151
|
Arise RO, Idi JJ, Mic-Braimoh IM, Korode E, Ahmed RN, Osemwegie O. In vitro Angiotesin-1-converting enzyme, α-amylase and α-glucosidase inhibitory and antioxidant activities of Luffa cylindrical (L.) M. Roem seed protein hydrolysate. Heliyon 2019; 5:e01634. [PMID: 31193002 PMCID: PMC6512875 DOI: 10.1016/j.heliyon.2019.e01634] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/14/2019] [Accepted: 04/30/2019] [Indexed: 11/17/2022] Open
Abstract
In recent times, researchers have explored food derived peptides to circumvent the side effects of synthetic drugs. This study therefore examined the amino acid constituents, in vitro antioxidant activities, angiotensin-1-converting enzyme (ACE), α-glucosidase and α-amylase inhibition kinetics of protein hydrolysate obtained from the seed of Luffa cylindrica. The peptide yield by pepsin (16.93 ± 0.28%) and trypsin (13.20 ± 1.02%) were significantly lower than that of Alcalase (34.04 ± 1.96%). Alcalase hydrolysate however displayed the highest ferric reducing antioxidant capacity (FRAC), 1,1-diphenyl-2-picrylhydrazyl (DPPH) and H2O2 scavenging activities (0.63%, 85.88% and 41.69% respectively), while the highest superoxide scavenging activity was shown by peptic hydrolysate (57.89%). The ACE inhibition by the hydrolysates with IC50 of 0.32-0.93 mg/mL, increased as the concentration of the peptic hydrolysate increased with the highest ACE-inhibitory activity (74.99 ± 0.43%) at 1.2 mg/mL of peptic hydrolysate. Tryptic and Alcalase hydrloysates exhibited a strong α-amylase inhibition having 27.96 ± 0.06% and 36.36 ± 0.71% inhibitory capacity respectively with IC50 of 1.02-3.31 mg/mL. Alcalase hydrolysates demonstrated the strongest inhibition (65.81 ± 1.95%), followed by tryptic hydrolysates (54.53 ± 0.52%) in a concentration-dependent inhibition of α-glucosidase (IC50 , 0.48-0.80 mg/mL). Kinetic analysis showed that ACE-inhibition by different concentrations of Alcalase, pepsin and trypsin hydrolysates is uncompetitive, mixed-type and non-competitive respectively. α-Amylase was non-competitively inhibited while α-glucosidase was un-competitively inhibited by all the hydrolysates. The total amino acid concentration for Alcalase, trypsin and pepsin hydrolysates was 53.51g/100g, 75.40g/100g and 85.42g/100g of Luffa cylindrica seed protein hydrolysate respectively, with glutamate being the most concentrated essential amino acid in all the three hydrolysates. From these results, it can be deduced that Luffa cylindrica seed Alcalase and tryptic protein hydrolysates may play critical and indispensible role as bio-tools in diabetes and hypertension treatment.
Collapse
Affiliation(s)
- Rotimi Olusanya Arise
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
- Department of Biological Sciences, College of Science and Engineering, Landmark University, Omu-Aran, Nigeria
- Corresponding author.
| | - Jalil James Idi
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
- Department of Biochemistry, Faculty of Sciences, Gombe State University, Gombe, Nigeria
| | | | - Emmanuel Korode
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| | - Risikat Nike Ahmed
- Department of Microbiology, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| | - Omorefosa Osemwegie
- Department of Biological Sciences, College of Science and Engineering, Landmark University, Omu-Aran, Nigeria
| |
Collapse
|
152
|
Solon-Biet SM, Cogger VC, Pulpitel T, Wahl D, Clark X, Bagley E, Gregoriou GC, Senior AM, Wang QP, Brandon AE, Perks R, O’Sullivan J, Koay YC, Bell-Anderson K, Kebede M, Yau B, Atkinson C, Svineng G, Dodgson T, Wali JA, Piper MDW, Juricic P, Partridge L, Rose AJ, Raubenheimer D, Cooney GJ, Le Couteur DG, Simpson SJ. Branched chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control. Nat Metab 2019; 1:532-545. [PMID: 31656947 PMCID: PMC6814438 DOI: 10.1038/s42255-019-0059-2] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/22/2019] [Indexed: 12/11/2022]
Abstract
Elevated branched chain amino acids (BCAAs) are associated with obesity and insulin resistance. How long-term dietary BCAAs impact late-life health and lifespan is unknown. Here, we show that when dietary BCAAs are varied against a fixed, isocaloric macronutrient background, long-term exposure to high BCAA diets leads to hyperphagia, obesity and reduced lifespan. These effects are not due to elevated BCAA per se or hepatic mTOR activation, but rather due to a shift in the relative quantity of dietary BCAAs and other AAs, notably tryptophan and threonine. Increasing the ratio of BCAAs to these AAs resulted in hyperphagia and is associated with central serotonin depletion. Preventing hyperphagia by calorie restriction or pair-feeding averts the health costs of a high BCAA diet. Our data highlight a role for amino acid quality in energy balance and show that health costs of chronic high BCAA intakes need not be due to intrinsic toxicity but, rather, a consequence of hyperphagia driven by AA imbalance.
Collapse
Affiliation(s)
- Samantha M Solon-Biet
- Charles Perkins Centre, The University of Sydney NSW, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, NSW, Australia
| | - Victoria C Cogger
- Charles Perkins Centre, The University of Sydney NSW, Australia
- Sydney Medical School, Faculty of Health and Medicine, The University of Sydney NSW, Australia
- Ageing and Alzheimers Institute and Centre for Education and Research on Ageing, Concord Hospital, Concord NSW, Australia
- ANZAC Research Institute, The University of Sydney NSW, Australia
| | - Tamara Pulpitel
- Charles Perkins Centre, The University of Sydney NSW, Australia
- Sydney Medical School, Faculty of Health and Medicine, The University of Sydney NSW, Australia
| | - Devin Wahl
- Charles Perkins Centre, The University of Sydney NSW, Australia
- Sydney Medical School, Faculty of Health and Medicine, The University of Sydney NSW, Australia
- Ageing and Alzheimers Institute and Centre for Education and Research on Ageing, Concord Hospital, Concord NSW, Australia
| | - Ximonie Clark
- Charles Perkins Centre, The University of Sydney NSW, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, NSW, Australia
| | - Elena Bagley
- Charles Perkins Centre, The University of Sydney NSW, Australia
- School of Medical Sciences, Faculty of Health and Medicine, The University of Sydney NSW, Australia
| | - Gabrielle C Gregoriou
- Charles Perkins Centre, The University of Sydney NSW, Australia
- School of Medical Sciences, Faculty of Health and Medicine, The University of Sydney NSW, Australia
| | - Alistair M Senior
- Charles Perkins Centre, The University of Sydney NSW, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, NSW, Australia
| | - Qiao-Ping Wang
- Charles Perkins Centre, The University of Sydney NSW, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, NSW, Australia
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou 510275, China
| | - Amanda E Brandon
- Charles Perkins Centre, The University of Sydney NSW, Australia
- Sydney Medical School, Faculty of Health and Medicine, The University of Sydney NSW, Australia
| | - Ruth Perks
- Charles Perkins Centre, The University of Sydney NSW, Australia
| | - John O’Sullivan
- Charles Perkins Centre, The University of Sydney NSW, Australia
- Heart Research Institute, The University of Sydney, NSW, Australia
| | - Yen Chin Koay
- Charles Perkins Centre, The University of Sydney NSW, Australia
- Heart Research Institute, The University of Sydney, NSW, Australia
| | - Kim Bell-Anderson
- Charles Perkins Centre, The University of Sydney NSW, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, NSW, Australia
| | - Melkam Kebede
- Charles Perkins Centre, The University of Sydney NSW, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, NSW, Australia
| | - Belinda Yau
- Charles Perkins Centre, The University of Sydney NSW, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, NSW, Australia
| | - Clare Atkinson
- Charles Perkins Centre, The University of Sydney NSW, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, NSW, Australia
| | | | - Timothy Dodgson
- Charles Perkins Centre, The University of Sydney NSW, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, NSW, Australia
| | - Jibran A Wali
- Charles Perkins Centre, The University of Sydney NSW, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, NSW, Australia
| | | | - Paula Juricic
- Max Planck Institute for Biology of Aging, Cologne, Germany
| | | | - Adam J Rose
- Monash Biomedicine Discovery Institute, Monash University VIC, Australia
| | - David Raubenheimer
- Charles Perkins Centre, The University of Sydney NSW, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, NSW, Australia
| | - Gregory J Cooney
- Charles Perkins Centre, The University of Sydney NSW, Australia
- Sydney Medical School, Faculty of Health and Medicine, The University of Sydney NSW, Australia
| | - David G Le Couteur
- Charles Perkins Centre, The University of Sydney NSW, Australia
- Sydney Medical School, Faculty of Health and Medicine, The University of Sydney NSW, Australia
- Ageing and Alzheimers Institute and Centre for Education and Research on Ageing, Concord Hospital, Concord NSW, Australia
- ANZAC Research Institute, The University of Sydney NSW, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney NSW, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, NSW, Australia
| |
Collapse
|
153
|
Alfaia CM, Lopes PA, Madeira MS, Pestana JM, Coelho D, Toldrá F, Prates JAM. Current feeding strategies to improve pork intramuscular fat content and its nutritional quality. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 89:53-94. [PMID: 31351530 DOI: 10.1016/bs.afnr.2019.03.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pork, one of the most consumed meats worldwide, has been facing major challenges regarding its low sensory quality and unhealthy image of fat. This chapter addresses current feeding strategies to ameliorate pork sensory attributes and nutritional quality by increasing intramuscular fat deposition and improving fatty acid composition, respectively. Dietary protein reduction, alone or combined with some components, contributes to satisfy consumer requirements and enhances the competitiveness of the meat industry with higher pork quality and lower production costs. In addition, feeding sources of n-3 polyunsaturated fatty acids to pigs, mainly from marine origin (rich in eicosapentaenoic and docosahexaenoic acids), increases their content in pork, thus improving the health value of its fatty acid profile. In the near future, the inclusion of microalgae and seaweeds in feed represents a promising approach for the maintenance and development of the livestock sector, as an environmental friendly alternative to balance food and feed industries.
Collapse
Affiliation(s)
- C M Alfaia
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Pólo Universitário do Alto da Ajuda, Lisbon, Portugal
| | - P A Lopes
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Pólo Universitário do Alto da Ajuda, Lisbon, Portugal
| | - M S Madeira
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Pólo Universitário do Alto da Ajuda, Lisbon, Portugal
| | - J M Pestana
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Pólo Universitário do Alto da Ajuda, Lisbon, Portugal
| | - D Coelho
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Pólo Universitário do Alto da Ajuda, Lisbon, Portugal
| | - Fidel Toldrá
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Valencia, Spain
| | - J A M Prates
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Pólo Universitário do Alto da Ajuda, Lisbon, Portugal.
| |
Collapse
|
154
|
The Effect of Maternal Intact Protein- and Amino Acid-Based Diets on Development of Food Intake Regulatory Systems and Body Weight in Dams and Male Offspring of Wistar Rats. Int J Mol Sci 2019; 20:ijms20071690. [PMID: 30987357 PMCID: PMC6479318 DOI: 10.3390/ijms20071690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 11/17/2022] Open
Abstract
The objective of this study is to examine the effect of maternal and weaning intact protein- and amino acid-based diets on regulation of food intake, intake regulatory hormones, and body weight in dams and their male offspring. Pregnant Wistar rats were allocated to two groups (n = 12) and were fed either an intact protein diet (IPD) or mixed amino acid diet (AAD) from day 3 of gestation throughout gestation and lactation. Male offspring were weaned to either an IPD or AAD for 18 weeks. Food intake (FI) and body weight (BW) were measured weekly. Results: In dams, the AAD group had lower FI and BW in the post-partum period compared with the IPD group. In pups born to AAD dams, birth weight and BW were lower. However, the percentage of fat and lean mass were not affected. Food intake was influenced by maternal diet and was higher in pups born to IPD dams throughout post-weaning. Short-term FI in response to protein preloads was lower in pups born to AAD dams in 1 h. Fasting plasma concentrations of glucose, insulin, and ghrelin were not influenced by either maternal or weaning diet. However, peptide YY (PYY) was higher in pups born to IPD dams at weaning. Conclusions: The physicochemical properties of proteins fed during pregnancy and lactation had determining effects on the body weight and development of food intake regulatory systems in offspring. Maternal AAD resulted in lower BW in dams and lower birth weight and post-weaning BWs in pups compared with maternal IPD which was consistent with their lower FI.
Collapse
|
155
|
Liang H, Mokrani A, Chisomo-Kasiya H, Ji K, Ge X, Ren M, Liu B, Xi B, Sun A. Dietary leucine affects glucose metabolism and lipogenesis involved in TOR/PI3K/Akt signaling pathway for juvenile blunt snout bream Megalobrama amblycephala. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:719-732. [PMID: 30632024 DOI: 10.1007/s10695-018-0594-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 11/26/2018] [Indexed: 05/12/2023]
Abstract
The present study evaluated the mechanisms governing insulin signaling, glucose metabolism, and lipogenesis in juvenile fish fed with different dietary leucine levels. Fish were fed six practical diets with graded leucine levels ranging from 0.90 to 2.94% of dry basis for 8 weeks. The trial results showed that, compared to the control group (0.90%), optimal dietary leucine level (1.72%) resulted in the up-regulation of mRNA expression related to insulin signaling pathway, including target of rapamycin (TOR), insulin receptor substrate 1 (IRS-1), phosphoinositide 3-kinase (PI3K), and protein kinase B (Akt). However, an excessive leucine level (2.94%) led to protein S6 kinase 1 (S6K1) overexpression and inhibited TOR, IRS-1, PI3K, and Akt mRNA expressions. The protein level of TOR, S6K1, IRS-1, PI3K, and Akt showed a similar result with mRNA level of these genes. Optimal dietary leucine level (1.72%) significantly improved plasma insulin content, while high level of leucine showed an inhibiting phenomenon. Optimal dietary leucine level (1.72%) could reduce plasma glucose by enhancing the ability of glycometabolism including improving glucose transporter 2 (GLUT2), glucokinase (GK) expressions and down-regulating phosphoenolpyruvate carboxykinase (PEPCK) expression. While an excessive leucine level (2.94%) resulted in high plasma glucose by inhibiting the ability of glycometabolism including lowering GLUT2 and GK expressions, and improving glucose-6-phosphatase (G6Pase) and PEPCK expressions. The relative expressions of pyruvate kinase (PK) and glycogen synthase (GS) were not significantly affected by dietary leucine levels. Dietary leucine level of 1.33% could improve plasma triglyceride content (TG) by enhancing lipogenesis including improving sterol-response element-binding protein 1 (SREBP1), fatty acid synthase (FAS), acetyl CoA carboxylase (ACC), and glucose-6-phosphate dehydrogenase (G6PDH) expressions compared to the control group (0.90%). Total cholesterol (TC) was not significantly affected by dietary leucine levels. The present results indicate that optimal leucine level could improve glycolysis and fatty acid synthesis through improving insulin sensitivity in juvenile blunt snout bream. However, excessive dietary leucine level resulted in high plasma glucose, which led to insulin resistance by inhibiting the gene expressions of insulin signaling pathway and activating gluconeogenesis-related gene expression.
Collapse
Affiliation(s)
- Hualiang Liang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Ahmed Mokrani
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | | | - Ke Ji
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China.
| | - Mingchun Ren
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China.
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Bingwen Xi
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Ajun Sun
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| |
Collapse
|
156
|
Lee HW, Baker E, Lee KM, Persinger AM, Hawkins W, Puppa M. Effects of low-dose leucine supplementation on gastrocnemius muscle mitochondrial content and protein turnover in tumor-bearing mice. Appl Physiol Nutr Metab 2019; 44:997-1004. [PMID: 30768366 DOI: 10.1139/apnm-2018-0765] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many forms of cancer are associated with loss of lean body mass, commonly attributed to decreased protein synthesis and stimulation of proteolytic pathways within the skeletal muscle. Leucine has been shown to improve protein synthesis, insulin signaling, and mitochondrial biogenesis, which are key signaling pathways influenced by tumor signaling. The purpose of this study was to examine the effects of leucine supplementation on mitochondrial biogenesis and protein turnover in tumor-bearing mice. Twenty male C57BL/6 mice were divided into 4 groups (n = 5): Chow, leucine (Leu), Lewis lung carcinoma (LLC) implant, and LLC+Leu. At 9-10 weeks of age, mice were inoculated and supplemented with 5% leucine (w/w) in the diet. C2C12 myotubes were treated with 2.5 mmol/L leucine and 25% LLC conditioned media to further elucidate the direct influence of the tumor and leucine on the muscle. Measures of protein synthesis, mitochondrial biogenesis, and inflammation in the gastrocnemius were assessed via Western blot analysis. Gastrocnemius mass was decreased in LLC+Leu relative to LLC (p = 0.040). Relative protein synthesis rate was decreased in LLC mice (p = 0.001). No change in protein synthesis was observed in myotubes. Phosphorylation of STAT3 was decreased in the Leu group relative to the control in both mice (p = 0.019) and myotubes (p = 0.02), but did not significantly attenuate the inflammatory effect of LLC implantation (p = 0.619). LLC decreased markers of mitochondrial content; however, PGC-1α was increased in LLC+Leu relative to LLC (p = 0.001). While leucine supplementation was unable to preserve protein synthesis or mitochondrial content associated with LLC implantation, it was able to increase mitochondrial biogenesis signaling. Novelty This study provides novel insights on the effect of leucine supplementation on mitochondrial biogenesis and protein turnover in tumor-bearing mice. Leucine increased signaling for mitochondrial biogenesis in the skeletal muscle. Leucine supplementation decreased inflammatory signaling in skeletal muscle.
Collapse
Affiliation(s)
- Harold W Lee
- School of Health Studies, University of Memphis, Memphis, TN 38152, USA.,School of Health Studies, University of Memphis, Memphis, TN 38152, USA
| | - Ella Baker
- School of Health Studies, University of Memphis, Memphis, TN 38152, USA.,School of Health Studies, University of Memphis, Memphis, TN 38152, USA
| | - Kevin M Lee
- School of Health Studies, University of Memphis, Memphis, TN 38152, USA.,School of Health Studies, University of Memphis, Memphis, TN 38152, USA
| | - Aaron M Persinger
- School of Health Studies, University of Memphis, Memphis, TN 38152, USA.,School of Health Studies, University of Memphis, Memphis, TN 38152, USA
| | - William Hawkins
- School of Health Studies, University of Memphis, Memphis, TN 38152, USA.,School of Health Studies, University of Memphis, Memphis, TN 38152, USA
| | - Melissa Puppa
- School of Health Studies, University of Memphis, Memphis, TN 38152, USA.,School of Health Studies, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
157
|
Tao JL, Chen YZ, Dai QG, Tian M, Wang SC, Shan JJ, Ji JJ, Lin LL, Li WW, Yuan B. Urine metabolic profiles in paediatric asthma. Respirology 2019; 24:572-581. [PMID: 30763984 DOI: 10.1111/resp.13479] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 12/19/2018] [Accepted: 12/25/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Asthma is a global problem and complex disease suited for metabolomic profiling. This study explored the candidate biomarkers specific to paediatric asthma and provided insights into asthmatic pathophysiology. METHODS Children (aged 6-11 years) meeting the criteria for healthy control (n = 29), uncontrolled asthma (n = 37) or controlled asthma (n = 43) were enrolled. Gas chromatography-mass spectrometry was performed on urine samples of the patients to explore the different types of metabolite profile in paediatric asthma. Additionally, we employed a comprehensive strategy to elucidate the relationship between significant metabolites and asthma-related genes. RESULTS We identified 51 differential metabolites mainly related to dysfunctional amino acid, carbohydrate and purine metabolism. A combination of eight candidate metabolites, including uric acid, stearic acid, threitol, acetylgalactosamine, heptadecanoic acid, aspartic acid, xanthosine and hypoxanthine (adjusted P < 0.05 and fold-change >1.5 or <0.67), showed excellent discriminatory performance for the presence of asthma and the differentiation of poor-controlled or well-controlled asthma, and area under the curve values were >0.97 across groups. Enrichment analysis based on these targets revealed that the Fc receptor, intracellular steroid hormone receptor signalling pathway, DNA damage and fibroblast proliferation were involved in inflammation, immunity and stress-related biological progression of paediatric asthma. CONCLUSION Metabolomic analysis of patient urine combined with network-biology approaches allowed discrimination of asthma profiles and subtypes according to the metabolic patterns. The results provided insight into the potential mechanism of paediatric asthma.
Collapse
Affiliation(s)
- Jia-Lei Tao
- Department of Paediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Paediatric Respiratory Disease, Institute of Paediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan-Zhen Chen
- Oncology Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi-Gang Dai
- Department of Paediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Paediatric Respiratory Disease, Institute of Paediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Man Tian
- Respiratory Department, Nanjing Children's Hospital affiliated to Nanjing Medical University, Nanjing, China
| | - Shou-Chuan Wang
- Department of Paediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Paediatric Respiratory Disease, Institute of Paediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-Jun Shan
- Department of Paediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Paediatric Respiratory Disease, Institute of Paediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian-Jian Ji
- Department of Paediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Paediatric Respiratory Disease, Institute of Paediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li-Li Lin
- Department of Paediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Paediatric Respiratory Disease, Institute of Paediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei-Wei Li
- Department of Paediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Paediatric Respiratory Disease, Institute of Paediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bin Yuan
- Department of Paediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Paediatric Respiratory Disease, Institute of Paediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
158
|
Okekunle AP, Zhang M, Wang Z, Onwuka JU, Wu X, Feng R, Li C. Dietary branched-chain amino acids intake exhibited a different relationship with type 2 diabetes and obesity risk: a meta-analysis. Acta Diabetol 2019; 56:187-195. [PMID: 30413881 DOI: 10.1007/s00592-018-1243-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022]
Abstract
AIM To assess whether oral branched-chain amino acids (BCAA) supplementation exerts influence on circulating BCAA and the significance of dietary BCAA in type 2 diabetes and obesity risk. METHOD We searched PUBMED, EMBASE and Cochrane library through June 2018 to retrieve and screen published reports for inclusion in the meta-analysis after methodological assessment. Heterogeneity of studies was evaluated using I2 statistics, while sensitivity analysis and funnel plot were used to evaluate the potential effect of individual studies on the overall estimates and publication bias, respectively, using RevMan 5.3. RESULT Eight articles on randomized clinical trial of oral BCAA supplementation, and seven articles on dietary BCAA intake and type 2 diabetes/obesity risks were eligible for inclusion in our meta-analyses. Mean difference and 95% confidence interval (CI) of circulating leucine was 39.65 (3.54, 75.76) µmol/L, P = 0.03 post-BCAA supplementation. Also, OR and 95% CI for higher total BCAA intake and metabolic disorder risks were, 1.32 (1.14, 1.53), P = 0.0003-type 2 diabetes and 0.62 (0.47, 0.82), P = 0.0008-obesity. CONCLUSION Oral BCAA supplementation exerts modest influence on circulating leucine profile and higher total BCAA intake is positively and contra-positively associated with type 2 diabetes and obesity risk, respectively.
Collapse
Affiliation(s)
- Akinkunmi Paul Okekunle
- Department of General Surgery, Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Meng Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Zhen Wang
- Mudanjiang City Health Supervision, Mudanjiang, Heilongjiang, People's Republic of China
| | - Justina Ucheojor Onwuka
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Xiaoyan Wu
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Rennan Feng
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China.
| | - Chunlong Li
- Department of General Surgery, Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China.
| |
Collapse
|
159
|
Wang R, Guo S, Tian H, Huang Y, Yang Q, Zhao K, Kuo CH, Hong S, Chen P, Liu T. Hypoxic Training in Obese Mice Improves Metabolic Disorder. Front Endocrinol (Lausanne) 2019; 10:527. [PMID: 31440207 PMCID: PMC6694298 DOI: 10.3389/fendo.2019.00527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/17/2019] [Indexed: 12/29/2022] Open
Abstract
Hypoxic training has been reported to lower obesity morbidity without clear underlying mechanisms. This study investigates the effect of hypoxic training on metabolic changes, particularly, on liver metabolism of high fat diet (HFD)-induced obese mice. We compared the hypoxic training group with normoxic sedentary, normoxic training, and hypoxic sedentary groups. Body weight, fat mass, glucose tolerance and liver physiology were determined after 4 weeks intervention. In both normoxic training and hypoxic training groups, body weight was lower than the normoxic sedentary group, with less fat mass. Insulin sensitivity was improved after hypoxic training. Moreover, liver metabolomics revealed insights into the protective effect of hypoxic training on HFD-induced fatty liver. Taken together, these findings provide a molecular metabolic mechanism for hypoxic training.
Collapse
Affiliation(s)
- Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- *Correspondence: Ru Wang
| | - Shanshan Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Haili Tian
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yiru Huang
- State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Qin Yang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Kewei Zhao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Shangyu Hong
- State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Peijie Chen
| | - Tiemin Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- Tiemin Liu
| |
Collapse
|
160
|
Luo Y, Zhang X, Zhu Z, Jiao N, Qiu K, Yin J. Surplus dietary isoleucine intake enhanced monounsaturated fatty acid synthesis and fat accumulation in skeletal muscle of finishing pigs. J Anim Sci Biotechnol 2018; 9:88. [PMID: 30598820 PMCID: PMC6302484 DOI: 10.1186/s40104-018-0306-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 11/07/2018] [Indexed: 01/04/2023] Open
Abstract
Background Isoleucine (Ile) has been implicated in the regulation of energy homeostasis and adipogenesis. However, the impact of surplus dietary Ile intake on muscle lipogenesis remains unknown. The present study aimed to investigate the impact of dietary supplementation of extra-Ile on lipogenesis, fatty acid profile and lipid accumulation in skeletal muscle in finishing pigs. Methods Forty-eight barrows with initial body weight of 77.0 ± 0.1 kg were allotted to one of two groups and fed diets containing 0.39%, 0.53% standardized ileal digestible (SID) Ile with six replicates per treatment and four pigs per replicate for 30 d. Results Dietary Ile intake significantly improved the intramuscular fat (IMF) content and monounsaturated fatty acid (MUFA) concentration in the skeletal muscle (P < 0.05), and decreased the drip loss and shear force (P < 0.05) without influencing the growth performance of pigs (P > 0.05). Moreover, the phosphorylation of adenosine monophosphate activated protein kinase α (AMPKα) and acetyl coenzyme A carboxylase (ACC) proteins that monitor lipid metabolism were decreased in skeletal muscle of pigs offered extra-Ile diet (P < 0.05). The mRNA expression of adipose-specific genes adipocyte determination and differentiation factor 1 (ADD1), fatty acid synthase (FAS), and stearoyl-CoA desaturase (SCD) were upregulated and the activity of SCD was increased as well (P < 0.05). Conclusions Surplus dietary Ile intake could increase IMF accumulation and MUFA synthesis in skeletal muscle through depressing the phosphorylation of AMPKα-ACC and stimulating the expression and activity of SCD, and increasing the capability of lipogenesis in skeletal muscle. Electronic supplementary material The online version of this article (10.1186/s40104-018-0306-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanhong Luo
- 1State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, 100193 China
| | - Xin Zhang
- 1State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, 100193 China
| | - Zhengpeng Zhu
- Technology Research and Development Department, New Hope Liuhe Co. Ltd, Beijing, 100102 China
| | - Ning Jiao
- 1State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, 100193 China
| | - Kai Qiu
- 1State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, 100193 China
| | - Jingdong Yin
- 1State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
161
|
Górska-Warsewicz H, Laskowski W, Kulykovets O, Kudlińska-Chylak A, Czeczotko M, Rejman K. Food Products as Sources of Protein and Amino Acids-The Case of Poland. Nutrients 2018; 10:E1977. [PMID: 30551657 PMCID: PMC6315330 DOI: 10.3390/nu10121977] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/08/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to identify the food sources of protein and 18 amino acids (AAs) in the average Polish diet. The analysis was conducted based on the 2016 Household Budget Survey (HBS) on the consumption of food products from a representative sample of 38,886 households (n = 99,230). This survey was organized, conducted and controlled by the Central Statistical Office, Social Surveys and Living Conditions Statistics Department in cooperation with the Statistic Office in Łódź based on the recording of expenditures, quantitative consumption, and revenues in budget books for one month. 91 food products from 13 food categories (e.g., meat and meat products, grain products) consisting of 42 food groups (e.g., red meat, milk, cheese) were analyzed to determine protein and amino acid intake from these products. Three categories delivered 80.9% of total protein (meat and meat products: 38.9%; grain products: 23.9%; and milk and dairy products: 18.1%). The branched-chain amino acids (BCAAs: leucine, isoleucine and valine) were delivered mainly by meat and meat products (39.9%; 41.3% and 37.4%, respectively). Meat and meat products were also the most important source for other essential amino acids (EAAs: lysine 49.2%, histidine 46.6%, threonine 44.7%, tryptophan 41.4%, phenylalanine 35.3%, and methionine 44.2%). In terms of the contribution of the non-essential or conditionally essential amino acids to the average Polish diet, most important were grain products (for cysteine: 41.2%; glutamic acid: 33.8%; proline: 34.1%), and meat and meat products (for tyrosine: 38.3%; arginine: 46.1%; alanine: 48.7%; aspartic acid: 41.7%; glycine: 52.5%; serine: 33.6%). Five clusters were identified to assess the impact of socio-demographic and economic factors on the protein supply. The largest impact was observed for respondent education, degree of urbanization, study month, and usage of agricultural land. The shares of animal food in total protein supply amounted to 66.5% in total population and varied from 56.4% to 73.6% in different clusters.
Collapse
Affiliation(s)
- Hanna Górska-Warsewicz
- Department of Organization and Consumption Economics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences; 02-787 Warsaw, Poland.
| | - Wacław Laskowski
- Department of Organization and Consumption Economics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences; 02-787 Warsaw, Poland.
| | - Olena Kulykovets
- Department of Organization and Consumption Economics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences; 02-787 Warsaw, Poland.
| | - Anna Kudlińska-Chylak
- Department of Organization and Consumption Economics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences; 02-787 Warsaw, Poland.
| | - Maksymilian Czeczotko
- Department of Organization and Consumption Economics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences; 02-787 Warsaw, Poland.
| | - Krystyna Rejman
- Department of Organization and Consumption Economics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences; 02-787 Warsaw, Poland.
| |
Collapse
|
162
|
Blanchard PG, Moreira RJ, Castro É, Caron A, Côté M, Andrade ML, Oliveira TE, Ortiz-Silva M, Peixoto AS, Dias FA, Gélinas Y, Guerra-Sá R, Deshaies Y, Festuccia WT. PPARγ is a major regulator of branched-chain amino acid blood levels and catabolism in white and brown adipose tissues. Metabolism 2018; 89:27-38. [PMID: 30316815 DOI: 10.1016/j.metabol.2018.09.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 01/14/2023]
Abstract
OBJECTIVE We investigated whether PPARγ modulates adipose tissue BCAA metabolism, and whether this mediates the attenuation of obesity-associated insulin resistance induced by pharmacological PPARγ activation. METHODS Mice with adipocyte deletion of one or two PPARγ copies fed a chow diet and rats fed either chow, or high fat (HF) or HF supplemented with BCAA (HF/BCAA) diets treated with rosiglitazone (30 or 15 mg/kg/day, 14 days) were evaluated for glucose and BCAA homeostasis. RESULTS Adipocyte deletion of one PPARγ copy increased mice serum BCAA and reduced inguinal white (iWAT) and brown (BAT) adipose tissue BCAA incorporation into triacylglycerol, as well as mRNA levels of branched-chain aminotransferase (BCAT)2 and branched-chain α-ketoacid dehydrogenase (BCKDH) complex subunits. Adipocyte deletion of two PPARγ copies induced lipodystrophy, severe glucose intolerance and markedly increased serum BCAA. Rosiglitazone abolished the increase in serum BCAA induced by adipocyte PPARγ deletion. In rats, HF increased serum BCAA, such levels being further increased by BCAA supplementation. Rosiglitazone, independently of diet, lowered serum BCAA and upregulated iWAT and BAT BCAT and BCKDH activities. This was associated with a reduction in mTORC1-dependent inhibitory serine phosphorylation of IRS1 in skeletal muscle and whole-body insulin resistance evaluated by HOMA-IR. CONCLUSIONS PPARγ, through the regulation of both BAT and iWAT BCAA catabolism in lipoeutrophic mice and muscle insulin responsiveness and proteolysis in lipodystrophic mice, is a major determinant of circulating BCAA levels. PPARγ agonism, therefore, may improve whole-body and muscle insulin sensitivity by reducing blood BCAA, alleviating mTORC1-mediated inhibitory IRS1 phosphorylation.
Collapse
Affiliation(s)
- Pierre-Gilles Blanchard
- Department of Medicine, Faculty of Medicine, Quebec Heart & Lung Institute, Laval University, Quebec, Canada
| | - Rafael J Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Érique Castro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alexandre Caron
- Department of Medicine, Faculty of Medicine, Quebec Heart & Lung Institute, Laval University, Quebec, Canada
| | - Marie Côté
- Department of Medicine, Faculty of Medicine, Quebec Heart & Lung Institute, Laval University, Quebec, Canada
| | - Maynara L Andrade
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tiago E Oliveira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Milene Ortiz-Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Albert S Peixoto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - France Anne Dias
- Department of Biological Sciences, ICEB, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Yves Gélinas
- Department of Medicine, Faculty of Medicine, Quebec Heart & Lung Institute, Laval University, Quebec, Canada
| | - Renata Guerra-Sá
- Department of Biological Sciences, ICEB, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Yves Deshaies
- Department of Medicine, Faculty of Medicine, Quebec Heart & Lung Institute, Laval University, Quebec, Canada
| | - William T Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
163
|
Zhang W, Wu Y, Fan W, Chen H, Du H, Rao J. The pattern of plasma BCAA concentration and liver Bckdha gene expression in GK rats during T2D progression. Animal Model Exp Med 2018; 1:305-313. [PMID: 30891580 PMCID: PMC6388062 DOI: 10.1002/ame2.12038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/04/2018] [Accepted: 09/26/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND This study was conducted to measure the concentration of branched chain amino acid (BCAA) in different species and detect the expression pattern of the liver Bckdha gene in Goto-Kakizaki (GK) rats during type 2 diabetes (T2D) progression. METHODS We measured the concentration of BCAA in GK rats, induced T2D cynomolgus monkeys and T2D humans by liquid chromatography tandem mass spectrometry, and used real-time quantitative PCR to analyze the gene expression of Bckdha and Bckdk, which encode the rate-limiting enzymes in catabolism of, respectively, branched chain amino acids and branched chain α-keto acid dehydrogenase kinase. RESULTS In this study, we showed that GK rat BCAA concentrations were significantly reduced at 4 and 8 weeks (P < 0.05 and P < 0.01, respectively), while the expression of Bckdha in GK rat liver was increased at 4 and 8 weeks (1.62-fold and 1.93-fold, respectively). The BCAA concentrations were significantly reduced in diet-induced T2D cynomolgus monkeys (P < 0.01), but significantly increased in T2D humans (P < 0.001). CONCLUSIONS Our results showed that BCAA concentrations changed at different times and by different amounts in different species and during different periods of T2D progress, and the significant changes of BCAA concentration in the three species indicated that BCAA might participate in the progress of T2D. The results suggested that the increased expression of Bckdha in GK rat liver might partially explain the reduced plasma BCAA concentration at 4 and 8 weeks. Further studies are required to investigate the exact mechanism of BCAA changes in non-obese T2D.
Collapse
Affiliation(s)
- Wenlu Zhang
- School of Biological and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| | - Yu'e Wu
- Guangdong Key Laboratory of Laboratory AnimalsGuangzhouChina
| | - Wei Fan
- School of Biological and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| | | | - Hongli Du
- School of Biological and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| | - Junhua Rao
- Guangdong Key Laboratory of Animal Conservation and Resource UtilizationGuangdong Public Laboratory of Wild Animal Conservation and UtilizationGuangdong Institute of Applied Biological ResourcesGuangzhouChina
| |
Collapse
|
164
|
Is the Response of Tumours Dependent on the Dietary Input of Some Amino Acids or Ratios among Essential and Non-Essential Amino Acids? All That Glitters Is Not Gold. Int J Mol Sci 2018; 19:ijms19113631. [PMID: 30453654 PMCID: PMC6275049 DOI: 10.3390/ijms19113631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/08/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023] Open
Abstract
Energy production is the main task of the cancer cell metabolism because the costs of duplicating are enormous. Although energy is derived in cells by dismantling the carbon-to-carbon bonds of any macronutrient, cancer nutritional needs for energetic purposes have been studied primarily as being dependent on glycolysis. Since the end of the last century, the awareness of the dependence of cancer metabolism on amino acids not only for protein synthesis but also to match energy needs has grown. The roles of specific amino acids such as glutamine, glycine and serine have been explored in different experimental conditions and reviewed. Moreover, epidemiological evidence has revealed that some amino acids used as a supplement for therapeutic reasons, particularly the branched-chain ones, may reduce the incidence of liver cancer and a specific molecular mechanism has been proposed as functional to their protective action. By contrast and puzzling clinicians, the metabolomic signature of some pathologies connected to an increased risk of cancer, such as prolonged hyperinsulinemia in insulin-resistant patients, is identified by elevated plasma levels of the same branched-chain amino acids. Most recently, certain formulations of amino acids, deeply different from the amino acid compositions normally present in foods, have shown the power to master cancer cells epigenetically, slowing growth or driving cancer cells to apoptotic death, while being both beneficial for normal cell function and the animal’s health and lifespan. In this review, we will analyze and try to disentangle some of the many knots dealing with the complexities of amino acid biology and links to cancer metabolism.
Collapse
|
165
|
Duan Y, Zeng L, Zheng C, Song B, Li F, Kong X, Xu K. Inflammatory Links Between High Fat Diets and Diseases. Front Immunol 2018; 9:2649. [PMID: 30483273 PMCID: PMC6243058 DOI: 10.3389/fimmu.2018.02649] [Citation(s) in RCA: 302] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
In recent years, chronic overnutrition, such as consumption of a high-fat diet (HFD), has been increasingly viewed as a significant modifiable risk factor for diseases such as diabetes and certain types of cancer. However, the mechanisms by which HFDs exert adverse effects on human health remains poorly understood. Here, this paper will review the recent scientific literature about HFD-induced inflammation and subsequent development of diseases and cancer, with an emphasis on mechanisms involved. Given the expanding global epidemic of excessive HFD intake, understanding the impacts of a HFD on these medical conditions, gaining great insights into possible underlying mechanisms, and developing effective therapeutic strategies are of great importance.
Collapse
Affiliation(s)
- Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
| | - Liming Zeng
- Science College of Jiangxi Agricultural University, Nanchang, China
| | - Changbing Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, China
| | - Bo Song
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
| | - Kang Xu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
| |
Collapse
|
166
|
Koh A, Molinaro A, Ståhlman M, Khan MT, Schmidt C, Mannerås-Holm L, Wu H, Carreras A, Jeong H, Olofsson LE, Bergh PO, Gerdes V, Hartstra A, de Brauw M, Perkins R, Nieuwdorp M, Bergström G, Bäckhed F. Microbially Produced Imidazole Propionate Impairs Insulin Signaling through mTORC1. Cell 2018; 175:947-961.e17. [DOI: 10.1016/j.cell.2018.09.055] [Citation(s) in RCA: 511] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/30/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023]
|
167
|
Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev 2018; 98:2133-2223. [PMID: 30067154 PMCID: PMC6170977 DOI: 10.1152/physrev.00063.2017] [Citation(s) in RCA: 1701] [Impact Index Per Article: 243.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 12/15/2022] Open
Abstract
The 1921 discovery of insulin was a Big Bang from which a vast and expanding universe of research into insulin action and resistance has issued. In the intervening century, some discoveries have matured, coalescing into solid and fertile ground for clinical application; others remain incompletely investigated and scientifically controversial. Here, we attempt to synthesize this work to guide further mechanistic investigation and to inform the development of novel therapies for type 2 diabetes (T2D). The rational development of such therapies necessitates detailed knowledge of one of the key pathophysiological processes involved in T2D: insulin resistance. Understanding insulin resistance, in turn, requires knowledge of normal insulin action. In this review, both the physiology of insulin action and the pathophysiology of insulin resistance are described, focusing on three key insulin target tissues: skeletal muscle, liver, and white adipose tissue. We aim to develop an integrated physiological perspective, placing the intricate signaling effectors that carry out the cell-autonomous response to insulin in the context of the tissue-specific functions that generate the coordinated organismal response. First, in section II, the effectors and effects of direct, cell-autonomous insulin action in muscle, liver, and white adipose tissue are reviewed, beginning at the insulin receptor and working downstream. Section III considers the critical and underappreciated role of tissue crosstalk in whole body insulin action, especially the essential interaction between adipose lipolysis and hepatic gluconeogenesis. The pathophysiology of insulin resistance is then described in section IV. Special attention is given to which signaling pathways and functions become insulin resistant in the setting of chronic overnutrition, and an alternative explanation for the phenomenon of ‟selective hepatic insulin resistanceˮ is presented. Sections V, VI, and VII critically examine the evidence for and against several putative mediators of insulin resistance. Section V reviews work linking the bioactive lipids diacylglycerol, ceramide, and acylcarnitine to insulin resistance; section VI considers the impact of nutrient stresses in the endoplasmic reticulum and mitochondria on insulin resistance; and section VII discusses non-cell autonomous factors proposed to induce insulin resistance, including inflammatory mediators, branched-chain amino acids, adipokines, and hepatokines. Finally, in section VIII, we propose an integrated model of insulin resistance that links these mediators to final common pathways of metabolite-driven gluconeogenesis and ectopic lipid accumulation.
Collapse
Affiliation(s)
- Max C Petersen
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| | - Gerald I Shulman
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| |
Collapse
|
168
|
Wei S, Zhao J, Wang S, Huang M, Wang Y, Chen Y. Intermittent administration of a leucine-deprived diet is able to intervene in type 2 diabetes in db/db mice. Heliyon 2018; 4:e00830. [PMID: 30294696 PMCID: PMC6169254 DOI: 10.1016/j.heliyon.2018.e00830] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/28/2018] [Accepted: 09/25/2018] [Indexed: 12/19/2022] Open
Abstract
Continuous deficiency of leucine, a member of branched chain amino acids, is able to reduce obesity and improve insulin sensitivity in mice. Intermittent fasting has been shown to be effective in intervention of metabolic disorders including diabetes. However, it is unknown whether intermittent leucine deprivation can intervene in type 2 diabetes progression. We administered leucine-deprived food every other day in db/db mice, a type 2 diabetes model, for a total of eight weeks to investigate the interventional effect of intermittent leucine deprivation. Intermittent leucine deprivation significantly reduces hyperglycemia in db/db mice independent of body weight change, together with improvement in glucose tolerance and insulin sensitivity. The total area of pancreatic islets and β cell number are increased by intermittent leucine deprivation, accompanied by elevated proliferation of β cells. The expression level of Ngn3, a β cell progenitor marker, is also increased by leucine-deleted diet. However, leucine deficiency engenders an increase in fat mass and a decrease in lean mass. Lipid accumulation in the liver is elevated and liver function is compromised by leucine deprivation. In addition, leucine deficiency alters the composition of gut microbiota. Leucine deprivation increases the genera of Bacteroides, Alloprevotella, Rikenellaceae while reduces Lachnospiraceae and these changes are correlated with fasting blood glucose levels of the mice. Collectively, our data demonstrated that intermittent leucine deprivation can intervene in the progression of type 2 diabetes in db/db mice. However, leucine deficiency reduces lean mass and aggravates hepatic steatosis in the mouse.
Collapse
Affiliation(s)
- Siying Wei
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jingyu Zhao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shuo Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Meiqin Huang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yining Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yan Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
169
|
Brunetta HS, de Camargo CQ, Nunes EA. Does l-leucine supplementation cause any effect on glucose homeostasis in rodent models of glucose intolerance? A systematic review. Amino Acids 2018; 50:1663-1678. [PMID: 30264171 DOI: 10.1007/s00726-018-2658-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 09/21/2018] [Indexed: 02/08/2023]
|
170
|
Histopathological Changes Caused by Inflammation and Oxidative Stress in Diet-Induced-Obese Mouse following Experimental Lung Injury. Sci Rep 2018; 8:14250. [PMID: 30250258 PMCID: PMC6155136 DOI: 10.1038/s41598-018-32420-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/09/2018] [Indexed: 01/03/2023] Open
Abstract
Obesity has been identified as a risk factor for adverse outcomes of various diseases. However, information regarding the difference between the response of obese and normal subjects to pulmonary inflammation is limited. Mice were fed with the control or high-fat diet to establish the lean and diet-induced obese (DIO) mice. Escherichia coli was intranasally instilled to reproduce non-fatal acute pneumonia model. After infection, serum samples and lung tissues were obtained at 0, 12, 24, and 72 h. DIO mice exhibited increased serum triglyceride (TG) and total cholesterol (TC) contents as well as pulmonary resistin, IL-6, and leptin levels compared with lean mice. E. coli infection caused an acute suppurative inflammation in the lung with increased lung index and serum TG and TC contents; elevated pulmonary tumor necrosis factor-α, interleukin (IL)-1β, IL-6, IL-8, and leptin levels; and oxidative stress in mice. Interestingly, almost all the above-mentioned parameters peaked at 12 h after infection in the lean-E. coli group but after 12 h in the DIO-E. coli group. These results indicated that the DIO mice presented a delayed inflammatory response and oxidative stress in non-fatal acute pneumonia induced by E. coli infection.
Collapse
|
171
|
Resistance training alone or combined with leucine supplementation improves the serum lipid profile of diabetic rats, whereas leucine alone does not. Endocr Regul 2018; 52:146-151. [DOI: 10.2478/enr-2018-0018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Objectives. Diabetes mellitus is associated with dyslipidemia, which contributes to a higher risk of thrombosis, atherosclerosis and cardiovascular disease. This study evaluated the effects of leucine and resistance training on the serum lipid profile in rats with streptozotocin-induced diabetes for 8 weeks.
Methods. Wistar rats with neonatal streptozotocin-induced diabetes were treated with leucine supplementation (5%) and/or resistance training (3 days per week) for 8 weeks, and divided in DL (diabetic and leucine), DT (diabetic and resistance training group) and DLT (diabetic, leucine and resistance training) groups. Others 2 groups of animals received isonitrogen AIN-93M diet that was defined as a control diet: group D (diabetic untreated) and group C (non-diabetic).
Results. The decrease in serum total cholesterol and increase in high-density lipoprotein cholesterol (HDL-C) was observed in the resistance training-induced diabetic rats when compared with diabetic rats. There was no change in serum lipid profile in leucine-supplemented diabetic rats and no synergistic effect of leucine and resistance training. The fasting glucose levels were reduced in all animals treated compared to D group.
Conclusion. The diabetic trained rats demonstrate a protective effect of resistance training on the serum lipid profile.
Collapse
|
172
|
Tajiri K, Shimizu Y. Branched-chain amino acids in liver diseases. Transl Gastroenterol Hepatol 2018; 3:47. [PMID: 30148232 PMCID: PMC6088198 DOI: 10.21037/tgh.2018.07.06] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/06/2018] [Indexed: 02/05/2023] Open
Abstract
Branched chain amino acids (BCAAs) are involved in various bioprocess such as protein metabolism, gene expression, insulin resistance and proliferation of hepatocytes. BCAAs have also been reported to suppress the growth of hepatocellular carcinoma (HCC) cells in vitro and to be required for immune cells to perform the function. In advanced cirrhotic patients, it has been clarified that serum concentrations of BCAA are decreased, whereas those of aromatic amino acids (AAAs) are increased. These alterations are thought to be the causes of hepatic encephalopathy (HE), sarcopenia and hepatocarcinogenesis and may be associated with the poor prognosis of patients with these conditions. Administration of BCAA-rich medicines has shown positive results in patients with cirrhosis.
Collapse
Affiliation(s)
- Kazuto Tajiri
- Department of Gastroenterology, Toyama University Hospital, Toyama, Japan
| | | |
Collapse
|
173
|
Chen R, Liao C, Guo Q, Wu L, Zhang L, Wang X. Combined systems pharmacology and fecal metabonomics to study the biomarkers and therapeutic mechanism of type 2 diabetic nephropathy treated with Astragalus and Leech. RSC Adv 2018; 8:27448-27463. [PMID: 35540008 PMCID: PMC9083881 DOI: 10.1039/c8ra04358b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/19/2018] [Indexed: 02/05/2023] Open
Abstract
In our study, systems pharmacology was used to predict the molecular targets of Astragalus and Leech, and explore the therapeutic mechanism of type 2 diabetic nephropathy (T2DN) treated with Astragalus and Leech. Simultaneously, to reveal the systemic metabolic changes and biomarkers associated with T2DN, we performed 1H NMR-based metabonomics and multivariate analysis to analyze fecal samples obtained from model T2DN rats. In addition, ELISA kits and histopathological studies were used to examine biochemical parameters and kidney tissue, respectively. Striking differences in the Pearson's correlation of 22 biomarkers and 9 biochemical parameters were also observed among control, T2DN and treated rats. Results of systems pharmacology analysis revealed that 9 active compounds (3,9-di-O-methylnissolin; (6aR,11aR)-9,10-dimethoxy-6a,11a-dihydro-6H-benzofurano[3,2-c]chromen-3-ol; hirudin; l-isoleucine; phenylalanine; valine; hirudinoidine A-C) and 9 target proteins (l-serine dehydratase; 3-hydroxyacyl-CoA dehydrogenase; tyrosyl-tRNA synthetase; tryptophanyl-tRNA synthetase; branched-chain amino acid aminotransferase; acetyl-CoA C-acetyltransferase; isovaleryl-CoA dehydrogenase; pyruvate dehydrogenase E1 component alpha subunit; hydroxyacylglutathione hydrolase) of Astragalus and Leech were closely associated with the treatment of T2DN. Using fecal metabonomics analysis, 22 biomarkers were eventually found to be closely associated with the occurrence of T2DN. Combined with systems pharmacology and fecal metabonomics, these biomarkers were found to be mainly associated with 6 pathways, involving amino acid metabolism (leucine, valine, isoleucine, alanine, lysine, glutamate, taurine, phenylalanine, tryptophan); energy metabolism (lactate, succinate, creatinine, α-glucose, glycerol); ketone body and fatty acid metabolism (3-hydroxybutyrate, acetate, n-butyrate, propionate); methylamine metabolism (dimethylamine, trimethylamine); and secondary bile acid metabolism and urea cycle (deoxycholate, citrulline). The underlying mechanisms of action included protection of the liver and kidney, enhancement of insulin sensitivity and antioxidant activity, and improvement of mitochondrial function. To the best of our knowledge, this is the first time that systems pharmacology combined with fecal metabonomics has been used to study T2DN. 6 metabolites (n-butyrate, deoxycholate, propionate, tryptophan, taurine and glycerol) associated with T2DN were newly discovered in fecal samples. These 6 metabolites were mainly derived from the intestinal flora, and related to amino acid metabolism, fatty acid metabolism, and secondary bile acid metabolism. We hope the results of this study could be inspirational and helpful for further exploration of T2DN treatment. Meanwhile, our results highlighted that exploring the biomarkers of T2DN and therapeutic mechanisms of Traditional Chinese Medicine (TCM) formulas on T2DN by combining systems pharmacology and fecal metabonomics methods was a promising strategy.
Collapse
Affiliation(s)
- Ruiqun Chen
- School of Basic Courses, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China +86-20-39352186 +86-20-39352195
| | - Chengbin Liao
- School of Basic Courses, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China +86-20-39352186 +86-20-39352195
| | - Qian Guo
- School of Basic Courses, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China +86-20-39352186 +86-20-39352195
| | - Lirong Wu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China
| | - Lei Zhang
- School of Basic Courses, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China +86-20-39352186 +86-20-39352195
| | - Xiufeng Wang
- School of Basic Courses, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China +86-20-39352186 +86-20-39352195
| |
Collapse
|
174
|
Regulation of Metabolic Disease-Associated Inflammation by Nutrient Sensors. Mediators Inflamm 2018; 2018:8261432. [PMID: 30116154 PMCID: PMC6079375 DOI: 10.1155/2018/8261432] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/21/2018] [Accepted: 06/14/2018] [Indexed: 12/15/2022] Open
Abstract
Visceral obesity is frequently associated with the development of type 2 diabetes (T2D), a highly prevalent chronic disease that features insulin resistance and pancreatic β-cell dysfunction as important hallmarks. Recent evidence indicates that the chronic, low-grade inflammation commonly associated with visceral obesity plays a major role connecting the excessive visceral fat deposition with the development of insulin resistance and pancreatic β-cell dysfunction. Herein, we review the mechanisms by which nutrients modulate obesity-associated inflammation.
Collapse
|
175
|
A ketogenic amino acid rich diet benefits mitochondrial homeostasis by altering the AKT/4EBP1 and autophagy signaling pathways in the gastrocnemius and soleus. Biochim Biophys Acta Gen Subj 2018; 1862:1547-1555. [DOI: 10.1016/j.bbagen.2018.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/16/2018] [Accepted: 03/09/2018] [Indexed: 12/14/2022]
|
176
|
Chen KH, Chen YL, Tang HY, Hung CC, Yen TH, Cheng ML, Shiao MS, Chen JK. Dietary Leucine Supplement Ameliorates Hepatic Steatosis and Diabetic Nephropathy in db/db Mice. Int J Mol Sci 2018; 19:1921. [PMID: 29966331 PMCID: PMC6073714 DOI: 10.3390/ijms19071921] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/25/2018] [Accepted: 06/29/2018] [Indexed: 12/14/2022] Open
Abstract
Dietary leucine supplementation has been explored for the therapeutic intervention of obesity and obesity-induced metabolic dysfunctions. In this study, we aim to examine the effects of dietary leucine supplementation in db/db mice. Mice were treated with or without leucine (1.5% w/v) in drinking water for 12 weeks. The leucine supplement was found to reduce insulin resistance and hepatic steatosis in db/db mice. Using Nuclear Magnetic Resonance (NMR)-based lipidomics, we found that the reduction of hepatic triglyceride synthesis was correlated with attenuated development of fatty liver. In addition, diabetic nephropathy (DN) was also ameliorated by leucine. Using liquid chromatography⁻time-of-flight mass spectrometry (LC-TOF MS)-based urine metabolomics analysis, we found that the disturbance of the tricarboxylic acid (TCA) cycle was reversed by leucine. The beneficial effects of leucine were probably due to AMP-activated protein kinase (AMPK) activation in the liver and kidneys of db/db mice. Thus, dietary leucine supplementation may potentially be a nutritional intervention to attenuate hepatic steatosis and early DN in type II diabetes.
Collapse
Affiliation(s)
- Kuan-Hsing Chen
- Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan 333, Taiwan.
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
- Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan.
- Metabolomics Core Laboratory, Chang Gung University, Taoyuan 333, Taiwan.
- Clinical Phenome Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan.
| | - Yi-Ling Chen
- Department of Physiology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| | - Hsiang-Yu Tang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
- Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan.
- Metabolomics Core Laboratory, Chang Gung University, Taoyuan 333, Taiwan.
- Clinical Phenome Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan.
| | - Cheng-Chieh Hung
- Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan 333, Taiwan.
| | - Tzung-Hai Yen
- Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan 333, Taiwan.
| | - Mei-Ling Cheng
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
- Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan.
- Metabolomics Core Laboratory, Chang Gung University, Taoyuan 333, Taiwan.
- Clinical Phenome Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan.
| | - Ming-Shi Shiao
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
- Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan.
- Metabolomics Core Laboratory, Chang Gung University, Taoyuan 333, Taiwan.
- Clinical Phenome Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan.
| | - Jan-Kan Chen
- Department of Physiology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| |
Collapse
|
177
|
Asghari G, Farhadnejad H, Teymoori F, Mirmiran P, Tohidi M, Azizi F. High dietary intake of branched-chain amino acids is associated with an increased risk of insulin resistance in adults. J Diabetes 2018; 10:357-364. [PMID: 29281182 DOI: 10.1111/1753-0407.12639] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/29/2017] [Accepted: 12/22/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate the association between branched-chain amino acid (BCAA) intake and markers of insulin metabolism in adults. METHODS This cohort study was conducted within the framework of the Tehran Lipid and Glucose Study on 1205 subjects, aged ≥20 years, who were followed-up for a mean of 2.3 years. Dietary intake of BCAAs, including valine, leucine, and isoleucine, was determined using a valid and reliable food frequency questionnaire. Hyperinsulinemia, β-cell dysfunction, insulin resistance (IR), and insulin insensitivity were determined according to optimal cut-off values. Logistic regression was to estimate the occurrence of IR across tertiles of BCAA intake. RESULTS The mean (± SD) age and BCAA intake of participants (43% male) at baseline were 42.7 ± 13.1 years and 13.8 ± 5.1 g/day, respectively. The incidence of hyperinsulinemia, β-cell dysfunction, insulin insensitivity, and IR was 19.5%, 24.0%, 28.0%, and 12.5%, respectively. After adjustment for confounding variables, subjects in the highest tertile for total BCAAs (odds ratio [OR] 1.67; 95% confidence interval [CI] 1.03-2.71), leucine (OR 1.75; 95% CI 1.09-2.82), and valine (OR 1.61; 95% CI 1.01-2.60) intake had a greater risk of incident IR than subjects in the lowest tertile. A higher intake of isoleucine was not associated with risk of incident IR. There was no association of total BCAAs, leucine, isoleucine, and valine intake with the risk of hyperinsulinemia, insulin insensitivity, or β-cell dysfunction. CONCLUSION The findings of this study support the hypothesis that higher intakes of BCAAs may have adverse effects on the development of IR.
Collapse
Affiliation(s)
- Golaleh Asghari
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Farhadnejad
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshad Teymoori
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Tohidi
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
178
|
Grajeda-Iglesias C, Rom O, Hamoud S, Volkova N, Hayek T, Abu-Saleh N, Aviram M. Leucine supplementation attenuates macrophage foam-cell formation: Studies in humans, mice, and cultured macrophages. Biofactors 2018; 44:245-262. [PMID: 29399895 DOI: 10.1002/biof.1415] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/06/2018] [Accepted: 01/09/2018] [Indexed: 01/07/2023]
Abstract
Whereas atherogenicity of dietary lipids has been largely studied, relatively little is known about the possible contribution of dietary amino acids to macrophage foam-cell formation, a hallmark of early atherogenesis. Recently, we showed that leucine has antiatherogenic properties in the macrophage model system. In this study, an in-depth investigation of the role of leucine in macrophage lipid metabolism was conducted by supplementing humans, mice, or cultured macrophages with leucine. Macrophage incubation with serum obtained from healthy adults supplemented with leucine (5 g/d, 3 weeks) significantly decreased cellular cholesterol mass by inhibiting the rate of cholesterol biosynthesis and increasing cholesterol efflux from macrophages. Similarly, leucine supplementation to C57BL/6 mice (8 weeks) resulted in decreased cholesterol content in their harvested peritoneal macrophages (MPM) in relation with reduced cholesterol biosynthesis rate. Studies in J774A.1 murine macrophages revealed that leucine dose-dependently decreased cellular cholesterol and triglyceride mass. Macrophages treated with leucine (0.2 mM) showed attenuated uptake of very low-density lipoproteins and triglyceride biosynthesis rate, with a concurrent down-regulation of diacylglycerol acyltransferase-1, a key enzyme catalyzing triglyceride biosynthesis in macrophages. Similar effects were observed when macrophages were treated with α-ketoisocaproate, a key leucine metabolite. Finally, both in vivo and in vitro leucine supplementation significantly improved macrophage mitochondrial respiration and ATP production. The above studies, conducted in human, mice, and cultured macrophages, highlight a protective role for leucine attenuating macrophage foam-cell formation by mechanisms related to the metabolism of cholesterol, triglycerides, and energy production. © 2018 BioFactors, 44(3):245-262, 2018.
Collapse
Affiliation(s)
- Claudia Grajeda-Iglesias
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Oren Rom
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Shadi Hamoud
- Department of Internal Medicine E, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Nina Volkova
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tony Hayek
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Internal Medicine E, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Niroz Abu-Saleh
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Michael Aviram
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
179
|
Gannon NP, Schnuck JK, Vaughan RA. BCAA Metabolism and Insulin Sensitivity - Dysregulated by Metabolic Status? Mol Nutr Food Res 2018; 62:e1700756. [PMID: 29377510 DOI: 10.1002/mnfr.201700756] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/29/2017] [Indexed: 12/18/2022]
Abstract
Branched-chain amino acids (BCAAs) appear to influence several synthetic and catabolic cellular signaling cascades leading to altered phenotypes in mammals. BCAAs are most notably known to increase protein synthesis through modulating protein translation, explaining their appeal to resistance and endurance athletes for muscle hypertrophy, expedited recovery, and preservation of lean body mass. In addition to anabolic effects, BCAAs may increase mitochondrial content in skeletal muscle and adipocytes, possibly enhancing oxidative capacity. However, elevated circulating BCAA levels have been correlated with severity of insulin resistance. It is hypothesized that elevated circulating BCAAs observed in insulin resistance may result from dysregulated BCAA degradation. This review summarizes original reports that investigated the ability of BCAAs to alter glucose uptake in consequential cell types and experimental models. The review also discusses the interplay of BCAAs with other metabolic factors, and the role of excess lipid (and possibly energy excess) in the dysregulation of BCAA catabolism. Lastly, this article provides a working hypothesis of the mechanism(s) by which lipids may contribute to altered BCAA catabolism, which often accompanies metabolic disease.
Collapse
Affiliation(s)
| | - Jamie K Schnuck
- School of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Roger A Vaughan
- Department of Exercise Science, High Point University, High Point, NC
| |
Collapse
|
180
|
Gender-Associated Impact of Early Leucine Supplementation on Adult Predisposition to Obesity in Rats. Nutrients 2018; 10:nu10010076. [PMID: 29329236 PMCID: PMC5793304 DOI: 10.3390/nu10010076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/15/2017] [Accepted: 01/06/2018] [Indexed: 12/14/2022] Open
Abstract
Early nutrition plays an important role in development and may constitute a relevant contributor to the onset of obesity in adulthood. The aim of this study was to evaluate the long-term impact of maternal leucine (Leu) supplementation during lactation on progeny in rats. A chow diet, supplemented with 2% Leu, was supplied during lactation (21 days) and, from weaning onwards, was replaced by a standard chow diet. Then, at adulthood (6 months of age), this was replaced with hypercaloric diets (either with high-fat (HF) or high-carbohydrate (HC) content), for two months, to induce obesity. Female offspring from Leu-supplemented dams showed higher increases in body weight and in body fat (62%) than their respective controls; whereas males were somehow protected (15% less fat than the corresponding controls). This profile in Leu-females was associated with altered neuronal architecture at the paraventricular nucleus (PVN), involving neuropeptide Y (NPY) fibers and impaired expression of neuropeptides and factors of the mTOR signaling pathway in the hypothalamus. Interestingly, leptin and adiponectin expression in adipose tissue at weaning and at the time before the onset of obesity could be defined as early biomarkers of metabolic disturbance, predisposing towards adult obesity under the appropriate environment.
Collapse
|
181
|
Delplancke TDJ, de Seymour JV, Tong C, Sulek K, Xia Y, Zhang H, Han TL, Baker PN. Analysis of sequential hair segments reflects changes in the metabolome across the trimesters of pregnancy. Sci Rep 2018; 8:36. [PMID: 29311683 PMCID: PMC5758601 DOI: 10.1038/s41598-017-18317-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/08/2017] [Indexed: 01/03/2023] Open
Abstract
The hair metabolome has been recognized as a valuable source of information in pregnancy research, as it provides stable metabolite information that could assist with studying biomarkers or metabolic mechanisms of pregnancy and its complications. We tested the hypothesis that hair segments could be used to reflect a metabolite profile containing information from both endogenous and exogenous compounds accumulated during the nine months of pregnancy. Segments of hair samples corresponding to the trimesters were collected from 175 pregnant women in New Zealand. The hair samples were analysed using gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry. In healthy pregnancies, 56 hair metabolites were significantly different between the first and second trimesters, while 62 metabolites were different between the first and third trimesters (p < 0.05). Additionally, three metabolites in the second trimester hair samples were significantly different between healthy controls and women who delivered small-for-gestational-age infants (p < 0.05), and ten metabolites in third trimester hair were significantly different between healthy controls and women with gestational diabetes mellitus (p < 0.01). The findings from this pilot study provide improved insight into the changes of the hair metabolome during pregnancy, as well as highlight the potential of the maternal hair metabolome to differentiate pregnancy complications from healthy pregnancies.
Collapse
Affiliation(s)
- Thibaut D J Delplancke
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- International Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | | | - Chao Tong
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- International Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Karolina Sulek
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej, 3b, 6.6.24, Copenhagen, Denmark
| | - Yinyin Xia
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Hua Zhang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- International Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Ting-Li Han
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- International Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.
- Liggins Institute, University of Auckland, Auckland, New Zealand.
| | - Philip N Baker
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- International Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
182
|
Liao YH, Chen CY, Chen CN, Wu CY, Tsai SC. An Amino Acids Mixture Attenuates Glycemic Impairment but not Affects Adiposity Development in Rats Fed with AGEs-containing Diet. Int J Med Sci 2018; 15:176-187. [PMID: 29333102 PMCID: PMC5765731 DOI: 10.7150/ijms.22008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/18/2017] [Indexed: 12/17/2022] Open
Abstract
Background: Unhealthy western dietary patterns lead to over-consumption of fat and advanced glycation end-products (AGEs), and these account for the developments of obesity, diabetes, and related metabolic disorders. Certain amino acids (AAs) have been recently demonstrated to improve glycemia and reduce adiposity. Therefore, our primary aims were to examine whether feeding an isoleucine-enriched AA mixture (4.5% AAs; Ile: 3.0%, Leu: 1.0%, Val: 0.2%, Arg: 0.3% in the drinking water) would affect adiposity development and prevent the impairments of glycemic control in rats fed with the fat/AGE-containing diet (FAD). Methods: Twenty-four male Sprague-Dawley rats were assigned into 1) control diet (CD, N = 8), 2) FAD diet (FAD, N = 8), and 3) FAD diet plus AA (FAD/AA, N = 8). After 9-weeks intervention, the glycemic control capacity (glucose level, ITT, and HbA1c levels), body composition, and spontaneous locomotor activity (SLA) were evaluated, and the fasting blood samples were collected for analyzing metabolic related hormones (insulin, leptin, adiponectin, and corticosterone). The adipose tissues were also surgically collected and weighed. Results: FAD rats showed significant increases in weight gain, body fat %, blood glucose, HbA1c, leptin, and area under the curve of glucose during insulin tolerance test (ITT-glucose-AUC) in compared with the CD rats. However, the fasting levels of blood glucose, HbA1c, leptin, and ITT-glucose-AUC did not differ between CD and FAD/AA rats. FAD/AA rats also showed a greater increase in serum testosterone. Conclusion: The amino acid mixture consisting of Ile, Leu, Val, and Arg showed clear protective benefits on preventing the FAD-induced obesity and impaired glycemic control.
Collapse
Affiliation(s)
- Yi-Hung Liao
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan
| | - Chung-Yu Chen
- Department of Exercise and Health Sciences, University of Taipei, Taipei 11153, Taiwan
| | - Chiao-Nan Chen
- Department of Physical Therapy and Assistive Technology, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei City 112, Taiwan
| | - Chia-Ying Wu
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan
| | - Shiow-Chwen Tsai
- Institute of Sports Sciences, University of Taipei, Taipei 11153, Taiwan
| |
Collapse
|
183
|
Branched-chain amino acid ratios modulate lipid metabolism in adipose tissues of growing pigs. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
184
|
Dalle S, Rossmeislova L, Koppo K. The Role of Inflammation in Age-Related Sarcopenia. Front Physiol 2017; 8:1045. [PMID: 29311975 PMCID: PMC5733049 DOI: 10.3389/fphys.2017.01045] [Citation(s) in RCA: 439] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/29/2017] [Indexed: 12/25/2022] Open
Abstract
Many physiological changes occur with aging. These changes often, directly or indirectly, result in a deterioration of the quality of life and even in a shortening of life expectancy. Besides increased levels of reactive oxygen species, DNA damage and cell apoptosis, another important factor affecting the aging process involves a systemic chronic low-grade inflammation. This condition has already been shown to be interrelated with several (sub)clinical conditions, such as insulin resistance, atherosclerosis and Alzheimer's disease. Recent evidence, however, shows that chronic low-grade inflammation also contributes to the loss of muscle mass, strength and functionality, referred to as sarcopenia, as it affects both muscle protein breakdown and synthesis through several signaling pathways. Classic interventions to counteract age-related muscle wasting mainly focus on resistance training and/or protein supplementation to overcome the anabolic inflexibility from which elderly suffer. Although the elderly benefit from these classic interventions, the therapeutic potential of anti-inflammatory strategies is of great interest, as these might add up to/support the anabolic effect of resistance exercise and/or protein supplementation. In this review, the molecular interaction between inflammation, anabolic sensitivity and muscle protein metabolism in sarcopenic elderly will be addressed.
Collapse
Affiliation(s)
- Sebastiaan Dalle
- Exercise Physiology Research Group, Department of Kinesiology, KU Leuven, Leuven, Belgium
| | - Lenka Rossmeislova
- Department for the Study of Obesity and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Katrien Koppo
- Exercise Physiology Research Group, Department of Kinesiology, KU Leuven, Leuven, Belgium
| |
Collapse
|
185
|
Okekunle AP, Wu X, Duan W, Feng R, Li Y, Sun C. Dietary Intakes of Branched-Chained Amino Acid and Risk for Type 2 Diabetes in Adults: The Harbin Cohort Study on Diet, Nutrition and Chronic Non-Communicable Diseases Study. Can J Diabetes 2017; 42:484-492.e7. [PMID: 29625864 DOI: 10.1016/j.jcjd.2017.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 10/25/2017] [Accepted: 12/05/2017] [Indexed: 01/04/2023]
Abstract
OBJECTIVES To assess the association between branched-chain amino acid (BCAA) intakes and risk for type 2 diabetes. METHODS Dietary intakes were assessed in 1,804 people with type 2 diabetes and 7,020 controls with information on nutrient intakes, including BCAAs derived from Chinese food composition tables. Principal component analysis was used to identify dietary patterns (DPs) and multivariable-adjusted odds ratios (ORs) of type 2 diabetes, and 95% confidence intervals (CIs) by quartiles of BCAAs were estimated using logistic regression with 2-sided p<0.05. RESULTS Multivariable-adjusted ORs and 95% CI were 1.00, 1.297 (1.087 to 1.548), 1.380 (1.153 to 1.652) and 1.561 (1.291 to 1.888), p<0.0001, across energy-adjusted quartiles of total BCAA intakes. We identified 6 DPs: wheaten foods; vegetables, fruit and milk; beverages and snacks; potatoes, soybean and egg; meat; and fish. Multivariable-adjusted ORs and 95% CI across quartiles of total BCAA intakes for people with type 2 diabetes within the 4th quartile of DPs were 1.00, 1.337 (0.940 to 1.903); 1.579 (1.065 to 2.343); 2.412 (1.474 to 3.947); Pfor trend=0.001 for vegetables, fruit and milk, 1.00, 1.309 (0.930 to 1.842), 1.328 (0.888 to 1.985), 2.044 (1.179 to 3.544); Pfor trend=0.028 for meat and 1.00, 1.043 (0.720 to 1.509), 1.497 (0.969 to 2.312), 1.896 (1.067 to 3.367); Pfor trend=0.017 for fish. CONCLUSIONS BCAA intakes and type 2 diabetes risk depend on the context of DPs, not exclusively on BCAA intake.
Collapse
Affiliation(s)
- Akinkunmi Paul Okekunle
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Xiaoyan Wu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Wei Duan
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Rennan Feng
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Ying Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China.
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
186
|
Sadri H, Larki NN, Kolahian S. Hypoglycemic and Hypolipidemic Effects of Leucine, Zinc, and Chromium, Alone and in Combination, in Rats with Type 2 Diabetes. Biol Trace Elem Res 2017; 180:246-254. [PMID: 28409409 DOI: 10.1007/s12011-017-1014-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/04/2017] [Indexed: 01/08/2023]
Abstract
For the increasing development of diabetes, dietary habits and using appropriate supplements can play important roles in the treatment or reduction of risk for this disease. The objective of this study was to investigate the effects of leucine (Leu), zinc (Zn), and chromium (Cr) supplementation, alone or in combination, in rats with type 2 diabetes (T2D). Seventy-seven adult male Wistar rats were randomly assigned in 11 groups, using nutritional supplements and insulin (INS) or glibenclamide (GLC). Supplementing Leu significantly reduced blood glucose, triglycerides (TG), nonesterified fatty acids (NEFA), low-density lipoprotein (LDL), and increased high-density lipoprotein (HDL) concentrations compared to vehicle-treated T2D animals, and those improvements were associated with reduced area under the 2-h blood glucose response curve (AUC). Supplementation of T2D animals with Zn improved serum lipid profile as well as blood glucose concentrations but was not comparable with the INS, GLC, and Leu groups. Supplementary Cr did not improve blood glucose and AUC in T2D rats, whereas it reduced serum TG and LDL and increased HDL concentrations. In conclusion, supplementation of diabetic rats with Leu was more effective in improving blood glucose and consequently decreasing glucose AUC than other nutritional supplements. Supplementary Zn and Cr only improved serum lipid profile. The combination of the nutritional supplements did not improve blood glucose level. Nevertheless, supplementation with Leu-Zn, Leu-Cr, Zn-Cr, and Leu-Zn-Cr led to an improved response in serum lipid profile over each supplement given alone.
Collapse
Affiliation(s)
- Hassan Sadri
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, 516616471, Iran.
| | - Negar Nowroozi Larki
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology and ICePhA, University of Tuebingen, 72074, Tuebingen, Germany
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, 516616471, Iran
| | - Saeed Kolahian
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology and ICePhA, University of Tuebingen, 72074, Tuebingen, Germany
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, 516616471, Iran
| |
Collapse
|
187
|
Abu Bakar Sajak A, Mediani A, Mohd Dom NS, Machap C, Hamid M, Ismail A, Khatib A, Abas F. Effect of Ipomoea aquatica ethanolic extract in streptozotocin (STZ) induced diabetic rats via 1H NMR-based metabolomics approach. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 36:201-209. [PMID: 29157816 DOI: 10.1016/j.phymed.2017.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 08/24/2017] [Accepted: 10/10/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Ipomoea aquatica (locally known as "kangkung") has previously been reported to have hypoglycemic activities on glucose level in diabetes patients. However, the effect of I. aquatica ethanolic extract on the metabolites in the body has remained unknown. PURPOSE This study provides new insights on the changes of endogenous metabolites caused by I. aquatica ethanolic extract and improves the understanding on the therapeutic efficacy and mechanism of I. aquatica ethanolic extract. METHODS By using a combination of 1H nuclear magnetic resonance (NMR) with multivariate analysis (MVDA), the changes of metabolites due to I. aquatica ethanolic extract administration in obese diabetic-induced Sprague Dawley rats (OB+STZ+IA) were identified. RESULTS The results suggested 19 potential biomarkers with variable importance projections (VIP) above 0.5, which include creatine/creatinine, glucose, creatinine, citrate, carnitine, 2-oxoglutarate, succinate, hippurate, leucine, 1-methylnicotinamice (MNA), taurine, 3-hydroxybutyrate (3-HB), tryptophan, lysine, trigonelline, allantoin, formiate, acetoacetate (AcAc) and dimethylamine. From the changes in the metabolites, the affected pathways and aspects of metabolism were identified. CONCLUSION I. aquatica ethanolic extract increases metabolite levels such as creatinine/creatine, carnitine, MNA, trigonelline, leucine, lysine, 3-HB and decreases metabolite levels, including glucose and tricarboxylic acid (TCA) intermediates. This implies capabilities of I. aquatica ethanolic extract promoting glycolysis, gut microbiota and nicotinate/nicotinamide metabolism, improving the glomerular filtration rate (GFR) and reducing the β-oxidation rate. However, the administration of I. aquatica ethanolic extract has several drawbacks, such as unimproved changes in amino acid metabolism, especially in reducing branched chain amino acid (BCAA) synthesis pathways and lipid metabolism.
Collapse
Affiliation(s)
- Azliana Abu Bakar Sajak
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ahmed Mediani
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nur Sumirah Mohd Dom
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Chandradevan Machap
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Biotechnology and Nanotechnology Research Centre, Persiaran Mardi-UPM, 43400 Mardi Serdang, Selangor, Malaysia
| | - Muhajir Hamid
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Amin Ismail
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Alfi Khatib
- Department of Pharmacy, Faculty of Medicine and Health Sciences, International Islamic University, Bandar Indera Mahkota, Kuantan, Pahang 25200, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
188
|
Zhou H, Yu B, Gao J, Htoo JK, Chen D. Regulation of intestinal health by branched-chain amino acids. Anim Sci J 2017; 89:3-11. [PMID: 29164733 DOI: 10.1111/asj.12937] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/11/2017] [Indexed: 12/15/2022]
Abstract
Besides its primary role in the digestion and absorption of nutrients, the intestine also interacts with a complex external milieu, and is the first defense line against noxious pathogens and antigens. Dysfunction of the intestinal barrier is associated with enhanced intestinal permeability and development of various gastrointestinal diseases. The branched-chain amino acids (BCAAs) are important nutrients, which are the essential substrates for protein biosynthesis. Recently, emerging evidence showed that BCAAs are involved in maintaining intestinal barrier function. It has been reported that dietary supplementation with BCAAs promotes intestinal development, enhances enterocyte proliferation, increases intestinal absorption of amino acids (AA) and glucose, and improves the immune defenses of piglets. The underlying mechanism of these effects is mediated by regulating expression of genes and proteins associate with various signaling pathways. In addition, BCAAs promote the production of beneficial bacteria in the intestine of mice. Compelling evidence supports the notion that BCAAs play important roles in both nutrition and intestinal health. Therefore, as functional amino acids with various physiological effects, BCAAs hold key roles in promoting intestinal development and health in animals and humans.
Collapse
Affiliation(s)
- Hua Zhou
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, China
| | - Jun Gao
- Evonik Degussa (China) Co. Ltd., Beijing, China
| | | | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
189
|
Matsunaga Y, Tamura Y, Sakata Y, Nonaka Y, Saito N, Nakamura H, Shimizu T, Takeda Y, Terada S, Hatta H. Comparison between pre-exercise casein peptide and intact casein supplementation on glucose tolerance in mice fed a high-fat diet. Appl Physiol Nutr Metab 2017; 43:355-362. [PMID: 29091740 DOI: 10.1139/apnm-2017-0485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We hypothesized that along with exercise, casein peptide supplementation would have a higher impact on improving glucose tolerance than intact casein. Male 6-week-old ICR mice were provided a high-fat diet to induce obesity and glucose intolerance. The mice were randomly divided into 4 treatment groups: control (Con), endurance training (Tr), endurance training with intact casein supplementation (Cas+Tr), and endurance training with casein peptide supplementation (CP+Tr). The mice in each group were orally administrated water, intact casein, or casein peptide (1.0 mg/g body weight, every day), and then subjected to endurance training (15-25 m/min, 60 min, 5 times/week for 4 weeks) on a motor-driven treadmill 30 min after ingestion. Our results revealed that total intra-abdominal fat was significantly lower in CP+Tr than in Con (p < 0.05). Following an oral glucose tolerance test, the blood glucose area under the curve (AUC) was found to be significantly smaller for CP+Tr than for Con (p < 0.05). Moreover, in the soleus muscle, glucose transporter 4 (GLUT4) protein levels were significantly higher in CP+Tr than in Con (p < 0.01). However, intra-abdominal fat, blood glucose AUC, and GLUT4 protein content in the soleus muscle did not alter in Tr and Cas+Tr when compared with Con. These observations suggest that pre-exercise casein peptide supplementation has a higher effect on improving glucose tolerance than intact casein does in mice fed a high-fat diet.
Collapse
Affiliation(s)
- Yutaka Matsunaga
- a Wellness & Nutrition Science Institute, Morinaga Milk Industry Co. Ltd., 5-1-83, Higashihara, Zama, Kanagawa, 252-8583, Japan.,b Department of Sports Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Yuki Tamura
- b Department of Sports Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Yasuyuki Sakata
- a Wellness & Nutrition Science Institute, Morinaga Milk Industry Co. Ltd., 5-1-83, Higashihara, Zama, Kanagawa, 252-8583, Japan
| | - Yudai Nonaka
- b Department of Sports Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Noriko Saito
- a Wellness & Nutrition Science Institute, Morinaga Milk Industry Co. Ltd., 5-1-83, Higashihara, Zama, Kanagawa, 252-8583, Japan
| | - Hirohiko Nakamura
- a Wellness & Nutrition Science Institute, Morinaga Milk Industry Co. Ltd., 5-1-83, Higashihara, Zama, Kanagawa, 252-8583, Japan
| | - Takashi Shimizu
- a Wellness & Nutrition Science Institute, Morinaga Milk Industry Co. Ltd., 5-1-83, Higashihara, Zama, Kanagawa, 252-8583, Japan
| | - Yasuhiro Takeda
- a Wellness & Nutrition Science Institute, Morinaga Milk Industry Co. Ltd., 5-1-83, Higashihara, Zama, Kanagawa, 252-8583, Japan
| | - Shin Terada
- b Department of Sports Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Hideo Hatta
- b Department of Sports Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
190
|
Association of circulating branched-chain amino acids with cardiometabolic traits differs between adults and the oldest-old. Oncotarget 2017; 8:88882-88893. [PMID: 29179484 PMCID: PMC5687654 DOI: 10.18632/oncotarget.21489] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 08/24/2017] [Indexed: 01/05/2023] Open
Abstract
Branched-chain amino acids (BCAAs) are promising for their potential anti-aging effects. However, findings in adults suggest that circulating BCAAs are associated with cardiometabolic risk. Moreover, little information is available about how BCAAs influence clustered cardiometabolic traits in the oldest-old (>85 years), which are the fastest-growing segment of the population in developed countries. Here, we applied a targeted metabolomics approach to measure serum BCAAs in Chinese participants (aged 21-110 years) based on a longevity cohort. The differences of quantitative and dichotomous cardiometabolic traits were compared across BCAAs tertiles. A generalized additive model (GAM) was used to explore the dose-response relationship between BCAAs and the risk of metabolic syndrome (MetS). Overall, BCAAs were correlated with most of the examined cardiometabolic traits. The odds ratios for MetS across the increasing BCAA tertiles were 3.22 (1.70 - 6.12) and 5.27 (2.88 - 9.94, referenced to tertile 1) after adjusting for age and gender (Ptrend < 0.001). The association still existed after further controlling for lifestyle factors and inflammation factors. However, the correlations between circulating BCAAs and quantitative traits were weakened in the oldest-old, except for lipids, the levels of which were distinctly different from those in adults. The stratified analysis also suggested that the risky BCAAs-MetS association was more pronounced in adults than in the oldest-old. Moreover, generalized additive model (GAM)-based curve-fitting suggested that only when BCAAs exceeded a threshold (approximately 450 μmol/L) was the BCAAs-MetS association significant. The relationship might be aging-dependent and was more pronounced in adults than in the oldest-old.
Collapse
|
191
|
Bifari F, Ruocco C, Decimo I, Fumagalli G, Valerio A, Nisoli E. Amino acid supplements and metabolic health: a potential interplay between intestinal microbiota and systems control. GENES & NUTRITION 2017; 12:27. [PMID: 29043007 PMCID: PMC5628494 DOI: 10.1186/s12263-017-0582-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/17/2017] [Indexed: 01/12/2023]
Abstract
Dietary supplementation of essential amino acids (EAAs) has been shown to promote healthspan. EAAs regulate, in fact, glucose and lipid metabolism and energy balance, increase mitochondrial biogenesis, and maintain immune homeostasis. Basic science and epidemiological results indicate that dietary macronutrient composition affects healthspan through multiple and integrated mechanisms, and their effects are closely related to the metabolic status to which they act. In particular, EAA supplementation can trigger different and even opposite effects depending on the catabolic and anabolic states of the organisms. Among others, gut-associated microbial communities (referred to as gut microbiota) emerged as a major regulator of the host metabolism. Diet and host health influence gut microbiota, and composition of gut microbiota, in turn, controls many aspects of host health, including nutrient metabolism, resistance to infection, and immune signals. Altered communication between the innate immune system and the gut microbiota might contribute to complex diseases. Furthermore, gut microbiota and its impact to host health change largely during different life phases such as lactation, weaning, and aging. Here we will review the accumulating body of knowledge on the impact of dietary EAA supplementation on the host metabolic health and healthspan from a holistic perspective. Moreover, we will focus on the current efforts to establish causal relationships among dietary EAAs, gut microbiota, and health during human development.
Collapse
Affiliation(s)
- Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Chiara Ruocco
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Ilaria Decimo
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Guido Fumagalli
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| |
Collapse
|
192
|
Kavadi PK, Pothuraju R, Chagalamarri J, Bhakri G, Mallepogu A, Sharma RK. Dietary incorporation of whey protein isolate and galactooligosaccharides exhibits improvement in glucose homeostasis and insulin resistance in high fat diet fed mice. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2017; 6:326-332. [PMID: 28894632 PMCID: PMC5580959 DOI: 10.5455/jice.20170526091235] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 04/23/2017] [Indexed: 12/16/2022]
Abstract
Background: This study was planned to investigate the effectiveness of the whey protein isolate (WPI) of high purity and a galactooligosaccharides (GOS) preparation on glucose homeostasis and insulin resistance in high fat diet (HFD) (45.47% energy from fat) fed conditions in C57BL/6J mice. Methods: Fasting blood glucose level, serum insulin, and glucagon-like peptide-1 (enzyme-linked immunosorbent assay) were measured; also, homeostasis model assessment of insulin resistance (HOMA-IR) was determined in different treatment groups. mRNA expression of gluconeogenesis genes in liver and small intestine tissues was analyzed by quantitative real time-polymerase chain reaction. Results: Dietary incorporation of WPI and GOS was observed to significantly resist (P < 0.001) the HFD-induced increase in blood glucose levels indicating a mitigating effect on glycemic load. It is important to note that no additive effects of administration of WPI and GOS could be observed. The administration of WPI and GOS exhibited maximum resistance (37.8%) to the rise in insulin level. Thus, the resistance to the increase in HOMA-IR was also noticed on the dietary incorporation of two functional ingredients . The positive effects on mRNA expression of phosphoenolpyruvate carboxykinase and glucose 6-phosphatase could be detected in liver only. Conclusion: Both types of functional components exhibit potential to improve glucose homeostasis under HFD fed conditions. Resistance to HFD-induced hyperinsulinemia and HOMA-IR is also recorded .
Collapse
Affiliation(s)
- Praveen Kumar Kavadi
- Department of Animal Biochemistry, National Dairy Research Institute, Karnal, Haryana, India
| | - Ramesh Pothuraju
- Department of Animal Biochemistry, National Dairy Research Institute, Karnal, Haryana, India
| | - Jayasimha Chagalamarri
- Department of Animal Biochemistry, National Dairy Research Institute, Karnal, Haryana, India
| | - Gaurav Bhakri
- Department of Animal Biochemistry, National Dairy Research Institute, Karnal, Haryana, India
| | - Aswani Mallepogu
- Department of Animal Biochemistry, National Dairy Research Institute, Karnal, Haryana, India
| | - Raj Kumar Sharma
- Department of Animal Biochemistry, National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
193
|
Liu R, Li H, Fan W, Jin Q, Chao T, Wu Y, Huang J, Hao L, Yang X. Leucine Supplementation Differently Modulates Branched-Chain Amino Acid Catabolism, Mitochondrial Function and Metabolic Profiles at the Different Stage of Insulin Resistance in Rats on High-Fat Diet. Nutrients 2017; 9:nu9060565. [PMID: 28574481 PMCID: PMC5490544 DOI: 10.3390/nu9060565] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 01/09/2023] Open
Abstract
The available findings concerning the association between branched-chain amino acids (BCAAs)—particularly leucine—and insulin resistance are conflicting. BCAAs have been proposed to elicit different or even opposite effects, depending on the prevalence of catabolic and anabolic states. We tested the hypothesis that leucine supplementation may exert different effects at different stages of insulin resistance, to provide mechanistic insights into the role of leucine in the progression of insulin resistance. Male Sprague-Dawley rats were fed a normal chow diet, high-fat diet (HFD), HFD supplemented with 1.5% leucine, or HFD with a 20% calorie restriction for 24 or 32 weeks. Leucine supplementation led to abnormal catabolism of BCAA and the incompletely oxidized lipid species that contributed to mitochondrial dysfunction in skeletal muscle in HFD-fed rats in the early stage of insulin resistance (24 weeks). However, leucine supplementation induced no remarkable alternations in BCAA catabolism, but did enhance mitochondrial biogenesis with a concomitant improvement in lipid oxidation and mitochondrial function during the hyperglycaemia stage (32 weeks). These findings suggest that leucine trigger different effects on metabolic signatures at different stages of insulin resistance, and the overall metabolic status of the organisms should be carefully considered to potentiate the benefits of leucine.
Collapse
Affiliation(s)
- Rui Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Hui Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Wenjuan Fan
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Qiu Jin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Tingting Chao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Yuanjue Wu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Junmei Huang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Liping Hao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Xuefeng Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
194
|
Shafei MA, Harris M, Conway ME. Divergent Metabolic Regulation of Autophagy and mTORC1-Early Events in Alzheimer's Disease? Front Aging Neurosci 2017. [PMID: 28626421 PMCID: PMC5454035 DOI: 10.3389/fnagi.2017.00173] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive disease associated with the production and deposition of amyloid β-peptide (Aβ) aggregates and neurofibrillary tangles, which lead to synaptic and neuronal damage. Reduced autophagic flux has been widely associated with the accumulation of autophagic vacuoles (AV), which has been proposed to contribute to aggregate build-up observed in AD. As such, targeting autophagy regulation has received wide review, where an understanding as to how this mechanism can be controlled will be important to neuronal health. The mammalian target of rapamycin complex 1 (mTORC1), which was found to be hyperactive in AD brain, regulates autophagy and is considered to be mechanistically important to aberrant autophagy in AD. Hormones and nutrients such as insulin and leucine, respectively, positively regulate mTORC1 activation and are largely considered to inhibit autophagy. However, in AD brain there is a dysregulation of nutrient metabolism, linked to insulin resistance, where a role for insulin treatment to improve cognition has been proposed. Recent studies have highlighted that mitochondrial proteins such as glutamate dehydrogenase and the human branched chain aminotransferase protein, through metabolism of leucine and glutamate, differentially regulate mTORC1 and autophagy. As the levels of the hBCAT proteins are significantly increased in AD brain relative to aged-matched controls, we discuss how these metabolic pathways offer new potential therapeutic targets. In this review article, we highlight the core regulation of autophagy through mTORC1, focusing on how insulin and leucine will be important to consider in particular with respect to our understanding of nutrient load and AD pathogenesis.
Collapse
Affiliation(s)
- Mai A Shafei
- Department of Applied Science, The University of the West of EnglandBristol, United Kingdom
| | - Matthew Harris
- Department of Applied Science, The University of the West of EnglandBristol, United Kingdom
| | - Myra E Conway
- Department of Applied Science, The University of the West of EnglandBristol, United Kingdom
| |
Collapse
|
195
|
Chang AY, Lalia AZ, Jenkins GD, Dutta T, Carter RE, Singh RJ, Nair KS. Combining a nontargeted and targeted metabolomics approach to identify metabolic pathways significantly altered in polycystic ovary syndrome. Metabolism 2017; 71:52-63. [PMID: 28521878 PMCID: PMC5520539 DOI: 10.1016/j.metabol.2017.03.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Polycystic ovary syndrome (PCOS) is a condition of androgen excess and chronic anovulation frequently associated with insulin resistance. We combined a nontargeted and targeted metabolomics approach to identify pathways and metabolites that distinguished PCOS from metabolic syndrome (MetS). METHODS Twenty obese women with PCOS were compared with 18 obese women without PCOS. Both groups met criteria for MetS but could not have diabetes mellitus or take medications that treat PCOS or affect lipids or insulin sensitivity. Insulin sensitivity was derived from the frequently sampled intravenous glucose tolerance test. A nontargeted metabolomics approach was performed on fasting plasma samples to identify differentially expressed metabolites, which were further evaluated by principal component and pathway enrichment analysis. Quantitative targeted metabolomics was then applied on candidate metabolites. Measured metabolites were tested for associations with PCOS and clinical variables by logistic and linear regression analyses. RESULTS This multiethnic, obese sample was matched by age (PCOS, 37±6; MetS, 40±6years) and body mass index (BMI) (PCOS, 34.6±5.1; MetS, 33.7±5.2kg/m2). Principal component analysis of the nontargeted metabolomics data showed distinct group separation of PCOS from MetS controls. From the subset of 385 differentially expressed metabolites, 22% were identified by accurate mass, resulting in 19 canonical pathways significantly altered in PCOS, including amino acid, lipid, steroid, carbohydrate, and vitamin D metabolism. Targeted metabolomics identified many essential amino acids, including branched-chain amino acids (BCAA) that were elevated in PCOS compared with MetS. PCOS was most associated with BCAA (P=.02), essential amino acids (P=.03), the essential amino acid lysine (P=.02), and the lysine metabolite α-aminoadipic acid (P=.02) in models adjusted for surrogate variables representing technical variation in metabolites. No significant differences between groups were observed in concentrations of free fatty acids or vitamin D metabolites. Evaluation of the relationship of metabolites with clinical characteristics showed 1) negative associations of essential and BCAA with insulin sensitivity and sex hormone-binding globulin and 2) positive associations with homeostasis model of insulin resistance and free testosterone; metabolites were not associated with BMI or percent body fat. CONCLUSIONS PCOS was associated with significant metabolic alterations not attributed exclusively to androgen-related pathways, obesity, or MetS. Concentrations of essential amino acids and BCAA are increased in PCOS, which might result from or contribute to their insulin resistance.
Collapse
Affiliation(s)
- Alice Y Chang
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN.
| | - Antigoni Z Lalia
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN
| | - Gregory D Jenkins
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | - Tumpa Dutta
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN
| | - Rickey E Carter
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | - Ravinder J Singh
- Division of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, MN
| | - K Sreekumaran Nair
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN
| |
Collapse
|
196
|
Botchlett R, Woo SL, Liu M, Pei Y, Guo X, Li H, Wu C. Nutritional approaches for managing obesity-associated metabolic diseases. J Endocrinol 2017; 233:R145-R171. [PMID: 28400405 PMCID: PMC5511693 DOI: 10.1530/joe-16-0580] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/11/2017] [Indexed: 01/10/2023]
Abstract
Obesity is an ongoing pandemic and serves as a causal factor of a wide spectrum of metabolic diseases including diabetes, fatty liver disease, and cardiovascular disease. Much evidence has demonstrated that nutrient overload/overnutrition initiates or exacerbates inflammatory responses in tissues/organs involved in the regulation of systemic metabolic homeostasis. This obesity-associated inflammation is usually at a low-grade and viewed as metabolic inflammation. When it exists continuously, inflammation inappropriately alters metabolic pathways and impairs insulin signaling cascades in peripheral tissues/organs such as adipose tissue, the liver and skeletal muscles, resulting in local fat deposition and insulin resistance and systemic metabolic dysregulation. In addition, inflammatory mediators, e.g., proinflammatory cytokines, and excessive nutrients, e.g., glucose and fatty acids, act together to aggravate local insulin resistance and form a vicious cycle to further disturb the local metabolic pathways and exacerbate systemic metabolic dysregulation. Owing to the critical role of nutrient metabolism in controlling the initiation and progression of inflammation and insulin resistance, nutritional approaches have been implicated as effective tools for managing obesity and obesity-associated metabolic diseases. Based on the mounting evidence generated from both basic and clinical research, nutritional approaches are commonly used for suppressing inflammation, improving insulin sensitivity, and/or decreasing fat deposition. Consequently, the combined effects are responsible for improvement of systemic insulin sensitivity and metabolic homeostasis.
Collapse
Affiliation(s)
- Rachel Botchlett
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
- Pinnacle Clinical ResearchLive Oak, USA
| | - Shih-Lung Woo
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| | - Mengyang Liu
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| | - Ya Pei
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| | - Xin Guo
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
- Baylor College of MedicineHouston, USA
| | - Honggui Li
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| | - Chaodong Wu
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| |
Collapse
|
197
|
Madeira MSMDS, Rolo ESA, Pires VMR, Alfaia CMRPM, Coelho DFM, Lopes PAAB, Martins SIV, Pinto RMA, Prates JAM. Arginine supplementation modulates pig plasma lipids, but not hepatic fatty acids, depending on dietary protein level with or without leucine. BMC Vet Res 2017; 13:145. [PMID: 28558680 PMCID: PMC5450298 DOI: 10.1186/s12917-017-1063-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 05/18/2017] [Indexed: 12/24/2022] Open
Abstract
Background In the present study, the effect of arginine and leucine supplementation, and dietary protein level, were investigated in commercial crossbred pigs to clarify their individual or combined impact on plasma metabolites, hepatic fatty acid composition and mRNA levels of lipid sensitive factors. The experiment was conducted on fifty-four entire male pigs (Duroc × Pietrain × Large White × Landrace crossbred) from 59 to 92 kg of live weight. Each pig was randomly assigned to one of six experimental treatments (n = 9). The treatments followed a 2 × 3 factorial arrangement, providing two levels of arginine supplementation (0 vs. 1%) and three levels of basal diet (normal protein diet, NPD; reduced protein diet, RPD; reduced protein diet with 2% of leucine, RPDL). Results Significant interactions between arginine supplementation and protein level were observed across plasma lipids. While dietary arginine increased total lipids, total cholesterol, HDL-cholesterol, LDL-cholesterol, VLDL-cholesterol and triacylglycerols in NPD, the inverse effect was observed in RPD. Overall, dietary treatments had a minor impact on hepatic fatty acid composition. RPD increased 18:1c9 fatty acid while the combination of leucine and RPD reduced 18:0 fatty acid. Arginine supplementation increased the gene expression of FABP1, which contributes for triacylglycerols synthesis without affecting hepatic fatty acids content. RPD, with or without leucine addition, upregulated the lipogenic gene CEBPA but downregulated the fat oxidation gene LPIN1. Conclusions Arginine supplementation was responsible for a modulated effect on plasma lipids, which is dependent on dietary protein level. It consistently increased lipaemia in NPD, while reducing the correspondent metabolites in RPD. In contrast, arginine had no major impact, neither on hepatic fatty acids content nor on fatty acid composition. Likewise, leucine supplementation of RPD, regardless the presence of arginine, promoted no changes on total fatty acids in the liver. Ultimately, arginine, leucine and dietary protein reduction seem to be unrelated with fatty liver development.
Collapse
Affiliation(s)
- Marta Sofia Morgado Dos Santos Madeira
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Pólo Universitário do Alto da Ajuda, 1300-477, Lisbon, Portugal
| | - Eva Sofia Alves Rolo
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Pólo Universitário do Alto da Ajuda, 1300-477, Lisbon, Portugal
| | - Virgínia Maria Rico Pires
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Pólo Universitário do Alto da Ajuda, 1300-477, Lisbon, Portugal
| | | | - Diogo Francisco Maurício Coelho
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Pólo Universitário do Alto da Ajuda, 1300-477, Lisbon, Portugal
| | - Paula Alexandra Antunes Brás Lopes
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Pólo Universitário do Alto da Ajuda, 1300-477, Lisbon, Portugal
| | - Susana Isabel Vargas Martins
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Pólo Universitário do Alto da Ajuda, 1300-477, Lisbon, Portugal
| | - Rui Manuel Amaro Pinto
- iMed.UL, Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - José António Mestre Prates
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Pólo Universitário do Alto da Ajuda, 1300-477, Lisbon, Portugal.
| |
Collapse
|
198
|
Sadri H, von Soosten D, Meyer U, Kluess J, Dänicke S, Saremi B, Sauerwein H. Plasma amino acids and metabolic profiling of dairy cows in response to a bolus duodenal infusion of leucine. PLoS One 2017; 12:e0176647. [PMID: 28453535 PMCID: PMC5409510 DOI: 10.1371/journal.pone.0176647] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/13/2017] [Indexed: 11/18/2022] Open
Abstract
Leucine (Leu), one of the three branch chain amino acids, acts as a signaling molecule in the regulation of overall amino acid (AA) and protein metabolism. Leucine is also considered to be a potent stimulus for the secretion of insulin from pancreatice β-cells. Our objective was to study the effects of a duodenal bolus infusion of Leu on insulin and glucagon secretion, on plasma AA concentrations, and to do a metabolomic profiling of dairy cows as compared to infusions with either glucose or saline. Six duodenum-fistulated Holstein cows were studied in a replicated 3 × 3 Latin square design with 3 periods of 7 days, in which the treatments were applied at the end of each period. The treatments were duodenal bolus infusions of Leu (DIL; 0.15 g/kg body weight), glucose (DIG; at Leu equimolar dosage) or saline (SAL). On the day of infusion, the treatments were duodenally infused after 5 h of fasting. Blood samples were collected at -15, 0, 10, 20, 30, 40, 50, 60, 75, 90, 120, 180, 210, 240 and 300 min relative to the start of infusion. Blood plasma was assayed for concentrations of insulin, glucagon, glucose and AA. The metabolome was also characterized in selected plasma samples (i.e. from 0, 50, and 120 min relative to the infusion). Body weight, feed intake, milk yield and milk composition were recorded throughout the experiment. The Leu infusion resulted in significant increases of Leu in plasma reaching 20 and 15-fold greater values than that in DIG and SAL, respectively. The elevation of plasma Leu concentrations after the infusion led to a significant decrease (P<0.05) in the plasma concentrations of isoleucine, valine, glycine, and alanine. In addition, the mean concentrations of lysine, methionine, phenylalanine, proline, serine, taurine, threonine, and asparagine across all time-points in plasma of DIL cows were reduced (P<0.05) compared with the other groups. In contrast to the working hypothesis about an insulinotropic effect of Leu, the circulating concentrations of insulin were not affected by Leu. In DIG, insulin and glucose concentrations peaked at 30-40 and 40-50 min after the infusion, respectively. Insulin concentrations were greater (P<0.05) from 30-40 min in DIG than DIL and SAL, and glucose was elevated in DIG over DIL and SAL from 30-75 min and 40-50 min, respectively. Multivariate metabolomics data analysis (principal component analysis and partial least squares discriminant analysis) revealed a clear separation when the DIL cows were compared with the DIG and SAL cows at 50 and 120 min after the infusion. By using this analysis, several metabolites, mainly acylcarnitines, methionine sulfoxide and components from the kynurenine pathway were identified as the most relevant for separating the treatment groups. These results suggest that Leu regulates the plasma concentrations of branched-chain AA, and other AA, apparently by stimulating their influx into the cells from the circulation. A single-dose duodenal infusion of Leu did not elicit an apparent insulin response, but affected multiple intermediary metabolic pathways including AA and energy metabolism by mechanisms yet to be elucidated.
Collapse
Affiliation(s)
- Hassan Sadri
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, Bonn, Germany
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Dirk von Soosten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Braunschweig, Germany
| | - Ulrich Meyer
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Braunschweig, Germany
| | - Jeannette Kluess
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Braunschweig, Germany
| | - Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Braunschweig, Germany
| | - Behnam Saremi
- Evonik Nutrition & Care GmbH, Rodenbacher Chaussee 4, Hanau, Germany
| | - Helga Sauerwein
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
199
|
Central adiposity-induced plasma-free amino acid alterations are associated with increased insulin resistance in healthy Singaporean adults. Eur J Clin Nutr 2017; 71:1080-1087. [DOI: 10.1038/ejcn.2017.34] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 02/06/2017] [Accepted: 02/16/2017] [Indexed: 12/25/2022]
|
200
|
Li Y, Wei H, Li F, Duan Y, Guo Q, Yin Y. Effects of Low-Protein Diets Supplemented with Branched-Chain Amino Acid on Lipid Metabolism in White Adipose Tissue of Piglets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2839-2848. [PMID: 28296401 DOI: 10.1021/acs.jafc.7b00488] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study evaluated the effect of branched-chain amino acid (BCAA) supplementation in low-protein diets on lipid metabolism in dorsal subcutaneous adipose (DSA), abdominal subcutaneous adipose (ASA), and perirenal adipose (PRA) tissues. A total of 24 piglets were allotted to four treatments, and each group was fed the adequate protein (AP) diet, low-protein (LP) diet, LP diet supplemented with BCAA (LP + B), or LP diet supplemented with twice BCAA (LP + 2B). Serum concentrations of leptin in the BCAA-supplemented treatments were higher (P < 0.01) than in the AP treatment, but lower (P < 0.01) than in the LP treatment. In DSA, the mRNA and protein levels for lipogenic-related genes were highest in the LP treatment and lowest in the LP + 2B treatment. However, in ASA and PRA, the expression levels for those genes were significantly elevated in the LP + 2B treatment. In conclusion, BCAA supplementation could alter the body fat condition, and this effect was likely modulated by the expression of lipid metabolic regulators in DSA, ASA, and PRA in a depot-specific manner.
Collapse
Affiliation(s)
- Yinghui Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha, Hunan 410125, China
- University of Chinese Academy of Sciences , Beijing 100039, China
| | - Hongkui Wei
- College of Animal Sciences, Huazhong Agricultural University , Wuhan, Hubei 430070, China
| | - Fengna Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha, Hunan 410125, China
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS; Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients , Changsha, Hunan 410128, China
| | - Yehui Duan
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha, Hunan 410125, China
- University of Chinese Academy of Sciences , Beijing 100039, China
| | - Qiuping Guo
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha, Hunan 410125, China
- University of Chinese Academy of Sciences , Beijing 100039, China
| | - Yulong Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha, Hunan 410125, China
- Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University , Changsha, Hunan 410018, China
| |
Collapse
|