151
|
Flores C, Nieto M, Millán-Gómez DV, Caro M, Galindo E, Serrano-Carreón L. Elicitation and biotransformation of 6-pentyl-α-pyrone in Trichoderma atroviride cultures. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.04.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
152
|
Kazmi A, Khan MA, Ali H. Biotechnological approaches for production of bioactive secondary metabolites in Nigella sativa:¬ an up-to-date review. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2019. [DOI: 10.21448/ijsm.575075] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
153
|
Khojasteh A, Metón I, Camino S, Cusido RM, Eibl R, Palazon J. In Vitro Study of the Anticancer Effects of Biotechnological Extracts of the Endangered Plant Species Satureja Khuzistanica. Int J Mol Sci 2019; 20:E2400. [PMID: 31096565 PMCID: PMC6566673 DOI: 10.3390/ijms20102400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022] Open
Abstract
Many medicinal plant species are currently threatened in their natural habitats because of the growing demand for phytochemicals worldwide. A sustainable alternative for the production of bioactive plant compounds are plant biofactories based on cell cultures and organs. In addition, plant extracts from biofactories have significant advantages over those obtained from plants, since they are free of contamination by microorganisms, herbicides and pesticides, and they provide more stable levels of active ingredients. In this context, we report the establishment of Satureja khuzistanica cell cultures able to produce high amounts of rosmarinic acid (RA). The production of this phytopharmaceutical was increased when the cultures were elicited with coronatine and scaled up to a benchtop bioreactor. S. khuzistanica extracts enriched in RA were found to reduce the viability of cancer cell lines, increasing the sub-G0/G1 cell population and the activity of caspase-8 in MCF-7 cells, which suggest that S. khuzistanica extracts can induce apoptosis of MCF-7 cells through activation of the extrinsic pathway. In addition, our findings indicate that other compounds in S. khuzistanica extracts may act synergistically to potentiate the anticancer activity of RA.
Collapse
Affiliation(s)
- Abbas Khojasteh
- Secció de Fisiologia i Biotecnologia Vegetal, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain.
| | - Isidoro Metón
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain.
| | - Sergio Camino
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain.
| | - Rosa M Cusido
- Secció de Fisiologia i Biotecnologia Vegetal, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain.
| | - Regine Eibl
- Institute of Chemistry and Biotechnology, Biochemical Engineering and Cell Cultivation Techniques, Campus Grüental, Zurich University of Applied Sciences, 8820 Wädenswill, Switzerland.
| | - Javier Palazon
- Secció de Fisiologia i Biotecnologia Vegetal, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain.
| |
Collapse
|
154
|
Stanišić M, Ćosić T, Savić J, Krstić-Milošević D, Mišić D, Smigocki A, Ninković S, Banjac N. Hairy root culture as a valuable tool for allelopathic studies in apple. TREE PHYSIOLOGY 2019; 39:888-905. [PMID: 30811532 DOI: 10.1093/treephys/tpz006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/30/2018] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Allelopathic plants exploit their chemical 'weapons' to prevail over the competition, suppress neighboring plants and consequently use the available resources more efficiently. However, the investigation of plant allelopathic interactions in rhizosphere is difficult to perform because of its high complexity due to interactions of biotic and abiotic factors. Thus, autonomous, aseptic root cultures of apple (Malus × domestica Borkh.) could facilitate allelopathic studies. We report on the successful genetic transformation of apple cultivars Melrose, Golden Delicious, Čadel and Gloster using Agrobacterium rhizogenes (Riker et al. 1930) Conn 1942 strain 15834 and for the first time the establishment of apple autonomous and permanent in vitro hairy root cultures that could be used as a new tool for apple allelopathic assays. Molecular characterization of transgenic hairy root lines was conducted to elucidate the possible relationship between expression of T-DNA genes and root growth characteristics that include branching. Similar content of phenolic acids (chlorogenic, caffeic, syringic, p-coumaric and ferulic), glycosilated flavonoids (rutin, quercitrin, isoquercitrin, kaempferol-3-glucoside) and flavonoid aglycones (quercetin and naringenin), and dihydrochalcone phloridzin, was detected in untransformed and transgenic apple root tissue by ultra high-performance liquid chromatography with mass spectrometry (UHPLC/(+/-)HESI-MS/MS) analyses, confirming that genetic transformation did not disturb secondary metabolite production in apple. Chlorogenic and caffeic acids and dihydrochalcones phloridzin and phloretin were detected as putative allelochemicals exuded into the growth medium in which transgenic roots were maintained for 4 weeks. Apple hairy root exudates significantly affected shoot and root development and growth of test plant Arabidopsis thaliana (L.) Heynh. seedlings after 5 or 10 days of treatment. Additionally, core cell-cycle genes CDKA1;1, CDKB2;1, CYCA3;1 and CYCB2;4 were down regulated in Arabidopsis shoots suggesting, in part, their role in inhibition of shoot growth. The present work highlighted an autonomous and permanent in vitro hairy root culture system as a valuable tool for studying allelopathic potential of apple, offering new perspective for allelopathy background elucidation in this important fruit species.
Collapse
Affiliation(s)
- Mariana Stanišić
- Institute for Biological Research 'Siniša Stanković', University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Tatjana Ćosić
- Institute for Biological Research 'Siniša Stanković', University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Jelena Savić
- Institute for Biological Research 'Siniša Stanković', University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Dijana Krstić-Milošević
- Institute for Biological Research 'Siniša Stanković', University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Danijela Mišić
- Institute for Biological Research 'Siniša Stanković', University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Ann Smigocki
- USDA-ARS, Molecular Plant Pathology Laboratory, 10300 Baltimore Avenue, Beltsville, MD, USA
| | - Slavica Ninković
- Institute for Biological Research 'Siniša Stanković', University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Nevena Banjac
- Institute for Biological Research 'Siniša Stanković', University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| |
Collapse
|
155
|
Lebedev VG, Krutovsky KV, Shestibratov KA. …Fell Upas Sits, the Hydra-Tree of Death †, or the Phytotoxicity of Trees. Molecules 2019; 24:E1636. [PMID: 31027270 PMCID: PMC6514861 DOI: 10.3390/molecules24081636] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/21/2022] Open
Abstract
The use of natural products that can serve as natural herbicides and insecticides is a promising direction because of their greater safety for humans and environment. Secondary metabolites of plants that are toxic to plants and insects-allelochemicals-can be used as such products. Woody plants can produce allelochemicals, but they are studied much less than herbaceous species. Meanwhile, there is a problem of interaction of woody species with neighboring plants in the process of introduction or invasion, co-cultivation with agricultural crops (agroforestry) or in plantation forestry (multiclonal or multispecies plantations). This review describes woody plants with the greatest allelopathic potential, allelochemicals derived from them, and the prospects for their use as biopesticides. In addition, the achievement of and the prospects for the use of biotechnology methods in relation to the allelopathy of woody plants are presented and discussed.
Collapse
Affiliation(s)
- Vadim G Lebedev
- Forest Biotechnology Group, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospect Nauki, Pushchino, 142290 Moscow, Russia.
| | - Konstantin V Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany.
- Laboratory of Population Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina Str. 3, 119991 Moscow, Russia.
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 50a/2 Akademgorodok, 660036 Krasnoyarsk, Russia.
- Department of Ecosystem Science and Management, Texas A&M University, 495 Horticulture Rd, College Station, TX 77843-2138, USA.
| | - Konstantin A Shestibratov
- Forest Biotechnology Group, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospect Nauki, Pushchino, 142290 Moscow, Russia.
| |
Collapse
|
156
|
Contreras A, Leroy B, Mariage PA, Wattiez R. Proteomic analysis reveals novel insights into tanshinones biosynthesis in Salvia miltiorrhiza hairy roots. Sci Rep 2019; 9:5768. [PMID: 30962498 PMCID: PMC6453882 DOI: 10.1038/s41598-019-42164-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 03/26/2019] [Indexed: 12/29/2022] Open
Abstract
Salvia miltiorrhiza is a medicinal plant highly appreciated by its content of tanshinones and salvianolic acids. Tanshinones are of particular relevance for their anti-oxidant, anti-tumoral and anti-inflammatory properties. Abiotic and biotic agents as silver nitrate and yeast extract have shown efficiently to stimulate tanshinone accumulation, but the underlying molecular mechanism remains essentially unknown. By using hairy roots as experimental material and the elicitors mentioned, were obtained up to 22 mg of tanshinones per gram of dry weight. Differential label-free quantitative proteomic analysis was applied to study the proteins involved in tanshinone biosynthesis. A total of 2650 proteins were identified in roots extracts, of which 893 showed statistically (p < 0.05) significant change in relative abundance compared to control roots, 251 proteins were upregulated and 642 downregulated. Among the upregulated proteins the predominant functional categories were metabolism (47%), stress defense (18%) and redox homeostasis (10%). Within the metabolism category, isoprenoid metabolism enzymes, cytochromes P450 and FAD-binding berberine proteins showed abundance profile linked to tanshinone concentration. The results presented here allowed to propose 5 new cytochromes P450 and 5 berberine enzymes as candidates to be involved into tanshinone biosynthesis, a novel finding that opens new avenues to improve tanshinone production through biotechnological approaches.
Collapse
Affiliation(s)
- Angela Contreras
- Proteomics and Microbiology department, Research center for Biosciences, University of Mons, 20 place du Parc, Mons, 7000, Belgium
| | - Baptiste Leroy
- Proteomics and Microbiology department, Research center for Biosciences, University of Mons, 20 place du Parc, Mons, 7000, Belgium
| | | | - Ruddy Wattiez
- Proteomics and Microbiology department, Research center for Biosciences, University of Mons, 20 place du Parc, Mons, 7000, Belgium.
| |
Collapse
|
157
|
Production of biomass and medicinal metabolites through adventitious roots in Ajuga bracteosa under different spectral lights. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 193:109-117. [PMID: 30836321 DOI: 10.1016/j.jphotobiol.2019.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 02/20/2019] [Accepted: 02/25/2019] [Indexed: 01/07/2023]
|
158
|
Enhancement of capsaicinoids in vitro production by abiotic elicitors in placenta-derived callus of Capsicum annuum L. Tunisian var. ‘Baklouti Medenine’. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00237-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
159
|
Taghizadeh SF, Rezaee R, Mehmandoust M, Madarshahi FS, Tsatsakis A, Karimi G. Coronatine elicitation alters chemical composition and biological properties of cumin seed essential oil. Microb Pathog 2019; 130:253-258. [PMID: 30910722 DOI: 10.1016/j.micpath.2019.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022]
Abstract
The present experiment evaluated how coronatine (COR) elicitation affects chemical and biological properties of cumin (Cuminum cyminum L.) seed essential oil (CSEO). Following isolation of the EO, its chemical composition was analyzed by gas chromatography-mass spectrometry; also, its bioactivities in terms of antimicrobial/antifungal, cytotoxic (measured by MTT assay) and antioxidant effects (evaluated by DPPH, β-carotene bleaching (BCB) and TBARS methods) were evaluated. COR-elicitation significantly increased CSEO yield and the level of its chemical components, especially cumin aldehyde which is the main component of CSEO. Results showed that COR-elicitation significantly reduced the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of CSEO against 4 Gram-positive and 3 Gram-negative bacteria and 2 fungi. Moreover, elicitation markedly enhanced the antioxidant and in vitro cytotoxic activity of CSEO. Therefore, COR may be regarded as a useful biotic elicitor for improving EO chemical and biological properties.
Collapse
Affiliation(s)
- Seyedeh Faezeh Taghizadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki, 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001, Greece
| | - Masoumeh Mehmandoust
- Department of Horticultural Science, Faculty of Agriculture, Islamic Azad University of Shirvan, Shirvan, Iran
| | - Fatemeh Sadat Madarshahi
- Department of Horticultural Science, Faculty of Agriculture, Islamic Azad University of Shirvan, Shirvan, Iran
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, University of Crete, Voutes, Heraklion, Crete, 71003, Greece
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
160
|
Ahmad F, Anggita VS. Enhancement of saponin accumulation in adventitious root culture of Javanese ginseng (Talinum paniculatum Gaertn.) through methyl jasmonate and salicylic
acid elicitation. ACTA ACUST UNITED AC 2019. [DOI: 10.5897/ajb2018.16736] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
161
|
Liu H, Kang Y, Zhao X, Liu Y, Zhang X, Zhang S. Effects of elicitation on bioactive compounds and biological activities of sprouts. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.12.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
162
|
Reis A, Boutet-Mercey S, Massot S, Ratet P, Zuanazzi JAS. Isoflavone production in hairy root cultures and plantlets of Trifolium pratense. Biotechnol Lett 2019; 41:427-442. [PMID: 30661155 DOI: 10.1007/s10529-018-02640-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/19/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVES The aim of this study was to develop a Trifolium pratense hairy root (HR) production protocol and select HR lines with high isoflavone yield following elicitor treatments. RESULTS We obtained 13 independent HR lines, producing approximately three times more isoflavonoids than seedlings (3.3 mg/g dry weight) and in which 27 isoflavonoids were detected. Each HR line had its own isoflavonoid profile. These lines produced as major components daidzein, genistein, formononetin and biochanin A. Sucrose, salicylic acid (SA), yeast extract (YE) and flagellin 22 (flg22) were tested as elicitors. Using SA 140 mg/L, allowed the maximum isoflavonoid production in plantlets (11.9 mg/g dry weight) but reduced root growth, possibly as a result of its toxicity. The highest isoflavone production in HR (27.9 mg/g dry weight) was obtained using sucrose 60 g/L, for 3.5 days. CONCLUSION This work reports the high production of various isoflavonoids with T. pratense elicited HR cultures.
Collapse
Affiliation(s)
- Andressa Reis
- Laboratory of Pharmacognosy, Department of Raw Material Production, Federal University of Rio Grande do Sul, Porto Alegre - UFRGS, Porto Alegre, 90610-000, Brazil
| | - Stéphanie Boutet-Mercey
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Sophie Massot
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
| | - Pascal Ratet
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France.
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France.
| | - José Angelo Silveira Zuanazzi
- Laboratory of Pharmacognosy, Department of Raw Material Production, Federal University of Rio Grande do Sul, Porto Alegre - UFRGS, Porto Alegre, 90610-000, Brazil
| |
Collapse
|
163
|
Mareya CR, Tugizimana F, Piater LA, Madala NE, Steenkamp PA, Dubery IA. Untargeted Metabolomics Reveal Defensome-Related Metabolic Reprogramming in Sorghum bicolor against Infection by Burkholderia andropogonis. Metabolites 2019; 9:metabo9010008. [PMID: 30609758 PMCID: PMC6359421 DOI: 10.3390/metabo9010008] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 12/27/2022] Open
Abstract
Burkholderia andropogonis is the causal agent of bacterial leaf stripe, one of the three major bacterial diseases affecting Sorghum bicolor. However, the biochemical aspects of the pathophysiological host responses are not well understood. An untargeted metabolomics approach was designed to understand molecular mechanisms underlying S. bicolor⁻B. andropogonis interactions. At the 4-leaf stage, two sorghum cultivars (NS 5511 and NS 5655) differing in disease tolerance, were infected with B. andropogonis and the metabolic changes monitored over time. The NS 5511 cultivar displayed delayed signs of wilting and lesion progression compared to the NS 5655 cultivar, indicative of enhanced resistance. The metabolomics results identified statistically significant metabolites as biomarkers associated with the sorghum defence. These include the phytohormones salicylic acid, jasmonic acid, and zeatin. Moreover, metabolic reprogramming in an array of chemically diverse metabolites that span a wide range of metabolic pathways was associated with the defence response. Signatory biomarkers included aromatic amino acids, shikimic acid, metabolites from the phenylpropanoid and flavonoid pathways, as well as fatty acids. Enhanced synthesis and accumulation of apigenin and derivatives thereof was a prominent feature of the altered metabolomes. The analyses revealed an intricate and dynamic network of the sorghum defence arsenal towards B. andropogonis in establishing an enhanced defensive capacity in support of resistance and disease suppression. The results pave the way for future analysis of the biosynthesis of signatory biomarkers and regulation of relevant metabolic pathways in sorghum.
Collapse
Affiliation(s)
- Charity R Mareya
- Centre for Plant Metabolomics Research, Department of Biochemistry, University of Johannesburg, Auckland Park 2006, Johannesburg, South Africa.
| | - Fidele Tugizimana
- Centre for Plant Metabolomics Research, Department of Biochemistry, University of Johannesburg, Auckland Park 2006, Johannesburg, South Africa.
| | - Lizelle A Piater
- Centre for Plant Metabolomics Research, Department of Biochemistry, University of Johannesburg, Auckland Park 2006, Johannesburg, South Africa.
| | - Ntakadzeni E Madala
- Centre for Plant Metabolomics Research, Department of Biochemistry, University of Johannesburg, Auckland Park 2006, Johannesburg, South Africa.
| | - Paul A Steenkamp
- Centre for Plant Metabolomics Research, Department of Biochemistry, University of Johannesburg, Auckland Park 2006, Johannesburg, South Africa.
| | - Ian A Dubery
- Centre for Plant Metabolomics Research, Department of Biochemistry, University of Johannesburg, Auckland Park 2006, Johannesburg, South Africa.
| |
Collapse
|
164
|
Miras-Moreno B, Pedreño MA, Fraser PD, Sabater-Jara AB, Almagro L. Effect of diflufenican on total carotenoid and phytoene production in carrot suspension-cultured cells. PLANTA 2019; 249:113-122. [PMID: 30083808 DOI: 10.1007/s00425-018-2966-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/28/2018] [Indexed: 06/08/2023]
Abstract
Diflufenican increased 493-fold the level of phytoene. Diflufenican-induced inhibition of phytoene desaturase gene expression in carrot cells resulted in an increased production of phytoene. This work analyzes the effect of diflufenican, an inhibitor of phytoene desaturase, on the gene expression profiles of the biosynthetic pathway of carotenoids related with the production of these compounds in carrot cell cultures. The results showed that the presence of 10 µM diflufenican in the culture medium increased phytoene levels, which was 493-fold higher than in control cells after 7 days of treatment but did not alter cell growth in carrot cell cultures. The maximal production of phytoene was reached with 10 µM diflufenican after 7 days of incubation in the presence of light and with 30 g/L sucrose in the culture medium. Moreover, diflufenican decreased the expression of phytoene synthase and phytoene desaturase genes at all the times studied. This diflufenican-induced inhibition of phytoene desaturase gene expression in carrot cell cultures resulted in an increased production of phytoene. Our results provide new insights into the action of diflufenican in carrot cell cultures, which could represent an alternative more sustainable and environmentally friendly system to produce phytoene than those currently used.
Collapse
Affiliation(s)
- Begoña Miras-Moreno
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Maria Angeles Pedreño
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Paul D Fraser
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 OEX, UK
| | - Ana Belén Sabater-Jara
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Lorena Almagro
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain.
| |
Collapse
|
165
|
Komaikul J, Kitisripanya T, Likhitwitayawuid K, Sritularak B, Tanaka H, Putalun W. Improvement of stilbenoid production by 2-hydroxypropyl-β-cyclodextrin in white mulberry ( Morus alba L.) callus cultures. Nat Prod Res 2018; 33:2762-2769. [PMID: 30470133 DOI: 10.1080/14786419.2018.1499643] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mulberroside A, oxyresveratrol and resveratrol, commonly found in Morus alba L., are potent anti-aging phytostilbenes. In this study, the effect of the addition of 2-hydroxypropyl-β-cyclodextrin on the levels of phytostilbenes in M. alba callus cultures was investigated. Commercial cyclodextrin was used in the hydrolytic and culture processes of the M. alba callus cultures. The hydrolytic study indicated that 2-hydroxypropyl-β-cyclodextrin acted as a retardant for stilbenoid hydrolysis. It reduced mulberroside A deglycosylation and stabilised oxyresveratrol. The elicitation result showed that extracellular oxyresveratrol was increased by adding 2-hydroxypropyl-β-cyclodextrin to the culture media of both free and immobilised M. alba callus (>730-fold and >169-fold, respectively) compared with those of the control. However, the intracellular mulberroside A levels in the treatment groups did not increase compared with those of the control. The results show that the addition of 2-hydroxypropyl-β-cyclodextrin significantly changed the patterns and levels of the stilbenoids in M. alba callus cultures.
Collapse
Affiliation(s)
- Jukrapun Komaikul
- a Faculty of Pharmaceutical Sciences, Khon Kaen University , Khon Kaen , Thailand.,b Research Group for Pharmaceutical Activities of Natural Products using Pharmaceutical Biotechnology (PANPB), National Research University-Khon Kaen University , Khon Kaen , Thailand
| | - Tharita Kitisripanya
- c Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University , Bangkok , Thailand
| | | | - Boonchoo Sritularak
- d Faculty of Pharmaceutical Sciences, Chulalongkorn University , Bangkok , Thailand
| | - Hiroyuki Tanaka
- e Graduate School of Pharmaceutical Sciences, Kyushu University , Fukuoka , Japan
| | - Waraporn Putalun
- a Faculty of Pharmaceutical Sciences, Khon Kaen University , Khon Kaen , Thailand.,b Research Group for Pharmaceutical Activities of Natural Products using Pharmaceutical Biotechnology (PANPB), National Research University-Khon Kaen University , Khon Kaen , Thailand
| |
Collapse
|
166
|
Jiao J, Gai QY, Wang X, Qin QP, Wang ZY, Liu J, Fu YJ. Chitosan elicitation of Isatis tinctoria L. hairy root cultures for enhancing flavonoid productivity and gene expression and related antioxidant activity. INDUSTRIAL CROPS AND PRODUCTS 2018; 124:28-35. [PMID: 32288267 PMCID: PMC7126483 DOI: 10.1016/j.indcrop.2018.07.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/02/2018] [Accepted: 07/22/2018] [Indexed: 06/01/2023]
Abstract
Elicitation for phytochemical enhancement via cost-effective elicitors can overcome the limitation of commercial application faced by plant cell and organ culture technology. Chitosan is a natural, low-cost, and nontoxic elicitor that can trigger plant defense responses with the concomitant enhancement in phytochemical biosynthesis. In this work, the elicitation of Isatis tinctoria L. hairy root cultures by chitosan was conducted to enhance the production of pharmacologically active flavonoids. In comparison with control (2.31 ± 0.29 mg/g DW), a 7.08-fold enhancement of total flavonoids (16.35 ± 0.88 mg/g DW) was achieved in 24 day-old I. tinctoria hairy root cultures elicited by 150 mg/L chitosan for 36 h. Interestingly, the multiple hydroxyl-substituted flavonoids (rutin, quercetin, isorhamnetin, and isoliquiritigenin) were noticed to increase significantly in chitosan-elicited I. tinctoria hairy root cultures. Moreover, the transcription of associated genes involved in flavonoid biosynthesis pathway was significantly up-regulated underlying chitosan elicitation, among which chalcone synthase and flavonoid 3'-hydroxylase might play an important role in flavonoid enhancement. Additionally, extracts from chitosan-elicited I. tinctoria hairy root cultures exhibited higher antioxidant activities with lower IC50 values as compared with control. Overall, a cost-effective strategy via the simple chitosan elicitation is provided here to enhance the production of high-added value flavonoids in I. tinctoria hairy root cultures, which paves the way toward the successful commercialization of this in vitro culture system in the future.
Collapse
Affiliation(s)
- Jiao Jiao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Qing-Yan Gai
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Xin Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Qi-Ping Qin
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Zi-Ying Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Jing Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Yu-Jie Fu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, PR China
| |
Collapse
|
167
|
Kašparová M, Pilařová P, Tůmová L, Siatka T. Effect of Precursor and Phytohormones on Podophyllotoxin Production in Juniperus virginiana Suspension Cultures. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801301129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Our results showed that cinnamic acid can increase podophyllotoxin production in Juniperus virginiana suspension cultures. The best effect was manifested after a 24-hours application of a 10 mmol/L concentration. The highest podophyllotoxin content was determined at 1.47 mg/g DW and the production was statistically significantly stimulated by about 444% in comparison with the control. Comparison of podophyllotoxin production in the cinnamic acid- and salicylic acid-elicited J. virginiana suspension cultures confirms that the maximum increase in both cases was induced by the 24-hours application of the 10 mmol/L concentration. In contrast, the best effect of jasmonic acid was manifested after the longest 168-hours application of a 5 mmol/L concentration.
Collapse
Affiliation(s)
- Marie Kašparová
- Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Pavla Pilařová
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Lenka Tůmová
- Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Tomáš Siatka
- Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
168
|
Kochan E, Szymczyk P, Kuźma Ł, Szymańska G, Wajs-Bonikowska A, Bonikowski R, Sienkiewicz M. The Increase of Triterpene Saponin Production Induced by Trans-Anethole in Hairy Root Cultures of Panax quinquefolium. Molecules 2018; 23:E2674. [PMID: 30336634 PMCID: PMC6222429 DOI: 10.3390/molecules23102674] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 12/19/2022] Open
Abstract
In vitro cultivation is an effective way to increase pharmaceutical production. To increase ginsenoside production in hairy root cultures of American ginseng, the present study uses trans-anethole as an elicitor. The content of nine triterpene saponins was determined: Rb1, Rb2, Rb3, Rc, Rd, Rg1, Rg2, Re and Rf. Trans-anethole was found to stimulate saponin synthesis regardless of exposure time (24 and 72 h). Twenty-four hour exposure to 1 μmol trans-anethole in the culture medium resulted in the highest increase of total saponin content (twice that of untreated roots), and optimum accumulation of Rb-group saponins, with ginsenoside Rc dominating (8.45 mg g-1 d.w.). In contrast, the highest mean content of protopanaxatriol derivatives was obtained for 10 μmol trans-anethole. The Re metabolite predominated, reaching a concentration of 5.72 mg g-1 d.w.: a 3.9-fold increase over untreated roots. Elicitation with use of trans-anethole can therefore be an effective method of increasing ginsenoside production in shake flasks.
Collapse
Affiliation(s)
- Ewa Kochan
- Pharmaceutical Biotechnology Department, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland.
| | - Piotr Szymczyk
- Pharmaceutical Biotechnology Department, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland.
| | - Łukasz Kuźma
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszyńskiego l, 90-151 Lodz, Poland.
| | - Grażyna Szymańska
- Pharmaceutical Biotechnology Department, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland.
| | - Anna Wajs-Bonikowska
- Institute of General Food Chemistry, Biotechnology and Food Science, Lodz University of Technology, Stefanowskiego St. 4/10, 90-924 Lodz, Poland.
| | - Radosław Bonikowski
- Institute of General Food Chemistry, Biotechnology and Food Science, Lodz University of Technology, Stefanowskiego St. 4/10, 90-924 Lodz, Poland.
| | - Monika Sienkiewicz
- Department of Allergology and Respiratory Rehabilitation, Medical University of Lodz, 90-151 Lodz, Poland.
| |
Collapse
|
169
|
López CQ, Corral P, Lorrain-Lorrette B, Martinez-Swatson K, Michoux F, Simonsen HT. Use of a temporary immersion bioreactor system for the sustainable production of thapsigargin in shoot cultures of Thapsia garganica. PLANT METHODS 2018; 14:79. [PMID: 30202426 PMCID: PMC6128993 DOI: 10.1186/s13007-018-0346-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/31/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Thapsigargin and nortrilobolide are sesquiterpene lactones found in the Mediterranean plant Thapsia garganica L. Thapsigargin is a potent inhibitor of the sarco/endoplasmic reticulum calcium ATPase pump, inducing apoptosis in mammalian cells. This mechanism has been used to develop a thapsigargin-based cancer drug first by GenSpera and later Inspyr Therapeutics (Westlake Village, California). However, a stable production of thapsigargin is not established. RESULTS In vitro regeneration from leaf explants, shoot multiplication and rooting of T. garganica was obtained along with the production of thapsigargins in temporary immersion bioreactors (TIBs). Thapsigargin production was enhanced using reduced nutrient supply in combination with methyl jasmonate elicitation treatments. Shoots grown in vitro were able to produce 0.34% and 2.1% dry weight of thapsigargin and nortrilobolide, respectively, while leaves and stems of wild T. garganica plants contain only between 0.1 and 0.5% of thapsigargin and below detectable levels of nortrilobolide. In addition, a real-time reverse transcription PCR (qRT-PCR) study was performed to study the regulatory role of the biosynthetic genes HMG-CoA reductase (HMGR), farnesyl diphosphate synthase (FPPS), epikunzeaol synthase (TgTPS2) and the cytochrome P450 (TgCYP76AE2) of stem, leaf and callus tissues. Nadi staining showed that the thapsigargins are located in secretory ducts within these tissues. CONCLUSIONS Shoot regeneration, rooting and biomass growth from leaf explants of T. garganica were achieved, together with a high yield in vitro production of thapsigargin in TIBs.
Collapse
Affiliation(s)
- Carmen Quiñonero López
- Department of Biotechnology and Biomedicine, Faculty of Bioengineering, Technical University of Denmark, Lyngby, Denmark
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | - Henrik Toft Simonsen
- Department of Biotechnology and Biomedicine, Faculty of Bioengineering, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
170
|
Matsuura HN, Malik S, de Costa F, Yousefzadi M, Mirjalili MH, Arroo R, Bhambra AS, Strnad M, Bonfill M, Fett-Neto AG. Specialized Plant Metabolism Characteristics and Impact on Target Molecule Biotechnological Production. Mol Biotechnol 2018; 60:169-183. [PMID: 29290031 DOI: 10.1007/s12033-017-0056-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Plant secondary metabolism evolved in the context of highly organized and differentiated cells and tissues, featuring massive chemical complexity operating under tight environmental, developmental and genetic control. Biotechnological demand for natural products has been continuously increasing because of their significant value and new applications, mainly as pharmaceuticals. Aseptic production systems of plant secondary metabolites have improved considerably, constituting an attractive tool for increased, stable and large-scale supply of valuable molecules. Surprisingly, to date, only a few examples including taxol, shikonin, berberine and artemisinin have emerged as success cases of commercial production using this strategy. The present review focuses on the main characteristics of plant specialized metabolism and their implications for current strategies used to produce secondary compounds in axenic cultivation systems. The search for consonance between plant secondary metabolism unique features and various in vitro culture systems, including cell, tissue, organ, and engineered cultures, as well as heterologous expression in microbial platforms, is discussed. Data to date strongly suggest that attaining full potential of these biotechnology production strategies requires being able to take advantage of plant specialized metabolism singularities for improved target molecule yields and for bypassing inherent difficulties in its rational manipulation.
Collapse
Affiliation(s)
- Hélio Nitta Matsuura
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, UFRGS, Porto Alegre, RS, Brazil
| | - Sonia Malik
- Health Sciences Graduate Program, Biological and Health Sciences Center, Federal University of Maranhão, Avenida dos Portugueses, 1966, Bacanga, São Luís, MA, 65.080-805, Brazil
| | - Fernanda de Costa
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, UFRGS, Porto Alegre, RS, Brazil
| | - Morteza Yousefzadi
- Department of Marine Biology, Faculty of Marine Sciences and Technology, Hormozgan University, Bandar Abbas, Iran
| | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Randolph Arroo
- Faculty of Health and Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | - Avninder S Bhambra
- Faculty of Health and Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany AS CR, Palacký University, Šlechtitelů 11, 783 71, Olomouc, Czech Republic
| | - Mercedes Bonfill
- Plant Physiology Laboratory, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Arthur Germano Fett-Neto
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
171
|
The interplay between light, plant growth regulators and elicitors on growth and secondary metabolism in cell cultures of Fagonia indica. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 185:153-160. [DOI: 10.1016/j.jphotobiol.2018.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 11/18/2022]
|
172
|
Jamil SZMR, Rohani ER, Baharum SN, Noor NM. Metabolite profiles of callus and cell suspension cultures of mangosteen. 3 Biotech 2018; 8:322. [PMID: 30034986 DOI: 10.1007/s13205-018-1336-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 07/06/2018] [Indexed: 11/26/2022] Open
Abstract
Callus was induced from mangosteen (Garcinia mangostana L.) young purple-red leaves on Murashige and Skoog basal medium with various combinations of plant growth regulators. Murashige and Skoog medium with 4.44 µM 6-benzylaminopurine and 4.52 µM 2,4-dichlorophenoxyacetic acid was the best for friable callus induction. This friable callus was used for the initiation of cell suspension culture. The effects of different combinations of 6-benzylaminopurine and 2,4-dichlorophenoxyacetic acid, carbon sources and inoculum sizes were tested. It was found that combination of 2.22 µM 6-benzylaminopurine + 2.26 µM 2,4-dichlorophenoxyacetic acid, glucose (30 g/l) and 1.5 g/50 ml inoculum size was the best for cell growth. Callus and cell suspension cultures were then treated either with 100 µM methyl jasmonate as an elicitor for 5 days, or 0.5 g/l casein hydrolysate as an organic supplement for 7 days. Metabolites were then extracted and profiled using liquid chromatography-time of flight mass spectrometry. Multivariate discriminant analyses revealed significant metabolite differences (P ≤ 0.05) for callus and suspension cells treated either with methyl jasmonate or casein hydrolysate. Based on MS/MS data, methyl jasmonate stimulated the production of an alkaloid (thalsimine) and fatty acid (phosphatidyl ethanolamine) in suspension cells while in callus, an alkaloid (thiacremonone) and glucosinolate (7-methylthioheptanaldoxime) was produced. Meanwhile casein hydrolysate stimulated the production of alkaloids such as 3ß,6ß-dihydroxynortropane and cis-hinokiresinol and triterpenoids such as schidigerasaponin and talinumoside in suspension cells. This study provides evidence on the potential of secondary metabolite production from in vitro culture of mangosteen.
Collapse
Affiliation(s)
| | - Emelda Rosseleena Rohani
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor Malaysia
| | - Syarul Nataqain Baharum
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor Malaysia
| | - Normah Mohd Noor
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor Malaysia
| |
Collapse
|
173
|
Induction of Specialized Metabolism in In Vitro Cultures of Capsicum chinense Jacq. Methods Mol Biol 2018. [PMID: 29981140 DOI: 10.1007/978-1-4939-8594-4_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
A protocol for the elicitation of capsaicinoids, the pungent principle of peppers, as well as for the biosynthetic intermediaries vanillin and ferulic acid was developed for in vitro cell suspension cultures, and immobilized placentas of Capsicum chinense Jacq. in vitro cultures were exposed to different doses of methyl jasmonate and salicylic acid, which were effective in eliciting specialized metabolism in both of these cultures, resulting in an increased accumulation of the analyzed metabolites.
Collapse
|
174
|
Impacts of hormonal elicitors and photoperiod regimes on elicitation of bioactive secondary volatiles in cell cultures of Ajuga bracteosa. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 183:242-250. [DOI: 10.1016/j.jphotobiol.2018.04.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/17/2018] [Accepted: 04/26/2018] [Indexed: 11/22/2022]
|
175
|
Gu L, Zheng Y, Lian D, Zhong X, Liu X. Production of triterpenoids from Ganoderma lucidum : Elicitation strategy and signal transduction. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
176
|
Kumar D, Kumar G, Das R, Kumar R, Agrawal V. In vitro elicitation, isolation, and characterization of conessine biomolecule from Holarrhena antidysenterica (L.) Wall. callus and its larvicidal activity against malaria vector, Anopheles stephensi Liston. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:6783-6796. [PMID: 29264854 DOI: 10.1007/s11356-017-1038-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/12/2017] [Indexed: 06/07/2023]
Abstract
In vitro elicitation of an important compound conessine has been done in the bark-derived callus culture of Holarrhena antidysenterica (L.) Wall. employing different elicitors. For induction of callus, green bark explants excised from field-grown plants were cultured on MS medium augmented with different concentrations (0, 1, 2.5, 5, and 10 μM) of various growth regulators such as BA, IBA, NAA, and 2,4-D either alone or in combinations. The maximum amount of conessine (458.18 ± 0.89d μg/g dry wt.) was achieved in callus developed on MS medium supplemented with 5 μM BA and 5 μM 2,4-D through HPLC analysis. Elicitation in conessine content in the above callus was achieved employing a variety of organic (phenylalanine, tyrosine, chitosan, tryptophan, casein hydrolysate, proline, sucrose, and yeast extract) as well as inorganic elicitors (Pb(NO3)2, As2O3, CuSO4, NaCl, and CdCl2) in different concentrations. The optimum enhancement in conessine content (3518.58 ± 0.28g μg/g dry wt.) was seen at the highest concentration (200 mg/L) of phenylalanine. The enhancement was elicitor specific and dose dependent. The overall increment of the conessine content was seen in the order of phenylalanine > tryptophan > Pb(NO3)2 > sucrose > NaCl > As2O3 > casein hydrolysate > CdCl2 > chitosan > proline > yeast extract > CuSO4 > tyrosine. The isolation and purification of conessine was done using methanol as a solvent system through column chromatography (CC) and TLC. The isolated compound was characterized by FT-IR, 1H-NMR, and HRMS which confirmed with the structure of conessine. The bioassays conducted with the isolated compound revealed a strong larvicidal activity against Anopheles stephensi Liston with LC50 and LC90 values being 1.93 and 5.67 ppm, respectively, without harming the nontarget organism, Mesocyclops thermocyclopoides Harada, after 48 h of treatment. This is our first report for the isolation and elicitation of conessine in the callus culture of H. antidysenterica.
Collapse
Affiliation(s)
- Dinesh Kumar
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Gaurav Kumar
- National Institute of Malaria Research, Dwarka, New Delhi, 110077, India
| | - Ram Das
- National Institute of Malaria Research, Dwarka, New Delhi, 110077, India
| | - Ravindra Kumar
- Department of Botany, Hindu College, New Delhi, 110007, India
| | - Veena Agrawal
- Department of Botany, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
177
|
Le KC, Im WT, Paek KY, Park SY. Biotic elicitation of ginsenoside metabolism of mutant adventitious root culture in Panax ginseng. Appl Microbiol Biotechnol 2018; 102:1687-1697. [DOI: 10.1007/s00253-018-8751-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/12/2017] [Accepted: 12/27/2017] [Indexed: 01/30/2023]
|
178
|
Lee JK, Eom SH, Hyun TK. Enhanced biosynthesis of saponins by coronatine in cell suspension culture of Kalopanax septemlobus. 3 Biotech 2018; 8:59. [PMID: 29354370 DOI: 10.1007/s13205-018-1090-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/04/2018] [Indexed: 10/18/2022] Open
Abstract
Kalopanax septemlobus is a medicinal woody species of the family Araliaceae, and the pharmaceutical properties of saponins obtained from K. septemlobus suggest that K. septemlobus has the potential to be a crude drug and dietary health supplement. In this study, we established cell suspension culture of K. septemlobus to develop a sustainable source of natura-ceuticals. Friable calli were used for establishing cell suspension culture. The maximum amount of total saponins (1.56 mg/60 ml suspension) was obtained during the 15th day of incubation, whereas the maximum capacity of saponin production was reached after day 6 (0.42 μg/mg of fresh weight). The total saponin production in the cell suspension of K. septemlobus was significantly increased by coronatine (COR) at 160% at a dose of 1 μM compared with the mock-treated control, whereas methyl jasmonate treated cells exhibited less increase in total saponin level as compared to the COR-treated cells. In addition, the elicitation of COR strongly induced the expression of beta-amyrin synthase, thus resulting in the accumulation of oleanolic acid (2.369 ± 0.98 μg/mg of extract), a precursor for oleanane-type triterpene saponins. These results indicate that COR is an efficient elicitor for inducing phytochemicals in cell suspension culture and that it provides the possibility for producing saponins of K. septemlobus using cell suspension culture.
Collapse
|
179
|
Vidal-Limon HR, Almagro L, Moyano E, Palazon J, Pedreño MA, Cusido RM. Perfluorodecalins and Hexenol as Inducers of Secondary Metabolism in Taxus media and Vitis vinifera Cell Cultures. FRONTIERS IN PLANT SCIENCE 2018; 9:335. [PMID: 29616056 PMCID: PMC5865277 DOI: 10.3389/fpls.2018.00335] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/28/2018] [Indexed: 05/14/2023]
Abstract
Plant cell cultures constitute a potentially efficient and sustainable tool for the production of high added-value bioactive compounds. However, due to the inherent restrictions in the expression of secondary metabolism, to date the yields obtained have generally been low. Plant cell culture elicitation can boost production, sometimes leading to dramatic improvements in yield, as well as providing insight into the target biosynthetic pathways and the regulation of the genes involved. Among the secondary compounds successfully being produced in biotechnological platforms are taxanes and trans-resveratrol (t-R). In the current study, perfluorodecalins (PFDs) and hexenol (Hex) were tested for the first time with Taxus media and Vitis vinifera cell cultures to explore their effect on plant cell growth and secondary metabolite production, either alone or combined with other elicitors already established as highly effective, such as methyl jasmonate (MeJa), coronatine (Coro) or randomly methylated β-cyclodextrins (β-CDs). The total taxane content at the peak of production in T. media cell cultures treated with PFDs together with Coro plus β-CDs was 3.3-fold higher than in the control, whereas the t-R production in MeJa and β-CD-treated V. vinifera cell cultures increased 552.6-fold compared to the extremely low-yielding control. Hex was ineffective as an elicitor in V. vinifera cell cultures, and in T. media cell suspensions it blocked the taxol production but induced a clear enhancement of baccatin III. Regarding biosynthetic gene expression, a strong positive relationship was observed between the transcript level of targeted genes and taxol production in the T. media cell cultures, but not with t-R production in the elicited V. vinifera cell cultures.
Collapse
Affiliation(s)
| | - Lorena Almagro
- Department of Plant Biology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Elisabeth Moyano
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Javier Palazon
- Secció de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain
| | - Maria A. Pedreño
- Department of Plant Biology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Rosa M. Cusido
- Secció de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain
- *Correspondence: Rosa M. Cusido,
| |
Collapse
|
180
|
Raiola A, Errico A, Petruk G, Monti DM, Barone A, Rigano MM. Bioactive Compounds in Brassicaceae Vegetables with a Role in the Prevention of Chronic Diseases. Molecules 2017; 23:E15. [PMID: 29295478 PMCID: PMC5943923 DOI: 10.3390/molecules23010015] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 01/02/2023] Open
Abstract
The beneficial role of the Mediterranean diet in the prevention of chronic diseases, including cardiovascular diseases, diabetes, and obesity, is well-recognized. In this context, Brassicaceae are considered important vegetables due to several evidences of their health promoting effects that are associated to bioactive compounds present in the edible parts of the plants. In this review, the mechanisms of action and the factors regulating the levels of the bioactive compounds in Brassicaceae have been discussed. In addition, the impact of industrial and domestic processing on the amount of these compounds have been considered, in order to identify the best conditions that are able to preserve the functional properties of the Brassicaceae products before consumption. Finally, the main strategies used to increase the content of health-promoting metabolites in Brassica plants through biofortification have been analyzed.
Collapse
Affiliation(s)
- Assunta Raiola
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy.
| | - Angela Errico
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy.
| | - Ganna Petruk
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, 80055 Naples, Italy.
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, 80055 Naples, Italy.
| | - Amalia Barone
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy.
| | - Maria Manuela Rigano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy.
| |
Collapse
|
181
|
Extracellular chromone derivatives in cell cultures of Pimpinella anisum. Influence of elicitation with methyl jasmonate and 2β-methyl cyclodextrins. Biotechnol Lett 2017; 40:413-418. [PMID: 29185164 DOI: 10.1007/s10529-017-2482-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVES To explore the potentiality of undifferentiated Pimpinella anisum L. cell cultures for the production of secondary metabolites by means of elicitation. RESULTS Two chromone compounds were secreted to the medium of undifferentiated cultures of P. anisum: 4-methoxyfuro[3,2-g]chromen-7-one, known as bergapten, which is constitutive to anise, and 5-hydroxy-7-methoxy-2-methylchromen-4-one, the rare chromone eugenin, not yet described in P. anisum. Caffeoyl quinic acid species were also identified in the biomass. Elicitation with methyl jasmonate enhanced chromone accumulation in the medium and stimulated phenolic acid metabolism in the biomass (11 mg caffeoyl quinic acids g-1 DW cells). The application of 2,6-dimethyl-β-cyclodextrins to cultures led to an intense accumulation of chromones, with nearly 10 mg l-1 bergapten and 150 mg l-1 eugenin being accumulated extracellularly after optimal elicitation conditions. CONCLUSIONS The significant amounts of eugenin obtained in the anise cultures and the stability of production over long periods of time can be of interest for its biotechnological production and for future studies on biosynthesis regulation.
Collapse
|
182
|
Szopa A, Kokotkiewicz A, Król A, Luczkiewicz M, Ekiert H. Improved production of dibenzocyclooctadiene lignans in the elicited microshoot cultures of Schisandra chinensis (Chinese magnolia vine). Appl Microbiol Biotechnol 2017; 102:945-959. [PMID: 29181570 PMCID: PMC5756551 DOI: 10.1007/s00253-017-8640-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/04/2017] [Accepted: 11/07/2017] [Indexed: 11/24/2022]
Abstract
Dibenzocyclooctadiene lignans are a specific group of secondary metabolites that occur solely in Schisandra chinensis. The aim of the presented work was to boost the accumulation of lignans in the agitated microshoot cultures of S. chinensis, using different elicitation schemes. The experiments included testing of various concentrations and supplementation times of cadmium chloride (CdCl2), chitosan (Ch), yeast extract (YeE), methyl jasmonate (MeJa), and permeabilizing agent—dimethylsulfoxide (DMSO). After 30 days, the microshoots were harvested and evaluated for growth parameters and lignan content by LC-DAD method. The analyses showed enhanced production of lignans in the elicited S. chinensis microshoots, whereas the respective media samples contained only trace amounts of the examined compounds (< 5 mg/l). Elicitation with CdCl2 caused up to 2-fold increase in the total lignan content (max. ca. 730 mg/100 g DW after the addition of 1000 μM CdCl2 on the tenth day). Experiments with chitosan resulted in up to 1.35-fold increase in lignan concentration (max. ca. 500 mg/100 g DW) after the supplementation with 50 mg/l on the first day and 200 mg/l on the tenth day. High improvement of lignan production was also recorded after YeE elicitation. After the elicitation with 5000 mg/l of YeE on the first day of the growth period, and with 1000 and 3000 mg/l on the 20th day, the lignan production increased to the same degree—about 1.8-fold. The supplementation with 1000 mg/l YeE on the 20th day of the growth cycle was chosen as the optimal elicitation scheme, for the microshoot cultures maintained in Plantform temporary immersion system—the total content of the estimated lignans was equal to 831.6 mg/100 g DW.
Collapse
Affiliation(s)
- Agnieszka Szopa
- Department of Pharmaceutical Botany, Jagiellonian University, Collegium Medicum, ul. Medyczna 9, 30-688, Kraków, Poland.
| | - Adam Kokotkiewicz
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Gdańsk, al. gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Agata Król
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Gdańsk, al. gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Maria Luczkiewicz
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Gdańsk, al. gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Halina Ekiert
- Department of Pharmaceutical Botany, Jagiellonian University, Collegium Medicum, ul. Medyczna 9, 30-688, Kraków, Poland
| |
Collapse
|
183
|
Chouhan S, Sharma K, Zha J, Guleria S, Koffas MAG. Recent Advances in the Recombinant Biosynthesis of Polyphenols. Front Microbiol 2017; 8:2259. [PMID: 29201020 PMCID: PMC5696593 DOI: 10.3389/fmicb.2017.02259] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/01/2017] [Indexed: 01/29/2023] Open
Abstract
Plants are the source of various natural compounds with pharmaceutical and nutraceutical importance which have shown numerous health benefits with relatively fewer side effects. However, extraction of these compounds from native producers cannot meet the ever-increasing demands of the growing population due to, among other things, the limited production of the active compound(s). Their production depends upon the metabolic demands of the plant and is also subjected to environmental conditions, abundance of crop species and seasonal variations. Moreover, their extraction from plants requires complex downstream processing and can also lead to the extinction of many useful plant varieties. Microbial engineering is one of the alternative approaches which can meet the global demand for natural products in an eco-friendly manner. Metabolic engineering of microbes or pathway reconstruction using synthetic biology tools and novel enzymes lead to the generation of a diversity of compounds (like flavonoids, stilbenes, anthocyanins etc.) and their natural and non-natural derivatives. Strain and pathway optimization, pathway regulation and tolerance engineering have produced microbial cell factories into which the metabolic pathway of plants can be introduced for the production of compounds of interest on an industrial scale in an economical and eco-friendly way. While microbial production of phytochemicals needs to further increase product titer if it is ever to become a commercial success. The present review covers the advancements made for the improvement of microbial cell factories in order to increase the product titer of recombinant polyphenolic compounds.
Collapse
Affiliation(s)
- Sonam Chouhan
- Natural Product Laboratory, Division of Biochemistry, Faculty of Basic Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Kanika Sharma
- Natural Product Laboratory, Division of Biochemistry, Faculty of Basic Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Jian Zha
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Sanjay Guleria
- Natural Product Laboratory, Division of Biochemistry, Faculty of Basic Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Mattheos A G Koffas
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States.,Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
184
|
Two Cycloartenol Synthases for Phytosterol Biosynthesis in Polygala tenuifolia Willd. Int J Mol Sci 2017; 18:ijms18112426. [PMID: 29140303 PMCID: PMC5713394 DOI: 10.3390/ijms18112426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/11/2017] [Accepted: 11/11/2017] [Indexed: 01/16/2023] Open
Abstract
Oxidosqualene cyclases (OSCs) are enzymes that play a key role in control of the biosynthesis of phytosterols and triterpene saponins. In order to uncover OSC genes from Polygala tenuifolia seedlings induced by methyl jasmonate (MeJA), RNA-sequencing analysis was performed using the Illumina sequencing platform. A total of 148,488,632 high-quality reads from two samples (control and the MeJA treated) were generated. We screened genes related to phytosterol and triterpene saponin biosynthesis and analyzed the transcriptional changes of differentially expressed unigene (DEUG) values calculated by fragments per kilobase million (FPKM). In our datasets, two full-length cDNAs of putative OSC genes, PtCAS1, and PtCAS2, were found, in addition to the PtBS (β-amyrin synthase) gene reported in our previous studies and the two cycloartenol synthase genes of P. tenuifolia. All genes were isolated and characterized in yeast cells. The functional expression of the two PtCAS genes in yeast cells showed that the genes all produce a cycloartenol as the sole product. When qRT-PCR analysis from different tissues was performed, the expressions of PtCAS1 and PtCAS2 were highest in flowers and roots, respectively. After MeJA treatment, the transcripts of PtCAS1 and PtCAS2 genes increased by 1.5- and 2-fold, respectively. Given these results, we discuss the potential roles of the two PtCAS genes in relation to triterpenoid biosynthesis.
Collapse
|
185
|
Ho TT, Lee JD, Jeong CS, Paek KY, Park SY. Improvement of biosynthesis and accumulation of bioactive compounds by elicitation in adventitious root cultures of Polygonum multiflorum. Appl Microbiol Biotechnol 2017; 102:199-209. [DOI: 10.1007/s00253-017-8629-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/19/2017] [Accepted: 11/03/2017] [Indexed: 12/17/2022]
|
186
|
Trong TT, Truong DH, Nguyen HC, Tran DT, Nguyen Thi HT, Dang GD, Huu HN. Biomass accumulation of Panax vietnamensis in cell suspension cultures varies with addition of plant growth regulators and organic additives. ASIAN PAC J TROP MED 2017; 10:907-915. [PMID: 29080621 DOI: 10.1016/j.apjtm.2017.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/25/2017] [Accepted: 07/30/2017] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To evaluate the impact of plant growth regulators including kinetin (KN), benzyl adenine and naphthalene acetic acid, yeast extract and casein hydrolyzate on biomass accumulation of Vietnamese ginseng Panax vietnamensis (P. vietnamensis) in cell suspension culture. METHODS Cell suspension cultures were established from friable calluses derived from leaves and petioles of 3-year-old in-vitro P. vietnamensis plants. The cell suspension cultures were grown in Murashige and Skoog basal media supplemented with various concentrations of KN, benzyl adenine, naphthalene acetic acid, and yeast extract and casein hydrolyzate. RESULTS All tested factors generated an increase in the cell biomass of P. vietnamensis in suspension culture, but the impact of each varies depended on the factor type, concentration, and incubation period. Addition of 2.0 mg/L KN resulted in the largest biomass increase after 24 d, (57.0 ± 0.9) and (3.1 ± 0.1) mg/mL fresh and dry weight, respectively, whereas addition of benzyl adenine or naphthalene acetic acid produced optimum levels of Panax cell biomass at 1.0 and 1.5 mg/L, respectively. Addition of the elicitor yeast extract led to a 1.4-2.4 fold increase in biomass of P. vietnamensis, while addition of casein hydrolyzate enhanced biomass accumulation 1.8-2.6 fold. CONCLUSIONS The addition of each factor causes significant changes in biomass accumulation of P. vietnamensis. The largest biomass accumulation is from cultures grown in MS media containing 2.0 mg/L KN for 24 d. The outcome of the present study provides new insights into the optimal suspension culture conditions for studies on the in vitro cell biomass production of P. vietnamensis.
Collapse
Affiliation(s)
- Tuan Tran Trong
- Plant Cell Technology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, 9/621 Ha Noi Highway, Linh Trung, Thu Duc, Ho Chi Minh City, Viet Nam
| | - Dieu-Hien Truong
- Faculty of Applied Sciences, Ton Duc Thang University, 19 Nguyen Huu Tho, Tan Phong, District 7, Ho Chi Minh City, Viet Nam.
| | - Hoang Chinh Nguyen
- Faculty of Applied Sciences, Ton Duc Thang University, 19 Nguyen Huu Tho, Tan Phong, District 7, Ho Chi Minh City, Viet Nam
| | - Dieu-Thai Tran
- Plant Cell Technology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, 9/621 Ha Noi Highway, Linh Trung, Thu Duc, Ho Chi Minh City, Viet Nam
| | - Huyen-Trang Nguyen Thi
- Plant Cell Technology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, 9/621 Ha Noi Highway, Linh Trung, Thu Duc, Ho Chi Minh City, Viet Nam
| | - Giap Do Dang
- Faculty of Applied Sciences, Ton Duc Thang University, 19 Nguyen Huu Tho, Tan Phong, District 7, Ho Chi Minh City, Viet Nam
| | - Ho Nguyen Huu
- Genetic Engineering Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, 9/621 Ha Noi Highway, Linh Trung, Thu Duc, Ho Chi Minh City, Viet Nam
| |
Collapse
|
187
|
Influence of foliar riboflavin applications to vineyard on grape amino acid content. Food Chem 2017; 240:601-606. [PMID: 28946318 DOI: 10.1016/j.foodchem.2017.07.115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/13/2017] [Accepted: 07/24/2017] [Indexed: 12/26/2022]
Abstract
Nitrogen is an important element for grapevine and winemaking, which affects plant development, grape juice fermentation and has a potential effect in modulating wine quality. The aim was to study the influence of foliar applications of riboflavin (vitamin B2) to vineyard on grape nitrogen composition. This vitamin has a reported capacity to protect different plant species, but its application to favor grape and grape juice quality had not previously been studied. This work reports the oenological properties and the effect on amino acid concentration of grape juices obtained from grapes treated with riboflavin at two different doses compared to control. Results showed that probable alcohol, malic acid, color intensity and hue had significant differences when the riboflavin treatments were applied. Most of the amino acids presented the highest concentrations when the lowest riboflavin dose was used. These results are promising in terms of fermentation development and grape juice nitrogen composition.
Collapse
|
188
|
Almagro L, Raquel Tudela L, Belén Sabater-Jara A, Miras-Moreno B, Pedreño MA. Cyclodextrins increase phytosterol and tocopherol levels in suspension cultured cells obtained from mung beans and safflower. Biotechnol Prog 2017; 33:1662-1665. [PMID: 28704889 DOI: 10.1002/btpr.2525] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 03/16/2017] [Indexed: 01/03/2023]
Abstract
In this work, suspension-cultured cells of mung beans and safflower were used in order to analyze the effect of methyl jasmonate and/or cyclodextrins, on bioactive compound production such as phytosterols and tocopherols. The results indicated that mung bean suspension-cultured cells produced higher amount of total phytosterols and tocopherols. In particular, mung bean suspension-cultured cells produced almost 220-fold higher levels of tocopherols than safflower suspension-cultured cells in the best conditions. However, while cyclodextrins were able to enhance extracellular production of phytosterols, in the case of tocopherols, they only increased their intracellular accumulation. Our results showed that mung bean cells could be used as a highly efficient system for the production of phytosterols and tocopherols which have a wide range of biological activities. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1662-1665, 2017.
Collapse
Affiliation(s)
- Lorena Almagro
- Dept. of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, Murcia, E-30100, Spain
| | - Libertad Raquel Tudela
- Dept. of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, Murcia, E-30100, Spain
| | - Ana Belén Sabater-Jara
- Dept. of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, Murcia, E-30100, Spain
| | - Begoña Miras-Moreno
- Dept. of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, Murcia, E-30100, Spain
| | - Maria A Pedreño
- Dept. of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, Murcia, E-30100, Spain
| |
Collapse
|
189
|
Sánchez-Pujante PJ, Borja-Martínez M, Pedreño MÁ, Almagro L. Biosynthesis and bioactivity of glucosinolates and their production in plant in vitro cultures. PLANTA 2017; 246:19-32. [PMID: 28492986 DOI: 10.1007/s00425-017-2705-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/29/2017] [Indexed: 05/24/2023]
Abstract
Glucosinolates are biologically active compounds which are involved in plant defense reaction. The use of plant in vitro cultures and genetic engineering is a promising strategy for their sustainable production. Glucosinolates are a class of secondary metabolites found mainly in Brassicaceae, which contain nitrogen and sulfur in their structures. Glucosinolates are divided into three groups depending on the amino acid from which they are biosynthesized. Aliphatic glucosinolates are generally derived from leucine, valine, methionine, isoleucine and alanine while indole and aromatic glucosinolates are derived from tryptophan and phenylalanine or tyrosine, respectively. These compounds are hydrolyzed by the enzyme myrosinase when plants are stressed by biotic and abiotic factors, obtaining different degradation products. Glucosinolates and their hydrolysis products play an important role in plant defense responses against different types of stresses. In addition, these compounds have beneficial effect on human health because they are strong antioxidants and they have potent cardiovascular, antidiabetic, antimicrobial and antitumoral activities. Due to all the properties described above, the demand for glucosinolates and their hydrolysis products has enormously increased, and therefore, new strategies that allow the production of these compounds to be improved are needed. The use of plant in vitro cultures is emerging as a biotechnological strategy to obtain glucosinolates and their derivatives. This work is focused on the biosynthesis of glucosinolates and the bioactivity of these compounds in plants. In addition, a detailed study on the strategies used to increase the production of several glucosinolates, in particular those synthesized in Brassicaceae, using in vitro plant cultures has been made. Special attention has been paid for increasing the production of glucosinolates and their derivatives using metabolic engineering.
Collapse
Affiliation(s)
| | - María Borja-Martínez
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - María Ángeles Pedreño
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Lorena Almagro
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain.
| |
Collapse
|
190
|
Kochan E, Szymczyk P, Kuźma Ł, Lipert A, Szymańska G. Yeast Extract Stimulates Ginsenoside Production in Hairy Root Cultures of American Ginseng Cultivated in Shake Flasks and Nutrient Sprinkle Bioreactors. Molecules 2017; 22:molecules22060880. [PMID: 28587128 PMCID: PMC6152677 DOI: 10.3390/molecules22060880] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/23/2017] [Indexed: 12/26/2022] Open
Abstract
One of the most effective strategies to enhance metabolite biosynthesis and accumulation in biotechnological systems is the use of elicitation processes. This study assesses the influence of different concentrations of yeast extract (YE) on ginsenoside biosynthesis in Panax quinquefolium (American ginseng) hairy roots cultivated in shake flasks and in a nutrient sprinkle bioreactor after 3 and 7 days of elicitation. The saponin content was determined using HPLC. The maximum yield (20 mg g−1 d.w.) of the sum of six examined ginsenosides (Rb1, Rb2, Rc, Rd, Re and Rg1) in hairy roots cultivated in shake flasks was achieved after application of YE at 50 mg L−1 concentration and 3 day exposure time. The ginsenoside level was 1.57 times higher than that attained in control medium. The same conditions of elicitation (3 day time of exposure and 50 mg L−1 of YE) also favourably influenced the biosynthesis of studied saponins in bioreactor cultures. The total ginsenoside content was 32.25 mg g−1 d.w. and was higher than that achieved in control medium and in shake flasks cultures. Obtained results indicated that yeast extract can be used to increase ginsenoside production in hairy root cultures of P. quinquefolium.
Collapse
Affiliation(s)
- Ewa Kochan
- Pharmaceutical Biotechnology Department, Medical University of Lodz, Muszyńskiego 1, Lodz 90-151, Poland.
| | - Piotr Szymczyk
- Pharmaceutical Biotechnology Department, Medical University of Lodz, Muszyńskiego 1, Lodz 90-151, Poland.
| | - Łukasz Kuźma
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszyńskiego l, Lodz 90-151, Poland.
| | - Anna Lipert
- Department of Sports Medicine, Medical University of Lodz, Pomorska 251, Lodz 92-213, Poland.
| | - Grażyna Szymańska
- Pharmaceutical Biotechnology Department, Medical University of Lodz, Muszyńskiego 1, Lodz 90-151, Poland.
| |
Collapse
|
191
|
Shakya P, Marslin G, Siram K, Beerhues L, Franklin G. Elicitation as a tool to improve the profiles of high-value secondary metabolites and pharmacological properties of Hypericum perforatum. ACTA ACUST UNITED AC 2017; 71:70-82. [PMID: 28523644 PMCID: PMC6585710 DOI: 10.1111/jphp.12743] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/10/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVES In this review, we aim at updating the available information on the improvement of the Hypericum perforatum L. (Hypericaceae) phytochemical profile and pharmacological properties via elicitation. KEY FINDINGS Hypericum perforatum seedlings, shoots, roots, calli and cell suspension cultures were treated with diverse elicitors to induce the formation of secondary metabolites. The extracts of the elicitor-treated plant material containing naphthodianthrones, phloroglucinols, xanthones, flavonoids and other new compounds were quantitatively analysed and tested for their bioactivities. While hypericins were mainly produced in H. perforatum cultures containing dark nodules, namely shoots and seedlings, other classes of compounds such as xanthones, phloroglucinols and flavonoids were formed in all types of cultures. The extracts obtained from elicitor-treated samples generally possessed better bioactivities compared to the extract of control biomass. SUMMARY Although elicitation is an excellent tool for the production of valuable secondary metabolites in H. perforatum cell and tissue cultures, its exploitation is still in its infancy mainly due to the lack of reproducibility and difficulties in scaling up biomass production.
Collapse
Affiliation(s)
- Preeti Shakya
- Department of Integrative Plant Biology, Institute of Plant Genetics of the Polish Academy of Sciences, Poznań, Wielkopolska, Poland
| | - Gregory Marslin
- Chinese-German Joint Laboratory for Natural Product Research, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C., College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Karthik Siram
- Department of Pharmaceutics, PSG College of Pharmacy, Coimbatore, Tamil Nadu, India
| | - Ludger Beerhues
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Gregory Franklin
- Department of Integrative Plant Biology, Institute of Plant Genetics of the Polish Academy of Sciences, Poznań, Wielkopolska, Poland
| |
Collapse
|
192
|
Zaheer M, Giri CC. Enhanced diterpene lactone (andrographolide) production from elicited adventitious root cultures of Andrographis paniculata. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-016-2771-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
193
|
Vaccaro MC, Alfieri M, Malafronte N, De Tommasi N, Leone A. Increasing the synthesis of bioactive abietane diterpenes in Salvia sclarea hairy roots by elicited transcriptional reprogramming. PLANT CELL REPORTS 2017; 36:375-386. [PMID: 27853836 DOI: 10.1007/s00299-016-2076-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/08/2016] [Indexed: 05/18/2023]
Abstract
Transcriptional activation of genes belonging to the plastidial MEP-derived isoprenoid pathway by elicitation with methyl jasmonate and coronatine enhanced the content of bioactive abietane diterpenes in Salvia sclarea hairy roots. We have shown that aethiopinone, an abietane diterpene synthesized in Salvia sclarea roots is cytotoxic and induces apoptosis in human melanoma cells. To develop a production platform for this compound and other abietane diterpenes, hairy root technology was combined with the elicitation of methyl jasmonate (MeJA) or the phytotoxin coronatine (Cor). Both MeJA and Cor induced a significant accumulation of aethiopinone, but prolonged exposure to MeJA irremediably caused inhibition of hairy root growth, which was unaffected by Cor treatment. Considering together the fold increase in aethiopinone content and the final hairy root biomass, the best combination was a Cor treatment for 28 days, which allowed to obtain up to 105.34 ± 2.30 mg L-1 of this compound to be obtained, corresponding to a 24-fold increase above the basal content in untreated hairy roots. MeJA or Cor elicitation also enhanced the synthesis of other bioactive abietane-quinone diterpenes. The elicitor-dependent steering effect was due to a coordinated transcriptional activation of several biosynthetic genes belonging to the plastidial MEP-derived isoprenoid pathway. High correlations between aethiopinone content and MeJA or Cor-elicited level of gene transcripts were found for DXS2 (r 2 = 0.99), DXR (r 2 = 0.99), and GGPPS (r 2 = 0.98), encoding enzymes acting upstream of GGPP, the common precursor of diterpenes and other plastidial-derived terpenes, as well as CPPS (r 2 = 0.99), encoding the enzyme involved in the first cyclization steps leading to copalyl-diphosphate, the precursor of abietane-like diterpenes. These results point to these genes as possible targets of metabolic engineering approaches to establish a more efficient production platform for such promising anti-proliferative plant-derived compounds.
Collapse
Affiliation(s)
- M C Vaccaro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 134D, 80084, Fisciano, Italy
| | - M Alfieri
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 134D, 80084, Fisciano, Italy
| | - N Malafronte
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 134D, 80084, Fisciano, Italy
| | - N De Tommasi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 134D, 80084, Fisciano, Italy
| | - A Leone
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 134D, 80084, Fisciano, Italy.
| |
Collapse
|
194
|
Ali M, Abbasi BH, Ahmad N, Khan H, Ali GS. Strategies to enhance biologically active-secondary metabolites in cell cultures of Artemisia - current trends. Crit Rev Biotechnol 2017; 37:833-851. [PMID: 28049347 DOI: 10.1080/07388551.2016.1261082] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The genus Artemisia has been utilized worldwide due to its immense potential for protection against various diseases, especially malaria. Artemisia absinthium, previously renowned for its utilization in the popular beverage absinthe, is gaining resurgence due to its extensive pharmacological activities. Like A. annua, this species exhibits strong biological activities like antimalarial, anticancer and antioxidant. Although artemisinin was found to be the major metabolite for its antimalarial effects, several flavonoids and terpenoids are considered to possess biological activities when used alone and also to synergistically boost the bioavailability of artemisinin. However, due to the limited quantities of these metabolites in wild plants, in vitro cultures were established and strategies have been adopted to enhance medicinally important secondary metabolites in these cultures. This review elaborates on the traditional medicinal uses of Artemisia species and explains current trends to establish cell cultures of A. annua and A. absinthium for enhanced production of medicinally important secondary metabolites.
Collapse
Affiliation(s)
- Mohammad Ali
- a Center for Biotechnology and Microbiology , Department of Biotechnology, University of Swat , Pakistan.,b Department of Biotechnology, Faculty of Biological Sciences , Quaid-i-Azam University Islamabad , Pakistan
| | - Bilal Haider Abbasi
- b Department of Biotechnology, Faculty of Biological Sciences , Quaid-i-Azam University Islamabad , Pakistan
| | - Nisar Ahmad
- a Center for Biotechnology and Microbiology , Department of Biotechnology, University of Swat , Pakistan
| | - Haji Khan
- a Center for Biotechnology and Microbiology , Department of Biotechnology, University of Swat , Pakistan
| | - Gul Shad Ali
- c Mid-Florida Research and Education Center and Department of Plant Pathology , University of Florida/Institute of Food and Agricultural Sciences , Apopka , FL , USA
| |
Collapse
|
195
|
Abstract
Plant tissue cultures are a potential source of secondary metabolites. However, their production, when compared with intact plants, is usually lower. Phenylalanine, a biogenetic precursor of podophyllotoxin, was used to stimulate podophyllotoxin production in callus and suspension cultures of Juniperus virginiana L. The best phenylalanine effect on podophyllotoxin production was manifested in three-years-old callus cultures after a 21-days application of a 10 mmol/L concentration. A podophyllotoxin content of 0.15 mg/g DW was determined, which was about 400% higher in comparison with the control. The maximum content (0.48 mg/g DW) in newly derived suspension cultures (the 4th passage) was induced by 14-days application of a 1 mmol/L concentration; this was about 243% higher than the control. In one-year-old suspension cultures the highest podophyllotoxin content (0.56 mg/g DW) was recorded also after 14-days application of a 1 mmol/L concentration; this was about 211% higher than in the control cultures.
Collapse
|
196
|
Zhong L, Niu B, Tang L, Chen F, Zhao G, Zhao J. Effects of Polysaccharide Elicitors from Endophytic Fusarium oxysporum Fat9 on the Growth, Flavonoid Accumulation and Antioxidant Property of Fagopyrum tataricum Sprout Cultures. Molecules 2016; 21:molecules21121590. [PMID: 27897983 PMCID: PMC6274569 DOI: 10.3390/molecules21121590] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/12/2016] [Accepted: 11/16/2016] [Indexed: 11/21/2022] Open
Abstract
The purpose of this study was to evaluate the effects of four different fungal polysaccharides, named water-extracted mycelia polysaccharide (WPS), sodium hydroxide-extracted mycelia polysaccharide (SPS), hydrochloric-extracted mycelia polysaccharide (APS), and exo-polysaccharide (EPS) obtained from the endophytic Fusarium oxysporum Fat9 on the sprout growth, flavonoid accumulation, and antioxidant capacity of tartary buckwheat. Without visible changes in the appearance of the sprouts, the exogenous polysaccharide elicitors strongly stimulated sprout growth and flavonoid production, and the stimulation effect was closely related with the polysaccharide (PS) species and its treatment dosage. With application of 200 mg/L of EPS, 200 mg/L of APS, 150 mg/L of WPS, or 100 mg/L of SPS, the total rutin and quercetin yields of buckwheat sprouts were significantly increased to 41.70 mg/(100 sprouts), 41.52 mg/(100 sprouts), 35.88 mg/(100 sprouts), and 32.95 mg/(100 sprouts), respectively. This was about 1.11 to 1.40-fold compared to the control culture of 31.40 mg/(100 sprouts). Moreover, the antioxidant capacity of tartary buckwheat sprouts was also enhanced after treatment with the four PS elicitors. Furthermore, the present study revealed the polysaccharide elicitation that caused the accumulation of functional flavonoid by stimulating the phenylpropanoid pathway. The application of beneficial fungal polysaccharide elicitors may be an effective approach to improve the nutritional and functional characteristics of tartary buckwheat sprouts.
Collapse
Affiliation(s)
- Lingyun Zhong
- Department of Biological Sciences, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China.
- National R&D Center for Coarse Cereal Processing, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Bei Niu
- National R&D Center for Coarse Cereal Processing, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Lin Tang
- Department of Biological Sciences, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Fang Chen
- Department of Biological Sciences, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Gang Zhao
- National R&D Center for Coarse Cereal Processing, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Jianglin Zhao
- National R&D Center for Coarse Cereal Processing, Chengdu University, Chengdu 610106, Sichuan, China.
| |
Collapse
|
197
|
Hidalgo D, Steinmetz V, Brossat M, Tournier-Couturier L, Cusido RM, Corchete P, Palazon J. An optimized biotechnological system for the production of centellosides based on elicitation and bioconversion of Centella asiatica cell cultures. Eng Life Sci 2016; 17:413-419. [PMID: 32624786 DOI: 10.1002/elsc.201600167] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/09/2016] [Accepted: 09/19/2016] [Indexed: 11/10/2022] Open
Abstract
Centella asiatica is a herbaceous plant of Asian traditional medicine. Besides wound healing, this plant is recommended for the treatment or care of various skin conditions such as dry skin, leprosy, varicose ulcers, eczema, and/or psoriasis. Triterpene saponins, known as centellosides, are the main metabolites associated with these beneficial effects. Considering the interest in these high value active compounds, there is a need to develop biosustainable and economically viable processes to produce them. Previous work using C. asiatica plant cell culture technology demonstrated the efficient conversion of amyrin derivatives into centellosides, opening a new way to access these biomolecules. The current study was aimed at increasing the production of centellosides in C. asiatica plant cell cultures. Herein, we report the application of a new elicitor, coronatine, combined with the addition of amyrin-enriched resins as potential sustainable precursors in the centelloside pathway, for a positive synergistic effect on centelloside production. Our results show that coronatine is a powerful elicitor for increasing centelloside production and that treatments with sustainable natural sources of amyrins enhance centelloside yields. This process can be scaled up to an orbitally shaken CellBag, thereby increasing the capacity of the system for producing biomass and centellosides.
Collapse
Affiliation(s)
- Diego Hidalgo
- Laboratori de Fisiologia Vegetal. Facultat de Farmacia Universitat de Barcelona Barcelona Spain
| | - Virginie Steinmetz
- L'Oréal Research & Innovation 1 avenue Eugène Schueller Aulnay-sous-Bois France
| | - Maude Brossat
- L'Oréal Research & Innovation 1 avenue Eugène Schueller Aulnay-sous-Bois France
| | | | - Rosa M Cusido
- Laboratori de Fisiologia Vegetal. Facultat de Farmacia Universitat de Barcelona Barcelona Spain
| | - Purificacion Corchete
- Department of Plant Physiology Campus Miguel de Unamuno University of Salamanca Salamanca Spain
| | - Javier Palazon
- Laboratori de Fisiologia Vegetal. Facultat de Farmacia Universitat de Barcelona Barcelona Spain
| |
Collapse
|
198
|
Teixeira da Silva JA, Jha S. Micropropagation and genetic transformation of Tylophora indica (Burm. f.) Merr.: a review. PLANT CELL REPORTS 2016; 35:2207-2225. [PMID: 27553812 DOI: 10.1007/s00299-016-2041-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 08/15/2016] [Indexed: 06/06/2023]
Abstract
This review provides an in-depth and comprehensive overview of the in vitro culture of Tylophora species, which have medicinal properties. Tylophora indica (Burm. f.) Merr. is a climbing perennial vine with medicinal properties. The tissue culture and genetic transformation of T. indica, which has been extensively studied, is reviewed. Micropropagation using nodal explants has been reported in 25 % of all publications. Leaf explants from field-grown plants has been the explant of choice of independent research groups, which reported direct and callus-mediated organogenesis as well as callus-mediated somatic embryogenesis. Protoplast-mediated regeneration and callus-mediated shoot organogenesis has also been reported from stem explants, and to a lesser degree from root explants of micropropagated plants in vitro. Recent studies that used HPLC confirmed the potential of micropropagated plants to synthesize the major T. indica alkaloid tylophorine prior to and after transfer to field conditions. The genetic integrity of callus-regenerated plants was confirmed by RAPD in a few reports. Tissue culture is an essential base for genetic transformation studies. Hairy roots and transgenic T. indica plants have been shown to accumulate tylophorine suggesting that in vitro biology and transgenic methods are viable ways of clonally producing valuable germplasm and mass producing compounds of commercial value. Further studies that investigate the factors affecting the biosynthesis of Tylophora alkaloids and other secondary metabolites need to be conducted using non-transformed as well as transformed cell and organ cultures.
Collapse
Affiliation(s)
| | - Sumita Jha
- Department of Botany, Centre of Advanced Study, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
199
|
Azerad R. Chemical structures, production and enzymatic transformations of sapogenins and saponins from Centella asiatica (L.) Urban. Fitoterapia 2016; 114:168-187. [DOI: 10.1016/j.fitote.2016.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/22/2016] [Accepted: 07/27/2016] [Indexed: 12/11/2022]
|
200
|
Statistical experimental designs for the production of secondary metabolites in plant cell suspension cultures. Biotechnol Lett 2016; 38:2007-2014. [PMID: 27623794 DOI: 10.1007/s10529-016-2206-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/31/2016] [Indexed: 01/02/2023]
Abstract
Statistical experimental designs, also known as the "design of experiments" (DoE) approach, are widely used to improve not only technical processes but also to answer questions in the agricultural, medical and social sciences. Although many articles have been published about the application of DoE in these fields, few studies have addressed the use of DoE in the plant sciences, particularly in the context of plant cell suspension cultures (PCSCs). Compounds derived from PCSCs can be developed as pharmaceuticals, chemical feedstocks and cosmetic ingredients, and statistical experimental designs can be used to improve the productivity of the cells and the yield and/or quality of the target compounds in a cost efficient manner. In this article, we summarize recent findings concerning the application of statistical approaches to improve the performance of PCSCs and discuss the potential future applications of this approach.
Collapse
|