151
|
Maache S, Laaroussi H, Soulo N, Nouioura G, Boucetta N, Bouslamti M, Saghrouchni H, A Bin Jardan Y, Ibenmoussa S, Bourhia M, Lyoussi B, Elarabi I. The antioxidant, antidiabetic, and antihyperlipidemic effects of the polyphenolic extract from Salvia blancoana subsp. mesatlantica on induced diabetes in rats. BIORESOUR BIOPROCESS 2024; 11:62. [PMID: 38926327 PMCID: PMC11208370 DOI: 10.1186/s40643-024-00769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/06/2024] [Indexed: 06/28/2024] Open
Abstract
Currently, several studies have demonstrated the benefits of medicinal plants in managing type 2 diabetes. In this work, we evaluated the beneficial effects of the polyphenolic extract (PESB) from Salvia blancoana subsp. mesatlantica in the management of hypercaloric-feeding and small-dose alloxan-brought type 2 diabetes in rats. We analyzed the chemical constituents of the extract, including flavones and flavonols content, to understand its biological action. The antioxidant activities were evaluated by total antioxidant action, scavenging effect of the free radical DPPH, and reducing power. The obtained results showed that the value of TFC was estimated at 31.90 ± 0.34 mgEQ/g in the PESB extract. The total antioxidant capacity was estimated at 593.51 ± 4.09 mg (EAA)/g, the value of DPPH IC50 was 7.3 ± 0.00 μg/mL, and the value of EC50 of reducing power was estimated at 6.43 ± 0.01 μg/mL. In total, 14 phenolic compounds were identified and the naringin was the most dominant (63.19%) while the vanillin was the less recorded (0.10%). Serum glucose decreased significantly (p < 0.05) in rats given PESB (100 mg/kg) after four weeks. Glibenclamide (GLB) and PESB reduced HbA1c and increased plasma insulin in diabetic rats, restoring HOMA-β and HOMA-IR levels to near-normal. Additionally, diabetic rats treated with GLB or PESB showed statistically equivalent results to those of non-diabetic rats regarding hepatic enzymes, renal and lipid markers, as well as cardiovascular indices. The weight loss was significantly lower in diabetic rats receiving a dose of PESB (100 mg/kg), and GLB compared to corresponding untreated diabetic rats (p < 0.01). PESB and GLB showed a prominent protective function in the pancreas, liver, and kidney tissues. This investigation demonstrates the capacity of extracts from leaves of S. blancoana subsp. mesatlantica to manage diabetes mellitus due to their richness in a wide range of bioactive compounds. Therefore, more investigations are required to estimate the safety of the plant use.
Collapse
Affiliation(s)
- Souad Maache
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Hassan Laaroussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Najoua Soulo
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Ghizlane Nouioura
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | | | - Mohammed Bouslamti
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Hamza Saghrouchni
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, 01250, Balcalı, Adana, Türkiye.
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 11451, Riyadh, Saudi Arabia
| | - Samir Ibenmoussa
- Laboratory of Therapeutic and Organic Chemistry, Faculty of Pharmacy, University of Montpellier, 34000, Montpellier, France
| | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization , Faculty of Sciences, Ibn Zohr University, 80060, Agadir, Morocco
- Laboratory of Chemistry-Biochemistry, Environment, Nutrition, and Health, Faculty of Medicine and Pharmacy, University Hassan II, B. P. 5696, Casablanca, Morocco
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Ilham Elarabi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
152
|
Xie W, Chen C, Li H, Tu Y, Zhong Y, Lin Z, Cai Z. Imidacloprid-induced lung injury in mice: Activation of the PI3K/AKT/NF-κB signaling pathway via TLR4 receptor engagement. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172910. [PMID: 38701926 DOI: 10.1016/j.scitotenv.2024.172910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Significant impairment of pulmonary function has been demonstrated through long-term exposure to neonicotinoid insecticides, such as imidacloprid (IMI). However, the underlying mechanisms of lung injury induced by IMI remain unclear. In this study, a mouse model of IMI-induced pulmonary injury was established, and the toxicity and lung damage were assessed through mouse body weight, organ index, hematological parameters, and histopathological analysis of lung tissues. Furthermore, metabolomics and transcriptomics techniques were employed to explore the mechanistic aspects. Results from the toxicity assessments indicated that mouse body weight was significantly reduced by IMI, organ index was disturbed, and hematological parameters were disrupted, resulting in pulmonary injury. The mechanistic experimental results indicate that the differences in metabolites and gene expression in mouse lungs could be altered by IMI. Validation of the results through combined analysis of metabolomics and transcriptomics revealed that the mechanism by which IMI induces lung injury in mice might be associated with the activation of the TLR4 receptor, thereby activating the PI3K/AKT/NF-κB signaling pathway to induce inflammation in mouse lungs. This study provided valuable insights into the mechanisms underlying IMI-induced pulmonary damage, potentially contributing to the development of safer pest control strategies. The knowledge gained served as a robust scientific foundation for the prevention and treatment of IMI-related pulmonary injuries.
Collapse
Affiliation(s)
- Wen Xie
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Canrong Chen
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Heming Li
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yuxin Tu
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yanhui Zhong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, 999077, Hong Kong.
| |
Collapse
|
153
|
Huang Y, Shi W, He Q, Tan J, Tong J, Yu B. Racial and ethnic influences on carotid atherosclerosis: Epidemiology and risk factors. SAGE Open Med 2024; 12:20503121241261840. [PMID: 39045542 PMCID: PMC11265241 DOI: 10.1177/20503121241261840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/28/2024] [Indexed: 07/25/2024] Open
Abstract
Carotid atherosclerosis-related stenosis, marked by atherosclerotic plaque formation in the carotid artery, significantly increases ischemic stroke risk. Its prevalence varies across ethnic groups, reflecting racial disparities. Epidemiological studies have highlighted different susceptibilities to carotid stenosis among racial groups. Native Americans and Whites show greater vulnerability, indicating genetic and environmental influences. The impact of carotid stenosis is more severe in Hispanic and Black populations, with a higher incidence of related brain injuries, underscoring the need for targeted interventions. Comparative imaging studies between Chinese and White individuals reveal unique patterns of carotid stenosis, enhancing understanding of its pathophysiology and management across ethnicities. This review also categorizes risk factors, distinguishing those with racial disparity (such as genetic loci, sleep apnea, and emotional factors, socioeconomic status) from those without. In summary, racial disparities affect carotid stenosis, leading to varying susceptibilities and outcomes among ethnic groups. Recognizing these differences is essential for developing effective prevention, diagnosis, and management strategies. Addressing these disparities is critical to reducing ischemic stroke's burden across populations. Continued research and targeted interventions are crucial to improve outcomes for individuals at risk of carotid stenosis and its complications.
Collapse
Affiliation(s)
- Yijun Huang
- Department of General Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Weihao Shi
- Department of General Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Qing He
- Department of General Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jinyun Tan
- Department of General Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jindong Tong
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Bo Yu
- Department of General Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai, China
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
154
|
Wang X, Chen S, Yu C, Lu R, Sun Y, Guan Z, Gao Y. Secreted frizzled-related protein 5 overexpression reverses oxLDL-induced lipid accumulation in human vascular smooth muscle cells. Biosci Biotechnol Biochem 2024; 88:776-783. [PMID: 38714325 DOI: 10.1093/bbb/zbae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/23/2024] [Indexed: 05/09/2024]
Abstract
Atherosclerosis (AS) is the major cause of multiple cardiovascular diseases. In addition, the lipid accumulation of human vascular smooth muscle cells (HVSMCs) can cause the occurrence of AS. Secreted frizzled-related protein 5 (Sfrp5) was known to be downregulated in AS; however, the detailed function of Sfrp5 in HVSMCs remains unclear. Specifically, we found that Sfrp5 expression in oxLDL-treated HVSMCs was downregulated. Sfrp5 overexpression inhibited the viability of HVSMCs induced by oxLDL. In addition, oxLDL-induced proliferation and migration in HVSMCs were abolished by Sfrp5 overexpression. Sfrp5 overexpression reduced oxLDL-caused oxidative stress, lipid accumulation, and inflammation in HVSMCs. Meanwhile, oxLDL treatment increased the expressions of Wnt5a, c-Myc, and β-catenin in HVSMCs, while this phenomenon was rescued by Sfrp5 overexpression. Furthermore, the inhibitory effect of Sfrp5 upregulation on the viability and migration of HVSMCs was reversed by R-spondin 1. These results indicate that Sfrp5 overexpression could reverse oxLDL-induced lipid accumulation in HVSMCs through inactivating Wnt5a/β-catenin signaling pathway.
Collapse
MESH Headings
- Humans
- Lipoproteins, LDL/metabolism
- Lipoproteins, LDL/pharmacology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Wnt-5a Protein/metabolism
- Wnt-5a Protein/genetics
- Cell Movement/drug effects
- Lipid Metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Oxidative Stress
- beta Catenin/metabolism
- beta Catenin/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Signal Transduction
Collapse
Affiliation(s)
- Xiaogao Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Shiyuan Chen
- Department of Vascular Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Chaowen Yu
- Department of Vascular Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Ran Lu
- Department of Vascular Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Yong Sun
- Department of Vascular Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Zeyu Guan
- Department of Vascular Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Yong Gao
- Department of Vascular Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| |
Collapse
|
155
|
Mendes L, Queiroz M, Sena CM. Melatonin and Vascular Function. Antioxidants (Basel) 2024; 13:747. [PMID: 38929187 PMCID: PMC11200504 DOI: 10.3390/antiox13060747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
The indolamine hormone melatonin, also known as N-acetyl-5-methoxytrypamine, is frequently associated with circadian rhythm regulation. Light can suppress melatonin secretion, and photoperiod regulates melatonin levels by promoting its production and secretion at night in response to darkness. This hormone is becoming more and more understood for its functions as an immune-modulatory, anti-inflammatory, and antioxidant hormone. Melatonin may have a major effect on several diabetes-related disturbances, such as hormonal imbalances, oxidative stress, sleep disturbances, and mood disorders, according to recent research. This has raised interest in investigating the possible therapeutic advantages of melatonin in the treatment of diabetic complications. In addition, several studies have described that melatonin has been linked to the development of diabetes, cancer, Alzheimer's disease, immune system disorders, and heart diseases. In this review, we will highlight some of the functions of melatonin regarding vascular biology.
Collapse
Affiliation(s)
| | | | - Cristina M. Sena
- Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
156
|
Sun S, Guo H, Shang E, Guo Q, Ju A, Li Y, Feng Y, Guo Y, Yang D, Lü S. Lipidomics study of Liujunzi decoction in hyperlipidemia rats with spleen deficiency based on UPLC-Q-TOF/MS. Heliyon 2024; 10:e31710. [PMID: 38882295 PMCID: PMC11177058 DOI: 10.1016/j.heliyon.2024.e31710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Hyperlipidemia refers to the abnormal levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL-C) and high-density lipoprotein (HDL-C) in peripheral blood circulation. It is a predominant risk factor underlying cardiovascular and cerebrovascular diseases, including coronary heart disease and atherosclerosis. Furthermore, it is also one of the most prevalent chronic diseases globally. Liujunzi Decoction is the basic prescription for the treatment of spleen and stomach diseases. It can tonify the spleen and qi, remove dampness, and reduce turbidity. Moreover, it is also clinically used for the treatment of spleen deficiency hyperlipidemia. However, its metabolites and therapeutic effect on spleen deficiency hyperlipidemia have not been comprehensively determined in vitro and in vivo. This study established a rat model of spleen deficiency hyperlipidemia by inducing starvation and satiety disorders, exhaustion swimming, and intragastric administration of the fat emulsion. To identify related metabolite changes and serum lipid composition, UPLC-Q-TOF-MS, PCA, and OPLS-DA lipidological methods were performed. The results demonstrated significant changes in rat's signs during the modeling process, which were consistent with the criteria for the syndrome differentiation of spleen deficiency in traditional Chinese medicine. Furthermore, this study identified 100 potential biomarkers in rat serum, of which 52 were associated with lipid synthesis, such as LPC, PC, PI, PE, PA, Cer, SM, etc. The pathways involved were glycerol phospholipid, sphingomyelin, and glycerol ester metabolisms. After the Liujunzi decoction intervention, 56 potential biomarkers were observed in the high-dose group, alleviating the metabolic spectrum imbalance by reducing metabolite levels. In addition, metabolic pathway disturbances were markedly improved. This study provides references for future studies on Liujunzi decoction and furnishes essential data for assessing the relationships between chemical constituents and pharmacological activities of Liujunzi decoction.
Collapse
Affiliation(s)
- Shuang Sun
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongli Guo
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Eryu Shang
- Fire Control Room, Heilongjiang Forest Protection Institute, Harbin, China
| | - Qiaoxin Guo
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Aixia Ju
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yalun Li
- University of Wisconsin Madison, Madison, WI, 53715, USA
| | - Yawen Feng
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuyan Guo
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Dayu Yang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shaowa Lü
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
157
|
Xie F, Liu B, Qiao W, He JZ, Cheng J, Wang ZY, Hou YM, Zhang X, Xu BH, Zhang Y, Chen YG, Zhang MX. Smooth muscle NF90 deficiency ameliorates diabetic atherosclerotic calcification in male mice via FBXW7-AGER1-AGEs axis. Nat Commun 2024; 15:4985. [PMID: 38862515 PMCID: PMC11166998 DOI: 10.1038/s41467-024-49315-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
Hyperglycemia accelerates calcification of atherosclerotic plaques in diabetic patients, and the accumulation of advanced glycation end products (AGEs) is closely related to the atherosclerotic calcification. Here, we show that hyperglycemia-mediated AGEs markedly increase vascular smooth muscle cells (VSMCs) NF90/110 activation in male diabetic patients with atherosclerotic calcified samples. VSMC-specific NF90/110 knockout in male mice decreases obviously AGEs-induced atherosclerotic calcification, along with the inhibitions of VSMC phenotypic changes to osteoblast-like cells, apoptosis, and matrix vesicle release. Mechanistically, AGEs increase the activity of NF90, which then enhances ubiquitination and degradation of AGE receptor 1 (AGER1) by stabilizing the mRNA of E3 ubiquitin ligase FBXW7, thus causing the accumulation of more AGEs and atherosclerotic calcification. Collectively, our study demonstrates the effects of VSMC NF90 in mediating the metabolic imbalance of AGEs to accelerate diabetic atherosclerotic calcification. Therefore, inhibition of VSMC NF90 may be a potential therapeutic target for diabetic atherosclerotic calcification.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Glycation End Products, Advanced/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Mice, Knockout
- Atherosclerosis/metabolism
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Humans
- F-Box-WD Repeat-Containing Protein 7/metabolism
- F-Box-WD Repeat-Containing Protein 7/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Nuclear Factor 90 Proteins/metabolism
- Nuclear Factor 90 Proteins/genetics
- Receptor for Advanced Glycation End Products/metabolism
- Receptor for Advanced Glycation End Products/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Vascular Calcification/genetics
- Mice, Inbred C57BL
- Ubiquitination
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Hyperglycemia/metabolism
- Hyperglycemia/genetics
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Plaque, Atherosclerotic/genetics
- Apoptosis
Collapse
Affiliation(s)
- Fei Xie
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
| | - Bin Liu
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
| | - Wen Qiao
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jing-Zhen He
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jie Cheng
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhao-Yang Wang
- Department of Cardiology of Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Ya-Min Hou
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xu Zhang
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Bo-Han Xu
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Yu-Guo Chen
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China.
| | - Ming-Xiang Zhang
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
158
|
Li K, Yang L, Zhao D. The relationship between HbA1c control pattern and atherosclerosis progression of diabetes: a prospective study of Chinese population. Diabetol Metab Syndr 2024; 16:127. [PMID: 38858794 PMCID: PMC11163799 DOI: 10.1186/s13098-024-01370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/30/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND This study aims to comprehensively explain of glycosylated Hemoglobin (HbA1c) control patterns and help determine the causal relationship between glycemic control patterns and atherosclerosis progression, thereby contributing to the effective management of diabetes complications. METHOD All participants registered at the National Metabolic Management Center (MMC) of Beijing Luhe Hospital. The HbA1c pattern was described by HbA1c variability and trajectory groups of HbA1c. Then we examined the associations between the HbA1c pattern and the changes of intima-media thickness (ΔIMT) using covariate-adjusted means (SE) of ΔIMT, which were calculated by multiple linear regression analyses adjusted for the covariates. Finally, a cross-lagged panel model (CLPM) was performed to further verify the bidirectional relationship between IMT and HbA1c. RESULTS After data cleaning, a total of 1041 type 2 diabetes patients aged 20-80 years were included in this study. Except for average real variability (ARV), the other variation variables of HbA1c were associated with ΔIMT% (P < 0.05). Four discrete trajectories of HbA1c were identified in trajectory analysis. Comparing with the low-stable trajectory group of HbA1c, the covariate-adjusted means (SE) of ΔIMT% were significantly higher in Moderate-increase, U-shape and relative high trajectory groups, the mean (SE) were 7.03 (0.031), 15.49 (0.185), 14.15 (0.029), respectively. Meanwhile, there were significant bidirectional cross-lagged associations between HbA1c and IMT after adjusting for covariates. CONCLUSION We found four discrete trajectory groups of HbA1c during the long-term follow-up of diabetes. There was a positive association between HbA1c variability and the progression of atherosclerosis. Our study suggested that patients with diabetes should avoid roller coaster changes in glucose over a long period when controlling blood glucose.
Collapse
Affiliation(s)
- Kun Li
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, China
- Beijing Key Laboratory of Diabetes Research and Care, No.82, Xinhua South Road, Beijing, 101149, China
| | - Longyan Yang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, China.
- Beijing Key Laboratory of Diabetes Research and Care, No.82, Xinhua South Road, Beijing, 101149, China.
| | - Dong Zhao
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, China.
- Beijing Key Laboratory of Diabetes Research and Care, No.82, Xinhua South Road, Beijing, 101149, China.
| |
Collapse
|
159
|
Liu C, Guo X, Wang B, Meng T, Li C, Zhou Y, Fu J. Association between Cardiometabolic Index and Cognitive Function: A Cross-Sectional Study in a Diabetic-Based Population. Dement Geriatr Cogn Disord 2024; 53:237-247. [PMID: 38843782 DOI: 10.1159/000539482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/20/2024] [Indexed: 07/12/2024] Open
Abstract
INTRODUCTION Diabetes is a significant risk factor for cognitive impairment. Therefore, early identification of cognitive impairment in diabetic patients is particularly important. The aim of this study was to assess the relationship between Cardiometabolic index (CMI) and cognitive function in a diabetic population. METHODS A cross-sectional study was conducted by collecting information from the National Health and Nutrition Examination Survey (NHANES) 2011-2014. Multiple linear regression models were used to investigate the correlation between CMI and low cognitive function in a diabetic population. Threshold effects analysis and fitted smoothing curves were used to describe the nonlinear links. Interaction tests and subgroup analyses were also performed. RESULTS A total of 1,050 people participated in this study, including 561 men and 489 women. In the fully corrected model, CMI was positively associated with low cognitive performance as assessed by CERAD Word List Learning Test (CERAD W-L), Animal Fluency Test (AFT), and Digit Symbol Substitution Test (DSST) (OR = 1.37 [1.14, 1.72], p = 7.4 × 10-3), (OR = 1.21 [1.04, 1.51], p = 1.26 × 10-2), and (OR = 1.27 [1.08, 1.63], p = 2.53 × 10-2). Our study found that diabetic patients with higher CMI were at greater risk of developing low cognitive function. The effect of the subgroups on the positive association of CMI with cognitive impairment was not significant. A non-linear association between low cognitive performance and CMI was determined by CERAD W-L, AFT, and DSST (log-likelihood ratio <5 × 10-2). In addition, our also study found that CMI was a better predictor of cognitive impairment in diabetes than weight-adjusted waist index (WWI). CONCLUSION Increased CMI is associated with an increased risk of cognitive impairment in people with diabetes. CMI can be used as a new anthropometric measure for predicting cognitive impairment in diabetes, with stronger predictive power than WWI.
Collapse
Affiliation(s)
- Changxing Liu
- Heilongjiang University of Chinese Medicine, Harbin, China,
| | - Xinyi Guo
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Boyu Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tianwei Meng
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chengjia Li
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yabin Zhou
- The First Hospital Affiliated to Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiamei Fu
- The First Hospital Affiliated to Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
160
|
Jin S, Liu J, Jia Y, Sun C, Na L. Temporal relationships between blood glucose, lipids and BMI, and their impacts on atherosclerosis: a prospective cohort study. BMJ Open 2024; 14:e079521. [PMID: 38839391 PMCID: PMC11163681 DOI: 10.1136/bmjopen-2023-079521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 04/29/2024] [Indexed: 06/07/2024] Open
Abstract
OBJECTIVES This study aimed to explore the temporal relationship between blood glucose, lipids and body mass index (BMI), and their impacts on atherosclerosis (AS). DESIGN A prospective cohort study was designed. SETTING AND PARTICIPANTS A total of 2659 subjects from Harbin Cohort Study on Diet, Nutrition and Chronic Non-communicable Diseases, and aged from 20 to 74 years were included. PRIMARY AND SECONDARY OUTCOME MEASURES Body weight, height, fasting blood glucose (FBG) and 2-hour postprandial glucose (2-h PG), blood lipids including total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-c) and high-density lipoprotein cholesterol (HDL-c) were measured at baseline and follow-up. Brachial ankle pulse wave velocity (baPWV) was examined at follow-up as a marker of AS risk. Logistic regression analysis, cross-lagged path analysis and mediation analysis were performed to explore the temporal relationships between blood glucose, lipids and BMI, and their impacts on AS risk. RESULTS Logistic regression analysis indicated that increased FBG, 2-h PG, TC, TG, LDL-c and BMI were positively associated with AS risk, while increased HDL-c was negatively associated with AS risk. The path coefficients from baseline blood parameters to the follow-up BMI were significantly greater than those from baseline BMI to the follow-up blood parameters. Mediation analysis suggested that increased FBG, 2-h PG, TC, TG and LDL-c could increase AS risk via increasing BMI, the effect intensity from strong to weak was LDL-c>TC>TG>FBG>2 h PG, while increased HDL-c could decrease AS risk via decreasing BMI. CONCLUSIONS Changes in blood glucose and lipids could cause change in BMI, which mediated the impacts of blood glucose and lipids on AS risk. These results highlight the importance and provide support for the early and comprehensive strategies of AS prevention and control.
Collapse
Affiliation(s)
- Shanshan Jin
- Nutrition, Chengdu Women's and Children's Central Hospital, Chengdu, China
- Department of Nutrition and Food Hygiene, Harbin Medical University, Harbin, China
| | - Junyi Liu
- Department of Nutrition and Food Hygiene, Harbin Medical University, Harbin, China
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yubing Jia
- Department of Nutrition and Food Hygiene, Harbin Medical University, Harbin, China
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, Harbin Medical University, Harbin, China
| | - Lixin Na
- Department of Nutrition and Food Hygiene, Harbin Medical University, Harbin, China
- Department of Nutrition and Food Hygiene, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
161
|
Chen Y, Wei Y, Tang W. The role of hydrogen in the prevention and treatment of coronary atherosclerotic heart disease. Eur J Pharmacol 2024; 972:176586. [PMID: 38615891 DOI: 10.1016/j.ejphar.2024.176586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Coronary atherosclerotic heart disease (CHD) is a primary cardiovascular disease caused by atherosclerosis (AS), which is characterized by chronic inflammation and lipid oxidative deposition. Molecular hydrogen (H2) is an effective anti-inflammatory agent and has potential to ameliorate glycolipid metabolism disorders, which is believed to exert beneficial effects on the prevention and treatment of CHD. It is suggested that H2 reduces inflammation in CHD by regulating multiple pathways, including NF-κB inflammatory pathway, pyroptosis, mitophagy, endoplasmic reticulum (ER) stress, and Nrf2 antioxidant pathway. Additionally, H2 may improve glycolipid metabolism by mediation of PI3K and AMPK signalling pathways, contributing to inhibition of the occurrence and development of CHD. This review elaborates pathogenesis of CHD and evaluates the role of H2 in CHD. Moreover, possible molecular mechanisms have been discussed and speculated, aiming to provide more strategies and directions for subsequent studies of H2 in CHD.
Collapse
Affiliation(s)
- Yunxi Chen
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, PR China
| | - Youzhen Wei
- Hydrogen Medicine Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, 271000, PR China; Research Center for Translational Medicine, Jinan People's Hospital, Shandong First Medical University, Jinan, Shandong, 271100, PR China.
| | - Wenjie Tang
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, PR China; Research Institute of Regenerative Medicine, East Hospital, Tongji University, 1800 Yuntai Road, Shanghai, 200123, PR China.
| |
Collapse
|
162
|
Scott DA, Ponir C, Shapiro MD, Chevli PA. Associations between insulin resistance indices and subclinical atherosclerosis: A contemporary review. Am J Prev Cardiol 2024; 18:100676. [PMID: 38828124 PMCID: PMC11143894 DOI: 10.1016/j.ajpc.2024.100676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 06/05/2024] Open
Abstract
Even in the absence of hyperglycemia or hyperlipidemia, it has been demonstrated that insulin resistance is an independent risk factor for atherosclerosis. Finding markers of insulin resistance that are associated with markers of atherosclerosis could help identify patients early in their disease course and allow for earlier initiation of preventative treatments. We reviewed available evidence regarding associations between known markers of insulin resistance and known markers of atherosclerosis. Serum triglycerides (TG), triglyceride-glucose index (TyG), and homeostasis model assessment (HOMA) were the insulin resistance markers reviewed. The coronary artery calcium score (CAC), carotid intimal medium thickness (cIMT), and pulse wave velocity (PWV) were reviewed as markers of atherosclerosis. TyG showed the most consistent association with CAC across broad demographic groups, though HOMA showed potential in obese individuals and those without diabetes. The data regarding cIMT and the reviewed insulin resistance markers did not yield any consistent associations, though very elevated TyG did appear to be associated with cIMT among normal weight individuals. Serum triglycerides showed a strong and consistent association with PWV across numerous studies and populations, though TyG index also demonstrated a strong association with PWV in a large systematic review. Of the insulin resistance markers reviewed, the TyG index appears to be most consistently associated with markers of atherosclerosis. TyG can be easily calculated with routine labwork and has the potential to inform decisions regarding early initiation of therapies in patients who would otherwise not be treated. Targeting insulin sensitivity prior to the development of T2DM has the potential to reduce development and progression of atherosclerosis, and patients without T2DM but who have elevated TyG index should be the topic of further research.
Collapse
Affiliation(s)
- Drake A. Scott
- Department of Internal Medicine, Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - Cynthia Ponir
- Department of Internal Medicine, Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - Michael D. Shapiro
- Department of Internal Medicine, Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - Parag A. Chevli
- Department of Internal Medicine, Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| |
Collapse
|
163
|
Chen C, Liang Z, He Y, Li A, Gao Y, Pan Q, Cao J. Pravastatin promotes type 2 diabetes vascular calcification through activating intestinal Bacteroides fragilis to induce macrophage M1 polarization. J Diabetes 2024; 16:e13514. [PMID: 38112268 PMCID: PMC11128749 DOI: 10.1111/1753-0407.13514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/20/2023] [Accepted: 11/18/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Pravastatin is an oral lipid-lowering drug, commonly used by patients with diabetes that is positively correlated with the occurrence of vascular calcification (VC), but the mechanism is unclear. METHODS In this study, 16S rRNA sequencing and qRT-PCR wereused to detect the differential gut bacteria. Metabolomics and ELISA were used to analyze the differential metabolites. qRT-PCR and western blotting (WB) were used to detect genes expression. Flow cytometry was used to analyze macrophage phenotype. Immunohistochemistry was used to analyze aortic calcification. RESULTS We found that gut Bacteroides fragilis (BF) increased significantly in patients who took pravastatin or type 2 diabetes (T2D) mice treated with pravastatin. In vitro experiments showed that pravastatin had little effect on BF but significantly promoted BF proliferation in vivo. Further analysis showed that ArsR was an important gene for pravastatin to regulate the activation of BF, and overexpression of ArsR significantly promoted the secretion of 3,4,5-trimethoxycinnamic acid (TMCA). Importantly, pravastatin significantly promoted BF secretion of TMCA and significantly increased TMCA secretion in T2D patients or T2D mice. TMCA had little effect on vascular smooth muscle cell calcification but significantly promoted macrophage M1 polarization, which we had demonstrated that M1 macrophages promoted T2D VC. In vivo studies found that pravastatin significantly upregulated TMCA levels in the feces and serum of T2D mice transplanted with BF and promoted the macrophage M1 polarization in bone marrow and the osteoblastic differentiation of aortic cells. Similar results were obtained in T2D mice after intravenous infusion of TMCA. CONCLUSIONS Promoting intestinal BF to secrete TMCA, which leads to macrophage M1 polarization, is an important mechanism by which pravastatin promotes calcification, and the result will be used for the optimization of clinical medication strategies of pravastatin supplying a theoretical basis and experimental basis.
Collapse
Affiliation(s)
- Cong Chen
- The First Affiliated Hospital, Department of Laboratory Medicine, Hengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Zheng‐Feng Liang
- The First Affiliated Hospital, Institute of Endocrinology and metabolism, Center for Clinical Research in Diabetes, Hengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Yu‐Qi He
- The First Affiliated Hospital, Department of Laboratory Medicine, Hengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - An‐Qi Li
- The First Affiliated Hospital, Institute of Endocrinology and metabolism, Center for Clinical Research in Diabetes, Hengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Yan Gao
- The First Affiliated Hospital, Institute of Endocrinology and metabolism, Center for Clinical Research in Diabetes, Hengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Qun‐Wen Pan
- Guangdong Key Laboratory of Age‐Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| | - Jing‐Song Cao
- The First Affiliated Hospital, Institute of Endocrinology and metabolism, Center for Clinical Research in Diabetes, Hengyang Medical SchoolUniversity of South ChinaHengyangChina
| |
Collapse
|
164
|
Li X, Zou J, Lin A, Chi J, Hao H, Chen H, Liu Z. Oxidative Stress, Endothelial Dysfunction, and N-Acetylcysteine in Type 2 Diabetes Mellitus. Antioxid Redox Signal 2024; 40:968-989. [PMID: 38497734 PMCID: PMC11535463 DOI: 10.1089/ars.2023.0524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024]
Abstract
Significance: Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality globally. Endothelial dysfunction is closely associated with the development and progression of CVDs. Patients with diabetes mellitus (DM) especially type 2 DM (T2DM) exhibit a significant endothelial cell (EC) dysfunction with substantially increased risk for CVDs. Recent Advances: Excessive reactive oxygen species (ROS) and oxidative stress are important contributing factors to EC dysfunction and subsequent CVDs. ROS production is significantly increased in DM and is critically involved in the development of endothelial dysfunction in diabetic patients. In this review, efforts are made to discuss the role of excessive ROS and oxidative stress in the pathogenesis of endothelial dysfunction and the mechanisms for excessive ROS production and oxidative stress in T2DM. Critical Issues: Although studies with diabetic animal models have shown that targeting ROS with traditional antioxidant vitamins C and E or other antioxidant supplements provides promising beneficial effects on endothelial function, the cardiovascular outcomes of clinical studies with these antioxidant supplements have been inconsistent in diabetic patients. Future Directions: Preclinical and limited clinical data suggest that N-acetylcysteine (NAC) treatment may improve endothelial function in diabetic patients. However, well-designed clinical studies are needed to determine if NAC supplementation would effectively preserve endothelial function and improve the clinical outcomes of diabetic patients with reduced cardiovascular morbidity and mortality. With better understanding on the mechanisms of ROS generation and ROS-mediated endothelial damages/dysfunction, it is anticipated that new selective ROS-modulating agents and effective personalized strategies will be developed for the management of endothelial dysfunction in DM.
Collapse
Affiliation(s)
- Xin Li
- Department of Endocrinology, Ningbo No. 2 Hospital, Ningbo, China
| | - Junyong Zou
- Department of Respiratory Medicine, Ningbo No. 2 Hospital, Ningbo, China
| | - Aiping Lin
- Center for Precision Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Jingshu Chi
- Center for Precision Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Hong Hao
- Center for Precision Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Hong Chen
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhenguo Liu
- Center for Precision Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
| |
Collapse
|
165
|
Javanshir E, Ebrahimi ZJ, Mirzohreh ST, Ghaffari S, Banisefid E, Alamdari NM, Roshanravan N. Disparity of gene expression in coronary artery disease: insights from MEIS1, HIRA, and Myocardin. Mol Biol Rep 2024; 51:712. [PMID: 38824221 DOI: 10.1007/s11033-024-09657-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024]
Abstract
INTRODUCTION Coronary artery disease (CAD) in young adults can have devastating consequences. The cardiac developmental gene MEIS1 plays important roles in vascular networks and heart development. This gene effects on the regeneration capacity of the heart. Considering role of MEIS1 in cardiac tissue development and the progression of myocardial infarction this study investigated the expression levels of the MEIS1, HIRA, and Myocardin genes in premature CAD patients compared to healthy subjects and evaluated the relationships between these genes and possible inflammatory factors. METHODS AND RESULTS The study conducted a case-control design involving 35 CAD patients and 35 healthy individuals. Peripheral blood mononuclear cells (PBMCs) were collected, and gene expression analysis was performed using real-time PCR. Compared with control group, the number of PBMCs in the CAD group exhibited greater MEIS1 and HIRA gene expression, with fold changes of 2.45 and 3.6. The expression of MEIS1 exhibited a negative correlation with IL-10 (r= -0.312) expression and positive correlation with Interleukin (IL)-6 (r = 0.415) and tumor necrosis factor (TNF)-α (r = 0.534) gene expression. Moreover, there was an inverse correlation between the gene expression of HIRA and that of IL-10 (r= -0.326), and a positive correlation was revealed between the expression of this gene and that of the IL-6 (r = 0.453) and TNF-α (r = 0.572) genes. CONCLUSION This research demonstrated a disparity in expression levels of MEIS1, HIRA, and Myocardin, between CAD and healthy subjects. The results showed that, MEIS1 and HIRA play significant roles in regulating the synthesis of proinflammatory cytokines, namely, TNF-α and IL-6.
Collapse
Affiliation(s)
- Elnaz Javanshir
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Samad Ghaffari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Banisefid
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Neda Roshanravan
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
166
|
Tao YF, Pan YF, Zhong CY, Wang QC, Hua JX, Lu SQ, Li Y, Dong YL, Xu P, Jiang BJ, Qiang J. Silencing the fatty acid elongase gene elovl6 induces reprogramming of nutrient metabolism in male Oreochromis niloticus. Int J Biol Macromol 2024; 271:132666. [PMID: 38806081 DOI: 10.1016/j.ijbiomac.2024.132666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/05/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
Elongation of very long-chain fatty acids protein 6 (ELOVL6) plays a pivotal role in the synthesis of endogenous fatty acids, influencing energy balance and metabolic diseases. The primary objective of this study was to discover the molecular attributes and regulatory roles of ELOVL6 in male Nile tilapia, Oreochromis niloticus. The full-length cDNA of elovl6 was cloned from male Nile tilapia, and was determined to be 2255-bp long, including a 5'-untranslated region of 193 bp, a 3'-untranslated region of 1252 bp, and an open reading frame of 810 bp encoding 269 amino acids. The putative protein had typical features of ELOVL proteins. The transcript levels of elovl6 differed among various tissues and among fish fed with different dietary lipid sources. Knockdown of elovl6 in Nile tilapia using antisense RNA technology resulted in significant alterations in hepatic morphology, long-chain fatty acid synthesis, and fatty acid oxidation, and led to increased fat deposition in the liver and disrupted glucose/lipid metabolism. A comparative transcriptomic analysis (elovl6 knockdown vs. the negative control) identified 5877 differentially expressed genes with significant involvement in key signaling pathways including the peroxisome proliferator-activated receptor signaling pathway, fatty acid degradation, glycolysis/gluconeogenesis, and the insulin signaling pathway, all of which are crucial for lipid and glucose metabolism. qRT-PCR analyses verified the transcript levels of 13 differentially expressed genes within these pathways. Our findings indicate that elovl6 knockdown in male tilapia impedes oleic acid synthesis, culminating in aberrant nutrient metabolism.
Collapse
Affiliation(s)
- Yi-Fan Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Yi-Fan Pan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Chun-Yi Zhong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Qing-Chun Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Ji-Xiang Hua
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Si-Qi Lu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yan Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Ya-Lun Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Bing-Jie Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China.
| |
Collapse
|
167
|
Suslov AV, Panas A, Sinelnikov MY, Maslennikov RV, Trishina AS, Zharikova TS, Zharova NV, Kalinin DV, Pontes-Silva A, Zharikov YO. Applied physiology: gut microbiota and antimicrobial therapy. Eur J Appl Physiol 2024; 124:1631-1643. [PMID: 38683402 DOI: 10.1007/s00421-024-05496-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
The gut microbiota plays an important role in maintaining human health and in the pathogenesis of several diseases. Antibiotics are among the most commonly prescribed drugs and have a significant impact on the structure and function of the gut microbiota. The understanding that a healthy gut microbiota prevents the development of many diseases has also led to its consideration as a potential therapeutic target. At the same time, any factor that alters the gut microbiota becomes important in this approach. Exercise and antibacterial therapy have a direct effect on the microbiota. The review reflects the current state of publications on the mechanisms of intestinal bacterial involvement in the pathogenesis of cardiovascular, metabolic, and neurodegenerative diseases. The physiological mechanisms of the influence of physical activity on the composition of the gut microbiota are considered. The mechanisms of the common interface between exercise and antibacterial therapy will be considered using the example of several socially important diseases. The aim of the study is to show the physiological relationship between the effects of exercise and antibiotics on the gut microbiota.
Collapse
Affiliation(s)
- Andrey V Suslov
- Russian National Centre of Surgery, Avtsyn Research Institute of Human Morphology, Moscow, 117418, Russia
- Pirogov Russian National Research Medical University (RNRMU), Moscow, 117997, Russia
| | - Alin Panas
- N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, Bld. 2, Moscow, 119991, Russia
| | - Mikhail Y Sinelnikov
- Department of Oncology, Radiotherapy and Reconstructive Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119048, Russia
| | - Roman V Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia
| | - Aleksandra S Trishina
- N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, Bld. 2, Moscow, 119991, Russia
| | - Tatyana S Zharikova
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 125009, Russia
- Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nataliya V Zharova
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 125009, Russia
| | - Dmitry V Kalinin
- Pathology Department, A.V. Vishnevsky National Medical Research Center of Surgery, Moscow, 115093, Russia
| | - André Pontes-Silva
- Postgraduate Program in Physical Therapy (PPGFT), Department of Physical Therapy (DFisio), Universidade Federal de São Carlos (UFSCar), São Carlos (SP), Brazil.
| | - Yury O Zharikov
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 125009, Russia
| |
Collapse
|
168
|
Hui B, Zhang X, Dong D, Shu Y, Li R, Yang Z. High-dose sinomenine attenuates ischemia/reperfusion-induced hepatic inflammation and oxidative stress in rats with diabetes mellitus. Immun Inflamm Dis 2024; 12:e1271. [PMID: 38888355 PMCID: PMC11184649 DOI: 10.1002/iid3.1271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 06/20/2024] Open
Abstract
INTRODUCTION Ischemia-reperfusion (I/R) injury, resulting from blood flow interruption and its subsequent restoration, is a prevalent complication in liver surgery. The liver, as a crucial organ for carbohydrate and lipid metabolism, exhibits decreased tolerance to hepatic I/R in patients with diabetes mellitus (DM), resulting in a significant increase in hepatic dysfunction following surgery. This may be attributed to elevated oxidative stress and inflammation. Our prior research established sinomenine's (SIN) protective role against hepatic I/R injury. Nevertheless, the impact of SIN on hepatic I/R injury in DM rats remains unexplored. OBJECTIVE AND METHODS This study aimed to investigate the therapeutic potential of SIN in hepatic I/R injury in DM rats and elucidate its mechanism. Diabetic and hepatic I/R injury models were established in rats through high-fat/sugar diet, streptozotocin injection, and hepatic blood flow occlusion. Liver function, oxidative stress, inflammatory reaction, histopathology, and Nrf-2/HO-1 signaling pathway were evaluated by using UV spectrophotometry, biochemical assays, enzyme-linked immunosorbent assay, hematoxylin-eosin staining, and Western blot analysis. RESULTS High-dose SIN (300 mg/kg) significantly attenuated hepatic I/R injury in DM rats, reducing serum activities of ALT and AST, decreasing the AST/ALT ratio, enhancing tissue contents of SOD and GSH-Px, suppressing the levels of TNF-α and IL-6, improving the liver histopathology, and activating Nrf-2/HO-1 signaling by promoting Nrf-2 trans-location from cytoplasm to nucleus. Low-dose SIN (100 mg/kg) was ineffective. CONCLUSIONS This study demonstrates that high-dose sinomenine's mitigates hepatic I/R-induced inflammation and oxidative stress in diabetes mellitus (DM) rats via Nrf-2/HO-1 activation, suggesting its potential as a preventive strategy for hepatic I/R injury in DM patients.
Collapse
Affiliation(s)
- Bo Hui
- Department of General Surgery Unit‐4The Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Xiaogang Zhang
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Dinghui Dong
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yantao Shu
- Department of General Surgery Unit‐4The Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Ren Li
- Department of General Surgery Unit‐4The Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Zhengan Yang
- Department of General Surgery Unit‐4The Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
169
|
Swarnamali H, Ranasinghe P, Jayawardena R. Changes in serum lipids following consumption of coconut oil and palm olein oil: A sequential feeding crossover clinical trial. Diabetes Metab Syndr 2024; 18:103070. [PMID: 38981164 DOI: 10.1016/j.dsx.2024.103070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND High incidence of cardiovascular disease (CVD) in South Asia is linked to genetic predisposition and diets high in saturated fatty acids (SFAs). Increased CVD prevalence correlates with rising palm oil consumption in some South Asian countries, where coconut oil and palm olein oil are primary SFA sources. OBJECTIVE Compare the effects of coconut oil and palm olein oil on serum lipoprotein lipids and biochemical parameters in healthy adults. METHODS A sequential feeding crossover clinical trial with two feeding periods of 8 weeks each was conducted among 40 healthy adults. Participants were provided palm olein oil in the first feeding period followed by coconut oil with a 16-week washout period in between. The outcomes measured were the difference in serum low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC) and high-density lipoprotein cholesterol (HDL-C), TC/HDL-C ratio, triglycerides (TG), very-low-density lipoprotein cholesterol (VLDL-C), fasting plasma glucose (FPG), and liver enzymes. RESULTS Thirty-seven participants completed the study. LDL-C decreased by 13.0 % with palm olein oil (p < 0.001) and increased by 5.6 % with coconut oil (p = 0.044), showing a significant difference (p < 0.001). TC decreased by 9.9 % with palm olein oil (p < 0.001) and increased by 4.0 % with coconut oil (p = 0.044). CONCLUSION Palm olein oil consumption resulted in more favorable changes in lipid-related CVD risk factors (TC, LDL-C, TC:HDL-C, and FPG) compared to coconut oil. Clinical Trial Registry number and website where it was obtained: (SLCTR/2019/034); https://slctr.lk/trials/slctr-2019-034.
Collapse
Affiliation(s)
- Hasinthi Swarnamali
- Health and Wellness Unit, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka.
| | - Priyanga Ranasinghe
- Department of Pharmacology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka; University/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Ranil Jayawardena
- Department of Physiology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
170
|
Nong JC, You W, Wang YF, Xu Y, Xu T, Meng PN, Wu XQ, Wu ZM, Kong XH, Jia HB, Yin DL, Li L, Ye F. Dynamic natural components and morphological changes in nonculprit subclinical atherosclerosis in patients with acute coronary syndrome and mild chronic kidney disease at the 1-year follow-up and clinical significance at the 5-year follow-up. PLoS One 2024; 19:e0302547. [PMID: 38820294 PMCID: PMC11142449 DOI: 10.1371/journal.pone.0302547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/07/2024] [Indexed: 06/02/2024] Open
Abstract
INTRODUCTION The natural outcome of coronary plaque in acute coronary syndrome (ACS) patients with chronic kidney disease (CKD) is unique, which can be analyzed quantitatively by optical flow ratio (OFR) software. METHODS A total of 184 ACS patients with at least one nonculprit subclinical atherosclerosis (NSA) detected by optical coherence tomography (OCT) at baseline and 1-year follow-up were divided into non-CKD group (n = 106, estimated glomerular filtration rate (eGFR)> 90 mL/(min×1.73 m2)) and mild CKD group (n = 78, 60≤eGFR<90 mL/(min×1.73 m2)). Changes of normalized total atheroma volume (TAVn) of NSA was the primary endpoint at the 1-year follow-up. RESULTS Patients with mild CKD showed more TAVn progression of NSA than non-CKD (p = 0.019) from baseline to the 1-year follow-up, which was mainly due to an increase in calcium TAVn (p<0.001). The morphological change in the maximal calcification thickness (p = 0.026) was higher and the change in the distance from the calcified surface to the contralateral coronary media membrane (ΔC-to-M) at the maximal cross-sectional calcium area was lower (p<0.001) in mild CKD group than in non-CKD group. Mild CKD had more NSA related MACEs at the 5-year follow-up than non-CKD (30.8% vs. 5.8%, p = 0.045). CONCLUSIONS Mild CKD patients had more plaque progression of NSA which showed the increase of calcium component with more protrusion into the lumen morphologically at the 1-year follow-up and a higher corresponding incidence of NSA-related MACEs at the 5-year follow-up. TRIAL REGISTRATION Clinical Trial registration ClinicalTrials.gov. NCT02140801. https://classic.clinicaltrials.gov/ct2/show/NCT02140801.
Collapse
Affiliation(s)
- Jia-cong Nong
- Department of Cardiology, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing, 210006, China
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Wei You
- Department of Cardiology, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing, 210006, China
| | - Yi-fei Wang
- Department of Cardiology, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing, 210006, China
| | - Yi Xu
- Department of Cardiology, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing, 210006, China
| | - Tian Xu
- Department of Cardiology, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing, 210006, China
| | - Pei-na Meng
- Department of Cardiology, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing, 210006, China
| | - Xiang-qi Wu
- Department of Cardiology, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing, 210006, China
| | - Zhi-ming Wu
- Department of Cardiology, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing, 210006, China
| | - Xiao-han Kong
- Department of Cardiology, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing, 210006, China
| | - Hai-bo Jia
- Department of Cardiology, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing, 210006, China
| | - De-lu Yin
- Department of Cardiology, The First Hospital of Lianyungang Affiliated to Xuzhou Medical University, Haizhou District, Lianyungang, 222061, China
| | - Lang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Fei Ye
- Department of Cardiology, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing, 210006, China
| |
Collapse
|
171
|
Lin Y, Xie R, Yu T. Photodynamic Therapy for Atherosclerosis: Past, Present, and Future. Pharmaceutics 2024; 16:729. [PMID: 38931851 PMCID: PMC11206729 DOI: 10.3390/pharmaceutics16060729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
This review paper examines the evolution of photodynamic therapy (PDT) as a novel, minimally invasive strategy for treating atherosclerosis, a leading global health concern. Atherosclerosis is characterized by the accumulation of lipids and inflammation within arterial walls, leading to significant morbidity and mortality through cardiovascular diseases such as myocardial infarction and stroke. Traditional therapeutic approaches have primarily focused on modulating risk factors such as hypertension and hyperlipidemia, with emerging evidence highlighting the pivotal role of inflammation. PDT, leveraging a photosensitizer, specific-wavelength light, and oxygen, offers targeted treatment by inducing cell death in diseased tissues while sparing healthy ones. This specificity, combined with advancements in nanoparticle technology for improved delivery, positions PDT as a promising alternative to traditional interventions. The review explores the mechanistic basis of PDT, its efficacy in preclinical studies, and the potential for enhancing plaque stability and reducing macrophage density within plaques. It also addresses the need for further research to optimize treatment parameters, mitigate adverse effects, and validate long-term outcomes. By detailing past developments, current progress, and future directions, this paper aims to highlight PDT's potential in revolutionizing atherosclerosis treatment, bridging the gap from experimental research to clinical application.
Collapse
Affiliation(s)
- Yanqing Lin
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China;
| | - Ruosen Xie
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, WI 53705, USA;
| | - Tao Yu
- Department of Cardiac Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
172
|
Yin H, Lu B, Zeng K, Li Y, Ma J. Prevalence and factors associated with dyslipidemia in patients with first hospitalization for major depressive disorder: a large sample cross-sectional study. BMC Psychiatry 2024; 24:396. [PMID: 38802840 PMCID: PMC11131298 DOI: 10.1186/s12888-024-05848-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a severe mental illness with high relapse rates and high mortality. Depression not only severely limits psychosocial functioning but also reduces quality of life. It can also negatively affect patients' clinical parameters, including lipid metabolism markers. This study aimed to investigate the prevalence and risk factors of hyperlipidemia (HL) in patients with MDD who were hospitalized for the first time. METHODS In this study, we enrolled 981 patients with MDD who were hospitalized for the first time, collected their demographic data and biochemical indicators, and evaluated their clinical symptoms. We divided the patients into HL and non-HL subgroups based on whether they had co-morbid HL. We compared whether there were significant differences between the two groups regarding demographics and general clinical information. RESULTS A total of 708 of 981 MDD patients were described as being in the hyperlipidemic group, with an incidence of 72.17%. Clinical Global Impression Scale-Severity of Illness (CGI-SI) score and Hamilton Depression Scale (HAMD) score are risk factors for co-morbid HL in patients with MDD. The area under the ROC curve for the CGI-SI and HAMD score and their combined discriminatory ability was approximately 63%, 67%, and 68%, respectively. CONCLUSION The prevalence of HL was high in patients with MDD who were first hospitalized; Higher HAMD score and CGI-SI score were risk factors for the development of HL in MDD; The HAMD score and the CGI-SI score are predictive of the severity of HL.
Collapse
Affiliation(s)
- Huimin Yin
- Department of Psychiatry, Wuhan Mental Health Center, No. 89, Gongnongbing Road, Wuhan, Hubei Province, China
| | - Baili Lu
- Department of Psychiatry, Wuhan Mental Health Center, No. 89, Gongnongbing Road, Wuhan, Hubei Province, China
| | - Kuan Zeng
- Department of Psychiatry, Wuhan Mental Health Center, No. 89, Gongnongbing Road, Wuhan, Hubei Province, China
| | - Yi Li
- Department of Psychiatry, Wuhan Mental Health Center, No. 89, Gongnongbing Road, Wuhan, Hubei Province, China.
| | - Jun Ma
- Department of Psychiatry, Renmin Hospital of Wuhan University, No. 99, Zhangzhidong Road, Wuhan, Hubei Province, China.
| |
Collapse
|
173
|
Anlar GG, Anwardeen N, Al Ashmar S, Pedersen S, Elrayess MA, Zeidan A. Metabolomics Profiling of Stages of Coronary Artery Disease Progression. Metabolites 2024; 14:292. [PMID: 38921428 PMCID: PMC11205943 DOI: 10.3390/metabo14060292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/02/2024] [Accepted: 01/06/2024] [Indexed: 06/27/2024] Open
Abstract
Coronary artery disease (CAD) and atherosclerosis pose significant global health challenges, with intricate molecular changes influencing disease progression. Hypercholesterolemia (HC), hypertension (HT), and diabetes are key contributors to CAD development. Metabolomics, with its comprehensive analysis of metabolites, offers a unique perspective on cardiovascular diseases. This study leveraged metabolomics profiling to investigate the progression of CAD, focusing on the interplay of hypercholesterolemia, hypertension, and diabetes. We performed a metabolomic analysis on 221 participants from four different groups: (I) healthy individuals, (II) individuals with hypercholesterolemia (HC), (III) individuals with both HC and hypertension (HT) or diabetes, and (IV) patients with self-reported coronary artery disease (CAD). Utilizing data from the Qatar Biobank, we combined clinical information, metabolomic profiling, and statistical analyses to identify key metabolites associated with CAD risk. Our data identified distinct metabolite profiles across the study groups, indicating changes in carbohydrate and lipid metabolism linked to CAD risk. Specifically, levels of mannitol/sorbitol, mannose, glucose, and ribitol increased, while pregnenediol sulfate, oleoylcarnitine, and quinolinate decreased with higher CAD risk. These findings suggest a significant role of sugar, steroid, and fatty acid metabolism in CAD progression and point to the need for further research on the correlation between quinolinate levels and CAD risk, potentially guiding targeted treatments for atherosclerosis. This study provides novel insights into the metabolomic changes associated with CAD progression, emphasizing the potential of metabolites as predictive biomarkers.
Collapse
Affiliation(s)
- Gulsen Guliz Anlar
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (G.G.A.); (S.A.A.); (S.P.)
| | - Najeha Anwardeen
- Biomedical Research Center (BRC), QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (N.A.); (M.A.E.)
| | - Sarah Al Ashmar
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (G.G.A.); (S.A.A.); (S.P.)
| | - Shona Pedersen
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (G.G.A.); (S.A.A.); (S.P.)
| | - Mohamed A. Elrayess
- Biomedical Research Center (BRC), QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (N.A.); (M.A.E.)
| | - Asad Zeidan
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (G.G.A.); (S.A.A.); (S.P.)
| |
Collapse
|
174
|
Jiang Y, Yang ZG, Wang J, Jiang L, Han PL, Shi R, Li Y. Type 2 diabetes mellitus aggravates coronary atherosclerosis in hypertensive individuals based on coronary CT angiography: a retrospective propensity score-based study. Front Cardiovasc Med 2024; 11:1372519. [PMID: 38836061 PMCID: PMC11149417 DOI: 10.3389/fcvm.2024.1372519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Background The effect of type 2 diabetes mellitus (T2DM) on coronary atherosclerosis detected on coronary computed tomography angiography (CCTA) in hypertensive patients has attracted increasing attention. This study investigated the relationships of T2DM with coronary artery plaque characteristics and semiquantitative CCTA scores in hypertensive patients. Materials and methods In this single-center study, 1,700 hypertensive patients, including 850 T2DM [HT(T2DM+)] and 850 non-T2DM [HT(T2DM-)] individuals, were retrospectively analyzed after propensity matching. Plaque type, extent, coronary stenosis, segment involvement score (SIS), segment stenosis score (SSS), and CT-based Leaman score (CT-LeSc) based on CCTA were assessed and compared between the two groups. Results HT(T2DM+) patients had more coronary segments with calcified plaque (2.08 ± 2.20 vs. 1.40 ± 1.91), mixed plaque (2.90 ± 2.87 vs. 2.50 ± 2.66), nonobstructive stenosis (4.23 ± 2.44 vs. 3.62 ± 2.42), and obstructive stenosis (1.22 ± 2.18 vs. 0.78 ± 1.51), a lower proportion of 1-vessel disease (15.3% vs. 25.5%), a higher proportion of 3-vessel disease (59.6% vs. 46.7%), and higher SIS (5.5 ± 3.1 vs. 4.4 ± 3.0), SSS (10.3 ± 8.5 vs. 7.7 ± 7.1), and CT-LeSc (9.4 ± 5.6 vs. 7.9 ± 5.2) than HT(T2DM-) patients (all P-values <0.05). Multivariable analysis revealed that T2DM was an independent risk factor for calcified plaque [odds ratio (OR) = 2.213], obstructive coronary artery disease (CAD) (OR = 1.271), multivessel disease (OR = 1.838), SIS > 4 (OR = 1.910), SSS > 6 (OR = 1.718), and CT-LeSc > 5 (OR = 1.584) in hypertension population (all P-values <0.05). Conclusion T2DM was independently associated with the presence of calcified coronary artery plaque and increased the risk of obstructive CAD, multivessel disease, and CT-LeSc > 5 in hypertensive patients. More attention should be given to the assessment and management for coronary atherosclerosis in hypertensive patients with T2DM, as this population may have a higher risk of cardiovascular events.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin Wang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Pei-Lun Han
- West China Biomedical Big Data Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Shi
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
175
|
Sun K, Li Z, Li W, Chi C, Wang M, Xu R, Gao Y, Li B, Sun Y, Liu R. Investigating the anti-atherosclerotic effects and potential mechanism of Dalbergia odorifera in ApoE-deficient mice using network pharmacology combined with metabolomics. J Pharm Biomed Anal 2024; 242:116017. [PMID: 38387125 DOI: 10.1016/j.jpba.2024.116017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/14/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024]
Abstract
Dalbergia odorifera (DO) is a precious rosewood species in Southern Asia, and its heartwood is used in China as an official plant for invigorating blood circulation and eliminating stasis. This study aims to evaluate the efficacy of DO on atherosclerosis (AS), and further explore its active components and potential mechanisms. The apolipoprotein-E (ApoE)-deficient mice fed a high-fat diet were used as model animals, and the pathological changes in mice with or without DO treatment were compared to evaluate the pharmacodynamics of DO on AS. The mechanisms were preliminarily expounded by combining with metabolomics and network pharmacology. Moreover, the bioactive components and targets were assessed by cell experiments and molecular docking, respectively. Our findings suggested that DO significantly modulated blood lipid levels and alleviated intimal hyperplasia in atherosclerotic-lesioned mice, and the mechanisms may involve the regulation of 18 metabolites that changed during the progression of AS, thus affecting 3 major metabolic pathways and 3 major signaling pathways. Moreover, the interactions between 16 compounds with anti-proliferative effect and hub targets in the 3 signaling pathways were verified using molecular docking. Collectively, our findings preliminarily support the therapeutic effect of DO in atherosclerosis, meanwhile explore the active constituents and potential pharmacological mechanisms, which is conducive to its reasonable exploitation and utilization.
Collapse
Affiliation(s)
- Kang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Zongchao Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Wenjing Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Chenglin Chi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Minjun Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Ruoxuan Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Yan Gao
- Shandong International Biotechnology Park Development Co., Ltd, Yantai, China
| | - Bing Li
- Shandong International Biotechnology Park Development Co., Ltd, Yantai, China
| | - Yiying Sun
- Shandong International Biotechnology Park Development Co., Ltd, Yantai, China
| | - Rongxia Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China.
| |
Collapse
|
176
|
Xu J, Zhang Y, Huang Y, Nie H, Yan J, Ruan L, Zhang C. The association between pulse wave velocity and pregnancy-associated diseases: A systematic review and meta-analysis. Heliyon 2024; 10:e29281. [PMID: 38707450 PMCID: PMC11066146 DOI: 10.1016/j.heliyon.2024.e29281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/03/2024] [Indexed: 05/07/2024] Open
Abstract
Background Maintaining healthy vascular structure and function is important for a healthy pregnancy. Obesity is a well-known predictor for poor postoperative outcomes of vascular surgery. However, the association between pulse wave velocity (PWV), a well-recognized parameter for arterial stiffness assessment, and pregnancy-associated diseases is still unclear. Therefore, we conducted this systematic review, and a meta-analysis was performed to assess the relevant associations. Methods We systematically searched the Web of Science and PubMed databases to obtain articles on PWV and pregnancy-associated diseases published before April 2023. The mean with standard deviation was used to assess the differences in PWV in pregnant women with or without relevant diseases. Subgroup analysis was conducted according to specific types of PWV. The Newcastle‒Ottawa Scale was used to evaluate the quality of the enrolled studies. Results A total of 6488 individuals from 21 studies were included. All enrolled studies were high-quality. Overall, the PWV was elevated in pregnant women who suffered from preeclampsia (mean difference (MD) = 0.67, 95 % confidence interval (CI): 0.51,0.83, P < 0.00001), hypertension (MD = 1.04, 95 % CI: 1.00,1.08, P < 0.00001), gestational diabetes mellitus (MD = 0.34, 95%CI: 0.19,0.48, P < 0.00001), and diabetes (MD = 0.49, 95%CI: 0.27,0.70, P < 0.00001). Subgroup analysis based on specific types of PWV showed similar results. Conclusion In our study, PWV is elevated in pregnancy-associated diseases, including preeclampsia, hypertension, and diabetes. The PWV assessment should be regarded as a clinical routine for pregnant women to prevent and manage cardiovascular diseases during pregnancy.
Collapse
Affiliation(s)
| | | | - Yue Huang
- Department of Geriatrics, Institute of Gerontology, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hao Nie
- Department of Geriatrics, Institute of Gerontology, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinhua Yan
- Department of Geriatrics, Institute of Gerontology, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lei Ruan
- Department of Geriatrics, Institute of Gerontology, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Cuntai Zhang
- Department of Geriatrics, Institute of Gerontology, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
177
|
Tarabeih N, Kalinkovich A, Ashkenazi S, Cherny SS, Shalata A, Livshits G. Analysis of the Associations of Measurements of Body Composition and Inflammatory Factors with Cardiovascular Disease and Its Comorbidities in a Community-Based Study. Biomedicines 2024; 12:1066. [PMID: 38791028 PMCID: PMC11117926 DOI: 10.3390/biomedicines12051066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The associations of cardiovascular disease (CVD) with comorbidities and biochemical and body composition measurements are repeatedly described but have not been studied simultaneously. In the present cross-sectional study, information on CVD and comorbidities [type 2 diabetes mellitus (T2DM), hypertension (HTN), and hyperlipidemia (HDL)], body composition, levels of soluble markers, and other measures were collected from 1079 individuals. When we examined the association of each comorbidity and CVD, controlling for other comorbidities, we observed a clear pattern of the comorbidity-related specific associations with tested covariates. For example, T2DM was significantly associated with GDF-15 levels and the leptin/adiponectin (L/A) ratio independently of two other comorbidities; HTN, similarly, was independently associated with extracellular water (ECW) levels, L/A ratio, and age; and HDL was independently related to age only. CVD showed very strong independent associations with each of the comorbidities, being associated most strongly with HTN (OR = 10.89, 6.46-18.38) but also with HDL (2.49, 1.43-4.33) and T2DM (1.93, 1.12-3.33). An additive Bayesian network analysis suggests that all three comorbidities, particularly HTN, GDF-15 levels, and ECW content, likely have a main role in the risk of CVD development. Other factors, L/A ratio, lymphocyte count, and the systemic inflammation response index, are likely indirectly related to CVD, acting through the comorbidities and ECW.
Collapse
Affiliation(s)
- Nader Tarabeih
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (N.T.); (S.A.)
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel; (A.K.); (S.S.C.)
| | - Shai Ashkenazi
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (N.T.); (S.A.)
| | - Stacey S. Cherny
- Department of Anatomy and Anthropology, Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel; (A.K.); (S.S.C.)
| | - Adel Shalata
- The Simon Winter Institute for Human Genetics, Bnai Zion Medical Center, The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa 32000, Israel;
| | - Gregory Livshits
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (N.T.); (S.A.)
- Department of Anatomy and Anthropology, Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel; (A.K.); (S.S.C.)
| |
Collapse
|
178
|
Yu J, Liu H, Chen Y, Wang L, Chen P, Zhao Y, Ou C, Chen W, Hu J, Wang Y, Wang Y. miR-449a disturbs atherosclerotic plaque stability in streptozotocin and high-fat diet-induced diabetic mice by targeting CEACAM1. Diabetol Metab Syndr 2024; 16:98. [PMID: 38715117 PMCID: PMC11077876 DOI: 10.1186/s13098-024-01322-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/28/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Emerging evidence indicates carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is involved in the development of atherosclerosis (AS). However, the roles and functions of CEACAM1 in AS remain unknown. Therefore, this study aims to investigate the roles and molecular functions of CEACAM1 in AS. METHODS We constructed a diabetes mellitus (DM) + high-fat diet (HFD) mouse model based on the streptozotocin (STZ)-induced apolipoprotein E-knockdown (ApopE-/-) mouse to investigate the roles and regulatory mechanism of miR-449a/CEACAM1 axis. The mRNA expression and protein levels in this study were examined using quantity PCR, western blot, immunofluorescence (IF), enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry (IHC), respectively. And the lipid deposition and collagen content were detected using Oil Red O and Sirius Red staining. Cell apoptosis, migration, invasion, and tuber formation were detected by Annexin-V FITC/PI, wound healing, transwell, and tuber formation assays, respectively. The relationship between miR-449a and CEACAM1 was determined by a dual-luciferase reporter gene assay. RESULTS miR-449a and MMP-9 were upregulated, and CEACAM1 was downregulated in the DM + HFD MOUSE model. Upregulation of CEACAM1 promoted atherosclerotic plaque stability and inhibited inflammation in the DM + HFD mouse model. And miR-449a directly targeted CEACAM1. Besides, miR-449a interacted with CEACAM1 to regulate atherosclerotic plaque stability and inflammation in DM-associated AS mice. In vitro, the rescue experiments showed miR-449a interacted with CEACAM1 to affect apoptosis, migration, invasion, and tuber formation ability in high glucose (HG)-induced HUVECs. CONCLUSION These results demonstrated that miR-449a promoted plaque instability and inflammation in DM and HFD-induced mice by targeting CEACAM1.
Collapse
Affiliation(s)
- Jie Yu
- Department of Thoracocardiac Surgery, 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, No.212 Daguan Rd, Kunming, Yunnan, 650032, China
| | - Han Liu
- Department of Emergency Medicine, The First Affiliated Hospital of Kunming Medical University, No.295 Xichang Rd, Kunming, Yunnan, 650032, China
| | - Yu Chen
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, No.212 Daguan Rd, Kunming, Yunnan, 650032, China
| | - Ling Wang
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No.295 Xichang Rd, Kunming, Yunnan, 650032, China
| | - Peng Chen
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No.295 Xichang Rd, Kunming, Yunnan, 650032, China
| | - Yue Zhao
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No.295 Xichang Rd, Kunming, Yunnan, 650032, China
| | - Chunxia Ou
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No.295 Xichang Rd, Kunming, Yunnan, 650032, China
| | - Wei Chen
- Department of Radiology, The First Affiliated Hospital of Kunming Medical University, No.295 Xichang Rd, Kunming, Yunnan, 650032, China
| | - Jie Hu
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No.295 Xichang Rd, Kunming, Yunnan, 650032, China
| | - Yu Wang
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No.295 Xichang Rd, Kunming, Yunnan, 650032, China.
| | - Yan Wang
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No.295 Xichang Rd, Kunming, Yunnan, 650032, China.
| |
Collapse
|
179
|
Hou Q, Yi B. The role of long non-coding RNAs in the development of diabetic kidney disease and the involved clinical application. Diabetes Metab Res Rev 2024; 40:e3809. [PMID: 38708843 DOI: 10.1002/dmrr.3809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/03/2024] [Accepted: 04/03/2024] [Indexed: 05/07/2024]
Abstract
Diabetic kidney disease (DKD), one of the common microvascular complications of diabetes, is increasing in prevalence worldwide and can lead to End-stage renal disease. However, there are still gaps in our understanding of the pathophysiology of DKD, and both current clinical diagnostic methods and treatment strategies have drawbacks. According to recent research, long non-coding RNAs (lncRNAs) are intimately linked to the developmental process of DKD and could be viable targets for clinical diagnostic decisions and therapeutic interventions. Here, we review recent insights gained into lncRNAs in pathological changes of DKD such as mesangial expansion, podocyte injury, renal tubular injury, and interstitial fibrosis. We also discuss the clinical applications of DKD-associated lncRNAs as diagnostic biomarkers and therapeutic targets, as well as their limitations and challenges, to provide new methods for the prevention, diagnosis, and treatment of DKD.
Collapse
Affiliation(s)
- Qizhuo Hou
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Yi
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
180
|
Conroy LJ, McCann A, Zhang N, de Gaetano M. The role of nanosystems in the delivery of glucose-lowering drugs for the preemption and treatment of diabetes-associated atherosclerosis. Am J Physiol Cell Physiol 2024; 326:C1398-C1409. [PMID: 38525540 DOI: 10.1152/ajpcell.00695.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Diabetes is one of the most prevalent diseases worldwide. In recent decades, type-2 diabetes has become increasingly common, particularly in younger individuals. Diabetes leads to many vascular complications, including atherosclerosis. Atherosclerosis is a cardiovascular disease characterized by lipid-rich plaques within the vasculature. Plaques develop over time, restricting blood flow, and can, therefore, be the underlying cause of major adverse cardiovascular events, including myocardial infarction and stroke. Diabetes and atherosclerosis are intrinsically linked. Diabetes is a metabolic syndrome that accelerates atherosclerosis and increases the risk of developing other comorbidities, such as diabetes-associated atherosclerosis (DAA). Gold standard antidiabetic medications focus on attenuating hyperglycemia. Though recent evidence suggests that glucose-lowering drugs may have broader applications, beyond diabetes management. This review mainly evaluates the role of glucagon-like peptide-1 receptor agonists (GLP-1 RAs), such as liraglutide and semaglutide in DAA. These drugs mimic gut hormones (incretins), which inhibit glucagon secretion while stimulating insulin secretion, thus improving insulin sensitivity. This facilitates delayed gastric emptying and increased patient satiety; hence, they are also indicated for the treatment of obesity. GLP-1 RAs have significant cardioprotective effects, including decreasing low-density lipoprotein (LDL) cholesterol and triglycerides levels. Liraglutide and semaglutide have specifically been shown to decrease cardiovascular risk. Liraglutide has displayed a myriad of antiatherosclerotic properties, with the potential to induce plaque regression. This review aims to address how glucose-lowering medications can be applied to treat diseases other than diabetes. We specifically focus on how nanomedicines can be used for the site-specific delivery of antidiabetic medicines for the treatment of diabetes-associated atherosclerosis.
Collapse
Affiliation(s)
- Luke James Conroy
- Diabetes Complications Research Centre, Conway Institute & School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Alyssa McCann
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| | - Nan Zhang
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| | - Monica de Gaetano
- Diabetes Complications Research Centre, Conway Institute & School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
181
|
Myllylahti L, Niskanen L, Lassila R, Haukka J. A pharmacoepidemiological nested case-control study of risk factors for venous thromboembolism with the focus on diabetes, cancer, socioeconomic group, medications, and comorbidities. Diab Vasc Dis Res 2024; 21:14791641241236894. [PMID: 38904171 PMCID: PMC11193353 DOI: 10.1177/14791641241236894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
OBJECTIVES A pharmacoepidemiological study to assess VTE risk factors in a diabetes-rich population. METHODS The study comprised 299,590 individuals. We observed 3450 VTEs and matched them with 15,875 controls using a nested case-control approach and collected data on comorbidities and prescriptions. By multivariable conditional logistic regression, we calculated ORs with 95%CIs for comorbidities and medications to evaluate their associations with VTE. RESULTS Diabetes (aOR 2.16; 95%CI 1.99-2.34), inflammatory bowel disease (1.84; 1.27-2.66), and severe psychiatric disorders (1.72; 1.43-2.05) had the strongest associations among the non-cancer comorbidities. Pancreatic (12.32; 7.11-21.36), stomach (8.57; 4.07-18.03), lung and bronchus (6.26; 4.16-9.43), and ovarian (6.72; 2.95-15.10) cancers were ranked as high-risk for VTE. Corticosteroids, gabapentinoids, psychotropic drugs, risedronic acid, and pramipexole were most strongly associated (aOR exceeding 1.5) with VTE. Insulin (3.86; 3.33-4.47) and sulphonylureas (2.62; 2.18-3.16) had stronger associations than metformin (1.65; 1.49-1.83). Statins and lercanidipine (0.78; 0.62-0.98) were associated with a lowered risk of VTE. CONCLUSIONS In this cohort, with 50% diabetes prevalence, pancreatic, stomach, lung and bronchus, and ovarian cancers were strongly associated with VTE. Corticosteroids, gabapentinoids, and psychotropic medications had the strongest associations with VTE among medications. This may be valuable for generating hypotheses for the further research. Lercanidipine may be a novel protective medication against VTE.
Collapse
Affiliation(s)
- Lasse Myllylahti
- Department of Hematology, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - Leo Niskanen
- Department of Internal Medicine, Päijät-Häme Central Hospital, Lahti, Finland
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Riitta Lassila
- Unit of Coagulation Disorders, Department of Hematology, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
- Research Program Unit in Systems Oncology, University of Helsinki, Helsinki, Finland
- The Finnish Institute of Health and Welfare, Helsinki, Finland
| | - Jari Haukka
- Department of Public Health, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
182
|
Xu H, Yang H, Wang Z, Tang Q, Cao X, Chen C, Dong Y, Xu Z, Lv D, Rong Y, Chen M, Tang B, Deng W, Zhu J, Hu Z. Epidermal Stem Cell Derived Exosomes Alleviate Excessive Autophagy Induced Endothelial Cell Apoptosis by Delivering miR200b-3p to Diabetic Wounds. J Invest Dermatol 2024; 144:1134-1147.e2. [PMID: 37838331 DOI: 10.1016/j.jid.2023.08.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 08/03/2023] [Accepted: 08/30/2023] [Indexed: 10/16/2023]
Abstract
The dysfunction of endothelial cells caused by hyperglycemia is observed as a decrease in neovascularization in diabetic wound healing. Studies have found that epidermal stem cells (EpiSCs) can promote the angiogenesis of full-thickness wounds. To further explain the therapeutic effect of EpiSCs, EpiSC-derived exosomes (EpiSC-EXOs) are considered the main substance contributing to stem cell effectivity. In our study, EpiSCs and EpiSC-EXOs were supplied to the dorsal wounds of db/db mice. Results showed that EpiSCs could colonize in the wound area and both EpiSCs and EpiSC-EXOs could accelerate diabetic wound healing by promoting angiogenesis. In vitro, persistent high glucose led to the malfunction and apoptosis of endothelial cells. The apoptosis induced by high glucose is due to excessive autophagy and was alleviated by EpiSC-EXOs. RNA sequencing of EpiSC-EXOs showed that miR200b-3p was enriched in EpiSC-EXOs and alleviated the apoptosis of endothelial cells. Synapse defective rho GTPase homolog 1 was identified the target of miR200b-3p and affected the phosphorylation of ERK to regulate intracellular autophagy and apoptosis. Furthermore, animal experiments validated the angiogenic effect of miR200b-3p. Collectively, our results verified the effect of EpiSC-EXOs on apoptosis caused by hyperglycemia in endothelial cells through the miR200b-3p/synapse defective rho GTPase homolog 1 /RAS/ERK/autophagy pathway, providing a theoretical basis for EpiSC in treating diabetic wounds.
Collapse
Affiliation(s)
- Hailin Xu
- First Affiliated Hospital of Sun Yat-sen University, Burn department, Guangzhou, China
| | - Hao Yang
- First Affiliated Hospital of Sun Yat-sen University, Burn department, Guangzhou, China
| | - Zhiyong Wang
- First Affiliated Hospital of Sun Yat-sen University, Burn department, Guangzhou, China
| | - Qizhi Tang
- Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Affiliated Nanhai Hospital of Traditional Chinese Medicine of Jinan University, Foshan, China
| | - Xiaoling Cao
- First Affiliated Hospital of Sun Yat-sen University, Burn department, Guangzhou, China
| | - Chufen Chen
- First Affiliated Hospital of Sun Yat-sen University, Burn department, Guangzhou, China
| | - Yunxian Dong
- First Affiliated Hospital of Sun Yat-sen University, Burn department, Guangzhou, China
| | - Zhongye Xu
- First Affiliated Hospital of Sun Yat-sen University, Burn department, Guangzhou, China
| | - Dongming Lv
- First Affiliated Hospital of Sun Yat-sen University, Burn department, Guangzhou, China
| | - Yanchao Rong
- First Affiliated Hospital of Sun Yat-sen University, Burn department, Guangzhou, China
| | - Miao Chen
- Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Affiliated Nanhai Hospital of Traditional Chinese Medicine of Jinan University, Foshan, China
| | - Bing Tang
- First Affiliated Hospital of Sun Yat-sen University, Burn department, Guangzhou, China
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Jiayuan Zhu
- First Affiliated Hospital of Sun Yat-sen University, Burn department, Guangzhou, China
| | - Zhicheng Hu
- First Affiliated Hospital of Sun Yat-sen University, Burn department, Guangzhou, China.
| |
Collapse
|
183
|
Abd El-Hameed AM, Eskandrani AA, Salah Abdel-Reheim E, Abdel Moneim A, Addaleel W. The amelioration effect of antidiabetic agents on cytokine expression in patients with type 2 diabetes mellitus. Saudi Pharm J 2024; 32:102029. [PMID: 38525262 PMCID: PMC10960149 DOI: 10.1016/j.jsps.2024.102029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024] Open
Abstract
Inflammation is a condition that is closely linked to diabetes mellitus type 2 (T2DM), short for T2DM several different antidiabetic medications have been produced to regulate hyperglycemia, with indications that these therapies may have anti-inflammatory effects along with their glucose-lowering efficacy. Thus, this research was planned to explore the impact of antidiabetic agents on the cytokine expression levels -interleukin (IL)-1β, IL-6, IL-17, and IL-37 when patients have T2DM. In this study, 168 eligible subject matter was split into two groups: 50 healthy individuals and 118 cases with T2DM, who were classified into two subgroups: 30 untreated patients and 88 patients treated with metformin-based therapy. The outcome exhibited a significant increase within HbA1c% and proinflammatory cytokines (i.e., IL-1β, IL- 6, and IL-17), whereas IL-37 decreased considerably in untreated cases with T2DM compared to those in subjects who are healthy. Furthermore, the results showed increased levels Regarding waist size, body mass index and assessment using that homeostasis model, cholesterol, triglycerides, low-density lipoprotein levels, and heart danger elements in untreated cases with T2DM in comparison with hygienic subjects. Notably, treated patients with T2DM revealed an ameliorative impact on HbA1c, IL-6, IL-17, IL-37, IL-1β levels and lipid profile compared with untreated patients with T2DM. Antidiabetic agents may have a beneficial activity on the inflammatory status by reducing blood glucose levels, hyperlipidemia, and proinflammatory cytokines. The anti-inflammatory activity of IL-37 can apply a potentially effective therapeutic goal in treating T2DM and its complications.
Collapse
Affiliation(s)
| | | | | | - Adel Abdel Moneim
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| | - Wessam Addaleel
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| |
Collapse
|
184
|
Ageeli Hakami M. Diabetes and diabetic associative diseases: An overview of epigenetic regulations of TUG1. Saudi J Biol Sci 2024; 31:103976. [PMID: 38510528 PMCID: PMC10951089 DOI: 10.1016/j.sjbs.2024.103976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
The epigenetic regulation of lncRNA TUG1 has garnered significant attention in the context of diabetes and its associated disorders. TUG1's multifaceted roles in gene expression modulation, and cellular differentiation, and it plays a major role in the growth of diabetes and the issues that are related to it due to pathological processes. In diabetes, aberrant epigenetic modifications can lead to dysregulation of TUG1 expression, contributing to disrupted insulin signaling, impaired glucose metabolism, and beta-cell dysfunction. Moreover, it has been reported that TUG1 contributes to the development of problems linked to diabetes, such as nephropathy, retinopathy, and cardiovascular complications, through epigenetically mediated mechanisms. Understanding the epigenetic regulations of TUG1 offers novel insights into the primary molecular mechanisms of diabetes and provides a possible path for healing interventions. Targeting epigenetic modifications associated with TUG1 holds promise for restoring proper gene expression patterns, ameliorating insulin sensitivity, and mitigating the inception and development of diabetic associative diseases. This review highlights the intricate epigenetic landscape that governs TUG1 expression in diabetes, encompassing DNA methylation and alterations in histone structure, as well as microRNA interactions.
Collapse
Affiliation(s)
- Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia
| |
Collapse
|
185
|
Tuzimek A, Dziedzic EA, Beck J, Kochman W. Correlations Between Acute Coronary Syndrome and Novel Inflammatory Markers (Systemic Immune-Inflammation Index, Systemic Inflammation Response Index, and Aggregate Index of Systemic Inflammation) in Patients with and without Diabetes or Prediabetes. J Inflamm Res 2024; 17:2623-2632. [PMID: 38707954 PMCID: PMC11067916 DOI: 10.2147/jir.s454117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/20/2024] [Indexed: 05/07/2024] Open
Abstract
Purpose Type 2 diabetes mellitus (DM) is a recognized independent risk factor for both chronic coronary syndrome (CCS) and its complication, acute coronary syndrome (ACS). Patients with DM and prediabetes (preDM) face an increased ACS risk. Inflammation plays a significant role in the pathogenesis of both CCS and ACS. This study delves into novel inflammatory markers, such as the systemic immune-inflammation index (SII), systemic inflammation response index (SIRI), and aggregate index of systemic inflammation (AISI, also known as SIIRI or PIV), to explore their relationship with ACS and CCS in patients that have been or have not been diagnosed with DM or preDM. Patients and Methods This study included data of 493 patients with chest pain undergoing coronary angiography. They were categorized into four groups: 1) without DM/preDM and with CCS; 2) with both DM/preDM and CCS; 3) without DM/preDM and with ACS, 4) with both DM/preDM and ACS. Standard methods of statistical analysis were used to reveal possible differences between groups and to find the most influential ACS risk factors in groups with DM/preDM and without DM/preDM. Results The analysis showed no significant differences in SII, SIRI, or AISI between the respective patient groups. A logistic regression analysis generated a model incorporating SII, high-density lipoprotein, and low-density lipoprotein levels as the influential ACS risk factors for patients with DM/preDM. The model demonstrated 71.0% accuracy, 37.0% sensitivity, and 89.4% specificity. Conclusion The findings suggest that the aforementioned inflammatory markers may have potential for distinguishing DM/preDM patients at higher risk of ACS at a low financial cost. However, further comprehensive and well-designed research is required to validate their clinical utility.
Collapse
Affiliation(s)
- Agnieszka Tuzimek
- Cardiovascular Clinic, Centre of Postgraduate Medical Education, Warsaw, 01-813, Poland
| | - Ewelina A Dziedzic
- Cardiovascular Clinic, Centre of Postgraduate Medical Education, Warsaw, 01-813, Poland
| | - Joanna Beck
- Bioimaging Research Center, Institute of Physiology and Pathology of Hearing, Warsaw, 02-042, Poland
- Medical Faculty, Lazarski University, Warsaw, 02-662, Poland
| | - Wacław Kochman
- Cardiovascular Clinic, Centre of Postgraduate Medical Education, Warsaw, 01-813, Poland
| |
Collapse
|
186
|
Wang W, Wang S, Li Y, Zhu M, Xu Q, Luo B, Liu Y, Liu Y. Network pharmacology, molecular docking, and in vitro experimental verification of the mechanism of Guanxining in treating diabetic atherosclerosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117792. [PMID: 38290612 DOI: 10.1016/j.jep.2024.117792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Guanxinning(GXN) tablet is a patented traditional Chinese medicine widely used to prevent and treat cardiovascular diseases. However, its potential mechanism and target in anti-diabetic atherosclerosis have not been clarified. AIM The aim of this study was to investigate the underlying targets and mechanisms of action GXN in the treatment of diabetic atherosclerosis, employing a combination of network pharmacology, molecular docking, and in vitro experimental verification. METHODS We predicted the core components and targets of GXN in the treatment of diabetic atherosclerosis through various databases, and made analysis and molecular docking. In vitro, we induced injury in human umbilical vein endothelial cells using glucose/palmitate and observed the effects of GXN on cellular damage high-glucose and high-fat conditions, subsequently elucidating its molecular mechanisms. RESULTS A total of 14 active components and 157 targets of GXN were identified. Using the PPI network, we selected 9 core active components and 20 targets of GXN. GO functional analysis revealed that these targets were primarily associated with apoptosis signaling pathways in response to endoplasmic reticulum stress and reactive oxygen species responses. Molecular docking confirmed the strong binding affinities of the primary active components of GXN with ERN1, MAPK1 and BECN1. In vitro experiments demonstrated the ability of GXN to restore endothelial cell activity, enhance cell migration and inhibit sICAM secretion, and upregulate the expression of endoplasmic reticulum stress-related proteins (IRE1, XBP1) and autophagy-related proteins (Beclin1, LC3A, and LC3B), while simultaneously inhibiting endothelial cell apoptosis under high-glucose and high-fat conditions. CONCLUSIONS Our findings suggest that GXN can potentially safeguard endothelial cells from the adverse effects of high-glucose and high-fat by modulating the interactions between endoplasmic reticulum stress and autophagy. Therefore, GXN is a promising candidate for the prevention and treatment of diabetic atherosclerosis.
Collapse
Affiliation(s)
- Wenting Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Sutong Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Yiwen Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Mengmeng Zhu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Qian Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Binyu Luo
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yanfei Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China; The Second Department of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Yue Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
187
|
Menaker Y, van den Munckhof I, Scarpa A, Placek K, Brandes-Leibovitz R, Glantzspiegel Y, Joosten LAB, Rutten JHW, Netea MG, Gat-Viks I, Riksen NP. Stratification of Atherosclerosis based on Plasma Metabolic States. J Clin Endocrinol Metab 2024; 109:1250-1262. [PMID: 38044551 DOI: 10.1210/clinem/dgad672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Indexed: 12/05/2023]
Abstract
CONTEXT Atherosclerosis is a dominant cause of cardiovascular disease (CVD), including myocardial infarction and stroke. OBJECTIVE To investigate metabolic states that are associated with the development of atherosclerosis. METHODS Cross-sectional cohort study at a university hospital in the Netherlands. A total of 302 adult subjects with a body mass index (BMI) ≥ 27 kg/m2 were included. We integrated plasma metabolomics with clinical metadata to quantify the "atherogenic state" of each individual, providing a continuous spectrum of atherogenic states that ranges between nonatherogenic states to highly atherogenic states. RESULTS Analysis of groups of individuals with different clinical conditions-such as metabolically healthy individuals with obesity, and individuals with metabolic syndrome-confirmed the generalizability of this spectrum; revealed a wide variation of atherogenic states within each condition; and allowed identification of metabolites that are associated with the atherogenic state regardless of the particular condition, such as gamma-glutamyl-glutamic acid and homovanillic acid sulfate. The analysis further highlighted metabolic pathways such as catabolism of phenylalanine and tyrosine and biosynthesis of estrogens and phenylpropanoids. Using validation cohorts, we confirmed variation in atherogenic states in healthy subjects (before atherosclerosis plaques become visible), and showed that metabolites associated with the atherogenic state were also associated with future CVD. CONCLUSION Our results provide a global view of atherosclerosis risk states using plasma metabolomics.
Collapse
Affiliation(s)
- Yuval Menaker
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Inge van den Munckhof
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Alice Scarpa
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Katarzyna Placek
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Rachel Brandes-Leibovitz
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yossef Glantzspiegel
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
| | - Joost H W Rutten
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Irit Gat-Viks
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
188
|
Sun H, Ma X, Ma H, Li S, Xia Y, Yao L, Wang Y, Pang X, Zhong J, Yao G, Liu X, Zhang M. High glucose levels accelerate atherosclerosis via NLRP3-IL/ MAPK/NF-κB-related inflammation pathways. Biochem Biophys Res Commun 2024; 704:149702. [PMID: 38422898 DOI: 10.1016/j.bbrc.2024.149702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND As a chronic inflammatory disease, diabetes mellitus (DM) contributes to the development of atherosclerosis (AS). However, how the NLRP3 inflammasome participates in diabetes-related AS remains unclear. Therefore, this study aimed to elucidate the mechanism through which NLRP3 uses high glucose (HG) levels to promote AS. METHODS Serum and coronary artery tissues were collected from coronary artery disease (CAD) patients with and without DM, respectively. The expression of NLRP3 was detected, and the effects of this inflammasome on diabetes-associated AS were evaluated using streptozotocin (STZ)-induced diabetic apoE-/- mice injected with Adenovirus-mediated NLRP3 interference (Ad-NLRP3i). To elucidate the potential mechanism involved, ox-LDL-irritated human aortic smooth muscle cells were divided into the control, high-glucose, Si-NC, and Si-NLRP3 groups to observe the changes induced by downregulating NLRP3 expression. For up-regulating NLRP3, control and plasmid contained NLRP3 were used. TNF-α, IL-1β, IL-6, IL-18, phosphorylated and total p38, JNK, p65, and IκBα expression levels were detected following the downregulation or upregulation of NLRP3 expression. RESULTS Patients with comorbid CAD and DM showed higher serum levels and expression of NLRP3 in the coronary artery than those with only CAD. Moreover, mice in the Ad-NLRP3i group showed markedly smaller and more stable atherosclerotic lesions compared to those in other DM groups. These mice had decreased inflammatory cytokine production and improved glucose tolerance, which demonstrated the substantial effects of NLRP3 in the progression of diabetes-associated AS. Furthermore, using the siRNA or plasmid to downregulate or upregulate NLRP3 expression in vitro altered cytokines and the MAPK/NF-κB pathway. CONCLUSIONS NLRP3 expression was significantly increased under hyperglycemia. Additionally, it accelerated AS by promoting inflammation via the IL/MAPK/NF-κB pathway.
Collapse
Affiliation(s)
- Hui Sun
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China; Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xiaotian Ma
- Department of Medicine Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Hong Ma
- Qingdao Branch of Shandong Public Health Clinical Center, Qingdao, China
| | - Shuen Li
- Department of Pathology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Yan Xia
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Lijie Yao
- Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Yingcui Wang
- Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xuelian Pang
- Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Jingquan Zhong
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China; Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Guihua Yao
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China; Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xiaoling Liu
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Mei Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
189
|
Zhang LC, Li N, Chen JL, Sun J, Xu M, Liu WQ, Zuo ZF, Shi LL, Wang TH, Luo XY. Molecular network mechanism in cerebral ischemia-reperfusion rats treated with human urine stem cells. Heliyon 2024; 10:e27508. [PMID: 38560254 PMCID: PMC10979071 DOI: 10.1016/j.heliyon.2024.e27508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Objective To explore the effect of human urine-derived stem cells (husc) in improving the neurological function of rats with cerebral ischemia-reperfusion (CIR), and report new molecular network by bioinformatics, combined with experiment validation. Methods After CIR model was established, and husc were transplanted into the lateral ventricle of rats,neurological severe score (NSS) andgene network analysis were performed. Firstly, we input the keywords "Cerebral reperfusion" and "human urine stem cells" into Genecard database and merged data with findings from PubMed so as to get their targets genes, and downloaded them to make Venny intersection plot. Then, Gene ontology (GO) analysis, kyoto encyclopedia of genes and genomes (KEGG) pathway analysis and protein-protein interaction (PPI) were performed to construct molecular network of core genes. Lastly, the expressional level of core genes was validated via quantitative real-time polymerase chain reaction (qRT-PCR), and localized by immunofluorescence. Results Compared with the Sham group, the neurological function of CIR rats was significantly improved after the injection of husc into the lateral ventricle; at 14 days, P = 0.028, which was statistically significant. There were 258 overlapping genes between CIR and husc, and integrated with 252 genes screened from PubMed and CNKI. GO enrichment analysis were mainly involved neutrophil degranulation, neutrophil activation in immune response and platelet positive regulation of degranulation, Hemostasis, blood coagulation, coagulation, etc. KEGG pathway analysis was mainly involved in complement and coagulation cascades, ECM-receptor. Hub genes screened by Cytoscape consist ofCD44, ACTB, FN1, ITGB1, PLG, CASP3, ALB, HSP90AA1, EGF, GAPDH. Lastly, qRT-PCR results showed statistic significance (P < 0.05) in ALB, CD44 and EGF before and after treatment, and EGF immunostaining was localized in neuron of cortex. Conclusion husc transplantation showed a positive effect in improving neural function of CIR rats, and underlying mechanism is involved in CD44, ALB, and EGF network.
Collapse
Affiliation(s)
- Lang-Chun Zhang
- Department of Neurosurgery, Xiang Ya Hospital of Central South University, Changsha, 410078, China
- Animal Canter Department of Anatomy, Kunming Medical University, Kunming, 650500, China
| | - Na Li
- Animal Canter Department of Anatomy, Kunming Medical University, Kunming, 650500, China
| | - Ji-Lin Chen
- Animal Canter Department of Anatomy, Kunming Medical University, Kunming, 650500, China
| | - Jie Sun
- Animal Canter Department of Anatomy, Kunming Medical University, Kunming, 650500, China
| | - Min Xu
- Animal Canter Department of Anatomy, Kunming Medical University, Kunming, 650500, China
| | - Wen-Qiang Liu
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, 121000, China
| | - Zhong-Fu Zuo
- Department of Anatomy, Jinzhou Medical University, Jinzhou, China
| | - Lan-Lan Shi
- Department of Neurosurgery, Xiang Ya Hospital of Central South University, Changsha, 410078, China
| | - Ting-Hua Wang
- Department of Neurosurgery, Xiang Ya Hospital of Central South University, Changsha, 410078, China
| | - Xiang-Yin Luo
- Department of Neurosurgery, Xiang Ya Hospital of Central South University, Changsha, 410078, China
| |
Collapse
|
190
|
Ren J, Dai J, Chen Y, Wang Z, Sha R, Mao J, Mao Y. Hypoglycemic Activity of Rice Resistant-Starch Metabolites: A Mechanistic Network Pharmacology and In Vitro Approach. Metabolites 2024; 14:224. [PMID: 38668351 PMCID: PMC11052319 DOI: 10.3390/metabo14040224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Rice (Oryza sativa L.) is one of the primary sources of energy and nutrients needed by the body, and rice resistant starch (RRS) has been found to have hypoglycemic effects. However, its biological activity and specific mechanisms still need to be further elucidated. In the present study, 52 RRS differential metabolites were obtained from mouse liver, rat serum, canine feces, and human urine, and 246 potential targets were identified through a literature review and database analysis. A total of 151 common targets were identified by intersecting them with the targets of type 2 diabetes mellitus (T2DM). After network pharmacology analysis, 11 core metabolites were identified, including linolenic acid, chenodeoxycholic acid, ursodeoxycholic acid, deoxycholic acid, lithocholic acid, lithocholylglycine, glycoursodeoxycholic acid, phenylalanine, norepinephrine, cholic acid, and L-glutamic acid, and 16 core targets were identified, including MAPK3, MAPK1, EGFR, ESR1, PRKCA, FYN, LCK, DLG4, ITGB1, IL6, PTPN11, RARA, NR3C1, PTPN6, PPARA, and ITGAV. The core pathways included the neuroactive ligand-receptor interaction, cancer, and arachidonic acid metabolism pathways. The molecular docking results showed that bile acids such as glycoursodeoxycholic acid, chenodeoxycholic acid, ursodeoxycholic acid, lithocholic acid, deoxycholic acid, and cholic acid exhibited strong docking effects with EGFR, ITGAV, ITGB1, MAPK3, NR3C1, α-glucosidase, and α-amylase. In vitro hypoglycemic experiments further suggested that bile acids showed significant inhibitory effects on α-glucosidase and α-amylase, with CDCA and UDCA having the most prominent inhibitory effect. In summary, this study reveals a possible hypoglycemic pathway of RRS metabolites and provides new research perspectives to further explore the therapeutic mechanism of bile acids in T2DM.
Collapse
Affiliation(s)
- Jianing Ren
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (J.R.); (J.D.); (Y.C.); (Z.W.); (J.M.)
| | - Jing Dai
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (J.R.); (J.D.); (Y.C.); (Z.W.); (J.M.)
| | - Yue Chen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (J.R.); (J.D.); (Y.C.); (Z.W.); (J.M.)
| | - Zhenzhen Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (J.R.); (J.D.); (Y.C.); (Z.W.); (J.M.)
| | - Ruyi Sha
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (J.R.); (J.D.); (Y.C.); (Z.W.); (J.M.)
| | - Jianwei Mao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (J.R.); (J.D.); (Y.C.); (Z.W.); (J.M.)
| | - Yangchen Mao
- School of Medicine, University of Southampton, Southampton SO17 1BJ, UK;
| |
Collapse
|
191
|
Qiu S, Liu J, Chen J, Li Y, Bu T, Li Z, Zhang L, Sun W, Zhou T, Hu W, Yang G, Yuan L, Duan Y, Xing C. Targeted delivery of MerTK protein via cell membrane engineered nanoparticle enhances efferocytosis and attenuates atherosclerosis in diabetic ApoE -/- Mice. J Nanobiotechnology 2024; 22:178. [PMID: 38614985 PMCID: PMC11015613 DOI: 10.1186/s12951-024-02463-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/04/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND Clearance of apoptotic cells by efferocytosis is crucial for prevention of atherosclerosis progress, and impaired efferocytosis contributes to the aggravated atherosclerosis. RESULTS In this study, we found that diabetic ApoE-/- mice showed aggravated atherosclerosis as hyperglycemia damaged the efferocytosis capacity at least partially due to decreased expression of Mer tyrosine kinase (MerTK) on macrophages. To locally restore MerTK in the macrophages in the plaque, hybrid membrane nanovesicles (HMNVs) were thus developed. Briefly, cell membrane from MerTK overexpressing RAW264.7 cell and transferrin receptor (TfR) overexpressing HEK293T cell were mixed with DOPE polymers to produce nanovesicles designated as HMNVs. HMNVs could fuse with the recipient cell membrane and thus increased MerTK in diabetic macrophages, which in turn restored the efferocytosis capacity. Upon intravenous administration into diabetic ApoE-/- mice, superparamagnetic iron oxide nanoparticles (SMN) decorated HMNVs accumulated at the aorta site significantly under magnetic navigation, where the recipient macrophages cleared the apoptotic cells efficiently and thus decreased the inflammation. CONCLUSIONS Our study indicates that MerTK decrease in macrophages contributes to the aggravated atherosclerosis in diabetic ApoE-/- mice and regional restoration of MerTK in macrophages of the plaque via HMNVs could be a promising therapeutic approach.
Collapse
Affiliation(s)
- Shuo Qiu
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, No.569, Xinsi Road, Xi'an, 710038, China
| | - Jiahan Liu
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, No.569, Xinsi Road, Xi'an, 710038, China
| | - Jianmei Chen
- Department of Health Medicine, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yangni Li
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, No.569, Xinsi Road, Xi'an, 710038, China
| | - Te Bu
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, No.569, Xinsi Road, Xi'an, 710038, China
| | - Zhelong Li
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, No.569, Xinsi Road, Xi'an, 710038, China
| | - Liang Zhang
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, No.569, Xinsi Road, Xi'an, 710038, China
| | - Wenqi Sun
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, No.569, Xinsi Road, Xi'an, 710038, China
| | - Tian Zhou
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, No.569, Xinsi Road, Xi'an, 710038, China
| | - Wei Hu
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, No.569, Xinsi Road, Xi'an, 710038, China
| | - Guodong Yang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China
| | - Lijun Yuan
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, No.569, Xinsi Road, Xi'an, 710038, China.
| | - Yunyou Duan
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, No.569, Xinsi Road, Xi'an, 710038, China.
| | - Changyang Xing
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, No.569, Xinsi Road, Xi'an, 710038, China.
| |
Collapse
|
192
|
Ma W, Long J, Dong L, Zhang J, Wang A, Zhang Y, Yan D. Uncovering the key pharmacodynamic material basis and possible molecular mechanism of Xiaoke formulation improve insulin resistant through a comprehensive investigation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117752. [PMID: 38216099 DOI: 10.1016/j.jep.2024.117752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/25/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiaoke formulation (XKF) has been utilized in clinical practice for decades in China as a treatment option for mild to moderate type 2 diabetes. However, there is still a need for systematic research to uncover the key pharmacodynamic material basis and mechanism of XKF. AIM OF THE STUDY Aim of to investigate the distribution and metabolism of XKF in normal and insulin resistant (IR) mice were different, and elucidate its key pharmacodynamic material basis and mechanism of action. MATERIALS AND METHODS Ultra performance liquid chromatography/time of flight mass spectrometry technology was employed to investigate the differences in XKF absorption, distribution, and metabolism between normal and IR mice across blood, liver, feces, and urine samples. Further, network pharmacology was used to predict target proteins and their associated signaling pathways. Then, molecular docking was utilized to validate the activity of key pharmacodynamic components and targets. Finally, IR HepG2 cells were used to detect the glucose consumption under the action of key pharmacodynamic material basis. In addition, the expression of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT) and phospho-protein kinase B (p-AKT) was determined using western blotting. RESULTS The study demonstrates significant distinctions in plasma and liver number and abundance of alkaloids, organic acids, flavonoids, iridoids and saponins between normal and IR mice when XKF was administered. Further analysis has shown that the representative components of XKF, including berberine, chlorogenic acid, calycosin, swertiamarin and astragaloside IV have significantly different metabolic pathways in plasma and liver. Prototypes and metabolites of these components were rarely detected in the urine and feces of mice. According to the network pharmacological analysis, these differential components are predicted to improve IR by targeting key factors such as SRC, JUN, HRAS, NOS3, FGF2, etc. Additionally, the signaling pathways involved in this process include PI3K-AKT pathway, GnRH signaling pathway, and T cell receptor signaling pathway. In addition, in vitro experiments indicate that berberine and its metabolites (berberine and demethyleneberine), chlorogenic acid and its metabolites (3-O-ferulic quinic acid and 5-O-ferulic quinic acid), calycosin and swertiamarin could improve IR in IR-HepG2 cells by elevating the expression of PI3K and AKT, leading to an increase in glucose consumption. CONCLUSION The key pharmacodynamic material basis of XKF, such as berberine and its metabolites (berberrubine and demethyleneberberine), chlorogenic acid and its metabolites (3-O-feruloylquinic acid and 5-O-feruloylquinic acid), calycosin and swertiamarin influence the glucose metabolism disorder of IR-HepG2 cells by regulating the PI3K/AKT signalling pathway, leading to an improvement in IR.
Collapse
Affiliation(s)
- Wenjuan Ma
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Benxi, Liaoning, 110016, China
| | - Jianglan Long
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Linjie Dong
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Benxi, Liaoning, 110016, China
| | - Jian Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Aiting Wang
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yu Zhang
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Dan Yan
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
193
|
Shou Y, Li X, Fang Q, Xie A, Zhang Y, Fu X, Wang M, Gong W, Zhang X, Yang D. Progress in the treatment of diabetic cardiomyopathy, a systematic review. Pharmacol Res Perspect 2024; 12:e1177. [PMID: 38407563 PMCID: PMC10895687 DOI: 10.1002/prp2.1177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/29/2023] [Accepted: 01/19/2024] [Indexed: 02/27/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a condition characterized by myocardial dysfunction that occurs in individuals with diabetes, in the absence of coronary artery disease, valve disease, and other conventional cardiovascular risk factors such as hypertension and dyslipidemia. It is considered a significant and consequential complication of diabetes in the field of cardiovascular medicine. The primary pathological manifestations include myocardial hypertrophy, myocardial fibrosis, and impaired ventricular function, which can lead to widespread myocardial necrosis. Ultimately, this can progress to the development of heart failure, arrhythmias, and cardiogenic shock, with severe cases even resulting in sudden cardiac death. Despite several decades of both fundamental and clinical research conducted globally, there are currently no specific targeted therapies available for DCM in clinical practice, and the incidence and mortality rates of heart failure remain persistently high. Thus, this article provides an overview of the current treatment modalities and novel techniques pertaining to DCM, aiming to offer valuable insights and support to researchers dedicated to investigating this complex condition.
Collapse
Affiliation(s)
- Yiyi Shou
- Department of Clinical MedicineAffiliated Hospital of Hangzhou Normal University, Hangzhou Normal UniversityHangzhouChina
| | - Xingyu Li
- Department of Clinical MedicineAffiliated Hospital of Hangzhou Normal University, Hangzhou Normal UniversityHangzhouChina
| | - Quan Fang
- Department of Clinical MedicineAffiliated Hospital of Hangzhou Normal University, Hangzhou Normal UniversityHangzhouChina
| | - Aqiong Xie
- Department of Clinical MedicineAffiliated Hospital of Hangzhou Normal University, Hangzhou Normal UniversityHangzhouChina
| | - Yinghong Zhang
- Department of ImmunologyAffiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Xinyan Fu
- Department of CardiologyAffiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Mingwei Wang
- Department of CardiologyAffiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Wenyan Gong
- Department of Clinical MedicineAffiliated Hospital of Hangzhou Normal University, Hangzhou Normal UniversityHangzhouChina
- Department of CardiologyAffiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Xingwei Zhang
- Department of Clinical MedicineAffiliated Hospital of Hangzhou Normal University, Hangzhou Normal UniversityHangzhouChina
- Department of CardiologyAffiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Dong Yang
- Department of Clinical MedicineAffiliated Hospital of Hangzhou Normal University, Hangzhou Normal UniversityHangzhouChina
- Department of CardiologyAffiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| |
Collapse
|
194
|
Wang P, Sheng Y, Samadi M. Effects of almond consumption on lipid profile in patients with type 2 diabetes: a systematic review and meta-analysis of randomised controlled trials. Arch Physiol Biochem 2024; 130:128-135. [PMID: 34624199 DOI: 10.1080/13813455.2021.1987477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
The aim of this meta-analysis was to assess the effects of almond consumption on the lipid profiles of type 2 diabetes mellitus (T2DM) patients. Eligible trials were searched from four electronic databases until Jan 2020. Five eligible articles were included in the final quantitative analysis. Overall, meta-analysis could not show any beneficial effect of almond consumption on total cholesterol (TC) weighted mean difference (WMD: 0.65 mg/dL, 95% CI: -7.52-8.82, p = .87), triglyceride (TG; WMD: 1.59 mg/dL, 95% CI: -21.77-24.96, p = .89), low-density lipoprotein cholesterol (LDL-C; WMD: -5.40 mg/dL, 95% CI: -13.30-2.50, p = .18), and high-density lipoprotein cholesterol (HDL-C; WMD: 1.57 mg/dL, 95% CI: -0.95-4.10, p = .22). However, subgroup analyses showed that serum LDL-C levels were significantly reduced in trials administered > 50 g/d almond. The data suggest that consumption of almond could not improve lipid profile in patients with T2DM.
Collapse
Affiliation(s)
- Ping Wang
- The People's No.1 Hospital of Xiaoshan, Hangzhou, Zhejiang, China
| | - Yingtao Sheng
- The People's No.1 Hospital of Xiaoshan, Hangzhou, Zhejiang, China
| | - Mehnoosh Samadi
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Research Center for Environmental Determinants of Health (RCEDH), School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
195
|
Khan MI, Khare A, Arif K, Khan SS, Nasir A, Lari S. Dental pulp stones and their correlation with metabolic diseases. J Oral Maxillofac Pathol 2024; 28:192-199. [PMID: 39157846 PMCID: PMC11329071 DOI: 10.4103/jomfp.jomfp_536_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 08/20/2024] Open
Abstract
Background Dental pulp calcifications or pulp stones are calcified structures found in dental pulp, mostly around or enclosing a blood vessel. The formation of these calcifications begins with concentric layers of calcified tissue within which remnants of necrotic and calcified cells may be present. The calcifications of thrombi in blood vessels, called phleboliths, may also serve as nidi for denticles. In metabolic diseases such as diabetes, hypertension or poor periodontal health, there are obvious changes in blood vessels and vascularization. In our study, we observed histopathological sections of dental pulp and correlated systemic diseases such as diabetes and hypertension with poor periodontal health and dental pulp stones. Aim The aim of our study was to evaluate the histopathology of dental pulp stones, their distribution among various age groups and sexes and to identify any correlations between pulp stone formation and systemic diseases such as type II diabetes and hypertension. Materials and Methods Samples from 100 patients with metabolic diseases such as type II diabetes and hypertension were collected. The pulp was extirpated from the teeth that were undergoing root canal treatment, and the teeth were extracted. The collected pulp sample was fixed in 10% formaline neutral buffer, subjected to routine histopathological procedures and stained with haematoxylin and eosin. The pulp of teeth extracted for orthodontic treatment was considered a control for patients with no metabolic disease. Results There was a definite relationship between increased pulp stones and metabolic diseases such as type II diabetes and hypertension; likewise, poor periodontal health was significantly related to pulp stones.
Collapse
Affiliation(s)
- Mohammad Imran Khan
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Career Post Graduate Institute of Dental Sciences and Hospital, Ghaila, IIM Road Lucknow, Uttar Pradesh, India
| | - Abhisheik Khare
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Career Post Graduate Institute of Dental Sciences and Hospital, Ghaila, IIM Road Lucknow, Uttar Pradesh, India
| | - Khushboo Arif
- Department of Public Health Dentistry, Faculty of Dental Sciences, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Sameera Shamim Khan
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Career Post Graduate Institute of Dental Sciences and Hospital, Ghaila, IIM Road Lucknow, Uttar Pradesh, India
| | - Abdullah Nasir
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Career Post Graduate Institute of Dental Sciences and Hospital, Ghaila, IIM Road Lucknow, Uttar Pradesh, India
| | - Shafik Lari
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Chandra Dental College and Hospital, Safedabad, Lucknow, Uttar Pradesh, India
| |
Collapse
|
196
|
Ma Y, Gu T, He S, He S, Jiang Z. Development of stem cell therapy for atherosclerosis. Mol Cell Biochem 2024; 479:779-791. [PMID: 37178375 DOI: 10.1007/s11010-023-04762-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Cardiovascular disease (CVD) has a high incidence and low cure rate worldwide, and atherosclerosis (AS) is the main factor inducing cardiovascular disease, of which lipid deposition in the vessel wall is the main marker of AS. Currently, although statins can be used to lower lipids and low-density lipoprotein (LDL) in AS, the cure rate for AS remains low. Therefore, there is an urgent need to develop new therapeutic approaches, and stem cells are now widely studied, while stem cells are a class of cell types that always maintain the ability to differentiate and can differentiate to form other cells and tissues, and stem cell transplantation techniques have shown efficacy in the treatment of other diseases. With the establishment of cellular therapies and continued research in stem cell technology, stem cells are also being used to address the problem of AS. In this paper, we focus on recent research advances in stem cell therapy for AS and briefly summarize the relevant factors that induce the formation of AS. We mainly discuss the efficacy and application prospects of mesenchymal stem cells (MSCs) for the treatment of AS, in addition to the partial role and potential of exosomes in the treatment of AS. Further, provide new ideas for the clinical application of stem cells.
Collapse
Affiliation(s)
- Yun Ma
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Tianhe Gu
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Siqi He
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Shuya He
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Zhisheng Jiang
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China.
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
197
|
Liu Y, Yu R, Wang X, Chen Y, Yin T, Gao Q, Sun L, Zheng Z. Research progress of the effective active ingredients of Astragalus mongholicus in the treatment of diabetic peripheral neuropathy. Biomed Pharmacother 2024; 173:116350. [PMID: 38430632 DOI: 10.1016/j.biopha.2024.116350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
Diabetic peripheral neuropathy (DPN) is one of the most prevalent consequences of diabetes, with a high incidence and disability rate. The DPN's pathogenesis is extremely complex and yet to be fully understood. Persistent high glucose metabolism, nerve growth factor deficiency, microvascular disease, oxidative stress, peripheral nerve cell apoptosis, immune factors, and other factors have been implicated in the pathogenesis of DPN. Astragalus mongholicus is a commonly used plant used to treat DPN in clinical settings. Its rich chemical components mainly include Astragalus polysaccharide, Astragalus saponins, Astragalus flavones, etc., which play a vital role in the treatment of DPN. This review aimed to summarize the pathogenesis of DPN and the studies on the mechanism of the effective components of Astragalus mongholicus in treating DPN. This is of great significance for the effective use of Chinese herbal medicine and the promotion of its status and influence on the world.
Collapse
Affiliation(s)
- Yulian Liu
- Department of Rehabilitation Medicine,The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| | - Runyuan Yu
- Department of Rehabilitation Medicine,The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| | - Xiaoyu Wang
- Department of Rehabilitation Medicine,The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| | - Yuexia Chen
- Department of Skills Training Center,The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| | - Tao Yin
- Department of Rehabilitation Medicine,The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| | - Qiang Gao
- Department of Rehabilitation Medicine,The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| | - Limin Sun
- Department of Rehabilitation Medicine,The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| | - Zuncheng Zheng
- Department of Rehabilitation Medicine,The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China.
| |
Collapse
|
198
|
Mezzetto L, Mastrorilli D, Zanetti E, Scoccia E, Pecoraro B, Sboarina A, Mantovani A, Veraldi GF. Clinical risk factors and features on computed tomography angiography in high-risk carotid artery plaque in patients with type 2 diabetes. INT ANGIOL 2024; 43:280-289. [PMID: 38470152 DOI: 10.23736/s0392-9590.24.05154-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
BACKGROUND High-risk carotid artery plaque (HPR) is associated with a markedly increased risk of ischemic stroke. The aims of this study were: 1) to examine the prevalence of HRP in a cohort of asymptomatic adults with type 2 diabetes (T2D); 2) to investigate the relationship between HRP, established cardiovascular risk factors and computed tomography angiography (CTA) profile; and 3) to assess whether the presence of HRP is associated with an increased risk of major adverse cardiovascular events (MACE). METHODS This was a retrospective cohort study of T2D asymptomatic patients who underwent carotid endarterectomy (CEA) from January 2018 to July 2021. The carotid atherosclerotic plaque (CAP) was assessed for the presence of ulceration, the presence of lipids, fibrosis, thrombotic deposits, hemorrhage, neovascularization, and inflammation. A CAP presenting at least five of these histological features was defined as a HRP (Group A); in all other cases it was defined as a mild to moderate heterogeneous plaque and no-HRP (Group B). CTA features included the presence of rim sign consisting of thin peripheral adventitial calcification (<2 mm) and internal soft plaque (≥2 mm), NASCET percent diameter stenosis, maximum plaque thickness, ulceration, calcification, and intraluminal thrombus were recorded. Binary logistic regression with Uni- and Multivariate was used to evaluate possible predictors for HRP while multivariable Cox Proportional Hazards was used to assess independent predictors for MACE. RESULTS One hundred eighty-five asymptomatic patients (mean age 73±8 years, 131 men), undergoing carotid endarterectomy, were included. Of these, 124 (67%) had HRP, and the 61 (33%) did not. Diabetic complications (OR 2.4, 95% CI: 1.1-5.1, P=0.01), NASCET stenosis ≥75% (OR 2.4, 95% CI: 1.2-3.7, P=0.02) and carotid RIM sign (OR 4.3, 95% CI: 3.9-7.3, P<0.001) were independently associated with HRP. However, HRP was not associated with a higher risk of MACE (freedom from MACE at 5 years: HRP 83.4% vs. non HRP 87.8%, P=0.72) or a reduction of survival (5-year survival estimates: HRP 96.4% vs. non HRP: 94.6%, P=0.76). CONCLUSIONS A high prevalence of HRP (67%) was observed in asymptomatic and elderly T2D patients. Independent predictors of HRP were diabetic complications, NASCET stenosis ≥75% and carotid RIM sign (OR 4.3, 95% CI: 3.9-7.3, P<0.001). HRP was not associated with an increased risk of MACE during a mean follow-up of 39±24 years.
Collapse
Affiliation(s)
- Luca Mezzetto
- Department of Vascular Surgery, University Hospital and Trust of Verona, University of Verona School of Medicine, Verona, Italy
| | - Davide Mastrorilli
- Department of Vascular Surgery, University Hospital and Trust of Verona, University of Verona School of Medicine, Verona, Italy -
| | - Elisa Zanetti
- Department of Vascular Surgery, University Hospital and Trust of Verona, University of Verona School of Medicine, Verona, Italy
| | - Enrico Scoccia
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Barbara Pecoraro
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Andrea Sboarina
- Department of Surgery, Dentistry, Pediatrics and Gynecology, University of Verona, Verona, Italy
| | - Alessandro Mantovani
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Gian F Veraldi
- Department of Vascular Surgery, University Hospital and Trust of Verona, University of Verona School of Medicine, Verona, Italy
| |
Collapse
|
199
|
Liang Y, Fu J, Shi Y, Jiang X, Lu F, Liu S. Integration of 16S rRNA sequencing and metabolomics to investigate the modulatory effect of ginsenoside Rb1 on atherosclerosis. Heliyon 2024; 10:e27597. [PMID: 38500998 PMCID: PMC10945261 DOI: 10.1016/j.heliyon.2024.e27597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
Background /aims: Atherosclerosis (AS) is the common pathological basis of a variety of cardiovascular diseases (CVD), and has become the main cause of human death worldwide, and the incidence is increasing and younger trend. Ginsenoside Rb1 (Rb1), an important monomer component of the traditional Chinese herb ginseng, known for its ability to improve blood lipid disorders and anti-inflammatory. In addition, Rb1 was proved to be an effective treatment for AS. However, the effect of Rb1 on AS remains to be elucidated. The aim of this study was to investigate the mechanisms of Rb1 in ameliorating AS induced by high-fat diet (HFD). Materials and methods In this study, we developed an experimental AS model in Sprague-Dawley rats by feeding HFD with intraperitoneal injection of vitamin D3. The potential therapeutic mechanism of Rb1 in AS rats was investigated by detecting the expression of inflammatory factors, microbiome 16S rRNA gene sequencing, short-chain fatty acids (SCFAs) targeted metabolomics and untargeted metabolomics. Results Rb1 could effectively alleviate the symptoms of AS and suppress the overexpression of inflammation-related factors. Meanwhile, Rb1 altered gut microbial composition and concentration of SCFAs characterized by Bacteroidetes, Actinobacteria, Lactobacillus, Prevotella, Oscillospira enrichment and Desulfovibrio depletion, accompanied by increased production of acetic acid and propionic acid. Moreover, untargeted metabolomics showed that Rb1 considerably improved faecal metabolite profiles, particularly arachidonic acid metabolism and primary bile acid biosynthesis. Conclusion Rb1 ameliorated the HFD-induced AS, and the mechanism is related to improving intestinal metabolic homeostasis and inhibiting systemic inflammation by regulating gut microbiota.
Collapse
Affiliation(s)
- Yuqin Liang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jiaqi Fu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yunhe Shi
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xin Jiang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Fang Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Shumin Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| |
Collapse
|
200
|
Lahlou RA, Carvalho F, Pereira MJ, Lopes J, Silva LR. Overview of Ethnobotanical-Pharmacological Studies Carried Out on Medicinal Plants from the Serra da Estrela Natural Park: Focus on Their Antidiabetic Potential. Pharmaceutics 2024; 16:454. [PMID: 38675115 PMCID: PMC11054966 DOI: 10.3390/pharmaceutics16040454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
The Serra da Estrela Natural Park (NPSE) in Portugal stands out as a well-preserved region abundant in medicinal plants, particularly known for their pharmaceutical applications in diabetes prevention and treatment. This comprehensive review explores these plants' botanical diversity, traditional uses, pharmacological applications, and chemical composition. The NPSE boast a rich diversity with 138 medicinal plants across 55 families identified as traditionally and pharmacologically used against diabetes globally. Notably, the Asteraceae and Lamiaceae families are prevalent in antidiabetic applications. In vitro studies have revealed their significant inhibition of carbohydrate-metabolizing enzymes, and certain plant co-products regulate genes involved in carbohydrate metabolism and insulin secretion. In vivo trials have demonstrated antidiabetic effects, including glycaemia regulation, insulin secretion, antioxidant activity, and lipid profile modulation. Medicinal plants in NPSE exhibit various activities beyond antidiabetic, such as antioxidant, anti-inflammatory, antibacterial, anti-cancer, and more. Chemical analyses have identified over fifty compounds like phenolic acids, flavonoids, terpenoids, and polysaccharides responsible for their efficacy against diabetes. These findings underscore the potential of NPSE medicinal plants as antidiabetic candidates, urging further research to develop effective plant-based antidiabetic drugs, beverages, and supplements.
Collapse
Affiliation(s)
- Radhia Aitfella Lahlou
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (R.A.L.); (F.C.)
| | - Filomena Carvalho
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (R.A.L.); (F.C.)
| | - Maria João Pereira
- CERENA/DER, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal;
| | - João Lopes
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, University of Lisboa, 1649-003 Lisboa, Portugal;
| | - Luís R. Silva
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (R.A.L.); (F.C.)
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
- CERES, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|