151
|
Pernas-Pleite C, Conejo-Martínez AM, Marín I, Abad JP. Green Extracellular Synthesis of Silver Nanoparticles by Pseudomonas alloputida, Their Growth and Biofilm-Formation Inhibitory Activities and Synergic Behavior with Three Classical Antibiotics. Molecules 2022; 27:7589. [PMID: 36364415 PMCID: PMC9656067 DOI: 10.3390/molecules27217589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/26/2023] Open
Abstract
Bacterial resistance to antibiotics is on the rise and hinders the fight against bacterial infections, which are expected to cause millions of deaths by 2050. New antibiotics are difficult to find, so alternatives are needed. One could be metal-based drugs, such as silver nanoparticles (AgNPs). In general, chemical methods for AgNPs' production are potentially toxic, and the physical ones expensive, while green approaches are not. In this paper, we present the green synthesis of AgNPs using two Pseudomonas alloputida B003 UAM culture broths, sampled from their exponential and stationary growth phases. AgNPs were physicochemically characterized by transmission electron microscopy (TEM), total reflection X-ray fluorescence (TXRF), infrared spectroscopy (FTIR), dynamic light scattering (DLS), and X-ray diffraction (XRD), showing differential characteristics depending on the synthesis method used. Antibacterial activity was tested in three assays, and we compared the growth and biofilm-formation inhibition of six test bacteria: Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis. We also monitored nanoparticles' synergic behavior through the growth inhibition of E. coli and S. aureus by three classical antibiotics: ampicillin, nalidixic acid, and streptomycin. The results indicate that very good AgNP activity was obtained with particularly low MICs for the three tested strains of P. aeruginosa. A good synergistic effect on streptomycin activity was observed for all the nanoparticles. For ampicillin, a synergic effect was detected only against S. aureus. ROS production was found to be related to the AgNPs' antibacterial activity.
Collapse
Affiliation(s)
| | | | - Irma Marín
- Department of Molecular Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 28049 Madrid, Spain
| | - José P. Abad
- Department of Molecular Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
152
|
Simon S, Sibuyi NRS, Fadaka AO, Meyer S, Josephs J, Onani MO, Meyer M, Madiehe AM. Biomedical Applications of Plant Extract-Synthesized Silver Nanoparticles. Biomedicines 2022; 10:2792. [PMID: 36359308 PMCID: PMC9687463 DOI: 10.3390/biomedicines10112792] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Silver nanoparticles (AgNPs) have attracted a lot of interest directed towards biomedical applications due in part to their outstanding anti-microbial activities. However, there have been many health-impacting concerns about their traditional synthesis methods, i.e., the chemical and physical methods. Chemical methods are commonly used and contribute to the overall toxicity of the AgNPs, while the main disadvantages of physical synthesis include high production costs and high energy consumption. The biological methods provide an economical and biocompatible option as they use microorganisms and natural products in the synthesis of AgNPs with exceptional biological properties. Plant extract-based synthesis has received a lot of attention and has been shown to resolve the limitations associated with chemical and physical methods. AgNPs synthesized using plant extracts provide a safe, cost-effective, and environment-friendly approach that produces biocompatible AgNPs with enhanced properties for use in a wide range of applications. The review focused on the use of plant-synthesized AgNPs in various biomedical applications as anti-microbial, anti-cancer, anti-inflammatory, and drug-delivery agents. The versatility and potential use of green AgNPs in the bio-medicinal sector provides an innovative alternative that can overcome the limitations of traditional systems. Thus proving green nanotechnology to be the future for medicine with continuous progress towards a healthier and safer environment by forming nanomaterials that are low- or non-toxic using a sustainable approach.
Collapse
Affiliation(s)
- Sohail Simon
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Nicole Remaliah Samantha Sibuyi
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
- Health Platform Diagnostic Unit, Advanced Materials Division, Mintek, Randburg 2194, South Africa
| | - Adewale Oluwaseun Fadaka
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Samantha Meyer
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa
| | - Jamie Josephs
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Martin Opiyo Onani
- Organometallics and Nanomaterials, Department of Chemical Sciences, University of the Western Cape, Bellville 7535, South Africa
| | - Mervin Meyer
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Abram Madimabe Madiehe
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| |
Collapse
|
153
|
Assar DH, Mokhbatly AAA, Ghazy EW, Elbialy ZI, Gaber AA, Hassan AA, Nabil A, Asa SA. Silver nanoparticles induced hepatoxicity via the apoptotic/antiapoptotic pathway with activation of TGFβ-1 and α-SMA triggered liver fibrosis in Sprague Dawley rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80448-80465. [PMID: 35716303 PMCID: PMC9596550 DOI: 10.1007/s11356-022-21388-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Despite the extraordinary use of silver nanoparticles (AgNPs) in medicinal purposes and the food industry, there is rising worry about potential hazards to human health and the environment. The existing study aims to assess the hepatotoxic effects of different dosages of AgNPs by evaluating hematobiochemical parameters, oxidative stress, liver morphological alterations, immunohistochemical staining, and gene expression to clarify the mechanism of AgNPs' hepatic toxic potential. Forty male Sprague Dawley rats were randomly assigned into control and three AgNPs intraperitoneally treated groups 0.25, 0.5, and 1 mg/kg b.w. daily for 15 and 30 days. AgNP exposure reduced body weight, caused haematological abnormalities, and enhanced hepatic oxidative and nitrosative stress with depletion of the hepatic GSH level. Serum hepatic injury biomarkers with pathological hepatic lesions where cholangiopathy emerges as the main hepatic alteration in a dosage- and duration-dependent manner were also elevated. Furthermore, immunohistochemical labelling of apoptotic markers demonstrated that Bcl-2 was significantly downregulated while caspase-3 was significantly upregulated. In conclusion, the hepatotoxic impact of AgNPs may be regulated by two mechanisms, implying the apoptotic/antiapoptotic pathway via raising BAX and inhibiting Bcl-2 expression levels in a dose-dependent manner. The TGF-β1 and α-SMA pathway which triggered fibrosis with incorporation of iNOS which consequently activates the inflammatory process were also elevated. To our knowledge, there has been no prior report on the experimental administration of AgNPs in three different dosages for short and long durations in rats with the assessment of Bcl-2, BAX, iNOS, TGF-β1, and α-SMA gene expressions.
Collapse
Affiliation(s)
- Doaa H. Assar
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| | - Abd-Allah A. Mokhbatly
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| | - Emad W. Ghazy
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| | - Zizy I. Elbialy
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| | - Ahmed A. Gaber
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| | - Ayman A. Hassan
- High Technological Institute of Applied Health Sciences, Egypt Liver Research Institute and Hospital (ELRIAH), Sherbin, El Mansora Egypt
| | - Ahmed Nabil
- Beni-Suef University, Beni-Suef, Egypt
- Egypt Liver Research Institute and Hospital (ELRIAH), Sherbin, El Mansora Egypt
| | - Samah Abou Asa
- Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| |
Collapse
|
154
|
Anitha S, Selvapriya R, Shankar R, Nalini B, Sasirekha V, Mayandi J. Evidence of charge donation through synergistic effect of bioconjugated silver nanoparticles with flavanols accomplishing augmented antimicrobial and antioxidant activities. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
155
|
Lahuta LB, Szablińska-Piernik J, Stałanowska K, Głowacka K, Horbowicz M. The Size-Dependent Effects of Silver Nanoparticles on Germination, Early Seedling Development and Polar Metabolite Profile of Wheat ( Triticum aestivum L.). Int J Mol Sci 2022; 23:13255. [PMID: 36362042 PMCID: PMC9657336 DOI: 10.3390/ijms232113255] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/18/2022] [Accepted: 10/28/2022] [Indexed: 10/15/2023] Open
Abstract
The phytotoxicity of silver nanoparticles (Ag NPs) to plant seeds germination and seedlings development depends on nanoparticles properties and concentration, as well as plant species and stress tolerance degrees. In the present study, the effect of citrate-stabilized spherical Ag NPs (20 mg/L) in sizes of 10, 20, 40, 60, and 100 nm, on wheat grain germination, early seedlings development, and polar metabolite profile in 3-day-old seedlings were analyzed. Ag NPs, regardless of their sizes, did not affect the germination of wheat grains. However, the smaller nanoparticles (10 and 20 nm in size) decreased the growth of seedling roots. Although the concentrations of total polar metabolites in roots, coleoptile, and endosperm of seedlings were not affected by Ag NPs, significant re-arrangements of carbohydrates profiles in seedlings were noted. In roots and coleoptile of 3-day-old seedlings, the concentration of sucrose increased, which was accompanied by a decrease in glucose and fructose. The concentrations of most other polar metabolites (amino acids, organic acids, and phosphate) were not affected by Ag NPs. Thus, an unknown signal is released by small-sized Ag NPs that triggers affection of sugars metabolism and/or distribution.
Collapse
Affiliation(s)
- Lesław Bernard Lahuta
- Department of Plant Physiology, University of Warmia and Mazury, Genetics and Biotechnology, Oczapowskiego Street 1A/103, 10-719 Olsztyn, Poland
| | | | | | | | | |
Collapse
|
156
|
Fizer MM, Fizer OI, Slivka MV, Mariychuk RT. New [1,3]thiazolo[3,2-b][1,2,4]triazol-7-ium cationic surfactant as a stabilizer of silver and gold nanoparticles. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02687-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
157
|
Wei Z, Xu S, Jia H, Zhang H. Green synthesis of silver nanoparticles from Mahonia fortunei extracts and characterization of its inhibitory effect on Chinese cabbage soft rot pathogen. Front Microbiol 2022; 13:1030261. [PMID: 36338072 PMCID: PMC9635054 DOI: 10.3389/fmicb.2022.1030261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 09/30/2022] [Indexed: 11/26/2022] Open
Abstract
The pathogenic bacterium Pectobacterium carotovorum causes soft rot in cabbage and significantly reduces plant yield. In this study, we employed Mhonia fortunei extracts to synthesis silver nanoparticles (Mf-AgNPs) and investigated their functions against P. carotovorum. The results showed that the surface plasmon resonance (SPR) peak of AgNP was 412 nm under optimal synthesis conditions. Furthermore, the results of Scanning electron microscope-Energy dispersive spectrometer (SEM-EDS) and High-resolution transmission electron microscopy (HR-TEM) revealed that the Mf-AgNPs had a spherical structure with an average diameter of 13.19 nm and the content of Ag0 ions accounted for 82.68% of the total elemental content. The X-Ray diffraction (XRD) results confirmed that AgNPs had a face-centered cubic (FCC) crystal structure, while Fourier transform infrared spectroscopy (FTIR) results indicated the presence of various biomolecules as reducing and stabilizing agents on the AgNP surface. Antibacterial activity was first evaluated by an inhibitory zone test, which revealed that 500 μg ml−1 of AgNPs had antibacterial activity against P. carotovorum and four model bacteria including Staphylococcus aureus, Escherichia coli, Bacillus subtilis, and Pseudomonas aeruginosa, respectively with an antibacterial function comparable to 1 mM AgNO3 solution. The Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values for P. carotovorum were 8 μg ml−1, respectively. Furthermore, AgNPs at 8 μg ml−1 completely inhibited the growth of P. carotovorum, decreased their tolerance to 0.25 mM H2O2 as well as considerably reduced colony formation after 1 h of treatment and thereafter. Treatment with Mf-AgNPs resulted in bacterial cell membrane destruction and biofilm formation inhibition, respectively. With an FIC (fractional inhibitory concentration) index of 0.174, AgNP and zhongshengmycin showed a significant synergistic effect. The infection of P. carotovorum to cabbage explants was significantly inhibited in vitro by a combination of 2 μg ml−1 Mf-AgNP and 5 μg ml−1 zhongshengmycin. In conclusion, the synthesized Mf-AgNP exhibited significant antibacterial activity against P. carotovorum.
Collapse
|
158
|
Mkrtchyan KV, Pigareva VA, Zezina EA, Kuznetsova OA, Semenova AA, Yushina YK, Tolordava ER, Grudistova MA, Sybachin AV, Klimov DI, Abramchuk SS, Yaroslavov AA, Zezin AA. Preparation of Biocidal Nanocomposites in X-ray Irradiated Interpolyelectolyte Complexes of Polyacrylic Acid and Polyethylenimine with Ag-Ions. Polymers (Basel) 2022; 14:polym14204417. [PMID: 36297995 PMCID: PMC9612164 DOI: 10.3390/polym14204417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 12/02/2022] Open
Abstract
Due to the presence of cationic units interpolyelectrolyte complexes (IPECs) can be used as a universal basis for preparation of biocidal coatings on different surfaces. Metallopolymer nanocomposites were successfully synthesized in irradiated solutions of polyacrylic acid (PAA) and polyethylenimine (PEI), and dispersions of non-stoichiometric IPECs of PAA–PEI containing silver ions. The data from turbidimetric titration and dynamic light scattering showed that pH 6 is the optimal value for obtaining IPECs. Metal polymer complexes based on IPEC with a PAA/PEI ratio equal to 3/1 and 1/3 were selected for synthesis of nanocomposites due to their aggregative stability. Studies using methods of UV–VIS spectroscopy and TEM have demonstrated that the size and spatial organization of silver nanoparticles depend on the composition of polymer systems. The average sizes of nanoparticles are 5 nm and 20 nm for complexes with a molar ratio of PAA/PEI units equal to 3/1 and 1/3, respectively. The synthesized nanocomposites were applied to the glass surface and exhibited high antibacterial activity against both gram-positive (Staphylococcus aureus) and gram-negative bacteria (Salmonella). It is shown that IPEC-Ag coatings demonstrate significantly more pronounced biocidal activity not only in comparison with macromolecular complexes of PAA–PEI, but also coatings of PEI and PEI based nanocomposites.
Collapse
Affiliation(s)
- Kristina V. Mkrtchyan
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Profsoyuznaya St. 70, 117393 Moscow, Russia
| | - Vladislava A. Pigareva
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Elena A. Zezina
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Oksana A. Kuznetsova
- Gorbatov Federal Research Centre for Food Systems, Talalikhina St. 26, 109316 Moscow, Russia
| | - Anastasia A. Semenova
- Gorbatov Federal Research Centre for Food Systems, Talalikhina St. 26, 109316 Moscow, Russia
| | - Yuliya K. Yushina
- Gorbatov Federal Research Centre for Food Systems, Talalikhina St. 26, 109316 Moscow, Russia
| | - Etery R. Tolordava
- Gorbatov Federal Research Centre for Food Systems, Talalikhina St. 26, 109316 Moscow, Russia
| | - Maria A. Grudistova
- Gorbatov Federal Research Centre for Food Systems, Talalikhina St. 26, 109316 Moscow, Russia
| | - Andrey V. Sybachin
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Dmitry I. Klimov
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Profsoyuznaya St. 70, 117393 Moscow, Russia
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Sergey S. Abramchuk
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, 119334 Moscow, Russia
| | - Alexander A. Yaroslavov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Alexey A. Zezin
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Profsoyuznaya St. 70, 117393 Moscow, Russia
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
159
|
Truu M, Ligi T, Nõlvak H, Peeb A, Tiirik K, Devarajan AK, Oopkaup K, Kasemets K, Kõiv-Vainik M, Kasak K, Truu J. Impact of synthetic silver nanoparticles on the biofilm microbial communities and wastewater treatment efficiency in experimental hybrid filter system treating municipal wastewater. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129721. [PMID: 35963093 DOI: 10.1016/j.jhazmat.2022.129721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/22/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Silver nanoparticles (AgNPs) threaten human and ecosystem health, and are among the most widely used engineered nanomaterials that reach wastewater during production, usage, and disposal phases. This study evaluated the effect of a 100-fold increase in collargol (protein-coated AgNP) and Ag+ ions concentrations in municipal wastewater on the microbial community composition of the filter material biofilms (FMB) and the purification efficiency of the hybrid treatment system consisting of vertical (VF) and horizontal (HF) subsurface flow filters. We found that increased amounts of collargol and AgNO3 in wastewater had a modest effect on the prokaryotic community composition in FMB and did not significantly affect the performance of the studied system. Regardless of how Ag was introduced, 99.9% of it was removed by the system. AgNPs and AgNO3 concentrations did not significantly affect the purification efficiency of the system. AgNO3 induced a higher increase in the genetic potential of certain Ag resistance mechanisms in VFs than collargol; however, the increase in Ag resistance potential was similar for both substances in HF. Hence, the microbial community composition in biofilms of vertical and horizontal flow filters is largely resistant, resilient, or functionally redundant in response to AgNPs addition in the form of collargol.
Collapse
Affiliation(s)
- Marika Truu
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Teele Ligi
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Hiie Nõlvak
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Angela Peeb
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Kertu Tiirik
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Arun Kumar Devarajan
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Kristjan Oopkaup
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Kaja Kasemets
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Margit Kõiv-Vainik
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia.
| | - Kuno Kasak
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia.
| | - Jaak Truu
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| |
Collapse
|
160
|
Babaei M, Tayemeh MB, Jo MS, Yu IJ, Johari SA. Trophic transfer and toxicity of silver nanoparticles along a phytoplankton-zooplankton-fish food chain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156807. [PMID: 35750161 DOI: 10.1016/j.scitotenv.2022.156807] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/04/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
This study evaluated the bioconcentration metrics, organ-specific distribution, and trophic consequences of silver nanoparticles along a Dunaliella salina-Artemia salina-Poecilia reticulata food chain. To this end, accumulation, tissue-specific distribution, bioconcentration and biomagnification factors, and trophic toxicity of AgNPs were quantitatively investigated along di- and tri-trophic food chains. Overall, silver accumulation increased markedly in intestine and liver tissues, carcass, and embryos of guppy fish with rising exposure concentrations and reducing trophic levels. Following trophic and waterborne exposure, AgNPs illustrated a regular tendency in following order: intestine > liver > embryos > carcass. BCF displayed values of 826, 131, and ≈ 1000 for microalgae, brine shrimp, and guppy fish, respectively. Moreover, BMF showed values <1.00 for 48-h post-hatched nauplii and guppy fish received AgNPs-exposed phytoplankton, yet >1.00 for the liver and whole body of guppy fish treated with AgNPs-exposed nauplii through algae and water, indicating that AgNPs could be biomagnified from the second to third trophic level, but not from the first to second or third levels. Furthermore, the waterborne and trophic exposure of AgNPs considerably induced oxidative stress and reproductive toxicity. Together, this study demonstrated that AgNPs could be biomagnified across trophic chain and consequently cause trophic toxicity.
Collapse
Affiliation(s)
- Morteza Babaei
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Kurdistan, Iran.
| | - Mohammad Behzadi Tayemeh
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Kurdistan, Iran.
| | - Mi Seong Jo
- Aerosol Toxicology Research Center, HCTm, Co., Icheon, Republic of Korea.
| | - Il Je Yu
- HCT, Co. Ltd, Icheon, Republic of Korea.
| | - Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Kurdistan, Iran.
| |
Collapse
|
161
|
Blažic R, Kučić Grgić D, Kraljić Roković M, Vidović E. Cellulose- g-poly(2-(dimethylamino)ethylmethacrylate) Hydrogels: Synthesis, Characterization, Antibacterial Testing and Polymer Electrolyte Application. Gels 2022; 8:636. [PMID: 36286137 PMCID: PMC9601901 DOI: 10.3390/gels8100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/21/2022] Open
Abstract
Hydrogels have been investigated due to their unique properties. These include high water content and biocompatibility. Here, hydrogels with different ratios of poly(2-(dimethylamino)ethylmethacrylate) (PDMAEMA) were grafted onto cellulose (Cel-g-PDMAEMA) by the free radical polymerization method and gamma-ray radiation was applied in order to increase crosslinking and content of PDMAEMA. Gamma irradiation enabled an increase of PDMAEMA content in hydrogels in case of higher ratio of 2-(dimethylamino)ethyl methacrylate in the initial reaction mixture. The swelling of synthesized hydrogels was monitored in dependence of pH (3, 5.5 and 10) during up to 60 days. The swelling increased from 270% to 900%. Testing of antimicrobial activity of selected hydrogel films showed weak inhibitory activity against Escherichia coli, Pseudomonas aeruginosa, and Bacillus subtilis. The results obtained by the cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) indicate that chemically synthesized hydrogels have good characteristics for the supercapacitor application.
Collapse
Affiliation(s)
| | | | | | - Elvira Vidović
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| |
Collapse
|
162
|
Gonçalves JM, Beckmann C, Bebianno MJ. Assessing the effects of the cytostatic drug 5-Fluorouracil alone and in a mixture of emerging contaminants on the mussel Mytilus galloprovincialis. CHEMOSPHERE 2022; 305:135462. [PMID: 35753414 DOI: 10.1016/j.chemosphere.2022.135462] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
The assessment of contaminants of emerging concern, alone and in mixtures, and their effects on marine biota requires attention. 5-Fluorouracil is a cytostatic category 3 anti-cancer medication (IARC) that is used to treat a variety of cancers, including colon, pancreatic, and breast cancer. In the presence of other pollutants, this pharmaceutical can interact and form mixtures of contaminants, such as adhering to plastics and interaction with metal nanoparticles. This study aimed to comprehend the effects of 5-Fluorouracil (5FU; 10 ng/L) and a mixture of emerging contaminants (Mix): silver nanoparticles (nAg; 20 nm; 10 μg/L), polystyrene nanoparticles (nPS; 50 nm; 10 μg/L) and 5FU (10 ng/L), in an in vivo (21 days) exposure of the mussel Mytilus galloprovincialis. A multibiomarker approach namely genotoxicity, the antioxidant defence system (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases (GPx), glutathione - S - transferases (GST) activities), and oxidative damage (LPO) was used to assess the effects in gills and digestive gland of mussels. Both treatments cause genotoxicity in mussel's haemolymph, and antagonism between contaminants was observed in the Mix. Genotoxicity observed confirms 5FU's mode of action (MoA) by DNA damage. The antioxidant defence system of mussels exposed to 5FU kicked in and counter balanced ROS generated during the exposure, though the same was not seen in Mix-exposed mussels. Mussels were able to withstand the effects of the single compound but not the effects of the Mix. For oxidative stress and damage, the interactions of the components of the mixture have a synergistic effect.
Collapse
Affiliation(s)
- Joanna M Gonçalves
- Centre for Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal
| | - Clara Beckmann
- Centre for Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal
| | - Maria João Bebianno
- Centre for Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal.
| |
Collapse
|
163
|
Sajjad A, Bhatti SH, Zia M. Photo excitation of silver ions during the synthesis of silver nanoparticles modify physiological, chemical, and biological properties. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2022.2126340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Anila Sajjad
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
164
|
Palomino L, Chipoco Haro DA, Gakiya-Teruya M, Zhou F, La Rosa-Toro A, Krishna V, Rodriguez-Reyes JCF. Polyhydroxy Fullerenes Enhance Antibacterial and Electrocatalytic Activity of Silver Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3321. [PMID: 36234449 PMCID: PMC9565599 DOI: 10.3390/nano12193321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Silver nanoparticles (AgNPs) are known and widely used for their antibacterial properties. However, the ever-increasing resistance of microorganisms compels the design of novel nanomaterials which are able to surpass their capabilities. Herein, we synthesized silver nanoparticles using, for the first time, polyhydroxy fullerene (PHF) as a reducing and capping agent, through a one-pot synthesis method. The resulting nanoparticles (PHF-AgNPs) were compared to AgNPs that were synthesized using sodium citrate (citrate-AgNPs). They were characterized using high-resolution transmission electron microscopy (HR-TEM), dynamic light scattering, and UV-visible spectroscopy. Our results showed that PHF-AgNPs have a smaller size and a narrower size distribution than citrate-AgNPs, which suggests that PHF may be a better capping agent than citrate. Antibacterial assays using E. coli showed enhanced antimicrobial activity for PHF-AgNPs compared to citrate-AgNPs. The electrocatalytic activity of nanoparticles towards oxygen evolution and reduction reaction (OER and ORR, respectively) was tested through cyclic voltammetry. Both nanoparticles are found to promote OER and ORR, but PHF-AgNPs showed a significant increase in activity with respect to citrate-AgNPs. Thus, our results demonstrate that the properties of forming nanoparticles can be tuned by choosing the appropriate reducing/capping agent. Specifically, this suggests that PHF-AgNPs can find potential applications for both catalytic and biomedical applications.
Collapse
Affiliation(s)
- Luis Palomino
- Laboratory of Nanoscience and Applications—NASCA, Universidad de Ingenieria y Tecnologia—UTEC, 165 Medrano Silva, Barranco, Lima 15063, Peru
- Centro de Investigacion en Bioingenieria—BIO, Universidad de Ingenieria y Tecnologia—UTEC, 165 Medrano Silva, Barranco, Lima 15063, Peru
| | - Danae A. Chipoco Haro
- Laboratory of Nanoscience and Applications—NASCA, Universidad de Ingenieria y Tecnologia—UTEC, 165 Medrano Silva, Barranco, Lima 15063, Peru
| | - Miguel Gakiya-Teruya
- Laboratory of Nanoscience and Applications—NASCA, Universidad de Ingenieria y Tecnologia—UTEC, 165 Medrano Silva, Barranco, Lima 15063, Peru
| | - Feng Zhou
- Department of Biomedical Engineering, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44106, USA
| | - Adolfo La Rosa-Toro
- Laboratorio de Investigacion de Electroquimica Aplicada, Facultad de Ciencias, Universidad Nacional de Ingenieria, Av. Tupac Amaru 210, Rimac, Lima 15333, Peru
| | - Vijay Krishna
- Department of Biomedical Engineering, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44106, USA
| | - Juan Carlos F. Rodriguez-Reyes
- Laboratory of Nanoscience and Applications—NASCA, Universidad de Ingenieria y Tecnologia—UTEC, 165 Medrano Silva, Barranco, Lima 15063, Peru
- Centro de Investigacion en Bioingenieria—BIO, Universidad de Ingenieria y Tecnologia—UTEC, 165 Medrano Silva, Barranco, Lima 15063, Peru
- Department of Chemical Engineering, Universidad de Ingeniería y Tecnología—UTEC, 165 Medrano Silva, Barranco, Lima 15063, Peru
| |
Collapse
|
165
|
Liang D, Fan W, Wu Y, Wang Y. Effect of organic matter on the trophic transfer of silver nanoparticles in an aquatic food chain. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129521. [PMID: 35816795 DOI: 10.1016/j.jhazmat.2022.129521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/08/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
The behavior and toxicity of nanoparticles could be affected significantly by the ubiquitous natural organic matter (NOM) in aquatic environments. However, the influence of NOM on nanoparticles along the food chain remains largely unknown. This study constructed bacteria Escherichia coli (E. coli) - protozoa Tetrahymena thermophila (T. thermophila) to evaluate the influence of NOM on the bioaccumulation, trophic transfer and toxicity of silver nanoparticles (Ag NPs). Results demonstrated that NOM could reduce the toxicity of Ag NPs to E. coli and T. thermophila by different influence mechanisms (e.g., reduce Ag NPs accumulation or complex with dissolved silver ion (Ag+)) which related to the type of NOM and organisms. Moreover, Ag NPs can be transferred and biomagnified to T. thermophila via trophic transfer. Three typical NOM could significantly increase the trophic transfer factors of Ag NPs ranging from 1.16 to 2.49, which may be ascribed to NOM reducing the capacity for T. thermophila to excrete total silver (Ag) as NOM could significantly change the form of Ag. These findings provide a novel insight into the impact of NOM on the ecological risk posed by Ag NPs through the food chain and emphasize the need to understand further the interactions between nanoparticles and NOM in various ecosystems.
Collapse
Affiliation(s)
- Dingyuan Liang
- School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Wenhong Fan
- School of Space and Environment, Beihang University, Beijing 100191, PR China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, PR China
| | - You Wu
- School of Space and Environment, Beihang University, Beijing 100191, PR China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Ying Wang
- School of Space and Environment, Beihang University, Beijing 100191, PR China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, PR China.
| |
Collapse
|
166
|
Silver Nanoparticle Effects on Antioxidant Response in Tobacco Are Modulated by Surface Coating. PLANTS 2022; 11:plants11182402. [PMID: 36145803 PMCID: PMC9504990 DOI: 10.3390/plants11182402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022]
Abstract
The antimicrobial properties of silver and enhanced reactivity when applied in a nanoparticle form (AgNPs) led to their growing utilization in industry and various consumer products, which raises concerns about their environmental impact. Since AgNPs are prone to transformation, surface coatings are added to enhance their stability. AgNP phytotoxicity has been mainly attributed to the excess generation of reactive oxygen species (ROS), leading to the induction of oxidative stress. Herein, in vitro-grown tobacco (Nicotiana tabacum) plants were exposed to AgNPs stabilized with either polyvinylpyrrolidone (PVP) or cetyltrimethylammonium bromide (CTAB) as well as to ionic silver (AgNO3), applied in the same concentrations, either alone or in combination with cysteine, a strong silver ligand. The results show a higher accumulation of Ag in roots and leaves after exposure to AgNPs compared to AgNO3. This was correlated with a predominantly higher impact of nanoparticle than ionic silver form on parameters of oxidative stress, although no severe damage to important biomolecules was observed. Nevertheless, all types of treatments caused mobilization of antioxidant machinery, especially in leaves, although surface coatings modulated the activation of its specific components. Most effects induced by AgNPs or AgNO3 were alleviated with addition of cysteine.
Collapse
|
167
|
Antioxidant, Anti-Bacterial, and Congo Red Dye Degradation Activity of AgxO-Decorated Mustard Oil-Derived rGO Nanocomposites. Molecules 2022; 27:molecules27185950. [PMID: 36144688 PMCID: PMC9505018 DOI: 10.3390/molecules27185950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Scaling up the production of functional reduced graphene oxide (rGO) and its composites requires the use of low-cost, simple, and sustainable synthesis methods, and renewable feedstocks. In this study, silver oxide-decorated rGO (AgxO−rGO) composites were prepared by open-air combustion of mustard oil, essential oil-containing cooking oil commercially produced from the seeds of Brassica juncea. Silver oxide (AgxO) nanoparticles (NPs) were synthesized using Coleus aromaticus leaf extract as a reducing agent. Formation of mustard seed rGO and AgxO NPs was confirmed by UV-visible characteristic peaks at 258 nm and 444 nm, respectively. rGO had a flake-like morphology and a crystalline structure, with Raman spectra showing clear D and G bands with an ID/IG ratio of 0.992, confirming the fewer defects in the as-prepared mustard oil-derived rGO (M−rGO). The rGO-AgxO composite showed a degradation efficiency of 81.9% with a rate constant k−1 of 0.9506 min−1 for the sodium salt of benzidinediazo-bis-1-naphthylamine-4-sulfonic acid (known as the azo dye Congo Red) in an aqueous solution under visible light irradiation. The composite also showed some antimicrobial activity against Klebsilla pneomoniae, Escherichiacoli, and Staphylococcusaureus bacterial cells, with inhibition zones of ~15, 18, and 14 mm, respectively, for a concentration of 300 µg/mL. At 600 µg/mL concentration, the composite also showed moderate scavenging activity for 2,2-diphenyl-1-picrylhydrazyl of ~30.6%, with significantly lower activities measured for AgxO (at ~18.1%) and rGO (~8%) when compared to control.
Collapse
|
168
|
Kabeerdass N, Thangaswamy S, Mohanasrinivasan V, Rajasekaran C, Sundaram S, Nooruddin T, Mathanmohun M. Green Synthesis–Mediated Nanoparticles and Their Curative Character Against Post COVID-19 Skin Diseases. CURRENT PHARMACOLOGY REPORTS 2022; 8:409-417. [PMID: 36105411 PMCID: PMC9461414 DOI: 10.1007/s40495-022-00303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 01/08/2023]
|
169
|
Sampath G, Chen YY, Rameshkumar N, Krishnan M, Nagarajan K, Shyu DJH. Biologically Synthesized Silver Nanoparticles and Their Diverse Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3126. [PMID: 36144915 PMCID: PMC9500900 DOI: 10.3390/nano12183126] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 05/14/2023]
Abstract
Nanotechnology has become the most effective and rapidly developing field in the area of material science, and silver nanoparticles (AgNPs) are of leading interest because of their smaller size, larger surface area, and multiple applications. The use of plant sources as reducing agents in the fabrication of silver nanoparticles is most attractive due to the cheaper and less time-consuming process for synthesis. Furthermore, the tremendous attention of AgNPs in scientific fields is due to their multiple biomedical applications such as antibacterial, anticancer, and anti-inflammatory activities, and they could be used for clean environment applications. In this review, we briefly describe the types of nanoparticle syntheses and various applications of AgNPs, including antibacterial, anticancer, and larvicidal applications and photocatalytic dye degradation. It will be helpful to the extent of a better understanding of the studies of biological synthesis of AgNPs and their multiple uses.
Collapse
Affiliation(s)
- Gattu Sampath
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
- Department of Zoology, School of Life Sciences, Periyar University, Salem 636011, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi 110016, India
| | - Yih-Yuan Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi City 600355, Taiwan
| | | | | | - Kayalvizhi Nagarajan
- Department of Zoology, School of Life Sciences, Periyar University, Salem 636011, India
| | - Douglas J. H. Shyu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| |
Collapse
|
170
|
Fiocchi S, Chiaramello E, Marrella A, Bonato M, Parazzini M, Ravazzani P. Modelling of magnetoelectric nanoparticles for non-invasive brain stimulation: a computational study. J Neural Eng 2022; 19. [PMID: 36075197 DOI: 10.1088/1741-2552/ac9085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 09/08/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Recently developed magnetoelectric nanoparticles (MENPs) provide a potential tool to enable different biomedical applications. They could be used to overcome the intrinsic constraints posed by traditional neurostimulation techniques, namely the invasiveness of electrodes-based techniques, the limited spatial resolution, and the scarce efficiency of magnetic stimulation. APPROACH By using computational electromagnetic techniques, we modelled the behavior of recently designed biocompatible MENPs injected, in the shape of clusters, in specific cortical targets of a highly detailed anatomical head model. The distributions and the tissue penetration of the electric fields induced by MENPs clusters in each tissue will be compared to the distributions induced by traditional TMS coils for non-invasive brain stimulation positioned on the left prefrontal cortex of a highly detailed anatomical head model. MAIN RESULTS MENPs clusters can induce highly focused electric fields with amplitude close to the neural activation threshold in all the brain tissues of interest for the treatment of most neuropsychiatric disorders. Conversely, TMS coils can induce electric fields of several tens of V/m over a broad volume of the prefrontal cortex, but they are unlikely able to efficiently stimulate even small volumes of subcortical and deep tissues. SIGNIFICANCE Our numerical results suggest that the use of MENPs for brain stimulation may potentially led to a future pinpoint treatment of neuropshychiatric disorders, in which an impairment of electric activity of specific cortical and subcortical tissues and networks has been assumed to play a crucial role.
Collapse
Affiliation(s)
- Serena Fiocchi
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, Milan, 20133, ITALY
| | - Emma Chiaramello
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, Milan, 20133, ITALY
| | - Alessandra Marrella
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni Consiglio Nazionale delle Ricerche, Area della Ricerca, via de Marini 6, Genova, 16149, ITALY
| | - Marta Bonato
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, Milan, 20133, ITALY
| | - Marta Parazzini
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, Milan, 20133, ITALY
| | - Paolo Ravazzani
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, Milan, 20133, ITALY
| |
Collapse
|
171
|
Silver Nanoparticles Conjugated with Colistin Enhanced the Antimicrobial Activity against Gram-Negative Bacteria. Molecules 2022; 27:molecules27185780. [PMID: 36144516 PMCID: PMC9505607 DOI: 10.3390/molecules27185780] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Colistin is a potent peptide antibiotic that is effective against Gram-negative bacteria. However, nephrotoxicity limited its clinical use. Silver nanoparticles (AgNPs) have gained attention as a potential antimicrobial agent and nanodrug carrier. The conjugation of antibiotics and AgNPs has been found to increase the activity and decrease drug toxicity. In this study, colistin was conjugated with AgNPs (Col-AgNPs), which was confirmed by Fourier-transform infrared (FT-IR) and energy-dispersive X-ray (EDX) spectra. The optimized Col-AgNPs had the proper characteristics, including spherical shape, monodispersity, nanosized particle, high surface charge, and good stability. The powder X-ray diffraction (PXRD) pattern supported the crystallinity of Col-AgNPs and AgNPs. The drug loading of Col-AgNPs was 11.55 ± 0.93%. Col-AgNPs had higher activity against Gram-negative bacteria (Escherichia coli, Klebsiella pneumonia, and Pseudomonas aeruginosa) than AgNPs and colistin. The mechanism of actions of Col-AgNPs involved membrane disruption and genomic DNA damage. The Col-AgNPs and AgNPs were biocompatible with human red blood cells and renal cells at concentrations up to 16 µg/mL. Interestingly, Col-AgNPs exhibited higher cell survival than AgNPs and colistin at 32 µg/mL. Our results revealed that the Col-AgNPs could enhance the antimicrobial activity and cell biocompatibility more than colistin and AgNPs.
Collapse
|
172
|
Ma L, Qiu S, Chen K, Tang J, Liu J, Su W, Liu X, Zeng X. Synergistic Antibacterial Effect from Silver Nanoparticles and Anticancer Activity Against Human Lung Cancer Cells. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Microbially synthesized silver nanoparticles (AgNPs) with high stability and bioactivity have recently shown considerable promise in biomedical research and application. In this study, AgNPs prepared by Penicillium aculeatum Su1 exhibited effective antibacterial action by inhibiting
bacterial growth and destroying cellular structure. Meanwhile, their assessed increased in fold area (IFA) through the Kirby-Bauer disc diffusion method proved that, the AgNPs showed synergistic antibacterial effect on different bacteria when combined with antibiotics, especially for drug-resistant
P. aeruginosa (4.58∼6.36-fold) and B. subtilis (4.2-fold). Moreover, the CCK-8 assay and flow cytometric analysis were used to evaluate the cytotoxic effects of AgNPs on normal cells (HBE) and lung cancer cells (HTB-182), which confirmed that they presented higher biocompatibility
towards HBE cells when compared with silver ions, but high cytotoxicity in a dosedependent manner with an IC50 values of 35.00 μg/mL towards HTB-182 cells by raising intracellular reactive oxygen species (ROS) levels, hindering cell proliferation, and ultimately leading
to cell cycle arrest and cell apoptosis. These results demonstrate that, the biosynthesized AgNPs could be a potential candidate for future therapies of infection caused by drug-resistant bacteria, as well as lung squamous cell carcinoma.
Collapse
Affiliation(s)
- Liang Ma
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, Hunan, PR China
| | - Siyu Qiu
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, Hunan, PR China
| | - Kang Chen
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, Hunan, PR China
| | - Jianxin Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, Hunan, PR China
| | - Jianxin Liu
- School of Geosciences and Info-Physics, Central South University, Changsha, 410083, Hunan, PR China
| | - Wei Su
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, Hunan, PR China
| | - Xueying Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, Hunan, PR China
| | - Xiaoxi Zeng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, Hunan, PR China
| |
Collapse
|
173
|
Kar B, Pradhan D, Mishra P, Bhuyan SK, Ghosh G, Rath G. Exploring the Potential of Metal Nanoparticles as a Possible Therapeutic Adjunct for Covid-19 Infection. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, INDIA SECTION B: BIOLOGICAL SCIENCES 2022; 92:511-521. [PMID: 35601009 PMCID: PMC9113381 DOI: 10.1007/s40011-022-01371-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 12/02/2021] [Accepted: 03/10/2022] [Indexed: 11/25/2022]
Abstract
The WHO has declared the Covid-19 outbreak as a global health emergency with a mortality rate of approximately 3%, across 200 countries. There has been a considerable risk involved with drug repurposing in Covid-19 treatment, particularly in patients with underlying chronic disorders. Intervention of appropriate adjunct to primary drug therapy at subclinical or clinical doses may help to reduce unintended consequences involved in Covid-19 therapy. Metal nanoparticles due to their intrinsic structural and functional properties, not only contribute to anti-viral properties but also help to reduce the risk for associated complications. Although, silver nanoparticles hold great promise as an effective biocidal agent, while other metal nanoparticles also fueled interest against virus infection. The present review discusses the important properties of selected metal nanoparticles, their antiviral principle with possible toxic consequences, provides invaluable information for scientists and clinicians about an appropriate metal nanoparticle as an adjunct for Covid-19 treatment.
Collapse
Affiliation(s)
- Biswakanth Kar
- School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to Be University), Bhubaneswar, Odisha India
| | - Deepak Pradhan
- School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to Be University), Bhubaneswar, Odisha India
| | - Poonamrani Mishra
- School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to Be University), Bhubaneswar, Odisha India
| | - Sanat Kumar Bhuyan
- Institute of Dental Sciences, Siksha ‘O’ Anusandhan (Deemed to Be University), Bhubaneswar, Odisha India
| | - Goutam Ghosh
- School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to Be University), Bhubaneswar, Odisha India
| | - Goutam Rath
- School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to Be University), Bhubaneswar, Odisha India
| |
Collapse
|
174
|
Sunlight induced synthesis of silver nanoparticles on cellulose for the preparation of antimicrobial textiles. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2022.100134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
175
|
Liu Q, Zhang Y, Huang J, Xu Z, Li X, Yang J, Huang H, Tang S, Chai Y, Lin J, Yang C, Liu J, Lin S. Mesoporous silica-coated silver nanoparticles as ciprofloxacin/siRNA carriers for accelerated infected wound healing. J Nanobiotechnology 2022; 20:386. [PMID: 35999547 PMCID: PMC9400313 DOI: 10.1186/s12951-022-01600-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/14/2022] [Indexed: 12/14/2022] Open
Abstract
The colonization of bacterial pathogens is a major concern in wound infection and becoming a public health issue. Herein, a core–shell structured Ag@MSN (silver core embedded with mesoporous silica, AM)-based nanoplatform was elaborately fabricated to co-load ciprofloxacin (CFL) and tumor necrosis factor-α (TNF-α) small interfering RNA (siTNF-α) (AMPC@siTNF-α) for treating the bacterial-infected wound. The growth of bacterial pathogens was mostly inhibited by released silver ions (Ag+) and CFL from AMPC@siTNF-α. Meanwhile, the loaded siTNF-α was internalized by macrophage cells, which silenced the expression of TNF-α (a pro-inflammatory cytokine) in macrophage cells and accelerated the wound healing process by reducing inflammation response. In the in vivo wound model, the Escherichia coli (E. coli)-infected wound in mice almost completely disappeared after treatment with AMPC@siTNF-α, and no suppuration symptom was observed during the course of the treatment. Importantly, this nanoplatform had negligible side effects both in vitro and in vivo. Taken together, this study strongly demonstrates the promising potential of AMPC@siTNF-α as a synergistic therapeutic agent for clinical wound infections.
Collapse
Affiliation(s)
- Qiqi Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Ying Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China.,Central Laboratory, The Second Affiliated Hospital, School of Medicine, Longgang District People's Hospital of Shenzhen, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Jingkai Huang
- Dermatology Department, Southern University of Science and Technology Hospital (SUSTech Hospital), Shenzhen, 518055, China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Xiang Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jingyu Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Haoqiang Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Shiqi Tang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Yujuan Chai
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jinbo Lin
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, Longgang District People's Hospital of Shenzhen, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
| | - Jia Liu
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, Longgang District People's Hospital of Shenzhen, The Chinese University of Hong Kong, Shenzhen, 518172, China.
| | - Suxia Lin
- Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518048, China.
| |
Collapse
|
176
|
Bold BE, Urnukhsaikhan E, Mishig-Ochir T. Biosynthesis of silver nanoparticles with antibacterial, antioxidant, anti-inflammatory properties and their burn wound healing efficacy. Front Chem 2022; 10:972534. [PMID: 36072703 PMCID: PMC9441807 DOI: 10.3389/fchem.2022.972534] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022] Open
Abstract
The current study aims to develop a novel burn wound ointment consisting of sheep's tail ointment loaded with AgNP. The AgNP in the ointment serves as an antibacterial, antioxidant and anti-inflammatory agent. The AgNP was developed via the biological method with the assistance of the medicinal plant Rhodiola rosea. The characterization of AgNP was assessed using UV-Vis spectroscopy, FTIR, Zeta Potential, XRD, PCCS, SEM, and EDX techniques. The formation of AgNP was confirmed by UV-Vis spectrum at the absorbance of ∼430 nm, and the biomolecules responsible for reducing and capping the AgNP were characterized by FTIR analysis. The stability of AgNP was determined with Zeta potential, which revealed a highly stable colloidal solution with a surface charge of -68.38 ± 3.4 mV. The synthesized AgNP had a face-centered cubic structure with a crystallite size of 23 nm and average grain size of 67.5 nm. The SEM image showed a fairly monodisperse 20 nm-sized spherical-shaped AgNP. The synthesized AgNP contained high purity of the silver, and a low concentration of AgNP inhibited both Gram-positive and Gram-negative bacteria. Moreover, the scavenging activity of AgNP was investigated using DPPH and H2O2 scavenging assay, and the results revealed a dose-dependent antioxidant activity with the highest activity at a concentration of 450 μg/ml. Finally, the burn wound healing effect was evaluated by applying the AgNP-loaded ointment to the wound site of BALB/c mice. The in-vivo studies confirmed that AgNP-loaded ointment reduced the wound size, decreased the epidermis layer, and lowered mast cell migration compared to untreated burn wounds. And the synthesized AgNP regulated both pro-inflammatory and anti-inflammatory gene expression, thereby promoting burn wound closure on BALB/c mice. The developed AgNP-loaded ointment has the potential to be applied in the biomedical field.
Collapse
Affiliation(s)
- Bum-Erdene Bold
- Laboratory of Molecular and Cellular Biophysics, Department of Biology, National University of Mongolia, Ulaanbaatar, Mongolia
- Graduate School of National University of Mongolia, Ulaanbaatar, Mongolia
| | - Enerelt Urnukhsaikhan
- Laboratory of Molecular and Cellular Biophysics, Department of Biology, National University of Mongolia, Ulaanbaatar, Mongolia
- Graduate School of National University of Mongolia, Ulaanbaatar, Mongolia
| | - Tsogbadrakh Mishig-Ochir
- Laboratory of Molecular and Cellular Biophysics, Department of Biology, National University of Mongolia, Ulaanbaatar, Mongolia
- Graduate School of National University of Mongolia, Ulaanbaatar, Mongolia
| |
Collapse
|
177
|
Padilla-Camberos E, Juárez-Navarro KJ, Sanchez-Hernandez IM, Torres-Gonzalez OR, Flores-Fernandez JM. Toxicological Evaluation of Silver Nanoparticles Synthesized with Peel Extract of Stenocereus queretaroensis. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5700. [PMID: 36013835 PMCID: PMC9413338 DOI: 10.3390/ma15165700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Silver nanoparticles (AgNPs) synthesized with plants are widely used in different industries, such as the medical, industrial, and food industries; however, their hazards and risks remain unclear. Here, we aimed to evaluate the toxicological effects of AgNPs in both in vitro and in vivo models. Previously, we developed and characterized green synthesized AgNPs based on Stenocereus queretaroensis (S. queretaroensis). The present study evaluates the toxicity of these AgNPs through cytotoxicity and mutagenicity tests in vitro, as well as genotoxicity tests, including the evaluation of acute oral, dermal, and inhalation toxicity, along with dermal and ocular irritation, in vivo, according to guidelines of The Organization for Economic Co-operation and Development (OECD). We evaluated cell cytotoxicity in L929 cells, and the half-maximal inhibitory concentration was 134.76 µg/mL. AgNPs did not cause genotoxic or mutagenic effects. Furthermore, in vivo oral, dermal, and acute inhalation toxicity results did not show any adverse effects or mortality in the test animals, and after the dermal and ocular irritation assessments, the in vivo models did not exhibit irritation or corrosion. Therefore, the results show that these previously synthesized S. queretaroensis AgNPs do not represent a risk at the tested concentrations; however, little is known about the effects that AgNPs induce on physiological systems or the possible risk following long-term exposure.
Collapse
Affiliation(s)
- Eduardo Padilla-Camberos
- Unit of Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Normalistas 800, Guadalajara 44270, Jalisco, Mexico
| | - Karen J. Juárez-Navarro
- Unit of Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Normalistas 800, Guadalajara 44270, Jalisco, Mexico
| | - Ivan Moises Sanchez-Hernandez
- Unit of Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Normalistas 800, Guadalajara 44270, Jalisco, Mexico
| | - Omar Ricardo Torres-Gonzalez
- Unit of Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Normalistas 800, Guadalajara 44270, Jalisco, Mexico
| | - Jose Miguel Flores-Fernandez
- Department of Biochemistry & Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB T6G 2M8, Canada
- Department of Research and Innovation, Universidad Tecnológica de Oriental, de la No. 3402, Calle 37 Nte., Oriental 75020, Puebla, Mexico
| |
Collapse
|
178
|
Kraskouski A, Hileuskaya K, Ladutska A, Kabanava V, Liubimau A, Novik G, Nhi TTY, Agabekov V. Multifunctional biocompatible films based on
pectin‐Ag
nanocomposites and
PVA
: Design, characterization and antimicrobial potential. J Appl Polym Sci 2022. [DOI: 10.1002/app.53023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Aliaksandr Kraskouski
- Department of Physicochemistry of Thin Film Materials Institute of Chemistry of New Materials of NAS of Belarus Minsk Belarus
| | - Kseniya Hileuskaya
- Department of Physicochemistry of Thin Film Materials Institute of Chemistry of New Materials of NAS of Belarus Minsk Belarus
| | - Alena Ladutska
- Microbial Collection Laboratory Institute of Microbiology of NAS of Belarus Minsk Belarus
| | - Volha Kabanava
- Department of Physicochemistry of Thin Film Materials Institute of Chemistry of New Materials of NAS of Belarus Minsk Belarus
- Department of Higher Mathematics and Mathematical Physics Belarusian State University Minsk Belarus
| | - Aliaksandr Liubimau
- Department of Polymer Composite Materials Belarusian State Technological University Minsk Belarus
| | - Galina Novik
- Microbial Collection Laboratory Institute of Microbiology of NAS of Belarus Minsk Belarus
| | - Tran Thi Y. Nhi
- Laboratory of Natural Polymer Institute of Chemistry of Vietnamese Academy of Science and Technology Hanoi Vietnam
| | - Vladimir Agabekov
- Department of Physicochemistry of Thin Film Materials Institute of Chemistry of New Materials of NAS of Belarus Minsk Belarus
| |
Collapse
|
179
|
Thapa S, Singh KRB, Verma R, Singh J, Singh RP. State-of-the-Art Smart and Intelligent Nanobiosensors for SARS-CoV-2 Diagnosis. BIOSENSORS 2022; 12:637. [PMID: 36005033 PMCID: PMC9405813 DOI: 10.3390/bios12080637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/16/2022]
Abstract
The novel coronavirus appeared to be a milder infection initially, but the unexpected outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), commonly called COVID-19, was transmitted all over the world in late 2019 and caused a pandemic. Human health has been disastrously affected by SARS-CoV-2, which is still evolving and causing more serious concerns, leading to the innumerable loss of lives. Thus, this review provides an outline of SARS-CoV-2, of the traditional tools to diagnose SARS-CoV-2, and of the role of emerging nanomaterials with unique properties for fabricating biosensor devices to diagnose SARS-CoV-2. Smart and intelligent nanomaterial-enabled biosensors (nanobiosensors) have already proven their utility for the diagnosis of several viral infections, as various detection strategies based on nanobiosensor devices are already present, and several other methods are also being investigated by researchers for the determination of SARS-CoV-2 disease; however, considerably more is undetermined and yet to be explored. Hence, this review highlights the utility of various nanobiosensor devices for SARS-CoV-2 determination. Further, it also emphasizes the future outlook of nanobiosensing technologies for SARS-CoV-2 diagnosis.
Collapse
Affiliation(s)
- Sushma Thapa
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Kshitij RB Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ranjana Verma
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ravindra Pratap Singh
- Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak 484887, Madhya Pradesh, India
| |
Collapse
|
180
|
Chakraborty N, Jha D, Roy I, Kumar P, Gaurav SS, Marimuthu K, Ng OT, Lakshminarayanan R, Verma NK, Gautam HK. Nanobiotics against antimicrobial resistance: harnessing the power of nanoscale materials and technologies. J Nanobiotechnology 2022; 20:375. [PMID: 35953826 PMCID: PMC9371964 DOI: 10.1186/s12951-022-01573-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Given the spasmodic increment in antimicrobial resistance (AMR), world is on the verge of “post-antibiotic era”. It is anticipated that current SARS-CoV2 pandemic would worsen the situation in future, mainly due to the lack of new/next generation of antimicrobials. In this context, nanoscale materials with antimicrobial potential have a great promise to treat deadly pathogens. These functional materials are uniquely positioned to effectively interfere with the bacterial systems and augment biofilm penetration. Most importantly, the core substance, surface chemistry, shape, and size of nanomaterials define their efficacy while avoiding the development of AMR. Here, we review the mechanisms of AMR and emerging applications of nanoscale functional materials as an excellent substitute for conventional antibiotics. We discuss the potential, promises, challenges and prospects of nanobiotics to combat AMR.
Collapse
Affiliation(s)
- Nayanika Chakraborty
- Department of Chemistry, University of Delhi, New Delhi, 110007, India.,Department of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi, 110025, India
| | - Diksha Jha
- Department of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Indrajit Roy
- Department of Chemistry, University of Delhi, New Delhi, 110007, India
| | - Pradeep Kumar
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, 110007, New Delhi, India
| | - Shailendra Singh Gaurav
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Chaudhary Charan Singh University, Meerut, 250004, India
| | - Kalisvar Marimuthu
- National Centre for Infectious Diseases (NCID), Singapore, 308442, Singapore.,Tan Tock Seng Hospital (TTSH), 308433, Singapore, Singapore
| | - Oon-Tek Ng
- National Centre for Infectious Diseases (NCID), Singapore, 308442, Singapore.,Tan Tock Seng Hospital (TTSH), 308433, Singapore, Singapore
| | - Rajamani Lakshminarayanan
- Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Singapore, 169856, Singapore. .,Department of Pharmacy, National University of Singapore, Singapore, 117543, Singapore. .,Academic Clinical Program in Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, 169857, Singapore.
| | - Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore. .,National Skin Centre, Singapore, 308205, Singapore.
| | - Hemant K Gautam
- Department of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi, 110025, India.
| |
Collapse
|
181
|
Samanta S, Banerjee J, Das B, Mandal J, Chatterjee S, Ali KM, Sinha S, Giri B, Ghosh T, Dash SK. Antibacterial potency of cytocompatible chitosan-decorated biogenic silver nanoparticles and molecular insights towards cell-particle interaction. Int J Biol Macromol 2022; 219:919-939. [PMID: 35961557 DOI: 10.1016/j.ijbiomac.2022.08.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/23/2022] [Accepted: 08/07/2022] [Indexed: 02/06/2023]
Abstract
In the study, leaf extract of Carica papaya was utilized for the biogenic fabrication process of chitosan functionalized silver nanoparticles (Ag-Chito NPs). HRTEM analysis revealed that the fabricated Ag-Chito NPs was spherical in shape, with an average particle size of 13.31 (±0.07) nm. FTIR, UV-Vis, DLS, and other characterizations were also performed to analyze the diverse physicochemical properties of the particles. The antibacterial potency of the synthesized Ag-Chito NPs was tested against the two clinically isolated multidrug resistant uropathogenic bacterial strains, i.e. MLD 2 (Escherichia coli) and MLD 4 (Staphylococcus aureus) through MIC, MBC, time and concentration dependent killing kinetic assay, inhibition of biofilm formation assay, fluorescence and SEM imaging. Significantly, Ag-Chito NPs showed the highest sensitivity against the MLD 2 (MIC value of 12.5 μg/mL) strain, as compared to the MLD 4 (MIC value of 15 μg/mL) strain. From the hemolysis assay, it was revealed that Ag-Chito NPs exerted no significant toxicity up to 50 μg/mL against healthy human blood cells. Additionally, in silico analysis of chitosan (functionalized on the surface of AgNPs) and bacterial cell membrane protein also evidently suggested a strong interaction between Ag-Chito NPs and bacterial cells, which might be responsible for bacterial cell death.
Collapse
Affiliation(s)
- Sovan Samanta
- Department of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | - Jhimli Banerjee
- Department of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | - Balaram Das
- Department of Physiology, Belda College, Paschim Medinipur 721424, West Bengal, India
| | - Jayanta Mandal
- Department of Botany, Vivekananda Mahavidyalaya, Haripal, Hooghly 712405, West Bengal, India
| | | | - Kazi Monjur Ali
- Department of Nutrition, M.U.C Women's College, Purba Bardhaman 713104, West Bengal, India
| | - Sangram Sinha
- Department of Botany, Vivekananda Mahavidyalaya, Haripal, Hooghly 712405, West Bengal, India
| | - Biplab Giri
- Department of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | - Totan Ghosh
- Department of Applied Chemistry, Maulana Abul Kalam Azad University of Technology, 741249, West Bengal, India
| | - Sandeep Kumar Dash
- Department of Physiology, University of Gour Banga, Malda 732103, West Bengal, India.
| |
Collapse
|
182
|
Kumari S, Choudhary PK, Shukla R, Sahebkar A, Kesharwani P. Recent advances in nanotechnology based combination drug therapy for skin cancer. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1435-1468. [PMID: 35294334 DOI: 10.1080/09205063.2022.2054399] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Skin-cancer (SC) is more common than all other cancers affecting large percentage of the population in the world and is increasing in terms of morbidity and mortality. In the United States, 3million people are affected by SC annually whereas millions of people are affected globally. Melanoma is fifth most common cancer in the United States. SC is commonly occurred in white people as per WHO. SC is divided into two groups, i.e. melanoma and non-melanoma. In the previous two decades, management of cancer remains to be a tough and a challenging task for many scholars. Presently, the treatment protocols are mostly based on surgery and chemo-radiation therapy, which sooner or later harm the unaffected cells too. To reduce these limitations, nano scaled materials and its extensive range may be recognized as the probable carriers for the selective drug delivery in response to cancerous cells. Recently, the nanocarriers based drugs and their combinations were found to be a new and interesting approach of study for the management of skin carcinoma to enhance the effectiveness, to lessen the dose-dependent side effects and to avoid the drug resistance. This review may emphasize on the wide-range of information on nanotechnology-based drugs and their combination with physical techniques.
Collapse
Affiliation(s)
- Shweta Kumari
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | | | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P., India
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
183
|
Khammar Z, Sadeghi E, Raesi S, Mohammadi R, Dadvar A, Rouhi M. Optimization of biosynthesis of stabilized silver nanoparticles using bitter orange peel by-products and glycerol. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
184
|
Ni N, Wang W, Sun Y, Sun X, Leong DT. Inducible endothelial leakiness in nanotherapeutic applications. Biomaterials 2022; 287:121640. [PMID: 35772348 DOI: 10.1016/j.biomaterials.2022.121640] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/23/2022] [Accepted: 06/14/2022] [Indexed: 11/02/2022]
Abstract
All intravenous delivered nanomedicine needs to escape from the blood vessel to exert their therapeutic efficacy at their designated site of action. Failure to do so increases the possibility of detrimental side effects and negates their therapeutic intent. Many powerful anticancer nanomedicine strategies rely solely on the tumor derived enhanced permeability and retention (EPR) effect for the only mode of escaping from the tumor vasculature. However, not all tumors have the EPR effect nor can the EPR effect be induced or controlled for its location and timeliness. In recent years, there have been exciting developments along the lines of inducing endothelial leakiness at the tumor to decrease the dependence of EPR. Physical disruption of the endothelial-endothelial cell junctions with coordinated biological intrinsic pathways have been proposed that includes various modalities like ultrasound, radiotherapy, heat and even nanoparticles, appear to show good progress towards the goal of inducing endothelial leakiness. This review explains the intricate and complex biological background behind the endothelial cells with linkages on how updated reported nanomedicine strategies managed to induce endothelial leakiness. This review will also end off with fresh insights on where the future of inducible endothelial leakiness holds.
Collapse
Affiliation(s)
- Nengyi Ni
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Weiyi Wang
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Yu Sun
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore; Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China
| | - Xiao Sun
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China.
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| |
Collapse
|
185
|
Firouz F, Amiri F, Khazaei S, Vafaee F, Farmany A, Farhadian M. Effect of Adding Silver Nanoparticles on the Flexural Strength of Feldspathic Porcelain. J Contemp Dent Pract 2022; 23:793-800. [PMID: 37283013 DOI: 10.5005/jp-journals-10024-3393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
AIM This study aimed to evaluate the impact of silver nanoparticles (AgNPs) on the flexural strength of feldspathic porcelain. MATERIALS AND METHODS Eighty bar-shaped ceramic specimens were prepared in five groups, including a control group and four case groups containing 5, 10, 15, and 20% w/w of AgNPs. Each group consisted of 16 specimens. Silver Nanoparticles were synthesized by a simple deposition method. Three-point bending test was used in the universal testing machine (UTM) machine to evaluate the flexural strength of the specimens. The fractured surface of the ceramic samples was analyzed under scanning electron microscopy (SEM). In order to analyze the data obtained, one-way analysis of variance (ANOVA) and Tukey tests were used (p <0.05). RESULTS The results implied that the average flexural strength of the samples in the control group was 90.97 MPa and for the experimental groups reinforced with 5, 10, 15, and 20% w/w of AgNPs were 89, 81, 76, and 74 MPa, respectively. CONCLUSION The addition of AgNPs with a certain amount (up to a concentration of 15% w/w) without reducing the flexural strength improves the antimicrobial properties of the materials used and ultimately improves its quality for dental applications. CLINICAL SIGNIFICANCE The addition of AgNPs can improve the antimicrobial properties and suitability of the materials.
Collapse
Affiliation(s)
- Farnaz Firouz
- Department of Prosthodontics, Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Amiri
- Department of Prosthodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran, Phone: +91 9129108275, e-mail:
| | - Sara Khazaei
- Department of Prosthodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fariborz Vafaee
- Department of Prosthodontics, Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Farmany
- Dental Research Center, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Farhadian
- Department of Biostatistics, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
186
|
Lin Y, Chen Z, Liu Y, Wang J, Lv W, Peng R. Recent Advances in Nano-Formulations for Skin Wound Repair Applications. Drug Des Devel Ther 2022; 16:2707-2728. [PMID: 35996567 PMCID: PMC9392552 DOI: 10.2147/dddt.s375541] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
Skin injuries caused by accidents and acute or chronic diseases place a heavy burden on patients and health care systems. Current treatments mainly depend on preventing infection, debridement, and hemostasis and on supplementing growth factors, but patients will still have scar tissue proliferation or difficulty healing and other problems after treatment. Conventional treatment usually focuses on a single factor or process of wound repair and often ignores the influence of the wound pathological microenvironment on the final healing effect. Therefore, it is of substantial research value to develop multifunctional therapeutic methods that can actively regulate the wound microenvironment and reduce the oxidative stress level at the wound site to promote the repair of skin wounds. In recent years, various bioactive nanomaterials have shown great potential in tissue repair and regeneration due to their properties, including their unique surface interface effect, small size effect, enzyme activity and quantum effect. This review summarizes the mechanisms underlying skin wound repair and the defects in traditional treatment methods. We focus on analyzing the advantages of different types of nanomaterials and comment on their toxicity and side effects when used for skin wound repair.
Collapse
Affiliation(s)
- Yue Lin
- Department of Emergency, The Third Affiliated Hospital of Shanghai University & Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, People’s Republic of China
| | - Zheyan Chen
- Department of Plastic Surgery, The Third Affiliated Hospital of Shanghai University & Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, People’s Republic of China
| | - Yinai Liu
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, People’s Republic of China
| | - Jiawen Wang
- Department of Plastic Surgery, The Third Affiliated Hospital of Shanghai University & Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, People’s Republic of China
| | - Wang Lv
- Department of Emergency, The Third Affiliated Hospital of Shanghai University & Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, People’s Republic of China
| | - Renyi Peng
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, People’s Republic of China
- Correspondence: Renyi Peng, Tel +86 159-5771-6937, Email
| |
Collapse
|
187
|
Oliveira AEF, Pereira AC, de Resende MAC, Ferreira LF. Synthesis of a silver nanoparticle ink for fabrication of reference electrodes. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2022.100085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
188
|
Recent Advances in Nanomaterial-Based Biosensors for Pesticide Detection in Foods. BIOSENSORS 2022; 12:bios12080572. [PMID: 36004968 PMCID: PMC9405907 DOI: 10.3390/bios12080572] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/08/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022]
Abstract
Biosensors are a simple, low-cost, and reliable way to detect pesticides in food matrices to ensure consumer food safety. This systematic review lists which nanomaterials, biorecognition materials, transduction methods, pesticides, and foods have recently been studied with biosensors associated with analytical performance. A systematic search was performed in the Scopus (n = 388), Web of Science (n = 790), and Science Direct (n = 181) databases over the period 2016–2021. After checking the eligibility criteria, 57 articles were considered in this study. The most common use of nanomaterials (NMs) in these selected studies is noble metals in isolation, such as gold and silver, with 8.47% and 6.68%, respectively, followed by carbon-based NMs, with 20.34%, and nanohybrids, with 47.45%, which combine two or more NMs, uniting unique properties of each material involved, especially the noble metals. Regarding the types of transducers, the most used were electrochemical, fluorescent, and colorimetric, representing 71.18%, 13.55%, and 8.47%, respectively. The sensitivity of the biosensor is directly connected to the choice of NM and transducer. All biosensors developed in the selected investigations had a limit of detection (LODs) lower than the Codex Alimentarius maximum residue limit and were efficient in detecting pesticides in food. The pesticides malathion, chlorpyrifos, and paraoxon have received the greatest attention for their effects on various food matrices, primarily fruits, vegetables, and their derivatives. Finally, we discuss studies that used biosensor detection systems devices and those that could detect multi-residues in the field as a low-cost and rapid technique, particularly in areas with limited resources.
Collapse
|
189
|
Gareev KG, Grouzdev DS, Koziaeva VV, Sitkov NO, Gao H, Zimina TM, Shevtsov M. Biomimetic Nanomaterials: Diversity, Technology, and Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2485. [PMID: 35889709 PMCID: PMC9316400 DOI: 10.3390/nano12142485] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023]
Abstract
Biomimetic nanomaterials (BNMs) are functional materials containing nanoscale components and having structural and technological similarities to natural (biogenic) prototypes. Despite the fact that biomimetic approaches in materials technology have been used since the second half of the 20th century, BNMs are still at the forefront of materials science. This review considered a general classification of such nanomaterials according to the characteristic features of natural analogues that are reproduced in the preparation of BNMs, including biomimetic structure, biomimetic synthesis, and the inclusion of biogenic components. BNMs containing magnetic, metal, or metal oxide organic and ceramic structural elements (including their various combinations) were considered separately. The BNMs under consideration were analyzed according to the declared areas of application, which included tooth and bone reconstruction, magnetic and infrared hyperthermia, chemo- and immunotherapy, the development of new drugs for targeted therapy, antibacterial and anti-inflammatory therapy, and bioimaging. In conclusion, the authors' point of view is given about the prospects for the development of this scientific area associated with the use of native, genetically modified, or completely artificial phospholipid membranes, which allow combining the physicochemical and biological properties of biogenic prototypes with high biocompatibility, economic availability, and scalability of fully synthetic nanomaterials.
Collapse
Affiliation(s)
- Kamil G. Gareev
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia; (N.O.S.); (T.M.Z.)
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Denis S. Grouzdev
- SciBear OU, Tartu mnt 67/1-13b, Kesklinna Linnaosa, 10115 Tallinn, Estonia;
| | - Veronika V. Koziaeva
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, 119071 Moscow, Russia;
| | - Nikita O. Sitkov
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia; (N.O.S.); (T.M.Z.)
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China;
| | - Tatiana M. Zimina
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia; (N.O.S.); (T.M.Z.)
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Maxim Shevtsov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
- Center of Translational Cancer Research (TranslaTUM), Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
- National Center for Neurosurgery, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
190
|
Isa N, Osman MS, Abdul Hamid H, Inderan V, Lockman Z. Studies of surface plasmon resonance of silver nanoparticles reduced by aqueous extract of shortleaf spikesedge and their catalytic activity. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:658-669. [PMID: 35858487 DOI: 10.1080/15226514.2022.2099345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study describes the synthesis of silver nanoparticles (AgNPs) using shortleaf spikesedge extract (SSE) to reduce AgNO3. Visual observation, in addition to analyses of UV-vis, EDX, XRD, FTIR, and TEM was employed to monitor the formation of AgNPs. The effects of SSE concentration, AgNO3 concentration, reaction time, pH, and temperature on the synthesis of AgNPs were studied based on the surface plasmon resonance (SPR) band. From the TEM image, highly-scattered AgNPs of quasi-spherical shape with an average particle size of 17.64 nm, were observed. For the catalytic study, the reduction of methylene blue (MB) was evaluated using two systems. A detailed batch study of the removal efficiency (%RE) and kinetics was done at an ambient temperature, various MB initial concentrations, and varying reaction time. Employing the electron relay effect in System 2, the batch study clearly highlighted the significant role of AgNPs in boosting the catalytic activity for MB removal. At 30-100 mg/L initial concentrations, MB was reduced by 100% in a very short reaction time between 1.5 and 5.0 mins. The kinetic data best fitted the pseudo-first-order model with a maximum reaction rate of 2.5715 min-1. These findings suggest the promising application of AgNPs in dye wastewater treatment.The SSE-driven AgNPs were prepared using unwanted dried biomass of shortleaf spikesedge extract (SSE) as a reducing as well as stabilizing agent. Employing the electron relay effect, the batch study clearly highlighted the significant role of SSE-driven AgNPs in boosting the catalytic activity for MB removal. At 30-100 mg/L initial concentrations, MB was reduced by 100% in a very short reaction time between 1.5 and 5.0 mins. In this sense, SSE-driven AgNPs acted as an electron relay point that behaves alternatively as acceptor and donor of electrons. The findings revealed the good catalytic performance of SSE-driven AgNPS, proving their viability for dye wastewater treatment.
Collapse
Affiliation(s)
- Norain Isa
- Centre for Chemical Engineering Studies, Universiti Teknologi MARA, Pulau Pinang, Malaysia
| | - Mohamed Syazwan Osman
- Centre for Chemical Engineering Studies, Universiti Teknologi MARA, Pulau Pinang, Malaysia
| | - Haslinda Abdul Hamid
- Department of Applied Sciences, Universiti Teknologi MARA, Pulau Pinang, Malaysia
| | - Vicinisvarri Inderan
- Centre for Chemical Engineering Studies, Universiti Teknologi MARA, Pulau Pinang, Malaysia
| | - Zainovia Lockman
- Green Electronics NanoMaterials Group (GEMs), School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| |
Collapse
|
191
|
Masimen MAA, Harun NA, Maulidiani M, Ismail WIW. Overcoming Methicillin-Resistance Staphylococcus aureus (MRSA) Using Antimicrobial Peptides-Silver Nanoparticles. Antibiotics (Basel) 2022; 11:951. [PMID: 35884205 PMCID: PMC9311968 DOI: 10.3390/antibiotics11070951] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Antibiotics are regarded as a miracle in the medical field as it prevents disease caused by pathogenic bacteria. Since the discovery of penicillin, antibiotics have become the foundation for modern medical discoveries. However, bacteria soon became resistant to antibiotics, which puts a burden on the healthcare system. Methicillin-resistant Staphylococcus aureus (MRSA) has become one of the most prominent antibiotic-resistant bacteria in the world since 1961. MRSA primarily developed resistance to beta-lactamases antibiotics and can be easily spread in the healthcare system. Thus, alternatives to combat MRSA are urgently required. Antimicrobial peptides (AMPs), an innate host immune agent and silver nanoparticles (AgNPs), are gaining interest as alternative treatments against MRSA. Both agents have broad-spectrum properties which are suitable candidates for controlling MRSA. Although both agents can exhibit antimicrobial effects independently, the combination of both can be synergistic and complementary to each other to exhibit stronger antimicrobial activity. The combination of AMPs and AgNPs also reduces their own weaknesses as their own, which can be developed as a potential agent to combat antibiotic resistance especially towards MRSA. Thus, this review aims to discuss the potential of antimicrobial peptides and silver nanoparticles towards controlling MRSA pathogen growth.
Collapse
Affiliation(s)
- Mohammad Asyraf Adhwa Masimen
- Cell Signalling and Biotechnology Research Group (CeSBTech), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
| | - Noor Aniza Harun
- Advanced NanoMaterials (ANOMA) Research Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
| | - M. Maulidiani
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
| | - Wan Iryani Wan Ismail
- Cell Signalling and Biotechnology Research Group (CeSBTech), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
- Biological Security and Sustainability Research Group (BIOSES), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| |
Collapse
|
192
|
Surface-Oxidized Polymer-Stabilized Silver Nanoparticles as a Covering Component of Suture Materials. MICROMACHINES 2022; 13:mi13071105. [PMID: 35888922 PMCID: PMC9323226 DOI: 10.3390/mi13071105] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023]
Abstract
In this work, we obtained silver nanoparticles stabilized with polyvinylpyrrolidone, ranging in size from 70 to 110 nm, which exhibits good crystallinity and anisotropic structure. For the first time, we studied the influence of the molar ratio of silver between silver and peroxide on the oxidation process of the nanoparticles and determined the regularities of this process by analyzing changes in absorption spectra. Our results showed that at molar ratios of Ag:H2O2 = 1:1 and 1:5, dependences of changes in the intensity, position and half-width of the absorption band of the plasmon resonance are rectilinear. In vivo studies of silver nanoparticles have shown that silver nanoparticles belong to the toxicity class III (moderately hazardous substance) and to the third group according to the degree of accumulation. We established that silver nanoparticles and oxidized silver nanoparticles form a uniform layer on the surface of the suture material. We found that the use of the suture material with silver nanoparticles and oxidized silver nanoparticles does not cause allergic reactions in the organisms of laboratory animals.
Collapse
|
193
|
Mo F, Zhou Q, He Y. Nano-Ag: Environmental applications and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154644. [PMID: 35307428 DOI: 10.1016/j.scitotenv.2022.154644] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/26/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Silver nanoparticles (AgNPs) are promising bactericidal agents and plasmonic NPs for environmental applications, owing to their various favorable properties. For example, AgNPs enables reactive oxygen species (ROS) generation, surface plasmon resonance (SPR), and specific reaction selectivities. In fact, AgNPs-based materials and their antimicrobial, optical, and electrical effects are at the forefront of nanotechnology, having applications in environmental disinfection, elimination of environmental pollutants, environmental detection, and energy conversions. This review aims to comprehensively summarize the advanced applications and fundamental mechanisms to provide the guidelines for future work in the field of AgNPs implanted functional materials. The state-of-art terms including (photo)(electro)catalytic reactions, heterojunction formation, the generation and attacking of ROS, genetic damage, hot electron generation and transfer, localized surface plasmon resonance (LSPR), plasmon resonance energy transfer (PERT), near field electromagnetic enhancement, structure-function relationship, and reaction selectivities have been covered in this review. It is expected that this review may provide insights into the rational development in the next generation of AgNPs-based nanomaterials with excellent performances.
Collapse
Affiliation(s)
- Fan Mo
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yuqing He
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
194
|
Karageorgou D, Zygouri P, Tsakiridis T, Hammami MA, Chalmpes N, Subrati M, Sainis I, Spyrou K, Katapodis P, Gournis D, Stamatis H. Green Synthesis and Characterization of Silver Nanoparticles with High Antibacterial Activity Using Cell Extracts of Cyanobacterium Pseudanabaena/Limnothrix sp. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2296. [PMID: 35808131 PMCID: PMC9268701 DOI: 10.3390/nano12132296] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/10/2022]
Abstract
In this work, we demonstrated the ability of the cyanobacterium Pseudanabaena/Limnothrix sp. to produce ultra-small silver nanoparticlesin the forms of metallic silver (Ag0) and silver oxides (AgxOy) via a facile green synthetic process. The biological compounds in the cyanobacterial cellular extract acted both as reducing agents for silver ions and functional stabilizing agents for the silver nanoparticles. Furthermore, the antibacterical activity of the as-synthesized nanoparticles against Gram-negative Escherichia coli and Gram-positive Corynebacterium glutamicum bacterial cells was evaluated. The experimental results revealed a remarkable bactericidal activity of the nanoparticles that was both time-dependent and dose-dependent. In addition to their excellent bactericidal properties, the developed nanoparticles can be used as nanosupports in various environmental, biological, and medical applications.
Collapse
Affiliation(s)
- Dimitra Karageorgou
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; (D.K.); (T.T.); (H.S.)
| | - Panagiota Zygouri
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (P.Z.); (N.C.); (M.S.)
| | - Theofylaktos Tsakiridis
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; (D.K.); (T.T.); (H.S.)
| | - Mohamed Amen Hammami
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA;
| | - Nikolaos Chalmpes
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (P.Z.); (N.C.); (M.S.)
| | - Mohammed Subrati
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (P.Z.); (N.C.); (M.S.)
| | - Ioannis Sainis
- Cancer Biobank Center, University of Ioannina, 45110 Ioannina, Greece;
| | - Konstantinos Spyrou
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (P.Z.); (N.C.); (M.S.)
| | - Petros Katapodis
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; (D.K.); (T.T.); (H.S.)
| | - Dimitrios Gournis
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (P.Z.); (N.C.); (M.S.)
| | - Haralambos Stamatis
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; (D.K.); (T.T.); (H.S.)
| |
Collapse
|
195
|
Gangwar C, Yaseen B, Nayak R, Praveen S, Kumar Singh N, Sarkar J, Banerjee M, Mohan Naik R. Silver nanoparticles fabricated by tannic acid for their antimicrobial and anticancerous activity. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
196
|
Dantelle G, Beauquis S, Le Dantec R, Monnier V, Galez C, Mugnier Y. Solution-Based Synthesis Routes for the Preparation of Noncentrosymmetric 0-D Oxide Nanocrystals with Perovskite and Nonperovskite Structures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200992. [PMID: 35691941 DOI: 10.1002/smll.202200992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/21/2022] [Indexed: 06/15/2023]
Abstract
With the miniaturization of electronic-based devices, the foreseen potential of new optical nanoprobes and the assessment of eventual size and shape effects, elaboration of multifunctional noncentrosymmetric nanocrystals with ferroelectric, pyroelectric, piezoelectric, and nonlinear optical properties are the subject of an increasing research interest. Here, the recent achievements from the solution-based methods (coprecipitation in homogeneous and nanostructured media, sol-gel processes including various chemistries and hydro/solvothermal techniques) to prepare 0-D perovskite and nonperovskite oxides in the 5-500 nm size range are critically reviewed. To cover a representative list of covalent- and ionic-type materials, BaTiO3 and its derivatives, niobate compounds (i.e., K/Na/LiNbO3 ), multiferroic BiFeO3, and crystals of lower symmetry including KTiOPO4 and some iodate compounds such as Fe(IO3 )3 and La(IO3 )3 are systematically in focus. The resulting size, morphology, and aggregation state are discussed in light of the proposed formation mechanisms. Because of a higher complexity related to their chemical composition and crystalline structures, improving the rational design of these multifunctional oxides in terms of finely-tuned compositions, crystalline hosts and structure-property relationships still need in the future a special attention of the research community to the detailed understanding of the reaction pathways and crystallization mechanisms.
Collapse
Affiliation(s)
- Géraldine Dantelle
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble, 38000, France
| | | | - Ronan Le Dantec
- Université Savoie Mont Blanc, SYMME, Annecy, F-74000, France
| | - Virginie Monnier
- Univ Lyon, Ecole Centrale de Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, INL, UMR5270, Ecully, 69130, France
| | - Christine Galez
- Université Savoie Mont Blanc, SYMME, Annecy, F-74000, France
| | - Yannick Mugnier
- Université Savoie Mont Blanc, SYMME, Annecy, F-74000, France
| |
Collapse
|
197
|
Hepatoprotective Effect of Silver Nanoparticles at Two Different Particle Sizes: Comparative Study with and without Silymarin. Curr Issues Mol Biol 2022; 44:2923-2938. [PMID: 35877426 PMCID: PMC9321183 DOI: 10.3390/cimb44070202] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/17/2022] Open
Abstract
Silver nanoparticles have been used for numerous therapeutic purposes because of their increased biodegradability and bioavailability, yet their toxicity remains questionable as they are known to interact easily with biological systems because of their small size. This study aimed to investigate and compare the effect of silver nanoparticles’ particle size in terms of their potential hazard, as well as their potential protective effect in an LPS-induced hepatotoxicity model. Liver slices were obtained from Sprague Dawley adult male rats, and the thickness of the slices was optimized to 150 μm. Under regulated physiological circumstances, freshly cut liver slices were divided into six different groups; GP1: normal, GP2: LPS (control), GP3: LPS + AgNpL (positive control), GP4: LPS + silymarin (standard treatment), GP5: LPS + AgNpS + silymarin (treatment I), GP6: LPS + AgNpL + silymarin (treatment II). After 24 h of incubation, the plates were gently removed, and the supernatant and tissue homogenate were all collected and then subjected to the following biochemical parameters: Cox2, NO, IL-6, and TNF-α. The LPS elicited marked hepatic tissue injury manifested by elevated cytokines and proinflammatory markers. Both small silver nanoparticles and large silver nanoparticles efficiently attenuated LPS hepatotoxicity, mainly via preserving the cytokines’ level and diminishing the inflammatory pathways. In conclusion, large silver nanoparticles exhibited effective hepatoprotective capabilities over small silver nanoparticles.
Collapse
|
198
|
Yazdi M, Yousefvand A, Hosseini HM, Mirhosseini SA. Green Synthesis of Silver Nanoparticles Using Nisin and its Antibacterial Activity against Pseudomonas aeruginosa. Adv Biomed Res 2022; 11:56. [PMID: 35982857 PMCID: PMC9379923 DOI: 10.4103/abr.abr_99_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/14/2021] [Accepted: 05/30/2021] [Indexed: 11/16/2022] Open
Abstract
Background Green synthesized silver nanoparticles (AgNPs) have been used in a wide range of biological applications, including their use as antimicrobial agents. The aim of this study was to evaluate the antibacterial activity of green synthesis AgNPs using nisin against Pseudomonas aeruginosa (P. aeruginosa). Materials and Methods In order to synthesize Ag-nisin, a 1 mg/ml nisin solution was mixed with a 1-mM silver nitrate solution and incubated. The Fourier transform infrared spectroscopy (FTIR) analysis was employed to determine the presence of various biomolecules around AgNPs. The AgNPs were morphologically observed and characterized using field emission scanning electron microscopy assessment, dynamic light scattering (DLS), and zeta potential analysis. The microdilution broth method based on CLSI principles was used for the assessment of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of nisin on P. aeruginosa isolates. Results Field emission scanning electron microscope showed spherical shaped nanoparticles. DLS revealed that the average size of nanoparticles was 37.2 nm. The zeta potential of AgNPs was - 13.3 mV. FTIR findings revealed that nitrogen atoms of nisin's amine and amide groups are responsible for the capping and stability of the nanoparticles. The MIC and MBC showed that Ag/nisin nanoparticles had higher antimicrobial activity than nisin or AgNPs alone. Conclusion The findings of this study show that the antibacterial activity of nisin can be increased by assembling it into the AgNP interface using a green chemical synthesis method. As a result, the technique may be used to develop an antibacterial formulation to enhance the effectiveness of nisin.
Collapse
Affiliation(s)
- Mohamad Yazdi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amin Yousefvand
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran,Address for correspondence: Dr. Seyed Ali Mirhosseini, Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran. E-mail:
| |
Collapse
|
199
|
Sonbol H, Mohammed AE, Korany SM. Soil Fungi as Biomediator in Silver Nanoparticles Formation and Antimicrobial Efficacy. Int J Nanomedicine 2022; 17:2843-2863. [PMID: 35795079 PMCID: PMC9250898 DOI: 10.2147/ijn.s356724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/12/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction and Objectives Biogenic agents in nanoparticles fabrication are gaining great interest due to their lower possible negative environmental impacts. The present study aimed to isolate fungal strains from deserts in Saudi Arabia and assess their ability in silver nanoparticles (AgNPs) fabrication and evaluate their antibacterial effect. Methods Soil fungi were identified using 18s rDNA, and their ability in NPs fabrication was assessed as extracellular synthesis, then UV-vis spectroscopy, dynamic light scattering (DLS), energy-dispersive X-ray spectroscopy, and transmission electron microscopy were used for AgNPs characterization. The antibacterial activity of fungal-based NPs was assessed against one Gram-positive methicillin-resistant S. aureus (MRSA) and three Gram-negative bacteria (E. coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae). Ultrastructural changes caused by fungal-based NPs on K. pneumoniae were investigated using TEM along with SDS-PAGE for protein profile patterns. Results The three fungal isolates were identified as Phoma sp. (MN995524), Chaetomium globosum (MN995493), and Chaetomium sp. (MN995550), and their filtrate reduced Ag ions into spherical P-AgNPs, G-AgNPs, and C-AgNPs, respectively. DLS data showed an average size between 12.26 and 70.24 nm, where EDX spectrums represent Ag at 3.0 keV peak. G-AgNPs displayed strong antibacterial activities against Klebsiella pneumoniae, and the ultrastructural changes caused by NPs were noted. Additionally, SDS-PAGE analysis of treated K. pneumoniae revealed fewer bands compared to control, which could be related to protein degradation. Conclusion Present findings have consequently developed an eco-friendly approach in NPs formation by environmentally isolated fungal strains to yield NPs as antibacterial agents.
Collapse
Affiliation(s)
- Hana Sonbol
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Afrah E Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Shereen M Korany
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, 11795, Egypt
| |
Collapse
|
200
|
Qaralleh H, Khleifat K, Al-Limoun M, Al-Tarawneh A, Khleifat W, Almajali I, Buqain R, Shadid KA, Aslowayeh N. Antibacterial activity of airborne fungal mediated nanoparticles in combination with Foeniculum vulgare essential oil. JOURNAL OF HERBMED PHARMACOLOGY 2022. [DOI: 10.34172/jhp.2022.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: A cost-effective and ecologically friendly method of generating silver nanoparticles (AgNPs) includes pathways that utilize a variety of biological sources to decrease metal ions. This study was designed to synthesize AgNPs using a fungus strain Aspergillus flavus and evaluate its antibacterial activities alone or in combination with Foeniculum vulgare (fennel) essential oil (EO). Methods: The antibacterial activity of different concentrations of biosynthesized AgNPs by Aspergillus flavus individually and in combination with fennel EO was investigated using disc diffusion methods and minimal inhibitory concentration (MIC). Bacterial species, including Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Enterobacter cloacae, Shigella sp., Staphylococcus aureus, and Staphylococcus epidermidis were tested. Results: Formation of dark brown color, ultraviolet-visible (UV/Vis) spectroscopy, transmission electron microscope (TEM), and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) were used for the characterization of AgNPs. Obvious synergistic effects were observed between AgNPs and EO of fennel (F. vulgare) with all tested bacteria except S. aureus, through increases in fold area of inhibition (IFAs) within the range of 0.15 to 8.87. Although S. aureus had the most susceptibility toward both AgNPs and EO of fennel (24 and 17 mm, respectively), no synergistic activity was exhibited. The best synergistic capacity resulted from AgNPs and fennel EO was observed against S. epidermidis (8.87-fold in IFA). Conclusion: This study revealed that when biosynthesized AgNPs were mixed with the EO of F. vulgare, they became more bacteriostatic and might be developed to treat bacterial infections in the future.
Collapse
Affiliation(s)
- Haitham Qaralleh
- Department of Medical Laboratory Sciences, Faculty of Science, Mutah University, Al-Karak, Jordan
| | - Khaled Khleifat
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
- Biology Department, College of Science, Mutah University, Al-Karak, Jordan
| | - Muhamad Al-Limoun
- Biology Department, College of Science, Mutah University, Al-Karak, Jordan
| | - Amjed Al-Tarawneh
- Prince Faisal Center for Dead Sea, Environmental and Energy Research, Mu’tah University, Jordan
| | - Waqar Khleifat
- Biology Department, College of Science, Mutah University, Al-Karak, Jordan
| | - Ibrahem Almajali
- Department of Medical Laboratory Sciences, Faculty of Science, Mutah University, Al-Karak, Jordan
| | - Rula Buqain
- Cell Therapy Center, University of Jordan, Amman, Jordan
| | - Khalid A. Shadid
- Pharmacological and Diagnostic Research Center (PDRC), Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Noorah Aslowayeh
- Department of Biology, College of Education (Majmaah), Majmaah University, Al-Majmaah,11952, Saudi Arabia
| |
Collapse
|