151
|
Involvement of the phosphoryl transfer network on cardiac energetic metabolism during Staphylococcus aureus infection and its association to disease pathophysiology. Microb Pathog 2018; 126:318-322. [PMID: 30439401 DOI: 10.1016/j.micpath.2018.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/29/2018] [Accepted: 11/06/2018] [Indexed: 11/21/2022]
Abstract
Evidences have suggested that the phosphoryl transfer network by the enzymatic activities of creatine kinase (CK), adenylate kinase (AK), pyruvate kinase (PK), and lactate dehydrogenase (LDH), shows new perspectives to understand some disturbances in the energy metabolism during bacterial infections. Thus, the aim of this study was to evaluate whether Staphylococcus aureus infection in mice could alter serum and cardiac activities of these enzymes and their association to disease pathophysiology. For that, we measured total leukocytes, lymphocytes and neutrophils (just 48 h of infection) that were lower in infected animals after 48 and 72 h in infected mice compared with negative control, while total protein and globulin plasma levels were higher after 72 h of infection. The serum CK activity was higher in infected animals 48 and 72 h post-infection compared to the control group, as well as observed for mitochondrial cardiac CK activity. The serum PK activity was higher in infected animals after 72 h of infection compared to the control group, and lower in the cardiac tissue. The cardiac AK activity was lower in infected animals 48 h and 72 h post-infection compared to the control group, while serum and cardiac LDH activities were higher. Based on these evidences, it is possible to conclude that the stimulation of CK activity exerts a key role as an attempt to maintain the bioenergetic homeostasis by the production of phosphocreatine to avoid a rapid fall on the concentrations of total adenosine triphosphate. In summary, the phosphoryl transfer network can be considered a pathway involved in the improvement on tissue and cellular energy homeostasis of S. aureus-infected mice.
Collapse
|
152
|
Kartashov IM. The Diffusion Controlled Mode of the Photophosphorylation Process in Chloroplasts. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350918060143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
153
|
Role of ATP during the initiation of microvascularization: acceleration of an autocrine sensing mechanism facilitating chemotaxis by inorganic polyphosphate. Biochem J 2018; 475:3255-3273. [PMID: 30242064 DOI: 10.1042/bcj20180535] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 12/21/2022]
Abstract
The in vitro tube formation assay with human umbilical vein endothelial cells (HUVEC) was applied to identify the extra- and intracellular sources of metabolic energy/ATP required for cell migration during the initial stage of microvascularization. Extracellularly, the physiological energy-rich polymer, inorganic polyphosphate (polyP), applied as biomimetic amorphous calcium polyP microparticles (Ca-polyP-MP), is functioning as a substrate for ATP generation most likely via the combined action of the alkaline phosphatase (ALP) and the adenylate kinase (AK). The linear Ca-polyP-MP with a size of 40 phosphate units, close to the polyP in the acidocalcisomes in the blood platelets, were found to increase endothelial cell tube formation, as well as the intracellular ATP levels. Depletion of extracellular ATP with apyrase suppressed tube formation during the initial incubation period. Inhibition experiments revealed that inhibitors (levamisole and Ap5A) of the enzymes involved in extracellular ATP generation strongly reduce the Ca-polyP-MP-induced tube formation. The stimulatory effect of Ca-polyP-MP was also diminished by the glycolysis inhibitor oxamate and trifluoperazine which blocks endocytosis, as well as by MRS2211, an antagonist of the P2Y13 receptor. Oligomycin, an inhibitor of the mitochondrial F0F1-ATP synthase, displayed no effect at lower concentrations on tube formation. Electron microscopic data revealed that after cellular uptake, the Ca-polyP-MP accumulate close to the cell membrane. We conclude that in HUVEC exposed to polyP, ATP is formed extracellularly via the coupled ALP-AK reaction, and intracellularly during glycolysis. The results suggest an autocrine signaling pathway of ATP with polyP as an extracellular store of metabolic energy for endothelial cell migration during the initial vascularization process.
Collapse
|
154
|
Budday D, Leyendecker S, van den Bedem H. Kinematic Flexibility Analysis: Hydrogen Bonding Patterns Impart a Spatial Hierarchy of Protein Motion. J Chem Inf Model 2018; 58:2108-2122. [PMID: 30240209 DOI: 10.1021/acs.jcim.8b00267] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Elastic network models (ENMs) and constraint-based, topological rigidity analysis are two distinct, coarse-grained approaches to study conformational flexibility of macromolecules. In the two decades since their introduction, both have contributed significantly to insights into protein molecular mechanisms and function. However, despite a shared purpose of these approaches, the topological nature of rigidity analysis, and thereby the absence of motion modes, has impeded a direct comparison. Here, we present an alternative, kinematic approach to rigidity analysis, which circumvents these drawbacks. We introduce a novel protein hydrogen bond network spectral decomposition, which provides an orthonormal basis for collective motions modulated by noncovalent interactions, analogous to the eigenspectrum of normal modes. The zero modes decompose proteins into rigid clusters identical to those from topological rigidity, while nonzero modes rank protein motions by their hydrogen bond collective energy penalty. Our kinematic flexibility analysis bridges topological rigidity theory and ENM, enabling a detailed analysis of motion modes obtained from both approaches. Analysis of a large, structurally diverse data set revealed that collectivity of protein motions, reported by the Shannon entropy, is significantly reduced for rigidity theory compared to normal mode approaches. Strikingly, kinematic flexibility analysis suggests that the hydrogen bonding network encodes a protein-fold specific, spatial hierarchy of motions, which goes nearly undetected in ENM. This hierarchy reveals distinct motion regimes that rationalize experimental and simulated protein stiffness variations. Kinematic motion modes highly correlate with reported crystallographic B factors and molecular dynamics simulations of adenylate kinase. A formal expression for changes in free energy derived from the spectral decomposition indicates that motions across nearly 40% of modes obey enthalpy-entropy compensation. Taken together, our results suggest that hydrogen bond networks have evolved to modulate protein structure and dynamics, which can be efficiently probed by kinematic flexibility analysis.
Collapse
Affiliation(s)
- Dominik Budday
- Chair of Applied Dynamics , University of Erlangen-Nuremberg , 91058 Erlangen , Germany
| | - Sigrid Leyendecker
- Chair of Applied Dynamics , University of Erlangen-Nuremberg , 91058 Erlangen , Germany
| | - Henry van den Bedem
- Biosciences Division, SLAC National Accelerator Laboratory , Stanford University , Menlo Park , California 94025 , United States.,Department of Bioengineering and Therapeutic Sciences , University of California , San Francisco , California 94158 , United States
| |
Collapse
|
155
|
Kagda MS, Vu AL, Ah-Fong AMV, Judelson HS. Phosphagen kinase function in flagellated spores of the oomycete Phytophthora infestans integrates transcriptional regulation, metabolic dynamics and protein retargeting. Mol Microbiol 2018; 110:296-308. [PMID: 30137656 DOI: 10.1111/mmi.14108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2018] [Indexed: 11/30/2022]
Abstract
Flagellated spores play important roles in the infection of plants and animals by many eukaryotic microbes. The oomycete Phytophthora infestans, which causes potato blight, expresses two phosphagen kinases (PKs). These enzymes store energy in taurocyamine, and are hypothesized to resolve spatial and temporal imbalances between rates of ATP creation and use in zoospores. A dimeric PK is found at low levels in vegetative mycelia, but high levels in ungerminated sporangia and zoospores. In contrast, a monomeric PK protein is at similar levels in all tissues, although is transcribed primarily in mycelia. Subcellular localization studies indicate that the monomeric PK is mitochondrial. In contrast, the dimeric PK is cytoplasmic in mycelia and sporangia but is retargeted to flagellar axonemes during zoosporogenesis. This supports a model in which PKs shuttle energy from mitochondria to and through flagella. Metabolite analysis indicates that deployment of the flagellar PK is coordinated with a large increase in taurocyamine, synthesized by sporulation-induced enzymes that were lost during the evolution of zoospore-lacking oomycetes. Thus, PK function is enabled by coordination of the transcriptional, metabolic and protein targeting machinery during the life cycle. Since plants lack PKs, the enzymes may be useful targets for inhibitors of oomycete plant pathogens.
Collapse
Affiliation(s)
- Meenakshi S Kagda
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Andrea L Vu
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Audrey M V Ah-Fong
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Howard S Judelson
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
156
|
Habich M, Salscheider SL, Riemer J. Cysteine residues in mitochondrial intermembrane space proteins: more than just import. Br J Pharmacol 2018; 176:514-531. [PMID: 30129023 DOI: 10.1111/bph.14480] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 12/13/2022] Open
Abstract
The intermembrane space (IMS) is a very small mitochondrial sub-compartment with critical relevance for many cellular processes. IMS proteins fulfil important functions in transport of proteins, lipids, metabolites and metal ions, in signalling, in metabolism and in defining the mitochondrial ultrastructure. Our understanding of the IMS proteome has become increasingly refined although we still lack information on the identity and function of many of its proteins. One characteristic of many IMS proteins are conserved cysteines. Different post-translational modifications of these cysteine residues can have critical roles in protein function, localization and/or stability. The close localization to different ROS-producing enzyme systems, a dedicated machinery for oxidative protein folding, and a unique equipment with antioxidative systems, render the careful balancing of the redox and modification states of the cysteine residues, a major challenge in the IMS. In this review, we discuss different functions of human IMS proteins, the involvement of cysteine residues in these functions, the consequences of cysteine modifications and the consequences of cysteine mutations or defects in the machinery for disulfide bond formation in terms of human health. LINKED ARTICLES: This article is part of a themed section on Chemical Biology of Reactive Sulfur Species. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.4/issuetoc.
Collapse
Affiliation(s)
- Markus Habich
- Department of Chemistry, Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Silja Lucia Salscheider
- Department of Chemistry, Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Jan Riemer
- Department of Chemistry, Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| |
Collapse
|
157
|
Intracellular Energy-Transfer Networks and High-Resolution Respirometry: A Convenient Approach for Studying Their Function. Int J Mol Sci 2018; 19:ijms19102933. [PMID: 30261663 PMCID: PMC6213097 DOI: 10.3390/ijms19102933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 12/21/2022] Open
Abstract
Compartmentalization of high-energy phosphate carriers between intracellular micro-compartments is a phenomenon that ensures efficient energy use. To connect these sites, creatine kinase (CK) and adenylate kinase (AK) energy-transfer networks, which are functionally coupled to oxidative phosphorylation (OXPHOS), could serve as important regulators of cellular energy fluxes. Here, we introduce how selective permeabilization of cellular outer membrane and high-resolution respirometry can be used to study functional coupling between CK or AK pathways and OXPHOS in different cells and tissues. Using the protocols presented here the ability of creatine or adenosine monophosphate to stimulate OXPHOS through CK and AK reactions, respectively, is easily observable and quantifiable. Additionally, functional coupling between hexokinase and mitochondria can be investigated by monitoring the effect of glucose on respiration. Taken together, high-resolution respirometry in combination with permeabilization is a convenient approach for investigating energy-transfer networks in small quantities of cells and tissues in health and in pathology.
Collapse
|
158
|
Baldissera MD, Souza CF, De Matos AFIM, Baldisserotto B, da Silva AS, Monteiro SG. Tissue oxidative damage mediates impairment on phosphotransfer network during thymol intake: Effects on hepatic and renal bioenergetics. Chem Biol Interact 2018; 296:83-88. [PMID: 30243740 DOI: 10.1016/j.cbi.2018.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/11/2018] [Accepted: 09/18/2018] [Indexed: 01/05/2023]
Abstract
Recent evidences demonstrated that ingestion of several monoterpenes cause hepatic and renal damage due to impairment on mitochondrial energy production, eliciting a collapse on adenosine triphosphate (ATP) synthesis and consequently impairment on bioenergetic homeostasis. Thus, the aim of this study was to evaluate whether phosphotransfer network, catalyzed by creatine kinase (CK), adenylate kinase (AK), and pyruvate kinase (PK), can be a pathway to explain hepatic and renal bioenergetics homeostasis impairment due to thymol ingestion. Daily intake of thymol (40 mg/kg) significantly cause a decreased kidney weight and relative kidney weight compared to control group. The same dose of thymol inhibited renal cytosolic and mitochondrial CK activity as well as renal PK activity compared to control group. Finally, thymol (40 mg/kg) elicited a significant increase on renal reactive oxygen species and lipid damage levels, as well as an inhibition on antioxidant capacity against peroxyl radicals and non-protein thiol levels, which did not occur liver. Doses of 10 and 20 mg/kg of thymol administered orally for 30 consecutive days non-changed these variables. Based on these evidence, the data supported that intake of a high dose of thymol severely inhibits cytosolic and mitochondrial CK activity, a crucial enzyme to maintain cellular energy homeostasis. Moreover, high dietary thymol intake impaired communication between CK isoenzymes, which inhibits the attempts to regenerate ATP or to facilitate the CK/PCr shuttle to improve the intracellular ATP utilization and consumption. Moreover, the inhibition of renal CK and PK activities appears to be mediated by the renal oxidation of lipids and thiol groups, as well as by the reduction of the renal antioxidant capacity.
Collapse
Affiliation(s)
- Matheus D Baldissera
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Carine F Souza
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Aleksandro S da Silva
- Department of Animal Science, Universidade do Estado de Santa Catarina, Chapecó, RS, Brazil
| | - Silvia G Monteiro
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
159
|
Adenylate kinase potentiates the capsular polysaccharide by modulating Cps2D in Streptococcus pneumoniae D39. Exp Mol Med 2018; 50:1-14. [PMID: 30185778 PMCID: PMC6123713 DOI: 10.1038/s12276-018-0141-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/05/2018] [Accepted: 05/21/2018] [Indexed: 01/20/2023] Open
Abstract
Streptococcus pneumoniae is a polysaccharide-encapsulated bacterium. The capsule thickens during blood invasion compared with the thinner capsules observed in asymptomatic nasopharyngeal colonization. However, the underlying mechanism regulating differential CPS expression remains unclear. CPS synthesis requires energy that is supplied by ATP. Previously, we demonstrated a correlation between ATP levels and adenylate kinase in S. pneumoniae (SpAdK). A dose-dependent induction of SpAdK in serum was also reported. To meet medical needs, this study aimed to elucidate the role of SpAdK in the regulation of CPS production. CPS levels in S. pneumoniae type 2 (D39) increased proportionally with SpAdK levels, but they were not related to pneumococcal autolysis. Moreover, increased SpAdK levels resulted in increased total tyrosine kinase Cps2D levels and phosphorylated Cps2D, which is a regulator of CPS synthesis in the D39 strain. Our results also indicated that the SpAdK and Cps2D proteins interact in the presence of Mg-ATP. In addition, in silico analysis uncovered the mechanism behind this protein–protein interaction, suggesting that SpAdK binds with the Cps2D dimer. This established the importance of the ATP-binding domain of Cps2D. Taken together, the biophysical interaction between SpAdK and Cps2D plays an important role in enhancing Cps2D phosphorylation, which results in increased CPS synthesis. A physical interaction between two key enzymes explains how the bacterium responsible for causing pneumococcal disease thickens its external capsule during infection of the bloodstream. A team led by Dong-Kwon Rhee from Sungkyunkwan University in Suwon, South Korea, studied strains of Streptococcus pneumoniae expressing varying levels of an enzyme that helps maintain the proper balance of cellular energy. They found that this enzyme stimulated the production of sugar chains that coat the outside of the bacterial capsule by binding and activating an intermediary enzyme involved in the synthesis of these sugar chains. Since the capsule is critical in warding off the human immune response, the findings suggest that drugs designed to disrupt the enzyme-mediated induction of capsule formation could help prevent or treat pneumococcal disease.
Collapse
|
160
|
Causey DR, Kim JH, Stead DA, Martin SAM, Devlin RH, Macqueen DJ. Proteomic comparison of selective breeding and growth hormone transgenesis in fish: Unique pathways to enhanced growth. J Proteomics 2018; 192:114-124. [PMID: 30153513 PMCID: PMC7086150 DOI: 10.1016/j.jprot.2018.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 08/23/2018] [Indexed: 12/14/2022]
Abstract
In fish used for food production and scientific research, fast growth can be achieved via selective breeding or induced instantaneously via growth hormone (GH) transgenesis (GHT). The proteomic basis for these distinct routes towards a similar higher phenotype remains uncharacterized, as are associated implications for health parameters. We addressed this knowledge gap using skeletal muscle proteomics in coho salmon (Oncorhynchus kisutch), hypothesising that i) selective breeding and GHT are underpinned by both parallel and unique changes in growth systems, and ii) rapidly-growing fish strains have lowered scope to allocate resources towards immune function. Quantitative profiling of GHT and growth-selected strains was done in comparison to wild-type after injection with PBS (control) or Poly I:C (to mimic infection). We identified remodelling of the muscle proteome in each growth-enhanced strain that was strikingly non-overlapping. GHT was characterized by focal upregulation of systems driving protein synthesis, while the growth-selected fish presented a larger and more diverse set of changes, consistent with complex alterations to many metabolic and cellular pathways. Poly I:C had little detectable effect on the muscle proteome. This study demonstrates that distinct proteome profiles can explain outwardly similar enhanced growth phenotypes, improving our understanding of growth mechanisms in anthropogenic animal strains. Significance This work provides the first proteomic insights into mechanisms underpinning different anthropogenic routes to rapid growth in salmon. High-throughput proteomic profiling was used to reveal changes supporting enhanced growth, comparing skeletal muscle of growth hormone transgenic (GHT) and selectively-bred salmon strains with their wild-type counterparts. Contrasting past mRNA-level comparisons of the same fish strains, our data reveals a surprisingly substantial proteomic divergence between the GHT and selectively bred strains. The findings demonstrate that many unique molecular mechanisms underlie growth-enhanced phenotypes in different types of fish strain used for food production and scientific research. Mechanistic basis for rapid growth poorly understood in fish. Comparative proteomic profiling done in fish strains showing highly enhanced growth. Distinct basis for enhanced growth comparing transgenic and domesticated fish strains. Highly distinct proteome profiles may explain outwardly similar growth phenotypes. Study enhances understanding of how rapid growth is achieved in anthropogenic animal strains.
Collapse
Affiliation(s)
- Dwight R Causey
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Jin-Hyoung Kim
- Fisheries and Oceans Canada, West Vancouver, British Columbia V7V 1N6, Canada; Korea Polar Research Institute (KOPRI), Yeonsu-gu, Incheon 21990, Republic of Korea
| | - David A Stead
- Aberdeen Proteomics, University of Aberdeen, Rowett Institute, Aberdeen, UK
| | | | - Robert H Devlin
- Fisheries and Oceans Canada, West Vancouver, British Columbia V7V 1N6, Canada
| | - Daniel J Macqueen
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
161
|
Jaguezeski AM, Baldissera MD, Rhoden LA, Gomes TMA, Mendes RE, Bottari NB, Morsch VM, Schetinger MRC, Stefani LM, Giongo JL, Vaucher RA, Da Silva AS. Listeria monocytogenes impairs enzymes of the phosphotransfer network and alters antioxidant/oxidant status in cattle brain structures. Microb Pathog 2018; 124:284-290. [PMID: 30142467 DOI: 10.1016/j.micpath.2018.08.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/29/2018] [Accepted: 08/20/2018] [Indexed: 01/24/2023]
Abstract
Several evidences have suggested the involvement of enzymes belonging to the phosphotransfer network, formed by creatine kinase (CK), pyruvate kinase (PK) and adenylate kinase (AK), as well the oxidative stress on the pathogenesis of infectious diseases associated with the central nervous system (CNS). Thus, the aim of this study was to evaluate whether listeriosis alters the brain energy metabolism and/or causes oxidative stress in different brain structures of cattle experimentally infected by Listeria monocytogenes. The cytosolic CK activity was inhibited in the cerebral cortex, cerebellum, brainstem and hippocampus of infected animals compared to uninfected animals, while the mitochondrial CK activity was increased. The PK activity was inhibited in all brain structures of infected animals, while the AK activity was unchanged. Na+, K+-ATPase activity decreased in the cerebral cortex, cerebellum and hippocampus of animals infected by L. monocytogenes. Regarding the oxidative strees variables, the cerebellum and brainstem of infected animals showed increased thiobarbituric acid reactive substances, while the catalase activity was inhibited. Glutathione S-transferarase was inhibited in the cerebral cortex and brainstem of infected animals, and it was increased in the cerebellum. L. monocytogenes was quantified in the liver (n = 5/5) and cerebral cortex (n = 4/5) of the infected cattle. Based on these evidences, the nucleocytoplasmic communication between CK isoenzymes was insufficient to avoid an impairment of cerebral bioenergetics. Moreover, the inhibition on brain PK activity caused an impairment in the communication between sites of ATP generation and ATP utilization. The lipid peroxidation and alteration on antioxidant status observed in some brain structures were also involved during the disease. In summary, these alterations contribute to disease pathogenesis linked to CNS during cattle listeriosis.
Collapse
Affiliation(s)
- Antonise M Jaguezeski
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina, Chapecó, Santa Catarina, Brazil
| | - Matheus D Baldissera
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Leandro A Rhoden
- Laboratory of Pathology, Instituto Federal Catarinense, Concórdia, Santa Catarina, Brazil
| | - Teane M A Gomes
- Laboratory of Pathology, Instituto Federal Catarinense, Concórdia, Santa Catarina, Brazil
| | - Ricardo E Mendes
- Laboratory of Pathology, Instituto Federal Catarinense, Concórdia, Santa Catarina, Brazil
| | - Nathieli B Bottari
- Graduate Program in Toxicological Biochemistry, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Vera M Morsch
- Graduate Program in Toxicological Biochemistry, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Maria Rosa C Schetinger
- Graduate Program in Toxicological Biochemistry, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Lenita M Stefani
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina, Chapecó, Santa Catarina, Brazil
| | - Janice L Giongo
- Pharmacy Laboratory, Faculdade Anhanguera, Pelotas, RS, Brazil
| | - Rodrigo A Vaucher
- Laboratory of Biochemistry Research and Molecular Biology of Microorganisms (LaPeBBiOM), Universidade Federal de Pelotas, RS, Brazil
| | - Aleksandro Schafer Da Silva
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina, Chapecó, Santa Catarina, Brazil; Graduate Program in Toxicological Biochemistry, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
162
|
Baldissera MD, Souza CF, Zeppenfeld CC, Descovi S, da Silva AS, Baldisserotto B. Changes in the cerebral phosphotransfer network impair energetic homeostasis in an aflatoxin B 1-contaminated diet. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1051-1059. [PMID: 29546539 DOI: 10.1007/s10695-018-0493-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
The phosphotransfer network system, through the enzymes creatine kinase (CK), adenylate kinase (AK), and pyruvate kinase (PK), contributes to efficient intracellular energetic communication between cellular adenosine triphosphate (ATP) consumption and production in tissues with high energetic demand, such as cerebral tissue. Thus, the aim of this study was to evaluate whether aflatoxin B1 (AFB1) intoxication in diet negatively affects the cerebral phosphotransfer network related to impairment of cerebral ATP levels in silver catfish (Rhamdia quelen). Brain cytosolic CK activity decreased in animals fed with a diet contaminated with AFB1 on days 14 and 21 post-feeding, while mitochondrial CK activity increased, when compared to the control group (basal diet). Also, cerebral AK and PK activity decreased in animals fed with a diet contaminated with AFB1 on days 14 and 21 post-feeding, similarly to the results observed for cerebral ATP levels. Based on this evidence, inhibition of cerebral cytosolic CK activity is compensated by stimulation of mitochondrial CK activity in an attempt to prevent impairment of communication between sites of ATP generation and ATP utilization. The inhibition of cerebral AK and PK activity leads to impairment of cerebral energy homeostasis, decreasing the brain's ATP availability. Moreover, the absence of a reciprocal compensatory mechanism between these enzymes contributes to cerebral energetic imbalance, which may contribute to disease pathophysiology.
Collapse
Affiliation(s)
- Matheus D Baldissera
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Carine F Souza
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Carla Cristina Zeppenfeld
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Sharine Descovi
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Aleksandro S da Silva
- Department of Animal Science, Universidade do Estado de Santa Catarina, Chapecó, RS, Brazil
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
163
|
Chen L, Li Z, Li X, Chen J, Everaert N, Zhang D. The effect of sarcoplasmic protein phosphorylation on glycolysis in postmortem ovine muscle. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13882] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Li Chen
- Institute of Food Science and Technology; Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing; Ministry of Agriculture; Beijing China
- Precision Livestock and Nutrition Unit; Gembloux Agro-Bio Tech; University of Liège; Passage de Déportés 2 Gembloux Belgium
| | - Zheng Li
- Institute of Food Science and Technology; Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing; Ministry of Agriculture; Beijing China
| | - Xin Li
- Institute of Food Science and Technology; Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing; Ministry of Agriculture; Beijing China
| | - Jing Chen
- Institute of Food Science and Technology; Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing; Ministry of Agriculture; Beijing China
| | - Nadia Everaert
- Precision Livestock and Nutrition Unit; Gembloux Agro-Bio Tech; University of Liège; Passage de Déportés 2 Gembloux Belgium
| | - Dequan Zhang
- Institute of Food Science and Technology; Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing; Ministry of Agriculture; Beijing China
| |
Collapse
|
164
|
González‐Gómez PL, Echeverria V, Estades CF, Perez JH, Krause JS, Sabat P, Li J, Kültz D, Wingfield JC. Contrasting seasonal and aseasonal environments across stages of the annual cycle in the rufous‐collared sparrow,
Zonotrichia capensis
: Differences in endocrine function, proteome and body condition. J Anim Ecol 2018; 87:1364-1382. [DOI: 10.1111/1365-2656.12846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/29/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Paulina L. González‐Gómez
- Department of Neurobiology, Physiology and Behavior University of California Davis Davis California
- Universidad Autónoma de Chile Providencia Santiago Chile
| | - Valentina Echeverria
- Departamento de Manejo de Recursos Naturales Facultad de Ciencias Forestales y Conservación de la Naturaleza Universidad de Chile La Pintana Santiago Chile
| | - Cristian F. Estades
- Departamento de Manejo de Recursos Naturales Facultad de Ciencias Forestales y Conservación de la Naturaleza Universidad de Chile La Pintana Santiago Chile
| | - Jonathan H. Perez
- Department of Neurobiology, Physiology and Behavior University of California Davis Davis California
| | - Jesse S. Krause
- Department of Neurobiology, Physiology and Behavior University of California Davis Davis California
| | - Pablo Sabat
- IEB Facultad de Ciencias Universidad de Chile Ñuñoa Santiago Chile
- Center of Applied Ecology and Sustainability (CAPES) Pontificia Universidad Católica de Chile Santiago Chile
| | - Jonathon Li
- Biochemical Evolution Laboratory Department of Animal Science University of California Davis Davis California
| | - Dietmar Kültz
- Biochemical Evolution Laboratory Department of Animal Science University of California Davis Davis California
| | - John C. Wingfield
- Department of Neurobiology, Physiology and Behavior University of California Davis Davis California
| |
Collapse
|
165
|
Baldissera MD, Souza CF, Golombieski JI, Seben D, Sippert LR, Salbego J, Zanella R, Baldisserotto B. Thiamethoxam induced hepatic energy changes in silver catfish via impairment of the phosphoryl transfer network pathway: Toxicological effects on energetics homeostasis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 60:1-4. [PMID: 29631152 DOI: 10.1016/j.etap.2018.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/27/2018] [Accepted: 04/02/2018] [Indexed: 06/08/2023]
Abstract
Precise coupling of spatially separated intracellular adenosine triphosphate (ATP)-producing and ATP-consuming processes exerts a pivotal role in bioenergetic homeostasis of living organisms, and the phosphotransfer network pathway, catalyzed by adenylate kinase (AK) and pyruvate kinase (PK), is fundamental in cellular and tissue energetic homeostasis. Measurement of the phosphotransfer network can provide new information for understanding the alterations in hepatic energetic metabolism during exposition to insecticides, such as thiamethoxam. Therefore, the aim of this study was to evaluate whether exposition to thiamethoxam negatively affects the hepatic enzymes of the phosphotransfer network in silver catfish (Rhamdia quelen). Hepatic AK and PK activities were inhibited at 3.75 μg L-1 after 24 h of exposure and at 1.125 and 3.75 μg L-1 after 96 h of exposure compared with the control group. The hepatic ATP levels were decreased following 3.75 μg L-1 thiamethoxam treatment after 24 h of exposure and at 1.125 and 3.75 μg L-1 after 96 h of exposure compared with the control group. The enzymatic activity of the phosphotransfer network and ATP levels did not recover after 48 h of recovery in clean water. Thus, the inhibition of hepatic AK and PK activities by thiamethoxam caused impairment of energy homeostasis in liver tissue, decreasing hepatic ATP availability. Moreover, the absence of a mutual compensatory mechanism between these enzymes directly contributes to ATP depletion and to a severe energetic dysregulation, which may contribute to toxic effects caused by thiamethoxam.
Collapse
Affiliation(s)
- Matheus D Baldissera
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Carine F Souza
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Jaqueline I Golombieski
- Department of Environmental Engineering and Technology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Débora Seben
- Department of Environmental Engineering and Technology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Letícia R Sippert
- Department of Environmental Engineering and Technology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Joseânia Salbego
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Renato Zanella
- Department of Chemistry, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
166
|
de la Ballina NR, Villalba A, Cao A. Proteomic profile of Ostrea edulis haemolymph in response to bonamiosis and identification of candidate proteins as resistance markers. DISEASES OF AQUATIC ORGANISMS 2018; 128:127-145. [PMID: 29733027 DOI: 10.3354/dao03220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
European flat oyster Ostrea edulis populations have suffered extensive mortalities caused by bonamiosis. The protozoan parasite Bonamia ostreae is largely responsible for this disease in Europe, while its congener B. exitiosa has been detected more recently in various European countries. Both of these intracellular parasites are able to survive and proliferate within haemocytes, the main cellular effectors of the immune system in molluscs. Two-dimensional electrophoresis was used to compare the haemolymph protein profile between Bonamia spp.-infected and non-infected oysters within 3 different stocks, a Galician stock of oysters selected for resistance against bonamiosis, a non-selected Galician stock and a selected Irish stock. Thirty-four proteins with a presumably relevant role in the oyster-Bonamia spp. interaction were identified; they were involved in major metabolic pathways, such as energy production, respiratory chain, oxidative stress, signal transduction, transcription, translation, protein degradation and cell defence. Furthermore, the haemolymph proteomic profiles of the non-infected oysters of the 2 Galician stocks were compared. As a result, 7 proteins representative of the non-infected Galician oysters selected for resistance against bonamiosis were identified; these 7 proteins could be considered as candidate markers of resistance to bonamiosis, which should be further assessed.
Collapse
Affiliation(s)
- Nuria R de la Ballina
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, 36620 Vilanova de Arousa, Spain
| | | | | |
Collapse
|
167
|
Tatekoshi Y, Tanno M, Kouzu H, Abe K, Miki T, Kuno A, Yano T, Ishikawa S, Ohwada W, Sato T, Niinuma T, Suzuki H, Miura T. Translational regulation by miR-301b upregulates AMP deaminase in diabetic hearts. J Mol Cell Cardiol 2018; 119:138-146. [PMID: 29733818 DOI: 10.1016/j.yjmcc.2018.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/17/2018] [Accepted: 05/03/2018] [Indexed: 12/11/2022]
Abstract
AMP deaminase (AMPD) plays a crucial role in adenine nucleotide metabolism. Recently we found that upregulated AMPD activity is associated with ATP depletion and contractile dysfunction under the condition of pressure overloading in the heart of a rat model of type 2 diabetes mellitus (T2DM), OLETF. Here we examined the mechanism of AMPD upregulation by T2DM. The protein level of 90-kDa full-length AMPD3 was increased in whole myocardial lysates by 55% in OLETF compared to those in LETO, a non-diabetic control. In contrast, the mRNA levels of AMPD3 in the myocardium were similar in OLETF and LETO. AMPD3 was comparably ubiquitinated in OLETF and LETO, and its degradation ex vivo was more sensitive to MG-132, a proteasome inhibitor, in OLETF than in LETO. MicroRNA array analysis revealed downregulation (>50%) of 57 microRNAs in OLETF compared to those in LETO, among which miR-301b was predicted to interact with the 3'UTR of AMPD3 mRNA. AMPD3 protein level was significantly increased by a miR-301b inhibitor and was decreased by a miR-301b mimetic in H9c2 cells. A luciferase reporter assay confirmed binding of miR-301b to the 3'UTR of AMPD3 mRNA. Transfection of neonatal rat cardiomyocytes with a miR-301b inhibitor increased 90-kDa AMPD3 and reduced ATP level. The results indicate that translational regulation by miR-301b mediates upregulated expression of cardiac AMPD3 protein in OLETF, which potentially reduces the adenine nucleotide pool at the time of increased work load. The miR-301b-AMPD3 axis may be a novel therapeutic target for intervening enegy metabolism in diabetic hearts.
Collapse
Affiliation(s)
- Yuki Tatekoshi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masaya Tanno
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hidemichi Kouzu
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Koki Abe
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takayuki Miki
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Kuno
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshiyuki Yano
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Satoko Ishikawa
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Wataru Ohwada
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tatsuya Sato
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.
| |
Collapse
|
168
|
Inomata K, Kamoshida H, Ikari M, Ito Y, Kigawa T. Impact of cellular health conditions on the protein folding state in mammalian cells. Chem Commun (Camb) 2018; 53:11245-11248. [PMID: 28960222 DOI: 10.1039/c7cc06004a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
By using in-cell NMR experiments, we have demonstrated that the protein folding state in cells is significantly influenced by the cellular health conditions. hAK1 was denatured in cells under stressful culture conditions, while it remained functional and properly folded in cells continuously supplied with a fresh medium.
Collapse
Affiliation(s)
- Kohsuke Inomata
- RIKEN Quantitative Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan. and PRESTO/Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Hajime Kamoshida
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Masaomi Ikari
- RIKEN Quantitative Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | - Yutaka Ito
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Takanori Kigawa
- RIKEN Quantitative Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan. and Department of Computer Science, School of Computing, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
169
|
Hetmann A, Wujak M, Bolibok P, Zięba W, Wiśniewski M, Roszek K. Novel biocatalytic systems for maintaining the nucleotide balance based on adenylate kinase immobilized on carbon nanostructures. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 88:130-139. [PMID: 29636128 DOI: 10.1016/j.msec.2018.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/28/2017] [Accepted: 03/13/2018] [Indexed: 11/25/2022]
Abstract
In this study graphene oxide (GO), carbon quantum dots (CQD) and carbon nanoonions (CNO) have been characterized and applied for the first time as a matrix for recombinant adenylate kinase (AK, EC 2.7.4.3) immobilization. AK is an enzyme fulfilling a key role in metabolic processes. This phosphotransferase catalyzes the interconversion of adenine nucleotides (ATP, ADP and AMP) and thereby participates in nucleotide homeostasis, monitors a cellular energy charge as well as acts as a component of purinergic signaling system. The AK activity in all obtained biocatalytic systems was higher as compared to the free enzyme. We have found that the immobilization on carbon nanostructures increased both activity and stability of AK. Moreover, the biocatalytic systems consisting of AK immobilized on carbon nanostructures can be easily and efficiently lyophilized without risk of desorption or decrease in the catalytic activity of the investigated enzyme. The positive action of AK-GO biocatalytic system in maintaining the nucleotide balance in in vitro cell culture was proved.
Collapse
Affiliation(s)
- Anna Hetmann
- Department of Biochemistry, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, 1 Lwowska St., 87-100 Toruń, Poland.
| | - Magdalena Wujak
- Department of Biochemistry, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, 1 Lwowska St., 87-100 Toruń, Poland
| | - Paulina Bolibok
- Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, 7 Gagarin St., 87-100 Toruń, Poland
| | - Wojciech Zięba
- Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, 7 Gagarin St., 87-100 Toruń, Poland
| | - Marek Wiśniewski
- Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, 7 Gagarin St., 87-100 Toruń, Poland; INVEST-TECH R&D Center, 32-34 Płaska St., 87-100 Toruń, Poland
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, 1 Lwowska St., 87-100 Toruń, Poland
| |
Collapse
|
170
|
Direct observation of ultrafast large-scale dynamics of an enzyme under turnover conditions. Proc Natl Acad Sci U S A 2018. [PMID: 29531052 PMCID: PMC5879700 DOI: 10.1073/pnas.1720448115] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The potential effect of conformational dynamics of enzymes on their chemical steps has been intensely debated recently. We use single-molecule FRET experiments on adenylate kinase (AK) to shed new light on this question. AK closes its domains to bring its two substrate close together for reaction. We show that domain closure takes only microseconds to complete, which is two orders of magnitude faster than the chemical reaction. Nevertheless, active-site mutants that reduce the rate of domain closure also reduce the reaction rate, suggesting a connection between the two phenomena. We propose that ultrafast domain closure is used by enzymes as a mechanism to optimize mutual orientation of substrates, a novel mode of coupling between conformational dynamics and catalysis. The functional cycle of many proteins involves large-scale motions of domains and subunits. The relation between conformational dynamics and the chemical steps of enzymes remains under debate. Here we show that in the presence of substrates, domain motions of an enzyme can take place on the microsecond time scale, yet exert influence on the much-slower chemical step. We study the domain closure reaction of the enzyme adenylate kinase from Escherichia coli while in action (i.e., under turnover conditions), using single-molecule FRET spectroscopy. We find that substrate binding increases dramatically domain closing and opening times, making them as short as ∼15 and ∼45 µs, respectively. These large-scale conformational dynamics are likely the fastest measured to date, and are ∼100–200 times faster than the enzymatic turnover rate. Some active-site mutants are shown to fully or partially prevent the substrate-induced increase in domain closure times, while at the same time they also reduce enzymatic activity, establishing a clear connection between the two phenomena, despite their disparate time scales. Based on these surprising observations, we propose a paradigm for the mode of action of enzymes, in which numerous cycles of conformational rearrangement are required to find a mutual orientation of substrates that is optimal for the chemical reaction.
Collapse
|
171
|
Baldissera MD, Souza CF, Verdi CM, Dos Santos KLM, Da Veiga ML, da Rocha MIUM, Santos RCV, Vizzotto BS, Baldisserotto B. Aeromonas caviae inhibits hepatic enzymes of the phosphotransfer network in experimentally infected silver catfish: Impairment on bioenergetics. JOURNAL OF FISH DISEASES 2018; 41:469-474. [PMID: 29193157 DOI: 10.1111/jfd.12746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/19/2017] [Accepted: 09/24/2017] [Indexed: 06/07/2023]
Abstract
Several studies have been demonstrated that phosphotransfer network, through the adenylate kinase (AK) and pyruvate kinase (PK) activities, allows for new perspectives leading to understanding of disease conditions associated with disturbances in energy metabolism, metabolic monitoring and signalling. In this sense, the aim of this study was to evaluate whether experimental infection by Aeromonas caviae alters hepatic AK and PK activities of silver catfish Rhamdia quelen. Hepatic AK and PK activities decreased in infected animals compared to uninfected animals, as well as the hepatic adenosine triphosphate (ATP) levels. Also, a severe hepatic damage was observed in the infected animals due to the presence of dilation and congestion of vessels, degeneration of hepatocytes and loss of liver parenchyma architecture and sinusoidal structure. Therefore, we have demonstrated, for the first time, that experimental infection by A. caviae inhibits key enzymes linked to the communication between sites of ATP generation and ATP utilization. Moreover, the absence of a reciprocal compensatory mechanism between these enzymes contributes directly to hepatic damage and for a severe energetic imbalance, which may contribute to disease pathophysiology.
Collapse
Affiliation(s)
- M D Baldissera
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - C F Souza
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - C M Verdi
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - K L M Dos Santos
- Department of Morphology, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
| | - M L Da Veiga
- Department of Morphology, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
| | - M I U M da Rocha
- Department of Morphology, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
| | - R C V Santos
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - B S Vizzotto
- Laboratory of Molecular Biology, Centro Universitário Franciscano, Santa Maria, Brazil
| | - B Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
172
|
Müller WEG, Ackermann M, Wang S, Neufurth M, Muñoz-Espí R, Feng Q, Schröder HC, Wang X. Inorganic polyphosphate induces accelerated tube formation of HUVEC endothelial cells. Cell Mol Life Sci 2018; 75:21-32. [PMID: 28770290 PMCID: PMC11105250 DOI: 10.1007/s00018-017-2601-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/14/2017] [Accepted: 07/24/2017] [Indexed: 12/16/2022]
Abstract
In this study, the effect of inorganic polyphosphate (polyP) on the initial phase of angiogenesis and vascularization was investigated, applying the HUVEC cell tube formation assay. PolyP is a physiological and high energy phosphate polymer which has been proposed to act as a metabolic fuel in the extracellular space with only a comparably low ATP content. The experiments revealed that polyP accelerates tube formation of human umbilical vein endothelial cells (HUVEC), seeded onto a solidified basement membrane extract matrix which contains polyP-metabolizing alkaline phosphatase (ALP) activity. This effect is abolished by co-addition of apyrase, which degrades ATP to AMP and inorganic phosphate. The assumption that ATP, derived from polyP, activates HUVEC cells leading to tube formation was corroborated by experiments showing that addition of polyP to the cells causes a strong rise of ATP level in the culture medium. Finally, we show that at a later stage of cultivation of HUVEC cells, after 3 d, polyP causes a strong enhancement of the expression of the genes encoding for the two major matrix metalloproteinases (MMPs) released by endothelial cells during tube formation, MMP-9 and MMP-2. This stimulatory effect is again abrogated by addition of apyrase together with polyP. From these results, we propose that polyP is involved either directly or indirectly in energy supply, via ALP-mediated transfer of energy-rich phosphate under ATP formation. This ATP is utilized for the activation and oriented migration of endothelial cells and for the matrix organization during the initial phases of tube formation.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Duesbergweg 6, 55128, Mainz, Germany.
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University, Johann Joachim Becher Weg 13, 55099, Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Rafael Muñoz-Espí
- Institute of Materials Science (ICMUV), Universitat de València, C/Catedràtic José, Beltrán 2, Paterna, 46980, València, Spain
| | - Qingling Feng
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Duesbergweg 6, 55128, Mainz, Germany.
| |
Collapse
|
173
|
Wang X, Schröder HC, Müller WEG. Amorphous polyphosphate, a smart bioinspired nano-/bio-material for bone and cartilage regeneration: towards a new paradigm in tissue engineering. J Mater Chem B 2018; 6:2385-2412. [DOI: 10.1039/c8tb00241j] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Physiological amorphous polyphosphate nano/micro-particles, injectable and implantable, attract and stimulate MSCs into implants for tissue regeneration.
Collapse
Affiliation(s)
- Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University
- 55128 Mainz
- Germany
| | - Heinz C. Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University
- 55128 Mainz
- Germany
| | - Werner E. G. Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University
- 55128 Mainz
- Germany
| |
Collapse
|
174
|
Müller WEG, Wang S, Wiens M, Neufurth M, Ackermann M, Relkovic D, Kokkinopoulou M, Feng Q, Schröder HC, Wang X. Uptake of polyphosphate microparticles in vitro (SaOS-2 and HUVEC cells) followed by an increase of the intracellular ATP pool size. PLoS One 2017; 12:e0188977. [PMID: 29287071 PMCID: PMC5747424 DOI: 10.1371/journal.pone.0188977] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/16/2017] [Indexed: 12/19/2022] Open
Abstract
Recently two approaches were reported that addressed a vitally important problem in regenerative medicine, i. e. the successful treatment of wounds even under diabetic conditions. Accordingly, these studies with diabetic rabbits [Sarojini et al. PLoS One 2017, 12(4):e0174899] and diabetic mice [Müller et al. Polymers 2017, 9, 300] identified a novel (potential) target for the acceleration of wound healing in diabetes. Both studies propose a raise of the intracellular metabolic energy status via exogenous administration either of ATP, encapsulated into lipid vesicles, or of polyphosphate (polyP) micro-/nanoparticles. Recently this physiological polymer, polyP, was found to release metabolic energy in form of ATP into both the extra- and also intra-cellular space. In the present work the uptake mechanism of the amorphous polyP microparticles "Ca-polyP-MP" has been described and found to be a clathrin-dependent endocytosis import, based on inhibition studies with the inhibitor trifluoperazine, which blocks the clathrin-dependent endocytosis import. The experiments had been performed with SaOS-2 cells, by studying the uptake and distribution of the electron-dense particles into the cells, and with HUVEC cells, for analysis of the intracellular accumulation of polyP, visualized by fluorescent staining of polyP. Concurrently with the uptake of particular polyP the intracellular ATP level increased as well. In contrast to "Ca-polyP-MP" the soluble polyP, administered as "Na-polyP[Ca2+]", did not cause an increase in the intracellular Ca2+ level, suggesting a different mode of action of these two forms of polyP. Based on existing data on the effect of polyP and ATP on the induction of vascularization during wound repair, both groups (Sarojini et al. and Müller et al.) propose that the acceleration of wound repair is based on an increased metabolic energy supply directly to the regenerating wound area.
Collapse
Affiliation(s)
- Werner E. G. Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Duesbergweg 6, Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Duesbergweg 6, Mainz, Germany
| | - Matthias Wiens
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Duesbergweg 6, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Duesbergweg 6, Mainz, Germany
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Dinko Relkovic
- Fidelta Ltd., Prilaz baruna Filipovića 29, Zagreb, Croatia
| | - Maria Kokkinopoulou
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, Germany; and
| | - Qingling Feng
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Heinz C. Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Duesbergweg 6, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Duesbergweg 6, Mainz, Germany
| |
Collapse
|
175
|
Ichthyophthirius multifiliis impairs splenic enzymes of the phosphoryl transfer network in naturally infected Rhamdia quelen: effects on energetic homeostasis. Parasitol Res 2017; 117:413-418. [PMID: 29247443 DOI: 10.1007/s00436-017-5715-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
Abstract
Its integrated energetic and metabolic signaling roles place the phosphoryl transfer network, through the enzymes creatine kinase (CK), adenylate kinase (AK), and pyruvate kinase (PK), as a regulatory system coordinating components of the cellular bioenergetics network. Analysis of these enzymes provides new information and perspectives with which to understand disturbances in energetic metabolism between sites of adenosine triphosphate (ATP) generation and utilization. Thus, the aim of this study was to evaluate the involvement of the phosphoryl transfer network in splenic tissue linked with the pathogenesis of silver catfish naturally infected with Ichthyophthirius multifiliis. Splenic cytosolic and mitochondrial CK activities decreased in infected animals compared to uninfected animals, as was also observed for splenic PK activity and splenic ATP levels. In contrast, splenic AK activity increased in infected animals compared to uninfected animals. Based on this evidence, the inhibition and absence of efficient communication between CK isoenzymes cause the impairment of splenic bioenergetics, which is in turn compensated by the augmentation of splenic AK activity in an attempt to restore energy homeostasis. The inhibition of splenic PK activity impairs communication between sites of ATP generation and ATP utilization, as corroborated by splenic ATP depletion. In summary, these alterations contribute to disease pathogenesis linked to spleen tissue in animals infected with white spot disease.
Collapse
|
176
|
Rech VC, Mezzomo NJ, Athaydes GA, Feksa LR, Figueiredo VC, Kessler A, Franceschi IDDE, Wannmacher CMD. Thiol/disulfide status regulates the activity of thiol-containing kinases related to energy homeostasis in rat kidney. AN ACAD BRAS CIENC 2017; 90:99-108. [PMID: 29236866 DOI: 10.1590/0001-3765201720160348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/08/2016] [Indexed: 11/21/2022] Open
Abstract
Considering that thiol-containing enzymes like kinases are critical for several metabolic pathways and energy homeostasis, we investigated the effects of cystine dimethyl ester and/or cysteamine administration on kinases crucial for energy metabolism in the kidney of Wistar rats. Animals were injected twice a day with 1.6 µmol/g body weight cystine dimethyl ester and/or 0.26 µmol/g body weight cysteamine from the 16th to the 20th postpartum day and euthanized after 12 hours. Pyruvate kinase, adenylate kinase, creatine kinase activities and thiol/disulfide ratio were determined. Cystine dimethyl ester administration reduced thiol/disulfide ratio and inhibited the kinases activities. Cysteamine administration increased the thiol/disulfide ratio and co-administration with cystine dimethyl ester prevented the inhibition of the enzymes. Regression between the thiol/disulfide ratio, and the kinases activities were significant. These results suggest that redox status may regulate energy metabolism in the rat kidney. If thiol-containing enzymes inhibition and oxidative stress occur in patients with cystinosis, it is possible that lysosomal cystine depletion may not be the only beneficial effect of cysteamine administration, but also its antioxidant and thiol-protector effect.
Collapse
Affiliation(s)
- Virginia C Rech
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, Santa Cecília, 90035-003 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Nanociências, Laboratório de Nanotecnologia, Centro Universitário Franciscano, Rua dos Andradas, 1614, 97010-032 Santa Maria, RS, Brazil
| | - Nathana J Mezzomo
- Programa de Pós-Graduação em Nanociências, Laboratório de Nanotecnologia, Centro Universitário Franciscano, Rua dos Andradas, 1614, 97010-032 Santa Maria, RS, Brazil
| | - Genaro A Athaydes
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, Santa Cecília, 90035-003 Porto Alegre, RS, Brazil
| | - Luciane R Feksa
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, Santa Cecília, 90035-003 Porto Alegre, RS, Brazil.,Instituto de Ciências da Saúde, Universidade Feevale, ERS-239, 2755, 93525-075 Novo Hamburgo, RS, Brazil
| | - Vandré C Figueiredo
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, Santa Cecília, 90035-003 Porto Alegre, RS, Brazil
| | - Adriana Kessler
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, Santa Cecília, 90035-003 Porto Alegre, RS, Brazil.,Faculdade de Enfermagem, Nutrição e Fisioterapia, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga, 6681, Prédio 12, Partenon, 90619-900 Porto Alegre, RS, Brazil
| | - Itiane D DE Franceschi
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, Santa Cecília, 90035-003 Porto Alegre, RS, Brazil
| | - Clovis M D Wannmacher
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, Santa Cecília, 90035-003 Porto Alegre, RS, Brazil
| |
Collapse
|
177
|
Tian M, Chen M, Bao YL, Xu CD, Qin QZ, Zhang WX, He YT, Shao Q. Sputum metabolomic profiling of bronchial asthma based on quadruple time-of-flight mass spectrometry. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:10363-10373. [PMID: 31966372 PMCID: PMC6965799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/27/2017] [Indexed: 06/10/2023]
Abstract
To improve diagnosis of asthma, we tend to confirm potential biomarkers by comparing sputum metabolome profiles between asthma patients and healthy controls, using ultra-high-performance liquid chromatography coupled to quadruple time-of-flight mass spectrometry (UHPLC-QTOF/MS). Thirty endogenous metabolites contributing to the separation of asthma patients and healthy controls were tentatively identified in positive mode, such as 1-hexadecanoyl-sn-glycerol, glycerol 1-stearate, sphingosine, Phe-Ser, Tyr-Ala and Phe-Gln, and 12 endogenous metabolites were identified in negative mode, such as cytidine 2',3'-cyclic phosphate, 1-hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phospho-(1'-rac-glycerol), 1-octadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphoserine, thymidine, gamma-L-glutamyl-L-valine and adenine. Those differential metabolites were mainly participatedin glycerophospholipid metabolism, retrograde endocannabinoid signaling and metabolic pathways in positive mode and 2-oxocarboxylic acid metabolism, biosynthesis of amino acids, phenylalanine, tyrosine and tryptophan biosynthesis, valine, leucine and isoleucine degradation and metabolic pathways in negative mode. Importantly, several metabolic pathways including glycerophospholipid metabolism, inositol phosphate metabolism, and glycolysis or gluconeogenesis were found most important. These findings suggest sputum metabolomics can be used for the early diagnosis and risk prediction of asthma.
Collapse
Affiliation(s)
- Man Tian
- Department of Respiratory Medicine, Child's Hospital of Nanjing Medical University Nanjing, China
| | - Meng Chen
- Department of Respiratory Medicine, Child's Hospital of Nanjing Medical University Nanjing, China
| | - Yu-Ling Bao
- Department of Respiratory Medicine, Child's Hospital of Nanjing Medical University Nanjing, China
| | - Chang-Di Xu
- Department of Respiratory Medicine, Child's Hospital of Nanjing Medical University Nanjing, China
| | - Qiao-Zhi Qin
- Department of Respiratory Medicine, Child's Hospital of Nanjing Medical University Nanjing, China
| | - Wen-Xin Zhang
- Department of Respiratory Medicine, Child's Hospital of Nanjing Medical University Nanjing, China
| | - Yu-Ting He
- Department of Respiratory Medicine, Child's Hospital of Nanjing Medical University Nanjing, China
| | - Qi Shao
- Department of Respiratory Medicine, Child's Hospital of Nanjing Medical University Nanjing, China
| |
Collapse
|
178
|
Proteome analysis in dystrophic mdx mouse muscle reveals a drastic alteration of key metabolic and contractile proteins after chronic exercise and the potential modulation by anti-oxidant compounds. J Proteomics 2017; 170:43-58. [PMID: 28966053 DOI: 10.1016/j.jprot.2017.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/05/2017] [Accepted: 09/15/2017] [Indexed: 11/21/2022]
Abstract
Weakness and fatigability are typical features of Duchenne muscular dystrophy patients and are aggravated in dystrophic mdx mice by chronic treadmill exercise. In the present study, we describe, the pattern of differentially abundant spots that is associated to the worsening of dystrophy phenotype induced by chronic exercise. Our proteomic analysis pointed out 34 protein spots with different abundance between sedentary and exercised mdx mice. These proteins belong mostly to glucose metabolism, energy production and sarcomere structure categories. Interestingly exercise induced an increase of typical fast twitch fiber proteins (Troponin T fast skeletal muscle, Troponin I fast skeletal muscle and Myozenin-1) combined with an increase of several glycolytic enzymes. Concerning energy transfer, Adenylate kinase, showed a marked decrease when compared with non-exercised mdx. The decline of this enzyme correlates with increased Creatin kinase enzyme, suggesting that a compensatory energy metabolism mechanism could be activated in mdx mouse skeletal muscle following exercise. In addition, we analysed muscles from exercised mdx mice treated with two natural anti-oxidant compounds, apocynin and taurine, that in our previous study, were proved to be beneficial on some pathology related parameters, and we showed that these compounds can counteract exercise-induced changes in the abundance of several proteins. SIGNIFICANCE Mdx mouse model of Duchenne muscular dystrophy shows a phenotype of the disorder milder than in human sufferers. This phenotype can be worsened by a different protocols of chronic exercise. These protocols can mimic the muscle progressive damage observed in humans, can allow studying the effects of inadequate training on dystrophic muscles and have been largely used to assess the ability of a drug to reduce the damage induced by exercise. In this study, we describe for the first time, the pattern of protein variation associated with the worsening of dystrophy phenotype induced by chronic exercise. Our proteomic analysis pointed out 34 protein spots with different amount between sedentary and exercised mdx mice. These proteins belong mostly to glucose metabolism, energy production and sarcomere structure categories and their variation indicates that mdx exercised muscle are not able to carry out the metabolic changes associated to fast-to-slow transition typically observed in aerobically trained muscle.
Collapse
|
179
|
Czuba M, Wilk R, Karpiński J, Chalimoniuk M, Zajac A, Langfort J. Intermittent hypoxic training improves anaerobic performance in competitive swimmers when implemented into a direct competition mesocycle. PLoS One 2017; 12:e0180380. [PMID: 28763443 PMCID: PMC5538675 DOI: 10.1371/journal.pone.0180380] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/14/2017] [Indexed: 11/18/2022] Open
Abstract
The main objective of this research was to evaluate the efficacy of intermittent hypoxic training (IHT) on anaerobic and aerobic capacity and swimming performance in well-trained swimmers. Sixteen male swimmers were randomly divided into a hypoxia (H) group (n = 8), which trained in a normobaric hypoxia environment, and a control (C) group (n = 8), which exercised under normoxic conditions. However, one participant left the study without explanation. During the experiment group H trained on land twice per week in simulated hypoxia (FiO2 = 15.5%, corresponding to 2,500 m a.s.l); however, they conducted swim training in normoxic conditions. Group C performed the same training program under normoxic conditions. The training program included four weekly microcyles, followed by three days of recovery. During practice sessions on land, the swimmers performed 30 second sprints on an arm-ergometer, alternating with two minute high intensity intervals on a lower limb cycle ergometer. The results showed that the training on land caused a significant (p<0.05) increase in absolute maximal workload (WRmax) by 7.4% in group H and by 3.2% in group C and relative values of VO2max by 6.9% in group H and 3.7% in group C. However, absolute values of VO2max were not significantly changed. Additionally, a significant (p<0.05) increase in mean power (Pmean) during the first (11.7%) and second (11.9%) Wingate tests was only observed in group H. The delta values of lactate concentration (ΔLA) after both Wingate tests were significantly (p<0.05) higher in comparison to baseline levels by 28.8% in group H. Opposite changes were observed in delta values of blood pH (ΔpH) after both Wingate tests in group H, with a significant decrease in values of ΔpH by 33.3%. The IHT caused a significant (p<0.05) improvement in 100m and 200m swimming performance, by 2.1% and 1.8%, respectively in group H. Training in normoxia (group C), resulted in a significant (p<0.05) improvement of swimming performance at 100m and 200m, by 1.1% and 0.8%, respectively. In conclusion, the most important finding of this study includes a significant improvement in anaerobic capacity and swimming performance after high-intensity IHT. However, this training protocol had no effect on absolute values of VO2max and hematological variables.
Collapse
Affiliation(s)
- Miłosz Czuba
- Department of Sports Training, the Jerzy Kukuczka Academy of Physical Education in Katowice, Faculty of Physical Education, Katowice, Poland
- * E-mail:
| | - Robert Wilk
- Department of Swimming, the Jerzy Kukuczka Academy of Physical Education in Katowice, Faculty of Physical Education, Katowice, Poland
| | - Jakub Karpiński
- Department of Swimming, the Jerzy Kukuczka Academy of Physical Education in Katowice, Faculty of Physical Education, Katowice, Poland
| | - Małgorzata Chalimoniuk
- Department of Tourism and Health in Biala Podlaska, Józef Piłsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Adam Zajac
- Department of Sports Training, the Jerzy Kukuczka Academy of Physical Education in Katowice, Faculty of Physical Education, Katowice, Poland
| | - Józef Langfort
- Department of Sports Training, the Jerzy Kukuczka Academy of Physical Education in Katowice, Faculty of Physical Education, Katowice, Poland
| |
Collapse
|
180
|
O’Brien WG, Ling HS, Zhao Z, Lee CC. New insights on the regulation of the adenine nucleotide pool of erythrocytes in mouse models. PLoS One 2017; 12:e0180948. [PMID: 28746349 PMCID: PMC5528878 DOI: 10.1371/journal.pone.0180948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/13/2017] [Indexed: 11/18/2022] Open
Abstract
The observation that induced torpor in non-hibernating mammals could result from an increased AMP concentration in circulation led our investigation to reveal that the added AMP altered oxygen transport of erythrocytes. To further study the effect of AMP in regulation of erythrocyte function and systemic metabolism, we generated mouse models deficient in key erythrocyte enzymes in AMP metabolism. We have previously reported altered erythrocyte adenine nucleotide levels corresponding to altered oxygen saturation in mice deficient in both CD73 and AMPD3. Here we further investigate how these Ampd3-/-/Cd73-/- mice respond to the administered dose of AMP in comparison with the control models of single enzyme deficiency and wild type. We found that Ampd3-/-/Cd73-/- mice are more sensitive to AMP-induced hypometabolism than mice with a single enzyme deficiency, which are more sensitive than wild type. A dose-dependent rightward shift of erythrocyte p50 values in response to increasing amounts of extracellular AMP was observed. We provide further evidence for the direct uptake of AMP by erythrocytes that is insensitive to dipyridamole, a blocker for ENT1. The uptake of AMP by the erythrocytes remained linear at the highest concentration tested, 10mM. We also observed competitive inhibition of AMP uptake by ATP and ADP but not by the other nucleotides and metabolites tested. Importantly, our studies suggest that AMP uptake is associated with an erythrocyte ATP release that is partially sensitive to inhibition by TRO19622 and Ca++ ion. Taken together, our study suggests a novel mechanism by which erythrocytes recycle and maintain their adenine nucleotide pool through AMP uptake and ATP release.
Collapse
Affiliation(s)
- William G. O’Brien
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Han Shawn Ling
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Zhaoyang Zhao
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States of America
- * E-mail:
| | - Cheng Chi Lee
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States of America
| |
Collapse
|
181
|
2-Oxoadenosine induces cytotoxicity through intracellular accumulation of 2-oxo-ATP and depletion of ATP but not via the p38 MAPK pathway. Sci Rep 2017; 7:6528. [PMID: 28747712 PMCID: PMC5529524 DOI: 10.1038/s41598-017-06636-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 06/20/2017] [Indexed: 01/22/2023] Open
Abstract
2-Oxoadenosine (2-oxo-Ado), an oxidized form of adenosine, is cytotoxic and induces growth arrest and cell death, which has potential as an anti-cancer drug. However, it is not well understood how 2-oxo-Ado exerts its cytotoxicity. We examined the effects of 2-oxo-Ado on non-tumour cells, namely immortalized mouse embryonic fibroblast lines, and investigated mechanisms by which 2-oxo-Ado exerts its cytotoxicity. We found that cell death induced by 2-oxo-Ado is classical caspase-dependent apoptosis, and requires its sequential intracellular phosphorylation catalysed by adenosine kinase (ADK) and adenylate kinase 2, resulting in intracellular accumulation of 2-oxo-ATP accompanied by accumulation of 2-oxo-Ado in RNA and depletion of ATP. Moreover, we showed that overexpression of MTH1, an oxidized purine nucleoside triphosphatase, prevents 2-oxo-Ado-induced cytotoxicity accompanied by suppression of accumulation of both intracellular 2-oxo-ATP and 2-oxo-Ado in RNA and recovery of ATP levels. We also found that 2-oxo-Ado activates the p38 MAPK pathway. However, siRNAs against Mkk3 and Mkk6, or treatment with several p38 MAPK inhibitors, except SB203580, did not prevent the cytotoxicity. SB203580 prevented intracellular phosphorylation of 2-oxo-Ado to 2-oxo-AMP, and an in vitro ADK assay revealed that SB203580 directly inhibits ADK activity, suggesting that some of the effects of SB203580 may depend on ADK inhibition.
Collapse
|
182
|
Pershina AG, Ivanov VV, Efimova LV, Shevelev OB, Vtorushin SV, Perevozchikova TV, Sazonov AE, Ogorodova LM. Magnetic resonance imaging and spectroscopy for differential assessment of liver abnormalities induced by Opisthorchis felineus in an animal model. PLoS Negl Trop Dis 2017; 11:e0005778. [PMID: 28708894 PMCID: PMC5529022 DOI: 10.1371/journal.pntd.0005778] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/26/2017] [Accepted: 07/05/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND European liver fluke Opisthorchis felineus, causing opisthorchiasis disease, is widespread in Russia, Ukraine, Kazakhstan and sporadically detected in the EU countries. O. felineus infection leads to hepatobiliary pathological changes, cholangitis, fibrosis and, in severe cases, malignant transformation of bile ducts. Due to absence of specific symptoms, the infection is frequently neglected for a long period. The association of opisthorchiasis with almost incurable bile duct cancer and rising international migration of people that increases the risk of the parasitic etiology of liver fibrosis in non-endemic regions determine high demand for development of approaches to opisthorchiasis detection. METHODOLOGY/PRINCIPAL FINDINGS In vivo magnetic resonance imaging and spectroscopy (MRI and MRS) were applied for differential assessment of hepatic abnormalities induced by O. felineus in an experimental animal model. Correlations of the MR-findings with the histological data as well as the data of the biochemical analysis of liver tissue were found. MRI provides valuable information about the severity of liver impairments induced by opisthorchiasis. An MR image of O. felineus infected liver has a characteristic pattern that differs from that of closely related liver fluke infections. 1H and 31P MRS in combination with biochemical analysis data showed that O. felineus infection disturbed hepatic metabolism of the host, which was accompanied by cholesterol accumulation in the liver. CONCLUSIONS A non-invasive approach based on the magnetic resonance technique is very advantageous and may be successfully used not only for diagnosing and evaluating liver damage induced by O. felineus, but also for investigating metabolic changes arising in the infected organ. Since damages induced by the liver fluke take place in different liver lobes, MRI has the potential to overcome liver biopsy sampling variability that limits predictive validity of biopsy analysis for staging liver fluke-induced fibrosis.
Collapse
Affiliation(s)
- Alexandra G. Pershina
- Central Research Laboratory, Siberian State Medical University, Tomsk, Russia
- Department of Biotechnology and Organic Chemistry, National Research Tomsk Polytechnic University, Tomsk, Russia
- * E-mail:
| | - Vladimir V. Ivanov
- Central Research Laboratory, Siberian State Medical University, Tomsk, Russia
| | - Lina V. Efimova
- Central Research Laboratory, Siberian State Medical University, Tomsk, Russia
| | - Oleg B. Shevelev
- Center for Genetic Resources of Laboratory Animals, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Sergey V. Vtorushin
- Central Research Laboratory, Siberian State Medical University, Tomsk, Russia
| | | | - Alexey E. Sazonov
- Central Research Laboratory, Siberian State Medical University, Tomsk, Russia
| | | |
Collapse
|
183
|
Müller WEG, Wang S, Neufurth M, Kokkinopoulou M, Feng Q, Schröder HC, Wang X. Polyphosphate as a donor of high-energy phosphate for the synthesis of ADP and ATP. J Cell Sci 2017; 130:2747-2756. [PMID: 28687622 DOI: 10.1242/jcs.204941] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/05/2017] [Indexed: 01/15/2023] Open
Abstract
Here, we studied the potential role of inorganic polyphosphate (polyP) as an energy source for ADP and ATP formation in the extracellular space. In SaOS-2 cells, we show that matrix vesicles are released into the extracellular space after incubation with polyP. These vesicles contain both alkaline phosphatase (ALP) and adenylate kinase (AK) activities (mediated by ALPL and AK1 enzymes). Both enzymes translocate to the cell membrane in response to polyP. To distinguish the process(es) of AMP and ADP formation during ALP hydrolysis from the ATP generated via the AK reaction, inhibition studies with the AK inhibitor A(5')P5(5')A were performed. We found that ADP formation in the extracellular space occurs after enzymatic ATP synthesis. After exposure to polyP, a significant increase of the ADP level was observed, which is likely to be been catalyzed by ALP. This increase is not due to an intensified ATP release via exocytosis. The ATP level in the extracellular space of SaOS-2 cells is strongly increased in response to polyP, very likely mediated by the AK. We propose that the ALP and AK enzymes are involved in the extracellular ADP and ATP synthesis.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Maria Kokkinopoulou
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Qingling Feng
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| |
Collapse
|
184
|
Raveneau MP, Benamar A, Macherel D. Water content, adenylate kinase, and mitochondria drive adenylate balance in dehydrating and imbibing seeds. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3501-3512. [PMID: 28859379 PMCID: PMC5853452 DOI: 10.1093/jxb/erx182] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/04/2017] [Indexed: 05/15/2023]
Abstract
Water and life are inexorably linked, but some organisms are capable of losing almost all cellular water to enter a non-metabolic state of anhydrobiosis. This raises intriguing questions about how energy metabolism is managed during such transitions. Here, we have investigated adenylate metabolism during seed imbibition and drying using intact or fragmented pea (Pisum sativum L.) seeds. AMP was confirmed as the major adenylate stored in dry seeds, and normal adenylate balance was rapidly restored upon rehydration of the tissues. Conversely, re-drying of fully imbibed seeds reversed the balance toward AMP accumulation. The overall analysis, supported by in vitro enzyme mimicking experiments, shows that during tissue dehydration, when oxidative phosphorylation is no longer efficient because of decreasing water content, the ATP metabolic demand is met by adenylate kinase, resulting in accumulation of AMP. During seed imbibition, adenylate balance is rapidly restored from the AMP stock by the concerted action of adenylate kinase and mitochondria. The adenylate balance in orthodox seeds, and probably in other anhydrobiotes, appears to be simply driven by water content throughout the interplay between ATP metabolic demand, adenylate kinase, and oxidative phosphorylation, which requires mitochondria to be energetically efficient from the onset of imbibition.
Collapse
Affiliation(s)
- Marie-Paule Raveneau
- USC LEVA, INRA, Ecole Supérieure d’Agricultures, Université Bretagne Loire, SFR QUASAV, rue Rabelais, Angers Cedex, France
| | - Abdelilah Benamar
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR QUASAV, rue Georges Morel, Beaucouzé, France
| | - David Macherel
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR QUASAV, rue Georges Morel, Beaucouzé, France
| |
Collapse
|
185
|
Adenylate kinase hCINAP determines self-renewal of colorectal cancer stem cells by facilitating LDHA phosphorylation. Nat Commun 2017; 8:15308. [PMID: 28516914 PMCID: PMC5454382 DOI: 10.1038/ncomms15308] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 03/17/2017] [Indexed: 12/18/2022] Open
Abstract
Targeting the specific metabolic phenotypes of colorectal cancer stem cells (CRCSCs) is an innovative therapeutic strategy for colorectal cancer (CRC) patients with poor prognosis and relapse. However, the context-dependent metabolic traits of CRCSCs remain poorly elucidated. Here we report that adenylate kinase hCINAP is overexpressed in CRC tissues. Depletion of hCINAP inhibits invasion, self-renewal, tumorigenesis and chemoresistance of CRCSCs with a loss of mesenchymal signature. Mechanistically, hCINAP binds to the C-terminal domain of LDHA, the key regulator of glycolysis, and depends on its adenylate kinase activity to promote LDHA phosphorylation at tyrosine 10, resulting in the hyperactive Warburg effect and the lower cellular ROS level and conferring metabolic advantage to CRCSC invasion. Moreover, hCINAP expression is positively correlated with the level of Y10-phosphorylated LDHA in CRC patients. This study identifies hCINAP as a potent modulator of metabolic reprogramming in CRCSCs and a promising drug target for CRC invasion and metastasis.
Collapse
|
186
|
Gao Y, Zhou X, Wang H, Liu R, Ye Q, Zhao Q, Ming Z, Dong H. Immunization with recombinant schistosome adenylate kinase 1 partially protects mice against Schistosoma japonicum infection. Parasitol Res 2017; 116:1665-1674. [PMID: 28455627 DOI: 10.1007/s00436-017-5441-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 04/12/2017] [Indexed: 12/22/2022]
Abstract
Highly effective and safe prophylactic vaccines are urgently needed to sustainably control schistosomiasis, one of the most serious endemic zoonoses in China. In this study, we characterized adenylate kinase 1 from Schistosoma japonicum (SjAK1), a phosphotransferase that regulates cellular energy and metabolism, and evaluated its potential as a recombinant vaccine. Based on real-time quantitative PCR, western blot, and immunolocalization, SjAK1 is active throughout the life of the worm, although its expression is higher in 21-day-old schistosomula, adult worms, and eggs deposited in the host liver. Further, the enzyme accumulates in the eggshell, intestinal epithelium, integument of adult worms and in the vitellaria tissue in female worms. A 594-bp full-length complementary DNA (cDNA) encoding SjAK1 was synthesized from total RNA of 3-day-old schistosomes, and immunization with recombinant SjAK1 reduced worm burden by 50%, decreased the density of eggs deposited in the host liver by 40%, and reduced the area of granulomas in the host liver by 56%. ELISA results showed that recombinant SjAK1 also stimulated Th1 cytokines such as IL-2 and IFN-γ, but not IL-5 and IL-4. Collectively, a recombinant form of the enzyme SjAK1 elicits partial protective immunity against Schistosoma japonicum infection and the induction of Th1 cytokines. Thus, the enzyme has potential as a component of a multivalent vaccine against schistosomiasis.
Collapse
Affiliation(s)
- Yanru Gao
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Parasitology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province, 430071, China.,Department of Physiology, School of Basic Medicine Sciences, Hubei University of Science and Technology, Xianning, Hubei Province, 437000, China
| | - Xiaoshan Zhou
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Parasitology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province, 430071, China
| | - Huan Wang
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Parasitology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province, 430071, China
| | - Rong Liu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Parasitology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province, 430071, China
| | - Qing Ye
- Renmin Hospital, Wuhan University, Wuhan, Hubei Province, 430000, China
| | - Qinping Zhao
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Parasitology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province, 430071, China
| | - Zhenping Ming
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Parasitology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province, 430071, China
| | - Huifen Dong
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Parasitology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province, 430071, China.
| |
Collapse
|
187
|
Suski M, Wiśniewska A, Stachowicz A, Olszanecki R, Kuś K, Białas M, Madej J, Korbut R. The influence of AICAR - direct activator of AMP-activated protein kinase (AMPK) - on liver proteome in apoE-knockout mice. Eur J Pharm Sci 2017; 104:406-416. [PMID: 28455001 DOI: 10.1016/j.ejps.2017.04.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/13/2017] [Accepted: 04/25/2017] [Indexed: 02/08/2023]
Abstract
There is a growing body of evidence that altered functioning of apoE may aggravate cellular energy homeostasis and stress response, leading to oxidative stress, mitochondrial dysfunction, endoplasmic reticulum (ER) stress and inflammation, leading to hypercholesterolemia, dyslipidemia, liver steatosis and neurodegeneration. One of the key cellular responses to mitochondria and ER-stress related processes and cellular energy imbalance is AMP-activated protein kinase (AMPK), considered as a cellular master energy sensor and critical regulator of mitochondrial homeostasis. The aim of our study was to use differential proteomics and transcriptomics approach to elucidate the effect of direct AMPK activator AICAR on liver proteome in apoE-/- mice - experimental model of atherosclerosis and moderate nonalcoholic steatosis. We applied Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) labeling and two-dimensional chromatography coupled with mass spectrometry (2DLC-MS/MS) MudPIT strategy, as well as RT-PCR to investigate the changes in mitochondrial and cytosolic proteins and transcripts expression in 6-month old AICAR-treated apoE-/-. AICAR elicited induction of proteins related to mitochondrial β-oxidation, protein degradation and energy producing pathways (i.a. tricarboxylic acid cycle members and mitochondrial adenylate kinase 2). On the other hand, AICAR repressed inflammatory and pro-apoptotic markers in the apoE-/- mice liver, alongside reduction in several peroxisomal proteins, possibly suggesting induction of anti-oxidative pexophagy.
Collapse
Affiliation(s)
- Maciej Suski
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Wiśniewska
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Aneta Stachowicz
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Rafał Olszanecki
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland.
| | - Katarzyna Kuś
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Magdalena Białas
- Chair of Phatomorphology, Jagiellonian University Medical College, Krakow, Poland
| | - Józef Madej
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Ryszard Korbut
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
188
|
Baris TZ, Wagner DN, Dayan DI, Du X, Blier PU, Pichaud N, Oleksiak MF, Crawford DL. Evolved genetic and phenotypic differences due to mitochondrial-nuclear interactions. PLoS Genet 2017; 13:e1006517. [PMID: 28362806 PMCID: PMC5375140 DOI: 10.1371/journal.pgen.1006517] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/01/2016] [Indexed: 02/05/2023] Open
Abstract
The oxidative phosphorylation (OxPhos) pathway is responsible for most aerobic ATP production and is the only pathway with both nuclear and mitochondrial encoded proteins. The importance of the interactions between these two genomes has recently received more attention because of their potential evolutionary effects and how they may affect human health and disease. In many different organisms, healthy nuclear and mitochondrial genome hybrids between species or among distant populations within a species affect fitness and OxPhos functions. However, what is less understood is whether these interactions impact individuals within a single natural population. The significance of this impact depends on the strength of selection for mito-nuclear interactions. We examined whether mito-nuclear interactions alter allele frequencies for ~11,000 nuclear SNPs within a single, natural Fundulus heteroclitus population containing two divergent mitochondrial haplotypes (mt-haplotypes). Between the two mt-haplotypes, there are significant nuclear allele frequency differences for 349 SNPs with a p-value of 1% (236 with 10% FDR). Unlike the rest of the genome, these 349 outlier SNPs form two groups associated with each mt-haplotype, with a minority of individuals having mixed ancestry. We use this mixed ancestry in combination with mt-haplotype as a polygenic factor to explain a significant fraction of the individual OxPhos variation. These data suggest that mito-nuclear interactions affect cardiac OxPhos function. The 349 outlier SNPs occur in genes involved in regulating metabolic processes but are not directly associated with the 79 nuclear OxPhos proteins. Therefore, we postulate that the evolution of mito-nuclear interactions affects OxPhos function by acting upstream of OxPhos.
Collapse
Affiliation(s)
- Tara Z. Baris
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Rickenbacker Causeway, Miami, FL, United States of America
- * E-mail:
| | - Dominique N. Wagner
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Rickenbacker Causeway, Miami, FL, United States of America
| | - David I. Dayan
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Rickenbacker Causeway, Miami, FL, United States of America
| | - Xiao Du
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Rickenbacker Causeway, Miami, FL, United States of America
| | - Pierre U. Blier
- Dept de Biologie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Quebec, Canada
| | - Nicolas Pichaud
- Dept de Biologie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Quebec, Canada
| | - Marjorie F. Oleksiak
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Rickenbacker Causeway, Miami, FL, United States of America
| | - Douglas L. Crawford
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Rickenbacker Causeway, Miami, FL, United States of America
| |
Collapse
|
189
|
Eastlake K, Heywood WE, Tracey-White D, Aquino E, Bliss E, Vasta GR, Mills K, Khaw PT, Moosajee M, Limb GA. Comparison of proteomic profiles in the zebrafish retina during experimental degeneration and regeneration. Sci Rep 2017; 7:44601. [PMID: 28300160 PMCID: PMC5353638 DOI: 10.1038/srep44601] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/09/2017] [Indexed: 12/15/2022] Open
Abstract
Zebrafish spontaneously regenerate the retina after injury. Although the gene expression profile has been extensively studied in this species during regeneration, this does not reflect protein function. To further understand the regenerative process in the zebrafish, we compared the proteomic profile of the retina during injury and upon regeneration. Using two-dimensional difference gel electrophoresis (2D-DIGE) and label-free quantitative proteomics (quadrupole time of flight LC-MS/MS), we analysed the retina of adult longfin wildtype zebrafish at 0, 3 and 18 days after Ouabain injection. Gene ontology analysis indicates reduced metabolic processing, and increase in fibrin clot formation, with significant upregulation of fibrinogen gamma polypeptide, apolipoproteins A-Ib and A-II, galectin-1, and vitellogenin-6 during degeneration when compared to normal retina. In addition, cytoskeleton and membrane transport proteins were considerably altered during regeneration, with the highest fold upregulation observed for tubulin beta 2 A, histone H2B and brain type fatty acid binding protein. Key proteins identified in this study may play an important role in the regeneration of the zebrafish retina and investigations on the potential regulation of these proteins may lead to the design of protocols to promote endogenous regeneration of the mammalian retina following retinal degenerative disease.
Collapse
Affiliation(s)
- Karen Eastlake
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 9EL, United Kingdom
| | - Wendy E. Heywood
- Centre for Translational Omics, UCL Great Ormond Street Institute of Child Health, 30 Guilford St, London WC1N 1EH, United Kingdom
| | - Dhani Tracey-White
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 9EL, United Kingdom
| | - Erika Aquino
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 9EL, United Kingdom
| | - Emily Bliss
- Centre for Translational Omics, UCL Great Ormond Street Institute of Child Health, 30 Guilford St, London WC1N 1EH, United Kingdom
| | - Gerardo R. Vasta
- Department of Microbiology and Immunology, University of Maryland School of Medicine and IMET, Columbus Center, 701 E, Pratt Street, 3061/3062, Baltimore, USA
| | - Kevin Mills
- Centre for Translational Omics, UCL Great Ormond Street Institute of Child Health, 30 Guilford St, London WC1N 1EH, United Kingdom
| | - Peng T. Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 9EL, United Kingdom
| | - Mariya Moosajee
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 9EL, United Kingdom
| | - G. Astrid Limb
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 9EL, United Kingdom
| |
Collapse
|
190
|
Garcia-Esparcia P, López-González I, Grau-Rivera O, García-Garrido MF, Konetti A, Llorens F, Zafar S, Carmona M, Del Rio JA, Zerr I, Gelpi E, Ferrer I. Dementia with Lewy Bodies: Molecular Pathology in the Frontal Cortex in Typical and Rapidly Progressive Forms. Front Neurol 2017; 8:89. [PMID: 28348546 PMCID: PMC5346561 DOI: 10.3389/fneur.2017.00089] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/24/2017] [Indexed: 11/29/2022] Open
Abstract
Objectives The goal of this study was to assess mitochondrial function, energy, and purine metabolism, protein synthesis machinery from the nucleolus to the ribosome, inflammation, and expression of newly identified ectopic olfactory receptors (ORs) and taste receptors (TASRs) in the frontal cortex of typical cases of dementia with Lewy bodies (DLB) and cases with rapid clinical course (rpDLB: 2 years or less) compared with middle-aged non-affected individuals, in order to learn about the biochemical abnormalities underlying Lewy body pathology. Methods Real-time quantitative PCR, mitochondrial enzymatic assays, and analysis of β-amyloid, tau, and synuclein species were used. Results The main alterations in DLB and rpDLB, which are more marked in the rapidly progressive forms, include (i) deregulated expression of several mRNAs and proteins of mitochondrial subunits, and reduced activity of complexes I, II, III, and IV of the mitochondrial respiratory chain; (ii) reduced expression of selected molecules involved in energy metabolism and increased expression of enzymes involved in purine metabolism; (iii) abnormal expression of nucleolar proteins, rRNA18S, genes encoding ribosomal proteins, and initiation factors of the transcription at the ribosome; (iv) discrete inflammation; and (v) marked deregulation of brain ORs and TASRs, respectively. Severe mitochondrial dysfunction involving activity of four complexes, minimal inflammatory responses, and dramatic altered expression of ORs and TASRs discriminate DLB from Alzheimer’s disease. Altered solubility and aggregation of α-synuclein, increased β-amyloid bound to membranes, and absence of soluble tau oligomers are common in DLB and rpDLB. Low levels of soluble β-amyloid are found in DLB. However, increased soluble β-amyloid 1–40 and β-amyloid 1–42, and increased TNFα mRNA and protein expression, distinguish rpDLB. Conclusion Molecular alterations in frontal cortex in DLB involve key biochemical pathways such as mitochondria and energy metabolism, protein synthesis, purine metabolism, among others and are accompanied by discrete innate inflammatory response.
Collapse
Affiliation(s)
- Paula Garcia-Esparcia
- Institute of Neuropathology, Service of Pathologic Anatomy, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain; CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Madrid, Spain
| | - Irene López-González
- Institute of Neuropathology, Service of Pathologic Anatomy, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain; CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Madrid, Spain
| | - Oriol Grau-Rivera
- Neurological Tissue Bank of the Biobanc-Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) , Barcelona , Spain
| | - María Francisca García-Garrido
- Institute of Neuropathology, Service of Pathologic Anatomy, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat , Barcelona , Spain
| | - Anusha Konetti
- Institute of Neuropathology, Service of Pathologic Anatomy, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat , Barcelona , Spain
| | - Franc Llorens
- Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University, German Center for Neurodegenerative Diseases (DZNE) , Göttingen , Germany
| | - Saima Zafar
- Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University, German Center for Neurodegenerative Diseases (DZNE) , Göttingen , Germany
| | - Margarita Carmona
- Institute of Neuropathology, Service of Pathologic Anatomy, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain; CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Madrid, Spain
| | - José Antonio Del Rio
- CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Madrid, Spain; Molecular and Cellular Neurobiotechnology, Department of Cell Biology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University, German Center for Neurodegenerative Diseases (DZNE) , Göttingen , Germany
| | - Ellen Gelpi
- Neurological Tissue Bank of the Biobanc-Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) , Barcelona , Spain
| | - Isidro Ferrer
- Institute of Neuropathology, Service of Pathologic Anatomy, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain; CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Madrid, Spain; Department of Pathology and Experimental Therapeutics, L'Hospitalet de Llobregat, University of Barcelona, Barcelona, Spain
| |
Collapse
|
191
|
Gombar R, Pitcher TE, Lewis JA, Auld J, Vacratsis PO. Proteomic characterization of seminal plasma from alternative reproductive tactics of Chinook salmon ( Oncorhynchus tswatchysha ). J Proteomics 2017; 157:1-9. [DOI: 10.1016/j.jprot.2017.01.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 01/24/2017] [Accepted: 01/28/2017] [Indexed: 12/11/2022]
|
192
|
Iommarini L, Ghelli A, Gasparre G, Porcelli AM. Mitochondrial metabolism and energy sensing in tumor progression. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:582-590. [PMID: 28213331 DOI: 10.1016/j.bbabio.2017.02.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/06/2017] [Accepted: 02/13/2017] [Indexed: 01/14/2023]
Abstract
Energy homeostasis is pivotal for cell fate since metabolic regulation, cell proliferation and death are strongly dependent on the balance between catabolic and anabolic pathways. In particular, metabolic and energetic changes have been observed in cancer cells even before the discovery of oncogenes and tumor suppressors, but have been neglected for a long time. Instead, during the past 20years a renaissance of the study of tumor metabolism has led to a revised and more accurate sight of the metabolic landscape of cancer cells. In this scenario, genetic, biochemical and clinical evidences place mitochondria as key actors in cancer metabolic restructuring, not only because there are energy and biosynthetic intermediates manufacturers, but also because occurrence of mutations in metabolic enzymes encoded by both nuclear and mitochondrial DNA has been associated to different types of cancer. Here we provide an overview of the possible mechanisms modulating mitochondrial energy production and homeostasis in the intriguing scenario of neoplastic cells, focusing on the double-edged role of 5'-AMP activated protein kinase in cancer metabolism. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.
Collapse
Affiliation(s)
- Luisa Iommarini
- Dipartimento Farmacia e Biotecnologie (FABIT), Università di Bologna, Via Selmi 3, 40126 Bologna, Italy.
| | - Anna Ghelli
- Dipartimento Farmacia e Biotecnologie (FABIT), Università di Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Giuseppe Gasparre
- Dipartimento Scienze Mediche e Chirurgiche (DIMEC), U.O. Genetica Medica, Pol. Universitario S. Orsola-Malpighi, Università di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Anna Maria Porcelli
- Dipartimento Farmacia e Biotecnologie (FABIT), Università di Bologna, Via Selmi 3, 40126 Bologna, Italy; Centro Interdipartimentale di Ricerca Industriale Scienze della Vita e Tecnologie per la Salute, Università di Bologna, Via Tolara di Sopra, 41/E, 40064 Ozzano dell'Emilia, Italy
| |
Collapse
|
193
|
Ooko E, Kadioglu O, Greten HJ, Efferth T. Pharmacogenomic Characterization and Isobologram Analysis of the Combination of Ascorbic Acid and Curcumin-Two Main Metabolites of Curcuma longa-in Cancer Cells. Front Pharmacol 2017; 8:38. [PMID: 28210221 PMCID: PMC5288649 DOI: 10.3389/fphar.2017.00038] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/18/2017] [Indexed: 12/11/2022] Open
Abstract
Curcuma longa has long been used in China and India as anti-inflammatory agent to treat a wide variety of conditions and also as a spice for varied curry preparations. The chemoprofile of the Curcuma species exhibits the presence of varied phytochemicals with curcumin being present in all three species but AA only being shown in C. longa. This study explored the effect of a curcumin/AA combination on human cancer cell lines. The curcumin/AA combination was assessed by isobologram analysis using the Loewe additivity drug interaction model. The drug combination showed additive cytotoxicity toward CCRF-CEM and CEM/ADR5000 leukemia cell lines and HCT116p53+/+ and HCT116p53−/− colon cancer cell line, while the glioblastoma cell lines U87MG and U87MG.ΔEGFR showed additive to supra-additive cytotoxicity. Gene expression profiles predicting sensitivity and resistance of tumor cells to induction by curcumin and AA were determined by microarray-based mRNA expressions, COMPARE, and hierarchical cluster analyses. Numerous genes involved in transcription (TFAM, TCERG1, RGS13, C11orf31), apoptosis-regulation (CRADD, CDK7, CDK19, CD81, TOM1) signal transduction (NR1D2, HMGN1, ABCA1, DE4ND4B, TRIM27) DNA repair (TOPBP1, RPA2), mRNA metabolism (RBBP4, HNRNPR, SRSF4, NR2F2, PDK1, TGM2), and transporter genes (ABCA1) correlated with cellular responsiveness to curcumin and ascorbic acid. In conclusion, this study shows the effect of the curcumin/AA combination and identifies several candidate genes that may regulate the response of varied cancer cells to curcumin and AA.
Collapse
Affiliation(s)
- Edna Ooko
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Germany
| | - Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Germany
| | - Henry J Greten
- Heidelberg School of Chinese MedicineHeidelberg, Germany; Abel Salazar Biomedical Sciences Institute, University of PortoPorto, Portugal
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Germany
| |
Collapse
|
194
|
Ji EH, Cui L, Yuan X, Cheng S, Messadi D, Yan X, Hu S. Metabolomic analysis of human oral cancer cells with adenylate kinase 2 or phosphorylate glycerol kinase 1 inhibition. J Cancer 2017; 8:298-304. [PMID: 28243334 PMCID: PMC5327379 DOI: 10.7150/jca.17521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/29/2016] [Indexed: 01/28/2023] Open
Abstract
The purpose of this study was to use liquid chromatography-mass spectrometry (LC-MS) with XCMS for a quantitative metabolomic analysis of UM1 and UM2 oral cancer cells after knockdown of metabolic enzyme adenylate kinase 2 (AK2) or phosphorylate glycerol kinase 1 (PGK1). UM1 and UM2 cells were initially transfected with AK2 siRNA, PGK1 siRNA or scrambled control siRNA, and then analyzed with LC-MS for metabolic profiles. XCMS analysis of the untargeted metabolomics data revealed a total of 3200-4700 metabolite features from the transfected UM1 or UM2 cancer cells and 369-585 significantly changed metabolites due to AK2 or PGK1 suppression. In addition, cluster analysis showed that a common group of metabolites were altered by AK2 knockdown or by PGK1 knockdown between the UM1 and UM2 cells. However, the set of significantly changed metabolites due to AK2 knockdown was found to be distinct from those significantly changed by PGK1 knockdown. Our study has demonstrated that LC-MS with XCMS is an efficient tool for metabolomic analysis of oral cancer cells, and knockdown of different genes results in distinct changes in metabolic phenotypes in oral cancer cells.
Collapse
Affiliation(s)
- Eoon Hye Ji
- School of Dentistry and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California 90095, United States
| | - Li Cui
- School of Dentistry and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California 90095, United States
| | - Xiaoqing Yuan
- Changzhou Second People's Hospital, Nanjing Medical University, Changzhou, 213003, China
| | - Siliangyu Cheng
- School of Dentistry and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California 90095, United States
| | - Diana Messadi
- School of Dentistry and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California 90095, United States
| | - Xinmin Yan
- Changzhou Second People's Hospital, Nanjing Medical University, Changzhou, 213003, China
| | - Shen Hu
- School of Dentistry and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
195
|
Liu ZQ, Song XM, Chen QT, Liu T, Teng JT, Zhou K, Luo DQ. Effect of metformin on global gene expression in liver of KKAy mice. Pharmacol Rep 2016; 68:1332-1338. [DOI: 10.1016/j.pharep.2016.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/09/2016] [Accepted: 09/02/2016] [Indexed: 01/07/2023]
|
196
|
Simple oxygraphic analysis for the presence of adenylate kinase 1 and 2 in normal and tumor cells. J Bioenerg Biomembr 2016; 48:531-548. [PMID: 27854030 DOI: 10.1007/s10863-016-9687-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/31/2016] [Indexed: 01/09/2023]
Abstract
The adenylate kinase (AK) isoforms network plays an important role in the intracellular energy transfer processes, the maintenance of energy homeostasis, and it is a major player in AMP metabolic signaling circuits in some highly-differentiated cells. For this purpose, a rapid and sensitive method was developed that enables to estimate directly and semi-quantitatively the distribution between cytosolic AK1 and mitochondrial AK2 localized in the intermembrane space, both in isolated cells and tissue samples (biopsy material). Experiments were performed on isolated rat mitochondria or permeabilized material, including undifferentiated and differentiated neuroblastoma Neuro-2a cells, HL-1 cells, isolated rat heart cardiomyocytes as well as on human breast cancer postoperative samples. In these samples, the presence of AK1 and AK2 could be detected by high-resolution respirometry due to the functional coupling of these enzymes with ATP synthesis. By eliminating extra-mitochondrial ADP with an excess of pyruvate kinase and its substrate phosphoenolpyruvate, the coupling of the AK reaction with mitochondrial ATP synthesis could be quantified for total AK and mitochondrial AK2 as a specific AK index. In contrast to the creatine kinase pathway, the AK phosphotransfer pathway is up-regulated in murine neuroblastoma and HL-1 sarcoma cells and in these malignant cells expression of AK2 is higher than AK1. Differentiated Neuro-2a neuroblastoma cells exhibited considerably higher OXPHOS capacity than undifferentiated cells, and this was associated with a remarkable decrease in their AK activity. The respirometric method also revealed a considerable difference in mitochondrial affinity for AMP between non-transformed cells and tumor cells.
Collapse
|
197
|
Smith BK, Marcinko K, Desjardins EM, Lally JS, Ford RJ, Steinberg GR. Treatment of nonalcoholic fatty liver disease: role of AMPK. Am J Physiol Endocrinol Metab 2016; 311:E730-E740. [PMID: 27577854 DOI: 10.1152/ajpendo.00225.2016] [Citation(s) in RCA: 336] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/28/2016] [Indexed: 01/15/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a growing worldwide epidemic and an important risk factor for the development of insulin resistance, type 2 diabetes, nonalcoholic steatohepatitis (NASH), and hepatic cellular carcinoma (HCC). Despite the prevalence of NAFLD, lifestyle interventions involving exercise and weight loss are the only accepted treatments for this disease. Over the last decade, numerous experimental compounds have been shown to improve NAFLD in preclinical animal models, and many of these therapeutics have been shown to increase the activity of the cellular energy sensor AMP-activated protein kinase (AMPK). Because AMPK activity is reduced by inflammation, obesity, and diabetes, increasing AMPK activity has been viewed as a viable therapeutic strategy to improve NAFLD. In this review, we propose three primary mechanisms by which AMPK activation may improve NAFLD. In addition, we examine the mechanisms by which AMPK is activated. Finally, we identify 27 studies that have used AMPK activators to reduce NAFLD. Future considerations for studies examining the relationship between AMPK and NAFLD are highlighted.
Collapse
Affiliation(s)
- Brennan K Smith
- Division of Endocrinology and Metabolism, Department of Medicine; and
| | - Katarina Marcinko
- Division of Endocrinology and Metabolism, Department of Medicine; and
| | - Eric M Desjardins
- Division of Endocrinology and Metabolism, Department of Medicine; and
| | - James S Lally
- Division of Endocrinology and Metabolism, Department of Medicine; and
| | - Rebecca J Ford
- Division of Endocrinology and Metabolism, Department of Medicine; and
| | - Gregory R Steinberg
- Division of Endocrinology and Metabolism, Department of Medicine; and Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
198
|
Cheng L, Wang Y, He Q, Li H, Zhang X, Zhang F. Comparative proteomics illustrates the complexity of drought resistance mechanisms in two wheat (Triticum aestivum L.) cultivars under dehydration and rehydration. BMC PLANT BIOLOGY 2016; 16:188. [PMID: 27576435 PMCID: PMC5006382 DOI: 10.1186/s12870-016-0871-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 08/10/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Drought stress is one of the most adverse environmental constraints to plant growth and productivity. Comparative proteomics of drought-tolerant and sensitive wheat genotypes is a strategy to understand the complexity of molecular mechanism of wheat in response to drought. This study attempted to extend findings regarding the potential proteomic dynamics in wheat under drought stress and to enrich the research content of drought tolerance mechanism. RESULTS A comparative proteomics approach was applied to analyze proteome change of Xihan No. 2 (a drought-tolerant cultivar) and Longchun 23 (a drought-sensitive cultivar) subjected to a range of dehydration treatments (18 h, 24 h and 48 h) and rehydration treatment (R24 h) using 2-DE, respectively. Quantitative image analysis showed a total of 172 protein spots in Xihan No. 2 and 215 spots from Longchun 23 with their abundance significantly altered (p < 0.05) more than 2.5-fold. Out of these spots, a total of 84 and 64 differentially abundant proteins were identified by MALDI-TOF/TOF MS in Xihan No. 2 and Longchun 23, respectively. Most of these identified proteins were involved in metabolism, photosynthesis, defence and protein translation/processing/degradation in both two cultivars. In addition, the proteins involved in redox homeostasis, energy, transcription, cellular structure, signalling and transport were also identified. Furthermore, the comparative analysis of drought-responsive proteome allowed for the general elucidation of the major mechanisms associated with differential responses to drought of both two cultivars. These cellular processes work more cooperatively to re-establish homeostasis in Xihan No. 2 than Longchun 23. The resistance mechanisms of Xihan No. 2 mainly included changes in the metabolism of carbohydrates and amino acids as well as in the activation of more antioxidation and defense systems and in the levels of proteins involved in ATP synthesis and protein degradation/refolding. CONCLUSIONS This study revealed that the levels of a number of proteins involved in various cellular processes were affected by drought stress in two wheat cultivars with different drought tolerance. The results showed that there exist specific responses to drought in Xihan No. 2 and Longchun 23. The proposed hypothetical model would explain the interaction of these identified proteins that are associated with drought-responses in two cultivars, and help in developing strategies to improve drought tolerance in wheat.
Collapse
Affiliation(s)
- Lixiang Cheng
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
| | - Yuping Wang
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
| | - Qiang He
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
| | - Huijun Li
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
- Wuwei Agricultural and Animal Husbandry Bureau, Wuwei, China
| | - Xiaojing Zhang
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
- Gansu Dingxi Academy of Agricultural Science, Dingxi, China
| | - Feng Zhang
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
199
|
Toczek M, Zielonka D, Zukowska P, Marcinkowski JT, Slominska E, Isalan M, Smolenski RT, Mielcarek M. An impaired metabolism of nucleotides underpins a novel mechanism of cardiac remodeling leading to Huntington's disease related cardiomyopathy. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2147-2157. [PMID: 27568644 DOI: 10.1016/j.bbadis.2016.08.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/04/2016] [Accepted: 08/23/2016] [Indexed: 01/28/2023]
Abstract
Huntington's disease (HD) is mainly thought of as a neurological disease, but multiple epidemiological studies have demonstrated a number of cardiovascular events leading to heart failure in HD patients. Our recent studies showed an increased risk of heart contractile dysfunction and dilated cardiomyopathy in HD pre-clinical models. This could potentially involve metabolic remodeling, that is a typical feature of the failing heart, with reduced activities of high energy phosphate generating pathways. In this study, we sought to identify metabolic abnormalities leading to HD-related cardiomyopathy in pre-clinical and clinical settings. We found that HD mouse models developed a profound deterioration in cardiac energy equilibrium, despite AMP-activated protein kinase hyperphosphorylation. This was accompanied by a reduced glucose usage and a significant deregulation of genes involved in de novo purine biosynthesis, in conversion of adenine nucleotides, and in adenosine metabolism. Consequently, we observed increased levels of nucleotide catabolites such as inosine, hypoxanthine, xanthine and uric acid, in murine and human HD serum. These effects may be caused locally by mutant HTT, via gain or loss of function effects, or distally by a lack of trophic signals from central nerve stimulation. Either may lead to energy equilibrium imbalances in cardiac cells, with activation of nucleotide catabolism plus an inhibition of re-synthesis. Our study suggests that future therapies should target cardiac mitochondrial dysfunction to ameliorate energetic dysfunction. Importantly, we describe the first set of biomarkers related to heart and skeletal muscle dysfunction in both pre-clinical and clinical HD settings.
Collapse
Affiliation(s)
- Marta Toczek
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki Str, 80-210 Gdansk, Poland
| | - Daniel Zielonka
- Department of Social Medicine, Poznan University of Medical Sciences, 6 Rokietnicka Str, 60-806 Poznan, Poland
| | - Paulina Zukowska
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki Str, 80-210 Gdansk, Poland
| | - Jerzy T Marcinkowski
- Department of Social Medicine, Poznan University of Medical Sciences, 6 Rokietnicka Str, 60-806 Poznan, Poland
| | - Ewa Slominska
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki Str, 80-210 Gdansk, Poland
| | - Mark Isalan
- Department of Life Sciences, Imperial College London, Exhibition Road, SW7 2AZ London, UK
| | - Ryszard T Smolenski
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki Str, 80-210 Gdansk, Poland.
| | - Michal Mielcarek
- Department of Life Sciences, Imperial College London, Exhibition Road, SW7 2AZ London, UK.
| |
Collapse
|
200
|
Destabilization of mitochondrial functions as a target against breast cancer progression: Role of TPP(+)-linked-polyhydroxybenzoates. Toxicol Appl Pharmacol 2016; 309:2-14. [PMID: 27554043 DOI: 10.1016/j.taap.2016.08.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/03/2016] [Accepted: 08/18/2016] [Indexed: 12/27/2022]
Abstract
Mitochondrion is an accepted molecular target in cancer treatment since it exhibits a higher transmembrane potential in cancer cells, making it susceptible to be targeted by lipophilic-delocalized cations of triphenylphosphonium (TPP(+)). Thus, we evaluated five TPP(+)-linked decyl polyhydroxybenzoates as potential cytotoxic agents in several human breast cancer cell lines that differ in estrogen receptor and HER2/neu expression, and in metabolic profile. Results showed that all cell lines tested were sensitive to the cytotoxic action of these compounds. The mechanism underlying the cytotoxicity would be triggered by their weak uncoupling effect on the oxidative phosphorylation system, while having a wider and safer therapeutic range than other uncouplers and a significant lowering in transmembrane potential. Noteworthy, while the TPP(+)-derivatives alone led to almost negligible losses of ATP, when these were added in the presence of an AMP-activated protein kinase inhibitor, the levels of ATP fell greatly. Overall, data presented suggest that decyl polyhydroxybenzoates-TPP(+) and its derivatives warrant future investigation as potential anti-tumor agents.
Collapse
|