151
|
Kędzierska M, Bańkosz M, Sala K, Dudzik J, Potemski P, Tyliszczak B. Investigating the Effect of the Crosslinking Factor on the Properties of Hydrogel Materials Containing Tilia platyphyllos Hydrolate. Molecules 2023; 28:7035. [PMID: 37894514 PMCID: PMC10609053 DOI: 10.3390/molecules28207035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
The use of natural ingredients in recent years has been of great importance in many industries and medicine. In biomedical applications, hydrogel materials also play a significant role. In view of this, the aim of this study was to synthesize and characterize hydrogel materials enriched with broadleaf linden hydrolate. An important aspect was to carry out a series of syntheses with varying types and amounts of crosslinking agents so as to test the possibility of synthesizing materials with controlled properties. The obtained hydrogels were subjected to detailed physicochemical analysis. The results of the tests confirmed the relationship between the selected properties and the type of crosslinking agent used. A crosslinking agent with a lower molar mass (575 g/mol) results in a material with a compact and strongly crosslinked structure, which is characterized by high surface roughness. The use of a crosslinking agent with a molecular weight of 700 g/mol resulted in a material with a looser-packed polymer network capable of absorbing larger amounts of liquids. The work also proved that regardless of the type of crosslinking agent used, the addition of linden hydrolate provides antioxidant properties, which is particularly important in view of the target biomedical application of such materials.
Collapse
Affiliation(s)
- Magdalena Kędzierska
- Department of Chemotherapy, Medical University of Lodz, Copernicus Memorial Hospital of Lodz, 90-549 Lodz, Poland; (M.K.); (P.P.)
| | - Magdalena Bańkosz
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (K.S.); (J.D.)
| | - Katarzyna Sala
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (K.S.); (J.D.)
| | - Julia Dudzik
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (K.S.); (J.D.)
| | - Piotr Potemski
- Department of Chemotherapy, Medical University of Lodz, Copernicus Memorial Hospital of Lodz, 90-549 Lodz, Poland; (M.K.); (P.P.)
| | - Bożena Tyliszczak
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (K.S.); (J.D.)
| |
Collapse
|
152
|
Liu J, Wu W, Zhu Q, Zhu H. Hydrogel-Based Therapeutics for Pancreatic Ductal Adenocarcinoma Treatment. Pharmaceutics 2023; 15:2421. [PMID: 37896181 PMCID: PMC10610350 DOI: 10.3390/pharmaceutics15102421] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), one of the deadliest malignancies worldwide, is characteristic of the tumor microenvironments (TME) comprising numerous fibroblasts and immunosuppressive cells. Conventional therapies for PDAC are often restricted by limited drug delivery efficiency, immunosuppressive TME, and adverse effects. Thus, effective and safe therapeutics are urgently required for PDAC treatment. In recent years, hydrogels, with their excellent biocompatibility, high drug load capacity, and sustainable release profiles, have been developed as effective drug-delivery systems, offering potential therapeutic options for PDAC. This review summarizes the distinctive features of the immunosuppressive TME of PDAC and discusses the application of hydrogel-based therapies in PDAC, with a focus on how these hydrogels remodel the TME and deliver different types of cargoes in a controlled manner. Furthermore, we also discuss potential drug candidates and the challenges and prospects for hydrogel-based therapeutics for PDAC. By providing a comprehensive overview of hydrogel-based therapeutics for PDAC treatment, this review seeks to serve as a reference for researchers and clinicians involved in developing therapeutic strategies targeting the PDAC microenvironment.
Collapse
Affiliation(s)
- Jinlu Liu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (J.L.); (Q.Z.)
| | - Wenbi Wu
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Qing Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (J.L.); (Q.Z.)
| | - Hong Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (J.L.); (Q.Z.)
| |
Collapse
|
153
|
Voycheva C, Slavkova M, Popova T, Tzankova D, Stefanova D, Tzankova V, Ivanova I, Tzankov S, Spassova I, Kovacheva D, Tzankov B. Thermosensitive Hydrogel-Functionalized Mesoporous Silica Nanoparticles for Parenteral Application of Chemotherapeutics. Gels 2023; 9:769. [PMID: 37754450 PMCID: PMC10530711 DOI: 10.3390/gels9090769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
Hydrogels can offer many opportunities for drug delivery strategies. They can be used on their own, or their benefits can be further exploited in combination with other nanocarriers. Intelligent hydrogels that react to changes in the surrounding environment can be utilized as gatekeepers and provide sustained on-demand drug release. In this study, a hybrid nanosystem for temperature- and pH-sensitive delivery was prepared from MCM-41 nanoparticles grafted with a newly synthesized thermosensitive hydrogel (MCM-41/AA-g-PnVCL). The initial particles were chemically modified by the attachment of carboxyl groups. Later, they were grafted with agar (AA) and vinylcaprolactam (VCL) by free radical polymerization. Doxorubicin was applied as a model hydrophilic chemotherapeutic drug. The successful formulation was confirmed by FT-IR and TGA. Transmission electron microscopy and dynamic light scattering analysis showed small particles with negative zeta potential. Their release behaviour was investigated in vitro in media with different pH and at different temperatures. Under tumour simulating conditions (40 °C and pH 4.0), doxorubicin was almost completely released within 72 h. The biocompatibility of the proposed nanoparticles was demonstrated by in vitro haemolysis assay. These results suggest the possible parenteral application of the newly prepared hydrogel-functionalized mesoporous silica nanoparticles for temperature-sensitive and pH-triggered drug delivery at the tumour site.
Collapse
Affiliation(s)
- Christina Voycheva
- Department Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Medical University—Sofia, 1000 Sofia, Bulgaria; (C.V.); (T.P.); (B.T.)
| | - Marta Slavkova
- Department Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Medical University—Sofia, 1000 Sofia, Bulgaria; (C.V.); (T.P.); (B.T.)
| | - Teodora Popova
- Department Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Medical University—Sofia, 1000 Sofia, Bulgaria; (C.V.); (T.P.); (B.T.)
| | - Diana Tzankova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University—Sofia, 1000 Sofia, Bulgaria;
| | - Denitsa Stefanova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University—Sofia, 1000 Sofia, Bulgaria; (D.S.); (V.T.)
| | - Virginia Tzankova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University—Sofia, 1000 Sofia, Bulgaria; (D.S.); (V.T.)
| | - Ivelina Ivanova
- Faculty of Pharmacy, Medical University—Pleven, 5800 Pleven, Bulgaria; (I.I.); (S.T.)
| | - Stanislav Tzankov
- Faculty of Pharmacy, Medical University—Pleven, 5800 Pleven, Bulgaria; (I.I.); (S.T.)
| | - Ivanka Spassova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.S.); (D.K.)
| | - Daniela Kovacheva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.S.); (D.K.)
| | - Borislav Tzankov
- Department Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Medical University—Sofia, 1000 Sofia, Bulgaria; (C.V.); (T.P.); (B.T.)
| |
Collapse
|
154
|
Jung SA, Malyaran H, Demco DE, Manukanc A, Häser LS, Kučikas V, van Zandvoort M, Neuss S, Pich A. Fibrin-Dextran Hydrogels with Tunable Porosity and Mechanical Properties. Biomacromolecules 2023; 24:3972-3984. [PMID: 37574715 DOI: 10.1021/acs.biomac.3c00269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Hydrogels as scaffolds in tissue engineering have gained increasing attention in recent years. Natural hydrogels, e.g., collagen or fibrin, are limited by their weak mechanical properties and fast degradation, whereas synthetic hydrogels face issues with biocompatibility and biodegradation. Therefore, combining natural and synthetic polymers to design hydrogels with tunable mechanical stability and cell affinity for biomedical applications is of interest. By using fibrin with its excellent cell compatibility and dextran with controllable mechanical properties, a novel bio-based hydrogel can be formed. Here, we synthesized fibrin and dextran-methacrylate (MA)-based hydrogels with tailorable mechanical properties, controllable degradation, variable pore sizes, and ability to support cell proliferation. The hydrogels are formed through in situ gelation of fibrinogen and dextran-MA with thrombin and dithiothreitol. Swelling and nuclear magnetic resonance diffusometry measurements showed that the water uptake and mesh sizes of fabricated hydrogels decrease with increasing dextran-MA concentrations. Cell viability tests confirm that these hydrogels exhibit no cytotoxic effect.
Collapse
Affiliation(s)
- Shannon Anna Jung
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, Aachen 52074, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
| | - Hanna Malyaran
- Helmholtz Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Pauwelsstrasse 20, Aachen 52074, Germany
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany
| | - Dan Eugen Demco
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, Aachen 52074, Germany
| | - Anna Manukanc
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, Aachen 52074, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
| | - Leonie Sophie Häser
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, Aachen 52074, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
| | - Vytautas Kučikas
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany
| | - Marc van Zandvoort
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany
- Department of Genetics and Cell Biology, GROW, CARIM, MHeNS, Maastricht University, Maastricht 6200 MD, The Netherlands
| | - Sabine Neuss
- Helmholtz Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Pauwelsstrasse 20, Aachen 52074, Germany
- Institute of Pathology, RWTH Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany
| | - Andrij Pich
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, Aachen 52074, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
| |
Collapse
|
155
|
Said NS, Olawuyi IF, Lee WY. Pectin Hydrogels: Gel-Forming Behaviors, Mechanisms, and Food Applications. Gels 2023; 9:732. [PMID: 37754413 PMCID: PMC10530747 DOI: 10.3390/gels9090732] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Pectin hydrogels have garnered significant attention in the food industry due to their remarkable versatility and promising properties. As a naturally occurring polysaccharide, pectin forms three-dimensional (3D) hydrophilic polymer networks, endowing these hydrogels with softness, flexibility, and biocompatibility. Their exceptional attributes surpass those of other biopolymer gels, exhibiting rapid gelation, higher melting points, and efficient carrier capabilities for flavoring and fat barriers. This review provides an overview of the current state of pectin gelling mechanisms and the classification of hydrogels, as well as their crosslinking types, as investigated through diverse research endeavors worldwide. The preparation of pectin hydrogels is categorized into specific gel types, including hydrogels, cryogels, aerogels, xerogels, and oleogels. Each preparation process is thoroughly discussed, shedding light on how it impacts the properties of pectin gels. Furthermore, the review delves into the various crosslinking methods used to form hydrogels, with a focus on physical, chemical, and interpenetrating polymer network (IPN) approaches. Understanding these crosslinking mechanisms is crucial to harnessing the full potential of pectin hydrogels for food-related applications. The review aims to provide valuable insights into the diverse applications of pectin hydrogels in the food industry, motivating further exploration to cater to consumer demands and advance food technology. By exploiting the unique properties of pectin hydrogels, food formulations can be enhanced with encapsulated bioactive substances, improved stability, and controlled release. Additionally, the exploration of different crosslinking methods expands the horizons of potential applications.
Collapse
Affiliation(s)
- Nurul Saadah Said
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea; (N.S.S.); (I.F.O.)
| | - Ibukunoluwa Fola Olawuyi
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea; (N.S.S.); (I.F.O.)
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Won Young Lee
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea; (N.S.S.); (I.F.O.)
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
156
|
Zembala J, Forma A, Zembala R, Januszewski J, Zembala P, Adamowicz D, Teresiński G, Buszewicz G, Flieger J, Baj J. Technological Advances in a Therapy of Primary Open-Angle Glaucoma: Insights into Current Nanotechnologies. J Clin Med 2023; 12:5798. [PMID: 37762739 PMCID: PMC10531576 DOI: 10.3390/jcm12185798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Glaucoma is a leading cause of irreversible blindness and is characterized by increased intraocular pressure (IOP) and progressive optic nerve damage. The current therapeutic approaches for glaucoma management, such as eye drops and oral medications, face challenges including poor bioavailability, low patient compliance, and limited efficacy. In recent years, nanotechnology has emerged as a promising approach to overcome these limitations and revolutionize glaucoma treatment. In this narrative review, we present an overview of the novel nanotechnologies employed in the treatment of primary open-angle glaucoma. Various nanosystems, including liposomes, niosomes, nanoparticles, and other nanostructured carriers, have been developed to enhance the delivery and bioavailability of antiglaucoma drugs. They offer advantages such as a high drug loading capacity, sustained release, improved corneal permeability, and targeted drug delivery to the ocular tissues. The application of nanotechnologies in glaucoma treatment represents a transformative approach that addresses the limitations of conventional therapies. However, further research is needed to optimize the formulations, evaluate long-term safety, and implement these nanotechnologies into clinical practice. With continued advancements in nanotechnology, the future holds great potential for improving the management and outcomes of glaucoma, ultimately preserving vision and improving the lives of millions affected by this debilitating disease.
Collapse
Affiliation(s)
- Julita Zembala
- University Clinical Center, Medical University of Warsaw, Lindleya 4, 02-005 Warsaw, Poland
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.T.); (G.B.)
| | - Roksana Zembala
- Faculty of Medicine, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-938 Warsaw, Poland;
| | - Jacek Januszewski
- Department of Human Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.J.); (J.B.)
| | - Patryk Zembala
- Faculty of Medicine, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland;
| | - Dominik Adamowicz
- University Clinical Center, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland;
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.T.); (G.B.)
| | - Grzegorz Buszewicz
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.T.); (G.B.)
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| | - Jacek Baj
- Department of Human Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.J.); (J.B.)
| |
Collapse
|
157
|
Kędzierska M, Sala K, Bańkosz M, Wroniak D, Gajda P, Potemski P, Tyliszczak B. Investigation of Physicochemical Properties and Surface Morphology of Hydrogel Materials Incorporating Rosehip Extract. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6037. [PMID: 37687730 PMCID: PMC10488629 DOI: 10.3390/ma16176037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Hydrogel materials are used in many fields of science and industry. They are of particular importance in biomedical applications. In this work, hydrogels were obtained that could act as a dressing for wounds, at the same time being a carrier of substances with antioxidant activity. The discussed materials were obtained in the field of UV radiation. The correlation between the amount of photoinitiator used and the physicochemical properties and surface morphology of the obtained materials was investigated. In addition, the hydrogels have been incorporated with wild rose extract, which is characterized by antioxidant and anti-inflammatory effects. The analysis of the sorption capacity confirmed that the obtained material is able to absorb significant amounts of incubation fluids, which, in terms of application, will enable the absorption of exudate from the wound. The highest stability of materials was noted for hydrogels obtained with the use of intermediate amounts of photoinitiator, i.e., 50 µL and 70 µL. In the case of using 20 µL or 100 µL, the photopolymerization process did not proceed properly and the obtained material was characterized by a lack of homogeneity and high brittleness. With the increase in the amount of photoinitiator, an increase in the surface roughness of hydrogel materials was confirmed. In turn, spectroscopic analysis ruled out the degradation of materials in incubation fluids, indicating the potential for their use in biomedical applications.
Collapse
Affiliation(s)
- Magdalena Kędzierska
- Department of Chemotherapy, Medical University of Lodz, Copernicus Memorial Hospital of Lodz, 90-549 Lodz, Poland; (M.K.); (P.P.)
| | - Katarzyna Sala
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (K.S.); (D.W.)
| | - Magdalena Bańkosz
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (K.S.); (D.W.)
| | - Dominika Wroniak
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (K.S.); (D.W.)
| | - Paweł Gajda
- Department of Sustainable Energy Development, Faculty of Energy and Fuels, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Krakow, Poland;
| | - Piotr Potemski
- Department of Chemotherapy, Medical University of Lodz, Copernicus Memorial Hospital of Lodz, 90-549 Lodz, Poland; (M.K.); (P.P.)
| | - Bożena Tyliszczak
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (K.S.); (D.W.)
| |
Collapse
|
158
|
Chelu M, Musuc AM, Popa M, Calderon Moreno JM. Chitosan Hydrogels for Water Purification Applications. Gels 2023; 9:664. [PMID: 37623119 PMCID: PMC10453846 DOI: 10.3390/gels9080664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Chitosan-based hydrogels have gained significant attention for their potential applications in water treatment and purification due to their remarkable properties such as bioavailability, biocompatibility, biodegradability, environmental friendliness, high pollutants adsorption capacity, and water adsorption capacity. This article comprehensively reviews recent advances in chitosan-based hydrogel materials for water purification applications. The synthesis methods, structural properties, and water purification performance of chitosan-based hydrogels are critically analyzed. The incorporation of various nanomaterials into chitosan-based hydrogels, such as nanoparticles, graphene, and metal-organic frameworks, has been explored to enhance their performance. The mechanisms of water purification, including adsorption, filtration, and antimicrobial activity, are also discussed in detail. The potential of chitosan-based hydrogels for the removal of pollutants, such as heavy metals, organic contaminants, and microorganisms, from water sources is highlighted. Moreover, the challenges and future perspectives of chitosan-based hydrogels in water treatment and water purification applications are also illustrated. Overall, this article provides valuable insights into the current state of the art regarding chitosan-based hydrogels for water purification applications and highlights their potential for addressing global water pollution challenges.
Collapse
Affiliation(s)
| | - Adina Magdalena Musuc
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.C.); (M.P.)
| | | | - Jose M. Calderon Moreno
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.C.); (M.P.)
| |
Collapse
|
159
|
Saeidi M, Chenani H, Orouji M, Adel Rastkhiz M, Bolghanabadi N, Vakili S, Mohamadnia Z, Hatamie A, Simchi A(A. Electrochemical Wearable Biosensors and Bioelectronic Devices Based on Hydrogels: Mechanical Properties and Electrochemical Behavior. BIOSENSORS 2023; 13:823. [PMID: 37622909 PMCID: PMC10452289 DOI: 10.3390/bios13080823] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
Hydrogel-based wearable electrochemical biosensors (HWEBs) are emerging biomedical devices that have recently received immense interest. The exceptional properties of HWEBs include excellent biocompatibility with hydrophilic nature, high porosity, tailorable permeability, the capability of reliable and accurate detection of disease biomarkers, suitable device-human interface, facile adjustability, and stimuli responsive to the nanofiller materials. Although the biomimetic three-dimensional hydrogels can immobilize bioreceptors, such as enzymes and aptamers, without any loss in their activities. However, most HWEBs suffer from low mechanical strength and electrical conductivity. Many studies have been performed on emerging electroactive nanofillers, including biomacromolecules, carbon-based materials, and inorganic and organic nanomaterials, to tackle these issues. Non-conductive hydrogels and even conductive hydrogels may be modified by nanofillers, as well as redox species. All these modifications have led to the design and development of efficient nanocomposites as electrochemical biosensors. In this review, both conductive-based and non-conductive-based hydrogels derived from natural and synthetic polymers are systematically reviewed. The main synthesis methods and characterization techniques are addressed. The mechanical properties and electrochemical behavior of HWEBs are discussed in detail. Finally, the prospects and potential applications of HWEBs in biosensing, healthcare monitoring, and clinical diagnostics are highlighted.
Collapse
Affiliation(s)
- Mohsen Saeidi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Hossein Chenani
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Mina Orouji
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - MahsaSadat Adel Rastkhiz
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Nafiseh Bolghanabadi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Shaghayegh Vakili
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran;
| | - Zahra Mohamadnia
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran;
| | - Amir Hatamie
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran;
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Abdolreza (Arash) Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran 14588-89694, Iran
| |
Collapse
|
160
|
Serbezeanu D, Iftime MM, Ailiesei GL, Ipate AM, Bargan A, Vlad-Bubulac T, Rîmbu CM. Evaluation of Poly(vinyl alcohol)-Xanthan Gum Hydrogels Loaded with Neomycin Sulfate as Systems for Drug Delivery. Gels 2023; 9:655. [PMID: 37623110 PMCID: PMC10454009 DOI: 10.3390/gels9080655] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
In recent years, multidrug-resistant bacteria have developed the ability to resist multiple antibiotics, limiting the available options for effective treatment. Raising awareness and providing education on the appropriate use of antibiotics, as well as improving infection control measures in healthcare facilities, are crucial steps to address the healthcare crisis. Further, innovative approaches must be adopted to develop novel drug delivery systems using polymeric matrices as carriers and support to efficiently combat such multidrug-resistant bacteria and thus promote wound healing. In this context, the current work describes the use of two biocompatible and non-toxic polymers, poly(vinyl alcohol) (PVA) and xanthan gum (XG), to achieve hydrogel networks through cross-linking by oxalic acid following the freezing/thawing procedure. PVA/XG-80/20 hydrogels were loaded with different quantities of neomycin sulfate to create promising low-class topical antibacterial formulations with enhanced antimicrobial effects. The inclusion of neomycin sulfate in the hydrogels is intended to impart them with powerful antimicrobial properties, thereby facilitating the development of exceptionally efficient topical antibacterial formulations. Thus, incorporating higher quantities of neomycin sulfate in the PVA/XG-80/20-2 and PVA/XG-80/20-3 formulations yielded promising cycling characteristics. These formulations exhibited outstanding removal efficiency, exceeding 80% even after five cycles, indicating remarkable and consistent adsorption performance with repeated use. Furthermore, both PVA/XG-80/20-2 and PVA/XG-80/20-3 formulations outperformed the drug-free sample, PVA/XG-80/20, demonstrating a significant enhancement in maximum compressive stress.
Collapse
Affiliation(s)
- Diana Serbezeanu
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (M.M.I.); (G.-L.A.); (A.-M.I.); (A.B.); (T.V.-B.)
| | - Manuela Maria Iftime
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (M.M.I.); (G.-L.A.); (A.-M.I.); (A.B.); (T.V.-B.)
| | - Gabriela-Liliana Ailiesei
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (M.M.I.); (G.-L.A.); (A.-M.I.); (A.B.); (T.V.-B.)
| | - Alina-Mirela Ipate
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (M.M.I.); (G.-L.A.); (A.-M.I.); (A.B.); (T.V.-B.)
| | - Alexandra Bargan
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (M.M.I.); (G.-L.A.); (A.-M.I.); (A.B.); (T.V.-B.)
| | - Tǎchiţǎ Vlad-Bubulac
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (M.M.I.); (G.-L.A.); (A.-M.I.); (A.B.); (T.V.-B.)
| | - Cristina Mihaela Rîmbu
- Department of Public Health, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 8 Sadoveanu Alley, 707027 Iasi, Romania;
| |
Collapse
|
161
|
Esparcia-Pinedo L, Romero-Laorden N, Alfranca A. Tertiary lymphoid structures and B lymphocytes: a promising therapeutic strategy to fight cancer. Front Immunol 2023; 14:1231315. [PMID: 37622111 PMCID: PMC10445545 DOI: 10.3389/fimmu.2023.1231315] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Tertiary lymphoid structures (TLSs) are clusters of lymphoid cells with an organization that resembles that of secondary lymphoid organs. Both structures share common developmental characteristics, although TLSs usually appear in chronically inflamed non-lymphoid tissues, such as tumors. TLSs contain diverse types of immune cells, with varying degrees of spatial organization that represent different stages of maturation. These structures support both humoral and cellular immune responses, thus the correlation between the existence of TLS and clinical outcomes in cancer patients has been extensively studied. The finding that TLSs are associated with better prognosis in some types of cancer has led to the design of therapeutic strategies based on promoting the formation of these structures. Agents such as chemokines, cytokines, antibodies and cancer vaccines have been used in combination with traditional antitumor treatments to enhance TLS generation, with good results. The induction of TLS formation therefore represents a novel and promising avenue for the treatment of a number of tumor types.
Collapse
Affiliation(s)
- Laura Esparcia-Pinedo
- Immunology Department, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Nuria Romero-Laorden
- Medical Oncology Department, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
- Cátedra Universidad Autónoma de Madrid (UAM)-Fundación Instituto Roche de Medicina Personalizada de Precisión, Madrid, Spain
| | - Arantzazu Alfranca
- Immunology Department, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Cátedra Universidad Autónoma de Madrid (UAM)-Fundación Instituto Roche de Medicina Personalizada de Precisión, Madrid, Spain
- Centro de Investigación Biomédica en Red Cardiovascular, CIBERCV, Madrid, Spain
| |
Collapse
|
162
|
Ihlenburg RBJ, Petracek D, Schrank P, Davari MD, Taubert A, Rothenstein D. Identification of the First Sulfobetaine Hydrogel-Binding Peptides via Phage Display Assay. Macromol Rapid Commun 2023; 44:e2200896. [PMID: 36703485 DOI: 10.1002/marc.202200896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/11/2023] [Indexed: 01/28/2023]
Abstract
Using the M13 phage display, a series of 7- and 12-mer peptides which interact with new sulfobetaine hydrogels are identified. Two peptides each from the 7- and 12-mer peptide libraries bind to the new sulfobetaine hydrogels with high affinity compared to the wild-type phage lacking a dedicated hydrogel binding peptide. This is the first report of peptides binding to zwitterionic sulfobetaine hydrogels and the study therefore opens up the pathway toward new phage or peptide/hydrogel hybrids with high application potential.
Collapse
Affiliation(s)
- Ramona B J Ihlenburg
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam, Germany
| | - David Petracek
- Department Bioinspired Materials, Institute for Materials Science, University of Stuttgart, Heisenbergstraße 3, D-70569, Stuttgart, Germany
| | - Paul Schrank
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle, Germany
| | - Mehdi D Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle, Germany
| | - Andreas Taubert
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam, Germany
| | - Dirk Rothenstein
- Department Bioinspired Materials, Institute for Materials Science, University of Stuttgart, Heisenbergstraße 3, D-70569, Stuttgart, Germany
| |
Collapse
|
163
|
Ortega MA, De Leon-Oliva D, Boaru DL, Fraile-Martinez O, García-Montero C, Diaz R, Coca S, Barrena-Blázquez S, Bujan J, García-Honduvilla N, Saez MA, Álvarez-Mon M, Saz JV. Unraveling the New Perspectives on Antimicrobial Hydrogels: State-of-the-Art and Translational Applications. Gels 2023; 9:617. [PMID: 37623072 PMCID: PMC10453485 DOI: 10.3390/gels9080617] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
The growing impact of infections and the rapid emergence of antibiotic resistance represent a public health concern worldwide. The exponential development in the field of biomaterials and its multiple applications can offer a solution to the problems that derive from these situations. In this sense, antimicrobial hydrogels represent a promising opportunity with multiple translational expectations in the medical management of infectious diseases due to their unique physicochemical and biological properties as well as for drug delivery in specific areas. Hydrogels are three-dimensional cross-linked networks of hydrophilic polymers that can absorb and retain large amounts of water or biological fluids. Moreover, antimicrobial hydrogels (AMH) present good biocompatibility, low toxicity, availability, viscoelasticity, biodegradability, and antimicrobial properties. In the present review, we collect and discuss the most promising strategies in the development of AMH, which are divided into hydrogels with inherent antimicrobial activity and antimicrobial agent-loaded hydrogels based on their composition. Then, we present an overview of the main translational applications: wound healing, tissue engineering and regeneration, drug delivery systems, contact lenses, 3D printing, biosensing, and water purification.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Raul Diaz
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Santiago Coca
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Silvestra Barrena-Blázquez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
- Immune System Diseases-Rheumatology Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Jose V. Saz
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
- Department of Biomedicine and Biotechnology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| |
Collapse
|
164
|
Mohite P, Rahayu P, Munde S, Ade N, Chidrawar VR, Singh S, Jayeoye TJ, Prajapati BG, Bhattacharya S, Patel RJ. Chitosan-Based Hydrogel in the Management of Dermal Infections: A Review. Gels 2023; 9:594. [PMID: 37504473 PMCID: PMC10379151 DOI: 10.3390/gels9070594] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
The main objective of this review is to provide a comprehensive overview of the current evidence regarding the use of chitosan-based hydrogels to manage skin infections. Chitosan, a naturally occurring polysaccharide derived from chitin, possesses inherent antimicrobial properties, making it a promising candidate for treating various dermal infections. This review follows a systematic approach to analyze relevant studies that have investigated the effectiveness of chitosan-based hydrogels in the context of dermal infections. By examining the available evidence, this review aims to evaluate these hydrogels' overall efficacy, safety, and potential applications for managing dermal infections. This review's primary focus is to gather and analyze data from different recent studies about chitosan-based hydrogels combating dermal infections; this includes assessing their ability to inhibit the growth of microorganisms and reduce infection-related symptoms. Furthermore, this review also considers the safety profile of chitosan-based hydrogels, examining any potential adverse effects associated with their use. This evaluation is crucial to ensure that these hydrogels can be safely utilized in the management of dermal infections without causing harm to patients. The review aims to provide healthcare professionals and researchers with a comprehensive understanding of the current evidence regarding the use of chitosan-based hydrogels for dermal infection management. The findings from this review can contribute to informed decision-making and the development of potential treatment strategies in this field.
Collapse
Affiliation(s)
- Popat Mohite
- Department of Pharmaceutical Quality Assurance, A.E.T.'s St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Pudji Rahayu
- Department of Pharmacy of Tanjung Karang State Health Polytechnic, Soekarno-Hatta, Bandar Lampung 35145, Lampung, Indonesia
| | - Shubham Munde
- Department of Pharmaceutical Quality Assurance, A.E.T.'s St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Nitin Ade
- Department of Pharmaceutical Quality Assurance, A.E.T.'s St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Vijay R Chidrawar
- SVKM's NMIMS School of Pharmacy and Technology Management, Jadcharla 509301, Telangana, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Titilope J Jayeoye
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, Gujarat, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM's NMIMS Deemed-to-be-University, Shirpur 425405, Maharashtra, India
| | - Ravish J Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Anand 388421, Gujarat, India
| |
Collapse
|
165
|
Wang Z, Fu L, Liu D, Tang D, Liu K, Rao L, Yang J, Liu Y, Li Y, Chen H, Yang X. Controllable Preparation and Research Progress of Photosensitive Antibacterial Complex Hydrogels. Gels 2023; 9:571. [PMID: 37504450 PMCID: PMC10379193 DOI: 10.3390/gels9070571] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023] Open
Abstract
Hydrogels are materials consisting of a network of hydrophilic polymers. Due to their good biocompatibility and hydrophilicity, they are widely used in biomedicine, food safety, environmental protection, agriculture, and other fields. This paper summarizes the typical complex materials of photocatalysts, photosensitizers, and hydrogels, as week as their antibacterial activities and the basic mechanisms of photothermal and photodynamic effects. In addition, the application of hydrogel-based photoresponsive materials in microbial inactivation is discussed, including the challenges faced in their application. The advantages of photosensitive antibacterial complex hydrogels are highlighted, and their application and research progress in various fields are introduced in detail.
Collapse
Affiliation(s)
- Zhijun Wang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Lili Fu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Dongliang Liu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Dongxu Tang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Kun Liu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Lu Rao
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Jinyu Yang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yi Liu
- College of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China
| | - Yuesheng Li
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Huangqin Chen
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Xiaojie Yang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
166
|
Araújo D, Martins M, Concórdio-Reis P, Roma-Rodrigues C, Morais M, Alves VD, Fernandes AR, Freitas F. Novel Hydrogel Membranes Based on the Bacterial Polysaccharide FucoPol: Design, Characterization and Biological Properties. Pharmaceuticals (Basel) 2023; 16:991. [PMID: 37513903 PMCID: PMC10383424 DOI: 10.3390/ph16070991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
FucoPol, a fucose-rich polyanionic polysaccharide, was used for the first time for the preparation of hydrogel membranes (HMs) using Fe3+ as a crosslinking agent. This study evaluated the impact of Fe3+ and FucoPol concentrations on the HMs' strength. The results show that, above 1.5 g/L, Fe3+ concentration had a limited influence on the HMs' strength, and varying the FucoPol concentration had a more significant effect. Three different FucoPol concentrations (1.0, 1.75 and 2.5 wt.%) were combined with Fe3+ (1.5 g/L), resulting in HMs with a water content above 97 wt.% and an Fe3+ content up to 0.16 wt.%. HMs with lower FucoPol content exhibited a denser porous microstructure as the polymer concentration increased. Moreover, the low polymer content HM presented the highest swelling ratio (22.3 ± 1.8 g/g) and a lower hardness value (32.4 ± 5.8 kPa). However, improved mechanical properties (221.9 ± 10.2 kPa) along with a decrease in the swelling ratio (11.9 ± 1.6 g/g) were obtained for HMs with a higher polymer content. Furthermore, all HMs were non-cytotoxic and revealed anti-inflammatory activity. The incorporation of FucoPol as a structuring agent and bioactive ingredient in the development of HMs opens up new possibilities for its use in tissue engineering, drug delivery and wound care management.
Collapse
Affiliation(s)
- Diana Araújo
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Matilde Martins
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Patrícia Concórdio-Reis
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Catarina Roma-Rodrigues
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Maria Morais
- i3N/CENIMAT, Department of Materials Science, Faculty of Sciences and Technology, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Vítor D Alves
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Alexandra R Fernandes
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Filomena Freitas
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
167
|
Kargaki ME, Arfara F, Iatrou H, Tsitsilianis C. pH-Sensitive Poly(acrylic acid)-g-poly(L-lysine) Charge-Driven Self-Assembling Hydrogels with 3D-Printability and Self-Healing Properties. Gels 2023; 9:512. [PMID: 37504391 PMCID: PMC10379232 DOI: 10.3390/gels9070512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/29/2023] Open
Abstract
We report the rheological behavior of aqueous solutions of a graft copolymer polyampholyte, constituted of polyacrylic acid (PAA) backbone grafted by Poly(L-lysine) (PAA-b-PLL). The graft copolymer self-assembles in aqueous media, forming a three-dimensional (3D) network through polyelectrolyte complexation of the oppositely charged PAA and PLL segments. Rheological investigations showed that the hydrogel exhibits interesting properties, namely, relatively low critical gel concentration, elastic response with slow dynamics, remarkable extended critical strain to flow, shear responsiveness, injectability, 3D printability and self-healing. Due to the weak nature of the involved polyelectrolyte segments, the hydrogel properties display pH-dependency, and they are affected by the presence of salt. Especially upon varying pH, the PLL secondary structure changes from random coil to α-helix, affecting the crosslinking structural mode and, in turn, the overall network structure as reflected in the rheological properties. Thanks to the biocompatibility of the copolymer constituents and the biodegradability of PLL, the designed gelator seems to exhibit potential for bioapplications.
Collapse
Affiliation(s)
- Maria-Eleni Kargaki
- Department of Chemical Engineering, University of Patras, 26500 Patras, Greece
| | - Foteini Arfara
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Hermis Iatrou
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | | |
Collapse
|
168
|
Volova LT, Kotelnikov GP, Shishkovsky I, Volov DB, Ossina N, Ryabov NA, Komyagin AV, Kim YH, Alekseev DG. 3D Bioprinting of Hyaline Articular Cartilage: Biopolymers, Hydrogels, and Bioinks. Polymers (Basel) 2023; 15:2695. [PMID: 37376340 DOI: 10.3390/polym15122695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
The musculoskeletal system, consisting of bones and cartilage of various types, muscles, ligaments, and tendons, is the basis of the human body. However, many pathological conditions caused by aging, lifestyle, disease, or trauma can damage its elements and lead to severe disfunction and significant worsening in the quality of life. Due to its structure and function, articular (hyaline) cartilage is the most susceptible to damage. Articular cartilage is a non-vascular tissue with constrained self-regeneration capabilities. Additionally, treatment methods, which have proven efficacy in stopping its degradation and promoting regeneration, still do not exist. Conservative treatment and physical therapy only relieve the symptoms associated with cartilage destruction, and traditional surgical interventions to repair defects or endoprosthetics are not without serious drawbacks. Thus, articular cartilage damage remains an urgent and actual problem requiring the development of new treatment approaches. The emergence of biofabrication technologies, including three-dimensional (3D) bioprinting, at the end of the 20th century, allowed reconstructive interventions to get a second wind. Three-dimensional bioprinting creates volume constraints that mimic the structure and function of natural tissue due to the combinations of biomaterials, living cells, and signal molecules to create. In our case-hyaline cartilage. Several approaches to articular cartilage biofabrication have been developed to date, including the promising technology of 3D bioprinting. This review represents the main achievements of such research direction and describes the technological processes and the necessary biomaterials, cell cultures, and signal molecules. Special attention is given to the basic materials for 3D bioprinting-hydrogels and bioinks, as well as the biopolymers underlying the indicated products.
Collapse
Affiliation(s)
- Larisa T Volova
- Research and Development Institute of Biotechnologies, Samara State Medical University, Chapayevskaya St. 89, 443099 Samara, Russia
| | - Gennadiy P Kotelnikov
- Research and Development Institute of Biotechnologies, Samara State Medical University, Chapayevskaya St. 89, 443099 Samara, Russia
| | - Igor Shishkovsky
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Dmitriy B Volov
- Research and Development Institute of Biotechnologies, Samara State Medical University, Chapayevskaya St. 89, 443099 Samara, Russia
| | - Natalya Ossina
- Research and Development Institute of Biotechnologies, Samara State Medical University, Chapayevskaya St. 89, 443099 Samara, Russia
| | - Nikolay A Ryabov
- Research and Development Institute of Biotechnologies, Samara State Medical University, Chapayevskaya St. 89, 443099 Samara, Russia
| | - Aleksey V Komyagin
- Research and Development Institute of Biotechnologies, Samara State Medical University, Chapayevskaya St. 89, 443099 Samara, Russia
| | - Yeon Ho Kim
- RokitHealth Care Ltd., 9, Digital-ro 10-gil, Geumcheon-gu, Seoul 08514, Republic of Korea
| | - Denis G Alekseev
- Research and Development Institute of Biotechnologies, Samara State Medical University, Chapayevskaya St. 89, 443099 Samara, Russia
| |
Collapse
|
169
|
Boni R, Regan L. Modulating the Viscoelastic Properties of Covalently Crosslinked Protein Hydrogels. Gels 2023; 9:481. [PMID: 37367151 DOI: 10.3390/gels9060481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/22/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Protein engineering allows for the programming of specific building blocks to form functional and novel materials with customisable physical properties suitable for tailored engineering applications. We have successfully designed and programmed engineered proteins to form covalent molecular networks with defined physical characteristics. Our hydrogel design incorporates the SpyTag (ST) peptide and SpyCatcher (SC) protein that spontaneously form covalent crosslinks upon mixing. This genetically encodable chemistry allowed us to easily incorporate two stiff and rod-like recombinant proteins in the hydrogels and modulate the resulting viscoelastic properties. We demonstrated how differences in the composition of the microscopic building blocks change the macroscopic viscoelastic properties of the hydrogels. We specifically investigated how the identity of the protein pairs, the molar ratio of ST:SC, and the concentration of the proteins influence the viscoelastic response of the hydrogels. By showing tuneable changes in protein hydrogel rheology, we increased the capabilities of synthetic biology to create novel materials, allowing engineering biology to interface with soft matter, tissue engineering, and material science.
Collapse
Affiliation(s)
- Rossana Boni
- Centre for Engineering Biology, School of Biological Sciences, Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Lynne Regan
- Centre for Engineering Biology, School of Biological Sciences, Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh EH9 3FF, UK
| |
Collapse
|
170
|
Patel L, Worch JC, Dove AP, Gehmlich K. The Utilisation of Hydrogels for iPSC-Cardiomyocyte Research. Int J Mol Sci 2023; 24:9995. [PMID: 37373141 PMCID: PMC10298477 DOI: 10.3390/ijms24129995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Cardiac fibroblasts' (FBs) and cardiomyocytes' (CMs) behaviour and morphology are influenced by their environment such as remodelling of the myocardium, thus highlighting the importance of biomaterial substrates in cell culture. Biomaterials have emerged as important tools for the development of physiological models, due to the range of adaptable properties of these materials, such as degradability and biocompatibility. Biomaterial hydrogels can act as alternative substrates for cellular studies, which have been particularly key to the progression of the cardiovascular field. This review will focus on the role of hydrogels in cardiac research, specifically the use of natural and synthetic biomaterials such as hyaluronic acid, polydimethylsiloxane and polyethylene glycol for culturing induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). The ability to fine-tune mechanical properties such as stiffness and the versatility of biomaterials is assessed, alongside applications of hydrogels with iPSC-CMs. Natural hydrogels often display higher biocompatibility with iPSC-CMs but often degrade quicker, whereas synthetic hydrogels can be modified to facilitate cell attachment and decrease degradation rates. iPSC-CM structure and electrophysiology can be assessed on natural and synthetic hydrogels, often resolving issues such as immaturity of iPSC-CMs. Biomaterial hydrogels can thus provide a more physiological model of the cardiac extracellular matrix compared to traditional 2D models, with the cardiac field expansively utilising hydrogels to recapitulate disease conditions such as stiffness, encourage alignment of iPSC-CMs and facilitate further model development such as engineered heart tissues (EHTs).
Collapse
Affiliation(s)
- Leena Patel
- Institute of Cardiovascular Science, University of Birmingham, Birmingham B15 2TT, UK;
| | - Joshua C. Worch
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, UK; (J.C.W.); (A.P.D.)
| | - Andrew P. Dove
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, UK; (J.C.W.); (A.P.D.)
| | - Katja Gehmlich
- Institute of Cardiovascular Science, University of Birmingham, Birmingham B15 2TT, UK;
| |
Collapse
|
171
|
Chen TY, Jiang YJ, Chien HW. Developing Transparent and Conductive PolyHEMA Gels Using Deep Eutectic Solvents. Polymers (Basel) 2023; 15:2605. [PMID: 37376251 DOI: 10.3390/polym15122605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Poly(2-hydroxyethyl methacrylate) (polyHEMA) hydrogels are commonly used in biomaterials such as contact lenses. However, water evaporation from these hydrogels can cause discomfort to wearers, and the bulk polymerization method used to synthesize them often results in heterogeneous microstructures, reducing their optical properties and elasticity. In this study, we synthesized polyHEMA gels using a deep eutectic solvent (DES) instead of water and compared their properties to traditional hydrogels. Fourier-transform infrared spectroscopy (FTIR) showed that HEMA conversion in DES was faster than in water. DES gels also demonstrated higher transparency, toughness, and conductivity, along with lower dehydration, than hydrogels. The compressive and tensile modulus values of DES gels increased with HEMA concentration. A DES gel with 45% HEMA showed excellent compression-relaxation cycles and had the highest strain at break value in the tensile test. Our findings suggest that DES is a promising alternative to water for synthesizing contact lenses with improved optical and mechanical properties. Furthermore, DES gels' conduction properties may enable their application in biosensors. This study presents an innovative approach to synthesizing polyHEMA gels and provides insights into their potential applications in the biomaterials field.
Collapse
Affiliation(s)
- Tai-Yu Chen
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan
| | - Yi-Jie Jiang
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan
| | - Hsiu-Wen Chien
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan
- Photo-Sensitive Material Advanced Research and Technology Center (Photo-SMART Center), National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan
| |
Collapse
|
172
|
Georgieva D, Alexandrova M, Ivanova S, Christova D, Kostova B. Conceptualization and Investigation of Multicomponent Polymer Networks as Prospective Corticosteroid Carriers. Gels 2023; 9:470. [PMID: 37367141 DOI: 10.3390/gels9060470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/23/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Dexamethasone (DXM) is a highly potent and long-acting synthetic glucocorticoid with anti-inflammatory, anti-allergic, and immunosuppressive effects. However, the systemic application of DXM can cause undesirable side effects: sleep disorders, nervousness, heart rhythm disorders, heart attack, and others. In the present study, multicomponent polymer networks were developed as potential new platforms for the dermal application of dexamethasone sodium phosphate (DSP). First, a copolymer network (CPN) comprising hydrophilic segments of different chemical structures was synthesized by applying redox polymerization of dimethyl acrylamide onto poly(ethylene glycol) in the presence of poly(ethylene glycol) diacrylate (PEGDA) as a crosslinker. On this basis, an interpenetrating polymer network structure (IPN) was obtained by introducing a second network of PEGDA-crosslinked poly(N-isopropylacrylamide). Multicomponent networks obtained were characterized by FTIR, TGA, and swelling kinetics in different solvents. Both CPN and IPN showed a high swelling degree in aqueous media (up to 1800 and 1200%, respectively), reaching the equilibrium swelling within 24 h. Additionally, IPN showed temperature-responsive swelling in an aqueous solution as the equilibrium swelling degree decreased considerably with an increase in the temperature. In order to evaluate the networks' potential as drug carriers, swelling in DSP aqueous solutions of varied concentration was investigated. It was established that the amount of encapsulated DSP could be easily controlled by the concentration of drug aqueous solution. In vitro DSP release was studied in buffer solution (BS) with pH 7.4 at 37 °C. The results obtained during DSP loading and release experiments proved the feasibility of the developed multicomponent hydrophilic polymer networks as effective platforms for potential dermal application.
Collapse
Affiliation(s)
- Dilyana Georgieva
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Medical University of Sofia, Dunav Str. 2, 1000 Sofia, Bulgaria
| | - Mariela Alexandrova
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev Str., Bl. 103-A, 1113 Sofia, Bulgaria
| | - Sijka Ivanova
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev Str., Bl. 103-A, 1113 Sofia, Bulgaria
| | - Darinka Christova
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev Str., Bl. 103-A, 1113 Sofia, Bulgaria
| | - Bistra Kostova
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Medical University of Sofia, Dunav Str. 2, 1000 Sofia, Bulgaria
| |
Collapse
|
173
|
Morwood AJ, El-Karim IA, Clarke SA, Lundy FT. The Role of Extracellular Matrix (ECM) Adhesion Motifs in Functionalised Hydrogels. Molecules 2023; 28:4616. [PMID: 37375171 DOI: 10.3390/molecules28124616] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 06/29/2023] Open
Abstract
To create functional tissue engineering scaffolds, biomaterials should mimic the native extracellular matrix of the tissue to be regenerated. Simultaneously, the survival and functionality of stem cells should also be enhanced to promote tissue organisation and repair. Hydrogels, but in particular, peptide hydrogels, are an emerging class of biocompatible scaffolds which act as promising self-assembling biomaterials for tissue engineering and regenerative therapies, ranging from articular cartilage regeneration at joint defects, to regenerative spinal cord injury following trauma. To enhance hydrogel biocompatibility, it has become imperative to consider the native microenvironment of the site for regeneration, where the use of functionalised hydrogels with extracellular matrix adhesion motifs has become a novel, emerging theme. In this review, we will introduce hydrogels in the context of tissue engineering, provide insight into the complexity of the extracellular matrix, investigate specific adhesion motifs that have been used to generate functionalised hydrogels and outline their potential applications in a regenerative medicine setting. It is anticipated that by conducting this review, we will provide greater insight into functionalised hydrogels, which may help translate their use towards therapeutic roles.
Collapse
Affiliation(s)
- Anna J Morwood
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ikhlas A El-Karim
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Susan A Clarke
- Medical Biology Centre, School of Nursing and Midwifery, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Fionnuala T Lundy
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
174
|
Hutomo DI, Amir L, Suniarti DF, Bachtiar EW, Soeroso Y. Hydrogel-Based Biomaterial as a Scaffold for Gingival Regeneration: A Systematic Review of In Vitro Studies. Polymers (Basel) 2023; 15:2591. [PMID: 37376237 DOI: 10.3390/polym15122591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Hydrogel is considered a promising scaffold biomaterial for gingival regeneration. In vitro experiments were carried out to test new potential biomaterials for future clinical practice. The systematic review of such in vitro studies could synthesize evidence of the characteristics of the developing biomaterials. This systematic review aimed to identify and synthesize in vitro studies that assessed the hydrogel scaffold for gingival regeneration. METHODS Data on experimental studies on the physical and biological properties of hydrogel were synthesized. A systematic review of the PubMed, Embase, ScienceDirect, and Scopus databases was conducted according to the Preferred Reporting System for Systematic Reviews and Meta-Analyses (PRISMA) 2020 statement guidelines. In total, 12 original articles on the physical and biological properties of hydrogels for gingival regeneration, published in the last 10 years, were identified. RESULTS One study only performed physical property analyses, two studies only performed biological property analyses, and nine studies performed both physical and biological property analyses. The incorporation of various natural polymers such as collagen, chitosan, and hyaluronic acids improved the biomaterial characteristics. The use of synthetic polymers faced some drawbacks in their physical and biological properties. Peptides, such as growth factors and arginine-glycine-aspartic acid (RGD), can be used to enhance cell adhesion and migration. Based on the available primary studies, all studies successfully present the potential of hydrogel characteristics in vitro and highlight the essential biomaterial properties for future periodontal regenerative treatment.
Collapse
Affiliation(s)
- Dimas Ilham Hutomo
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Lisa Amir
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Dewi Fatma Suniarti
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Endang Winiati Bachtiar
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Yuniarti Soeroso
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia
| |
Collapse
|
175
|
Nascimento ATD, Mendes AX, Begeng JM, Duchi S, Stoddart PR, Quigley AF, Kapsa RMI, Ibbotson MR, Silva SM, Moulton SE. A tissue-engineered neural interface with photothermal functionality. Biomater Sci 2023. [PMID: 37194340 DOI: 10.1039/d3bm00139c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Neural interfaces are well-established as a tool to understand the behaviour of the nervous system via recording and stimulation of living neurons, as well as serving as neural prostheses. Conventional neural interfaces based on metals and carbon-based materials are generally optimised for high conductivity; however, a mechanical mismatch between the interface and the neural environment can significantly reduce long-term neuromodulation efficacy by causing an inflammatory response. This paper presents a soft composite material made of gelatin methacryloyl (GelMA) containing graphene oxide (GO) conjugated with gold nanorods (AuNRs). The soft hydrogel presents stiffness within the neural environment range of modulus below 5 kPa, while the AuNRs, when exposed to light in the near infrared range, provide a photothermal response that can be used to improve the spatial and temporal precision of neuromodulation. These favourable properties can be maintained at safer optical power levels when combined with electrical stimulation. In this paper we provide mechanical and biological characterization of the optical activity of the GO-AuNR composite hydrogel. The optical functionality of the material has been evaluated via photothermal stimulation of explanted rat retinal tissue. The outcomes achieved with this study encourage further investigation into optical and electrical costimulation parameters for a range of biomedical applications.
Collapse
Affiliation(s)
- Adriana Teixeira do Nascimento
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Alexandre Xavier Mendes
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - James M Begeng
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- National Vision Research Institute, The Australian College of Optometry, Carlton, VIC 3058, Australia
| | - Serena Duchi
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- Department of Surgery, University of Melbourne, St Vincent's Hospital, Melbourne, Victoria 3065, Australia
| | - Paul R Stoddart
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Anita F Quigley
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- School of Electrical and Biomedical Engineering, RMIT University, Melbourne, Victoria 3001, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Victoria 3065, Australia
| | - Robert M I Kapsa
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- School of Electrical and Biomedical Engineering, RMIT University, Melbourne, Victoria 3001, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Victoria 3065, Australia
| | - Michael R Ibbotson
- National Vision Research Institute, The Australian College of Optometry, Carlton, VIC 3058, Australia
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Saimon M Silva
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria 3122, Australia.
| | - Simon E Moulton
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria 3122, Australia.
| |
Collapse
|
176
|
Rahmatpour A, Alijani N. An all-biopolymer self-assembling hydrogel film consisting of chitosan and carboxymethyl guar gum: A novel bio-based composite adsorbent for Cu 2+ adsorption from aqueous solution. Int J Biol Macromol 2023; 242:124878. [PMID: 37187419 DOI: 10.1016/j.ijbiomac.2023.124878] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/17/2023]
Abstract
A novel bio-based composite adsorbent, all biopolymer self-assembled hydrogel film has been prepared by eco-friendly amalgamating chitosan (CS) and carboxymethyl guar gum (CMGG) biopolymers in water without needing small molecules for cross-linking. Various analysis demonstrated the electrostatic interactions and hydrogen bondings within the network structure are responsible for gelling, crosslinking, and forming a 3D structure. Various experimental parameters were optimized to evaluate the CS/CMGG's potential for removing Cu2+ ions from aqueous solution, including pH, dosage, Cu(II) initial concentration, contact time, and temperature. The pseudo-second-order kinetic and Langmuir isotherm models are highly correlated with the kinetic and equilibrium isotherm data, respectively. Using the Langmuir isotherm model for an initial metal concentration of 50 mg/L at pH 6.0 and 25 °C, the maximum adsorption of Cu(II) was calculated to be 155.51 mg/g. A combination of adsorption-complexation and ion exchange must be involved in Cu(II) adsorption on the CS/CMGG. Five cycles of the loaded CS/CMGG hydrogel regeneration and reuse were successfully achieved without an appreciable difference in Cu(II) removal percentage. Thermodynamic analysis indicated that copper adsorption occurred spontaneously (ΔG°: -2.85 J/mol, 298 K) and exothermically (ΔH°: -27.58 J/mol). A reusable bio-adsorbent for removing heavy metal ions was developed that is eco-friendly, sustainable, and efficient.
Collapse
Affiliation(s)
- Ali Rahmatpour
- Polymer Chemistry Research Laboratory, Faculty of Chemistry and Petroleum Science, Shahid Beheshti University, P.O. Box: 1983969411, Tehran, Iran.
| | - Naser Alijani
- Polymer Chemistry Research Laboratory, Faculty of Chemistry and Petroleum Science, Shahid Beheshti University, P.O. Box: 1983969411, Tehran, Iran
| |
Collapse
|
177
|
Lupu A, Gradinaru LM, Gradinaru VR, Bercea M. Diversity of Bioinspired Hydrogels: From Structure to Applications. Gels 2023; 9:gels9050376. [PMID: 37232968 DOI: 10.3390/gels9050376] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Hydrogels are three-dimensional networks with a variety of structures and functions that have a remarkable ability to absorb huge amounts of water or biological fluids. They can incorporate active compounds and release them in a controlled manner. Hydrogels can also be designed to be sensitive to external stimuli: temperature, pH, ionic strength, electrical or magnetic stimuli, specific molecules, etc. Alternative methods for the development of various hydrogels have been outlined in the literature over time. Some hydrogels are toxic and therefore are avoided when obtaining biomaterials, pharmaceuticals, or therapeutic products. Nature is a permanent source of inspiration for new structures and new functionalities of more and more competitive materials. Natural compounds present a series of physico-chemical and biological characteristics suitable for biomaterials, such as biocompatibility, antimicrobial properties, biodegradability, and nontoxicity. Thus, they can generate microenvironments comparable to the intracellular or extracellular matrices in the human body. This paper discusses the main advantages of the presence of biomolecules (polysaccharides, proteins, and polypeptides) in hydrogels. Structural aspects induced by natural compounds and their specific properties are emphasized. The most suitable applications will be highlighted, including drug delivery, self-healing materials for regenerative medicine, cell culture, wound dressings, 3D bioprinting, foods, etc.
Collapse
Affiliation(s)
- Alexandra Lupu
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Luiza Madalina Gradinaru
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Vasile Robert Gradinaru
- Faculty of Chemistry, "Alexandru Ioan Cuza" University, 11 Carol I Bd., 700506 Iasi, Romania
| | - Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
178
|
Moura D, Pereira AT, Ferreira HP, Barrias CC, Magalhães FD, Bergmeister H, Gonçalves IC. Poly(2-hydroxyethyl methacrylate) hydrogels containing graphene-based materials for blood-contact applications: from soft inert to strong degradable material. Acta Biomater 2023; 164:253-268. [PMID: 37121371 DOI: 10.1016/j.actbio.2023.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/02/2023]
Abstract
Degradable biomaterials for blood-contacting devices (BCDs) are associated with weak mechanical properties, high molecular weight of the degradation products and poor hemocompatibility. Herein, the inert and biocompatible FDA approved poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogel was turned into a degradable material by incorporation of different amounts of a hydrolytically labile crosslinking agent, pentaerythritol tetrakis(3-mercaptopropionate). In situ addition of 1wt.% of oxidized graphene-based materials (GBMs) with different lateral sizes/thicknesses (single-layer graphene oxide, and oxidized forms of few-layer graphene materials) was performed to enhance the mechanical properties of hydrogels. An ultimate tensile strength increases up to 0.2 MPa (293% higher than degradable pHEMA) was obtained using oxidized few-layer graphene with 5 μm lateral size. Moreover, the incorporation of GBMs has demonstrated to simultaneously tune the degradation time, which ranged from 2 to 4 months. Notably, these features were achieved keeping not only the intrinsic properties of inert pHEMA regarding water uptake, wettability and cytocompatibility (short and long term), but also the non-fouling behavior towards human cells, platelets and bacteria. This new pHEMA hydrogel with degradation and biomechanical performance tuned by GBMs, can therefore be envisioned for different applications in tissue engineering, particularly for BCDs where non-fouling character is essential. STATEMENT OF SIGNIFICANCE: Suitable mechanical properties, low molecular weight of the degradation products and hemocompatibility are key features in degradable blood contacting devices (BCDs), and pave the way for significant improvement in the field. In here, a hydrogel with outstanding anti-adhesiveness (pHEMA) provides hemocompatibility, the presence of a degradable crosslinker provides degradability, and incorporation of graphene oxide reestablishes its strength, allowing tuning of both degradation and mechanical properties. Notably, these hydrogels simultaneously provide suitable water uptake, wettability, cytocompatibility (short and long term), no acute inflammatory response, and non-fouling behavior towards endothelial cells, platelets and bacteria. Such results highlight the potential of these hydrogels to be envisioned for applications in tissue engineered BCDs, namely as small diameter vascular grafts.
Collapse
Affiliation(s)
- Duarte Moura
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; FEUP - Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e de Materiais, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Andreia T Pereira
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - Helena P Ferreira
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, 4050-313, Portugal
| | - Cristina C Barrias
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, 4050-313, Portugal
| | - Fernão D Magalhães
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Helga Bergmeister
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cardiovascular Research, Austria
| | - Inês C Gonçalves
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal.
| |
Collapse
|
179
|
Gamboa J, Paulo-Mirasol S, Estrany F, Torras J. Recent Progress in Biomedical Sensors Based on Conducting Polymer Hydrogels. ACS APPLIED BIO MATERIALS 2023; 6:1720-1741. [PMID: 37115912 DOI: 10.1021/acsabm.3c00139] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Biosensors are increasingly taking a more active role in health science. The current needs for the constant monitoring of biomedical signals, as well as the growing spending on public health, make it necessary to search for materials with a combination of properties such as biocompatibility, electroactivity, resorption, and high selectivity to certain bioanalytes. Conducting polymer hydrogels seem to be a very promising materials, since they present many of the necessary properties to be used as biosensors. Furthermore, their properties can be shaped and enhanced by designing conductive polymer hydrogel-based composites with more specific functionalities depending on the end application. This work will review the recent state of the art of different biological hydrogels for biosensor applications, discuss the properties of the different components alone and in combination, and reveal their high potential as candidate materials in the fabrication of all-organic diagnostic, wearable, and implantable sensor devices.
Collapse
Affiliation(s)
- Jillian Gamboa
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, Barcelona 08019, Spain
| | - Sofia Paulo-Mirasol
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, Barcelona 08019, Spain
| | - Francesc Estrany
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, Barcelona 08019, Spain
| | - Juan Torras
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, Barcelona 08019, Spain
| |
Collapse
|
180
|
Rodríguez CF, Andrade-Pérez V, Vargas MC, Mantilla-Orozco A, Osma JF, Reyes LH, Cruz JC. Breaking the clean room barrier: exploring low-cost alternatives for microfluidic devices. Front Bioeng Biotechnol 2023; 11:1176557. [PMID: 37180035 PMCID: PMC10172592 DOI: 10.3389/fbioe.2023.1176557] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Microfluidics is an interdisciplinary field that encompasses both science and engineering, which aims to design and fabricate devices capable of manipulating extremely low volumes of fluids on a microscale level. The central objective of microfluidics is to provide high precision and accuracy while using minimal reagents and equipment. The benefits of this approach include greater control over experimental conditions, faster analysis, and improved experimental reproducibility. Microfluidic devices, also known as labs-on-a-chip (LOCs), have emerged as potential instruments for optimizing operations and decreasing costs in various of industries, including pharmaceutical, medical, food, and cosmetics. However, the high price of conventional prototypes for LOCs devices, generated in clean room facilities, has increased the demand for inexpensive alternatives. Polymers, paper, and hydrogels are some of the materials that can be utilized to create the inexpensive microfluidic devices covered in this article. In addition, we highlighted different manufacturing techniques, such as soft lithography, laser plotting, and 3D printing, that are suitable for creating LOCs. The selection of materials and fabrication techniques will depend on the specific requirements and applications of each individual LOC. This article aims to provide a comprehensive overview of the numerous alternatives for the development of low-cost LOCs to service industries such as pharmaceuticals, chemicals, food, and biomedicine.
Collapse
Affiliation(s)
| | | | - María Camila Vargas
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | | | - Johann F. Osma
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Luis H. Reyes
- Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
181
|
Heger R, Zinkovska N, Trudicova M, Kadlec M, Pekar M, Smilek J. Lecithin as an Effective Modifier of the Transport Properties of Variously Crosslinked Hydrogels. Gels 2023; 9:gels9050367. [PMID: 37232959 DOI: 10.3390/gels9050367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/08/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Transport properties are one of the most crucial assets of hydrogel samples, influencing their main application potential, i.e., as drug carriers. Depending on the type of drug or the application itself, it is very important to be able to control these transport properties in an appropriate manner. This study seeks to modify these properties by adding amphiphiles, specifically lecithin. Through its self-assembly, lecithin modifies the inner structure of the hydrogel, which affects its properties, especially the transport ones. In the proposed paper, these properties are studied mainly using various probes (organic dyes) to effectively simulate drugs in simple release diffusion experiments controlled by UV-Vis spectrophotometry. Scanning electron microscopy was used to help characterize the diffusion systems. The effects of lecithin and its concentrations, as well as the effects of variously charged model drugs, were discussed. Lecithin decreases the values of the diffusion coefficient independently of the dye used and the type of crosslinking. The ability to influence transport properties is better observed in xerogel samples. The results, complementing previously published conclusions, showed that lecithin can alter a hydrogel's structure and therefore its transport properties.
Collapse
Affiliation(s)
- Richard Heger
- Institute of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| | - Natalia Zinkovska
- Institute of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| | - Monika Trudicova
- Institute of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| | - Martin Kadlec
- Institute of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| | - Miloslav Pekar
- Institute of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| | - Jiri Smilek
- Institute of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| |
Collapse
|
182
|
Xu Y, Hu Q, Wei Z, Ou Y, Cao Y, Zhou H, Wang M, Yu K, Liang B. Advanced polymer hydrogels that promote diabetic ulcer healing: mechanisms, classifications, and medical applications. Biomater Res 2023; 27:36. [PMID: 37101201 PMCID: PMC10134570 DOI: 10.1186/s40824-023-00379-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
Diabetic ulcers (DUs) are one of the most serious complications of diabetes mellitus. The application of a functional dressing is a crucial step in DU treatment and is associated with the patient's recovery and prognosis. However, traditional dressings with a simple structure and a single function cannot meet clinical requirements. Therefore, researchers have turned their attention to advanced polymer dressings and hydrogels to solve the therapeutic bottleneck of DU treatment. Hydrogels are a class of gels with a three-dimensional network structure that have good moisturizing properties and permeability and promote autolytic debridement and material exchange. Moreover, hydrogels mimic the natural environment of the extracellular matrix, providing suitable surroundings for cell proliferation. Thus, hydrogels with different mechanical strengths and biological properties have been extensively explored as DU dressing platforms. In this review, we define different types of hydrogels and elaborate the mechanisms by which they repair DUs. Moreover, we summarize the pathological process of DUs and review various additives used for their treatment. Finally, we examine the limitations and obstacles that exist in the development of the clinically relevant applications of these appealing technologies. This review defines different types of hydrogels and carefully elaborate the mechanisms by which they repair diabetic ulcers (DUs), summarizes the pathological process of DUs, and reviews various bioactivators used for their treatment.
Collapse
Affiliation(s)
- Yamei Xu
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Qiyuan Hu
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Zongyun Wei
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Yi Ou
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Youde Cao
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong Distinct, Chongqing, 400042, P.R. China
| | - Hang Zhou
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Mengna Wang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Kexiao Yu
- Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital, No. 6 Panxi Seventh Branch Road, Jiangbei District, Chongqing, 400021, P.R. China.
- Institute of Ultrasound Imaging of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China.
| | - Bing Liang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China.
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China.
- Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong Distinct, Chongqing, 400042, P.R. China.
| |
Collapse
|
183
|
Lin X, Lv J, Wang D, Liu K. Injectable adhesive carboxymethyl chitosan-based hydrogels with self-mending and antimicrobial features for the potential management of periodontal diseases. RSC Adv 2023; 13:11903-11911. [PMID: 37077268 PMCID: PMC10107338 DOI: 10.1039/d3ra00904a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/04/2023] [Indexed: 04/21/2023] Open
Abstract
Treating periodontal diseases is a great challenge owing to the motion and wet conditions, bacterial infection, and tissue defects. Therefore, designing bioactive materials with outstanding wet-tissue adhesion, antimicrobial features, as well as favorable cell responses, is highly desirable to meet practical necessity. In this work, bio-multifunctional melatonin-loaded carboxymethyl chitosan/polyaldehyde dextran (CPM) hydrogels have been developed through the dynamic Schiff-base reaction. Our results demonstrate that the CPM hydrogels display injectability, structural stability, and high tissue adhesion in the wet and motional state, as well as self-healing features. In addition, the designed hydrogels show great antibacterial properties and excellent biocompatibility. The prepared hydrogels display a slow release of melatonin. Moreover, the in vitro cellular assay indicates that the developed hydrogels containing 10 mg per mL melatonin significantly promote cell migration. Thus, the synthesized bio-multifunctional hydrogels show great promise in the treatment of periodontal disease.
Collapse
Affiliation(s)
- Xiaoqian Lin
- Department of Pharmacy, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University Qingdao Shandong China
| | - Jia Lv
- Department of Prosthodontics, Qilu Hospital, Cheeloo College of Medicine, Institute of Stomatology, Shandong University Jinan Shandong China
| | - Desheng Wang
- Jinan Stomatological Hospital Jinan Shandong China
| | - Kaikai Liu
- Department of Stomatology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University Qingdao Shandong China
| |
Collapse
|
184
|
Manaila E, Demeter M, Calina IC, Craciun G. NaAlg-g-AA Hydrogels: Candidates in Sustainable Agriculture Applications. Gels 2023; 9:gels9040316. [PMID: 37102928 PMCID: PMC10138036 DOI: 10.3390/gels9040316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Nowadays, the degradation of agricultural soil due to various factors should be a major concern for everyone. In this study, a new sodium alginate-g-acrylic acid-based hydrogel was developed simultaneously by cross-linking and grafting with accelerated electrons to be used as soil remediation. The effect of irradiation dose and NaAlg contents on the gel fraction, network and structural parameters, sol-gel analysis, swelling power, and swelling kinetics of NaAlg-g-AA hydrogels have been investigated. It was demonstrated that NaAlg hydrogels show significative swelling power that is greatly dependent on their composition and irradiation dose; they keep the structure and are not degraded in different pH conditions and different water sources. Diffusion data revealed a non-Fickian transport mechanism (0.61-0.99) also specific to cross-linked hydrogels. The prepared hydrogels were proved as excellent candidates in sustainable agriculture applications.
Collapse
Affiliation(s)
- Elena Manaila
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania
| | - Maria Demeter
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania
| | - Ion Cosmin Calina
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania
| | - Gabriela Craciun
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania
| |
Collapse
|
185
|
Tohamy HAS, El-Sakhawy M, Strachota B, Strachota A, Pavlova E, Mares Barbosa S, Kamel S. Temperature- and pH-Responsive Super-Absorbent Hydrogel Based on Grafted Cellulose and Capable of Heavy Metal Removal from Aqueous Solutions. Gels 2023; 9:gels9040296. [PMID: 37102908 PMCID: PMC10138026 DOI: 10.3390/gels9040296] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
In this work, we prepared highly swelling, stimuli-responsive hydrogels capable of the highly efficient adsorption of inorganic pollutants. The hydrogels were based on hydroxypropyl methyl cellulose (HPMC) grafted with acrylamide (AM) and 3-sulfopropyl acrylate (SPA) and were synthesized via the growth (radical polymerization) of the grafted copolymer chains on HPMC, which was activated by radical oxidation. These grafted structures were crosslinked to an infinite network by a small amount of di-vinyl comonomer. HPMC was chosen as a cheap hydrophilic and naturally sourced polymer backbone, while AM and SPA were employed to preferentially bond coordinating and cationic inorganic pollutants, respectively. All the gels displayed a pronounced elastic character, as well as considerably high values of stress at break (several hundred %). The gel with the highest fraction of the ionic comonomer SPA (with an AM/SPA ratio = 0.5) displayed the highest equilibrium swelling ratio (12,100%), the highest volume response to temperature and pH, and the fastest swelling kinetics, but also the lowest modulus. The other gels (with AM/SPA = 1 and 2) displayed several times higher moduli but more modest pH responses and only very modest temperature sensitivity. Cr(VI) adsorption tests indicated that the prepared hydrogels removed this species from water very efficiently: between 90 and 96% in one step. The hydrogels with AM/SPA ratios of 0.5 and 1 appeared to be promising regenerable (via pH) materials for repeated Cr(VI) adsorption.
Collapse
Affiliation(s)
- Hebat-Allah S. Tohamy
- Cellulose & Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Mohamed El-Sakhawy
- Cellulose & Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Beata Strachota
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Praha, Czech Republic
| | - Adam Strachota
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Praha, Czech Republic
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Praha, Czech Republic
| | - Silvia Mares Barbosa
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Praha, Czech Republic
| | - Samir Kamel
- Cellulose & Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
186
|
Hu L, Chee PL, Sugiarto S, Yu Y, Shi C, Yan R, Yao Z, Shi X, Zhi J, Kai D, Yu HD, Huang W. Hydrogel-Based Flexible Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205326. [PMID: 36037508 DOI: 10.1002/adma.202205326] [Citation(s) in RCA: 100] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Flexible electronics is an emerging field of research involving multiple disciplines, which include but not limited to physics, chemistry, materials science, electronic engineering, and biology. However, the broad applications of flexible electronics are still restricted due to several limitations, including high Young's modulus, poor biocompatibility, and poor responsiveness. Innovative materials aiming for overcoming these drawbacks and boost its practical application is highly desirable. Hydrogel is a class of 3D crosslinked hydrated polymer networks, and its exceptional material properties render it as a promising candidate for the next generation of flexible electronics. Here, the latest methods of synthesizing advanced functional hydrogels and the state-of-art applications of hydrogel-based flexible electronics in various fields are reviewed. More importantly, the correlation between properties of the hydrogel and device performance is discussed here, to have better understanding of the development of flexible electronics by using environmentally responsive hydrogels. Last, perspectives on the current challenges and future directions in the development of hydrogel-based multifunctional flexible electronics are provided.
Collapse
Affiliation(s)
- Lixuan Hu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Pei Lin Chee
- Institute of Materials Research and Engineering (IMRE), A∗STAR, 2 Fusionopolis Way, Innovis, No. 08-03, Singapore, 138634, Singapore
| | - Sigit Sugiarto
- Institute of Materials Research and Engineering (IMRE), A∗STAR, 2 Fusionopolis Way, Innovis, No. 08-03, Singapore, 138634, Singapore
| | - Yong Yu
- Institute of Materials Research and Engineering (IMRE), A∗STAR, 2 Fusionopolis Way, Innovis, No. 08-03, Singapore, 138634, Singapore
| | - Chuanqian Shi
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, 200092, P. R. China
| | - Ren Yan
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Zhuoqi Yao
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Xuewen Shi
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Jiacai Zhi
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Dan Kai
- Institute of Materials Research and Engineering (IMRE), A∗STAR, 2 Fusionopolis Way, Innovis, No. 08-03, Singapore, 138634, Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), A∗STAR, 2 Fusionopolis Way, Innovis, No. 08-03, Singapore, 138634, Singapore
| | - Hai-Dong Yu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| |
Collapse
|
187
|
Hu X, Grinstaff MW. Advances in Hydrogel Adhesives for Gastrointestinal Wound Closure and Repair. Gels 2023; 9:282. [PMID: 37102894 PMCID: PMC10138019 DOI: 10.3390/gels9040282] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Millions of individuals undergo gastrointestinal (GI) tract surgeries each year with common postoperative complications including bleeding, perforation, anastomotic leakage, and infection. Today, techniques such as suturing and stapling seal internal wounds, and electrocoagulation stops bleeding. These methods induce secondary damage to the tissue and can be technically difficult to perform depending on the wound site location. To overcome these challenges and to further advance wound closure, hydrogel adhesives are being investigated to specifically target GI tract wounds because of their atraumatic nature, fluid-tight sealing capability, favorable wound healing properties, and facile application. However, challenges remain that limit their use, such as weak underwater adhesive strength, slow gelation, and/or acidic degradation. In this review, we summarize recent advances in hydrogel adhesives to treat various GI tract wounds, with a focus on novel material designs and compositions to combat the environment-specific challenges of GI injury. We conclude with a discussion of potential opportunities from both research and clinical perspectives.
Collapse
Affiliation(s)
| | - Mark W. Grinstaff
- Departments of Chemistry and Biomedical Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
188
|
Costa FJP, Nave M, Lima-Sousa R, Alves CG, Melo BL, Correia IJ, de Melo-Diogo D. Development of Thiol-Maleimide hydrogels incorporating graphene-based nanomaterials for cancer chemo-photothermal therapy. Int J Pharm 2023; 635:122713. [PMID: 36764414 DOI: 10.1016/j.ijpharm.2023.122713] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Nano-sized materials have been widely explored in the biomedicine field, especially due to their ability to encapsulate drugs intended to be delivered to cancer cells. However, systemically administered nanomaterials face several barriers that can hinder their tumor-homing capacity. In this way, researchers are now focusing their efforts in developing technologies that can deliver the nanoparticles directly into the tumor tissue. Particularly, hydrogels assembled using Thiol-Maleimide Michael type additions are emerging for this purpose due to their capacity to incorporate high nanoparticles' doses in a compact 3D structure as well as good chemical selectivity, biocompatibility, and straightforward preparation. Nevertheless, such hydrogels have been mostly prepared using synthetic polymers, which is not ideal due to their poor biodegradability. In this work, a novel natural polymer-based Thiol-Maleimide hydrogel was produced for application in breast cancer chemo-photothermal therapy. To obtain natural polymers compatible with this crosslinking chemistry, Hyaluronic acid was endowed with Thiol groups and deacetylated Chitosan was grafted with Maleimide groups. Parallelly, Doxorubicin loaded Dopamine-reduced graphene oxide (DOX/DOPA-rGO) was prepared for attaining Near Infrared (NIR) light responsive chemo-photothermal nanoagents. By simply mixing Hyaluronic Acid-Thiol, deacetylated Chitosan-Maleimide and DOX/DOPA-rGO, Thiol-Maleimide crosslinked hydrogels incorporating this nanomaterial could be assembled (DOX/DOPA-rGO@TMgel). When breast cancer cells were incubated with DOPA-rGO@TMgel and exposed to NIR light (photothermal therapy), their viability was reduced to about 59 %. On the other hand, DOX/DOPA-rGO@TMgel (chemotherapy) reduced cancer cells' viability to 50 %. In stark contrast, the combined action of DOX/DOPA-rGO@TMgel and NIR light decreased breast cancer cells' viability to just 21 %, highlighting its chemo-photothermal potential.
Collapse
Affiliation(s)
- Francisco J P Costa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Micaela Nave
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Bruna L Melo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal; CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, 3030-790 Coimbra, Portugal.
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
189
|
Tie BSH, Halligan E, Zhuo S, Keane G, Geever L. Synthesis of NVCL-NIPAM Hydrogels Using PEGDMA as a Chemical Crosslinker for Controlled Swelling Behaviours in Potential Shapeshifting Applications. Gels 2023; 9:gels9030248. [PMID: 36975697 PMCID: PMC10048785 DOI: 10.3390/gels9030248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Stimuli-responsive hydrogels have recently gained interest within shapeshifting applications due to their capabilities to expand in water and their altering swelling properties when triggered by stimuli, such as pH and heat. While conventional hydrogels lose their mechanical strength during swelling, most shapeshifting applications require materials to have mechanical strength within a satisfactory range to perform specified tasks. Thus, stronger hydrogels are needed for shapeshifting applications. Poly (N-isopropylacrylamide) (PNIPAm) and poly (N-vinyl caprolactam) (PNVCL) are the most popular thermosensitive hydrogels studied. Their close-to-physiological lower critical solution temperature (LCST) makes them superior candidates in biomedicine. In this study, copolymers made of NVCL and NIPAm and chemically crosslinked using poly (ethylene glycol) dimethacrylate (PEGDMA) were fabricated. Successful polymerisation was proven via Fourier transform infrared spectroscopy (FTIR). The effects of incorporating comonomer and crosslinker on the LCST were found minimal using cloud-point measurements, ultraviolet (UV) spectroscopy, and differential scanning calorimetry (DSC). Formulations that completed three cycles of thermo-reversing pulsatile swelling are demonstrated. Lastly, rheological analysis validated the mechanical strength of PNVCL, which was improved due to the incorporation of NIPAm and PEGDMA. This study showcases potential smart thermosensitive NVCL-based copolymers that can be applied in the biomedical shapeshifting area.
Collapse
Affiliation(s)
- Billy Shu Hieng Tie
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Centre, Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Elaine Halligan
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Centre, Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Shuo Zhuo
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Centre, Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Gavin Keane
- Centre for Industrial Service & Design, Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Luke Geever
- Applied Polymer Technologies Gateway, Materials Research Institute, Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
| |
Collapse
|
190
|
Thermo-Responsive Injectable Hydrogels Formed by Self-Assembly of Alginate-Based Heterograft Copolymers. Gels 2023; 9:gels9030236. [PMID: 36975684 PMCID: PMC10048633 DOI: 10.3390/gels9030236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Polysaccharide-based graft copolymers bearing thermo-responsive grafting chains, exhibiting LCST, have been designed to afford thermo-responsive injectable hydrogels. The good performance of the hydrogel requires control of the critical gelation temperature, Tgel. In the present article, we wish to show an alternative method to tune Tgel using an alginate-based thermo-responsive gelator bearing two kinds of grafting chains (heterograft copolymer topology) of P(NIPAM86-co-NtBAM14) random copolymers and pure PNIPAM, differing in their lower critical solution temperature (LCST) about 10 °C. Interestingly, the Tgel of the heterograft copolymer is controlled from the overall hydrophobic content, NtBAM, of both grafts, implying the formation of blended side chains in the crosslinked nanodomains of the formed network. Rheological investigation of the hydrogel showed excellent responsiveness to temperature and shear. Thus, a combination of shear-thinning and thermo-thickening effects provides the hydrogel with injectability and self-healing properties, making it a good candidate for biomedical applications.
Collapse
|
191
|
Luo Y, Tan J, Zhou Y, Guo Y, Liao X, He L, Li D, Li X, Liu Y. From crosslinking strategies to biomedical applications of hyaluronic acid-based hydrogels: A review. Int J Biol Macromol 2023; 231:123308. [PMID: 36669634 DOI: 10.1016/j.ijbiomac.2023.123308] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Hyaluronic acid (HA) is not only a natural anionic polysaccharide with excellent biocompatibility, biodegradability, and moisturizing effect, but also an essential factor that can affect angiogenesis, inflammation, cell behavior, which has a wide range of applications in the biomedical field. Among them, HA-based hydrogels formed by various physical or chemical crosslinking strategies are particularly striking. They not only retain the physiological function of HA, but also have the skeleton function of hydrogel, which further expands the application of HA. However, HA-based natural hydrogels generally have problems such as insufficient mechanical strength and susceptibility to degradation by hyaluronidase, which limits their application to a certain extent. To solve such problems, researchers have prepared a variety of HA-based multifunctional hydrogels with remarkable properties in recent years by adopting various structural modification methods or novel crosslinking strategies, as well as introducing functionally reactive molecules or moieties, which have extended the application scope. This manuscript systematically introduced common crosslinking strategies of HA-based hydrogels and highlighted the development of novel HA-based hydrogels in anticancer drug delivery, cartilage repair, three-dimensional cell culture, skin dressing and other fields. We hope to provide some references for the subsequent development of HA-based hydrogels in the biomedical field.
Collapse
Affiliation(s)
- Yuning Luo
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Junyan Tan
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yue Zhou
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yuqiong Guo
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xinying Liao
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Li He
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Dingxilei Li
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xinxin Li
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yang Liu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
192
|
Bayir E. Development of a three-dimensional in vitro blood-brain barrier using the chitosan-alginate polyelectrolyte complex as the extracellular matrix. J BIOACT COMPAT POL 2023. [DOI: 10.1177/08839115231157096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Polyelectrolyte complexes (PECs) consist of a spontaneous assembly of oppositely charged polysaccharides. PECs can be used to obtain a hydrogel tissue scaffold in tissue culture. In this study, it is aimed to use PEC as a blood-brain barrier (BBB) model scaffold. By mixing polycationic chitosan and polyanionic alginate solutions at a certain ratio it was obtained a 3D hydrogel scaffold and mimicked in vivo environment of the tissue. The PEC hydrogel scaffold’s chemical, physical, and mechanical characterizations were performed with FTIR, DSC, DMA, and Micro-CT analyses. In order to develop an in vitro BBB model, the human neuroblastoma cell line (SH-SY5Y) and mouse astrocyte cell line (C8-D1A) were mixed into a hydrogel, which is the abluminal side of the BBB. Human microvascular endothelial cells (HBEC-5i) were seeded on the hydrogel, and it was aimed to mimic the luminal side of the BBB. The characterization of the BBB model was determined by measuring the TEER, observation of the cell morphology with SEM, performing the permeability of Lucifer Yellow, and observation of tight junction proteins with immunofluorescence staining. As a result, HBEC-5i cells expressed tight junction proteins (ZO-1 and Claudin-5), showed TEER of 340 ± 22 Ω.cm2, and the Lucifer Yellow permeability of 7.4 × 10−7 ± 2.7 × 10−7 cm/s, which was suitable for use as an in vitro BBB model. Using a hydrogel PEC composed of chitosan and alginate as an extracellular matrix increased the direct interaction of endothelial cells, astrocytes, and neurons with each other and thus obtained a much less permeable model compared to other standard transwell models. Graphical abstract [Formula: see text]
Collapse
Affiliation(s)
- Ece Bayir
- Ege University Central Research Test and Analysis Laboratory Application and Research Center (EGE-MATAL), Ege University, Izmir, Turkey
| |
Collapse
|
193
|
Qian Q, Song J, Chen C, Pu Q, Liu X, Wang H. Recent advances in hydrogels for preventing tumor recurrence. Biomater Sci 2023; 11:2678-2692. [PMID: 36877511 DOI: 10.1039/d3bm00003f] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Malignant tumors remain a high-risk disease with high mortality all over the world. Among all the cancer treatments, surgery is the primary approach in the clinical treatment of tumors. However, tumor invasion and metastasis pose challenges for complete tumor resection, accompanied by high recurrence rates and reduced quality of life. Hence, there is an urgent need to explore effective adjuvant therapies to prevent postoperative tumor recurrence and relieve the pain of the patients. Nowadays, the booming local drug delivery systems which can be applied as postoperative adjuvant therapies have aroused people's attention, along with the rapid development in the pharmaceutical and biological materials fields. Hydrogels are a kind of unique carrier with prominent biocompatibility among a variety of biomaterials. Due to their high similarity to human tissues, hydrogels which load drugs/growth factors can prevent rejection reactions and promote wound healing. In addition, hydrogels are able to cover the postoperative site and maintain sustained drug release for the prevention of tumor recurrence. In this review, we survey controlled drug delivery hydrogels such as implantable, injectable and sprayable formulations and summarize the properties required for hydrogels used as postoperative adjuvant therapies. The opportunities and challenges in the design and clinical application of these hydrogels are also elaborated.
Collapse
Affiliation(s)
- Qiuhui Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jie Song
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Chen Chen
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Qian Pu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xingcheng Liu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Huili Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
194
|
S A Bento C, Gaspar MC, Coimbra P, de Sousa HC, E M Braga M. A review of conventional and emerging technologies for hydrogels sterilization. Int J Pharm 2023; 634:122671. [PMID: 36736965 DOI: 10.1016/j.ijpharm.2023.122671] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
Hydrogels are extensively used in the biomedical field, as drug delivery systems, wound dressings, contact lenses or as scaffolds for tissue engineering. Due to their polymeric nature and the presence of high amounts of water in their structure, hydrogels generally present high sensitivity to terminal sterilization. The establishment of an efficient sterilization protocol that does not compromise the functional properties of the hydrogels is one of the challenges faced by researchers when developing a hydrogel for a specific application. Yet, until very recently this aspect was largely ignored in the literature. The present paper reviews the state of literature concerning hydrogels sterilization, compiling the main findings. Conventional terminal sterilization methods (heat sterilization, radiation sterilization, and gas sterilization) as well as emerging sterilization techniques (ozone, supercritical carbon dioxide) are covered. Considerations about aseptic processing are also included. Additionally, and as a framework, hydrogels' polymeric materials, types of networks, and main biomedical applications are summarily described.
Collapse
Affiliation(s)
- Cristiana S A Bento
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra, Portugal
| | - Marisa C Gaspar
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra, Portugal; Center for Innovative Care and Health Technology (ciTechCare), Polytechnic of Leiria, 2410-541 Leiria, Portugal
| | - Patrícia Coimbra
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra, Portugal
| | - Hermínio C de Sousa
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra, Portugal
| | - Mara E M Braga
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra, Portugal.
| |
Collapse
|
195
|
pH-Responsive Super-Porous Hybrid Hydrogels for Gastroretentive Controlled-Release Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15030816. [PMID: 36986676 PMCID: PMC10053105 DOI: 10.3390/pharmaceutics15030816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Super-porous hydrogels are considered a potential drug delivery network for the sedation of gastric mechanisms with retention windows in the abdomen and upper part of the gastrointestinal tract (GIT). In this study, a novel pH-responsive super-porous hybrid hydrogels (SPHHs) was synthesized from pectin, poly 2-hydroxyethyl methacrylate (2HEMA), and N, N methylene-bis-acrylamide (BIS) via the gas-blowing technique, and then loaded with a selected drug (amoxicillin trihydrate, AT) at pH 5 via an aqueous loading method. The drug-loaded SPHHs-AT carrier demonstrated outstanding (in vitro) gastroretentive drug delivery capability. The study attributed excellent swelling and delayed drug release to acidic conditions at pH 1.2. Moreover, in vitro controlled-release drug delivery systems at different pH values, namely, 1.2 (97.99%) and 7.4 (88%), were studied. These exceptional features of SPHHs—improved elasticity, pH responsivity, and high swelling performance—should be investigated for broader drug delivery applications in the future.
Collapse
|
196
|
Reddy AS, Wanjari VP, Singh SP. Design, synthesis, and application of thermally responsive draw solutes for sustainable forward osmosis desalination: A review. CHEMOSPHERE 2023; 317:137790. [PMID: 36626951 DOI: 10.1016/j.chemosphere.2023.137790] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Forward osmosis (FO) is an emerging sustainable desalination technology; however, it is not a stand-alone process and requires an additional step to recover the water or regenerate the draw solute (DS), making it energy extensive. Therefore, incorporating inexpensive energy sources for DS regeneration is a viable solution to compete with reverse osmosis desalination technology. Hence, selecting suitable DS and its regeneration became a crucial research focus in FO desalination. Among various DSs reported, thermally responsive DSs (TRDS) provide an opportunity to integrate low-grade energy sources for DS regeneration. Utilizing such inexpensive energy will reduce fossil fuel energy demand, lower the cost of desalination, and minimize the carbon footprint. Hence, this review explores the TRDS for FO-based desalination with its design, synthesis, and applications. The manuscript has discussed the classification and selection criteria for the DSs, and how traditional and new-generation TRDSs are designed and synthesized from cationic and anionic moieties of ionic liquids, hydrogels, and other chemicals. The manuscript has also given importance to design criteria such as osmotic strength, viscosity, toxicity, and thermal stability for TRDSs. Furthermore, a detailed discussion on the FO performance, energy, and economic aspects of TRDSs has been reviewed, along with a discussion on the possible low-grade energy sources for the recovery of TRDS. Finally, the challenges and future directions for TRDSs have been discussed to drive FO toward sustainable desalination technology.
Collapse
Affiliation(s)
- A Sudharshan Reddy
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Vikram P Wanjari
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Swatantra P Singh
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India; Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai 400076, India; Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
197
|
Chang H, Zhao H, Qu F, Yan Z, Liu N, Lu M, Liang Y, Lai B, Liang H. State-of-the-art insights on applications of hydrogel membranes in water and wastewater treatment. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
198
|
Li D, Zhong W, Li L, Tong C, Yu S, Duan M, Xu J, Liu X, Pang J, Wu C. Effect of chitin nanowhiskers on structural and physical properties of konjac glucomannan hydrogels nanocomposites. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
199
|
Marinow A, Katcharava Z, Binder WH. Self-Healing Polymer Electrolytes for Next-Generation Lithium Batteries. Polymers (Basel) 2023; 15:polym15051145. [PMID: 36904385 PMCID: PMC10007462 DOI: 10.3390/polym15051145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
The integration of polymer materials with self-healing features into advanced lithium batteries is a promising and attractive approach to mitigate degradation and, thus, improve the performance and reliability of batteries. Polymeric materials with an ability to autonomously repair themselves after damage may compensate for the mechanical rupture of an electrolyte, prevent the cracking and pulverization of electrodes or stabilize a solid electrolyte interface (SEI), thus prolonging the cycling lifetime of a battery while simultaneously tackling financial and safety issues. This paper comprehensively reviews various categories of self-healing polymer materials for application as electrolytes and adaptive coatings for electrodes in lithium-ion (LIBs) and lithium metal batteries (LMBs). We discuss the opportunities and current challenges in the development of self-healable polymeric materials for lithium batteries in terms of their synthesis, characterization and underlying self-healing mechanism, as well as performance, validation and optimization.
Collapse
|
200
|
Stimuli-Responsive and Antibacterial Cellulose-Chitosan Hydrogels Containing Polydiacetylene Nanosheets. Polymers (Basel) 2023; 15:polym15051062. [PMID: 36904304 PMCID: PMC10005511 DOI: 10.3390/polym15051062] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
Herein, we report a stimuli-responsive hydrogel with inhibitory activity against Escherichia coli prepared by chemical crosslinking of carboxymethyl chitosan (CMCs) and hydroxyethyl cellulose (HEC). The hydrogels were prepared by esterification of chitosan (Cs) with monochloroacetic acid to produce CMCs which were then chemically crosslinked to HEC using citric acid as the crosslinking agent. To impart a stimuli responsiveness property to the hydrogels, polydiacetylene-zinc oxide (PDA-ZnO) nanosheets were synthesized in situ during the crosslinking reaction followed by photopolymerization of the resultant composite. To achieve this, ZnO was anchored on carboxylic groups in 10,12-pentacosadiynoic acid (PCDA) layers to restrict the movement of the alkyl portion of PCDA during crosslinking CMCs and HEC hydrogels. This was followed by irradiating the composite with UV radiation to photopolymerize the PCDA to PDA within the hydrogel matrix so as to impart thermal and pH responsiveness to the hydrogel. From the results obtained, the prepared hydrogel had a pH-dependent swelling capacity as it absorbed more water in acidic media as compared to basic media. The incorporation of PDA-ZnO resulted in a thermochromic composite responsive to pH evidenced by a visible colour transition from pale purple to pale pink. Upon swelling, PDA-ZnO-CMCs-HEC hydrogels had significant inhibitory activity against E. coli attributed to the slow release of the ZnO nanoparticles as compared to CMCs-HEC hydrogels. In conclusion, the developed hydrogel was found to have stimuli-responsive properties and inhibitory activity against E. coli attributed to zinc nanoparticles.
Collapse
|