPGES), and mPGES-2; however, their role and connection to cyclooxygenase (COX)-2 in the gastric ulcer repair process remain unknown. Therefore, we examined mPGES-1, cPGES, and mPGES-2 expression and localization in the stomach in vitro and in vivo. Tissues were obtained from Helicobacter pylori (H. pylori)-infected patients and consisted of surgical resections of gastric ulcers, or biopsies of gastric ulcers or gastritis. mPGES-1 mRNA and protein expression levels were examined by real-time polymerase chain reaction (PCR) and Western blot analysis, respectively. mPGES-1, cPGES, and mPGES-2 localization were analyzed immunohistochemically. Induction of PGES expression in response to interleukin (IL)-1beta was examined in vitro in the cultured human gastric fibroblast line Hs262.St. Real-time PCR analysis of mPGES-1 mRNA expression in biopsy samples showed significantly higher expression levels in open than in closed gastric ulcer tissue. Western blot analysis showed mPGES-1 protein expression limited to open ulcer tissue, while mPGES-2 and cPGES immunoreactivities were seen in both open and closed ulcer tissue. Immunohistochemical analysis showed strong mPGES-1 expression in fibroblasts and macrophages of the ulcer bed, paralleling COX-2 expression. cPGES and mPGES-2 expression levels were seen in both fibroblasts of the ulcer bed and in epithelial cells. Furthermore, stronger cPGES and mPGES-2 immunoreactivities were seen in scattered mast cell-like cells and neuroendocrine-like cells, respectively. Induction of mPGES-1 expression in response to IL-1beta was seen in cultured gastric fibroblasts in vitro, and double immunostaining showed mPGES-1 coexpression with COX-2 in fibroblasts of the ulcer bed in vivo. In conclusion, mPGES-1, cPGES, and mPGES-2 are all expressed in gastric ulcer tissue, but only mPGES-1 parallels COX-2 expression in mesenchymal and inflammatory cells of the ulcer bed, suggesting a key role for this enzyme in the ulcer repair process.
Collapse
Affiliation(s)
- Katya Gudis
- Third Department of Internal Medicine, Nippon Medical School, Sendagi, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Shinji Y, Tsukui T, Tatsuguchi A, Shinoki K, Kusunoki M, Suzuki K, Hiratsuka T, Wada K, Futagami S, Miyake K, Gudis K, Sakamoto C. Induced microsomal PGE synthase-1 is involved in cyclooxygenase-2-dependent PGE2 production in gastric fibroblasts. Am J Physiol Gastrointest Liver Physiol 2005; 288:G308-15. [PMID: 15458923 DOI: 10.1152/ajpgi.00313.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have previously shown that the cyclooxygenase (COX)-2/PGE2 pathway plays a key role in VEGF production in gastric fibroblasts. Recent studies have identified three PGE synthase (PGES) isozymes: cytosolic PGES (cPGES) and microsomal PGES (mPGES)-1 and -2, but little is known regarding the expression and roles of these enzymes in gastric fibroblasts. Thus we examined IL-1beta-stimulated mPGES-1 and cPGES mRNA and protein expression in gastric fibroblasts by quantitative PCR and Western blot analysis, respectively, and studied both their relationship to COX-1 and -2 and their roles in PGE2 and VEGF production in vitro. IL-1beta stimulated increases in both COX-2 and mPGES-1 mRNA and protein expression levels. However, COX-2 mRNA and protein expression were more rapidly induced than mPGES-1 mRNA and protein expression. Furthermore, MK-886, a nonselective mPGES-1 inhibitor, failed to inhibit IL-1beta-induced PGE2 release at the 8-h time point, while totally inhibiting PGE2 at the later stage. However, MK-886 did inhibit IL-1beta-stimulated PGES activity in vitro by 86.8%. N-(2-cyclohexyloxy-4-nitrophenyl)-methanesulfonamide (NS-398), a selective COX-2 inhibitor, totally inhibited PGE2 production at both the 8-h and 24-h time points, suggesting that COX-2-dependent PGE2 generation does not depend on mPGES-1 activity at the early stage. In contrast, NS-398 did not inhibit VEGF production at 8 h, and only partially at 24 h, whereas MK-886 totally inhibited VEGF production at each time point. These results suggest that IL-1beta-induced mPGES-1 protein expression preferentially coupled with COX-2 protein at late stages of PGE2 production and that IL-1beta-stimulated VEGF production was totally dependent on membrane-associated proteins involved in eicosanoid and glutathione metabolism (MAPEG) superfamily proteins, which includes mPGES-1, but was partially dependent on the COX-2/PGE2 pathway.
Collapse
Affiliation(s)
- Yoko Shinji
- Pathophysiological Management, Medical Oncology Third Department of Internal Medicine, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Saha S, Engström L, Mackerlova L, Jakobsson PJ, Blomqvist A. Impaired febrile responses to immune challenge in mice deficient in microsomal prostaglandin E synthase-1. Am J Physiol Regul Integr Comp Physiol 2005; 288:R1100-7. [PMID: 15677520 DOI: 10.1152/ajpregu.00872.2004] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fever is a common, centrally elicited sign of inflammatory and infectious processes and is known to be induced by the action of PGE2 on its specific receptors in the thermogenic region of the hypothalamus. In the present work, using genetically modified mice, we examined the role of the inducible terminal PGE2-synthesizing enzyme microsomal prostaglandin E synthase-1 (mPGES-1) for the generation of immune-elicited fever. Animals with a deletion of the Ptges gene, which encodes mPGES-1, or their wild-type littermates were given either a subcutaneous injection of turpentine--a model for aseptic cytokine-induced pyresis--or an intraperitoneal injection of interleukin-1beta. While both procedures resulted in typical febrile responses in wild-type animals, these responses were strongly impaired in the mPGES-1 mutant mice. In contrast, both genotypes showed psychogenic stress-induced hyperthermia and displayed normal diurnal temperature variations. Both wild-type and mPGES-1 mutant mice also showed strongly reduced motor activity following turpentine injection. Taken together with previous observations on mPGES-1 induction in the brain vasculature during various inflammatory conditions and its role in endotoxin-induced pyresis, the present findings indicate that central PGE2 synthesis by mPGES-1 is a general and critical mechanism for fever during infectious and inflammatory conditions that is distinct from the mechanism(s) underlying the circadian temperature regulation and stress-induced hyperthermia, as well as the inflammation-induced activity depression.
Collapse
Affiliation(s)
- Sipra Saha
- Centre for Structural Biochemistry, Karolinska Institutet, Huddinge, Sweden
| | | | | | | | | |
Collapse
|
186
|
Rummel C, Voss T, Matsumura K, Korte S, Gerstberger R, Roth J, Hübschle T. Nuclear STAT3 translocation in guinea pig and rat brain endothelium during systemic challenge with lipopolysaccharide and interleukin-6. J Comp Neurol 2005; 491:1-14. [PMID: 16127698 DOI: 10.1002/cne.20653] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
During systemic inflammation, cytokines are released by immune-competent cells into the circulation, which in turn signal the brain to mediate brain-controlled signs of illness. Cytokine-responsive brain cells can be mapped by histological analysis of cytokine-induced transcription factors or transcription factor-associated molecules revealing different cell phenotypes that respond to activation of the immune system. Critical sites mediating cytokine-dependent immuneffector functions can be divided into two groups, one group of responding cells situated along a tight blood-brain barrier (BBB), and a second cell group in structures with an open BBB, e.g., the sensory circumventricular organs (CVOs). Previous reports from our group suggest that activation of the signal transducer and activator of transcription factor 3 (STAT3) during lipopolysaccharide (LPS)-induced systemic inflammation is mediated by interleukin-6 (IL-6) and occurs in astrocytes of the rat CVOs. Here we show in the guinea pig a time-dependent marked LPS-induced STAT3 activation within astrocytes and endothelial cells of the CVOs, within astrocytes located in brain structures with a functional BBB and within the brain endothelium of the entire brain. In addition, systemic treatment of rats with either rat recombinant IL-6 or LPS induced STAT3 activation in brain endothelial cells in a similar way as observed in the guinea pig brain, stressing the involvement of IL-6 in this phenomenon in a more generalized way. The STAT3-activated brain cells are located in critical target structures mediating cytokine action during LPS-induced inflammation. STAT3-controlled transcriptional activation with yet unknown cell-specific functional consequences seems to be involved in this process.
Collapse
Affiliation(s)
- Christoph Rummel
- Veterinary-Physiology, Justus-Liebig-University Giessen, D-35392 Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
187
|
Abstract
PURPOSE OF REVIEW Prostaglandin E2 (PGE2) is by far the major prostanoid synthesized in the joint and plays an important role in inflammation and pathogenesis of arthritis. Moreover, increased levels of PGE2 have been detected in serum and synovial fluids from arthritic patients. Little was known about the enzyme(s) involved in the isomerization of PGH2 into PGE2 synthesis until recent identification of PGE synthase (PGES). Several isoforms were characterized, among which microsomal PGES-1 (mPGES-1) has received much attention, because this enzyme is inducible and functionally linked with cyclooxygenase-2. This review focuses on recent findings regarding the regulation of mPGES-1 expression and the possible role of this enzyme in arthritis. RECENT FINDINGS Various in vitro and in vivo studies demonstrated that proinflammatory stimuli, such as interleukin-1beta and tumor necrosis factor-alpha upregulate the expression of mPGES-1 at the protein and mRNA level. Promoter analysis indicates that the transcription factor Egr-1 is involved in the positive regulation of mPGES-1. Studies from mPGES-1-deficient mice and animal models of inflammatory arthritis strongly suggest a role of mPGES-1 in the production of PGE2 and the pathogenesis of arthritis. SUMMARY This article reviews the regulation of mPGES-1 expression and provides evidence for a role of mPGES-1 in inducible PGE2 production and arthritis. Future studies using selective inhibitors of mPGES-1 activity or expression would clarify the role of this enzyme in arthritis.
Collapse
Affiliation(s)
- Hassan Fahmi
- Osteoarthritis Research Unit, Centre Hospitalier de l'Université de Montréal, Hôpital Notre-Dame, Montréal, Québec, Canada.
| |
Collapse
|
188
|
Moussaoui F, Vangroenweghe F, Haddadi K, Le Roux Y, Laurent F, Duchateau L, Burvenich C. Proteolysis in milk during experimental Escherichia coli mastitis. J Dairy Sci 2004; 87:2923-31. [PMID: 15375053 DOI: 10.3168/jds.s0022-0302(04)73423-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This work consisted of the intramammary infections (IMI) of 8 heifers by high doses of Escherichia coli to study both the proteolytic activity in milk and the resulting peptides. Therefore, a milking kinetic has been followed, and several parameters have been studied, such as proteose peptones (PP) fraction (quantitative and qualitative changes), plasmin activity (PA), milk somatic cell count (SCC), and bacterial count. A qualitative study of milk proteins and PP was performed by sodium dodecyl sulfate-PAGE, and the peptides recovered in PP during the acute phase of inflammation were amino-terminal micro-sequenced. A BSA increase in milk over time supported the hypothesis of an increase in the permeability of the epithelial barrier. A significant increase in PP content, considered to be an indicator of proteolysis, was observed from postinfusion hours (PIH) 12 to 48. Both the E. coli bacterial count and the SCC increased from PIH 3 to 216. Plasmin activity was increased noticeably from PIH 15 to 24. The respective increases in SCC, bacterial count, and PA suggest their involvement in a global mechanism responsible for the increase in proteolysis in milk after E. coli challenge. Somatic cell count and E. coli may be involved from PIH 3 to 216, and PA involvement might be highlighted during the maximum proteolysis, from PIH 15 to 24. A qualitative study of PP fraction by electrophoresis revealed the apparition of 5 peptide bands: P1 and P2 previously recovered during the lipopolysaccharide challenge, and E1 (27.0 kDa), E2 (15.5 kDa), and E3 (9.0 kDa) were specific to E. coli challenge; E1, E2, and E3 contained casein fragments. The roles played by leukocytes and E. coli are discussed.
Collapse
Affiliation(s)
- F Moussaoui
- Laboratoire de Sciences Animales, U.C. INRA 12 340, Ecole Nationale Supérieure d'Agronomie et des Industries Alimentaires, 54505 Vandoeuvre-lès-Nancy, France.
| | | | | | | | | | | | | |
Collapse
|
189
|
Virdis A, Colucci R, Fornai M, Blandizzi C, Duranti E, Pinto S, Bernardini N, Segnani C, Antonioli L, Taddei S, Salvetti A, Del Tacca M. Cyclooxygenase-2 Inhibition Improves Vascular Endothelial Dysfunction in a Rat Model of Endotoxic Shock: Role of Inducible Nitric-Oxide Synthase and Oxidative Stress. J Pharmacol Exp Ther 2004; 312:945-53. [PMID: 15547110 DOI: 10.1124/jpet.104.077644] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated whether cyclooxygenase (COX) isoforms (COX-1 and COX-2) and decreased NO availability contribute to endothelial dysfunction in endotoxemic rats. The involvement of reactive oxygen species (ROS) was also evaluated. Rats were injected with Salmonella-derived lipopolysaccharide or saline. After 6 h, endothelial function of mesenteric resistance arteries was evaluated. In controls, acetylcholine (ACh)-induced relaxation was inhibited by the nitric-oxide synthase inhibitor N(G)-monomethyl-l-arginine (l-NMMA) and unaffected by 5,5-dimethyl-3-(3-fluorophenyl)-4-(4-methylsulphonyl)-phenyl-2(5H)-furanone (DFU) (COX-2 inhibitor). In lipopolysaccharide (LPS)-treated rats, the response to ACh was blunted compared with controls, less sensitive to l-NMMA, and enhanced by DFU. COX-2 blockade also improved the inhibitory effect of l-NMMA on cholinergic relaxation. SC-560 [5-(4-clorophenyl)-1-(4-metoxyphenyl)-3-trifluoromethylpirazole] (COX-1 inhibitor) did not modify the response to ACh in both groups. LPS-induced endothelial dysfunction was unaffected by the thromboxane A(2) (TxA(2)) receptor antagonist SQ-29548 (7-[3-[[2-[(phenylamino)carbonyl]hydrazino]methyl]-7-oxabicyclo[2.2.1] hept-2-yl]-[1S(1alpha,2alpha(Z),3alpha,4alpha)]-5-heptenoic acid). In vivo inducible nitric-oxide synthase (iNOS) inhibition by S-methylisothiourea partly attenuated LPS-induced endothelial dysfunction. The antioxidants ascorbic acid and superoxide dismutase normalized endothelium-dependent relaxation and restored the inhibitory action of l-NMMA on ACh. Responses to sodium nitroprusside were similar in both groups. In LPS-treated rats, reverse transcription-polymerase chain reaction showed a marked increase in mesenteric iNOS and COX-2 expressions, whereas endothelial nitric-oxide synthase and COX-1 were unchanged. LPS-induced COX-2 overexpression was reduced but not abrogated by S-methylisothiourea. LPS-induced COX-2 up-regulation was also documented by immunohistochemistry. In conclusion, mesenteric resistance vessels from endotoxemic rats show impaired endothelial function due to reduced NO availability, a condition that is partly ascribable to an iNOS-dependent enhanced COX-2 expression, whereas TxA(2) does not seem to be involved. Oxidative stress is the main mechanism responsible for reduced NO availability, and COX-2 might act as a source of ROS.
Collapse
Affiliation(s)
- Agostino Virdis
- Department of Internal Medicine, University of Pisa, Via Roma, 67, 56100 Pisa, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Hernanz R, Alonso MJ, Briones AM, Vila E, Simonsen U, Salaices M. Mechanisms involved in the early increase of serotonin contraction evoked by endotoxin in rat middle cerebral arteries. Br J Pharmacol 2004; 140:671-80. [PMID: 14534151 PMCID: PMC1574084 DOI: 10.1038/sj.bjp.0705501] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The present study investigated the mechanisms involved in the increased 5-hydroxytryptamine (5-HT) vasoconstriction observed in rat middle cerebral arteries exposed in vitro to lipopolysaccharide (LPS, 10 microg x ml-1) for 1-5 h. Functional, immunohistochemical and Western blot analysis and superoxide anion measurements by ethidium fluorescence were performed. LPS exposure increased 5-HT (10 microm) vasoconstriction only during the first 4 h. In contrast to control tissue, indomethacin (10 microm), the COX-2 inhibitor NS 398 (10 microm), the TXA2/PGH2 receptor antagonist SQ 29548 (1 microm) and the TXA2 synthase inhibitor furegrelate (1 microm) reduced 5-HT contraction of LPS-treated arteries from hour one. The iNOS inhibitor aminoguanidine (0.1 mm) increased 5-HT contraction from hour three of LPS incubation. The superoxide anion scavenger superoxide dismutase (SOD, 100 U ml-1) and the H2O2 scavenger catalase (1000 U ml-1), as well as the respective inhibitors of NAD(P)H oxidase and xanthine oxidase, apocynin (0.3 mm) and allopurinol (0.3 mm), reduced 5-HT contraction after LPS incubation. LPS induced an increase in superoxide anion levels that was abolished by PEG-SOD. Subthreshold concentrations of the TXA2 analogue U 46619, xanthine/xanthine oxidase and H2O2 potentiated, whereas those of sodium nitroprusside inhibited, the 5-HT contraction. COX-2 expression was increased at 1 and 5 h of LPS incubation, while that of iNOS, Cu/Zn-SOD and Mn-SOD was only increased after 5 h. All the three vascular layers expressed COX-2 and Cu/Zn-SOD. iNOS expression was detected in the endothelium and adventitia after LPS. In conclusion, increased production of TXA2 from COX-2, superoxide anion and H2O2 enhanced vasoconstriction to 5-HT during the first few hours of LPS exposure; iNOS and SOD expression counteracted that increase at 5 h. These changes can contribute to the disturbance of cerebral blood flow in endotoxic shock.
Collapse
Affiliation(s)
- Raquel Hernanz
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, Madrid 28029, Spain
| | - María J Alonso
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, Madrid 28029, Spain
| | - Ana M Briones
- Departament de Farmacologia i Terapéutica, Facultat de Medicina, Universitat Autònoma de Barcelona, Spain
| | - Elisabet Vila
- Departament de Farmacologia i Terapéutica, Facultat de Medicina, Universitat Autònoma de Barcelona, Spain
| | - Ulf Simonsen
- Department of Pharmacology, Faculty of Health Science, University of Aarhus, Denmark
| | - Mercedes Salaices
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, Madrid 28029, Spain
- Author for correspondence:
| |
Collapse
|
191
|
Kobayashi T, Nakatani Y, Tanioka T, Tsujimoto M, Nakajo S, Nakaya K, Murakami M, Kudo I. Regulation of cytosolic prostaglandin E synthase by phosphorylation. Biochem J 2004; 381:59-69. [PMID: 15040786 PMCID: PMC1133762 DOI: 10.1042/bj20040118] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 03/24/2004] [Accepted: 03/25/2004] [Indexed: 01/07/2023]
Abstract
cPGES [cytosolic PG (prostaglandin) E synthase] is constitutively expressed in various cells and can regulate COX (cyclo-oxygenase)-1-dependent immediate PGE2 generation. In the present study, we found that cPGES underwent serine phosphorylation, which was accelerated transiently after cell activation. Several lines of evidence suggest that a cPGES-activating protein kinase is CK-II (casein kinase II). Recombinant cPGES was phosphorylated directly by and associated with CK-II in vitro, resulting in marked reduction of the K m for the substrate PGH2. In activated cells, cPGES phosphorylation occurred in parallel with increased cPGES enzymic activity and PGE2 production from exogenous and endogenous arachidonic acid, and these processes were facilitated by Hsp90 (heat-shock protein 90), a molecular chaperone that formed a tertiary complex with cPGES and CK-II. Treatment of cells with inhibitors of CK-II and Hsp90 and with a dominant-negative CK-II attenuated the formation of the cPGES-CK-II-Hsp90 complex and attendant cPGES phosphorylation and activation. Mutations of either of two predicted CK-II phosphorylation sites on cPGES (Ser113 and Ser118) abrogated its phosphorylation and activation both in vitro and in vivo. Moreover, the CK-II-Hsp90-mediated activation of cPGES was ameliorated by the p38 mitogen-activated protein kinase inhibitor SB20358 or by the anti-inflammatory glucocorticoid dexamethasone. Taken together, the results of the present study have provided the first evidence that the cellular function of this eicosanoid-biosynthetic enzyme is under the control of a molecular chaperone and its client protein kinase.
Collapse
Affiliation(s)
- Tsuyoshi Kobayashi
- *Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Yoshihito Nakatani
- *Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Toshihiro Tanioka
- *Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
- †Laboratory of Cellular Chemistry, RIKEN, 2-1 Wako-shi, Saitama 351-0198, Japan
| | - Masafumi Tsujimoto
- †Laboratory of Cellular Chemistry, RIKEN, 2-1 Wako-shi, Saitama 351-0198, Japan
| | - Shigeo Nakajo
- ‡Laboratory of Biological Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Kazuyasu Nakaya
- ‡Laboratory of Biological Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Makoto Murakami
- *Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Ichiro Kudo
- *Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
- To whom correspondence should be addressed (e-mail )
| |
Collapse
|
192
|
Masuko-Hongo K, Berenbaum F, Humbert L, Salvat C, Goldring MB, Thirion S. Up-regulation of microsomal prostaglandin E synthase 1 in osteoarthritic human cartilage: critical roles of the ERK-1/2 and p38 signaling pathways. ACTA ACUST UNITED AC 2004; 50:2829-38. [PMID: 15457451 DOI: 10.1002/art.20437] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Microsomal prostaglandin E synthase 1 (mPGES-1) is the final enzyme of the cascade that produces prostaglandin E(2) (PGE(2)), a key actor in arthritis. To study mPGES-1 synthesis in human cartilage and its regulation by interleukin-1beta (IL-1beta), we used human cartilage and an immortalized human chondrocyte cell line. Furthermore, we investigated the signaling pathways involved in mPGES-1 expression. METHODS We used real-time quantitative reverse transcription-polymerase chain reaction, Northern blotting, and Western blotting to measure mPGES-1 messenger RNA (mRNA) and protein expression in human chondrocytes. PGE(2) production was measured by enzyme-linked immunosorbent assay. RESULTS Cartilage specimens from osteoarthritis (OA) patients contained far greater amounts of mPGES-1 and cyclooxygenase 2 (COX-2) mRNA than did normal cartilage. Incubation with IL-1beta markedly increased mPGES-1 mRNA and protein in a dose-dependent and time-dependent manner, in parallel with an increase in PGE(2) levels. Both PD98059, an ERK pathway inhibitor, and SB203580, a p38alpha/beta MAPK inhibitor, abolished the increases in mPGES-1 mRNA and protein in response to IL-1beta. The specific p38alpha MAPK inhibitor SC906 suppressed IL-1beta-induced COX-2 expression but not IL-1beta-induced mPGES-1 expression, suggesting preferential involvement of p38beta MAPK in IL-1beta-induced mPGES-1 expression. CONCLUSION This study is the first to show that mPGES-1 is stimulated in human chondrocytes by the proinflammatory cytokine IL-1beta via activation of both ERK-1/2 and p38 MAPK in an isoform-specific manner. We postulate that mPGES-1 may be a novel target for OA therapy.
Collapse
Affiliation(s)
- Kayo Masuko-Hongo
- UMR CNRS 7079, Université Pierre et Marie Curie (Paris VI), Paris, France
| | | | | | | | | | | |
Collapse
|
193
|
|
194
|
Blatteis CM, Li S, Li Z, Perlik V, Feleder C. Complement is required for the induction of endotoxic fever in guinea pigs and mice. J Therm Biol 2004. [DOI: 10.1016/j.jtherbio.2004.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
195
|
Bilak M, Wu L, Wang Q, Haughey N, Conant K, St Hillaire C, Andreasson K. PGE2 receptors rescue motor neurons in a model of amyotrophic lateral sclerosis. Ann Neurol 2004; 56:240-8. [PMID: 15293276 DOI: 10.1002/ana.20179] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recent studies suggest that the inducible isoform of cyclooxygenase, COX-2, promotes motor neuron loss in rodent models of ALS. We investigated the effects of PGE2, a principal downstream prostaglandin product of COX-2 activity, on motor neuron survival in an organotypic culture model of ALS. We find that PGE2 paradoxically protects motor neurons at physiological concentrations in this model. PGE2 exerts its downstream effects by signaling through a class of four distinct G-protein-coupled E-prostanoid receptors (EP1-EP4) that have divergent effects on cAMP. EP2 and EP3 are dominantly expressed in ventral spinal cord in neurons and astrocytes, and activation of these receptor subtypes individually or in combination also rescued motor neurons. The EP2 receptor is positively coupled to cAMP, and its neuroprotection was mimicked by application of forskolin and blocked by inhibition of PKA, suggesting that its protective effect is mediated by downstream effects of cAMP. Conversely, the EP3 receptor is negatively coupled to cAMP, and its neuroprotective effect was blocked by pertussis toxin, suggesting that its protective effect is dependent on Gi-coupled heterotrimeric signaling. Taken together, these data demonstrate an unexpected neuroprotective effect mediated by PGE2, in which activation of its EP2 and EP3 receptors protected motor neurons from chronic glutamate toxicity.
Collapse
Affiliation(s)
- Masako Bilak
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
196
|
Jang TJ. Expression of proteins related to prostaglandin E2 biosynthesis is increased in human gastric cancer and during gastric carcinogenesis. Virchows Arch 2004; 445:564-71. [PMID: 15372235 DOI: 10.1007/s00428-004-1104-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Accepted: 06/21/2004] [Indexed: 12/23/2022]
Abstract
Prostaglandin E2 (PGE2) is related to carcinogenesis. Cyclooxygenase (COX) and prostaglandin E synthase (PGES) are involved in PGE2 synthesis. However, overall situation of COX and microsomal PGES (mPGES) expression in gastric cancer has not been studied in detail. The expression of COX and mPGES was evaluated in 45 cases of gastric cancer (22 intestinal type and 23 diffuse type), 13 gastric dysplasia, 15 intestinal metaplasia, 18 Helicobacter pylori associated gastritis, and 10 normal gastric tissues by performing immunohistochemistry and Western blot analysis. COX-1 expression was higher in intestinal type cancers than diffuse ones. COX-2 and mPGES-1 were expressed more in cancers than in paired nonneoplastic adjacent tissues, and intestinal type cancers showed higher expression of COX-2 than diffuse ones. The expression of COX and mPGES was gradually increased with progression of gastric lesions and the highest in dysplasia. mPGES-1 was expressed not only in epithelial cells but also in stromal cells, whose phenotype was myofibroblast, endothelial cells and others. In conclusion, proteins related to PGE2 biosynthesis affect both histogenesis and the carcinogenesis of human gastric cancer.
Collapse
Affiliation(s)
- Tae Jung Jang
- Department of Pathology, Dongguk University College of Medicine, Suek-jang Dong 707, Kyongju, 780-714 Kyongbuk, Korea.
| |
Collapse
|
197
|
Ayoub SS, Botting RM, Goorha S, Colville-Nash PR, Willoughby DA, Ballou LR. Acetaminophen-induced hypothermia in mice is mediated by a prostaglandin endoperoxide synthase 1 gene-derived protein. Proc Natl Acad Sci U S A 2004; 101:11165-9. [PMID: 15263079 PMCID: PMC503757 DOI: 10.1073/pnas.0404185101] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acetaminophen is a widely used antipyretic analgesic, reducing fever caused by bacterial and viral infections and by clinical trauma such as cancer or stroke. In rare cases in humans, e.g., in febrile children or HIV or stroke patients, acetaminophen causes hypothermia while therapeutic blood levels of the drug are maintained. In C57/BL6 mice, acetaminophen caused hypothermia that was dose related and maximum (>2 degrees C below normal) with a dose of 300 mg/kg. The reduction and recovery of body temperature was paralleled by a fall of >90% and a subsequent rise of prostaglandin (PG)E(2) concentrations in the brain. In cyclooxygenase (COX)-2(-/-) mice, acetaminophen (300 mg/kg) produced hypothermia accompanied by a reduction in brain PGE(2) levels, whereas in COX-1(-/-) mice, the hypothermia to this dose of acetaminophen was attenuated. The brains of COX-1(-/-) mice had approximately 70% lower levels of PGE(2) than those of WT animals, and these levels were not reduced further by acetaminophen. The putative selective COX-3 inhibitors antipyrine and aminopyrine also reduced basal body temperature and brain PGE(2) levels in normal mice. We propose that acetaminophen is a selective inhibitor of a COX-1 variant and this enzyme is involved in the continual synthesis of PGE(2) that maintains a normal body temperature. Thus, acetaminophen reduces basal body temperature below normal in mice most likely by inhibiting COX-3.
Collapse
Affiliation(s)
- Samir S Ayoub
- Experimental Pathology Group, Queen Mary University of London, St. Bartholomew's and the London School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | | | | | | | | | | |
Collapse
|
198
|
Wang X, Su Y, Deb K, Raposo M, Morrow JD, Reese J, Paria BC. Prostaglandin E2 Is a Product of Induced Prostaglandin-endoperoxide Synthase 2 and Microsomal-type Prostaglandin E Synthase at the Implantation Site of the Hamster. J Biol Chem 2004; 279:30579-87. [PMID: 15078866 DOI: 10.1074/jbc.m400573200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Certain uterine prostaglandins (PGs) are elevated at implantation sites and are needed to trigger the events of blastocyst implantation that include blastocyst-uterine attachment and stromal decidualization with vascular permeability changes. Several decades of investigations showed that treatment with PG synthesis inhibitors, prior to or during the time of implantation, resulted in either complete inhibition or a delay in implantation or reduction in the number of implantation sites with diminished decidual tissue. Consistent with these findings, we observed that whereas a selective PG endoperoxide synthase (Ptgs) 1 inhibitor SC-560 failed to inhibit implantation, a selective Ptgs2 inhibitor SC-236 showed significantly reduced number and size of implantation sites in progesterone-treated ovariectomized pregnant hamsters. It is known that Ptgs2 expression and Ptgs2-derived prostacyclin (PGI2) synthesis at implantation sites are needed for implantation in the mouse (a rodent that needs ovarian estrogen for implantation). However, it is unknown which Ptgs and PG synthases produce which PGs at implantation sites of the hamster (a rodent that does not need ovarian estrogen for implantation). Here we demonstrate that as blastocyst implantation proceeds, a reduction in Ptgs1 expression from uterine luminal epithelial cells and a gradual induction in Ptgs2 expression exclusively in luminal epithelial and adjacent decidual cells occurred at implantation sites of hamsters. Results also reveal that PGE2, but not PGI2, is the major PG at implantation sites where Ptgs2 and microsomal type PGE synthases but not PGI synthases are co-expressed. This elevated uterine PGE2 at implantation sites may serve to initiate or amplify physiological signals required for specific aspects of the implantation process in hamsters.
Collapse
Affiliation(s)
- Xiaohong Wang
- Division of Reproductive and Developmental Biology, the Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2678, USA
| | | | | | | | | | | | | |
Collapse
|
199
|
Guay J, Bateman K, Gordon R, Mancini J, Riendeau D. Carrageenan-induced Paw Edema in Rat Elicits a Predominant Prostaglandin E2 (PGE2) Response in the Central Nervous System Associated with the Induction of Microsomal PGE2 Synthase-1. J Biol Chem 2004; 279:24866-72. [PMID: 15044444 DOI: 10.1074/jbc.m403106200] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peripheral inflammation involves an increase in cyclooxygenase-2 (COX-2)-mediated prostaglandin (PG) synthesis in the central nervous system (CNS), which contributes to allodynia and hyperalgesia. In the present study we have determined the changes in prostanoid tissue levels and in expression of terminal prostanoid synthases in both the CNS and inflamed peripheral tissue during carrageenan-induced paw inflammation in the rat. Prostanoid levels were measured by liquid chromatography-mass spectrometry and enzyme expression at the RNA level by quantitative PCR analysis during both the early (1-6 h) and late (12 and 24 h) phases of the inflammatory response. In the paw, the early phase was associated with increases in PGE(2) and thromboxane (TX)B(2) levels and with a peak of COX-2 expression that preceded that of microsomal prostaglandin-E(2) synthase-1 (mPGES-1). COX-2 and mPGES-1 remained elevated during the late phase, and PGE(2) continued to further increase through 24 h. The cytosolic PGE(2) synthase (cPGES) showed a small transient increase during the early phase, whereas mPGES-2 expression was not affected by inflammation. In the cerebrospinal fluid, elevated levels of PGE(2), 6-keto-PGF(1alpha), PGD(2), and TXB(2) were detected during the early phase. PGE(2) levels also increased in the spinal cord and, to a lesser extent, in the brain and remained elevated in both the cerebrospinal fluid and the spinal cord during the late phase. The expression of mPGES-1 was strongly up-regulated in the brain and spinal cord during inflammation, whereas no change was detected for the expression of cPGES, mPGES-2, COX-1, and terminal PGD, TX, or PGI synthases. The results show that the carrageenan-induced edema in the paw elicits an early phase of COX-2 induction in the CNS leading to an increase synthesis in PGD(2), 6-keto-PGF(1alpha), and TXB(2) in addition to the major PGE(2) response. The data also indicate that the up-regulation of mPGES-1 contributes to COX-2-mediated PGE(2) production in the CNS during peripheral inflammation.
Collapse
Affiliation(s)
- Jocelyne Guay
- Department of Biochemistry and Molecular Biology, Merck Frosst Centre for Therapeutic Research, Kirkland, Quebec H9H 3L1, Canada
| | | | | | | | | |
Collapse
|
200
|
Konsman JP, Vigues S, Mackerlova L, Bristow A, Blomqvist A. Rat brain vascular distribution of interleukin-1 type-1 receptor immunoreactivity: relationship to patterns of inducible cyclooxygenase expression by peripheral inflammatory stimuli. J Comp Neurol 2004; 472:113-29. [PMID: 15024756 DOI: 10.1002/cne.20052] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Interleukin-1 beta (IL-1 beta) is thought to act on the brain to induce fever, neuroendocrine activation, and behavioral changes during disease through induction of prostaglandins at the blood-brain barrier (BBB). However, despite the fact that IL-1 beta induces the prostaglandin-synthesizing enzyme cyclooxygenase-2 (COX-2) in brain vascular cells, no study has established the presence of IL-1 receptor type 1 (IL-1R1) protein in these cells. Furthermore, although COX inhibitors attenuate expression of the activation marker c-Fos in the preoptic and paraventricular hypothalamus after administration of IL-1 beta or bacterial lipopolysaccharide (LPS), they do not alter c-Fos induction in other structures known to express prostaglandin receptors. The present study thus sought to establish whether IL-1R1 protein is present and functional in the rat cerebral vasculature. In addition, the distribution of IL-1R1 protein was compared to IL-1 beta- and LPS-induced COX-2 expression. IL-1R1-immunoreactive perivascular cells were mostly found in choroid plexus and meninges. IL-1R1-immunoreactive vessels were seen throughout the brain, but concentrated in the preoptic area, subfornical organ, supraoptic hypothalamus, and to a lesser extent in the paraventricular hypothalamus, cortex, nucleus of the solitary tract, and ventrolateral medulla. Vascular IL-1R1-ir was associated with an endothelial cell marker, not found in arterioles, and corresponded to the induction patterns of phosphorylated c-Jun and inhibitory-factor kappa B mRNA upon IL-1 beta stimulation, and colocalized with peripheral IL-1 beta- or LPS-induced COX-2 expression. These observations indicate that functional IL-1R1s are expressed in endothelial cells of brain venules and suggest that vascular IL-1R1 distribution is an important factor determining BBB prostaglandin-dependent activation of brain structures during infection.
Collapse
Affiliation(s)
- Jan Pieter Konsman
- Laboratoire de Neurobiologie Intégrative, Centre National de la Recherche Scientifique FRE 2723/Institut National de la Recherche Agronomique UR 1244, Institut François Magendie, 33077 Bordeaux, France.
| | | | | | | | | |
Collapse
|