151
|
Somppi TL. Non-Thyroidal Illness Syndrome in Patients Exposed to Indoor Air Dampness Microbiota Treated Successfully with Triiodothyronine. Front Immunol 2017; 8:919. [PMID: 28824644 PMCID: PMC5545575 DOI: 10.3389/fimmu.2017.00919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/20/2017] [Indexed: 01/21/2023] Open
Abstract
Long-term exposure to dampness microbiota induces multi-organ morbidity. One of the symptoms related to this disorder is non-thyroidal illness syndrome (NTIS). A retrospective study was carried out in nine patients with a history of mold exposure, experiencing chronic fatigue, cognitive disorder, and different kinds of hypothyroid symptoms despite provision of levothyroxine (3,5,3',5'-tetraiodothyronine, LT4) monotherapy. Exposure to volatile organic compounds present in water-damaged buildings including metabolic products of toxigenic fungi and mold-derived inflammatory agents can lead to a deficiency or imbalance of many hormones, such as active T3 hormone. Since the 1970s, the synthetic prohormone, levothyroxine (LT4), has been the most commonly prescribed thyroid hormone in replacement monotherapy. It has been presumed that the peripheral conversion of T4 (3,5,3',5'-tetraiodothyronine) into T3 (3,5,3'-triiodothyronine) is sufficient to satisfy the overall tissue requirements. However, evidence is presented that this not the case for all patients, especially those exposed to indoor air molds. This retrospective study describes the successful treatment of nine patients in whom NTIS was treated with T3-based thyroid hormone. The treatment was based on careful interview, clinical monitoring, and laboratory analysis of serum free T3 (FT3), reverse T3 (rT3) and thyroid-stimulating hormone, free T4, cortisol, and dehydroepiandrosterone (DHEA) values. The ratio of FT3/rT3 was calculated. In addition, some patients received adrenal support with hydrocortisone and DHEA. All patients received nutritional supplementation and dietary instructions. During the therapy, all nine patients reported improvements in all of the symptom groups. Those who had residual symptoms during T3-based therapy remained exposed to indoor air molds in their work places. Four patients were unable to work and had been on disability leave for a long time during LT4 monotherapy. However, during the T3-based and supportive therapy, all patients returned to work in so-called "healthy" buildings. The importance of avoiding mycotoxin exposure via the diet is underlined as DIO2 genetic polymorphism and dysfunction of DIO2 play an important role in the development of symptoms that can be treated successfully with T3 therapy.
Collapse
|
152
|
Shi LL, Fan WJ, Zhang JY, Zhao XY, Tan S, Wen J, Cao J, Zhang XY, Chi QS, Wang DH, Zhao ZJ. The roles of metabolic thermogenesis in body fat regulation in striped hamsters fed high-fat diet at different temperatures. Comp Biochem Physiol A Mol Integr Physiol 2017; 212:35-44. [PMID: 28711354 DOI: 10.1016/j.cbpa.2017.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 10/19/2022]
Abstract
The metabolic thermogenesis plays important roles in thermoregulation, and it may be also involved in body fat regulation. The thermogenesis of brown adipose tissue (BAT) is largely affected by ambient temperature, but it is unclear if the roles in body fat regulation are dependent on the temperature. In the present study, uncoupling protein 1 (ucp1)-based BAT thermogenesis, energy budget and body fat content were examined in the striped hamsters fed high fat diet (HF) at cold (5°C) and warm (30°C) temperatures. The effect of 2, 4-dinitrophenol (DNP), a chemical uncoupler, on body fat was also examined. The striped hamsters showed a notable increase in body fat following the HF feeding at 21°C. The increased body fat was markedly elevated at 30°C, but was significantly attenuated at 5°C compared to that at 21°C. The hamsters significantly increased energy intake at 5°C, but consumed less food at 30°C relative to those at 21°C. Metabolic thermogenesis, indicated by basal metabolic rate, UCP1 expression and/or serum triiodothyronine levels, significantly increased at 5°C, but decreased at 30°C compared to that at 21°C. A significant decrease in body fat content was observed in DNP-treated hamsters relative to the controls. These findings suggest that the roles of metabolic thermogenesis in body fat regulation largely depend on ambient temperature. The cold-induced enhancement of BAT thermogenesis may contribute the decreased body fat, resulting in a lean mass. Instead, the attenuation of BAT thermogenesis at the warm may result in notable obesity.
Collapse
Affiliation(s)
- Lu-Lu Shi
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Wei-Jia Fan
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Ji-Ying Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xiao-Ya Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Song Tan
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jing Wen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jing Cao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xue-Ying Zhang
- State Key Laboratory of Integrated Management for Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | - Qing-Sheng Chi
- State Key Laboratory of Integrated Management for Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | - De-Hua Wang
- State Key Laboratory of Integrated Management for Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | - Zhi-Jun Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
153
|
Vargas-Castillo A, Fuentes-Romero R, Rodriguez-Lopez LA, Torres N, Tovar AR. Understanding the Biology of Thermogenic Fat: Is Browning A New Approach to the Treatment of Obesity? Arch Med Res 2017; 48:401-413. [DOI: 10.1016/j.arcmed.2017.10.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/17/2017] [Indexed: 12/18/2022]
|
154
|
Li Y, Liu X, Fan Y, Yang B, Huang C. Radix Stellariae extract prevents high-fat-diet-induced obesity in C57BL/6 mice by accelerating energy metabolism. PeerJ 2017; 5:e3305. [PMID: 28507819 PMCID: PMC5429735 DOI: 10.7717/peerj.3305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/12/2017] [Indexed: 12/22/2022] Open
Abstract
Stellaria dichotoma L. is widely distributed in Ningxia and surrounding areas in northwestern China. Its root, Radix Stellariae (RS), has been used in herbal formulae for treating asthenic-fever, infection, malaria, dyspepsia in children and several other symptoms. This study investigated whether the RS extract (RSE) alleviates metabolic disorders. The results indicated that RSE significantly inhibited body weight gain in high-fat (HF)-diet-fed C57BL/6 mice, reduced fasting glucose levels, and improved insulin tolerance. Moreover, RSE increased the body temperature of the mice and the expression of uncoupling proteins and peroxisome proliferator-activated receptors in the white adipose tissue. Thus, RSE alleviated metabolic disorders in HF-diet-fed C57BL/6 mice by potentially activating UCP and PPAR signaling.
Collapse
Affiliation(s)
- Yin Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Baican Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
155
|
A novel EGFR-TKI inhibitor (cAMP-H 3BO 3complex) combined with thermal therapy is a promising strategy to improve lung cancer treatment outcomes. Oncotarget 2017; 8:56327-56337. [PMID: 28915593 PMCID: PMC5593564 DOI: 10.18632/oncotarget.17628] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/21/2017] [Indexed: 12/20/2022] Open
Abstract
Purpose Although EGFR-TKIs (epidermal growth factor receptor tyrosine kinase inhibitors) induce favorable responses as first-line non-small cell lung cancer treatments, drug resistance remains a serious problem. Meanwhile, thermal therapy also shows promise as a cancer therapy strategy. Here we combine a novel EGFR-TKI treatment with thermal therapy to improve lung cancer treatment outcomes. Results The results suggest that the cAMP-H3BO3 complex effectively inhibits EGFR auto-phosphorylation, while inducing apoptosis and cell cycle arrest in vitro. Compared to the negative control, tumor growth was significantly suppressed in mice treated with oxidative phosphorylation uncoupler thyroxine sodium and either cAMP-H3BO3 complex or cAMP-H3BO3 complex (P < 0.05). Moreover, the body temperature increase induced by treatment with thyroxine sodium inhibited tumor growth. Immunohistochemical analyses showed that A549 cell apoptosis was significantly higher in the cAMP-H3BO3 complex plus thyroxine sodium treatment group than in the other groups. Moreover,Ca2+ content analysis showed that the Ca2+ content of tumor tissue was significantly higher in the cAMP-H3BO3 complex plus thyroxine sodium treatment group than in other groups. Materials and Methods Inhibition of EGFR auto-phosphorylation by cAMP and cAMP-H3BO3 complex was studied using autoradiography and western blot. The antitumor activity of the novel EGFR inhibitor (cAMP-H3BO3 complex) with or without an oxidative phosphorylation uncoupler (thyroxine sodium) was investigated in vitro and in a nude mouse xenograft lung cancer model incorporating human A549 cells. Conclusions cAMP-H3BO3 complex is a novel EGFR-TKI. Combination therapy using cAMP-H3BO3 with thyroxine sodium-induced thermal therapy may improve lung cancer treatment outcomes.
Collapse
|
156
|
Ellison PT. Endocrinology, energetics, and human life history: A synthetic model. Horm Behav 2017; 91:97-106. [PMID: 27650355 DOI: 10.1016/j.yhbeh.2016.09.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 09/14/2016] [Accepted: 09/16/2016] [Indexed: 02/06/2023]
Abstract
Human life histories are shaped by the allocation of metabolic energy to competing physiological domains. A model framework of the pathways of energy allocation is described and hormonal regulators of allocation along the pathways of the framework are discussed in the light of evidence from field studies of the endocrinology of human energetics. The framework is then used to generate simple models of two important life history transitions in humans, puberty and the postpartum return to full fecundity in females. The results of the models correspond very closely to observations made in the field.
Collapse
Affiliation(s)
- Peter T Ellison
- Department of Human Evolutionary Biology, Harvard University, United States
| |
Collapse
|
157
|
Schcolnik-Cabrera A, Chávez-Blanco A, Domínguez-Gómez G, Dueñas-González A. Understanding tumor anabolism and patient catabolism in cancer-associated cachexia. Am J Cancer Res 2017; 7:1107-1135. [PMID: 28560061 PMCID: PMC5446478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/03/2017] [Indexed: 06/07/2023] Open
Abstract
Cachexia is a multifactorial paraneoplastic syndrome commonly associated with advanced stages of cancer. Cachexia is responsible for poor responses to antitumoral treatment and death in close to one-third of affected patients. There is still an incomplete understanding of the metabolic dysregulation induced by a tumor that leads to the appearance and persistence of cachexia. Furthermore, cachexia is irreversible, and there are currently no guidelines for its diagnosis or treatments for it. In this review, we aim to discuss the current knowledge about cancer-associated cachexia, starting with generalities about cancer as the generator of this syndrome, then analyzing the characteristics of cachexia at the biochemical and metabolic levels in both the tumor and the patient, and finally discussing current therapeutic approaches to treating cancer-associated cachexia.
Collapse
Affiliation(s)
| | | | | | - Alfonso Dueñas-González
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas UNAM/Instituto Nacional de CancerologíaMexico
| |
Collapse
|
158
|
Morales FE, Forsse JS, Andre TL, McKinley-Barnard SK, Hwang PS, Anthony IG, Tinsley GM, Spillane M, Grandjean PW, Ramirez A, Willoughby DS. BAIBA Does Not Regulate UCP-3 Expression in Human Skeletal Muscle as a Response to Aerobic Exercise. J Am Coll Nutr 2017; 36:200-209. [PMID: 28318397 DOI: 10.1080/07315724.2016.1256240] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE β-Aminoisobutyric acid (BAIBA) has shown to modulate uncoupling protein (UCP)-1 expression, which is mainly expressed in white adipose tissue; however, no studies to date have analyzed its potential effect on the main uncoupling protein of skeletal muscle, UCP-3. The main goal of this study was to assess the potential effect of acute aerobic exercise on serum BAIBA and skeletal muscle UCP-3. The secondary goal was to assess the potential involvement of the transcription factors proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and peroxisome proliferator-activated receptor alpha (PPARα), as well as free fatty acids (FFAs) in UCP-3 expression. A tertiary goal of the study was to evaluate the potential effect of consuming a preexercise meal on the outcome of the first 2 objectives. METHODS In a randomized crossover design, untrained participants performed 2 acute cycling sessions (350 kcal at 70% of their VO2peak) after 2 experimental conditions: (1) consumption of a multi-macronutrient shake and (2) a fasting period of 8 hours. Blood samples were taken at baseline, preexercise, postexercise, 1 hour, and 4 hours postexercise, and muscle biopsies were taken at the last 4 time points. UCP-3 protein concentration and expression, as well as the mRNA expression of PGC-1α and PPARα, were measured in muscle, and BAIBA, glucose, and FFA were measured in serum. RESULTS Aerobic exercise failed to induce a significant effect on serum BAIBA, PGC-1α, and PPARα regardless on the feeding condition. Despite the lack of effect of exercise on the previous variables, UCP-3 expression and protein concentration significantly increased in the shake condition. CONCLUSION The expression of human skeletal muscle UCP-3 as a result of exercise might be controlled by factors other than BAIBA.
Collapse
Affiliation(s)
- Flor E Morales
- a Department of Health , Human Performance and Recreation, Baylor University , Waco , Texas
| | - Jeffrey S Forsse
- a Department of Health , Human Performance and Recreation, Baylor University , Waco , Texas
| | - Thomas L Andre
- a Department of Health , Human Performance and Recreation, Baylor University , Waco , Texas
| | | | - Paul S Hwang
- a Department of Health , Human Performance and Recreation, Baylor University , Waco , Texas
| | - Ian G Anthony
- a Department of Health , Human Performance and Recreation, Baylor University , Waco , Texas
| | - Grant M Tinsley
- c Department of Kinesiology and Sport Management , Texas Tech University , Lubbock , Texas
| | - Mike Spillane
- d Department of Nutrition , Tecnológico de Monterrey , Monterrey , N.L. , México
| | - Peter W Grandjean
- a Department of Health , Human Performance and Recreation, Baylor University , Waco , Texas
| | - Alejandro Ramirez
- a Department of Health , Human Performance and Recreation, Baylor University , Waco , Texas
| | - Darryn S Willoughby
- a Department of Health , Human Performance and Recreation, Baylor University , Waco , Texas
| |
Collapse
|
159
|
Pemafibrate, a novel selective peroxisome proliferator-activated receptor alpha modulator, improves the pathogenesis in a rodent model of nonalcoholic steatohepatitis. Sci Rep 2017; 7:42477. [PMID: 28195199 PMCID: PMC5307366 DOI: 10.1038/srep42477] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 01/11/2017] [Indexed: 02/07/2023] Open
Abstract
The efficacy of peroxisome proliferator-activated receptor α-agonists (e.g., fibrates) against nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) in humans is not known. Pemafibrate is a novel selective peroxisome proliferator-activated receptor α modulator that can maximize the beneficial effects and minimize the adverse effects of fibrates used currently. In a phase-2 study, pemafibrate was shown to improve liver dysfunction in patients with dyslipidaemia. In the present study, we first investigated the effect of pemafibrate on rodent models of NASH. Pemafibrate efficacy was assessed in a diet-induced rodent model of NASH compared with fenofibrate. Pemafibrate and fenofibrate improved obesity, dyslipidaemia, liver dysfunction, and the pathological condition of NASH. Pemafibrate improved insulin resistance and increased energy expenditure significantly. To investigate the effects of pemafibrate, we analysed the gene expressions and protein levels involved in lipid metabolism. We also analysed uncoupling protein 3 (UCP3) expression. Pemafibrate stimulated lipid turnover and upregulated UCP3 expression in the liver. Levels of acyl-CoA oxidase 1 and UCP3 protein were increased by pemafibrate significantly. Pemafibrate can improve the pathogenesis of NASH by modulation of lipid turnover and energy metabolism in the liver. Pemafibrate is a promising therapeutic agent for NAFLD/NASH.
Collapse
|
160
|
Wu L, Guo X, Hartson SD, Davis MA, He H, Medeiros DM, Wang W, Clarke SL, Lucas EA, Smith BJ, von Lintig J, Lin D. Lack of β, β-carotene-9', 10'-oxygenase 2 leads to hepatic mitochondrial dysfunction and cellular oxidative stress in mice. Mol Nutr Food Res 2017; 61. [PMID: 27991717 DOI: 10.1002/mnfr.201600576] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/27/2016] [Accepted: 12/05/2016] [Indexed: 12/17/2022]
Abstract
SCOPE β,β-Carotene-9',10'-dioxygenase 2 (BCO2) is a carotenoid cleavage enzyme localized to the inner mitochondrial membrane in mammals. This study was aimed to assess the impact of genetic ablation of BCO2 on hepatic oxidative stress through mitochondrial function in mice. METHODS AND RESULTS Liver samples from 6-wk-old male BCO2-/- knockout (KO) and isogenic wild-type (WT) mice were subjected to proteomics and functional activity assays. Compared to the WT, KO mice consumed more food (by 18%) yet displayed significantly lower body weight (by 12%). Mitochondrial proteomic results demonstrated that loss of BCO2 was associated with quantitative changes of the mitochondrial proteome mainly shown by suppressed expression of enzymes and/or proteins involved in fatty acid β-oxidation, the tricarboxylic acid cycle, and the electron transport chain. The mitochondrial basal respiratory rate, proton leak, and electron transport chain complex II capacity were significantly elevated in the livers of KO compared to WT mice. Moreover, elevated reactive oxygen species and increased mitochondrial protein carbonylation were also demonstrated in liver of KO mice. CONCLUSIONS Loss of BCO2 induces mitochondrial hyperactivation, mitochondrial stress, and changes of the mitochondrial proteome, leading to mitochondrial energy insufficiency. BCO2 appears to be critical for proper hepatic mitochondrial function.
Collapse
Affiliation(s)
- Lei Wu
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Xin Guo
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Steven D Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | - Mary Abby Davis
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Hui He
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Denis M Medeiros
- Graduate School, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Weiqun Wang
- Department of Food, Nutrition, Dietetics, and Health, Kansas State University, Manhattan, KS, USA
| | - Stephen L Clarke
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Edralin A Lucas
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Johannes von Lintig
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Dingbo Lin
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
161
|
Choung JS, Lee YS, Jun HS. Exendin-4 increases oxygen consumption and thermogenic gene expression in muscle cells. J Mol Endocrinol 2017; 58:79-90. [PMID: 27872157 DOI: 10.1530/jme-16-0078] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 11/21/2016] [Indexed: 02/02/2023]
Abstract
Glucagon-like peptide-1 (GLP1) has many anti-diabetic actions and also increases energy expenditure in vivo As skeletal muscle is a major organ controlling energy metabolism, we investigated whether GLP1 can affect energy metabolism in muscle. We found that treatment of differentiated C2C12 cells with exendin-4 (Ex-4), a GLP1 receptor agonist, reduced oleate:palmitate-induced lipid accumulation and triglyceride content compared with cells without Ex-4 treatment. When we examined the oxygen consumption rate (OCR), not only the basal OCR but also the OCR induced by oleate:palmitate addition was significantly increased in Ex-4-treated differentiated C2C12 cells, and this was inhibited by exendin-9, a GLP1 receptor antagonist. The expression of uncoupling protein 1 (UCP1), β3-adrenergic receptor, peroxisome proliferator-activator receptor a (PPARa) and farnesoid X receptor mRNA was significantly upregulated in Ex-4-treated differentiated C2C12 cells, and the upregulation of these mRNA was abolished by treatment with adenylate cyclase inhibitor (2'5'-dideoxyadenosine) or PKA inhibitor (H-89). As well, intramuscular injection of Ex-4 into diet-induced obese mice significantly increased the expression of UCP1, PPARa and p-AMPK in muscle. We suggest that exposure to GLP1 increases energy expenditure in muscle through the upregulation of fat oxidation and thermogenic gene expression, which may contribute to reducing obesity and insulin resistance.
Collapse
Affiliation(s)
- Jin-Seung Choung
- College of Pharmacy and Gachon Institute of Pharmaceutical ScienceGachon University, Incheon, Republic of Korea
- Lee Gil Ya Cancer and Diabetes InstituteGachon University, Incheon, Republic of Korea
| | - Young-Sun Lee
- Lee Gil Ya Cancer and Diabetes InstituteGachon University, Incheon, Republic of Korea
| | - Hee-Sook Jun
- College of Pharmacy and Gachon Institute of Pharmaceutical ScienceGachon University, Incheon, Republic of Korea
- Lee Gil Ya Cancer and Diabetes InstituteGachon University, Incheon, Republic of Korea
- Gachon Medical Research InstituteGil Hospital, Incheon, Republic of Korea
| |
Collapse
|
162
|
Lizardo K, Almonte V, Law C, Aiyyappan JP, Cui MH, Nagajyothi JF. Diet regulates liver autophagy differentially in murine acute Trypanosoma cruzi infection. Parasitol Res 2017; 116:711-723. [PMID: 27987056 PMCID: PMC5283091 DOI: 10.1007/s00436-016-5337-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/22/2016] [Indexed: 01/09/2023]
Abstract
Chagas disease is a tropical parasitic disease caused by the protozoan Trypanosoma cruzi, which affects about ten million people in its endemic regions of Latin America. After the initial acute stage of infection, 60-80% of infected individuals remain asymptomatic for several years to a lifetime; however, the rest develop the debilitating symptomatic stage, which affects the nervous system, digestive system, and heart. The challenges of Chagas disease have become global due to immigration. Despite well-documented dietary changes accompanying immigration, as well as a transition to a western style diet in the Chagas endemic regions, the role of host metabolism in the pathogenesis of Chagas disease remains underexplored. We have previously used a mouse model to show that host diet is a key factor regulating cardiomyopathy in Chagas disease. In this study, we investigated the effect of a high-fat diet on liver morphology and physiology, lipid metabolism, immune signaling, energy homeostasis, and stress responses in the murine model of acute T. cruzi infection. Our results indicate that in T. cruzi-infected mice, diet differentially regulates several liver processes, including autophagy, a stress response mechanism, with corresponding implications for human Chagas disease patients.
Collapse
Affiliation(s)
- Kezia Lizardo
- Department of Microbiology, Biochemistry and Molecular Genetics, Public Health Research Institute, Rutgers state University, 225 Warren Street, Newark, NJ, 07103, USA
| | - Vanessa Almonte
- Departments of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Calvin Law
- Departments of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Janeesh Plakkal Aiyyappan
- Department of Microbiology, Biochemistry and Molecular Genetics, Public Health Research Institute, Rutgers state University, 225 Warren Street, Newark, NJ, 07103, USA
| | - Min-Hui Cui
- Departments of Radiology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Departments of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Jyothi F Nagajyothi
- Department of Microbiology, Biochemistry and Molecular Genetics, Public Health Research Institute, Rutgers state University, 225 Warren Street, Newark, NJ, 07103, USA.
| |
Collapse
|
163
|
Merdzo I, Rutkai I, Sure VNLR, McNulty CA, Katakam PVG, Busija DW. Impaired Mitochondrial Respiration in Large Cerebral Arteries of Rats with Type 2 Diabetes. J Vasc Res 2017; 54:1-12. [PMID: 28095372 DOI: 10.1159/000454812] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/27/2016] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial dysfunction has been suggested as a potential underlying cause of pathological conditions associated with type 2 diabetes (T2DM). We have previously shown that mitochondrial respiration and mitochondrial protein levels were similar in the large cerebral arteries of insulin-resistant Zucker obese rats and their lean controls. In this study, we extend our investigations into the mitochondrial dynamics of the cerebral vasculature of 14-week-old Zucker diabetic fatty obese (ZDFO) rats with early T2DM. Body weight and blood glucose levels were significantly higher in the ZDFO group, and basal mitochondrial respiration and proton leak were significantly decreased in the large cerebral arteries of the ZDFO rats compared with the lean controls (ZDFL). The expression of the mitochondrial proteins total manganese superoxide dismutase (MnSOD) and voltage-dependent anion channel (VDAC) were significantly lower in the cerebral microvessels, and acetylated MnSOD levels were significantly reduced in the large arteries of the ZDFO group. Additionally, superoxide production was significantly increased in the microvessels of the ZDFO group. Despite evidence of increased oxidative stress in ZDFO, exogenous SOD was not able to restore mitochondrial respiration in the ZDFO rats. Our results show, for the first time, that mitochondrial respiration and protein levels are compromised during the early stages of T2DM.
Collapse
Affiliation(s)
- Ivan Merdzo
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | | | | | | |
Collapse
|
164
|
Niclosamide ethanolamine inhibits artery constriction. Pharmacol Res 2017; 115:78-86. [DOI: 10.1016/j.phrs.2016.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/09/2016] [Accepted: 11/09/2016] [Indexed: 01/25/2023]
|
165
|
Albert V, Svensson K, Shimobayashi M, Colombi M, Muñoz S, Jimenez V, Handschin C, Bosch F, Hall MN. mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue. EMBO Mol Med 2016; 8:232-46. [PMID: 26772600 PMCID: PMC4772955 DOI: 10.15252/emmm.201505610] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Activation of non‐shivering thermogenesis (NST) in brown adipose tissue (BAT) has been proposed as an anti‐obesity treatment. Moreover, cold‐induced glucose uptake could normalize blood glucose levels in insulin‐resistant patients. It is therefore important to identify novel regulators of NST and cold‐induced glucose uptake. Mammalian target of rapamycin complex 2 (mTORC2) mediates insulin‐stimulated glucose uptake in metabolic tissues, but its role in NST is unknown. We show that mTORC2 is activated in brown adipocytes upon β‐adrenergic stimulation. Furthermore, mice lacking mTORC2 specifically in adipose tissue (AdRiKO mice) are hypothermic, display increased sensitivity to cold, and show impaired cold‐induced glucose uptake and glycolysis. Restoration of glucose uptake in BAT by overexpression of hexokinase II or activated Akt2 was sufficient to increase body temperature and improve cold tolerance in AdRiKO mice. Thus, mTORC2 in BAT mediates temperature homeostasis via regulation of cold‐induced glucose uptake. Our findings demonstrate the importance of glucose metabolism in temperature regulation.
Collapse
Affiliation(s)
| | | | | | | | - Sergio Muñoz
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Veronica Jimenez
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | | | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | | |
Collapse
|
166
|
Smith RE, Tran K, Smith CC, McDonald M, Shejwalkar P, Hara K. The Role of the Nrf2/ARE Antioxidant System in Preventing Cardiovascular Diseases. Diseases 2016; 4:diseases4040034. [PMID: 28933413 PMCID: PMC5456329 DOI: 10.3390/diseases4040034] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 12/21/2022] Open
Abstract
It is widely believed that consuming foods and beverages that have high concentrations of antioxidants can prevent cardiovascular diseases and many types of cancer. As a result, many articles have been published that give the total antioxidant capacities of foods in vitro. However, many antioxidants behave quite differently in vivo. Some of them, such as resveratrol (in red wine) and epigallocatechin gallate or EGCG (in green tea) can activate the nuclear erythroid-2 like factor-2 (Nrf2) transcription factor. It is a master regulator of endogenous cellular defense mechanisms. Nrf2 controls the expression of many antioxidant and detoxification genes, by binding to antioxidant response elements (AREs) that are commonly found in the promoter region of antioxidant (and other) genes, and that control expression of those genes. The mechanisms by which Nrf2 relieves oxidative stress and limits cardiac injury as well as the progression to heart failure are described. Also, the ability of statins to induce Nrf2 in the heart, brain, lung, and liver is mentioned. However, there is a negative side of Nrf2. When over-activated, it can cause (not prevent) cardiovascular diseases and multi-drug resistance cancer.
Collapse
Affiliation(s)
- Robert E Smith
- US Food & Drug Administration, 11510 W 80th Street, Lenexa, KS 66214, USA.
| | - Kevin Tran
- US Food & Drug Administration, 11510 W 80th Street, Lenexa, KS 66214, USA.
| | - Cynthia C Smith
- US Food & Drug Administration, 11510 W 80th Street, Lenexa, KS 66214, USA.
| | - Miranda McDonald
- US Food & Drug Administration, 11510 W 80th Street, Lenexa, KS 66214, USA.
| | - Pushkar Shejwalkar
- Department of Applied Chemistry, School of Engineering, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo 192-0982, Japan.
| | - Kenji Hara
- Department of Applied Chemistry, School of Engineering, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo 192-0982, Japan.
| |
Collapse
|
167
|
Li X, Fang P, Yang WY, Chan K, Lavallee M, Xu K, Gao T, Wang H, Yang X. Mitochondrial ROS, uncoupled from ATP synthesis, determine endothelial activation for both physiological recruitment of patrolling cells and pathological recruitment of inflammatory cells. Can J Physiol Pharmacol 2016; 95:247-252. [PMID: 27925481 DOI: 10.1139/cjpp-2016-0515] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mitochondrial reactive oxygen species (mtROS) are signaling molecules, which drive inflammatory cytokine production and T cell activation. In addition, cardiovascular diseases, cancers, and autoimmune diseases all share a common feature of increased mtROS level. Both mtROS and ATP are produced as a result of electron transport chain activity, but it remains enigmatic whether mtROS could be generated independently from ATP synthesis. A recent study shed light on this important question and found that, during endothelial cell (EC) activation, mtROS could be upregulated in a proton leak-coupled, but ATP synthesis-uncoupled manner. As a result, EC could upregulate mtROS production for physiological EC activation without compromising mitochondrial membrane potential and ATP generation, and consequently without causing mitochondrial damage and EC death. Thus, a novel pathophysiological role of proton leak in driving mtROS production was uncovered for low grade EC activation, patrolling immunosurveillance cell trans-endothelial migration and other signaling events without compromising cellular survival. This new working model explains how mtROS could be increasingly generated independently from ATP synthesis and endothelial damage or death. Mapping the connections among mitochondrial metabolism, physiological EC activation, patrolling cell migration, and pathological inflammation is significant towards the development of novel therapies for inflammatory diseases and cancers.
Collapse
Affiliation(s)
- Xinyuan Li
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Pu Fang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - William Y Yang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Kylie Chan
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Muriel Lavallee
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Keman Xu
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Tracy Gao
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Hong Wang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Xiaofeng Yang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
168
|
Cortes-Oliveira C, Nicoletti CF, de Souza Pinhel MA, de Oliveira BAP, Quinhoneiro DCG, Noronha NY, Marchini JS, da Silva Júnior WA, Júnior WS, Nonino CB. UCP2 expression is associated with weight loss after hypocaloric diet intervention. Eur J Clin Nutr 2016; 71:402-406. [PMID: 27759071 DOI: 10.1038/ejcn.2016.185] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/09/2016] [Accepted: 08/12/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND/OBJECTIVES Although energy restriction contributes to weight loss, it may also reduce energy expenditure, limiting the success of weight loss in the long term. Studies have described how genetics contributes to the development of obesity, and uncoupling proteins 1 and 2 (UCP1 and UCP2) and beta-3-adrenoceptor (ADRB3) have been implicated in the metabolic pathways that culminate in this condition. This study aimed to evaluate how the UCP1, UCP2 and ADRB3 genes influence weight loss in severely obese women submitted to hypocaloric dietary intervention. SUBJECTS/METHODS This longitudinal study included 21 women divided into two groups: Group 1 (Dietary intervention (G1)) consisted of 11 individuals with severe obesity (body mass index (BMI) ⩾40 kg/m2), selected for dietary intervention and Group 2 (Control (G2)) consisted of 10 normal-weight women (BMI between 18.5 and 24.9 kg/m2). Evaluation included weight (kg), height (m), waist circumference (cm), body composition, resting metabolic rate (RMR, kcal) and abdominal subcutaneous adipose tissue collection. The dietary intervention required that G1 patients remained hospitalized in the university hospital for 6 weeks receiving a hypocaloric diet (1200 kcal per day). The statistical analyses included t-test for paired samples, Spearman correlation and multivariate linear regressions, with the level of significance set at P<0.05. RESULTS Weight (155.0±31.4-146.5±27.8 kg), BMI (58.5±10.5-55.3±9.2 kg/m2), fat-free mass (65.4±8.6-63.1±7.1 kg), fat mass (89.5±23.0-83.4±21.0 kg) and RMR (2511.6±386.1-2324.0±416.4 kcal per day) decreased significantly after dietary intervention. Multiple regression analyses showed that UCP2 expression contributed to weight loss after dietary intervention (P=0.05). CONCLUSIONS UCP2 expression is associated with weight loss after hypocaloric diet intervention.
Collapse
Affiliation(s)
- C Cortes-Oliveira
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - C F Nicoletti
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - M A de Souza Pinhel
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - B A P de Oliveira
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - D C G Quinhoneiro
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - N Y Noronha
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - J S Marchini
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - W A da Silva Júnior
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - W S Júnior
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - C B Nonino
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
169
|
Eicosapentaenoic acid regulates brown adipose tissue metabolism in high-fat-fed mice and in clonal brown adipocytes. J Nutr Biochem 2016; 39:101-109. [PMID: 27833050 DOI: 10.1016/j.jnutbio.2016.08.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 08/03/2016] [Accepted: 08/20/2016] [Indexed: 01/08/2023]
Abstract
Brown adipose tissue (BAT) plays a key role in energy expenditure through its specialized thermogenic function. Therefore, BAT activation may help prevent and/or treat obesity. Interestingly, subcutaneous white adipose tissue (WAT) also has the ability to differentiate into brown-like adipocytes and may potentially contribute to increased thermogenesis. We have previously reported that eicosapentaenoic acid (EPA) reduces high-fat (HF)-diet-induced obesity and insulin resistance in mice. Whether BAT mediates some of these beneficial effects of EPA has not been determined. We hypothesized that EPA activates BAT thermogenic program, contributing to its antiobesity effects. BAT and WAT were harvested from B6 male mice fed HF diets supplemented with or without EPA. HIB 1B clonal brown adipocytes treated with or without EPA were also used. Gene and protein expressions were measured in adipose tissues and H1B 1B cells by quantitative polymerase chain reaction and immunoblotting, respectively. Our results show that BAT from EPA-supplemented mice expressed significantly higher levels of thermogenic genes such as PRDM16 and PGC1α and higher levels of uncoupling protein 1 compared to HF-fed mice. By contrast, both WATs (subcutaneous and visceral) had undetectable levels of these markers with no up regulation by EPA. HIB 1B cells treated with EPA showed significantly higher mRNA expression of PGC1α and SIRT2. EPA treatment significantly increased maximum oxidative and peak glycolytic metabolism in H1B 1B cells. Our results demonstrate a novel and promising role for EPA in preventing obesity via activation of BAT, adding to its known beneficial anti-inflammatory effects.
Collapse
|
170
|
Zhang YQ, Shen X, Xiao XL, Liu MY, Li SL, Yan J, Jin J, Gao JL, Zhen CL, Hu N, Zhang XZ, Tai Y, Zhang LS, Bai YL, Dong DL. Mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrazone induces vasorelaxation without involving K ATP channel activation in smooth muscle cells of arteries. Br J Pharmacol 2016; 173:3145-3158. [PMID: 27534899 DOI: 10.1111/bph.13578] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE The effects and mechanisms of chemical mitochondrial uncouplers on vascular function have never been identified. Here, we characterized the effects of the typical mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP) on vascular function in rat mesenteric arteries and aorta and elucidated the potential mechanisms. EXPERIMENTAL APPROACH Isometric tension of mesenteric artery and thoracic aorta was recorded by using a multiwire myograph system. Protein levels were measured by western blot analyses. Cytosolic [Ca2+ ]i , mitochondrial ROS (mitoROS) and mitochondrial membrane potential of smooth muscle cells (A10) were measured by laser scanning confocal microscopy. KEY RESULTS Acute treatment with CCCP relaxed phenylephrine (PE)- and high K+ (KPSS)-induced constriction of rat mesenteric arteries with intact and denuded endothelium. Pretreatment with CCCP prevented PE- and KPSS-induced constriction of rat mesenteric arteries with intact and denuded endothelium. Similarly, CCCP prevented PE- and KPSS-induced constriction of rat thoracic aorta. CCCP increased the cellular ADP/ATP ratio in vascular smooth muscle cells (A10) and activated AMPK in A10 cells and rat thoracic aorta tissues. CCCP-induced aorta relaxation was attenuated in AMPK α1 knockout (-/-) mice. SERCA inhibitors thapsigargin and cyclopiazonic acid (CPA) but not the KATP channel blocker glibenclamide partially inhibited CCCP-induced vasorelaxation in endothelium-denuded rat mesenteric arteries. CCCP increased cytosolic [Ca2+ ]i , mitoROS production and depolarized mitochondrial membrane potential in A10 cells. FCCP, the analogue of CCCP, had similar vasoactivity as CCCP in rat mesenteric arteries. CONCLUSIONS AND IMPLICATIONS CCCP induces vasorelaxation by a mechanism that does not involve KATP channel activation in smooth muscle cells of arteries.
Collapse
Affiliation(s)
- Yan-Qiu Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - Xin Shen
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - Xiao-Lin Xiao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - Ming-Yu Liu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - Shan-Liang Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - Jie Yan
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - Jing Jin
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - Jin-Lai Gao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - Chang-Lin Zhen
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - Nan Hu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - Xin-Zi Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - Yu Tai
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - Liang-Shuan Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - Yun-Long Bai
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - De-Li Dong
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China.
| |
Collapse
|
171
|
Lefere S, Van Steenkiste C, Verhelst X, Van Vlierberghe H, Devisscher L, Geerts A. Hypoxia-regulated mechanisms in the pathogenesis of obesity and non-alcoholic fatty liver disease. Cell Mol Life Sci 2016; 73:3419-31. [PMID: 27091156 PMCID: PMC11108443 DOI: 10.1007/s00018-016-2222-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 02/06/2023]
Abstract
The pandemic rise in obesity has resulted in an increased incidence of metabolic complications. Non-alcoholic fatty liver disease is the hepatic manifestation of the metabolic syndrome and has become the most common chronic liver disease in large parts of the world. The adipose tissue expansion and hepatic fat accumulation characteristics of these disorders compromise local oxygen homeostasis. The resultant tissue hypoxia induces adaptive responses to restore oxygenation and tissue metabolism and cell survival. Hypoxia-inducible factors (HIFs) function as master regulators of this hypoxia adaptive response, and are in turn hydroxylated by prolyl hydroxylases (PHDs). PHDs are the main cellular oxygen sensors and regulate HIF proteasomal degradation in an oxygen-dependent manner. HIFs and PHDs are implicated in numerous physiological and pathological conditions. Extensive research using genetic models has revealed that hypoxia signaling is also a key mechanism in adipose tissue dysfunction, leading to adipose tissue fibrosis, inflammation and insulin resistance. Moreover, hypoxia affects liver lipid metabolism and deranges hepatic lipid accumulation. This review summarizes the molecular mechanisms through which the hypoxia adaptive response affects adipocyte and hepatic metabolism, and the therapeutic possibilities of modulating HIFs and PHDs in obesity and fatty liver disease.
Collapse
Affiliation(s)
- Sander Lefere
- Department of Gastroenterology and Hepatology, Ghent University Hospital, De Pintelaan 185, 1K12IE, 9000, Ghent, Belgium.
| | - Christophe Van Steenkiste
- Department of Gastroenterology and Hepatology, Ghent University Hospital, De Pintelaan 185, 1K12IE, 9000, Ghent, Belgium
- Department of Gastroenterology and Hepatology, Maria Middelares Hospital, Ghent, Belgium
| | - Xavier Verhelst
- Department of Gastroenterology and Hepatology, Ghent University Hospital, De Pintelaan 185, 1K12IE, 9000, Ghent, Belgium
| | - Hans Van Vlierberghe
- Department of Gastroenterology and Hepatology, Ghent University Hospital, De Pintelaan 185, 1K12IE, 9000, Ghent, Belgium
| | - Lindsey Devisscher
- Department of Gastroenterology and Hepatology, Ghent University Hospital, De Pintelaan 185, 1K12IE, 9000, Ghent, Belgium
| | - Anja Geerts
- Department of Gastroenterology and Hepatology, Ghent University Hospital, De Pintelaan 185, 1K12IE, 9000, Ghent, Belgium
| |
Collapse
|
172
|
Futawaka K, Tagami T, Fukuda Y, Koyama R, Nushida A, Nezu S, Imamoto M, Kasahara M, Moriyama K. Growth hormone regulates the expression of UCP2 in myocytes. Growth Horm IGF Res 2016; 29:57-62. [PMID: 27150070 DOI: 10.1016/j.ghir.2016.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 03/03/2016] [Accepted: 04/10/2016] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To determine if and how growth hormone (GH) signaling is involved in energy metabolism. DESIGN We used human embryonic kidney TSA201 cells, human H-EMC-SS chondrosarcoma cells, rat L6 skeletal muscle cells, and murine C2C12 skeletal muscle myoblasts to investigate GH-induced expression of uncoupling protein2 (UCP2) to the GHR/JAK/STAT5 pathway by a combination of a reporter assay, electrophoretic mobility shift assay (EMSA), real-time quantitative PCR, Western blotting. RESULTS We demonstrated that the regulation energy metabolism, which was hypothesized to be directly acted on by GH, involves UCP2 via activated STAT5B, a signal transducer downstream of GH. We also showed that the sequence at the -586 'TTCnGA' may function as a novel putative consensus sequence of STAT5s. CONCLUSION The results suggest that GH regulates energy metabolism directly in myocytes and that UCP2 participates in the signal transduction pathway that functions downstream of the GHR/JAK/STAT.
Collapse
Affiliation(s)
- Kumi Futawaka
- Medicine and Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan.
| | - Tetsuya Tagami
- Clinical Research Institute for Endocrine and Metabolic Diseases, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Yuki Fukuda
- Medicine and Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Rie Koyama
- Medicine and Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Ayaka Nushida
- Medicine and Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Syoko Nezu
- Medicine and Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Miyuki Imamoto
- Clinical Research Institute for Endocrine and Metabolic Diseases, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Masato Kasahara
- Clinical Research Institute for Endocrine and Metabolic Diseases, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Kenji Moriyama
- Medicine and Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan; Clinical Research Institute for Endocrine and Metabolic Diseases, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan; Department of Nephrology and Blood Purification, Institute of Biomedical Research and Innovation, Kobe Medical Frontier Center, Kobe 650-0047, Japan
| |
Collapse
|
173
|
Vitamin D3/VDR resists diet-induced obesity by modulating UCP3 expression in muscles. J Biomed Sci 2016; 23:56. [PMID: 27473111 PMCID: PMC4966724 DOI: 10.1186/s12929-016-0271-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/11/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The impact of vitamin D3 (VD3) on obesity has been reported in the past. Our study was aimed at investigating the possible mechanisms by which VD3 affects obesity induced by a high fat diet. METHODS Eight-week-old C57BL/6 J male mice were fed a normal- or high-fat diet for 9 weeks and were treated with a gavage of vehicle (corn oil) or cholecalciferol (50 μg/kg, daily). Body weight, white adipose tissue weight, blood lipid and glucose levels were measured. In addition, we investigated the expression of 1,25(OH)2D3 (calcitriol)/VDR-regulated genes involved in energy and lipid metabolism, such as of uncoupling protein 3 (UCP3), by using qRT-PCR in the liver, adipose tissue, skeletal muscle and C2C12, L6, and H-EMC-SS cells. We also measured UCP3 promoter transcription in the same cell lines using a Dual Luciferase Assay. Furthermore, we analyzed the binding site consensus sequences of VDR on the UCP3 promoter. RESULTS Mice consuming a high-fat diet treated with cholecalciferol had lower body weight and adipose tissue weight and higher expression of UCP3 compared to the other treatment groups. Changes in the expression of genes correlated with calcitriol/VDR. Luciferase activity was dose-dependently associated with calcitriol/VDR levels. We confirmed the functional VDR binding site consensus sequences at -2200, -1561, -634, and +314 bp in the UCP3 promoter region. CONCLUSION We suggest that VD3/VDR inhibits weight gain by activating UCP3 in the muscles.
Collapse
|
174
|
Rakus D, Gizak A, Wiśniewski JR. Proteomics Unveils Fibroblast-Cardiomyocyte Lactate Shuttle and Hexokinase Paradox in Mouse Muscles. J Proteome Res 2016; 15:2479-90. [PMID: 27302655 DOI: 10.1021/acs.jproteome.5b01149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Quantitative mapping, given in biochemically interpretable units such as mol per mg of total protein, of tissue-specific proteomes is prerequisite for the analysis of any process in cells. We applied label- and standard-free proteomics to characterize three types of striated muscles: white, red, and cardiac muscle. The analysis presented here uncovers several unexpected and novel features of striated muscles. In addition to differences in protein expression levels, the three muscle types substantially differ in their patterns of basic metabolic pathways and isoforms of regulatory proteins. Importantly, some of the conclusions drawn on the basis of our results, such as the potential existence of a "fibroblast-cardiomyocyte lactate shuttle" and the "hexokinase paradox" point to the necessity of reinterpretation of some basic aspects of striated muscle metabolism. The data presented here constitute a powerful database and a resource for future studies of muscle physiology and for the design of pharmaceutics for the treatment of muscular disorders.
Collapse
Affiliation(s)
- Dariusz Rakus
- Department of Animal Molecular Physiology, Wroclaw University , Wroclaw 50-205, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology, Wroclaw University , Wroclaw 50-205, Poland
| | - Jacek R Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry , Martinsried 82152, Germany
| |
Collapse
|
175
|
Shimozuru M, Nagashima A, Tanaka J, Tsubota T. Seasonal changes in the expression of energy metabolism-related genes in white adipose tissue and skeletal muscle in female Japanese black bears. Comp Biochem Physiol B Biochem Mol Biol 2016; 196-197:38-47. [DOI: 10.1016/j.cbpb.2016.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/10/2016] [Accepted: 02/10/2016] [Indexed: 10/24/2022]
|
176
|
Chen W, Xu H, Chen X, Liu Z, Zhang W, Xia D. Functional and Activity Analysis of Cattle UCP3 Promoter with MRFs-Related Factors. Int J Mol Sci 2016; 17:ijms17050682. [PMID: 27164086 PMCID: PMC4881508 DOI: 10.3390/ijms17050682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 04/09/2016] [Accepted: 04/13/2016] [Indexed: 12/18/2022] Open
Abstract
Uncoupling protein 3 (UCP3) is mainly expressed in muscle. It plays an important role in muscle, but less research on the regulation of cattle UCP3 has been performed. In order to elucidate whether cattle UCP3 can be regulated by muscle-related factors, deletion of cattle UCP3 promoter was amplified and cloned into pGL3-basic, pGL3-promoter and PEGFP-N3 vector, respectively, then transfected into C2C12 myoblasts cells and UCP3 promoter activity was measured using the dual-Luciferase reporter assay system. The results showed that there is some negative-regulatory element from −620 to −433 bp, and there is some positive-regulatory element between −433 and −385 bp. The fragment (1.08 kb) of UCP3 promoter was cotransfected with muscle-related transcription factor myogenic regulatory factors (MRFs) and myocyte-specific enhancer factor 2A (MEF2A). We found that UCP3 promoter could be upregulated by Myf5, Myf6 and MyoD and downregulated by MyoG and MEF2A.
Collapse
Affiliation(s)
- Wei Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Guizhou University, Guiyang 550025, China.
- College of Animal Science, Guizhou University, Guiyang 550025, China.
- College of Life Science, Guizhou University, Guiyang 550025, China.
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Guizhou University, Guiyang 550025, China.
- College of Animal Science, Guizhou University, Guiyang 550025, China.
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Guizhou University, Guiyang 550025, China.
- College of Animal Science, Guizhou University, Guiyang 550025, China.
| | - Zhongwei Liu
- College of Life Science, Guizhou University, Guiyang 550025, China.
| | - Wen Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Guizhou University, Guiyang 550025, China.
| | - Dan Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Guizhou University, Guiyang 550025, China.
- College of Animal Science, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
177
|
Abstract
There is an urgent need for effective pharmacological therapies to help tackle the growing obesity epidemic and the healthcare crisis it poses. The past 3 years have seen approval of a number of novel anti-obesity drugs. The majority of these influence hypothalamic appetite pathways via dopaminergic or serotoninergic signalling. Some are combination therapies, allowing lower doses to minimize the potential for off-target effects. An alternative approach is to mimic endogenous satiety signals using long-lasting forms of peripheral appetite-suppressing hormones. There is also considerable interest in targeting thermogenesis by brown adipose tissue to increase resting energy expenditure. Obesity pharmacotherapy has seen several false dawns, but improved understanding of the pathways regulating energy balance, and better-designed trials, give many greater confidence that recently approved agents will be both efficacious and safe. Nevertheless, a number of issues from preclinical and clinical development continue to attract debate, and additional large-scale trials are still required to address areas of uncertainty.
Collapse
|
178
|
Mitochondria in White, Brown, and Beige Adipocytes. Stem Cells Int 2016; 2016:6067349. [PMID: 27073398 PMCID: PMC4814709 DOI: 10.1155/2016/6067349] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 01/17/2016] [Accepted: 01/28/2016] [Indexed: 12/18/2022] Open
Abstract
Mitochondria play a key role in energy metabolism in many tissues, including cardiac and skeletal muscle, brain, liver, and adipose tissue. Three types of adipose depots can be identified in mammals, commonly classified according to their colour appearance: the white (WAT), the brown (BAT), and the beige/brite/brown-like (bAT) adipose tissues. WAT is mainly involved in the storage and mobilization of energy and BAT is predominantly responsible for nonshivering thermogenesis. Recent data suggest that adipocyte mitochondria might play an important role in the development of obesity through defects in mitochondrial lipogenesis and lipolysis, regulation of adipocyte differentiation, apoptosis, production of oxygen radicals, efficiency of oxidative phosphorylation, and regulation of conversion of white adipocytes into brown-like adipocytes. This review summarizes the main characteristics of each adipose tissue subtype and describes morphological and functional modifications focusing on mitochondria and their activity in healthy and unhealthy adipocytes.
Collapse
|
179
|
Oliveira BAP, Pinhel MAS, Nicoletti CF, Oliveira CC, Quinhoneiro DCG, Noronha NY, Marchini JS, Marchry AJ, Junior WS, Nonino CB. UCP1 and UCP3 Expression Is Associated with Lipid and Carbohydrate Oxidation and Body Composition. PLoS One 2016; 11:e0150811. [PMID: 26959981 PMCID: PMC4784729 DOI: 10.1371/journal.pone.0150811] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/19/2016] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND/OBJECTIVE Uncoupling proteins (UCPs) are located in the inner membrane of mitochondria. These proteins participate in thermogenesis and energy expenditure. This study aimed to evaluate how UCP1 and UCP3 expression influences substrate oxidation and elicits possible changes in body composition in patients submitted to bariatric surgery. SUBJECTS/METHODS This is a longitudinal study comprising 13 women with obesity grade III that underwent bariatric surgery and 10 healthy weight individuals (control group). Body composition was assessed by bioelectrical impedance. Carbohydrate and fat oxidation was determined by indirect calorimetry. Subcutaneous adipose tissue was collected for gene expression analysis. QPCR was used to evaluate UCP1 and UCP3 expression. RESULTS Obese patients and the control group differed significantly in terms of lipid and carbohydrate oxidation. Six months after bariatric surgery, the differences disappeared. Lipid oxidation correlated with the percentage of fat mass in the postoperative period. Multiple linear regression analysis showed that the UCP1 and UCP3 genes contributed to lipid and carbohydrate oxidation. Additionally, UCP3 expression was associated with BMI, percentage of lean body mass, and percentage of mass in the postoperative period. CONCLUSIONS UCP1 and UCP3 expression is associated with lipid and carbohydrate oxidation in patients submitted to bariatric surgery. In addition, UCP3 participates in body composition modulation six months postoperatively.
Collapse
Affiliation(s)
- Bruno A. P. Oliveira
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Marcela A. S. Pinhel
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Carolina F. Nicoletti
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Cristiana C. Oliveira
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Driele C. G. Quinhoneiro
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Natália Y. Noronha
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Júlio S. Marchini
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Ana J. Marchry
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Wilson S. Junior
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Carla B. Nonino
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto-SP, Brazil
- * E-mail:
| |
Collapse
|
180
|
Le Couteur DG, Solon-Biet S, Cogger VC, Mitchell SJ, Senior A, de Cabo R, Raubenheimer D, Simpson SJ. The impact of low-protein high-carbohydrate diets on aging and lifespan. Cell Mol Life Sci 2016; 73:1237-52. [PMID: 26718486 PMCID: PMC11108352 DOI: 10.1007/s00018-015-2120-y] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/08/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
Most research on nutritional effects on aging has focussed on the impact of manipulating single dietary factors such as total calorie intake or each of the macronutrients individually. More recent studies using a nutritional geometric approach called the Geometric Framework have facilitated an understanding of how aging is influenced across a landscape of diets that vary orthogonally in macronutrient and total energy content. Such studies have been performed using ad libitum feeding regimes, thus taking into account compensatory feeding responses that are inevitable in a non-constrained environment. Geometric Framework studies on insects and mice have revealed that diets low in protein and high in carbohydrates generate longest lifespans in ad libitum-fed animals while low total energy intake (caloric restriction by dietary dilution) has minimal effect. These conclusions are supported indirectly by observational studies in humans and a heterogeneous group of other types of interventional studies in insects and rodents. Due to compensatory feeding for protein dilution, low-protein, high-carbohydrate diets are often associated with increased food intake and body fat, a phenomenon called protein leverage. This could potentially be mitigated by supplementing these diets with interventions that influence body weight through physical activity and ambient temperature.
Collapse
Affiliation(s)
- David G Le Couteur
- Charles Perkins Centre, University of Sydney, Sydney, 2006, Australia.
- Ageing and Alzheimers Institute and ANZAC Research Institute, Concord Hospital, Concord, 2139, Australia.
| | - Samantha Solon-Biet
- Charles Perkins Centre, University of Sydney, Sydney, 2006, Australia
- Ageing and Alzheimers Institute and ANZAC Research Institute, Concord Hospital, Concord, 2139, Australia
| | - Victoria C Cogger
- Charles Perkins Centre, University of Sydney, Sydney, 2006, Australia
- Ageing and Alzheimers Institute and ANZAC Research Institute, Concord Hospital, Concord, 2139, Australia
| | - Sarah J Mitchell
- Translational Gerontology Branch, National Institute ON Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Alistair Senior
- Charles Perkins Centre, University of Sydney, Sydney, 2006, Australia
- School of Mathematics and Statistics, University of Sydney, Sydney, Australia
| | - Rafael de Cabo
- School of Mathematics and Statistics, University of Sydney, Sydney, Australia
| | - David Raubenheimer
- Charles Perkins Centre, University of Sydney, Sydney, 2006, Australia
- School of Biological Sciences, University of Sydney, Sydney, 2006, Australia
- Faculty of Veterinary Science, University of Sydney, Sydney, 2006, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, University of Sydney, Sydney, 2006, Australia.
- School of Biological Sciences, University of Sydney, Sydney, 2006, Australia.
| |
Collapse
|
181
|
Gao S, Li F, Li H, Huang Y, Liu Y, Chen Y. Effects and Molecular Mechanism of GST-Irisin on Lipolysis and Autocrine Function in 3T3-L1 Adipocytes. PLoS One 2016; 11:e0147480. [PMID: 26799325 PMCID: PMC4723061 DOI: 10.1371/journal.pone.0147480] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/05/2016] [Indexed: 02/01/2023] Open
Abstract
Irisin, which was recently identified as a myokine and an adipokine, transforms white adipose tissue to brown adipose tissue and has increasingly caught the attention of the medical and scientific community. However, the signaling pathway of irisin and the molecular mechanisms responsible for the lipolysis effect remain unclear. In this study, we established an efficient system for the expression and purification of GST-irisin in Escherichia coli. The biological activity of GST-irisin was verified using the cell counting kit-8 assay and by detecting the mRNA expression of uncoupling protein 1. Our data showed that GST-irisin regulates mRNA levels of lipolysis-related genes such as adipose triglyceride lipase and hormone-sensitive lipase and proteins such as the fatty acid-binding protein 4, leading to increased secretion of glycerol and decreased lipid accumulation in 3T3-L1 adipocytes. In addition, exogenous GST-irisin can increase its autocrine function in vitro by regulating the expression of fibronectin type III domain-containing protein 5. GST-irisin could regulate glucose uptake in 3T3-L1 adipocytes. Hence, we believe that recombinant GST-irisin could promote lipolysis and its secretion in vitro and can potentially prevent obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Shanshan Gao
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Fangmin Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Huimin Li
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yibing Huang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
- School of Life Sciences, Jilin University, Changchun, 130012, China
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, 130012, China
| | - Yu Liu
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun, 130041, China
- * E-mail: (YXC); (YL)
| | - Yuxin Chen
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
- School of Life Sciences, Jilin University, Changchun, 130012, China
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, 130012, China
- * E-mail: (YXC); (YL)
| |
Collapse
|
182
|
Hilse KE, Kalinovich AV, Rupprecht A, Smorodchenko A, Zeitz U, Staniek K, Erben RG, Pohl EE. The expression of UCP3 directly correlates to UCP1 abundance in brown adipose tissue. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1857:72-78. [PMID: 26518386 PMCID: PMC7115856 DOI: 10.1016/j.bbabio.2015.10.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/16/2015] [Accepted: 10/25/2015] [Indexed: 01/14/2023]
Abstract
UCP1 and UCP3 are members of the uncoupling protein (UCP) subfamily and are localized in the inner mitochondrial membrane. Whereas UCP1's central role in non-shivering thermogenesis is acknowledged, the function and even tissue expression pattern of UCP3 are still under dispute. Because UCP3 properties regarding transport of protons are qualitatively identical to those of UCP1, its expression in brown adipose tissue (BAT) alongside UCP1 requires justification. In this work, we tested whether any correlation exists between the expression of UCP1 and UCP3 in BAT by quantification of protein amounts in mouse tissues at physiological conditions, in cold-acclimated and UCP1 knockout mice. Quantification using recombinant UCP3 revealed that the UCP3 amount in BAT (0.51ng/(μg total tissue protein)) was nearly one order of magnitude higher than that in muscles and heart. Cold-acclimated mice showed an approximate three-fold increase in UCP3 abundance in BAT in comparison to mice in thermoneutral conditions. Surprisingly, we found a significant decrease of UCP3 in BAT of UCP1 knockout mice, whereas the protein amount in skeletal and heart muscles remained constant. UCP3 abundance decreased even more in cold-acclimated UCP1 knockout mice. Protein quantification in UCP3 knockout mice revealed no compensatory increase in UCP1 or UCP2 expression. Our results do not support the participation of UCP3 in thermogenesis in the absence of UCP1 in BAT, but clearly demonstrate the correlation in abundance between both proteins. The latter is important for understanding UCP3's function in BAT.
Collapse
Affiliation(s)
- Karolina E Hilse
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Anastasia V Kalinovich
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Anne Rupprecht
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Alina Smorodchenko
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Ute Zeitz
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Katrin Staniek
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Reinhold G Erben
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Elena E Pohl
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
183
|
|
184
|
Figarola JL, Singhal J, Tompkins JD, Rogers GW, Warden C, Horne D, Riggs AD, Awasthi S, Singhal SS. SR4 Uncouples Mitochondrial Oxidative Phosphorylation, Modulates AMP-dependent Kinase (AMPK)-Mammalian Target of Rapamycin (mTOR) Signaling, and Inhibits Proliferation of HepG2 Hepatocarcinoma Cells. J Biol Chem 2015; 290:30321-41. [PMID: 26534958 DOI: 10.1074/jbc.m115.686352] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Indexed: 01/01/2023] Open
Abstract
Mitochondrial oxidative phosphorylation produces most of the energy in aerobic cells by coupling respiration to the production of ATP. Mitochondrial uncouplers, which reduce the proton gradient across the mitochondrial inner membrane, create a futile cycle of nutrient oxidation without generating ATP. Regulation of mitochondrial dysfunction and associated cellular bioenergetics has been recently identified as a promising target for anticancer therapy. Here, we show that SR4 is a novel mitochondrial uncoupler that causes dose-dependent increase in mitochondrial respiration and dissipation of mitochondrial membrane potential in HepG2 hepatocarcinoma cells. These effects were reversed by the recoupling agent 6-ketocholestanol but not cyclosporin A and were nonexistent in mitochondrial DNA-depleted HepG2 cells. In isolated mouse liver mitochondria, SR4 similarly increased oxygen consumption independent of adenine nucleotide translocase and uncoupling proteins, decreased mitochondrial membrane potential, and promoted swelling of valinomycin-treated mitochondria in potassium acetate medium. Mitochondrial uncoupling in HepG2 cells by SR4 results in the reduction of cellular ATP production, increased ROS production, activation of the energy-sensing enzyme AMPK, and inhibition of acetyl-CoA carboxylase and mammalian target of rapamycin signaling pathways, leading to cell cycle arrest and apoptosis. Global analysis of SR4-associated differential gene expression confirms these observations, including significant induction of apoptotic genes and down-regulation of cell cycle, mitochondrial, and oxidative phosphorylation pathway transcripts at 24 h post-treatment. Collectively, our studies demonstrate that the previously reported indirect activation of AMPK and in vitro anticancer properties of SR4 as well as its beneficial effects in both animal xenograft and obese mice models could be a direct consequence of its mitochondrial uncoupling activity.
Collapse
Affiliation(s)
- James L Figarola
- From the Departments of Diabetes and Metabolic Diseases Research
| | - Jyotsana Singhal
- From the Departments of Diabetes and Metabolic Diseases Research
| | | | - George W Rogers
- Seahorse Biosciences, North Billerica, Massachusetts 01862, and
| | - Charles Warden
- the Bioinformatics Program, University of Michigan, Ann Arbor, Michigan 48109
| | | | - Arthur D Riggs
- From the Departments of Diabetes and Metabolic Diseases Research
| | - Sanjay Awasthi
- Medical Oncology, Beckman Research Institute of the City of Hope, Comprehensive Cancer Center, Duarte, California 91010
| | - Sharad S Singhal
- From the Departments of Diabetes and Metabolic Diseases Research,
| |
Collapse
|
185
|
Kühne H, Hause G, Grundmann SM, Schutkowski A, Brandsch C, Stangl GI. Vitamin D receptor knockout mice exhibit elongated intestinal microvilli and increased ezrin expression. Nutr Res 2015; 36:184-92. [PMID: 26606857 DOI: 10.1016/j.nutres.2015.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 11/19/2022]
Abstract
In addition to its principle function as a calcium regulator, vitamin D can affect cell and tissue morphology. The intestine is an important target tissue of vitamin D, as it must ensure the efficient transport of nutrients across the epithelium while excluding the passage of harmful molecules and bacteria into the organism. These functions require a highly organized morphology, which may be modified by vitamin D deficiency. To elucidate the role of vitamin D in gut morphology and barrier function, we compared the enterocyte microstructures, gut permeability, and cytoskeletal and cell junction protein expression in vitamin D receptor (VDR) knockout (KO) and wild-type (WT) mice. We found that the duodenal epithelial cells in the VDR-KO mice had longer microvilli (+19%) than those of the WT mice (P < .05). Interestingly, microvilli elongation in the VDR-KO mice was associated with higher messenger RNA and protein expression of ezrin, which is involved in the regulation of microvillus morphogenesis. Intestinal tight junction width and permeability were assessed by measuring the fluorescein isothiocyanate dextran concentrations in plasma; the concentrations were comparable between the 2 groups of mice. We further observed a decrease in the messenger RNA and protein expression of the calcium-transporting tight junction protein claudin-2 in the VDR-KO mice compared with the WT mice (P < .05). In conclusion, the mice lacking VDR had longer enterocyte microvilli, likely as a result of increased ezrin expression. However, the morphology of the tight junctions and the intestinal permeability for large molecules were not affected.
Collapse
Affiliation(s)
- Hagen Kühne
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany.
| | - Gerd Hause
- Biocenter of the Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany.
| | - Sarah M Grundmann
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany.
| | - Alexandra Schutkowski
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany.
| | - Corinna Brandsch
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany.
| | - Gabriele I Stangl
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany.
| |
Collapse
|
186
|
Soylu-Kucharz R, Adlesic N, Baldo B, Kirik D, Petersén Å. Hypothalamic overexpression of mutant huntingtin causes dysregulation of brown adipose tissue. Sci Rep 2015; 5:14598. [PMID: 26419281 PMCID: PMC4588570 DOI: 10.1038/srep14598] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/01/2015] [Indexed: 12/27/2022] Open
Abstract
Expression of mutant huntingtin (htt) protein has been shown to cause metabolic imbalance in animal models of Huntington disease (HD). The pathways involved are not fully understood but dysfunction of both the hypothalamus and brown adipose tissue (BAT) has been implicated. Here we show that targeted expression of mutant HTT in the hypothalamus leads to loss of the A13 dopaminergic cell group located in the zona incerta and reduced mRNA expression of neuropeptide Y1 receptor in the hypothalamus. Furthermore, this is accompanied by downregulation of uncoupling protein 1 expression and PPARγ coactivator-1 alpha in BAT and a rapid body weight gain. Taken together, our data might provide a mechanistic link between expression of mutant HTT, reduced activity of a hypothalamic dopaminergic pathway and dysfunction of BAT and in part explain the development of an obese phenotype in HD mouse models.
Collapse
Affiliation(s)
- Rana Soylu-Kucharz
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Sciences, Lund University, Sweden
| | - Natalie Adlesic
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Sciences, Lund University, Sweden
| | - Barbara Baldo
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Sciences, Lund University, Sweden
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems (B.R.A.I.N.S.) Unit, Department of Experimental Medical Sciences Lund University, Sweden
| | - Åsa Petersén
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Sciences, Lund University, Sweden
| |
Collapse
|
187
|
Lehnen TE, da Silva MR, Camacho A, Marcadenti A, Lehnen AM. A review on effects of conjugated linoleic fatty acid (CLA) upon body composition and energetic metabolism. J Int Soc Sports Nutr 2015; 12:36. [PMID: 26388708 PMCID: PMC4574006 DOI: 10.1186/s12970-015-0097-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/04/2015] [Indexed: 01/01/2023] Open
Abstract
Conjugated linoleic acid (CLA) is highly found in fats from ruminants and it appears to favorably modify the body composition and cardiometabolic risk factors. The capacity of CLA to reduce the body fat levels as well as its benefic actions on glycemic profile, atherosclerosis and cancer has already been proved in experimental models. Furthermore, CLA supplementation may modulate the immune function, help re-synthetize of glycogen and potentiate the bone mineralization. CLA supplementation also could increase the lipolysis and reduce the accumulation of fatty acids on the adipose tissue; the putative mechanisms involved may be its action in reducing the lipase lipoprotein activity and to increase the carnitine-palmitoil-transferase-1 (CAT-1) activity, its interaction with PPARγ, and to raise the expression of UCP-1. Although studies made in human have shown some benefits of CLA supplementation as the weight loss, the results are still discordant. Moreover, some have shown adverse effects, such as negative effects on glucose metabolism and lipid profile. The purpose of this article is to review the available data regarding the benefits of CLA on the energetic metabolism and body composition, emphasizing action mechanisms.
Collapse
Affiliation(s)
- Tatiana Ederich Lehnen
- Faculdade Sogipa de Educação Física, Porto Alegre, Brazil ; Instituto de Cardiologia do Rio Grande do Sul, Av. Princesa Isabel, 395 Santana, 90620-001 Porto Alegre, RS Brazil
| | | | - Augusto Camacho
- Faculdade Sogipa de Educação Física, Porto Alegre, Brazil ; Instituto de Cardiologia/Fundação Universitária de Cardiologia (IC/FUC), Porto Alegre, Brazil
| | - Aline Marcadenti
- Instituto de Cardiologia/Fundação Universitária de Cardiologia (IC/FUC), Porto Alegre, Brazil ; Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Alexandre Machado Lehnen
- Faculdade Sogipa de Educação Física, Porto Alegre, Brazil ; Instituto de Cardiologia/Fundação Universitária de Cardiologia (IC/FUC), Porto Alegre, Brazil
| |
Collapse
|
188
|
Rodríguez-Mora S, Mateos E, Moran M, Martín MÁ, López JA, Calvo E, Terrón MC, Luque D, Muriaux D, Alcamí J, Coiras M, López-Huertas MR. Intracellular expression of Tat alters mitochondrial functions in T cells: a potential mechanism to understand mitochondrial damage during HIV-1 replication. Retrovirology 2015; 12:78. [PMID: 26376973 PMCID: PMC4571071 DOI: 10.1186/s12977-015-0203-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 08/26/2015] [Indexed: 01/22/2023] Open
Abstract
Background HIV-1 replication results in mitochondrial damage that is enhanced during antiretroviral therapy (ART). The onset of HIV-1 replication is regulated by viral protein Tat, a 101-residue protein codified by two exons that elongates viral transcripts. Although the first exon of Tat (aa 1–72) forms itself an active protein, the presence of the second exon (aa 73–101) results in a more competent transcriptional protein with additional functions. Results Mitochondrial overall functions were analyzed in Jurkat cells stably expressing full-length Tat (Tat101) or one-exon Tat (Tat72). Representative results were confirmed in PBLs transiently expressing Tat101 and in HIV-infected Jurkat cells. The intracellular expression of Tat101 induced the deregulation of metabolism and cytoskeletal proteins which remodeled the function and distribution of mitochondria. Tat101 reduced the transcription of the mtDNA, resulting in low
ATP production. The total amount of mitochondria increased likely to counteract their functional impairment. These effects were enhanced when Tat second exon was expressed. Conclusions Intracellular Tat altered mtDNA transcription, mitochondrial content and distribution in CD4+ T cells. The importance of Tat second exon in non-transcriptional functions was confirmed. Tat101 may be responsible for mitochondrial dysfunctions found in HIV-1 infected patients. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0203-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sara Rodríguez-Mora
- Unidad de Inmunopatología del SIDA, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | - Elena Mateos
- Unidad de Inmunopatología del SIDA, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | - María Moran
- Laboratorio de Enfermedades Raras: mitocondriales y neuromusculares, Instituto de Investigación Hospital 12 de Octubre, "i + 12", Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) U723, Madrid, Spain.
| | - Miguel Ángel Martín
- Laboratorio de Enfermedades Raras: mitocondriales y neuromusculares, Instituto de Investigación Hospital 12 de Octubre, "i + 12", Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) U723, Madrid, Spain.
| | - Juan Antonio López
- Unidad de Proteómica, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.
| | - Enrique Calvo
- Unidad de Proteómica, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.
| | - María Carmen Terrón
- Unidad de Microscopía Electrónica y Confocal, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | - Daniel Luque
- Unidad de Microscopía Electrónica y Confocal, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | - Delphine Muriaux
- Unité de Virologie Humaine - INSERM U758/École Normale Supérieure, Lyon, France. .,Laboratoire de Domaines Membranaires et Assemblage Viral, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Montpellier, France.
| | - José Alcamí
- Unidad de Inmunopatología del SIDA, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | - Mayte Coiras
- Unidad de Inmunopatología del SIDA, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | - María Rosa López-Huertas
- Unidad de Inmunopatología del SIDA, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain. .,Unité de Virologie Humaine - INSERM U758/École Normale Supérieure, Lyon, France.
| |
Collapse
|