151
|
Jozwik A, Habibi MS, Paras A, Zhu J, Guvenel A, Dhariwal J, Almond M, Wong EHC, Sykes A, Maybeno M, Del Rosario J, Trujillo-Torralbo MB, Mallia P, Sidney J, Peters B, Kon OM, Sette A, Johnston SL, Openshaw PJ, Chiu C. RSV-specific airway resident memory CD8+ T cells and differential disease severity after experimental human infection. Nat Commun 2015; 6:10224. [PMID: 26687547 PMCID: PMC4703893 DOI: 10.1038/ncomms10224] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/16/2015] [Indexed: 12/30/2022] Open
Abstract
In animal models, resident memory CD8+ T (Trm) cells assist in respiratory virus elimination but their importance in man has not been determined. Here, using experimental human respiratory syncytial virus (RSV) infection, we investigate systemic and local virus-specific CD8+ T-cell responses in adult volunteers. Having defined the immunodominance hierarchy, we analyse phenotype and function longitudinally in blood and by serial bronchoscopy. Despite rapid clinical recovery, we note surprisingly extensive lower airway inflammation with persistent viral antigen and cellular infiltrates. Pulmonary virus-specific CD8+ T cells display a CD69+CD103+ Trm phenotype and accumulate to strikingly high frequencies into convalescence without continued proliferation. While these have a more highly differentiated phenotype, they express fewer cytotoxicity markers than in blood. Nevertheless, their abundance before infection correlates with reduced symptoms and viral load, implying that CD8+ Trm cells in the human lung can confer protection against severe respiratory viral disease when humoral immunity is overcome.
Collapse
Affiliation(s)
- Agnieszka Jozwik
- National Heart and Lung Institute, Imperial College London, London W2 1PG, UK
| | | | - Allan Paras
- National Heart and Lung Institute, Imperial College London, London W2 1PG, UK
| | - Jie Zhu
- National Heart and Lung Institute, Imperial College London, London W2 1PG, UK
| | - Aleks Guvenel
- National Heart and Lung Institute, Imperial College London, London W2 1PG, UK
| | - Jaideep Dhariwal
- National Heart and Lung Institute, Imperial College London, London W2 1PG, UK
| | - Mark Almond
- National Heart and Lung Institute, Imperial College London, London W2 1PG, UK
| | - Ernie H. C. Wong
- National Heart and Lung Institute, Imperial College London, London W2 1PG, UK
| | - Annemarie Sykes
- National Heart and Lung Institute, Imperial College London, London W2 1PG, UK
| | - Matthew Maybeno
- Centre for Infectious Disease, Division of Vaccine Discovery, La Jolla Institute of Allergy and Immunology, 9420 Athena Circle, La Jolla, California 92037, USA
| | - Jerico Del Rosario
- National Heart and Lung Institute, Imperial College London, London W2 1PG, UK
| | | | - Patrick Mallia
- National Heart and Lung Institute, Imperial College London, London W2 1PG, UK
| | - John Sidney
- Centre for Infectious Disease, Division of Vaccine Discovery, La Jolla Institute of Allergy and Immunology, 9420 Athena Circle, La Jolla, California 92037, USA
| | - Bjoern Peters
- Centre for Infectious Disease, Division of Vaccine Discovery, La Jolla Institute of Allergy and Immunology, 9420 Athena Circle, La Jolla, California 92037, USA
| | - Onn Min Kon
- National Heart and Lung Institute, Imperial College London, London W2 1PG, UK
| | - Alessandro Sette
- Centre for Infectious Disease, Division of Vaccine Discovery, La Jolla Institute of Allergy and Immunology, 9420 Athena Circle, La Jolla, California 92037, USA
| | | | - Peter J. Openshaw
- National Heart and Lung Institute, Imperial College London, London W2 1PG, UK
| | - Christopher Chiu
- National Heart and Lung Institute, Imperial College London, London W2 1PG, UK
| |
Collapse
|
152
|
Swadling L, Capone S, Antrobus RD, Brown A, Richardson R, Newell EW, Halliday J, Kelly C, Bowen D, Fergusson J, Kurioka A, Ammendola V, Del Sorbo M, Grazioli F, Esposito ML, Siani L, Traboni C, Hill A, Colloca S, Davis M, Nicosia A, Cortese R, Folgori A, Klenerman P, Barnes E. A human vaccine strategy based on chimpanzee adenoviral and MVA vectors that primes, boosts, and sustains functional HCV-specific T cell memory. Sci Transl Med 2015; 6:261ra153. [PMID: 25378645 DOI: 10.1126/scitranslmed.3009185] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A protective vaccine against hepatitis C virus (HCV) remains an unmet clinical need. HCV infects millions of people worldwide and is a leading cause of liver cirrhosis and hepatocellular cancer. Animal challenge experiments, immunogenetics studies, and assessment of host immunity during acute infection highlight the critical role that effective T cell immunity plays in viral control. In this first-in-man study, we have induced antiviral immunity with functional characteristics analogous to those associated with viral control in natural infection, and improved upon a vaccine based on adenoviral vectors alone. We assessed a heterologous prime-boost vaccination strategy based on a replicative defective simian adenoviral vector (ChAd3) and modified vaccinia Ankara (MVA) vector encoding the NS3, NS4, NS5A, and NS5B proteins of HCV genotype 1b. Analysis used single-cell mass cytometry and human leukocyte antigen class I peptide tetramer technology in healthy human volunteers. We show that HCV-specific T cells induced by ChAd3 are optimally boosted with MVA, and generate very high levels of both CD8(+) and CD4(+) HCV-specific T cells targeting multiple HCV antigens. Sustained memory and effector T cell populations are generated, and T cell memory evolved over time with improvement of quality (proliferation and polyfunctionality) after heterologous MVA boost. We have developed an HCV vaccine strategy, with durable, broad, sustained, and balanced T cell responses, characteristic of those associated with viral control, paving the way for the first efficacy studies of a prophylactic HCV vaccine.
Collapse
Affiliation(s)
- Leo Swadling
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK
| | - Stefania Capone
- ReiThera Srl (ex Okairos), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Richard D Antrobus
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK. The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Anthony Brown
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK
| | - Rachel Richardson
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK
| | - Evan W Newell
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA. Singapore Immunology Network, Singapore 138648, Singapore
| | - John Halliday
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK. National Institute for Health Research Oxford Biomedical Research Centre, and Translational Gastroenterology Unit, Oxford OX3 7LE, UK
| | - Christabel Kelly
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK. National Institute for Health Research Oxford Biomedical Research Centre, and Translational Gastroenterology Unit, Oxford OX3 7LE, UK
| | - Dan Bowen
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK
| | - Joannah Fergusson
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK
| | - Ayako Kurioka
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK
| | | | | | - Fabiana Grazioli
- ReiThera Srl (ex Okairos), Viale Città d'Europa 679, 00144 Rome, Italy
| | | | - Loredana Siani
- ReiThera Srl (ex Okairos), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Cinzia Traboni
- ReiThera Srl (ex Okairos), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Adrian Hill
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK. The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Stefano Colloca
- ReiThera Srl (ex Okairos), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Mark Davis
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Alfredo Nicosia
- ReiThera Srl (ex Okairos), Viale Città d'Europa 679, 00144 Rome, Italy. CEINGE, via Gaetano Salvatore 486, 80145 Naples, Italy. Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | | | - Antonella Folgori
- ReiThera Srl (ex Okairos), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK. National Institute for Health Research Oxford Biomedical Research Centre, and Translational Gastroenterology Unit, Oxford OX3 7LE, UK
| | - Eleanor Barnes
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK. The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK. National Institute for Health Research Oxford Biomedical Research Centre, and Translational Gastroenterology Unit, Oxford OX3 7LE, UK.
| |
Collapse
|
153
|
Aberle JH, Schwaiger J, Aberle SW, Stiasny K, Scheinost O, Kundi M, Chmelik V, Heinz FX. Human CD4+ T Helper Cell Responses after Tick-Borne Encephalitis Vaccination and Infection. PLoS One 2015; 10:e0140545. [PMID: 26465323 PMCID: PMC4605778 DOI: 10.1371/journal.pone.0140545] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/28/2015] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is a human-pathogenic flavivirus that is endemic in large parts of Europe and Asia and causes severe neuroinvasive illness. A formalin-inactivated vaccine induces strong neutralizing antibody responses and confers protection from TBE disease. CD4+ T cell responses are essential for neutralizing antibody production, but data on the functionalities of TBEV-specific CD4+ T cells in response to vaccination or infection are lacking. This study provides a comprehensive analysis of the cytokine patterns of CD4+ T cell responses in 20 humans after TBE vaccination in comparison to those in 18 patients with TBEV infection. Specifically, Th1-specific cytokines (IFN-γ, IL-2, TNF-α), CD40 ligand and the Th1 lineage-specifying transcription factor Tbet were determined upon stimulation with peptides covering the TBEV structural proteins contained in the vaccine (C-capsid, prM/M-membrane and E-envelope). We show that TBEV-specific CD4+ T cell responses are polyfunctional, but the cytokine patterns after vaccination differed from those after infection. TBE vaccine responses were characterized by lower IFN-γ responses and high proportions of TNF-α+IL-2+ cells. In vaccine-induced responses—consistent with the reduced IFN-γ expression patterns—less than 50% of TBEV peptides were detected by IFN-γ+ cells as compared to 96% detected by IL-2+ cells, indicating that the single use of IFN-γ as a read-out strongly underestimates the magnitude and breadth of such responses. The results provide important insights into the functionalities of CD4+ T cells that coordinate vaccine responses and have direct implications for future studies that address epitope specificity and breadth of these responses.
Collapse
Affiliation(s)
- Judith H. Aberle
- Department of Virology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| | - Julia Schwaiger
- Department of Virology, Medical University of Vienna, Vienna, Austria
| | - Stephan W. Aberle
- Department of Virology, Medical University of Vienna, Vienna, Austria
| | - Karin Stiasny
- Department of Virology, Medical University of Vienna, Vienna, Austria
| | - Ondrej Scheinost
- Laboratory of Molecular Genetics, Hospital České Budĕjovice, České Budĕjovice, Czech Republic
| | - Michael Kundi
- Centre for Public Health, Medical University of Vienna, Vienna, Austria
| | - Vaclav Chmelik
- Department of Infectious Diseases, Hospital České Budĕjovice, České Budĕjovice, Czech Republic
| | - Franz X. Heinz
- Department of Virology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
154
|
Schulz AR, Mälzer JN, Domingo C, Jürchott K, Grützkau A, Babel N, Nienen M, Jelinek T, Niedrig M, Thiel A. Low Thymic Activity and Dendritic Cell Numbers Are Associated with the Immune Response to Primary Viral Infection in Elderly Humans. THE JOURNAL OF IMMUNOLOGY 2015; 195:4699-711. [DOI: 10.4049/jimmunol.1500598] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 09/21/2015] [Indexed: 11/19/2022]
|
155
|
Biasco L, Scala S, Basso Ricci L, Dionisio F, Baricordi C, Calabria A, Giannelli S, Cieri N, Barzaghi F, Pajno R, Al-Mousa H, Scarselli A, Cancrini C, Bordignon C, Roncarolo MG, Montini E, Bonini C, Aiuti A. In vivo tracking of T cells in humans unveils decade-long survival and activity of genetically modified T memory stem cells. Sci Transl Med 2015; 7:273ra13. [PMID: 25653219 DOI: 10.1126/scitranslmed.3010314] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A definitive understanding of survival and differentiation potential in humans of T cell subpopulations is of paramount importance for the development of effective T cell therapies. In particular, uncovering the dynamics in vivo in humans of the recently described T memory stem cells (TSCM) would be crucial for therapeutic approaches that aim at taking advantage of a stable cellular vehicle with precursor potential. We exploited data derived from two gene therapy clinical trials for an inherited immunodeficiency, using either retrovirally engineered hematopoietic stem cells or mature lymphocytes to trace individual T cell clones directly in vivo in humans. We compared healthy donors and bone marrow-transplanted patients, studied long-term in vivo T cell composition under different clinical conditions, and specifically examined TSCM contribution according to age, conditioning regimen, disease background, cell source, long-term reconstitution, and ex vivo gene correction processing. High-throughput sequencing of retroviral vector integration sites (ISs) allowed tracing the fate of more than 1700 individual T cell clones in gene therapy patients after infusion of gene-corrected hematopoietic stem cells or mature lymphocytes. We shed light on long-term in vivo clonal relationships among different T cell subtypes, and we unveiled that TSCM are able to persist and to preserve their precursor potential in humans for up to 12 years after infusion of gene-corrected lymphocytes. Overall, this work provides high-resolution tracking of T cell fate and activity and validates, in humans, the safe and functional decade-long survival of engineered TSCM, paving the way for their future application in clinical settings.
Collapse
Affiliation(s)
- Luca Biasco
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Division of Regenerative Medicine, Stem Cells, and Gene Therapy, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan 20132, Italy.
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Division of Regenerative Medicine, Stem Cells, and Gene Therapy, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan 20132, Italy. Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Luca Basso Ricci
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Division of Regenerative Medicine, Stem Cells, and Gene Therapy, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan 20132, Italy
| | - Francesca Dionisio
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Division of Regenerative Medicine, Stem Cells, and Gene Therapy, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan 20132, Italy
| | - Cristina Baricordi
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Division of Regenerative Medicine, Stem Cells, and Gene Therapy, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan 20132, Italy
| | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Division of Regenerative Medicine, Stem Cells, and Gene Therapy, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan 20132, Italy
| | - Stefania Giannelli
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Division of Regenerative Medicine, Stem Cells, and Gene Therapy, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan 20132, Italy
| | | | - Federica Barzaghi
- Pediatric Immunohematology and Stem Cell Programme, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Roberta Pajno
- Pediatric Immunohematology and Stem Cell Programme, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Hamoud Al-Mousa
- King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia
| | - Alessia Scarselli
- Department of Pediatrics, Ospedale Pediatrico Bambino Gesù and University of Rome "Tor Vergata," Rome 00165, Italy
| | - Caterina Cancrini
- Department of Pediatrics, Ospedale Pediatrico Bambino Gesù and University of Rome "Tor Vergata," Rome 00165, Italy
| | | | - Maria Grazia Roncarolo
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Division of Regenerative Medicine, Stem Cells, and Gene Therapy, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan 20132, Italy. Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Division of Regenerative Medicine, Stem Cells, and Gene Therapy, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan 20132, Italy
| | - Chiara Bonini
- IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Alessandro Aiuti
- Department of Pediatrics, Ospedale Pediatrico Bambino Gesù and University of Rome "Tor Vergata," Rome 00165, Italy. TIGET, Pediatric Immunohematology and Stem Cell Programme, San Raffaele Scientific Institute, Milan 20132, Italy.
| |
Collapse
|
156
|
Guiding dengue vaccine development using knowledge gained from the success of the yellow fever vaccine. Cell Mol Immunol 2015; 13:36-46. [PMID: 26435066 DOI: 10.1038/cmi.2015.76] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 06/15/2015] [Accepted: 07/14/2015] [Indexed: 12/30/2022] Open
Abstract
Flaviviruses comprise approximately 70 closely related RNA viruses. These include several mosquito-borne pathogens, such as yellow fever virus (YFV), dengue virus (DENV), and Japanese encephalitis virus (JEV), which can cause significant human diseases and thus are of great medical importance. Vaccines against both YFV and JEV have been used successfully in humans for decades; however, the development of a DENV vaccine has encountered considerable obstacles. Here, we review the protective immune responses elicited by the vaccine against YFV to provide some insights into the development of a protective DENV vaccine.
Collapse
|
157
|
Fuertes Marraco SA, Soneson C, Delorenzi M, Speiser DE. Genome-wide RNA profiling of long-lasting stem cell-like memory CD8 T cells induced by Yellow Fever vaccination in humans. GENOMICS DATA 2015; 5:297-301. [PMID: 26484272 PMCID: PMC4583680 DOI: 10.1016/j.gdata.2015.06.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 06/19/2015] [Indexed: 10/31/2022]
Abstract
The live-attenuated Yellow Fever (YF) vaccine YF-17D induces a broad and polyfunctional CD8 T cell response in humans. Recently, we identified a population of stem cell-like memory CD8 T cells induced by YF-17D that persists at stable frequency for at least 25 years after vaccination. The YF-17D is thus a model system of human CD8 T cell biology that furthermore allows to track and study long-lasting and antigen-specific human memory CD8 T cells. Here, we describe in detail the sample characteristics and preparation of a microarray dataset acquired for genome-wide gene expression profiling of long-lasting YF-specific stem cell-like memory CD8 T cells, compared to the reference CD8 T cell differentiation subsets from total CD8 T cells. We also describe the quality controls, annotations and exploratory analyses of the dataset. The microarray data is available from the Gene Expression Omnibus (GEO) public repository with accession number GSE65804.
Collapse
Affiliation(s)
- Silvia A Fuertes Marraco
- Ludwig Cancer Center, University of Lausanne, Switzerland ; Department of Oncology, Lausanne University Hospital (CHUV), Switzerland
| | - Charlotte Soneson
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Mauro Delorenzi
- Ludwig Cancer Center, University of Lausanne, Switzerland ; Department of Oncology, Lausanne University Hospital (CHUV), Switzerland ; Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Daniel E Speiser
- Ludwig Cancer Center, University of Lausanne, Switzerland ; Department of Oncology, Lausanne University Hospital (CHUV), Switzerland
| |
Collapse
|
158
|
Transient global T cell activation after vaccination of rhesus macaques with a DNA-poxvirus vaccine regimen for HIV. Vaccine 2015; 33:3435-9. [PMID: 26055294 DOI: 10.1016/j.vaccine.2015.05.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 03/04/2015] [Accepted: 05/26/2015] [Indexed: 11/21/2022]
Abstract
Persistent T cell activation following immunization with HIV vaccines may increase HIV acquisition risk. We investigated the magnitude and kinetics of T cell activation following vaccination of rhesus macaques with a candidate HIV vaccine consisting of a recombinant DNA and MVA vaccination regimen. We show that global CD4+ and CD8+ T cell activation, as measured by the expression of Ki67 and Bcl-2, peaked one week after boosting with MVA, but then waned rapidly to pre-vaccination levels. Furthermore, increased frequencies of CD4+ CCR5+ T cells, which represent potential HIV target cells, were short-lived and decreased to baseline levels within two months. Activated CD4+ T cells were predominantly of a central memory phenotype, and activated CD8+ T cells were distributed between central and effector memory phenotypes. Thus, only transient changes in T cell activation occurred following poxvirus vaccination, indicating a lack of persistent immune activation.
Collapse
|
159
|
Kissick HT, Sanda MG. The role of active vaccination in cancer immunotherapy: lessons from clinical trials. Curr Opin Immunol 2015; 35:15-22. [PMID: 26050634 DOI: 10.1016/j.coi.2015.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/06/2015] [Accepted: 05/08/2015] [Indexed: 01/05/2023]
Abstract
In the past few years, a number of different immunotherapeutic strategies have shown impressive results in cancer patients. These successful approaches include blockade of immunosuppressive molecules like PD-1 and CTLA-4, adoptive transfer of patient derived and genetically modified T-cells, and vaccines that stimulate tumor antigen specific T-cells. However, several large vaccine trials recently failed to reach designated primary endpoints. In light of the success of other immunotherapeutic approaches, these negative results raise the questions of why vaccines have not generated a better response, and what the role of active vaccination will be moving forward in cancer immunotherapy.
Collapse
Affiliation(s)
- Haydn T Kissick
- Department of Urology, Emory University School of Medicine, United States; Department of Microbiology and Immunology, Emory University School of Medicine, United States.
| | - Martin G Sanda
- Department of Urology, Emory University School of Medicine, United States
| |
Collapse
|
160
|
Talker SC, Koinig HC, Stadler M, Graage R, Klingler E, Ladinig A, Mair KH, Hammer SE, Weissenböck H, Dürrwald R, Ritzmann M, Saalmüller A, Gerner W. Magnitude and kinetics of multifunctional CD4+ and CD8β+ T cells in pigs infected with swine influenza A virus. Vet Res 2015; 46:52. [PMID: 25971313 PMCID: PMC4429459 DOI: 10.1186/s13567-015-0182-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/14/2015] [Indexed: 11/12/2022] Open
Abstract
Although swine are natural hosts for influenza A viruses, the porcine T-cell response to swine influenza A virus (FLUAVsw) infection has been poorly characterized so far. We have studied Ki-67 expression and FLUAVsw-specific production of IFN-γ, TNF-α and IL-2 in CD4+ and CD8β+ T cells isolated from piglets that had been intratracheally infected with a H1N2 FLUAVsw isolate. IFN-γ+TNF-α+IL-2+ multifunctional CD4+ T cells were present in the blood of all infected animals at one or two weeks after primary infection and their frequency increased in four out of six animals after homologous secondary infection. These cells produced higher amounts of IFN-γ, TNF-α and IL-2 than did CD4+ T cells that only produced a single cytokine. The vast majority of cytokine-producing CD4+ T cells expressed CD8α, a marker associated with activation and memory formation in porcine CD4+ T cells. Analysis of CD27 expression suggested that FLUAVsw-specific CD4+ T cells included both central memory and effector memory populations. Three out of six animals showed a strong increase of Ki-67+perforin+ CD8β+ T cells in blood one week post infection. Blood-derived FLUAVsw-specific CD8β+ T cells could be identified after an in vitro expansion phase and were multifunctional in terms of CD107a expression and co-production of IFN-γ and TNF-α. These data show that multifunctional T cells are generated in response to FLUAVsw infection of pigs, supporting the idea that T cells contribute to the efficient control of infection.
Collapse
Affiliation(s)
- Stephanie C Talker
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria.
| | - Hanna C Koinig
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria. .,University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria.
| | - Maria Stadler
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria.
| | - Robert Graage
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria. .,Present address: Institute of Veterinary Pathology, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland.
| | - Eva Klingler
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria.
| | - Andrea Ladinig
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria.
| | - Kerstin H Mair
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria.
| | - Sabine E Hammer
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria.
| | - Herbert Weissenböck
- Institute of Pathology and Forensic Veterinary Medicine, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria.
| | - Ralf Dürrwald
- Viral Vaccines, Business Unit Animal Health, IDT Biologika GmbH, Dessau-Rosslau, Germany.
| | - Mathias Ritzmann
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria. .,Present address: Clinic for Swine, Ludwig-Maximilians-University, Munich, Germany.
| | - Armin Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria.
| | - Wilhelm Gerner
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
161
|
Chu H, George SL, Stinchcomb DT, Osorio JE, Partidos CD. CD8+ T-cell Responses in Flavivirus-Naive Individuals Following Immunization with a Live-Attenuated Tetravalent Dengue Vaccine Candidate. J Infect Dis 2015; 212:1618-28. [PMID: 25943203 DOI: 10.1093/infdis/jiv258] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 04/21/2015] [Indexed: 02/06/2023] Open
Abstract
We are developing a live-attenuated tetravalent dengue vaccine (TDV) candidate based on an attenuated dengue 2 virus (TDV-2) and 3 chimeric viruses containing the premembrane and envelope genes of dengue viruses (DENVs) -1, -3, and -4 expressed in the context of the attenuated TDV-2 genome (TDV-1, TDV-3, and TDV-4, respectively). In this study, we analyzed and characterized the CD8(+) T-cell response in flavivirus-naive human volunteers vaccinated with 2 doses of TDV 90 days apart via the subcutaneous or intradermal routes. Using peptide arrays and intracellular cytokine staining, we demonstrated that TDV elicits CD8(+) T cells targeting the nonstructural NS1, NS3, and NS5 proteins of TDV-2. The cells were characterized by the production of interferon-γ, tumor necrosis factor-α, and to a lesser extent interleukin-2. Responses were highest on day 90 after the first dose and were still detectable on 180 days after the second dose. In addition, CD8(+) T cells were multifunctional, producing ≥2 cytokines simultaneously, and cross-reactive to NS proteins of the other 3 DENV serotypes. Overall, these findings describe the capacity of our candidate dengue vaccine to elicit cellular immune responses and support the further evaluation of T-cell responses in samples from future TDV clinical trials.
Collapse
Affiliation(s)
- Haiyan Chu
- Takeda Vaccines, Inc, Deerfield, Illinois
| | - Sarah L George
- Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University School of Medicine St. Louis Veterans Administration Medical Center, Missouri
| | | | | | | |
Collapse
|
162
|
Functionality of dengue virus specific memory T cell responses in individuals who were hospitalized or who had mild or subclinical dengue infection. PLoS Negl Trop Dis 2015; 9:e0003673. [PMID: 25875020 PMCID: PMC4395258 DOI: 10.1371/journal.pntd.0003673] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/04/2015] [Indexed: 01/28/2023] Open
Abstract
Background Although antibody responses to dengue virus (DENV) in naturally infected individuals have been extensively studied, the functionality of DENV specific memory T cell responses in relation to clinical disease severity is incompletely understood. Methodology/Principal findings Using ex vivo IFNγ ELISpot assays, and by determining cytokines produced in ELISpot supernatants, we investigated the functionality of DENV-specific memory T cell responses in a large cohort of individuals from Sri Lanka (n=338), who were naturally infected and were either hospitalized due to dengue or had mild or sub clinical dengue infection. We found that T cells of individuals with both past mild or sub clinical dengue infection and who were hospitalized produced multiple cytokines when stimulated with DENV-NS3 peptides. However, while DENV-NS3 specific T cells of those with mild/sub clinical dengue infection were more likely to produce only granzyme B (p=0.02), those who were hospitalized were more likely to produce both TNFα and IFNγ (p=0.03) or TNFα alone. We have also investigated the usefulness of a novel T cell based assay, which can be used to determine the past infecting DENV serotype. 92.4% of DENV seropositive individuals responded to at least one DENV serotype of this assay and none of the seronegatives responded. Individuals who were seronegative, but had received the Japanese encephalitis vaccine too made no responses, suggesting that the peptides used in this assay did not cross react with the Japanese encephalitis virus. Conclusions/significance The types of cytokines produced by DENV-specific memory T cells appear to influence the outcome of clinical disease severity. The novel T cell based assay, is likely to be useful in determining the past infecting DENV serotype in immune-epidemiological studies and also in dengue vaccine trials. Although dengue viral infections cause severe clinical disease, the majority of individuals infected with the dengue virus (DENV) develop asymptomatic infection. The function of DENV specific memory T cells in relation to past clinical disease severity is incompletely understood. In this study, we sought to investigate the function of DENV specific memory T cell responses in a large cohort (n = 338) of individuals who were naturally infected with the DENV but developed varying severity of clinical disease. We found that T cells of individuals who were hospitalized due to dengue and those with mild/sub clinical dengue infection produced multiple cytokines when stimulated with DENV-NS3 peptides. In addition, we have also validated a novel T cell based assay, which can be used to determine the past infecting DENV serotype. We found that 92.4% of DENV seropositive individuals responded to at least one DENV serotype of this assay and none of the seronegatives responded. Moreover, the peptides used in this assay did not cross react with Japanese encephalitis virus. Therefore, this assay is likely to be useful in determining the past infecting DENV serotype in immune-epidemiological studies and also in dengue vaccine trials.
Collapse
|
163
|
Human Ebola virus infection results in substantial immune activation. Proc Natl Acad Sci U S A 2015; 112:4719-24. [PMID: 25775592 DOI: 10.1073/pnas.1502619112] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Four Ebola patients received care at Emory University Hospital, presenting a unique opportunity to examine the cellular immune responses during acute Ebola virus infection. We found striking activation of both B and T cells in all four patients. Plasmablast frequencies were 10-50% of B cells, compared with less than 1% in healthy individuals. Many of these proliferating plasmablasts were IgG-positive, and this finding coincided with the presence of Ebola virus-specific IgG in the serum. Activated CD4 T cells ranged from 5 to 30%, compared with 1-2% in healthy controls. The most pronounced responses were seen in CD8 T cells, with over 50% of the CD8 T cells expressing markers of activation and proliferation. Taken together, these results suggest that all four patients developed robust immune responses during the acute phase of Ebola virus infection, a finding that would not have been predicted based on our current assumptions about the highly immunosuppressive nature of Ebola virus. Also, quite surprisingly, we found sustained immune activation after the virus was cleared from the plasma, observed most strikingly in the persistence of activated CD8 T cells, even 1 mo after the patients' discharge from the hospital. These results suggest continued antigen stimulation after resolution of the disease. From these convalescent time points, we identified CD4 and CD8 T-cell responses to several Ebola virus proteins, most notably the viral nucleoprotein. Knowledge of the viral proteins targeted by T cells during natural infection should be useful in designing vaccines against Ebola virus.
Collapse
|
164
|
Generation of human memory stem T cells after haploidentical T-replete hematopoietic stem cell transplantation. Blood 2015; 125:2865-74. [PMID: 25736310 DOI: 10.1182/blood-2014-11-608539] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/22/2015] [Indexed: 01/13/2023] Open
Abstract
Memory stem T cells (TSCM) have been proposed as key determinants of immunologic memory. However, their exact contribution to a mounting immune response, as well as the mechanisms and timing of their in vivo generation, are poorly understood. We longitudinally tracked TSCM dynamics in patients undergoing haploidentical hematopoietic stem cell transplantation (HSCT), thereby providing novel hints on the contribution of this subset to posttransplant immune reconstitution in humans. We found that donor-derived TSCM are highly enriched early after HSCT. We showed at the antigen-specific and clonal level that TSCM lymphocytes can differentiate directly from naive precursors infused within the graft and that the extent of TSCM generation might correlate with interleukin 7 serum levels. In vivo fate mapping through T-cell receptor sequencing allowed defining the in vivo differentiation landscapes of human naive T cells, supporting the notion that progenies of single naive cells embrace disparate fates in vivo and highlighting TSCM as relevant novel players in the diversification of immunological memory after allogeneic HSCT.
Collapse
|
165
|
Initial viral load determines the magnitude of the human CD8 T cell response to yellow fever vaccination. Proc Natl Acad Sci U S A 2015; 112:3050-5. [PMID: 25713354 DOI: 10.1073/pnas.1500475112] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
CD8 T cells are a potent tool for eliminating intracellular pathogens and tumor cells. Thus, eliciting robust CD8 T-cell immunity is the basis for many vaccines under development. However, the relationship between antigen load and the magnitude of the CD8 T-cell response is not well-described in a human immune response. Here we address this issue by quantifying viral load and the CD8 T-cell response in a cohort of 80 individuals immunized with the live attenuated yellow fever vaccine (YFV-17D) by sampling peripheral blood at days 0, 1, 2, 3, 5, 7, 9, 11, 14, 30, and 90. When the virus load was below a threshold (peak virus load < 225 genomes per mL, or integrated virus load < 400 genome days per mL), the magnitude of the CD8 T-cell response correlated strongly with the virus load (R(2) ∼ 0.63). As the virus load increased above this threshold, the magnitude of the CD8 T-cell responses saturated. Recent advances in CD8 T-cell-based vaccines have focused on replication-incompetent or single-cycle vectors. However, these approaches deliver relatively limited amounts of antigen after immunization. Our results highlight the requirement that T-cell-based vaccines should deliver sufficient antigen during the initial period of the immune response to elicit a large number of CD8 T cells that may be needed for protection.
Collapse
|
166
|
Dynamics of the cytotoxic T cell response to a model of acute viral infection. J Virol 2015; 89:4517-26. [PMID: 25653453 DOI: 10.1128/jvi.03474-14] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED A detailed characterization of the dynamics and breadth of the immune response to an acute viral infection, as well as the determinants of recruitment to immunological memory, can greatly contribute to our basic understanding of the mechanics of the human immune system and can ultimately guide the design of effective vaccines. In addition to neutralizing antibodies, T cells have been shown to be critical for the effective resolution of acute viral infections. We report the first in-depth analysis of the dynamics of the CD8(+) T cell repertoire at the level of individual T cell clonal lineages upon vaccination of human volunteers with a single dose of YF-17D. This live attenuated yellow fever virus vaccine yields sterile, long-term immunity and has been previously used as a model to understand the immune response to a controlled acute viral infection. We identified and enumerated unique CD8(+) T cell clones specifically induced by this vaccine through a combined experimental and statistical approach that included high-throughput sequencing of the CDR3 variable region of the T cell receptor β-chain and an algorithm that detected significantly expanded T cell clones. This allowed us to establish that (i) on average, ∼ 2,000 CD8(+) T cell clones were induced by YF-17D, (ii) 5 to 6% of the responding clones were recruited to long-term memory 3 months postvaccination, (iii) the most highly expanded effector clones were preferentially recruited to the memory compartment, and (iv) a fraction of the YF-17D-induced clones could be identified from peripheral blood lymphocytes solely by measuring clonal expansion. IMPORTANCE The exhaustive investigation of pathogen-induced effector T cells is essential to accurately quantify the dynamics of the human immune response. The yellow fever vaccine (YFV) has been broadly used as a model to understand how a controlled, self-resolving acute viral infection induces an effective and long-term protective immune response. Here, we extend this previous work by reporting the identity of activated effector T cell clones that expand in response to the YFV 2 weeks postvaccination (as defined by their unique T cell receptor gene sequence) and by tracking clones that enter the memory compartment 3 months postvaccination. This is the first study to use high-throughput sequencing of immune cells to characterize the breadth of the antiviral effector cell response and to determine the contribution of unique virus-induced clones to the long-lived memory T cell repertoire. Thus, this study establishes a benchmark against which future vaccines can be compared to predict their efficacy.
Collapse
|
167
|
Mathew A, Townsley E, Ennis FA. Elucidating the role of T cells in protection against and pathogenesis of dengue virus infections. Future Microbiol 2015; 9:411-25. [PMID: 24762312 DOI: 10.2217/fmb.13.171] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Dengue viruses (DENV) cause significantly more human disease than any other arbovirus, with hundreds of thousands of cases leading to severe disease in thousands annually. Antibodies and T cells induced by primary infection with DENV have the potential for both positive (protective) and negative (pathological) effects during subsequent DENV infections. In this review, we summarize studies that have examined T-cell responses in humans following natural infection and vaccination. We discuss studies that support a role for T cells in protection against and those that support a role for the involvement of T cells in the pathogenesis of severe disease. The mechanisms that lead to severe disease are complex, and T-cell responses are an important component that needs to be further evaluated for the development of safe and efficacious DENV vaccines.
Collapse
Affiliation(s)
- Anuja Mathew
- Division of Infectious Diseases & Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | |
Collapse
|
168
|
Blom K, Braun M, Pakalniene J, Dailidyte L, Béziat V, Lampen MH, Klingström J, Lagerqvist N, Kjerstadius T, Michaëlsson J, Lindquist L, Ljunggren HG, Sandberg JK, Mickiene A, Gredmark-Russ S. Specificity and dynamics of effector and memory CD8 T cell responses in human tick-borne encephalitis virus infection. PLoS Pathog 2015; 11:e1004622. [PMID: 25611738 PMCID: PMC4303297 DOI: 10.1371/journal.ppat.1004622] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 12/10/2014] [Indexed: 12/23/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is transferred to humans by ticks. The virus causes tick-borne encephalitis (TBE) with symptoms such as meningitis and meningoencephalitis. About one third of the patients suffer from long-lasting sequelae after clearance of the infection. Studies of the immune response during TBEV-infection are essential to the understanding of host responses to TBEV-infection and for the development of therapeutics. Here, we studied in detail the primary CD8 T cell response to TBEV in patients with acute TBE. Peripheral blood CD8 T cells mounted a considerable response to TBEV-infection as assessed by Ki67 and CD38 co-expression. These activated cells showed a CD45RA-CCR7-CD127- phenotype at day 7 after hospitalization, phenotypically defining them as effector cells. An immunodominant HLA-A2-restricted TBEV epitope was identified and utilized to study the characteristics and temporal dynamics of the antigen-specific response. The functional profile of TBEV-specific CD8 T cells was dominated by variants of mono-functional cells as the effector response matured. Antigen-specific CD8 T cells predominantly displayed a distinct Eomes+Ki67+T-bet+ effector phenotype at the peak of the response, which transitioned to an Eomes-Ki67-T-bet+ phenotype as the infection resolved and memory was established. These transcription factors thus characterize and discriminate stages of the antigen-specific T cell response during acute TBEV-infection. Altogether, CD8 T cells responded strongly to acute TBEV infection and passed through an effector phase, prior to gradual differentiation into memory cells with distinct transcription factor expression-patterns throughout the different phases. Tick-borne encephalitis virus (TBEV) belongs to the flavivirus family and causes tick-borne encephalitis. This is a severe meningoencephalitic disease with no available treatment. Detailed studies of the immune response during human TBEV infection are essential to understand host responses to TBE and for the development of therapeutics. Herein, we studied the primary T cell-mediated immune response in patients diagnosed with TBEV infection. We show that CD8 T cells mount a vigorous TBEV-specific response within one week of hospitalization. Moreover, TBEV-specific CD8 T cells displayed a distinctive phenotypic and functional profile, paired with a distinct transcription factor expression-pattern during the peak of activation. In summary, this is the first comprehensive study of the CD8 T cell response during acute human TBEV infection, and provides a framework for understanding of CD8 T cell-mediated immunity in this emerging viral disease.
Collapse
Affiliation(s)
- Kim Blom
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Monika Braun
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jolita Pakalniene
- Department of Infectious Diseases, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Laura Dailidyte
- Department of Infectious Diseases, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vivien Béziat
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Human Genetics of Infectious Diseases Laboratory, Imagine Institute—INSERM U1163, Paris, France
| | - Margit H. Lampen
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Nina Lagerqvist
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Torbjörn Kjerstadius
- Karolinska University Laboratory, Department of Clinical Microbiology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Jakob Michaëlsson
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Lars Lindquist
- Department of Infectious Diseases, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Unit of Infectious Disease, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Johan K. Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Aukse Mickiene
- Department of Infectious Diseases, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Unit of Infectious Disease, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Sara Gredmark-Russ
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital Huddinge, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
169
|
Le D, Miller JD, Ganusov VV. Mathematical modeling provides kinetic details of the human immune response to vaccination. Front Cell Infect Microbiol 2015; 4:177. [PMID: 25621280 PMCID: PMC4288384 DOI: 10.3389/fcimb.2014.00177] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 12/04/2014] [Indexed: 02/01/2023] Open
Abstract
With major advances in experimental techniques to track antigen-specific immune responses many basic questions on the kinetics of virus-specific immunity in humans remain unanswered. To gain insights into kinetics of T and B cell responses in human volunteers we combined mathematical models and experimental data from recent studies employing vaccines against yellow fever and smallpox. Yellow fever virus-specific CD8 T cell population expanded slowly with the average doubling time of 2 days peaking 2.5 weeks post immunization. Interestingly, we found that the peak of the yellow fever-specific CD8 T cell response was determined by the rate of T cell proliferation and not by the precursor frequency of antigen-specific cells as has been suggested in several studies in mice. We also found that while the frequency of virus-specific T cells increased slowly, the slow increase could still accurately explain clearance of yellow fever virus in the blood. Our additional mathematical model described well the kinetics of virus-specific antibody-secreting cell and antibody response to vaccinia virus in vaccinated individuals suggesting that most of antibodies in 3 months post immunization were derived from the population of circulating antibody-secreting cells. Taken together, our analysis provided novel insights into mechanisms by which live vaccines induce immunity to viral infections and highlighted challenges of applying methods of mathematical modeling to the current, state-of-the-art yet limited immunological data.
Collapse
Affiliation(s)
- Dustin Le
- Department of Microbiology, University of TennesseeKnoxville, TN, USA
| | - Joseph D. Miller
- Hope Clinic of the Emory Vaccine Center, Emory University School of MedicineAtlanta, GA, USA
| | - Vitaly V. Ganusov
- Department of Microbiology, University of TennesseeKnoxville, TN, USA
- Department of Mathematics, University of TennesseeKnoxville, TN, USA
| |
Collapse
|
170
|
Beasley DWC, McAuley AJ, Bente DA. Yellow fever virus: genetic and phenotypic diversity and implications for detection, prevention and therapy. Antiviral Res 2014; 115:48-70. [PMID: 25545072 DOI: 10.1016/j.antiviral.2014.12.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 12/05/2014] [Accepted: 12/11/2014] [Indexed: 11/28/2022]
Abstract
Yellow fever virus (YFV) is the prototypical hemorrhagic fever virus, yet our understanding of its phenotypic diversity and any molecular basis for observed differences in disease severity and epidemiology is lacking, when compared to other arthropod-borne and haemorrhagic fever viruses. This is, in part, due to the availability of safe and effective vaccines resulting in basic YFV research taking a back seat to those viruses for which no effective vaccine occurs. However, regular outbreaks occur in endemic areas, and the spread of the virus to new, previously unaffected, areas is possible. Analysis of isolates from endemic areas reveals a strong geographic association for major genotypes, and recent epidemics have demonstrated the emergence of novel sequence variants. This review aims to outline the current understanding of YFV genetic and phenotypic diversity and its sources, as well as the available animal models for characterizing these differences in vivo. The consequences of genetic diversity for detection and diagnosis of yellow fever and development of new vaccines and therapeutics are discussed.
Collapse
Affiliation(s)
- David W C Beasley
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States; Sealy Center for Vaccine Development, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States; Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States.
| | - Alexander J McAuley
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States
| | - Dennis A Bente
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States; Sealy Center for Vaccine Development, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States; Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States
| |
Collapse
|
171
|
Bassi MR, Kongsgaard M, Steffensen MA, Fenger C, Rasmussen M, Skjødt K, Finsen B, Stryhn A, Buus S, Christensen JP, Thomsen AR. CD8+ T cells complement antibodies in protecting against yellow fever virus. THE JOURNAL OF IMMUNOLOGY 2014; 194:1141-53. [PMID: 25539816 DOI: 10.4049/jimmunol.1402605] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The attenuated yellow fever (YF) vaccine (YF-17D) was developed in the 1930s, yet little is known about the protective mechanisms underlying its efficiency. In this study, we analyzed the relative contribution of cell-mediated and humoral immunity to the vaccine-induced protection in a murine model of YF-17D infection. Using different strains of knockout mice, we found that CD4(+) T cells, B cells, and Abs are required for full clinical protection of vaccinated mice, whereas CD8(+) T cells are dispensable for long-term survival after intracerebral challenge. However, by analyzing the immune response inside the infected CNS, we observed an accelerated T cell influx into the brain after intracerebral challenge of vaccinated mice, and this T cell recruitment correlated with improved virus control in the brain. Using mice deficient in B cells we found that, in the absence of Abs, YF vaccination can still induce some antiviral protection, and in vivo depletion of CD8(+) T cells from these animals revealed a pivotal role for CD8(+) T cells in controlling virus replication in the absence of a humoral response. Finally, we demonstrated that effector CD8(+) T cells also contribute to viral control in the presence of circulating YF-specific Abs. To our knowledge, this is the first time that YF-specific CD8(+) T cells have been demonstrated to possess antiviral activity in vivo.
Collapse
Affiliation(s)
- Maria R Bassi
- Department of International Health, Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Michael Kongsgaard
- Department of International Health, Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Maria A Steffensen
- Department of International Health, Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Christina Fenger
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark; and
| | - Michael Rasmussen
- Department of International Health, Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Karsten Skjødt
- Department of Cancer and Inflammation, Institute for Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Bente Finsen
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark; and
| | - Anette Stryhn
- Department of International Health, Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Søren Buus
- Department of International Health, Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jan P Christensen
- Department of International Health, Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Allan R Thomsen
- Department of International Health, Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen N, Denmark;
| |
Collapse
|
172
|
Abstract
Yellow fever, a mosquito-borne flavivirus disease occurs in tropical areas of South America and Africa. It is a disease of major historical importance, but remains a threat to travelers to and residents of endemic areas despite the availability of an effective vaccine for nearly 70 years. An important aspect is the receptivity of many non-endemic areas to introduction and spread of yellow fever. This paper reviews the clinical aspects, pathogenesis, and epidemiology of yellow fever, with an emphasis on recent changes in the distribution and incidence of the disease. Recent knowledge about yellow fever 17D vaccine mechanism of action and safety are discussed.
Collapse
Affiliation(s)
- Thomas P Monath
- Hookipa Biotech AG, Vienna, Austria; PaxVax Inc., Menlo Park Redwood City, CA, USA.
| | - Pedro F C Vasconcelos
- Department of Arbovirology and Hemorrhagic Fevers, National Reference Laboratory of Arboviruses, Instituto Evandro Chagas, Ministry of Health, Rodovia BR 316 Km 07, S/N, CEP 67030-000 Ananindeua, Brazil; National Institute of Science and Technology for Viral Hemorrhagic Fevers, Instituto Evandro Chagas, Ministry of Health, Rodovia BR 316 Km 07, S/N, CEP 67030-000 Ananindeua, Brazil; PAHO/WHO Collaborating Center for Arbovirus Research and Diagnostic Reference, Instituto Evandro Chagas, Ministry of Health, Rodovia BR 316 Km 07, S/N, CEP 67030-000 Ananindeua, Brazil; Pará State University, Belém, Pará, Brazil.
| |
Collapse
|
173
|
The human CD8+ T cell responses induced by a live attenuated tetravalent dengue vaccine are directed against highly conserved epitopes. J Virol 2014; 89:120-8. [PMID: 25320311 DOI: 10.1128/jvi.02129-14] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The incidence of infection with any of the four dengue virus serotypes (DENV1 to -4) has increased dramatically in the last few decades, and the lack of a treatment or vaccine has contributed to significant morbidity and mortality worldwide. A recent comprehensive analysis of the human T cell response against wild-type DENV suggested an human lymphocyte antigen (HLA)-linked protective role for CD8(+) T cells. We have collected one-unit blood donations from study participants receiving the monovalent or tetravalent live attenuated DENV vaccine (DLAV), developed by the U.S. National Institutes of Health. Peripheral blood mononuclear cells from these donors were screened in gamma interferon enzyme-linked immunosorbent spot assays with pools of predicted, HLA-matched, class I binding peptides covering the entire DENV proteome. Here, we characterize for the first time CD8(+) T cell responses after live attenuated dengue vaccination and show that CD8(+) T cell responses in vaccinees were readily detectable and comparable to natural dengue infection. Interestingly, whereas broad responses to structural and nonstructural (NS) proteins were observed after monovalent vaccination, T cell responses following tetravalent vaccination were, dramatically, focused toward the highly conserved NS proteins. Epitopes were highly conserved in a vast variety of field isolates and able to elicit multifunctional T cell responses. Detailed knowledge of the T cell response will contribute to the identification of robust correlates of protection in natural immunity and following vaccination against DENV. IMPORTANCE The development of effective vaccination strategies against dengue virus (DENV) infection and clinically significant disease is a task of high global public health value and significance, while also being a challenge of significant complexity. A recent efficacy trial of the most advanced dengue vaccine candidate, demonstrated only partial protection against all four DENV serotypes, despite three subsequent immunizations and detection of measurable neutralizing antibodies to each serotype in most subjects. These results challenge the hypothesis that seroconversion is the only reliable correlate of protection. Here, we show that CD8(+) T cell responses in vaccinees were readily detectable and comparable to natural dengue virus infection. Detailed knowledge of the T cell response may further contribute to the identification of robust correlates of protection in natural immunity and vaccination against DENV.
Collapse
|
174
|
Strbo N, Garcia-Soto A, Schreiber TH, Podack ER. Secreted heat shock protein gp96-Ig: next-generation vaccines for cancer and infectious diseases. Immunol Res 2014; 57:311-25. [PMID: 24254084 DOI: 10.1007/s12026-013-8468-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Over the past decade, our laboratory has developed a secreted heat shock protein (HSP), chaperone gp96, cell-based vaccine that generates effective anti-tumor and anti-infectious immunity in vivo. Gp96-peptide complexes were identified as an extremely efficient stimulator of MHC I-mediated antigen cross-presentation, generating CD8 cytotoxic T-lymphocyte responses detectable in blood, spleen, gut and reproductive tract to femto-molar concentrations of antigen. These studies provided the first evidence that cell-based gp96-Ig-secreting vaccines may serve as a potent modality to induce both systemic and mucosal immunity. This approach takes advantage of the combined adjuvant and antigen delivery capacity of gp96 for the generation of cytotoxic immunity against a wide range of antigens in both anti-vial and anti-cancer vaccination. Here, we review the vaccine design that utilizes the unique property/ability of endoplasmic HSP gp96 to bind antigenic peptides and deliver them to antigen-presenting cells.
Collapse
Affiliation(s)
- Natasa Strbo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, RMSB 3008, 1600 NW 10th Ave, Miami, FL, 33136, USA,
| | | | | | | |
Collapse
|
175
|
Phenotype of the anti-Rickettsia CD8(+) T cell response suggests cellular correlates of protection for the assessment of novel antigens. Vaccine 2014; 32:4960-7. [PMID: 25043277 DOI: 10.1016/j.vaccine.2014.07.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 06/19/2014] [Accepted: 07/08/2014] [Indexed: 02/03/2023]
Abstract
The obligately intracellular bacteria Rickettsia infect endothelial cells and cause systemic febrile diseases that are potentially lethal. No vaccines are currently available and current knowledge of the effective immune response is limited. Natural and experimental rickettsial infections provide strong and cross-protective cellular immunity if the infected individual survives the acute infection. Although resistance to rickettsial infections is attributed to the induction of antigen-specific T cells, particularly CD8(+) T cells, the identification and validation of correlates of protective cellular immunity against rickettsial infections, an important step toward vaccine validation, remains a gap in this field. Here, we show that after a primary challenge with Rickettsia typhi in the C3H mouse model, the peak of anti-Rickettsia CD8(+) T cell-mediated responses occurs 7 days post-infection (dpi), which coincides with the beginning of rickettsial clearance. At this time point, both effector-type and memory-type CD8(+) T cells are present, suggesting that 7 dpi is a valid time point for the assessment of CD8(+) T cell responses of mice previously immunized with protective antigens. Based on our results, we suggest four correlates of cellular protection for the assessment of protective rickettsial antigens: (1) production of IFN-γ by antigen-experienced CD3(+)CD8(+)CD44(high) cells, (2) production of Granzyme B by CD27(low)CD43(low) antigen-experienced CD8(+) T cells, (3) generation of memory-type CD8(+) T cells [Memory Precursor Effector Cells (MPECs), as well as CD127(high)CD43(low), and CD27(high)CD43(low) CD8(+) T cells], and (4) generation of effector-like memory CD8(+) T cells (CD27(low)CD43(low)). We propose that these correlates could be useful for the general assessment of the quality of the CD8(+) T cell immune response induced by novel antigens with potential use in a vaccine against Rickettsia.
Collapse
|
176
|
Campi-Azevedo AC, de Almeida Estevam P, Coelho-Dos-Reis JG, Peruhype-Magalhães V, Villela-Rezende G, Quaresma PF, Maia MDLS, Farias RHG, Camacho LAB, Freire MDS, Galler R, Yamamura AMY, Almeida LFC, Lima SMB, Nogueira RMR, Silva Sá GR, Hokama DA, de Carvalho R, Freire RAV, Filho EP, Leal MDLF, Homma A, Teixeira-Carvalho A, Martins RM, Martins-Filho OA. Subdoses of 17DD yellow fever vaccine elicit equivalent virological/immunological kinetics timeline. BMC Infect Dis 2014; 14:391. [PMID: 25022840 PMCID: PMC4223624 DOI: 10.1186/1471-2334-14-391] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/03/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The live attenuated 17DD Yellow Fever vaccine is one of the most successful prophylactic interventions for controlling disease expansion ever designed and utilized in larger scale. However, increase on worldwide vaccine demands and manufacturing restrictions urge for more detailed dose sparing studies. The establishment of complementary biomarkers in addition to PRNT and Viremia could support a secure decision-making regarding the use of 17DD YF vaccine subdoses. The present work aimed at comparing the serum chemokine and cytokine kinetics triggered by five subdoses of 17DD YF Vaccine. METHODS Neutralizing antibody titers, viremia, cytokines and chemokines were tested on blood samples obtained from eligible primary vaccinees. RESULTS AND DISCUSSION The results demonstrated that a fifty-fold lower dose of 17DD-YF vaccine (587 IU) is able to trigger similar immunogenicity, as evidenced by significant titers of anti-YF PRNT. However, only subdoses as low as 3,013 IU elicit viremia kinetics with an early peak at five days after primary vaccination equivalent to the current dose (27,476 IU), while other subdoses show a distinct, lower in magnitude and later peak at day 6 post-vaccination. Although the subdose of 587 IU is able to trigger equivalent kinetics of IL-8/CXCL-8 and MCP-1/CCL-2, only the subdose of 3,013 IU is able to trigger similar kinetics of MIG/CXCL-9, pro-inflammatory (TNF, IFN-γ and IL-2) and modulatory cytokines (IL-5 and IL-10). CONCLUSIONS The analysis of serum biomarkers IFN-γ and IL-10, in association to PRNT and viremia, support the recommendation of use of a ten-fold lower subdose (3,013 IU) of 17DD-YF vaccine.
Collapse
|
177
|
Johnson PLF, Goronzy JJ, Antia R. A population biological approach to understanding the maintenance and loss of the T-cell repertoire during aging. Immunology 2014; 142:167-75. [PMID: 24405293 DOI: 10.1111/imm.12244] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 12/11/2013] [Accepted: 12/20/2013] [Indexed: 12/20/2022] Open
Abstract
The adaptive immune system requires a diverse T-cell repertoire to be able to respond to a wide variety of pathogens. Worryingly, the repertoire diversity declines dramatically in old age. As thymic output generates novel T cells, the conventional view holds that a decrease in this output with age is responsible for the loss in the repertoire. However, many additional factors affect the repertoire such as homeostatic turnover and antigen-dependent expansion in response to infection. Mathematical models taking a population biology perspective are important tools for understanding how the interplay between these factors affects the immune repertoire. These models suggest that thymic decline is not a major factor but rather that some combination of virus-induced proliferation and T-cell-intrinsic genetic or epigenetic changes gives rise to the oligoclonal expansions that cause the decline in T-cell diversity. We also discuss consequences for strategies to rejuvenate the immune repertoire in old age.
Collapse
|
178
|
Quiñones-Parra S, Loh L, Brown LE, Kedzierska K, Valkenburg SA. Universal immunity to influenza must outwit immune evasion. Front Microbiol 2014; 5:285. [PMID: 24971078 PMCID: PMC4054793 DOI: 10.3389/fmicb.2014.00285] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/23/2014] [Indexed: 12/23/2022] Open
Abstract
Although an influenza vaccine has been available for 70 years, influenza virus still causes seasonal epidemics and worldwide pandemics. Currently available vaccines elicit strain-specific antibody (Ab) responses to the surface haemagglutinin (HA) and neuraminidase (NA) proteins, but these can be ineffective against serologically-distinct viral variants and novel subtypes. Thus, there is a great need for cross-protective or "universal" influenza vaccines to overcome the necessity for annual immunization against seasonal influenza and to provide immunity to reduce the severity of infection with pandemic or outbreak viruses. It is well established that natural influenza infection can provide cross-reactive immunity that can reduce the impact of infection with distinct influenza type A strains and subtypes, including H1N1, H3N2, H2N2, H5N1, and H7N9. The key to generating universal influenza immunity through vaccination is to target functionally-conserved regions of the virus, which include epitopes on the internal proteins for cross-reactive T cell immunity or on the HA stem for broadly reactive Ab responses. In the wake of the 2009 H1N1 pandemic, broadly neutralizing antibodies (bnAbs) have been characterized and isolated from convalescent and vaccinated individuals, inspiring development of new vaccination techniques to elicit such responses. Induction of influenza-specific T cell responses through vaccination has also been recently examined in clinical trials. Strong evidence is available from human and animal models of influenza to show that established influenza-specific T cell memory can reduce viral shedding and symptom severity. However, the published evidence also shows that CD8(+) T cells can efficiently select immune escape mutants early after influenza virus infection. Here, we discuss universal immunity to influenza viruses mediated by both cross-reactive T cells and Abs, the mechanisms of immune evasion in influenza, and propose how to counteract commonly occurring immune-escape variants.
Collapse
Affiliation(s)
- Sergio Quiñones-Parra
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville VIC, Australia
| | - Liyen Loh
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville VIC, Australia
| | - Lorena E Brown
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville VIC, Australia
| | - Sophie A Valkenburg
- Centre for Influenza Research and School of Public Health, The University of Hong Kong Hong Kong, China
| |
Collapse
|
179
|
Muyanja E, Ssemaganda A, Ngauv P, Cubas R, Perrin H, Srinivasan D, Canderan G, Lawson B, Kopycinski J, Graham AS, Rowe DK, Smith MJ, Isern S, Michael S, Silvestri G, Vanderford TH, Castro E, Pantaleo G, Singer J, Gillmour J, Kiwanuka N, Nanvubya A, Schmidt C, Birungi J, Cox J, Haddad EK, Kaleebu P, Fast P, Sekaly RP, Trautmann L, Gaucher D. Immune activation alters cellular and humoral responses to yellow fever 17D vaccine. J Clin Invest 2014; 124:3147-58. [PMID: 24911151 DOI: 10.1172/jci75429] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/24/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Defining the parameters that modulate vaccine responses in African populations will be imperative to design effective vaccines for protection against HIV, malaria, tuberculosis, and dengue virus infections. This study aimed to evaluate the contribution of the patient-specific immune microenvironment to the response to the licensed yellow fever vaccine 17D (YF-17D) in an African cohort. METHODS We compared responses to YF-17D in 50 volunteers in Entebbe, Uganda, and 50 volunteers in Lausanne, Switzerland. We measured the CD8+ T cell and B cell responses induced by YF-17D and correlated them with immune parameters analyzed by flow cytometry prior to vaccination. RESULTS We showed that YF-17D-induced CD8+ T cell and B cell responses were substantially lower in immunized individuals from Entebbe compared with immunized individuals from Lausanne. The impaired vaccine response in the Entebbe cohort associated with reduced YF-17D replication. Prior to vaccination, we observed higher frequencies of exhausted and activated NK cells, differentiated T and B cell subsets and proinflammatory monocytes, suggesting an activated immune microenvironment in the Entebbe volunteers. Interestingly, activation of CD8+ T cells and B cells as well as proinflammatory monocytes at baseline negatively correlated with YF-17D-neutralizing antibody titers after vaccination. Additionally, memory T and B cell responses in preimmunized volunteers exhibited reduced persistence in the Entebbe cohort but were boosted by a second vaccination. CONCLUSION Together, these results demonstrate that an activated immune microenvironment prior to vaccination impedes efficacy of the YF-17D vaccine in an African cohort and suggest that vaccine regimens may need to be boosted in African populations to achieve efficient immunity. TRIAL REGISTRATION Registration is not required for observational studies. FUNDING This study was funded by Canada's Global Health Research Initiative, Defense Threat Reduction Agency, National Institute of Allergy and Infectious Diseases, Bill & Melinda Gates Foundation, and United States Agency for International Development.
Collapse
|
180
|
Slifka MK, Amanna I. How advances in immunology provide insight into improving vaccine efficacy. Vaccine 2014; 32:2948-57. [PMID: 24709587 PMCID: PMC4096845 DOI: 10.1016/j.vaccine.2014.03.078] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/13/2014] [Accepted: 03/25/2014] [Indexed: 01/08/2023]
Abstract
Vaccines represent one of the most compelling examples of how biomedical research has improved society by saving lives and dramatically reducing the burden of infectious disease. Despite the importance of vaccinology, we are still in the early stages of understanding how the best vaccines work and how we can achieve better protective efficacy through improved vaccine design. Most successful vaccines have been developed empirically, but recent advances in immunology are beginning to shed new light on the mechanisms of vaccine-mediated protection and development of long-term immunity. Although natural infection will often elicit lifelong immunity, almost all current vaccines require booster vaccination in order to achieve durable protective humoral immune responses, regardless of whether the vaccine is based on infection with replicating live-attenuated vaccine strains of the specific pathogen or whether they are derived from immunization with inactivated, non-replicating vaccines or subunit vaccines. The form of the vaccine antigen (e.g., soluble or particulate/aggregate) appears to play an important role in determining immunogenicity and the interactions between dendritic cells, B cells and T cells in the germinal center are likely to dictate the magnitude and duration of protective immunity. By learning how to optimize these interactions, we may be able to elicit more effective and long-lived immunity with fewer vaccinations.
Collapse
Affiliation(s)
- Mark K Slifka
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Sciences University, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| | - Ian Amanna
- Najít Technologies, Inc., 505 NW 185th Avenue, Beaverton, OR 97006, USA
| |
Collapse
|
181
|
Slifka MK. Vaccine-mediated immunity against dengue and the potential for long-term protection against disease. Front Immunol 2014; 5:195. [PMID: 24834067 PMCID: PMC4018518 DOI: 10.3389/fimmu.2014.00195] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/21/2014] [Indexed: 11/13/2022] Open
Abstract
It is estimated that over 2.5 billion people are at risk for contracting dengue, a virus responsible for 50–390 million infections in addition to thousands of hospitalizations and deaths each year. There are no licensed vaccines available to combat this pathogen but substantial efforts are underway to develop live-attenuated, inactivated, and subunit vaccines that will protect against each of the four serotypes of dengue. Unfortunately, the results of a recent Phase IIb efficacy trial involving a tetravalent live-attenuated chimeric dengue virus vaccine have raised questions with regard to our current understanding of vaccine-mediated immunity to this important flavivirus. Here, we will briefly summarize these vaccination efforts and discuss the importance of informative in vivo models for determining vaccine efficacy and the need to establish a quantitative correlate of immunity in order to predict the duration of vaccine-induced antiviral protection.
Collapse
Affiliation(s)
- Mark K Slifka
- Molecular Microbiology and Immunology, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University , Beaverton, OR , USA
| |
Collapse
|
182
|
Deng N, Weaver JM, Mosmann TR. Cytokine diversity in the Th1-dominated human anti-influenza response caused by variable cytokine expression by Th1 cells, and a minor population of uncommitted IL-2+IFNγ- Thpp cells. PLoS One 2014; 9:e95986. [PMID: 24788814 PMCID: PMC4006810 DOI: 10.1371/journal.pone.0095986] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/01/2014] [Indexed: 12/22/2022] Open
Abstract
Within overall Th1-like human memory T cell responses, individual T cells may express only some of the characteristic Th1 cytokines when reactivated. In the Th1-oriented memory response to influenza, we have tested the contributions of two potential mechanisms for this diversity: variable expression of cytokines by a uniform population during activation, or different stable subsets that consistently expressed subsets of the Th1 cytokine pattern. To test for short-term variability, in vitro-stimulated influenza-specific human memory CD4+ T cells were sorted according to IL-2 and IFNγ expression, cultured briefly in vitro, and cytokine patterns measured after restimulation. Cells that were initially IFNγ+ and either IL-2+ or IL-2- converged rapidly, containing similar proportions of IL-2-IFNγ+ and IL-2+IFNγ+ cells after culture and restimulation. Both phenotypes expressed Tbet, and similar patterns of mRNA. Thus variability of IL-2 expression in IFNγ+ cells appeared to be regulated more by short-term variability than by stable differentiated subsets. In contrast, heterogeneous expression of IFNγ in IL-2+ influenza-specific T cells appeared to be due partly to stable T cell subsets. After sorting, culture and restimulation, influenza-specific IL-2+IFNγ- and IL-2+IFNγ+ cells maintained significantly biased ratios of IFNγ+ and IFNγ- cells. IL-2+IFNγ- cells included both Tbetlo and Tbethi cells, and showed more mRNA expression differences with either of the IFNγ+ populations. To test whether IL-2+IFNγ-Tbetlo cells were Thpp cells (primed but uncommitted memory cells, predominant in responses to protein vaccines), influenza-specific IL-2+IFNγ- and IL-2+IFNγ+ T cells were sorted and cultured in Th1- or Th2-generating conditions. Both cell types yielded IFNγ-secreting cells in Th1 conditions, but only IL-2+IFNγ- cells were able to differentiate into IL-4-producing cells. Thus expression of IL-2 in the anti-influenza response may be regulated mainly by short term variability, whereas different T cell subsets, Th1 and Thpp, may contribute to variability in IFNγ expression.
Collapse
Affiliation(s)
- Nan Deng
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jason M. Weaver
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Tim R. Mosmann
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
183
|
Amanna IJ, Slifka MK. Current trends in West Nile virus vaccine development. Expert Rev Vaccines 2014; 13:589-608. [PMID: 24689659 DOI: 10.1586/14760584.2014.906309] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
West Nile virus (WNV) is a mosquito-borne flavivirus that has become endemic in the United States. From 1999-2012, there have been 37088 reported cases of WNV and 1549 deaths, resulting in a 4.2% case-fatality rate. Despite development of effective WNV vaccines for horses, there is no vaccine to prevent human WNV infection. Several vaccines have been tested in preclinical studies and to date there have been eight clinical trials, with promising results in terms of safety and induction of antiviral immunity. Although mass vaccination is unlikely to be cost effective, implementation of a targeted vaccine program may be feasible if a safe and effective vaccine can be brought to market. Further evaluation of new and advanced vaccine candidates is strongly encouraged.
Collapse
Affiliation(s)
- Ian J Amanna
- Najít Technologies, Inc., 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | | |
Collapse
|
184
|
van Aalderen MC, Remmerswaal EBM, ten Berge IJM, van Lier RAW. Blood and beyond: properties of circulating and tissue-resident human virus-specific αβ CD8(+) T cells. Eur J Immunol 2014; 44:934-44. [PMID: 24448915 DOI: 10.1002/eji.201344269] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/02/2014] [Accepted: 01/16/2014] [Indexed: 01/11/2023]
Abstract
CD8(+) αβ T-cell responses form an essential line of defence against viral infections. An important part of the mechanisms that control the generation and maintenance of these responses have been elucidated in experimental mouse models. In recent years it has become clear that CD8(+) T-cell responses in humans not only show similarities, but also display differences to those occurring in mice. Furthermore, while several viral infections occur primarily in specialised organ systems, for obvious reasons, most human CD8(+) T-cell investigations were performed on cells deriving from the circulation. Indeed, several lines of evidence now point to essential functional differences between virus-specific CD8(+) memory T cells found in the circulation and those providing protection in organ systems, such as the lungs. In this review, we will focus on summarising recent insights into human CD8(+) T-cell differentiation in response to several viruses and emphasise that for a complete understanding of anti-viral immunity, it is pivotal to scrutinize such responses in both blood and tissue.
Collapse
Affiliation(s)
- Michiel C van Aalderen
- Department of Experimental Immunology, Academic Medical Centre, Amsterdam, The Netherlands; Renal Transplant Unit, Department of Internal Medicine, Academic Medical Centre, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
185
|
Bonaldo MC, Sequeira PC, Galler R. The yellow fever 17D virus as a platform for new live attenuated vaccines. Hum Vaccin Immunother 2014; 10:1256-65. [PMID: 24553128 DOI: 10.4161/hv.28117] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The live-attenuated yellow fever 17D virus is one of the most outstanding human vaccines ever developed. It induces efficacious immune responses at a low production cost with a well-established manufacture process. These advantages make the YF17D virus attractive as a vector for the development of new vaccines. At the beginning of vector development studies, YF17D was genetically manipulated to express other flavivirus prM and E proteins, components of the viral envelope. While these 17D recombinants are based on the substitution of equivalent YF17D genes, other antigens from unrelated pathogens have also been successfully expressed and delivered by recombinant YF17D viruses employing alternative strategies for genetic manipulation of the YF17D genome. Herein, we discuss these strategies in terms of possibilities of single epitope or larger sequence expression and the main properties of these replication-competent viral platforms.
Collapse
Affiliation(s)
- Myrna C Bonaldo
- Laboratório de Biologia Molecular de Flavivírus, IOC, Fiocruz; Rio de Janeiro, Brazil
| | - Patrícia C Sequeira
- Laboratório de Biologia Molecular de Flavivírus, IOC, Fiocruz; Rio de Janeiro, Brazil
| | - Ricardo Galler
- Instituto de Tecnologia em Imunobiológicos, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
186
|
Townsley E, Woda M, Thomas SJ, Kalayanarooj S, Gibbons RV, Nisalak A, Srikiatkhachorn A, Green S, Stephens HAF, Rothman AL, Mathew A. Distinct activation phenotype of a highly conserved novel HLA-B57-restricted epitope during dengue virus infection. Immunology 2014; 141:27-38. [PMID: 23941420 DOI: 10.1111/imm.12161] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/08/2013] [Accepted: 08/08/2013] [Indexed: 01/01/2023] Open
Abstract
Variation in the sequence of T-cell epitopes between dengue virus (DENV) serotypes is believed to alter memory T-cell responses during second heterologous infections. We identified a highly conserved, novel, HLA-B57-restricted epitope on the DENV NS1 protein. We predicted higher frequencies of B57-NS1(26-34) -specific CD8(+) T cells in peripheral blood mononuclear cells from individuals undergoing secondary rather than primary DENV infection. However, high tetramer-positive T-cell frequencies during acute infection were seen in only one of nine subjects with secondary infection. B57-NS1(26-34) -specific and other DENV epitope-specific CD8(+) T cells, as well as total CD8(+) T cells, expressed an activated phenotype (CD69(+) and/or CD38(+)) during acute infection. In contrast, expression of CD71 was largely limited to DENV epitope-specific CD8(+) T cells. In vitro stimulation of cell lines indicated that CD71 expression was differentially sensitive to stimulation by homologous and heterologous variant peptides. CD71 may represent a useful marker of antigen-specific T-cell activation.
Collapse
Affiliation(s)
- Elizabeth Townsley
- Division of Infectious Disease and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Day CL, Tameris M, Mansoor N, van Rooyen M, de Kock M, Geldenhuys H, Erasmus M, Makhethe L, Hughes EJ, Gelderbloem S, Bollaerts A, Bourguignon P, Cohen J, Demoitié MA, Mettens P, Moris P, Sadoff JC, Hawkridge A, Hussey GD, Mahomed H, Ofori-Anyinam O, Hanekom WA. Induction and regulation of T-cell immunity by the novel tuberculosis vaccine M72/AS01 in South African adults. Am J Respir Crit Care Med 2014; 188:492-502. [PMID: 23306546 DOI: 10.1164/rccm.201208-1385oc] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
RATIONALE Tuberculosis (TB) is a major cause of morbidity and mortality worldwide, thus there is an urgent need for novel TB vaccines. OBJECTIVES We investigated a novel TB vaccine candidate, M72/AS01, in a phase IIa trial of bacille Calmette-Guérin-vaccinated, HIV-uninfected, and Mycobacterium tuberculosis (Mtb)-infected and -uninfected adults in South Africa. METHODS Two doses of M72/AS01 were administered to healthy adults, with and without latent Mtb infection. Participants were monitored for 7 months after the first dose; cytokine production profiles, cell cycling, and regulatory phenotypes of vaccine-induced T cells were measured by flow cytometry. MEASUREMENTS AND MAIN RESULTS The vaccine had a clinically acceptable safety profile, and induced robust, long-lived M72-specific T-cell and antibody responses. M72-specific CD4 T cells produced multiple combinations of Th1 cytokines. Analysis of T-cell Ki67 expression showed that most vaccination-induced T cells did not express Th1 cytokines or IL-17; these cytokine-negative Ki67(+) T cells included subsets of CD4 T cells with regulatory phenotypes. PD-1, a negative regulator of activated T cells, was transiently expressed on M72-specific CD4 T cells after vaccination. Specific T-cell subsets were present at significantly higher frequencies after vaccination of Mtb-infected versus -uninfected participants. CONCLUSIONS M72/AS01 is clinically well tolerated in Mtb-infected and -uninfected adults, induces high frequencies of multifunctional T cells, and boosts distinct T-cell responses primed by natural Mtb infection. Moreover, these results provide important novel insights into how this immunity may be appropriately regulated after novel TB vaccination of Mtb-infected and -uninfected individuals. Clinical trial registered with www.clinicaltrials.gov (NCT 00600782).
Collapse
Affiliation(s)
- Cheryl L Day
- South African Tuberculosis Vaccine Initiative and School of Child and Adolescent Health, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, South Africa
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Tameris M, Geldenhuys H, Luabeya AK, Smit E, Hughes JE, Vermaak S, Hanekom WA, Hatherill M, Mahomed H, McShane H, Scriba TJ. The candidate TB vaccine, MVA85A, induces highly durable Th1 responses. PLoS One 2014; 9:e87340. [PMID: 24498312 PMCID: PMC3911992 DOI: 10.1371/journal.pone.0087340] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/20/2013] [Indexed: 12/16/2022] Open
Abstract
Background Vaccination against tuberculosis (TB) should provide long-term protective immunity against Mycobacterium tuberculosis (M.tb). The current TB vaccine, Bacille Calmette-Guerin (BCG), protects against disseminated childhood TB, but protection against lung TB in adolescents and adults is variable and mostly poor. One potential reason for the limited durability of protection may be waning of immunity through gradual attrition of BCG-induced T cells. We determined if a MVA85A viral-vector boost could enhance the durability of mycobacteria-specific T cell responses above those induced by BCG alone. Methods We describe a long-term follow-up study of persons previously vaccinated with MVA85A. We performed a medical history and clinical examination, a tuberculin skin test and measured vaccine-specific T cell responses in persons previously enrolled as adults, adolescents, children or infants into three different Phase II trials, between 2005 and 2011. Results Of 252 potential participants, 183 (72.6%) consented and completed the study visit. Vaccine-induced Ag85A-specific CD4+ T cell responses were remarkably persistent in healthy, HIV-uninfected adults, adolescents, children and infants, up to 6 years after MVA85A vaccination. Specific CD4+ T cells expressed surface markers consistent with either CD45RA−CCR7+ central memory or CD45RA−CCR7− effector memory T cells. Similarly durable Ag85A-specific CD4+ T cell responses were detected in HIV-infected persons who were on successful antiretroviral therapy when MVA85A was administered. By contrast, Ag85A-specific CD4+ T cell frequencies in untreated MVA85A-vaccinated HIV-infected persons were mostly undetectable 3–5 years after vaccination. Conclusion MVA85A induces remarkably durable T cell responses in immunocompetent persons. However, results from a recent phase IIb trial of MVA85A, conducted in infants from the same geographic area and study population, showed no vaccine efficacy, suggesting that these durable T cell responses do not enhance BCG-induced protection against TB in infants.
Collapse
Affiliation(s)
- Michele Tameris
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
- * E-mail:
| | - Hennie Geldenhuys
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Angelique KanyKany Luabeya
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Erica Smit
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Jane E. Hughes
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Samantha Vermaak
- Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Willem A. Hanekom
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Hassan Mahomed
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Helen McShane
- Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
189
|
Kroy DC, Ciuffreda D, Cooperrider JH, Tomlinson M, Hauck GD, Aneja J, Berger C, Wolski D, Carrington M, Wherry EJ, Chung RT, Tanabe KK, Elias N, Freeman GJ, de Kruyff RH, Misdraji J, Kim AY, Lauer GM. Liver environment and HCV replication affect human T-cell phenotype and expression of inhibitory receptors. Gastroenterology 2014; 146:550-61. [PMID: 24148617 PMCID: PMC3946973 DOI: 10.1053/j.gastro.2013.10.022] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 08/26/2013] [Accepted: 10/04/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS There is an unclear relationship between inhibitory receptor expression on T cells and their ability to control viral infections. Studies of human immune cells have been mostly limited to T cells from blood, which is often not the site of infection. We investigated the relationship between T-cell location, expression of inhibitory receptors, maturation, and viral control using blood and liver T cells from patients with hepatitis C virus (HCV) and other viral infections. METHODS We analyzed 36 liver samples from HCV antibody-positive patients (30 from patients with chronic HCV infection, 5 from patients with sustained virological responses to treatment, and 1 from a patient with spontaneous clearance) with 19 paired blood samples and 51 liver samples from HCV-negative patients with 17 paired blood samples. Intrahepatic and circulating lymphocytes were extracted; T-cell markers and inhibitory receptors were quantified for total and virus-specific T cells by flow cytometry. RESULTS Levels of the markers PD-1 and 2B4 (but not CD160, TIM-3, or LAG-3) were increased on intrahepatic T cells from healthy and diseased liver tissues compared with T cells from blood. HCV-specific intrahepatic CD8(+) T cells from patients with chronic HCV infection were distinct in that they expressed TIM-3 along with PD-1 and 2B4. In comparison, HCV-specific CD8(+) T cells from patients with sustained virological responses and T cells that recognized cytomegalovirus lacked TIM-3 but expressed higher levels of LAG-3; these cells also had different memory phenotypes and proliferative capacity. CONCLUSIONS T cells from liver express different inhibitory receptors than T cells from blood, independent of liver disease. HCV-specific and cytomegalovirus-specific CD8(+) T cells can be differentiated based on their expression of inhibitory receptors; these correlate with their memory phenotype and levels of proliferation and viral control.
Collapse
Affiliation(s)
- Daniela C Kroy
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Donatella Ciuffreda
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jennifer H Cooperrider
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Michelle Tomlinson
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Garrett D Hauck
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jasneet Aneja
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Christoph Berger
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, Massachusetts
| | - David Wolski
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mary Carrington
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, Massachusetts; Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - E John Wherry
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Raymond T Chung
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kenneth K Tanabe
- Divison of Surgical Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Nahel Elias
- Transplantation Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Rosemarie H de Kruyff
- Division of Immunology, Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Joseph Misdraji
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Arthur Y Kim
- Infectious Disease Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Georg M Lauer
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
190
|
Slifka MK, Leung DYM, Hammarlund E, Raué HP, Simpson EL, Tofte S, Baig-Lewis S, David G, Lynn H, Woolson R, Hata T, Milgrom H, Hanifin J. Transcutaneous yellow fever vaccination of subjects with or without atopic dermatitis. J Allergy Clin Immunol 2014; 133:439-47. [PMID: 24331381 PMCID: PMC3960337 DOI: 10.1016/j.jaci.2013.10.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/20/2013] [Accepted: 10/23/2013] [Indexed: 11/20/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is a common inflammatory skin disease with a global prevalence ranging from 3% to 20%. Patients with AD have an increased risk for complications after viral infection (eg, herpes simplex virus), and vaccination of patients with AD with live vaccinia virus is contraindicated because of a heightened risk of eczema vaccinatum, a rare but potentially lethal complication associated with smallpox vaccination. OBJECTIVE We sought to develop a better understanding of immunity to cutaneous viral infection in patients with AD. METHODS In a double-blind randomized study we investigated the safety and immunogenicity of live attenuated yellow fever virus (YFV) vaccination of nonatopic subjects and patients with AD after standard subcutaneous inoculation or transcutaneous vaccination administered with a bifurcated needle. Viremia, neutralizing antibody, and antiviral T-cell responses were analyzed for up to 30 days after vaccination. RESULTS YFV vaccination administered through either route was well tolerated. Subcutaneous vaccination resulted in higher seroconversion rates than transcutaneous vaccination but elicited similar antiviral antibody levels and T-cell responses in both the nonatopic and AD groups. After transcutaneous vaccination, both groups mounted similar neutralizing antibody responses, but patients with AD demonstrated lower antiviral T-cell responses by 30 days after vaccination. Among transcutaneously vaccinated subjects, a significant inverse correlation between baseline IgE levels and the magnitude of antiviral antibody and CD4(+) T-cell responses was observed. CONCLUSIONS YFV vaccination of patients with AD through the transcutaneous route revealed that high baseline IgE levels provide a potential biomarker for predicting reduced virus-specific immune memory after transcutaneous infection with a live virus.
Collapse
Affiliation(s)
- Mark K Slifka
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Ore.
| | | | - Erika Hammarlund
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Ore
| | - Hans-Peter Raué
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Ore
| | - Eric L Simpson
- Department of Dermatology, Oregon Health & Science University, Portland, Ore
| | - Susan Tofte
- Department of Dermatology, Oregon Health & Science University, Portland, Ore
| | - Shahana Baig-Lewis
- Department of Dermatology, Oregon Health & Science University, Portland, Ore
| | | | | | | | - Tissa Hata
- Division of Dermatology, University of California San Diego, La Jolla, Calif
| | - Henry Milgrom
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Jon Hanifin
- Department of Dermatology, Oregon Health & Science University, Portland, Ore
| |
Collapse
|
191
|
A chimeric dengue virus vaccine using Japanese encephalitis virus vaccine strain SA14-14-2 as backbone is immunogenic and protective against either parental virus in mice and nonhuman primates. J Virol 2013; 87:13694-705. [PMID: 24109223 DOI: 10.1128/jvi.00931-13] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of a safe and efficient dengue vaccine represents a global challenge in public health. Chimeric dengue viruses (DENV) based on an attenuated flavivirus have been well developed as vaccine candidates by using reverse genetics. In this study, based on the full-length infectious cDNA clone of the well-known Japanese encephalitis virus live vaccine strain SA14-14-2 as a backbone, a novel chimeric dengue virus (named ChinDENV) was rationally designed and constructed by replacement with the premembrane and envelope genes of dengue 2 virus. The recovered chimeric virus showed growth and plaque properties similar to those of the parental DENV in mammalian and mosquito cells. ChinDENV was highly attenuated in mice, and no viremia was induced in rhesus monkeys upon subcutaneous inoculation. ChinDENV retained its genetic stability and attenuation phenotype after serial 15 passages in cultured cells. A single immunization with various doses of ChinDENV elicited strong neutralizing antibodies in a dose-dependent manner. When vaccinated monkeys were challenged with wild-type DENV, all animals except one that received the lower dose were protected against the development of viremia. Furthermore, immunization with ChinDENV conferred efficient cross protection against lethal JEV challenge in mice in association with robust cellular immunity induced by the replicating nonstructural proteins. Taken together, the results of this preclinical study well demonstrate the great potential of ChinDENV for further development as a dengue vaccine candidate, and this kind of chimeric flavivirus based on JE vaccine virus represents a powerful tool to deliver foreign antigens.
Collapse
|
192
|
Cottin P, Niedrig M, Domingo C. Safety profile of the yellow fever vaccine Stamaril®: a 17-year review. Expert Rev Vaccines 2013; 12:1351-68. [PMID: 24066727 DOI: 10.1586/14760584.2013.836320] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Since the creation by the manufacturer in 1993, of an electronic pharmacovigilance database for all spontaneous, voluntary reports of adverse events (AEs) after vaccination, 276 million doses of Stamaril® have been distributed worldwide. We review this database for the safety of Stamaril with emphasis on yellow fever (YF) vaccine associated acute viscerotropic and neurotropic diseases, anaphylaxis and on specific at risk groups: elderly adults, pregnant and lactating women and the immunosuppressed. Findings confirm that the vaccine's safety profile in routine practice is favorable and consistent with the summary of product characteristics. Estimated reporting rates of serious adverse events associated after Stamaril vaccination are lower than the previously published and widely cited estimates of the worldwide reporting rate for YF vaccines in general. These data provide important additional information for the prescribers in assessing the risks and benefits associated with the use of Stamaril in individuals exposed to YF virus.
Collapse
Affiliation(s)
- Pascale Cottin
- Global Pharmacovigilance Department Sanofi Pasteur, 2 avenue du Pont Pasteur, 69367 Lyon cedex 07, France
| | | | | |
Collapse
|
193
|
Capone S, D'Alise AM, Ammendola V, Colloca S, Cortese R, Nicosia A, Folgori A. Development of chimpanzee adenoviruses as vaccine vectors: challenges and successes emerging from clinical trials. Expert Rev Vaccines 2013; 12:379-93. [PMID: 23560919 DOI: 10.1586/erv.13.15] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Replication-defective chimpanzee adenovirus vectors are emerging as a promising new class of genetic vaccine carriers. Chimpanzee adenovirus vectors have now reached the clinical stage and appear to be endowed with all the properties needed for human vaccine development, including high quality and magnitude of the immune response induced against the encoded antigens, good safety and ease of manufacturing on a large-scale basis. Here the authors review the recent findings of this novel class of adenovirus vectors and compare their properties to other clinical stage vaccine vectors derived from poxvirus, alphavirus and human adenovirus.
Collapse
|
194
|
Yellow fever vaccination elicits broad functional CD4+ T cell responses that recognize structural and nonstructural proteins. J Virol 2013; 87:12794-804. [PMID: 24049183 DOI: 10.1128/jvi.01160-13] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yellow fever virus (YFV) can induce acute, life-threatening disease that is a significant health burden in areas where yellow fever is endemic, but it is preventable through vaccination. The live attenuated 17D YFV strain induces responses characterized by neutralizing antibodies and strong T cell responses. This vaccine provides an excellent model for studying human immunity. While several studies have characterized YFV-specific antibody and CD8(+) T cell responses, less is known about YFV-specific CD4(+) T cells. Here we characterize the epitope specificity, functional attributes, and dynamics of YFV-specific T cell responses in vaccinated subjects by investigating peripheral blood mononuclear cells by using HLA-DR tetramers. A total of 112 epitopes restricted by seven common HLA-DRB1 alleles were identified. Epitopes were present within all YFV proteins, but the capsid, envelope, NS2a, and NS3 proteins had the highest epitope density. Antibody blocking demonstrated that the majority of YFV-specific T cells were HLA-DR restricted. Therefore, CD4(+) T cell responses could be effectively characterized with HLA-DR tetramers. Ex vivo tetramer analysis revealed that YFV-specific T cells persisted at frequencies ranging from 0 to 100 cells per million that are detectable years after vaccination. Longitudinal analysis indicated that YFV-specific CD4(+) T cells reached peak frequencies, often exceeding 250 cells per million, approximately 2 weeks after vaccination. As frequencies subsequently declined, YFV-specific cells regained CCR7 expression, indicating a shift from effector to central memory. Cells were typically CXCR3 positive, suggesting Th1 polarization, and produced gamma interferon and other cytokines after reactivation in vitro. Therefore, YFV elicits robust early effector CD4(+) T cell responses that contract, forming a detectable memory population.
Collapse
|
195
|
Pulendran B, Oh JZ, Nakaya HI, Ravindran R, Kazmin DA. Immunity to viruses: learning from successful human vaccines. Immunol Rev 2013; 255:243-55. [PMID: 23947360 PMCID: PMC3748616 DOI: 10.1111/imr.12099] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
For more than a century, immunologists and vaccinologists have existed in parallel universes. Immunologists have for long reveled in using 'model antigens', such as chicken egg ovalbumin or nitrophenyl haptens, to study immune responses in model organisms such as mice. Such studies have yielded many seminal insights about the mechanisms of immune regulation, but their relevance to humans has been questioned. In another universe, vaccinologists have relied on human clinical trials to assess vaccine efficacy, but have done little to take advantage of such trials for studying the nature of immune responses to vaccination. The human model provides a nexus between these two universes, and recent studies have begun to use this model to study the molecular profile of innate and adaptive responses to vaccination. Such 'systems vaccinology' studies are beginning to provide mechanistic insights about innate and adaptive immunity in humans. Here, we present an overview of such studies, with particular examples from studies with the yellow fever and the seasonal influenza vaccines. Vaccination with the yellow fever vaccine causes a systemic acute viral infection and thus provides an attractive model to study innate and adaptive responses to a primary viral challenge. Vaccination with the live attenuated influenza vaccine causes a localized acute viral infection in mucosal tissues and induces a recall response, since most vaccinees have had prior exposure to influenza, and thus provides a unique opportunity to study innate and antigen-specific memory responses in mucosal tissues and in the blood. Vaccination with the inactivated influenza vaccine offers a model to study immune responses to an inactivated immunogen. Studies with these and other vaccines are beginning to reunite the estranged fields of immunology and vaccinology, yielding unexpected insights about mechanisms of viral immunity. Vaccines that have been proven to be of immense benefit in saving lives offer us a new fringe benefit: lessons in viral immunology.
Collapse
|
196
|
Assessment of the phenotype and functionality of porcine CD8 T cell responses following vaccination with live attenuated classical swine fever virus (CSFV) and virulent CSFV challenge. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1604-16. [PMID: 23966552 DOI: 10.1128/cvi.00415-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vaccination with live attenuated classical swine fever virus (CSFV) induces solid protection after only 5 days, which has been associated with virus-specific T cell gamma interferon (IFN-γ) responses. In this study, we employed flow cytometry to characterize T cell responses following vaccination and subsequent challenge infections with virulent CSFV. The CD3(+) CD4(-) CD8(hi) T cell population was the first and major source of CSFV-specific IFN-γ. A proportion of these cells showed evidence for cytotoxicity, as evidenced by CD107a mobilization, and coexpressed tumor necrosis factor alpha (TNF-α). To assess the durability and recall of these responses, a second experiment was conducted where vaccinated animals were challenged with virulent CSFV after 5 days and again after a further 28 days. While virus-specific CD4 T cell (CD3(+) CD4(+) CD8α(+)) responses were detected, the dominant response was again from the CD8 T cell population, with the highest numbers of these cells being detected 14 and 7 days after the primary and secondary challenges, respectively. These CD8 T cells were further characterized as CD44(hi) CD62L(-) and expressed variable levels of CD25 and CD27, indicative of a mixed effector and effector memory phenotype. The majority of virus-specific IFN-γ(+) CD8 T cells isolated at the peaks of the response after each challenge displayed CD107a on their surface, and subpopulations that coexpressed TNF-α and interleukin 2 (IL-2) were identified. While it is hoped that these data will aid the rational design and/or evaluation of next-generation marker CSFV vaccines, the novel flow cytometric panels developed should also be of value in the study of porcine T cell responses to other pathogens/vaccines.
Collapse
|
197
|
Dintwe OB, Day CL, Smit E, Nemes E, Gray C, Tameris M, McShane H, Mahomed H, Hanekom WA, Scriba TJ. Heterologous vaccination against human tuberculosis modulates antigen-specific CD4+ T-cell function. Eur J Immunol 2013; 43:2409-20. [PMID: 23737382 PMCID: PMC3816254 DOI: 10.1002/eji.201343454] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/24/2013] [Accepted: 05/31/2013] [Indexed: 12/19/2022]
Abstract
Heterologous prime-boost strategies hold promise for vaccination against tuberculosis. However, the T-cell characteristics required for protection are not known. We proposed that boost vaccines should induce long-lived functional and phenotypic changes to T cells primed by Bacille Calmette Guerin (BCG) and/or natural exposure to mycobacteria. We characterized changes among specific CD4+ T cells after vaccination with the MVA85A vaccine in adults, adolescents, and children. CD4+ T cells identified with Ag85A peptide-bearing HLA class II tetramers were characterized by flow cytometry. We also measured proliferative potential and cytokine expression of Ag85A-specific CD4+ T cells. During the effector phase, MVA85A-induced specific CD4+ T cells coexpressed IFN-γ and IL-2, skin homing integrins, and the activation marker CD38. This was followed by contraction and a transition to predominantly IL-2-expressing, CD45RA−CCR7+CD27+ or CD45RA+CCR7+CD27+ specific CD4+ T cells. These surface phenotypes were similar to Ag85A-specific T cells prior to MVA85A. However, functional differences were observed postvaccination: specific proliferative capacity was markedly higher after 6–12 months than before vaccination. Our data suggest that MVA85A vaccination may modulate Ag85A-specific CD4+ T-cell function, resulting in greater recall potential. Importantly, surface phenotypes commonly used as proxies for memory T-cell function did not associate with functional effects of vaccination.
Collapse
Affiliation(s)
- One B Dintwe
- South African Tuberculosis Vaccine Initiative and School of Child and Adolescent Health, Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape Town, South Africa
| | - Cheryl L Day
- South African Tuberculosis Vaccine Initiative and School of Child and Adolescent Health, Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape Town, South Africa
- Department of Global Health, Rollins School of Public Health, Emory UniversityAtlanta, GA, USA
- Emory Vaccine Center, Emory UniversityAtlanta, GA, USA
| | - Erica Smit
- South African Tuberculosis Vaccine Initiative and School of Child and Adolescent Health, Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape Town, South Africa
| | - Elisa Nemes
- South African Tuberculosis Vaccine Initiative and School of Child and Adolescent Health, Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape Town, South Africa
| | - Clive Gray
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape Town, South Africa
| | - Michele Tameris
- South African Tuberculosis Vaccine Initiative and School of Child and Adolescent Health, Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape Town, South Africa
| | - Helen McShane
- Centre for Clinical Vaccinology and Tropical Medicine and The Jenner Institute Laboratories, Nuffield Department of Medicine, Oxford UniversityOxford, United Kingdom
| | - Hassan Mahomed
- South African Tuberculosis Vaccine Initiative and School of Child and Adolescent Health, Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape Town, South Africa
| | - Willem A Hanekom
- South African Tuberculosis Vaccine Initiative and School of Child and Adolescent Health, Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape Town, South Africa
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative and School of Child and Adolescent Health, Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape Town, South Africa
- Correspondence: Dr. Thomas J. Scriba, South African Tuberculosis Vaccine Initiative, Werner and Beit Building, Anzio Road, Observatory 7925, Cape Town, South Africa, Fax: +27-214066693, e-mail:
| |
Collapse
|
198
|
Kaabinejadian S, Piazza PA, McMurtrey CP, Vernon SR, Cate SJ, Bardet W, Schafer FB, Jackson KW, Campbell DM, Buchli R, Rinaldo CR, Hildebrand WH. Identification of class I HLA T cell control epitopes for West Nile virus. PLoS One 2013; 8:e66298. [PMID: 23762485 PMCID: PMC3677933 DOI: 10.1371/journal.pone.0066298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 05/03/2013] [Indexed: 11/26/2022] Open
Abstract
The recent West Nile virus (WNV) outbreak in the United States underscores the importance of understanding human immune responses to this pathogen. Via the presentation of viral peptide ligands at the cell surface, class I HLA mediate the T cell recognition and killing of WNV infected cells. At this time, there are two key unknowns in regards to understanding protective T cell immunity: 1) the number of viral ligands presented by the HLA of infected cells, and 2) the distribution of T cell responses to these available HLA/viral complexes. Here, comparative mass spectroscopy was applied to determine the number of WNV peptides presented by the HLA-A*11:01 of infected cells after which T cell responses to these HLA/WNV complexes were assessed. Six viral peptides derived from capsid, NS3, NS4b, and NS5 were presented. When T cells from infected individuals were tested for reactivity to these six viral ligands, polyfunctional T cells were focused on the GTL9 WNV capsid peptide, ligands from NS3, NS4b, and NS5 were less immunogenic, and two ligands were largely inert, demonstrating that class I HLA reduce the WNV polyprotein to a handful of immune targets and that polyfunctional T cells recognize infections by zeroing in on particular HLA/WNV epitopes. Such dominant HLA/peptide epitopes are poised to drive the development of WNV vaccines that elicit protective T cells as well as providing key antigens for immunoassays that establish correlates of viral immunity.
Collapse
Affiliation(s)
- Saghar Kaabinejadian
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Paolo A. Piazza
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, United States of America
| | - Curtis P. McMurtrey
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Stephen R. Vernon
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Steven J. Cate
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Wilfried Bardet
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Fredda B. Schafer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Kenneth W. Jackson
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Diana M. Campbell
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, United States of America
| | - Rico Buchli
- Pure Protein L.L.C., Oklahoma City, Oklahoma, United States of America
| | - Charles R. Rinaldo
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - William H. Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Pure Protein L.L.C., Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
199
|
Abstract
The immune response to a pathogen has two basic features. The first is the expansion of a few pathogen-specific cells to form a population large enough to control the pathogen. The second is the process of differentiation of cells from an initial naive phenotype to an effector phenotype which controls the pathogen, and subsequently to a memory phenotype that is maintained and responsible for long-term protection. The expansion and the differentiation have been considered largely independently. Changes in cell populations are typically described using ecologically based ordinary differential equation models. In contrast, differentiation of single cells is studied within systems biology and is frequently modeled by considering changes in gene and protein expression in individual cells. Recent advances in experimental systems biology make available for the first time data to allow the coupling of population and high dimensional expression data of immune cells during infections. Here we describe and develop population-expression models which integrate these two processes into systems biology on the multicellular level. When translated into mathematical equations, these models result in non-conservative, non-local advection-diffusion equations. We describe situations where the population-expression approach can make correct inference from data while previous modeling approaches based on common simplifying assumptions would fail. We also explore how model reduction techniques can be used to build population-expression models, minimizing the complexity of the model while keeping the essential features of the system. While we consider problems in immunology in this paper, we expect population-expression models to be more broadly applicable.
Collapse
Affiliation(s)
- Sean P Stromberg
- Department of Biology, Emory University, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
200
|
Youngblood B, Hale JS, Akondy R. Using epigenetics to define vaccine-induced memory T cells. Curr Opin Virol 2013; 3:371-6. [PMID: 23747121 PMCID: PMC3801186 DOI: 10.1016/j.coviro.2013.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 05/10/2013] [Indexed: 12/23/2022]
Abstract
Memory T cells generated from acute infection or vaccination have the potential to provide the host with life-long immunity against re-infection. Protection by memory T cells is achieved through their acquired ability to persist at anatomical sites of the primary infection as well as maintaining a heightened ability to recall effector functions. The maintenance of CD8 and CD4 T cell function in a state of readiness is key to life-long immunity and manifest through changes in transcriptional regulation. Yet, the ability to identify poised transcriptional programs at the maintenance stage of the response is lacking from most transcriptional profiling studies of memory T cells. Epigenetic profiling allows for the assessment of transcriptionally poised (promoters that are readily accessible for transcription) states of antigen-specific T cells without manipulation of the activation state of the cell. Here we review recent studies that have examined epigenetic programs of effector and memory T cell subsets. These reports demonstrate that acquisition of epigenetic programs during memory T cell differentiation to acute and chronic infections is coupled to, and potentially regulate, the cell's recall response. We discuss the usefulness of epigenetic profiling in characterizing T cell differentiation state and function for preclinical evaluation of vaccines and the current methodologies for single locus versus genome-wide epigenetic profiling.
Collapse
Affiliation(s)
- Ben Youngblood
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, United States.
| | | | | |
Collapse
|