151
|
Callahan SM, Hancock TJ, Doster RS, Parker CB, Wakim ME, Gaddy JA, Johnson JG. A secreted sirtuin from Campylobacter jejuni contributes to neutrophil activation and intestinal inflammation during infection. SCIENCE ADVANCES 2023; 9:eade2693. [PMID: 37566649 PMCID: PMC10421069 DOI: 10.1126/sciadv.ade2693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 07/13/2023] [Indexed: 08/13/2023]
Abstract
Histone modifications control numerous processes in eukaryotes, including inflammation. Some bacterial pathogens alter the activity or expression of host-derived factors, including sirtuins, to modify histones and induce responses that promote infection. In this study, we identified a deacetylase encoded by Campylobacter jejuni which has sirtuin activities and contributes to activation of human neutrophils by the pathogen. This sirtuin is secreted from the bacterium into neutrophils, where it associates with and deacetylates host histones to promote neutrophil activation and extracellular trap production. Using the murine model of campylobacteriosis, we found that a mutant of this bacterial sirtuin efficiently colonized the gastrointestinal tract but was unable to induce cytokine production, gastrointestinal inflammation, and tissue pathology. In conclusion, these results suggest that secreted bacterial sirtuins represent a previously unreported class of bacterial effector and that bacterial-mediated modification of host histones is responsible for the inflammation and pathology that occurs during campylobacteriosis.
Collapse
Affiliation(s)
- Sean M. Callahan
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Trevor J. Hancock
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
- Department of Medicine, University of Tennessee Medical Center, Knoxville, TN 37930, USA
| | - Ryan S. Doster
- Division of Infectious Diseases, Department of Medicine Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA
| | - Caroline B. Parker
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Mary E. Wakim
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jennifer A. Gaddy
- Division of Infectious Diseases, Department of Medicine Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeremiah G. Johnson
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
152
|
Mancini A, Cerulli C, Vitucci D, Lasorsa VA, Parente D, Di Credico A, Orrù S, Brustio PR, Lupo C, Rainoldi A, Schena F, Capasso M, Buono P. Impact of active lifestyle on the primary school children saliva microbiota composition. Front Nutr 2023; 10:1226891. [PMID: 37671197 PMCID: PMC10476528 DOI: 10.3389/fnut.2023.1226891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/28/2023] [Indexed: 09/07/2023] Open
Abstract
The aim of the study was to evaluate the effects of Active or Sedentary lifestyle on saliva microbiota composition in Italian schoolchildren. Methods Male (114) and female children (8-10 years) belonging to five primary schools in the neighborhoods of Turin were classified as active (A) or sedentary (S) based on PAQ-C-It questionnaire. PCR amplification of salivary DNA targeted the hypervariable V3-V4 regions of the 16S rRNA bacterial genes. DADA2 workflow was used to infer the Amplicon Sequence Variants and the taxonomic assignments; the beta-diversity was obtained by PCoA with the UniFrac method; LEfSe algorithm, threshold at 5%, and Log LDA cutoff at ±0.5 were used to identify differently abundant species in A compared to S saliva sample. Daily food intake was assessed by 3-Days food record. The metabolic potential of microbial communities was assessed by PICRUSt. Results No significant differences were found in individual's gender distribution (p = 0.411), anthropometry, BMI (p > 0.05), and all diet composition between A and S groups (p > 0.05). Eight species were differently abundant: Prevotella nigrescens (LDA score = -3.76; FDR = 1.5×10-03), Collinsella aerofaciens (LDA score = -3.17; FDR = 7.45×10-03), Simonsiella muelleri (LDA score = -2.96; FDR = 2.76×10-05), Parabacteroides merdae (LDA score = -2.43; FDR = 1.3×10-02) are enriched in the A group; Gemella parahaemolysans, Prevotella aurantiaca (LDA score = -3.9; FDR = 5.27×10-04), Prevotella pallens (LDA score = 4.23; FDR = 1.93×10-02), Neisseria mucosa (LDA score = 4.43; FDR = 1.31×10-02; LDA score = 2.94; FDR = 7.45×10-03) are enriched in the S group. A prevalence of superpathway of fatty acid biosynthesis initiation (E. coli) and catechol degradation II (meta-cleavage pathway) was found in saliva from A compared to S children. Conclusion Our results showed that active children had an enrichment of species and genera mainly associated with a healthier profile. By contrast, the genera and the species enriched in the sedentary group could be linked to human diseases.
Collapse
Affiliation(s)
- Annamaria Mancini
- Department of Movement Sciences and Wellness, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Napoli, Italy
| | - Claudia Cerulli
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Daniela Vitucci
- Department of Movement Sciences and Wellness, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Napoli, Italy
| | | | - Daniela Parente
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Andrea Di Credico
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), Chieti, Italy
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Stefania Orrù
- Department of Movement Sciences and Wellness, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Napoli, Italy
| | | | - Corrado Lupo
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Alberto Rainoldi
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Federico Schena
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Mario Capasso
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Pasqualina Buono
- Department of Movement Sciences and Wellness, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Napoli, Italy
| |
Collapse
|
153
|
D’Amico V, Gänzle M, Call L, Zwirzitz B, Grausgruber H, D’Amico S, Brouns F. Does sourdough bread provide clinically relevant health benefits? Front Nutr 2023; 10:1230043. [PMID: 37545587 PMCID: PMC10399781 DOI: 10.3389/fnut.2023.1230043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023] Open
Abstract
During the last decade, scientific interest in and consumer attention to sourdough fermentation in bread making has increased. On the one hand, this technology may favorably impact product quality, including flavor and shelf-life of bakery products; on the other hand, some cereal components, especially in wheat and rye, which are known to cause adverse reactions in a small subset of the population, can be partially modified or degraded. The latter potentially reduces their harmful effects, but depends strongly on the composition of sourdough microbiota, processing conditions and the resulting acidification. Tolerability, nutritional composition, potential health effects and consumer acceptance of sourdough bread are often suggested to be superior compared to yeast-leavened bread. However, the advantages of sourdough fermentation claimed in many publications rely mostly on data from chemical and in vitro analyzes, which raises questions about the actual impact on human nutrition. This review focuses on grain components, which may cause adverse effects in humans and the effect of sourdough microbiota on their structure, quantity and biological properties. Furthermore, presumed benefits of secondary metabolites and reduction of contaminants are discussed. The benefits claimed deriving from in vitro and in vivo experiments will be evaluated across a broader spectrum in terms of clinically relevant effects on human health. Accordingly, this critical review aims to contribute to a better understanding of the extent to which sourdough bread may result in measurable health benefits in humans.
Collapse
Affiliation(s)
- Vera D’Amico
- Department of Food Science and Technology, BOKU–University of Natural Resources and Life Sciences, Vienna, Austria
| | - Michael Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Lisa Call
- Department of Crop Sciences, BOKU–University of Natural Resources and Life Sciences, Tulln, Austria
| | - Benjamin Zwirzitz
- Department of Food Science and Technology, BOKU–University of Natural Resources and Life Sciences, Vienna, Austria
| | - Heinrich Grausgruber
- Department of Crop Sciences, BOKU–University of Natural Resources and Life Sciences, Tulln, Austria
| | - Stefano D’Amico
- Institute for Animal Nutrition and Feed, AGES–Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Fred Brouns
- Department of Human Biology, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
154
|
Dela Cruz M, Lin H, Han J, Adler E, Boissiere J, Khalid M, Sidebottom A, Sundararajan A, Lehmann C, Moran A, Odenwald M, Stutz M, Kim G, Pinney S, Jeevanandam V, Alegre ML, Pamer E, Nguyen AB. Reduced immunomodulatory metabolite concentrations in peri-transplant fecal samples from heart allograft recipients. FRONTIERS IN TRANSPLANTATION 2023; 2:1182534. [PMID: 38993864 PMCID: PMC11235359 DOI: 10.3389/frtra.2023.1182534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/30/2023] [Indexed: 07/13/2024]
Abstract
Background Emerging evidence is revealing the impact of the gut microbiome on hematopoietic and solid organ transplantation. Prior studies postulate that this influence is mediated by bioactive metabolites produced by gut-dwelling commensal bacteria. However, gut microbial metabolite production has not previously been measured among heart transplant (HT) recipients. Methods In order to investigate the potential influence of the gut microbiome and its metabolites on HT, we analyzed the composition and metabolite production of the fecal microbiome among 48 HT recipients at the time of HT. Results Compared to 20 healthy donors, HT recipients have significantly reduced alpha, i.e. within-sample, microbiota diversity, with significantly lower abundances of key anaerobic commensal bacteria and higher abundances of potentially pathogenic taxa that have been correlated with adverse outcomes in other forms of transplantation. HT recipients have a wide range of microbiota-derived fecal metabolite concentrations, with significantly reduced levels of immune modulatory metabolites such as short chain fatty acids and secondary bile acids compared to healthy donors. These differences were likely due to disease severity and prior antibiotic exposures but were not explained by other demographic or clinical factors. Conclusions Key potentially immune modulatory gut microbial metabolites are quantifiable and significantly reduced among HT recipients compared to healthy donors. Further study is needed to understand whether this wide range of gut microbial dysbiosis and metabolite alterations impact clinical outcomes and if they can be used as predictive biomarkers or manipulated to improve transplant outcomes.
Collapse
Affiliation(s)
- Mark Dela Cruz
- Department of Medicine, Section of Cardiology, University of Chicago Medicine, Chicago, IL, United States
| | - Huaiying Lin
- Duchossois Family Institute, University of Chicago, Chicago, IL, United States
| | - Jiho Han
- Department of Medicine, Section of Cardiology, University of Chicago Medicine, Chicago, IL, United States
| | - Emerald Adler
- Duchossois Family Institute, University of Chicago, Chicago, IL, United States
| | - Jaye Boissiere
- Duchossois Family Institute, University of Chicago, Chicago, IL, United States
| | - Maryam Khalid
- Duchossois Family Institute, University of Chicago, Chicago, IL, United States
| | - Ashley Sidebottom
- Duchossois Family Institute, University of Chicago, Chicago, IL, United States
| | - Anitha Sundararajan
- Duchossois Family Institute, University of Chicago, Chicago, IL, United States
| | - Christopher Lehmann
- Department of Medicine, Section of Infectious Diseases, University of Chicago Medicine, Chicago, IL, United States
| | - Angelica Moran
- Department of Pathology, University of Chicago Medicine, Chicago, IL, United States
| | - Matthew Odenwald
- Department of Medicine, Section of Gastroenterology, University of Chicago Medicine, Chicago, IL, United States
| | - Matthew Stutz
- Department of Medicine, Section of Pulmonary and Critical Care, University of Chicago Medicine, Chicago, IL, United States
| | - Gene Kim
- Department of Medicine, Section of Cardiology, University of Chicago Medicine, Chicago, IL, United States
| | - Sean Pinney
- Department of Medicine, Section of Cardiology, University of Chicago Medicine, Chicago, IL, United States
| | - Valluvan Jeevanandam
- Department of Surgery, Section of Cardiac Surgery, University of Chicago Medicine, Chicago, IL, United States
| | - Maria-Luisa Alegre
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL, United States
| | - Eric Pamer
- Duchossois Family Institute, University of Chicago, Chicago, IL, United States
| | - Ann B. Nguyen
- Department of Medicine, Section of Cardiology, University of Chicago Medicine, Chicago, IL, United States
| |
Collapse
|
155
|
Zhao XN, Liu SX, Wang ZZ, Zhang S, You LL. Roxadustat alleviates the inflammatory status in patients receiving maintenance hemodialysis with erythropoiesis-stimulating agent resistance by increasing the short-chain fatty acids producing gut bacteria. Eur J Med Res 2023; 28:230. [PMID: 37430374 DOI: 10.1186/s40001-023-01179-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/20/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Hypoxia-inducible factor-prolyl hydroxylase inhibitors (HIF-PHIs) have improved the treatment of renal anemia, especially in patients resistant to erythropoiesis-stimulating agents (ESAs). HIF facilitates maintain gut microbiota homeostasis, which plays an important role in inflammation and iron metabolism, which are in turn key factors affecting ESA resistance. The current study aimed to investigate the effects of roxadustat on inflammation and iron metabolism and on the gut microbiota in patients with ESA resistance. METHODS We conducted a self-controlled, single-center study including 30 patients with ESA resistance undergoing maintenance hemodialysis. All patients received roxadustat without iron agents for renal anemia. Hemoglobin and inflammatory factors were monitored. Fecal samples were collected before and after 3 months' administration and the gut microbiota were analyzed by 16S ribosomal RNA gene sequencing. RESULTS Hemoglobin levels increased after treatment with roxadustat for 3 months (P < 0.05). Gut microbiota diversity and abundance also changed, with increases in short-chain fatty acid (SCFA)-producing bacteria (Acidaminococcaceae, Butyricicoccus, Ruminococcus bicirculans, Ruminococcus bromii, Bifidobacterium dentium, Eubacterium hallii) (P < 0.05). Serum SCFA levels also increased (P < 0.05). Inflammatory factors, including interleukin (IL)-1, IL-6, tumor necrosis factor (TNF)-α, interferon-γ, and endotoxin gradually decreased (P < 0.05). Serum hepcidin, ferritin, and total and unsaturated iron-binding capacities decreased (P < 0.05), while soluble transferrin receptor levels increased at each time point (P < 0.05). There were no significant differences in serum iron and transferrin saturation at each time point. The abundance of Alistipes shahii was significantly negatively correlated with IL-6 and TNF-α (P < 0.05). CONCLUSIONS Roxadustat alleviated renal anemia in patients with ESA resistance by decreasing inflammatory factors and hepcidin levels and improving iron utilization. These effects were at least partly mediated by improved diversity and abundance of SCFA-producing gut bacteria, probably via activation of HIF.
Collapse
Affiliation(s)
- Xiu-Nan Zhao
- Department of Nephrology, Dalian Municipal Central Hospital, No. 826, Xinan Road, Dalian, 116033, Liaoning, China
- Dalian Key Laboratory of Intelligent Blood Purification, Dalian Municipal Central Hospital, No. 826, Xinan Road, Dalian, 116033, Liaoning, China
| | - Shu-Xin Liu
- Department of Nephrology, Dalian Municipal Central Hospital, No. 826, Xinan Road, Dalian, 116033, Liaoning, China.
- Dalian Key Laboratory of Intelligent Blood Purification, Dalian Municipal Central Hospital, No. 826, Xinan Road, Dalian, 116033, Liaoning, China.
- School of Clinical Medicine, Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, Liaoning, China.
| | - Zhen-Zhen Wang
- Department of Nephrology, Dalian Municipal Central Hospital, No. 826, Xinan Road, Dalian, 116033, Liaoning, China
- Dalian Key Laboratory of Intelligent Blood Purification, Dalian Municipal Central Hospital, No. 826, Xinan Road, Dalian, 116033, Liaoning, China
| | - Shuang Zhang
- Department of Nephrology, Dalian Municipal Central Hospital, No. 826, Xinan Road, Dalian, 116033, Liaoning, China
- Dalian Key Laboratory of Intelligent Blood Purification, Dalian Municipal Central Hospital, No. 826, Xinan Road, Dalian, 116033, Liaoning, China
| | - Lian-Lian You
- Department of Nephrology, Dalian Municipal Central Hospital, No. 826, Xinan Road, Dalian, 116033, Liaoning, China
- Dalian Key Laboratory of Intelligent Blood Purification, Dalian Municipal Central Hospital, No. 826, Xinan Road, Dalian, 116033, Liaoning, China
| |
Collapse
|
156
|
Wang C, Yi Z, Jiao Y, Shen Z, Yang F, Zhu S. Gut Microbiota and Adipose Tissue Microenvironment Interactions in Obesity. Metabolites 2023; 13:821. [PMID: 37512528 PMCID: PMC10383923 DOI: 10.3390/metabo13070821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Obesity is an increasingly serious global health problem. Some studies have revealed that the gut microbiota and its metabolites make important contributions to the onset of obesity. The gut microbiota is a dynamic ecosystem composed of diverse microbial communities with key regulatory functions in host metabolism and energy balance. Disruption of the gut microbiota can result in obesity, a chronic metabolic condition characterized by the excessive accumulation of adipose tissue. Host tissues (e.g., adipose, intestinal epithelial, and muscle tissues) can modulate the gut microbiota via microenvironmental interactions that involve hormone and cytokine secretion, changes in nutrient availability, and modifications of the gut environment. The interactions between host tissues and the gut microbiota are complex and bidirectional, with important effects on host health and obesity. This review provides a comprehensive summary of gut microbiota changes associated with obesity, the functional roles of gut microbiota-derived metabolites, and the importance of the complex interactions between the gut microbiota and target tissues in the pathogenesis of obesity. It places particular emphasis on the roles of adipose tissue microenvironment interactions in the onset of obesity.
Collapse
Affiliation(s)
- Congcong Wang
- Chronic Disease Research Institute, The Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zihan Yi
- Chronic Disease Research Institute, The Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ye Jiao
- Chronic Disease Research Institute, The Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhong Shen
- Department of Colorectal Surgery, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Fei Yang
- Chronic Disease Research Institute, The Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shankuan Zhu
- Chronic Disease Research Institute, The Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
157
|
Jeong SM, Jin EJ, Wei S, Bae JH, Ji Y, Jo Y, Jeong JH, Im SJ, Ryu D. The impact of cancer cachexia on gut microbiota composition and short-chain fatty acid metabolism in a murine model. BMB Rep 2023; 56:404-409. [PMID: 37220908 PMCID: PMC10390285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 04/30/2023] [Accepted: 05/14/2023] [Indexed: 05/25/2023] Open
Abstract
This study investigates the relationship between cancer cachexia and the gut microbiota, focusing on the influence of cancer on microbial composition. Lewis lung cancer cell allografts were used to induce cachexia in mice, and body and muscle weight changes were monitored. Fecal samples were collected for targeted metabolomic analysis for short chain fatty acids and microbiome analysis. The cachexia group exhibited lower alpha diversity and distinct beta diversity in gut microbiota, compared to the control group. Differential abundance analysis revealed higher Bifidobacterium and Romboutsia, but lower Streptococcus abundance in the cachexia group. Additionally, lower proportions of acetate and butyrate were observed in the cachexia group. The study observed that the impact of cancer cachexia on gut microbiota and their generated metabolites was significant, indicating a host-to-gut microbiota axis. [BMB Reports 2023; 56(7): 404-409].
Collapse
Affiliation(s)
- Seung Min Jeong
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
- HEM Inc., Suwon 16229, Korea
| | - Eun-Ju Jin
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Shibo Wei
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Ju-Hyeon Bae
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | | | - Yunju Jo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Jee-Heon Jeong
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Se Jin Im
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| |
Collapse
|
158
|
Dang Z, Gao M, Wang L, Wu J, Guo Y, Zhu Z, Huang H, Kang G. Synthetic bacterial therapies for intestinal diseases based on quorum-sensing circuits. Biotechnol Adv 2023; 65:108142. [PMID: 36977440 DOI: 10.1016/j.biotechadv.2023.108142] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023]
Abstract
Bacterial therapy has become a key strategy against intestinal infectious diseases in recent years. Moreover, regulating the gut microbiota through traditional fecal microbiota transplantation and supplementation of probiotics faces controllability, efficacy, and safety challenges. The infiltration and emergence of synthetic biology and microbiome provide an operational and safe treatment platform for live bacterial biotherapies. Synthetic bacterial therapy can artificially manipulate bacteria to produce and deliver therapeutic drug molecules. This method has the advantages of solid controllability, low toxicity, strong therapeutic effects, and easy operation. As an essential tool for dynamic regulation in synthetic biology, quorum sensing (QS) has been widely used for designing complex genetic circuits to control the behavior of bacterial populations and achieve predefined goals. Therefore, QS-based synthetic bacterial therapy might become a new direction for the treatment of diseases. The pre-programmed QS genetic circuit can achieve a controllable production of therapeutic drugs on particular ecological niches by sensing specific signals released from the digestive system in pathological conditions, thereby realizing the integration of diagnosis and treatment. Based on this as well as the modular idea of synthetic biology, QS-based synthetic bacterial therapies are divided into an environmental signal sensing module (senses gut disease physiological signals), a therapeutic molecule producing module (plays a therapeutic role against diseases), and a population behavior regulating module (QS system). This review article summarized the structure and function of these three modules and discussed the rational design of QS gene circuits as a novel intervention strategy for intestinal diseases. Moreover, the application prospects of QS-based synthetic bacterial therapy were summarized. Finally, the challenges faced by these methods were analyzed to make the targeted recommendations for developing a successful therapeutic strategy for intestinal diseases.
Collapse
Affiliation(s)
- Zhuoce Dang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Mengxue Gao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Lina Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Jiahao Wu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yufei Guo
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Zhixin Zhu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - He Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.
| | - Guangbo Kang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Institute of Shaoxing, Tianjin University, Zhejiang 312300, China.
| |
Collapse
|
159
|
Levkova M, Chervenkov T, Pancheva R. Genus-Level Analysis of Gut Microbiota in Children with Autism Spectrum Disorder: A Mini Review. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1103. [PMID: 37508600 PMCID: PMC10377934 DOI: 10.3390/children10071103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023]
Abstract
Autism is a global health problem, probably due to a combination of genetic and environmental factors. There is emerging data that the gut microbiome of autistic children differs from the one of typically developing children and it is important to know which bacterial genera may be related to autism. We searched different databases using specific keywords and inclusion criteria and identified the top ten bacterial genera from the selected articles that were significantly different between the studied patients and control subjects studied. A total of 34 studies that met the inclusion criteria were identified. The genera Bacteroides, Bifidobacterium, Clostridium, Coprococcus, Faecalibacterium, Lachnospira, Prevotella, Ruminococcus, Streptococcus, and Blautia exhibited the most substantial data indicating that their fluctuations in the gastrointestinal tract could be linked to the etiology of autism. It is probable that autism symptoms are influenced by both increased levels of harmful bacteria and decreased levels of beneficial bacteria. Interestingly, these genera demonstrated varying patterns of increased or decreased levels across different articles. To validate and eliminate the sources of this fluctuation, further research is needed. Consequently, future investigations on the causes of autism should prioritize the examination of the bacterial genera discussed in this publication.
Collapse
Affiliation(s)
- Mariya Levkova
- Department of Medical Genetics, Medical University Varna, Marin Drinov Str 55, 9000 Varna, Bulgaria
- Laboratory of Medical Genetics, St. Marina Hospital, Hristo Smirnenski Blv 1, 9000 Varna, Bulgaria
| | - Trifon Chervenkov
- Laboratory of Medical Genetics, St. Marina Hospital, Hristo Smirnenski Blv 1, 9000 Varna, Bulgaria
- Laboratory of Clinical Immunology, St. Marina Hospital, Hristo Smirnenski Blv 1, 9000 Varna, Bulgaria
| | - Rouzha Pancheva
- Department of Hygiene and Epidemiology, Medical University Varna, Marin Drinov Str 55, 9000 Varna, Bulgaria
| |
Collapse
|
160
|
Caetano MAF, Magalhães HIR, Duarte JRL, Conceição LB, Castelucci P. Butyrate Protects Myenteric Neurons Loss in Mice Following Experimental Ulcerative Colitis. Cells 2023; 12:1672. [PMID: 37443707 PMCID: PMC10340616 DOI: 10.3390/cells12131672] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
The enteric nervous system is affected by inflammatory bowel diseases (IBD). Gut microbiota ferments dietary fibers and produces short-chain fatty acids, such as Butyrate, which bind to G protein-coupled receptors, such as GPR41, and contribute to maintaining intestinal health. This work aimed to study the GPR41 in myenteric neurons and analyze the effect of Butyrate in mice submitted to experimental ulcerative colitis. The 2, 4, 6 trinitrobenzene sulfonic acid (TNBS) was injected intrarectally in C57BL/6 mice (Colitis). Sham group received ethanol (vehicle). One group was treated with 100 mg/kg of Sodium Butyrate (Butyrate), and the other groups received saline. Animals were euthanized 7 days after colitis induction. Analyzes demonstrated colocalization of GPR41 with neurons immunoreactive (-ir) to nNOS and ChAT-ir and absence of colocalization of the GPR41 with GFAP-ir glia. Quantitative results demonstrated losses of nNOS-ir, ChAT-ir, and GPR41-ir neurons in the Colitis group and Butyrate treatment attenuated neuronal loss. The number of GFAP-ir glia increased in the Colitis group, whereas Butyrate reduced the number of these cells. In addition, morphological alterations observed in the Colitis group were attenuated in the Butyrate group. The presence of GPR41 in myenteric neurons was identified, and the treatment with Butyrate attenuated the damage caused by experimental ulcerative colitis.
Collapse
Affiliation(s)
- Marcos A. F. Caetano
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (M.A.F.C.); (J.R.L.D.); (L.B.C.)
| | - Henrique I. R. Magalhães
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, Brazil;
| | - Jheniffer R. L. Duarte
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (M.A.F.C.); (J.R.L.D.); (L.B.C.)
| | - Laura B. Conceição
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (M.A.F.C.); (J.R.L.D.); (L.B.C.)
| | - Patricia Castelucci
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (M.A.F.C.); (J.R.L.D.); (L.B.C.)
| |
Collapse
|
161
|
Liu T, Du D, Zhao R, Xie Q, Dong Z. Gut microbes influence the development of central nervous system disorders through epigenetic inheritance. Microbiol Res 2023; 274:127440. [PMID: 37343494 DOI: 10.1016/j.micres.2023.127440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Central nervous system (CNS) disorders, such as depression, anxiety, and Alzheimer's disease (AD), affect quality of life of patients and pose significant economic and social burdens worldwide. Due to their obscure and complex pathogeneses, current therapies for these diseases have limited efficacy. Over the past decade, the gut microbiome has been shown to exhibit direct and indirect influences on the structure and function of the CNS, affecting multiple pathological pathways. In addition to the direct interactions between the gut microbiota and CNS, the gut microbiota and their metabolites can regulate epigenetic processes, including DNA methylation, histone modification, and regulation of non-coding RNAs. In this review, we discuss the tripartite relationship among gut microbiota, epigenetic inheritance, and CNS disorders. We suggest that gut microbes and their metabolites influence the pathogenesis of CNS disorders at the epigenetic level, which may inform the development of effective therapeutic strategies for CNS disorders.
Collapse
Affiliation(s)
- Tianyou Liu
- West China School of Medicine, Sichuan University, Chengdu 610072, PR China
| | - Dongru Du
- West China School of Medicine, Sichuan University, Chengdu 610072, PR China
| | - Rui Zhao
- West China School of Medicine, Sichuan University, Chengdu 610072, PR China
| | - Qinglian Xie
- Department of Outpatient, West China Hospital of Sichuan University, Chengdu 610041, PR China
| | - Zaiquan Dong
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
162
|
Stein RA, Riber L. Epigenetic effects of short-chain fatty acids from the large intestine on host cells. MICROLIFE 2023; 4:uqad032. [PMID: 37441522 PMCID: PMC10335734 DOI: 10.1093/femsml/uqad032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/04/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023]
Abstract
Adult humans harbor at least as many microbial cells as eukaryotic ones. The largest compartment of this diverse microbial population, the gut microbiota, encompasses the collection of bacteria, archaea, viruses, and eukaryotic organisms that populate the gastrointestinal tract, and represents a complex and dynamic ecosystem that has been increasingly implicated in health and disease. The gut microbiota carries ∼100-to-150-times more genes than the human genome and is intimately involved in development, homeostasis, and disease. Of the several microbial metabolites that have been studied, short-chain fatty acids emerge as a group of molecules that shape gene expression in several types of eukaryotic cells by multiple mechanisms, which include DNA methylation changes, histone post-translational modifications, and microRNA-mediated gene silencing. Butyric acid, one of the most extensively studied short-chain fatty acids, reaches higher concentrations in the colonic lumen, where it provides a source of energy for healthy colonocytes, and its concentrations decrease towards the bottom of the colonic crypts, where stem cells reside. The lower butyric acid concentration in the colonic crypts allows undifferentiated cells, such as stem cells, to progress through the cell cycle, pointing towards the importance of the crypts in providing them with a protective niche. In cancerous colonocytes, which metabolize relatively little butyric acid and mostly rely on glycolysis, butyric acid preferentially acts as a histone deacetylase inhibitor, leading to decreased cell proliferation and increased apoptosis. A better understanding of the interface between the gut microbiota metabolites and epigenetic changes in eukaryotic cells promises to unravel in more detail processes that occur physiologically and as part of disease, help develop novel biomarkers, and identify new therapeutic modalities.
Collapse
Affiliation(s)
- Richard A Stein
- Corresponding author. Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, 6 MetroTech Center, Brooklyn, NY 11201, USA. Tel: +1-917-684-9438; E-mail: ;
| | - Leise Riber
- Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| |
Collapse
|
163
|
Korsten SGPJ, Vromans H, Garssen J, Willemsen LEM. Butyrate Protects Barrier Integrity and Suppresses Immune Activation in a Caco-2/PBMC Co-Culture Model While HDAC Inhibition Mimics Butyrate in Restoring Cytokine-Induced Barrier Disruption. Nutrients 2023; 15:2760. [PMID: 37375664 DOI: 10.3390/nu15122760] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Low-grade inflammation and barrier disruption are increasingly acknowledged for their association with non-communicable diseases (NCDs). Short chain fatty acids (SCFAs), especially butyrate, could be a potential treatment because of their combined anti-inflammatory and barrier- protective capacities, but more insight into their mechanism of action is needed. In the present study, non-activated, lipopolysaccharide-activated and αCD3/CD28-activated peripheral blood mononuclear cells (PBMCs) with and without intestinal epithelial cells (IEC) Caco-2 were used to study the effect of butyrate on barrier function, cytokine release and immune cell phenotype. A Caco-2 model was used to compare the capacities of butyrate, propionate and acetate and study their mechanism of action, while investigating the contribution of lipoxygenase (LOX), cyclooxygenase (COX) and histone deacetylase (HDAC) inhibition. Butyrate protected against inflammatory-induced barrier disruption while modulating inflammatory cytokine release by activated PBMCs (interleukin-1 beta↑, tumor necrosis factor alpha↓, interleukin-17a↓, interferon gamma↓, interleukin-10↓) and immune cell phenotype (regulatory T-cells↓, T helper 17 cells↓, T helper 1 cells↓) in the PBMC/Caco-2 co-culture model. Similar suppression of immune activation was shown in absence of IEC. Butyrate, propionate and acetate reduced inflammatory cytokine-induced IEC activation and, in particular, butyrate was capable of fully protecting against cytokine-induced epithelial permeability for a prolonged period. Different HDAC inhibitors could mimic this barrier-protective effect, showing HDAC might be involved in the mechanism of action of butyrate, whereas LOX and COX did not show involvement. These results show the importance of sufficient butyrate levels to maintain intestinal homeostasis.
Collapse
Affiliation(s)
- Sandra G P J Korsten
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Tiofarma B.V., 3261 ME Oud-Beijerland, The Netherlands
| | - Herman Vromans
- Tiofarma B.V., 3261 ME Oud-Beijerland, The Netherlands
- Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Danone/Nutricia Research B.V., 3584 CT Utrecht, The Netherlands
| | - Linette E M Willemsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
164
|
Couto MR, Andrade N, Magro F, Martel F. Bile salts and proinflammatory cytokines inhibit MCT1-mediated cellular uptake of butyrate and interfere with its antiproliferative properties. Exp Cell Res 2023; 429:113670. [PMID: 37290498 DOI: 10.1016/j.yexcr.2023.113670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
Butyrate (BT) is important in the prevention and inhibition of colorectal cancer (CRC). Inflammatory bowel disease, a risk factor for CRC, is associated with higher levels of proinflammatory cytokines and bile acids. The aim of this work was to investigate the interaction of these compounds in inhibiting BT uptake by Caco-2 cells, as a mechanism contributing to the link between IBD and CRC. TNF-α, IFN-γ, chenodeoxycholic acid (CDCA) and deoxycholic acid (DCA) markedly reduce 14C-BT uptake. All these compounds appear to inhibit MCT1-mediated BT cellular uptake at a posttranscriptional level, and, because their effect is not additive, they are most probably inhibiting MCT1 by a similar mechanism. Correspondingly, the antiproliferative effect of BT (MCT1-dependent) and of the proinflammatory cytokines and CDCA were not additive. In contrast, the cytotoxic effect of BT (MCT1-independent) and of the proinflammatory cytokines and CDCA were additive. In conclusion, proinflammatory cytokines (TNF-α and IFN-γ) and bile acids (DCA and CDCA) inhibit MCT1-mediated BT cellular uptake. These proinflammatory cytokines and CDCA were found to interfere with the antiproliferative effect of BT, mediated by an inhibitory effect upon MCT1-mediated cellular uptake of BT.
Collapse
Affiliation(s)
- Mafalda R Couto
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Instituto de Investigação e Inovação Em Saúde (i3S), University of Porto, Porto, Portugal
| | - Nelson Andrade
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Portugal; Instituto de Investigação e Inovação Em Saúde (i3S), University of Porto, Porto, Portugal
| | - Fernando Magro
- Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Instituto de Investigação e Inovação Em Saúde (i3S), University of Porto, Porto, Portugal
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Gastroenterology Unit, Department of Medicine, Centro Hospitalar S. João, Porto, Portugal; Instituto de Investigação e Inovação Em Saúde (i3S), University of Porto, Porto, Portugal.
| |
Collapse
|
165
|
Xu MM, Guo Y, Chen Y, Zhang W, Wang L, Li Y. Electro-acupuncture promotes gut motility and alleviates functional constipation by regulating gut microbiota and increasing butyric acid generation in mice. JOURNAL OF INTEGRATIVE MEDICINE 2023:S2095-4964(23)00042-0. [PMID: 37331860 DOI: 10.1016/j.joim.2023.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/17/2023] [Indexed: 06/20/2023]
Abstract
OBJECTIVE Abnormalities in the gut microbiota and intestinal short-chain fatty acid (SCFA) levels are implicated in the pathogenesis of functional constipation (FC). Electro-acupuncture (EA) has been shown to improve constipation-related symptoms and rebalance the gut microbiota. However, it is currently unknown whether the gut microbiota is a key mechanistic target for EA or how EA promotes gut motility by regulating the gut microbiota and SCFAs. Therefore, we assessed the effects of EA in FC mice and pseudo-germfree (PGF) mice to address these questions. METHODS Forty female Kunming mice were randomly separated into a normal control group (n = 8), an FC group (n = 8), an FC + EA group (n = 8), a PGF group (n = 8) and a PGF + EA group (n = 8). The FC group and FC + EA group were treated with diphenoxylate to establish the FC model; the PGF group and PGF + EA group were given an antibiotic cocktail to initiate the PGF model. After maintaining the model for 14 d, mice in the FC + EA and PGF + EA groups received EA stimulation at the ST25 and ST37 acupoints, once a day, 5 times per week, for 2 weeks. Fecal parameters and intestinal transit rate were calculated to assess the efficacy of EA on constipation and gastrointestinal motility. Colonic contents were used to quantify gut microbial diversity using 16S rRNA sequencing, and measure SCFA concentrations using gas chromatography-mass spectrometry. RESULTS EA significantly shortened the first black stool defecation time (P < 0.05) and increased the intestinal transit rate (P < 0.01), and fecal pellet number (P < 0.05), wet weight (P < 0.05) and water content (P < 0.01) over 8 h, compared with the FC group, showing that EA promoted gut motility and alleviated constipation. However, EA treatment did not reverse slow-transit colonic motility in PGF mice (P > 0.05), demonstrating that the gut microbiota may play a mechanistic role in the EA treatment of constipation. In addition, EA treatment restored the Firmicutes to Bacteroidetes ratio and significantly increased butyric acid generation in FC mice (P < 0.05), most likely due to the upregulation of Staphylococcaceae microorganisms (P < 0.01). CONCLUSION EA-mediated resolution of constipation occurs through rebalancing the gut microbiota and promoting butyric acid generation. Please cite this article as: Xu MM, Guo Y, Chen Y, Zhang W, Wang L, Li Y. Electro-acupuncture promotes gut motility and alleviates functional constipation by regulating gut microbiota and increasing butyric acid generation in mice. J Integr Med. 2023; Epub ahead of print.
Collapse
Affiliation(s)
- Ming-Min Xu
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China; School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Yu Guo
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Ying Chen
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Wei Zhang
- Office of Educational Administration, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Lu Wang
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Ying Li
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China.
| |
Collapse
|
166
|
Ahmad F, Saha P, Singh V, Wahid M, Mandal RK, Nath Mishra B, Fagoonee S, Haque S. Diet as a modifiable factor in tumorigenesis: Focus on microbiome-derived bile acid metabolites and short-chain fatty acids. Food Chem 2023; 410:135320. [PMID: 36610090 DOI: 10.1016/j.foodchem.2022.135320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/01/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Several lines of evidences have implicated the resident microbiome as a key factor in the modulation of host physiology and pathophysiology; including the resistance to cancers. Gut microbiome heavily influences host lipid homeostasis by their modulatory effects on the metabolism of bile acids (BAs). Microbiota-derived BA metabolites such as deoxycholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic acid (UDCA) are implicated in the pathogeneses of various cancer types. The pathogenic mechanisms are multimodal in nature, with widespread influences on the host immunes system, cell survival and growth signalling and DNA damage. On the other hand, short-chain fatty acids (SCFAs) produced by the resident microbial activity on indigestible dietary fibres as well as during intermittent fasting regimens (such as the Ramazan fasting) elicit upregulation of the beneficial anti-inflammatory and anticancer pathways in the host. The present review first provides a brief overview of the molecular mechanisms of microbiota-derived lipid metabolites in promotion of tumour development. The authors then discuss the potential of diet as a therapeutic route for beneficial alteration of microbiota and the consequent changes in the production of SCFAs, particularly butyrate, in relation to the cancer prevention and treatment.
Collapse
Affiliation(s)
- Faraz Ahmad
- Department of Biotechnology, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology, Vellore 632014, India.
| | - Priyanka Saha
- Department of Biotechnology, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology, Vellore 632014, India
| | - Vineeta Singh
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow 226021 (Uttar Pradesh), India
| | - Mohd Wahid
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Raju K Mandal
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Bhartendu Nath Mishra
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow 226021 (Uttar Pradesh), India
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, National Research Council (CNR), Molecular Biotechnology Center, Turin, Italy
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| |
Collapse
|
167
|
Dariushnejad H, Roshanravan N, Pirzeh L, Cheraghi M, Ghorbanzadeh V. Cardiac angiogenesis enhances by activating Mir-126 and related target proteins in type 2 diabetic rats: Rescue combination effect of Sodium butyrate and voluntary exercise therapy. J Diabetes Metab Disord 2023; 22:753-761. [PMID: 37255774 PMCID: PMC10225409 DOI: 10.1007/s40200-023-01198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/06/2023] [Indexed: 06/01/2023]
Abstract
Objective type 2 diabetes, metabolic disorder, is one of the main risk factors for cardiovascular disease, leading to angiogenesis injury. The present study wanted to discover the effect of sodium butyrate (NaB) and voluntary exercise, alone or together, on miR-126 and related proteins in rats with type 2 diabetes. Methods thirty-five male Wistar rats (200-250 g) were randomly divided into five groups: control, diabetes, diabetes-NaB, diabetes-exercise, and diabetes-NaB-exercise. Type 2 diabetes was induced by intraperitoneal injection of streptozotocin (35 mg/kg) and high-fat diet. The rats were then administrated NaB (200 mg/kg. ip) or were subjected to voluntary exercise, or combined NaB and voluntary exercise for 8 weeks. MiR-126 expression in the cardiac tissue was determined by real-time PCR, and the SPRED-1 and RAF proteins expression levels were measured by western blot. Results NaB and voluntary exercise up-regulated cardiac miR-126 and RAF expression levels and down-regulated SPRED-1 in cardiac tissue of type 2 diabetic rats. Moreover, the combination of NaB and voluntary exercise amplified their effects on those parameters. Both NaB and voluntary exercise or together markedly modulated serum glucose and HbA1c. Conclusion The present findings demonstrated that NaB combined with exercise could improve cardiac angiogenesis by increasing miR-126 and affecting related proteins. Thus, NaB together with voluntary exercise might be a promising intervention for the treatment and prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Hassan Dariushnejad
- Department of Medical Biotechnology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Lale Pirzeh
- 48A, Auf dem Mühlberg, 60599 Frankfurt am Main, Germany
| | - Mostafa Cheraghi
- Cardiovascular Research Center, Shahid Rahimi Hospital, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Vajihe Ghorbanzadeh
- Cardiovascular Research Center, Shahid Rahimi Hospital, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
168
|
Lv R, Liu X, Zhang Y, Dong N, Wang X, He Y, Yue H, Yin Q. Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea syndrome. Signal Transduct Target Ther 2023; 8:218. [PMID: 37230968 DOI: 10.1038/s41392-023-01496-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) is a common breathing disorder in sleep in which the airways narrow or collapse during sleep, causing obstructive sleep apnea. The prevalence of OSAS continues to rise worldwide, particularly in middle-aged and elderly individuals. The mechanism of upper airway collapse is incompletely understood but is associated with several factors, including obesity, craniofacial changes, altered muscle function in the upper airway, pharyngeal neuropathy, and fluid shifts to the neck. The main characteristics of OSAS are recurrent pauses in respiration, which lead to intermittent hypoxia (IH) and hypercapnia, accompanied by blood oxygen desaturation and arousal during sleep, which sharply increases the risk of several diseases. This paper first briefly describes the epidemiology, incidence, and pathophysiological mechanisms of OSAS. Next, the alterations in relevant signaling pathways induced by IH are systematically reviewed and discussed. For example, IH can induce gut microbiota (GM) dysbiosis, impair the intestinal barrier, and alter intestinal metabolites. These mechanisms ultimately lead to secondary oxidative stress, systemic inflammation, and sympathetic activation. We then summarize the effects of IH on disease pathogenesis, including cardiocerebrovascular disorders, neurological disorders, metabolic diseases, cancer, reproductive disorders, and COVID-19. Finally, different therapeutic strategies for OSAS caused by different causes are proposed. Multidisciplinary approaches and shared decision-making are necessary for the successful treatment of OSAS in the future, but more randomized controlled trials are needed for further evaluation to define what treatments are best for specific OSAS patients.
Collapse
Affiliation(s)
- Renjun Lv
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xueying Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Yue Zhang
- Department of Geriatrics, the 2nd Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Na Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xiao Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yao He
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Hongmei Yue
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| |
Collapse
|
169
|
Ahn-Jarvis JH, Sosh D, Lombardo E, Lesinski GB, Conwell DL, Hart PA, Vodovotz Y. Short-Term Soy Bread Intervention Leads to a Dose-Response Increase in Urinary Isoflavone Metabolites and Satiety in Chronic Pancreatitis. Foods 2023; 12:foods12091762. [PMID: 37174299 PMCID: PMC10178207 DOI: 10.3390/foods12091762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Patients with chronic pancreatitis (CP) are particularly vulnerable to nutrient malabsorption and undernutrition caused by the underlying pathology of their disease. Dietary intervention trials involving soy isoflavones in patients with CP are limited and isoflavone metabolites have not yet been reported. We hypothesized soy bread containing plant-based protein, dietary fiber, and isoflavones would be well-tolerated and restore gut functional capacity which would lead to isoflavone metabolites profiles like those of healthy populations. Participants (n = 9) received 1 week of soy bread in a dose-escalation design (1 to 3 slices/day) or a 4-week maximally tolerated dose (n = 1). Dietary adherence, satiety, and palatability were measured. Isoflavone metabolites from 24 h urine collections were quantified using high-performance liquid chromatography. A maximum dose of three slices (99 mg of isoflavones) of soy bread per day was achieved. Short-term exposure to soy bread showed a significant dose-response increase (p = 0.007) of total isoflavones and their metabolites in urine. With increasing slices of soy bread, dietary animal protein intake (p = 0.009) and perceived thirst (p < 0.001) significantly decreased with prolonged satiety (p < 0.001). In this study, adherence to short-term intervention with soy bread in CP patients was excellent. Soy isoflavones were reliably delivered. These findings provide the foundation for evaluating a well-characterized soy bread in supporting healthy nutrition and gut function in CP.
Collapse
Affiliation(s)
- Jennifer H Ahn-Jarvis
- College of Food, Agricultural, and Environmental Sciences, Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel Sosh
- College of Food, Agricultural, and Environmental Sciences, Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | - Erin Lombardo
- College of Public Health, The Ohio State University, Columbus, OH 43210, USA
| | - Gregory B Lesinski
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Darwin L Conwell
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Phil A Hart
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Yael Vodovotz
- College of Food, Agricultural, and Environmental Sciences, Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
170
|
Tang N, Zhang C, Ma K, Wang X, Xiao L, Zhang X, Rui X, Li W. Advanced structural characterization and in vitro fermentation prebiotic properties of cell wall polysaccharide from Kluyveromyces marxianus. Int J Biol Macromol 2023; 241:124420. [PMID: 37085078 DOI: 10.1016/j.ijbiomac.2023.124420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/26/2023] [Accepted: 04/08/2023] [Indexed: 04/23/2023]
Abstract
Through previous study, the three yeast α-mannans (MPS) from various sources of Kluyveromyces marxianus (LZ-MPS, MC-MPS, and G-MPS) were preliminarily characterized. In this study, the advanced structural characterization and the in vitro human fecal fermentation behavior of the three MPS were investigated. According to the results of this study, the polysaccharide molecules of the three MPS were aggregated in solution, supporting their branched chain structure. After in vitro fermentation, the molecular weight and pH of fermentation broth decreased significantly, indicating that the three MPS could be utilized by human gut microbiota. Meanwhile, the production of total short-chain fatty acids (SCFAs) of the three MPS was promoted, especially the production of propionic acid was 45.55, 38.23, and 38.87 mM, respectively. In particular, the three MPS have the ability to alter the composition of human gut microbiota, especially to promote the proliferation of Bacteroidetes, suggesting that the bioactivities of the three MPS can be significantly influenced by intestine Bacteroidetes. In terms of metabolism, all MPS can promote cofactors, vitamins, amino acid metabolism, and glycan biosynthesis and metabolism of bacteria. In consequence, the three MPS were confirmed to regulate the human gut microbiota, increase the level of SCFAs, promote the metabolisms of bacteria on amino acid and glycan, and improve the intestinal health.
Collapse
Affiliation(s)
- Nanyu Tang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Changliang Zhang
- Jiangsu Biodep Biotechnology Co., Ltd., Jiangyin, Jiangsu 214400, PR China; Probiotics Australia Pty, Ormeau, Queensland 4208, Australia
| | - Kai Ma
- Jiangsu Biodep Biotechnology Co., Ltd., Jiangyin, Jiangsu 214400, PR China; Probiotics Australia Pty, Ormeau, Queensland 4208, Australia
| | - Xiaomeng Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Luyao Xiao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xueliang Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xin Rui
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Wei Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
171
|
Li Y, Xu Y, Le Roy C, Hu J, Steves CJ, Bell JT, Spector TD, Gibson R, Menni C, Rodriguez-Mateos A. Interplay between the (Poly)phenol Metabolome, Gut Microbiome, and Cardiovascular Health in Women: A Cross-Sectional Study from the TwinsUK Cohort. Nutrients 2023; 15:1900. [PMID: 37111123 PMCID: PMC10141398 DOI: 10.3390/nu15081900] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Dietary (poly)phenol consumption is inversely associated with cardiovascular disease (CVD) risk in epidemiological studies, but little is known about the role of the gut microbiome in this relationship. METHODS In 200 healthy females, aged 62.0 ± 10.0 years, from the TwinsUK cohort, 114 individual (poly)phenol metabolites were measured from spot urine using ultra-high-performance liquid chromatography-mass spectrometry. The associations between metabolites, the gut microbiome (alpha diversity and genera), and cardiovascular scores were investigated using linear mixed models adjusting age, BMI, fibre, energy intake, family relatedness, and multiple testing (FDR < 0.1). RESULTS Significant associations were found between phenolic acid metabolites, CVD risk, and the gut microbiome. A total of 35 phenolic acid metabolites were associated with the Firmicutes phylum, while 5 metabolites were associated with alpha diversity (FDR-adjusted p < 0.05). Negative associations were observed between the atherosclerotic CVD (ASCVD) risk score and five phenolic acid metabolites, two tyrosol metabolites, and daidzein with stdBeta (95% (CI)) ranging from -0.05 (-0.09, -0.01) for 3-(2,4-dihydroxyphenyl)propanoic acid to -0.04 (-0.08, -0.003) for 2-hydroxycinnamic acid (FDR-adjusted p < 0.1). The genus 5-7N15 in the Bacteroidetes phylum was positively associated with the same metabolites, including 3-(3,5-dihydroxyphenyl)propanoic acid, 3-(2,4-dihydroxyphenyl)propanoic acid, 3-(3,4-dihydroxyphenyl)propanoic acid), 3-hydroxyphenylethanol-4-sulfate, and 4-hydroxyphenylethanol-3-sulfate)(stdBeta (95% CI): 0.23 (0.09, 0.36) to 0.28 (0.15, 0.42), FDR-adjusted p < 0.05), and negatively associated with the ASCVD score (stdBeta (95% CI): -0.05 (-0.09, -0.01), FDR-adjusted p = 0.02). Mediation analysis showed that genus 5-7N15 mediated 23.8% of the total effect of 3-(3,4-dihydroxyphenyl)propanoic acid on the ASCVD score. CONCLUSIONS Coffee, tea, red wine, and several vegetables and fruits, especially berries, are the most abundant food sources of phenolic acids that have the strongest associations with CVD risk. We found that the gut microbiome, particularly the genus 5-7N15, partially mediates the negative association between urinary (poly)phenols and cardiovascular risk, supporting a key role of the gut microbiome in the health benefits of dietary (poly)phenols.
Collapse
Affiliation(s)
- Yong Li
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King’s College London, London WC2R 2LS, UK
| | - Yifan Xu
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King’s College London, London WC2R 2LS, UK
| | - Caroline Le Roy
- Department of Twin Research and Genetic Epidemiology, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King’s College London, London WC2R 2LS, UK
| | - Jiaying Hu
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King’s College London, London WC2R 2LS, UK
| | - Claire J. Steves
- Department of Twin Research and Genetic Epidemiology, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King’s College London, London WC2R 2LS, UK
| | - Jordana T. Bell
- Department of Twin Research and Genetic Epidemiology, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King’s College London, London WC2R 2LS, UK
| | - Tim D. Spector
- Department of Twin Research and Genetic Epidemiology, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King’s College London, London WC2R 2LS, UK
| | - Rachel Gibson
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King’s College London, London WC2R 2LS, UK
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King’s College London, London WC2R 2LS, UK
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King’s College London, London WC2R 2LS, UK
| |
Collapse
|
172
|
Mikami K, Watanabe N, Tochio T, Kimoto K, Akama F, Yamamoto K. Impact of Gut Microbiota on Host Aggression: Potential Applications for Therapeutic Interventions Early in Development. Microorganisms 2023; 11:microorganisms11041008. [PMID: 37110431 PMCID: PMC10141163 DOI: 10.3390/microorganisms11041008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 04/29/2023] Open
Abstract
Aggression in the animal kingdom is a necessary component of life; however, certain forms of aggression, especially in humans, are pathological behaviors that are detrimental to society. Animal models have been used to study a number of factors, including brain morphology, neuropeptides, alcohol consumption, and early life circumstances, to unravel the mechanisms underlying aggression. These animal models have shown validity as experimental models. Moreover, recent studies using mouse, dog, hamster, and drosophila models have indicated that aggression may be affected by the "microbiota-gut-brain axis." Disturbing the gut microbiota of pregnant animals increases aggression in their offspring. In addition, behavioral analyses using germ-free mice have shown that manipulating the intestinal microbiota during early development suppresses aggression. These studies suggest that treating the host gut microbiota during early development is critical. However, few clinical studies have investigated gut-microbiota-targeted treatments with aggression as a primary endpoint. This review aims to clarify the effects of gut microbiota on aggression and discusses the therapeutic potential of regulating human aggression by intervening in gut microbiota.
Collapse
Affiliation(s)
- Katsunaka Mikami
- Department of Psychiatry, Tokai University School of Medicine, Isehara 259-1193, Kanagawa, Japan
| | - Natsuru Watanabe
- Department of Psychiatry, Tokai University School of Medicine, Isehara 259-1193, Kanagawa, Japan
| | - Takumi Tochio
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Keitaro Kimoto
- Department of Psychiatry, Tokai University School of Medicine, Isehara 259-1193, Kanagawa, Japan
| | - Fumiaki Akama
- Department of Psychiatry, Tokai University School of Medicine, Isehara 259-1193, Kanagawa, Japan
| | - Kenji Yamamoto
- Department of Psychiatry, Tokai University School of Medicine, Isehara 259-1193, Kanagawa, Japan
| |
Collapse
|
173
|
Abstract
Microbial communities are shaped by positive and negative interactions ranging from competition to mutualism. In the context of the mammalian gut and its microbial inhabitants, the integrated output of the community has important impacts on host health. Cross-feeding, the sharing of metabolites between different microbes, has emergent roles in establishing communities of gut commensals that are stable, resistant to invasion, and resilient to external perturbation. In this review, we first explore the ecological and evolutionary implications of cross-feeding as a cooperative interaction. We then survey mechanisms of cross-feeding across trophic levels, from primary fermenters to H2 consumers that scavenge the final metabolic outputs of the trophic network. We extend this analysis to also include amino acid, vitamin, and cofactor cross-feeding. Throughout, we highlight evidence for the impact of these interactions on each species' fitness as well as host health. Understanding cross-feeding illuminates an important aspect of microbe-microbe and host-microbe interactions that establishes and shapes our gut communities.
Collapse
Affiliation(s)
- Elizabeth J Culp
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew L Goodman
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
174
|
Ray M, Manjunath A, Halami PM. Effect of probiotics as an immune modulator for the management of COVID-19. Arch Microbiol 2023; 205:182. [PMID: 37031431 PMCID: PMC10098245 DOI: 10.1007/s00203-023-03504-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/10/2023]
Abstract
COVID-19, an acute respiratory viral infection conveyed by pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected millions of individuals globally, and is a public health emergency of international concern. Till now, there are no highly effective therapies for this infection without vaccination. As they can evolve quickly and cross the strain level easily, these viruses are causing epidemics or pandemics that are allied with more severe clinical diseases. A new approach is needed to improve immunity to confirm the protection against emerging viral infections. Probiotics can modify gut microbial dysbiosis, improve the host immune system, and stimulate immune signaling, increasing systemic immunity. Several probiotic bacterial therapies have been proven to decrease the period of bacterial or viral infections. Superinduction of inflammation, termed cytokine storm, has been directly linked with pneumonia and severe complications of viral respiratory infections. In this case, probiotics as potential immunomodulatory agents can be an appropriate candidate to improve the host's response to respiratory viral infections. During this COVID-19 pandemic, any approach that can induce mucosal and systemic immunity could be helpful. Here, we summarize contexts regarding the effectiveness of various probiotics for preventing virus-induced respiratory infectious diseases, especially those that could be employed for COVID-19 patients. In addition, the effects of probiotics, their mechanisms on different aspects of immune responses against respiratory viral infection, and their antiviral properties in clinical findings have been described in detail.
Collapse
Affiliation(s)
- Mousumi Ray
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India
| | - Ashwini Manjunath
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Prakash M Halami
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India.
| |
Collapse
|
175
|
Plouhinec L, Neugnot V, Lafond M, Berrin JG. Carbohydrate-active enzymes in animal feed. Biotechnol Adv 2023; 65:108145. [PMID: 37030553 DOI: 10.1016/j.biotechadv.2023.108145] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/10/2023]
Abstract
Considering an ever-growing global population, which hit 8 billion people in the fall of 2022, it is essential to find solutions to avoid the competition between human food and animal feed for croplands. Agricultural co-products have become important components of the circular economy with their use in animal feed. Their implementation was made possible by the addition of exogenous enzymes in the diet, especially carbohydrate-active enzymes (CAZymes). In this review, we describe the diversity and versatility of microbial CAZymes targeting non-starch polysaccharides to improve the nutritional potential of diets containing cereals and protein meals. We focused our attention on cellulases, hemicellulases, pectinases which were often found to be crucial in vivo. We also highlight the performance and health benefits brought by the exogenous addition of enzymatic cocktails containing CAZymes in the diets of monogastric animals. Taking the example of the well-studied commercial cocktail Rovabio™, we discuss the evolution, constraints and future challenges faced by feed enzymes suppliers. We hope that this review will promote the use and development of enzyme solutions for industries to sustainably feed humans in the future.
Collapse
Affiliation(s)
- Lauriane Plouhinec
- INRAE, Aix-Marseille Univ., UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France; ADISSEO, 135 Avenue de Rangueil, INSA Toulouse, Hall Gilbert Durand, 31400 Toulouse, France.
| | - Virginie Neugnot
- ADISSEO, 135 Avenue de Rangueil, INSA Toulouse, Hall Gilbert Durand, 31400 Toulouse, France
| | - Mickael Lafond
- INRAE, Aix-Marseille Univ., UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - Jean-Guy Berrin
- INRAE, Aix-Marseille Univ., UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France.
| |
Collapse
|
176
|
Wang J, Wang L, Yu Q, Tang N, Mei C, Zhang H, Wang G, Lu J, Chen W. Characteristics of the Gut Microbiome and Serum Metabolome in Patients with Functional Constipation. Nutrients 2023; 15:nu15071779. [PMID: 37049619 PMCID: PMC10097253 DOI: 10.3390/nu15071779] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Functional constipation (FC) is a gastrointestinal disorder with high incidence, and it seriously affects patients' physical and mental health. Several studies have shown that the gut microbiome is associated with FC, but these studies have produced inconsistent findings, with few reflecting the relationship between the gut microbiome and metabolites. This study used 16S rRNA microbial genomics and non-target metabolome based on liquid chromatography-mass spectrometry to analyze the gut microbiota composition and serum metabolic profiles of 30 FC patients and 28 healthy individuals. We found that patients with FC and healthy individuals have different gut microbiota structures and serum metabolic profiles. FC patients had more Bacteroides and butyrate-producing bacteria (Roseburia, Faecaliberium, Butyriccoccus). The upstream products of host arginine biosynthesis (2-oxoglutaric acid, L-glutamic acid, N-acetylornithine, and L-ornithine) were significantly reduced in FC patients' serum metabolites. In summary, our study describes the gut microbiome and serum metabolome of patients with functional constipation. It reveals that functional constipation may be associated with increased Bacteroidetes and downregulation of upstream products of host arginine biosynthesis, which may be potential markers for diagnosing functional constipation.
Collapse
Affiliation(s)
- Jialiang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiangqing Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Nan Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chunxia Mei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Jian Lu
- Department of Gastroenterology, Wuxi No. 2 People's Hospital (Jiangnan University Medical Center), Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
177
|
Singh NK, Beckett JM, Kalpurath K, Ishaq M, Ahmad T, Eri RD. Synbiotics as Supplemental Therapy for the Alleviation of Chemotherapy-Associated Symptoms in Patients with Solid Tumours. Nutrients 2023; 15:nu15071759. [PMID: 37049599 PMCID: PMC10096799 DOI: 10.3390/nu15071759] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Chemotherapy is still the first line of treatment for most cancer patients. Patients receiving chemotherapy are generally prone to infections, which result in complications, such as sepsis, mucositis, colitis, and diarrhoea. Several nutritional approaches have been trialled to counter the chemotherapy-associated side effects in cancer patients, but none have yet been approved for routine clinical use. One of the approaches to reduce or avoid chemotherapy-associated complications is to restore the gut microbiota. Gut microbiota is essential for the healthy functioning of the immune system, metabolism, and the regulation of other molecular responses in the body. Chemotherapy erodes the mucosal layer of the gastrointestinal tract and results in the loss of gut microbiota. One of the ways to restore the gut microbiota is through the use of probiotics. Probiotics are the ‘good’ bacteria that may provide health benefits if consumed in appropriate amounts. Some studies have highlighted that the consumption of probiotics in combination with prebiotics, known as synbiotics, may provide better health benefits when compared to probiotics alone. This review discusses the different nutritional approaches that have been studied in an attempt to combat chemotherapy-associated side effects in cancer patients with a particular focus on the use of pre-, pro- and synbiotics.
Collapse
Affiliation(s)
- Neeraj K. Singh
- School of Health Sciences, University of Tasmania, Newnham, Launceston 7248, Australia
| | - Jeffrey M. Beckett
- School of Health Sciences, University of Tasmania, Newnham, Launceston 7248, Australia
| | - Krishnakumar Kalpurath
- School of Health Sciences, University of Tasmania, Newnham, Launceston 7248, Australia
- Mersey Community Hospital, Latrobe 7307, Australia
| | - Muhammad Ishaq
- School of Health Sciences, University of Tasmania, Newnham, Launceston 7248, Australia
| | - Tauseef Ahmad
- School of Health Sciences, University of Tasmania, Newnham, Launceston 7248, Australia
| | - Rajaraman D. Eri
- School of Health Sciences, University of Tasmania, Newnham, Launceston 7248, Australia
- School of Science, STEM College, RMIT University, Melbourne 3083, Australia
| |
Collapse
|
178
|
Gowen R, Gamal A, Di Martino L, McCormick TS, Ghannoum MA. Modulating the Microbiome for Crohn's Disease Treatment. Gastroenterology 2023; 164:828-840. [PMID: 36702360 PMCID: PMC10152883 DOI: 10.1053/j.gastro.2023.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/12/2022] [Accepted: 01/06/2023] [Indexed: 01/28/2023]
Abstract
The central role of the gut microbiota in the regulation of health and disease has been convincingly demonstrated. Polymicrobial interkingdom interactions between bacterial (the bacteriome) and fungal (the mycobiome) communities of the gut have become a prominent focus for development of potential therapeutic approaches. In addition to polymicrobial interactions, the complex gut ecosystem also mediates interactions between the host and the microbiota. These interactions are complex and bidirectional; microbiota composition can be influenced by host immune response, disease-specific therapeutics, antimicrobial drugs, and overall ecosystems. However, the gut microbiota also influences host immune response to a drug or therapy by potentially transforming the drug's structure and altering bioavailability, activity, or toxicity. This is especially true in cases where the gut microbiota has produced a biofilm. The negative ramifications of biofilm formation include alteration of gut permeability, enhanced antimicrobial resistance, and alteration of host immune response effectiveness. Natural modulation of the gut microbiota, using probiotic and prebiotic approaches, may also be used to affect the host microbiome, a type of "natural" modulation of the host microbiota composition. In this review, we discuss potential bidirectional interactions between microbes and host, and we describe the changes in gut microbiota induced by probiotic and prebiotic approaches as well as their potential clinical consequences, including biofilm formation. We outline a systematic approach to designing probiotics capable of altering the host microbiota in disease states, using Crohn's disease as a model chronic disease. Understanding how the effective changes in the microbiome may enhance treatment efficacy may unlock the possibility of modulating the gut microbiome to improve treatment using a natural approach.
Collapse
Affiliation(s)
- Rachael Gowen
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio; University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Ahmed Gamal
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio; University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Luca Di Martino
- University Hospitals Cleveland Medical Center, Cleveland, Ohio; Department of Medicine, Case Western Reserve University, Cleveland, Ohio; Case Digestive Health Research Institute, Case Western Reserve University, Cleveland Ohio
| | - Thomas S McCormick
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio; University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Mahmoud A Ghannoum
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio; University Hospitals Cleveland Medical Center, Cleveland, Ohio.
| |
Collapse
|
179
|
Gamage HKAH, Robinson KJ, Luu L, Paulsen IT, Laird AS. Machado Joseph disease severity is linked with gut microbiota alterations in transgenic mice. Neurobiol Dis 2023; 179:106051. [PMID: 36822548 DOI: 10.1016/j.nbd.2023.106051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/06/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
Emerging evidence suggests the presence of bidirectional interactions between the central nervous system and gut microbiota that may contribute to the pathogenesis of neurodegenerative diseases. However, the potential role of gut microbes in forms of spinocerebellar ataxia, such as the fatal neurodegenerative disease Machado Joseph disease (MJD), remains unexplored. Here, we examined whether gut microbiota alterations may be an early disease phenotype of MJD. We profiled the gut microbiota of male and female transgenic MJD mice (CMVMJD135) expressing human ATXN3 with expanded CAG repeats (133-143 CAG) at pre-symptomatic, symptomatic and well-established stages of the disease (7, 11 and 15 weeks of age, respectively). We compared these profiles with the gut microbiota of male and female wild-type (WT) littermate control mice at same ages. Correlation network analyses were employed to explore the relevance of microbiota changes to disease progression. The results demontrated distinct sex-dependent effects in disease development whereby male MJD mice displayed earlier motor impairments than female MJD mice. The gut microbiota community structure and composition also demonstrated sex-specific differences between MJD and WT mice. In both male and female MJD mice, the shifts in the microbiota were present by 7 weeks, before the onset of any symptoms. These pre-symptomatic microbial changes correlated with the severity of neurological impairments present at later stages of the disease. Previous efforts towards developing treatments for MJD have failed to yield meaningful outcomes. Our study reports a novel relationship between the gut microbiota and MJD development and severity. Elucidating how gut microbes are involved in MJD pathogenesis may offer new and efficacious treatment strategies for this currently untreatable disease.
Collapse
Affiliation(s)
- Hasinika K A H Gamage
- School of Natural Sciences, Macquarie University, NSW 2109, Australia; ARC Training Centre for Facilitated Advancement of Australia's Bioactives, Macquarie University, NSW 2109, Australia
| | - Katherine J Robinson
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW 2109, Australia
| | - Luan Luu
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW 2109, Australia
| | - Ian T Paulsen
- School of Natural Sciences, Macquarie University, NSW 2109, Australia; ARC Training Centre for Facilitated Advancement of Australia's Bioactives, Macquarie University, NSW 2109, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, NSW 2109, Australia
| | - Angela S Laird
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW 2109, Australia.
| |
Collapse
|
180
|
Tejkalová H, Jakob L, Kvasnová S, Klaschka J, Sechovcová H, Mrázek J, Páleníček T, Fliegerová KO. The influence of antibiotic treatment on the behavior and gut microbiome of adult rats neonatally insulted with lipopolysaccharide. Heliyon 2023; 9:e15417. [PMID: 37123951 PMCID: PMC10130227 DOI: 10.1016/j.heliyon.2023.e15417] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
The present study investigated whether neonatal exposure to the proinflammatory endotoxin lipopolysaccharide (LPS) followed by an antibiotic (ATB)-induced dysbiosis in early adulthood could induce neurodevelopmental disorders-like behavioral changes in adult male rats. Combining these two stressors resulted in decreased weight gain, but no significant behavioral abnormalities were observed. LPS treatment resulted in adult rats' hypoactivity and induced anxiety-like behavior in the social recognition paradigm, but these behavioral changes were not exacerbated by ATB-induced gut dysbiosis. ATB treatment seriously disrupted the gut bacterial community, but dysbiosis did not affect locomotor activity, social recognition, and acoustic reactivity in adult rats. Fecal bacterial community analyses showed no differences between the LPS challenge exposed/unexposed rats, while the effect of ATB administration was decisive regardless of prior LPS exposure. ATB treatment resulted in significantly decreased bacterial diversity, suppression of Clostridiales and Bacteroidales, and increases in Lactobacillales, Enterobacteriales, and Burkholderiales. The persistent effect of LPS on some aspects of behavior suggests a long-term effect of early toxin exposure that was not observed in ATB-treated animals. However, an anti-inflammatory protective effect of ATB cannot be assumed because of the increased abundance of pro-inflammatory, potentially pathogenic bacteria (Proteus, Suttrella) and the elimination of the bacterial families Ruminococcaceae and Lachnospiraceae, which are generally considered beneficial for gut health.
Collapse
Affiliation(s)
- Hana Tejkalová
- National Institute of Mental Health; Klecany, Czech Republic
| | - Lea Jakob
- National Institute of Mental Health; Klecany, Czech Republic
- 3rd Faculty of Medicine, Charles University, Czech Republic
- Corresponding author. National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic,
| | - Simona Kvasnová
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Czech Republic
| | - Jan Klaschka
- Institute of Computer Science of the Czech Academy of Sciences, Czech Republic
| | - Hana Sechovcová
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Czech Republic
- Czech University of Life Sciences in Prague, Czech Republic
| | - Jakub Mrázek
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Czech Republic
| | - Tomáš Páleníček
- National Institute of Mental Health; Klecany, Czech Republic
- 3rd Faculty of Medicine, Charles University, Czech Republic
| | | |
Collapse
|
181
|
Van den Abbeele P, Goggans M, Deyaert S, Baudot A, Van de Vliet M, Calatayud Arroyo M, Lelah M. Lacticaseibacillus rhamnosus ATCC 53103 and Limosilactobacillus reuteri ATCC 53608 Synergistically Boost Butyrate Levels upon Tributyrin Administration Ex Vivo. Int J Mol Sci 2023; 24:5859. [PMID: 36982942 PMCID: PMC10054277 DOI: 10.3390/ijms24065859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/29/2023] Open
Abstract
Modulation of the gut microbiota is a trending strategy to improve health. While butyrate has been identified as a key health-related microbial metabolite, managing its supply to the host remains challenging. Therefore, this study investigated the potential to manage butyrate supply via tributyrin oil supplementation (TB; glycerol with three butyrate molecules) using the ex vivo SIFR® (Systemic Intestinal Fermentation Research) technology, a highly reproducible, in vivo predictive gut model that accurately preserves in vivo-derived microbiota and enables addressing interpersonal differences. Dosing 1 g TB/L significantly increased butyrate with 4.1 (±0.3) mM, corresponding with 83 ± 6% of the theoretical butyrate content of TB. Interestingly, co-administration of Limosilactobacillus reuteri ATCC 53608 (REU) and Lacticaseibacillus rhamnosus ATCC 53103 (LGG) markedly enhanced butyrate to levels that exceeded the theoretical butyrate content of TB (138 ± 11% for REU; 126 ± 8% for LGG). Both TB + REU and TB + LGG stimulated Coprococcus catus, a lactate-utilizing, butyrate-producing species. The stimulation of C. catus with TB + REU was remarkably consistent across the six human adults tested. It is hypothesized that LGG and REU ferment the glycerol backbone of TB to produce lactate, a precursor of butyrate. TB + REU also significantly stimulated the butyrate-producing Eubacterium rectale and Gemmiger formicilis and promoted microbial diversity. The more potent effects of REU could be due to its ability to convert glycerol to reuterin, an antimicrobial compound. Overall, both the direct butyrate release from TB and the additional butyrate production via REU/LGG-mediated cross-feeding were highly consistent. This contrasts with the large interpersonal differences in butyrate production that are often observed upon prebiotic treatment. Combining TB with LGG and especially REU is thus a promising strategy to consistently supply butyrate to the host, potentially resulting in more predictable health benefits.
Collapse
Affiliation(s)
| | - Mallory Goggans
- NutriScience Innovations, 130C Old Gate Lane, Milford, CT 06460, USA
| | - Stef Deyaert
- Cryptobiotix SA, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium
| | - Aurélien Baudot
- Cryptobiotix SA, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium
| | - Michiel Van de Vliet
- Cryptobiotix SA, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium
- Laboratory of Microbiology, Ghent University, Karel Lodewijk Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Marta Calatayud Arroyo
- Institute of Agrochemistry and Food Technology (IATA), Spanish Research Council (CSIC), Carrer del Catedràtic Agustín Escardino Benlloch, 7, 46980 Valencia, Spain
| | - Michael Lelah
- NutriScience Innovations, 130C Old Gate Lane, Milford, CT 06460, USA
| |
Collapse
|
182
|
The Role of Probiotics in Inflammation Associated with Major Surgery: A Narrative Review. Nutrients 2023; 15:nu15061331. [PMID: 36986061 PMCID: PMC10059922 DOI: 10.3390/nu15061331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Background: Gut microbiota is well-known for its ability to maintain intestinal homeostasis. However, the disruption of this homeostasis, known as dysbiosis, leads to multiple consequences, including local and systemic inflammation. Surgery-induced inflammation is a major concern for patients, as it leads to many infectious and non-infectious complications. Objective: The purpose of this review was to explore the role of probiotics and symbiotics in surgery-induced inflammation and to determine if their use is effective in combatting inflammation and its complications Methods and Materials: A literature search was conducted, and articles published only in English, until December 2022 were included. The results are reported in the form of a narrative review. Results: The perioperative use of probiotics and/or symbiotics results in lower risk of infectious complications, including reduced rates of surgical site infections, respiratory and urinary tract infections, shorter hospital stays, and fewer days of antibiotic administration. It also contributes to reducing non-infectious complications, as it mitigates systemic and local inflammation via maintenance of the intestinal barrier, improves intestinal mobility, and is associated with lower rates of postoperative pain and anastomotic leak. Conclusions: Restoring gut microbiota after disruptions caused by surgery may accelerate local healing processes, attenuate systemic inflammation, and may thus prove beneficial to certain populations.
Collapse
|
183
|
Rahman Z, Dandekar MP. Implication of Paraprobiotics in Age-Associated Gut Dysbiosis and Neurodegenerative Diseases. Neuromolecular Med 2023; 25:14-26. [PMID: 35879588 DOI: 10.1007/s12017-022-08722-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/13/2022] [Indexed: 10/16/2022]
Abstract
Neurodegenerative diseases, including Alzheimer's and Parkinson's disease, are major age-related concerns in elderly people. Since no drug fully addresses the progression of neurodegenerative diseases, advance treatment strategies are urgently needed. Several studies have noted the senescence of immune system and the perturbation of gut microbiota in the aged population. In recent years, the role of gut microbiota has been increasingly studied in the manifestation of age-related CNS disorders. In this context, prebiotics, probiotics, and paraprobiotics are reported to improve the behavioural and neurobiological abnormalities in elderly patients. As live microbiota, prescribed in the form of probiotics, shows some adverse effects like sepsis, translocation, and horizontal gene transfer, paraprobiotics could be a possible alternative strategy in designing microbiome-based therapeutics. This review describes the health-beneficial effects of paraprobiotics in age-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Ziaur Rahman
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Manoj P Dandekar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
184
|
Brsikyan LA, Poluektova EA, Poluektov MG. The gut microbiome as a factor in the development of Parkinson's disease. NEUROLOGY, NEUROPSYCHIATRY, PSYCHOSOMATICS 2023. [DOI: 10.14412/2074-2711-2023-1-90-96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- L. A. Brsikyan
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University)
| | - E. A. Poluektova
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University)
| | - M. G. Poluektov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University)
| |
Collapse
|
185
|
Mohamed Elfadil O, Mundi MS, Abdelmagid MG, Patel A, Patel N, Martindale R. Butyrate: More Than a Short Chain Fatty Acid. Curr Nutr Rep 2023:10.1007/s13668-023-00461-4. [PMID: 36763294 DOI: 10.1007/s13668-023-00461-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2023] [Indexed: 02/11/2023]
Abstract
PURPOSE OF REVIEW The mechanistic understanding of the importance and the potential benefits of the gut microbiome has exploded in potential roles in human health and disease. Short chain fatty acids (SCFAs), including butyrate, are one of the key metabolic end products that has been a major focus of microbiome understanding. This brief review aims to describe butyrate's relation to certain biological concepts and their clinical application. RECENT FINDINGS Butyrate has reportedly been described as a potent pro-resolution molecule that has a significant role in maintaining gut immunity, supporting gut barrier function, regulation of histone deacetylase (HDAC), and numerous systemic roles. Further research is needed to explore potential benefits of adding SCFAs for patients receiving total parenteral nutrition. Butyrate plays several biological roles in intestinal epithelium anti-inflammatory pathways with clear benefits in numerous acute and chronic disease states and overall human health helping to maintain homeostasis.
Collapse
Affiliation(s)
- Osman Mohamed Elfadil
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, 200 1st St. SW, Rochester, MN, 55905, USA.
| | - Manpreet S Mundi
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, 200 1st St. SW, Rochester, MN, 55905, USA
| | - Marwa G Abdelmagid
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, 200 1st St. SW, Rochester, MN, 55905, USA
| | - Ankitaben Patel
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, 200 1st St. SW, Rochester, MN, 55905, USA
| | - Nishant Patel
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, 200 1st St. SW, Rochester, MN, 55905, USA
| | - Robert Martindale
- Division of Gastrointestinal and General Surgery, School of Medicine, Oregon Health and Sciences University, Portland, OR, USA
| |
Collapse
|
186
|
Xiong R, Gunter C, Fleming E, Vernon SD, Bateman L, Unutmaz D, Oh J. Multi-'omics of gut microbiome-host interactions in short- and long-term myalgic encephalomyelitis/chronic fatigue syndrome patients. Cell Host Microbe 2023; 31:273-287.e5. [PMID: 36758521 PMCID: PMC10353054 DOI: 10.1016/j.chom.2023.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/14/2022] [Accepted: 12/30/2022] [Indexed: 02/11/2023]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex, debilitating disorder manifesting as severe fatigue and post-exertional malaise. The etiology of ME/CFS remains elusive. Here, we present a deep metagenomic analysis of stool combined with plasma metabolomics and clinical phenotyping of two ME/CFS cohorts with short-term (<4 years, n = 75) or long-term disease (>10 years, n = 79) compared with healthy controls (n = 79). First, we describe microbial and metabolomic dysbiosis in ME/CFS patients. Short-term patients showed significant microbial dysbiosis, while long-term patients had largely resolved microbial dysbiosis but had metabolic and clinical aberrations. Second, we identified phenotypic, microbial, and metabolic biomarkers specific to patient cohorts. These revealed potential functional mechanisms underlying disease onset and duration, including reduced microbial butyrate biosynthesis and a reduction in plasma butyrate, bile acids, and benzoate. In addition to the insights derived, our data represent an important resource to facilitate mechanistic hypotheses of host-microbiome interactions in ME/CFS.
Collapse
Affiliation(s)
- Ruoyun Xiong
- The Jackson Laboratory, Farmington, CT 06032, USA; The University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | | | | | | - Julia Oh
- The Jackson Laboratory, Farmington, CT 06032, USA.
| |
Collapse
|
187
|
Wang X, Wan M, Wang Z, Zhang H, Zhu S, Cao X, Xu N, Zheng J, Bu X, Xu W, Mai K, Ai Q. Effects of Tributyrin Supplementation on Growth Performance, Intestinal Digestive Enzyme Activity, Antioxidant Capacity, and Inflammation-Related Gene Expression of Large Yellow Croaker ( Larimichthys crocea) Fed with a High Level of Clostridium autoethanogenum Protein. AQUACULTURE NUTRITION 2023; 2023:2687734. [PMID: 36860969 PMCID: PMC9973137 DOI: 10.1155/2023/2687734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/16/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
An 8-week growth experiment was conducted to investigate effects of tributyrin (TB) supplementation on growth performance, intestinal digestive enzyme activity, antioxidant capacity, and inflammation-related gene expression of juvenile large yellow croaker (Larimichthys crocea) (initial weight of 12.90 ± 0.02 g) fed diets with high level of Clostridium autoethanogenum protein (CAP). In the negative control diet, 40% fish meal was used as the major source of protein (named as FM), while 45% fish meal protein of FM was substituted with CAP (named as FC) to form a positive control diet. Based on the FC diet, grade levels of 0.05%, 0.1%, 0.2%, 0.4%, and 0.8% tributyrin were added to formulate other five experimental diets. Results showed that fish fed diets with high levels of CAP significantly decreased the weight gain rate (WGR) and specific growth rate (SGR) compared with fish fed the FM diet (P < 0.05). WGR and SGR were significantly higher than in fish fed diets with 0.05% and 0.1% tributyrin that fed the FC diet (P < 0.05). Supplementation of 0.1% tributyrin significantly elevated fish intestinal lipase and protease activities compared to FM and FC diets (P < 0.05). Meanwhile, compared to fish fed the FC diet, fish fed diets with 0.05% and 0.1% tributyrin showed remarkably higher intestinal total antioxidant capacity (T-AOC). Malondialdehyde (MDA) content in the intestine of fish fed diets with 0.05%-0.4% tributyrin was remarkably lower than those in the fish fed the FC diet (P < 0.05). The mRNA expressions of tumor necrosis factor α (tnfα), interleukin-1β (il-1β), interleukin-6 (il-6), and interferon γ (ifnγ) were significantly downregulated in fish fed diets with 0.05%-0.2% tributyrin, and the mRNA expression of il-10 was significantly upregulated in fish fed the 0.2% tributyrin diet (P < 0.05). In regard to antioxidant genes, as the supplementation of tributyrin increased from 0.05% to 0.8%, the mRNA expression of nuclear factor erythroid 2-related factor 2 (nrf2) demonstrated a trend of first rising and then decreasing. However, the mRNA expression of Kelch-like ECH-associated protein 1 (keap1) was remarkably lower in fish fed the FC diet than that fed diets with tributyrin supplementation (P < 0.05). Overall, fish fed tributyrin supplementation diets can ameliorate the negative effects induced by high proportion of CAP in diets, with an appropriate supplementation of 0.1%.
Collapse
Affiliation(s)
- Xiuneng Wang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Min Wan
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Zhen Wang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Haitao Zhang
- Guangdong Evergreen Feed Industry Co., Ltd., Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang 524000, China
| | - Si Zhu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Xiufei Cao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Ning Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Jichang Zheng
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Xianyong Bu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Wei Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266003, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266003, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266003, China
| |
Collapse
|
188
|
Bai J, Shen N, Liu Y. Associations between the Gut Microbiome and Migraines in Children Aged 7-18 Years: An Analysis of the American Gut Project Cohort. Pain Manag Nurs 2023; 24:35-43. [PMID: 35907763 DOI: 10.1016/j.pmn.2022.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/17/2022] [Accepted: 06/08/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND The gut microbiome seems to play a role in migraines through increasing intestinal epithelial permeability and pro-inflammatory processes. The associations between the gut microbiome and migraines are uncertain in children. AIM The purpose of this quantitative study was to examine the associations between the gut microbiome and migraines in children aged 7-18 years from the American Gut Project (AGP). METHOD A cohort of children aged 7-18 years from the AGP was analyzed. 16S rRNA V4 gene sequences for the gut microbiome, migraines, and demographics were obtained from the AGP Public Repository. After quality control of 16S rRNA gene sequences, α-diversity (Shannon, Faith's_PD, and evenness) and β-diversity metrics (Bray-Curtis and weighted-UniFrac distances), taxonomy, and abundance analyses were implemented using QIIME 2. RESULTS In total, 381 children (341 without migraines; 40 with professional or self-diagnosed migraines) were analyzed with a mean age of 11.5 years. Compared with those without migraines, children with migraines showed lower estimates in Shannon and Faith's_PD (p < .01). Both Bray-Curtis and weighted-UniFrac distances displayed the gut microbial dissimilarities between these two groups (p = .001). Children with migraines had higher abundances in genus of phylum Bacteroidetes (Bacteroides, Parabacteroides, Odoribacter), Actinobacteria (Eggerthella, Varibaculum), Firmicutes (SMB53, Lachnospira, Dorea, Veillonella, Anaerotruncus, Butyricicoccus, Coprobacillus, Eubacterium), and Proteobacteria (Sutterella) than children without migraines. CONCLUSIONS Associations of the gut microbiome diversity and abundances with migraines in children indicated potential biological mechanisms of migraines. Future work needs to confirm our findings in children.
Collapse
Affiliation(s)
- Jinbing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia; Winship Cancer Institute, Emory University, Atlanta, Georgia.
| | - Natalie Shen
- Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Yanqun Liu
- School of Nursing, Wuhan University, Wuhan, China
| |
Collapse
|
189
|
Tornatore S. [Osteomicrobiology - Literature Review]. PRAXIS 2023; 112:83-86. [PMID: 36722108 DOI: 10.1024/1661-8157/a003981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Osteomicrobiology - Literature Review Abstract. Abtract: Several in vivo studies show interesting correlations between microbiota and bone remodeling. The microbiota model and stimulate the immune system, which exerts a direct effect on the bone. The first clinical studies confirm these results and open new perspectives for the prevention of osteoporosis.
Collapse
|
190
|
Are neuromodulation interventions associated with changes in the gut microbiota? A systematic review. Neuropharmacology 2023; 223:109318. [PMID: 36334762 DOI: 10.1016/j.neuropharm.2022.109318] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/21/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022]
Abstract
The microbiota-gut-brain axis (MGBA) refers to the bidirectional communication between the brain and the gut microbiota and recent studies have linked the MGBA to health and disease. Research has so far investigated this axis mainly from microbiota to brain but less is known about the other direction. One approach to examine the MGBA from brain to microbiota is through understanding if and how neuromodulation might impact microbiota. Neuromodulation encompasses a wide range of stimulation techniques and is used to treat neurological, psychiatric and metabolic disorders, like Parkinson's Disease, depression and obesity. Here, we performed a systematic review to investigate whether neuromodulation is associated with subsequent changes in the gut microbiota. Searches in PsycINFO and MEDLINE were performed up to March 2022. Included studies needed to be clinical or preclinical studies comparing the effects of deep brain stimulation, electroconvulsive therapy, repetitive transcranial magnetic stimulation, transcranial direct current stimulation or vagal nerve stimulation on the gut microbiota before and after treatment or between active and control groups. Seven studies were identified. Neuromodulation was associated with changes in relative bacterial abundances, but not with (changes in) α-diversity or β-diversity. Summarizing, currently reported findings suggest that neuromodulation interventions are associated with moderate changes in the gut microbiome. However, findings remain inconclusive due to the limited number and varying quality of included studies, as well as the large heterogeneity between studies. More research is required to more conclusively establish whether, and if so, via which mechanism(s) of action neuromodulation interventions might influence the gut microbiota.
Collapse
|
191
|
Hodgkinson K, El Abbar F, Dobranowski P, Manoogian J, Butcher J, Figeys D, Mack D, Stintzi A. Butyrate's role in human health and the current progress towards its clinical application to treat gastrointestinal disease. Clin Nutr 2023; 42:61-75. [PMID: 36502573 DOI: 10.1016/j.clnu.2022.10.024] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/17/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Butyrate is a key energy source for colonocytes and is produced by the gut microbiota through fermentation of dietary fiber. Butyrate is a histone deacetylase inhibitor and also signals through three G-protein coupled receptors. It is clear that butyrate has an important role in gastrointestinal health and that butyrate levels can impact both host and microbial functions that are intimately coupled with each other. Maintaining optimal butyrate levels improves gastrointestinal health in animal models by supporting colonocyte function, decreasing inflammation, maintaining the gut barrier, and promoting a healthy microbiome. Butyrate has also shown protective actions in the context of intestinal diseases such as inflammatory bowel disease, graft-versus-host disease of the gastrointestinal tract, and colon cancer, whereas lower levels of butyrate and/or the microbes which are responsible for producing this metabolite are associated with disease and poorer health outcomes. However, clinical efforts to increase butyrate levels in humans and reverse these negative outcomes have generated mixed results. This article discusses our current understanding of the molecular mechanisms of butyrate action with a focus on the gastrointestinal system, the links between host and microbial factors, and the efforts that are currently underway to apply the knowledge gained from the bench to bedside.
Collapse
Affiliation(s)
- Kendra Hodgkinson
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Faiha El Abbar
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Peter Dobranowski
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Juliana Manoogian
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - James Butcher
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Daniel Figeys
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; School of Pharmaceutical Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - David Mack
- Department of Paediatrics, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada; Children's Hospital of Eastern Ontario Inflammatory Bowel Disease Centre and Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Alain Stintzi
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
192
|
Chakraborty M, Gautam A, Das O, Masid A, Bhaumik M. Prenatal arsenic exposure stymies gut butyrate production and enhances gut permeability in post natal life even in absence of arsenic deftly through miR122-Occludin pathway. Toxicol Lett 2023; 374:19-30. [PMID: 36473683 DOI: 10.1016/j.toxlet.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 12/11/2022]
Abstract
This discourse attempts to capture a few important dimensions of gut physiology like microbial homeostasis, short chain fatty acid (SCFA) production, occludin expression, and gut permeability in post-natal life of mice those received arsenic only during pre-natal life. Adult Balb/c mice were fed with 4 ppm arsenic trioxide in drinking water during breeding and gestation. After the birth of the pups, the arsenic water was withdrawn and replaced with clean drinking water. The pups were allowed to grow for 28 days (pAs-mice) and age matched Balb/c mice which were never exposed to arsenic served as control The pAs-mice showed a striking reduction in Firmicutes to Bacteroidetes (F/B) ratio coupled with a decrease in tight junction protein, occludin resulting in an increase in gut permeability, increased infiltration of inflammatory cells in the colon and decrease in common SCFAs in which butyrate reduction was quite prominent in fecal samples as compared to normal control. The above phenotypes of pAs-mice were mostly reversed by supplementing 5% sodium butyrate (w/w) with food from 21st to 28th day. The ability of butyrate in enhancing occludin expression, in particular, was dissected further. As miR122 causes degradation of Occludin mRNA, we transiently overexpressed miR122 by injecting appropriate plasmids and showed reversal of butyrate effects in pAs-mice. Thus, pre-natal arsenic exposure orchestrates variety of effects by decreasing butyrate in pAs-mice leading to increased permeability due to reduced occludin expression. Our research adds a new dimension to our understanding that pre-natal arsenic exposure imprints in post-natal life while there was no further arsenic exposure.
Collapse
Affiliation(s)
- Mainak Chakraborty
- Division of Immunology, ICMR-National Institute of Cholera and Enteric Diseases, Beleghata, Kolkata 700010, India
| | - Anupam Gautam
- Department of Algorithms in Bioinformatics, Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany; International Max Planck Research School "From Molecules to Organisms'', Max Planck Institute for Biology Tübingen, Max-Planck-Ring∼5, 72076 Tübingen, Germany
| | - Oishika Das
- Division of Immunology, ICMR-National Institute of Cholera and Enteric Diseases, Beleghata, Kolkata 700010, India
| | - Aaheli Masid
- Division of Immunology, ICMR-National Institute of Cholera and Enteric Diseases, Beleghata, Kolkata 700010, India
| | - Moumita Bhaumik
- Division of Immunology, ICMR-National Institute of Cholera and Enteric Diseases, Beleghata, Kolkata 700010, India.
| |
Collapse
|
193
|
Parrón-Ballesteros J, Gordo RG, López-Rodríguez JC, Olmo N, Villalba M, Batanero E, Turnay J. Beyond allergic progression: From molecules to microbes as barrier modulators in the gut-lung axis functionality. FRONTIERS IN ALLERGY 2023; 4:1093800. [PMID: 36793545 PMCID: PMC9923236 DOI: 10.3389/falgy.2023.1093800] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023] Open
Abstract
The "epithelial barrier hypothesis" states that a barrier dysfunction can result in allergy development due to tolerance breakdown. This barrier alteration may come from the direct contact of epithelial and immune cells with the allergens, and indirectly, through deleterious effects caused by environmental changes triggered by industrialization, pollution, and changes in the lifestyle. Apart from their protective role, epithelial cells can respond to external factors secreting IL-25 IL-33, and TSLP, provoking the activation of ILC2 cells and a Th2-biased response. Several environmental agents that influence epithelial barrier function, such as allergenic proteases, food additives or certain xenobiotics are reviewed in this paper. In addition, dietary factors that influence the allergenic response in a positive or negative way will be also described here. Finally, we discuss how the gut microbiota, its composition, and microbe-derived metabolites, such as short-chain fatty acids, alter not only the gut but also the integrity of distant epithelial barriers, focusing this review on the gut-lung axis.
Collapse
Affiliation(s)
- Jorge Parrón-Ballesteros
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Rubén García Gordo
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Juan Carlos López-Rodríguez
- The Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom,The Francis Crick Institute, London, United Kingdom
| | - Nieves Olmo
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Mayte Villalba
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Eva Batanero
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Javier Turnay
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain,Correspondence: Javier Turnay
| |
Collapse
|
194
|
Cao Y, Li Y, Han W, Jia X, Zhu P, Wei B, Cong X, Wang Z. Sodium Butyrate Ameliorates Type 2 Diabetes-Related Sarcopenia Through IL-33-Independent ILC2s/IL-13/STAT3 Signaling Pathway. J Inflamm Res 2023; 16:343-358. [PMID: 36733489 PMCID: PMC9888475 DOI: 10.2147/jir.s392350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Purpose Sarcopenia has been described as a new complication of type 2 diabetes mellitus (T2DM). T2DM and sarcopenia impact each other, resulting in a variety of adverse outcomes such as frailty, disability, poor quality of life and increased mortality. Sodium butyrate (NaB) is reported to play a protective role against T2DM. The present study aimed to investigate whether NaB could ameliorate T2DM-related sarcopenia and the underlying mechanisms. Materials and Methods The male db/db mice at 7-weeks were used as T2DM-related sarcopenia animal model with C57BL/6J mice as control. Mice were grouped according to whether they received NaB orally as follows: C57BL/6J+water group, C57BL/6J+NaB group, db/db+water group, and db/db+NaB group. Then, db/db mice receiving NaB orally were administered with inhibitors of group 2 innate lymphocytes (ILC2s), anti-CD90.2 by intraperitoneal injection divided into db/db+NaB+PBS group and db/db+NaB+anti-CD90.2 group. NaB dissolved in water at 150 mM. The skeletal muscle mass was measured by dural X-ray (DXA) test. ILC2s in spleen and skeletal muscle were evaluated by flow cytometry. The expressions of IL-33, IL-13, STAT3, P-STAT3, GATA-3 and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) were assessed by ELISA or WB. The morphology of skeletal muscle fibers was assessed by immunofluorescence staining. Results The proportion of ILC2s and the expressions of ILC2s markers IL-13 and GATA-3 were all significantly decreased in db/db mice, and these changes were improved by NaB. NaB increased the proportion of slow-twitch fibers in gastrocnemius, thus partially reversing the reduced exercise capacity of db/db mice. The expression of slow-twitch fibers marker PGC-1α induced by NaB was increased via activation of ILC2s/IL-13/STAT3 pathway. On the other way, IL-33 was not necessary for the activation of ILC2s/IL-13/STAT3 pathway. After depletion of ILC2s by anti-CD90.2, the ameliorating effect of NaB on T2DM-related sarcopenia was partially antagonized. Conclusion These results indicated that NaB could ameliorate type 2 diabetes-related sarcopenia by activating IL-33-independent ILC2s/IL-13/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Yuan Cao
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, People’s Republic of China,State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Jinan, People’s Republic of China,Department of Cardiology, Qilu Hospital, Shandong University, Jinan, People’s Republic of China
| | - Yulin Li
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, People’s Republic of China,State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Jinan, People’s Republic of China,Department of Cardiology, Qilu Hospital, Shandong University, Jinan, People’s Republic of China
| | - Wenqiang Han
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, People’s Republic of China,State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Jinan, People’s Republic of China,Department of Cardiology, Qilu Hospital, Shandong University, Jinan, People’s Republic of China
| | - Xu Jia
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, People’s Republic of China,State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Jinan, People’s Republic of China,Department of Cardiology, Qilu Hospital, Shandong University, Jinan, People’s Republic of China
| | - Ping Zhu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, People’s Republic of China,State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Jinan, People’s Republic of China,Department of Cardiology, Qilu Hospital, Shandong University, Jinan, People’s Republic of China
| | - Bin Wei
- Shandong Asia-Pacific Highvarve Organisms Science and Technology Co, Ltd, Jinan, People’s Republic of China
| | - Xiaoyan Cong
- Institute of Animal Science and Veterinary Medicine, Shandong Key Laboratory of Animal Disease Control and Breeding, Shandong Academy of Agricultural Sciences, Jinan, People’s Republic of China,Jinan Kuoda Biotechnology Co, Ltd, Jinan, People’s Republic of China,Correspondence: Xiaoyan Cong; Zhihao Wang, Email ;
| | - Zhihao Wang
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
195
|
Marhuenda-Egea FC, Narro-Serrano J, Shalabi-Benavent MJ, Álamo-Marzo JM, Amador-Prous C, Algado-Rabasa JT, Garijo-Saiz AM, Marco-Escoto M. A metabolic readout of the urine metabolome of COVID-19 patients. Metabolomics 2023; 19:7. [PMID: 36694097 PMCID: PMC9873393 DOI: 10.1007/s11306-023-01971-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023]
Abstract
Analysis of urine samples from COVID-19 patients by 1H NMR reveals important metabolic alterations due to SAR-CoV-2 infection. Previous studies have identified biomarkers in urine that reflect metabolic alterations in COVID-19 patients. We have used 1H NMR to better define these metabolic alterations since this technique allows us to obtain a broad profile of the metabolites present in urine. This technique offers the advantage that sample preparation is very simple and gives us very complete information on the metabolites present. To detect these alterations, we have compared urine samples from COVID-19 patients (n = 35) with healthy people (n = 18). We used unsupervised (Robust PCA) and supervised (PLS-LDA) multivariate analysis methods to evaluate the differences between the two groups: COVID-19 and healthy controls. The differences focus on a group of metabolites related to energy metabolism (glucose, ketone bodies, glycine, creatinine, and citrate) and other processes related to bacterial flora (TMAO and formic acid) and detoxification (hippuric acid). The alterations in the urinary metabolome shown in this work indicate that SARS-CoV-2 causes a metabolic change from a normal situation of glucose consumption towards a gluconeogenic situation and possible insulin resistance.
Collapse
Affiliation(s)
- F C Marhuenda-Egea
- Departamento de Agroquímica y Bioquímica, Universidad de Alicante, Alicante, Spain.
| | - J Narro-Serrano
- Departamento de Química Física, Universidad de Alicante, Alicante, Spain
| | | | - J M Álamo-Marzo
- Biochemical Laboratory, Hospital Marina Baixa, Villajoyosa, Spain
| | | | | | | | | |
Collapse
|
196
|
Campbell C, Kandalgaonkar MR, Golonka RM, Yeoh BS, Vijay-Kumar M, Saha P. Crosstalk between Gut Microbiota and Host Immunity: Impact on Inflammation and Immunotherapy. Biomedicines 2023; 11:294. [PMID: 36830830 PMCID: PMC9953403 DOI: 10.3390/biomedicines11020294] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Gut microbes and their metabolites are actively involved in the development and regulation of host immunity, which can influence disease susceptibility. Herein, we review the most recent research advancements in the gut microbiota-immune axis. We discuss in detail how the gut microbiota is a tipping point for neonatal immune development as indicated by newly uncovered phenomenon, such as maternal imprinting, in utero intestinal metabolome, and weaning reaction. We describe how the gut microbiota shapes both innate and adaptive immunity with emphasis on the metabolites short-chain fatty acids and secondary bile acids. We also comprehensively delineate how disruption in the microbiota-immune axis results in immune-mediated diseases, such as gastrointestinal infections, inflammatory bowel diseases, cardiometabolic disorders (e.g., cardiovascular diseases, diabetes, and hypertension), autoimmunity (e.g., rheumatoid arthritis), hypersensitivity (e.g., asthma and allergies), psychological disorders (e.g., anxiety), and cancer (e.g., colorectal and hepatic). We further encompass the role of fecal microbiota transplantation, probiotics, prebiotics, and dietary polyphenols in reshaping the gut microbiota and their therapeutic potential. Continuing, we examine how the gut microbiota modulates immune therapies, including immune checkpoint inhibitors, JAK inhibitors, and anti-TNF therapies. We lastly mention the current challenges in metagenomics, germ-free models, and microbiota recapitulation to a achieve fundamental understanding for how gut microbiota regulates immunity. Altogether, this review proposes improving immunotherapy efficacy from the perspective of microbiome-targeted interventions.
Collapse
Affiliation(s)
- Connor Campbell
- Department of Physiology & Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Mrunmayee R. Kandalgaonkar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Rachel M. Golonka
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Beng San Yeoh
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Matam Vijay-Kumar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Piu Saha
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
197
|
Diet Composition and Using Probiotics or Symbiotics Can Modify the Urinary and Faecal Nitrogen Ratio of Broiler Chicken's Excreta and Also the Dynamics of In Vitro Ammonia Emission. Animals (Basel) 2023; 13:ani13030332. [PMID: 36766221 PMCID: PMC9913522 DOI: 10.3390/ani13030332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
The objective of this research was to determine whether diet composition, or adding probiotic or symbiotic feed additives to broiler diets can modify the N composition of the excreta and the dynamics of ammonia volatilization from the manure. A total of 574 one-day-old Ross 308 broiler chickens were fed four different diets. The treatments included a corn and soybean meal-based control diets (C), wheat-based and wheat bran containing diets (W), a multi-strain probiotic treatment (Broilact®; Br), and a symbiotic additive containing Bacillus subtilis, inulin, and Saccharomices cerevisiae (Sy). Feeding the wheat-based diet significantly improved the weight gain and FCR of chickens. Treatment W also significantly increased the dry matter content of the excreta compared with the probiotic and symbiotic treatments. Both Br and Sy tended to decrease the amount of excreted uric acid, which is the main substrate of ammonia. Treatment Sy reduced the urinary N ratio of the excreta in comparison with treatment W. The symbiotic additive resulted in significantly higher ammonia emission in the first two hours. On the other hand, the dynamics of the emission was slow at the beginning and increased steeply after 15 h when the wheat-based diets were fed. Based on our results, the wheat-based diets, containing soluble arabinoxylans, and the symbiotic treatments of broiler diets have an impact on the urinary and faecal nitrogen composition of the excreta, and also on the dynamics of ammonia release from the manure.
Collapse
|
198
|
Singh V, Lee G, Son H, Koh H, Kim ES, Unno T, Shin JH. Butyrate producers, "The Sentinel of Gut": Their intestinal significance with and beyond butyrate, and prospective use as microbial therapeutics. Front Microbiol 2023; 13:1103836. [PMID: 36713166 PMCID: PMC9877435 DOI: 10.3389/fmicb.2022.1103836] [Citation(s) in RCA: 177] [Impact Index Per Article: 88.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Gut-microbial butyrate is a short-chain fatty acid (SCFA) of significant physiological importance than the other major SCFAs (acetate and propionate). Most butyrate producers belong to the Clostridium cluster of the phylum Firmicutes, such as Faecalibacterium, Roseburia, Eubacterium, Anaerostipes, Coprococcus, Subdoligranulum, and Anaerobutyricum. They metabolize carbohydrates via the butyryl-CoA: acetate CoA-transferase pathway and butyrate kinase terminal enzymes to produce most of butyrate. Although, in minor fractions, amino acids can also be utilized to generate butyrate via glutamate and lysine pathways. Butyrogenic microbes play a vital role in various gut-associated metabolisms. Butyrate is used by colonocytes to generate energy, stabilizes hypoxia-inducible factor to maintain the anaerobic environment in the gut, maintains gut barrier integrity by regulating Claudin-1 and synaptopodin expression, limits pro-inflammatory cytokines (IL-6, IL-12), and inhibits oncogenic pathways (Akt/ERK, Wnt, and TGF-β signaling). Colonic butyrate producers shape the gut microbial community by secreting various anti-microbial substances, such as cathelicidins, reuterin, and β-defensin-1, and maintain gut homeostasis by releasing anti-inflammatory molecules, such as IgA, vitamin B, and microbial anti-inflammatory molecules. Additionally, butyrate producers, such as Roseburia, produce anti-carcinogenic metabolites, such as shikimic acid and a precursor of conjugated linoleic acid. In this review, we summarized the significance of butyrate, critically examined the role and relevance of butyrate producers, and contextualized their importance as microbial therapeutics.
Collapse
Affiliation(s)
- Vineet Singh
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - GyuDae Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - HyunWoo Son
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Hong Koh
- Department of Pediatrics, Severance Fecal Microbiota Transplantation Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Soo Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Tatsuya Unno
- Faculty of Biotechnology, School of Life Sciences, SARI, Jeju National University, Jeju, Republic of Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- Department of Integrative Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
199
|
Wang X, Luo H, Wang D, Zheng Y, Zhu W, Zhang W, Chen Z, Chen X, Shao J. Partial Substitution of Fish Meal with Soy Protein Concentrate on Growth, Liver Health, Intestinal Morphology, and Microbiota in Juvenile Large Yellow Croaker ( Larimichthys crocea). AQUACULTURE NUTRITION 2023; 2023:3706709. [PMID: 36860984 PMCID: PMC9973153 DOI: 10.1155/2023/3706709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/06/2022] [Accepted: 11/21/2022] [Indexed: 06/18/2023]
Abstract
The present study investigated the growth performance, feed utilization, intestinal morphology, and microbiota communities of juvenile large yellow croaker (Larimichthys crocea) fed diets containing different proportions of soy protein concentrate (SPC) (0, 15%, 30%, and 45%, namely FM, SPC15, SPC30, and SPC45) as a substitute for fish meal (FM) for 8 weeks. The weight gain (WG) and specific growth rate (SGR) in fish fed SPC45 were significantly lower than those fed FM and SPC15 but not differ with these fed SPC30. The feed efficiency (FE) and protein efficiency ratio (PER) decreased sharply when the dietary SPC inclusion level was higher than 15%. The activity of alanine aminotransferase (ALT) and expression of alt and aspartate aminotransferase (ast) were significantly higher in fish fed SPC45 than those fed FM. The activity and mRNA expression of acid phosphatase were opposite. The villi height (VH) in distal intestine (DI) showed a significant quadratic response to increasing dietary SPC inclusion levels and was highest in SPC15. The VH in proximal intestine, middle intestine decreased significantly with increasing dietary SPC levels. The 16S rRNA sequences in intestine revealed that fish fed SPC15 had higher bacterial diversity and abundance of Phylum Firmicutes such as order Lactobacillales and order Rhizobiaceae than those fed other diets. Genus vibrio, family Vibrionaceae and order Vibrionales within phylum Proteobacteria were enriched in fish fed FM and SPC30 diets. Tyzzerella and Shewanella that belongs to phylum Firmicutes and Proteobacteria, respectively, were enriched in fish fed SPC45 diet. Our results indicated that SPC replacing more than 30% FM could lead to lower quality diet, retard growth performance, ill health, disordered intestine structure, and microbiota communities. Tyzzerella could be the bacteria indicator of intestinal in large yellow croaker fed low quality diet due to high SPC content. Based on the quadratic regression analysis of WG, the best growth performance could be observed when the replacement of FM with SPC was 9.75%.
Collapse
Affiliation(s)
- Xuexi Wang
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongjie Luo
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dejuan Wang
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yunzong Zheng
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenbo Zhu
- Fuzhou Haima Feed Co., Ltd., Fuzhou 350002, China
| | - Weini Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | | | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianchun Shao
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
200
|
Redox Remodeling by Nutraceuticals for Prevention and Treatment of Acute and Chronic Inflammation. Antioxidants (Basel) 2023; 12:antiox12010132. [PMID: 36670995 PMCID: PMC9855137 DOI: 10.3390/antiox12010132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Antioxidant-rich dietary regimens are considered the best practice to maintain health, control inflammation, and prevent inflammatory diseases. Yet, nutraceuticals as food supplements are self-prescribed and purchasable over the counter by healthy individuals for the purpose of beneficial effects on fitness and aging. Hence, the effectiveness, safety, and correct intake of these compounds need to be better explored. Since redox-modulating activity of these compounds appears to be involved in activation and or suppression of immune cells, the preventive use of nutraceuticals is very attractive even for healthy people. This review focuses on redox- and immunomodulating nutraceuticals in the context of diabetes mellitus (DM). In fact, DM is an illustrative disease of latent and predictable inflammatory pathogenetic processes set out and sustained by oxidative stress. DM has been thoroughly investigated through in vitro and in vivo models. Furthermore, human DM is characterized by uncontrolled levels of glucose, a pivotal factor shaping immune responses. Hence, antioxidant nutraceuticals with multifaced activities, including glucose keeping, are described here. A greater number of such multi-player nutraceuticals might be identified using DM animal models and validated in clinical settings on genetic and environmental high-risk individuals.
Collapse
|