151
|
Torti N, Walton SM, Brocker T, Rülicke T, Oxenius A. Non-hematopoietic cells in lymph nodes drive memory CD8 T cell inflation during murine cytomegalovirus infection. PLoS Pathog 2011; 7:e1002313. [PMID: 22046127 PMCID: PMC3203160 DOI: 10.1371/journal.ppat.1002313] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 08/29/2011] [Indexed: 01/31/2023] Open
Abstract
During human and murine cytomegalovirus (MCMV) infection an exceptionally large virus-specific CD8 T cell pool is maintained in the periphery lifelong. This anomalous response is only seen for specific subsets of MCMV-specific CD8 T cells which are referred to as 'inflationary T cells'. How memory CD8 T cell inflation is induced and maintained is unclear, though their activated phenotype strongly suggests an involvement of persistent antigen encounter during MCMV latency. To dissect the cellular and molecular requirements for memory CD8 T cell inflation, we have generated a transgenic mouse expressing an MHC class I-restricted T cell receptor specific for an immunodominant inflationary epitope of MCMV. Through a series of adoptive transfer experiments we found that memory inflation was completely dependent on antigen presentation by non-hematopoietic cells, which are also the predominant site of MCMV latency. In particular, non-hematopoietic cells selectively induced robust proliferation of inflationary CD8 T cells in lymph nodes, where a majority of the inflationary CD8 T cells exhibit a central-memory phenotype, but not in peripheral tissues, where terminally differentiated inflationary T cells accumulate. These results indicate that continuous restimulation of central memory CD8 T cells in the lymph nodes by infected non-hematopoietic cells ensures the maintenance of a functional effector CD8 T pool in the periphery, providing protection against viral reactivation events. Cytomegaloviruses (CMVs) infect the majority of the human population and persist lifelong via latency. CMV latency is thought to be a dynamic state, characterized by stochastic viral reactivation events coupled to CMV-derived antigen presentation. In support of this hypothesis is the exceptionally large CMV-specific CD8 T cell response which constitutes an integral part of immune surveillance of CMV reactivation. Conversely, it may also contribute to immune senescence as it significantly shapes the overall CD8 T cell pool in bias of CMV-specificity. In mice, only a subset of CMV-specific CD8 T cells, also called ‘inflationary CD8 T cells’, contribute to this large response. The mechanism leading to the selective accumulation and persistence of memory CD8 T cells during MCMV latency is largely unknown. Here, we unraveled the mechanisms of memory CD8 T cell inflation using a newly generated TCR transgenic mouse with specificity for an immunodominant inflationary MCMV epitope. We show that antigen presentation on non-hematopoietic cells is essential for memory inflation and that memory inflation in peripheral tissues is fueled by lymph node-resident central memory CD8 T cells, being locally reactivated by non-hematopoietic cells, inducing their local expansion and migration to peripheral tissues where they control viral reactivation events.
Collapse
Affiliation(s)
- Nicole Torti
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | | | | | - Thomas Rülicke
- Institute of Laboratory Animal Science and Biomodels Austria, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Annette Oxenius
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
152
|
Pipeling MR, John ER, Orens JB, Lechtzin N, McDyer JF. Primary cytomegalovirus phosphoprotein 65-specific CD8+ T-cell responses and T-bet levels predict immune control during early chronic infection in lung transplant recipients. J Infect Dis 2011; 204:1663-71. [PMID: 22021622 DOI: 10.1093/infdis/jir624] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Cytomegalovirus (CMV) remains an important pathogen in solid organ transplantation, particularly lung transplantation. Lung transplant recipients (LTRs) mismatched for CMV (donor positive/recipient negative [D(+)R(-)]) are at highest risk for active CMV infection and have increased mortality. However, the correlates of immune control during chronic CMV infection remain incompletely understood. METHODS We prospectively studied 22 D(+)R(-) LTRs during primary CMV infection and into chronic infection. Immune responses during primary infection were analyzed for association with viral relapse during early chronic infection. RESULTS Primary CMV infection was characterized by a striking induction of T-box transcription factor (T-bet) in CD8(+) T cells. CMV-specific effector CD8(+) T cells were found to be T-bet(+). After primary infection, 7 LTRs lacked immune control with relapsing viremia during early chronic infection. LTRs with relapsing viremia had poor induction of T-bet and low frequencies of phosphoprotein 65 (pp65)-specific CD8(+) effector T cells during primary infection. However, frequencies of IE1-specific CD8(+) effector T cells during primary infection were not associated with early relapsing viremia. CONCLUSIONS T-bet plays an important role in coordinating CD8(+) effector responses to CMV during primary infection. Moreover, CD8(+) T-bet induction and pp65-specific CD8(+) effector responses at the time of primary infection are important predictors of immune control of CMV during early chronic infection.
Collapse
Affiliation(s)
- Matthew R Pipeling
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | |
Collapse
|
153
|
Sustained CD8+ T cell memory inflation after infection with a single-cycle cytomegalovirus. PLoS Pathog 2011; 7:e1002295. [PMID: 21998590 PMCID: PMC3188546 DOI: 10.1371/journal.ppat.1002295] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 08/16/2011] [Indexed: 02/03/2023] Open
Abstract
Cytomegalovirus (CMV) is a β-herpesvirus that establishes a lifelong latent or persistent infection. A hallmark of chronic CMV infection is the lifelong persistence of large numbers of virus-specific CD8+ effector/effector memory T cells, a phenomenon called “memory inflation”. How the virus continuously stimulates these T cells without being eradicated remains an enigma. The prevailing view is that CMV establishes a low grade “smoldering” infection characterized by tiny bursts of productive infection which are rapidly extinguished, leaving no detectable virus but replenishing the latent pool and leaving the immune system in a highly charged state. However, since abortive reactivation with limited viral gene expression is known to occur commonly, we investigated the necessity for virus reproduction in maintaining the inflationary T cell pool. We inhibited viral replication or spread in vivo using two different mutants of murine CMV (MCMV). First, famcyclovir blocked the replication of MCMV encoding the HSV Thymidine Kinase gene, but had no impact on the CD8+ T cell memory inflation once the infection was established. Second, MCMV that lacks the essential glycoprotein L, and thus is completely unable to spread from cell to cell, also drove memory inflation if the virus was administered systemically. Our data suggest that CMV which cannot spread from the cells it initially infects can repeatedly generate viral antigens to drive memory inflation without suffering eradication of the latent genome pool. Cytomegalovirus (CMV) establishes life-long, asymptomatic infections in healthy people. Ongoing immune surveillance prevents viral disease but also results in the accumulation of large numbers of virus-specific T cells. The mechanisms by which the virus persists while stimulating such strong immune responses are unknown. We and others had hypothesized that periodic viral replication and spread to neighboring cells allowed CMV to replenish the pool of infected cells while stimulating virus-specific T cells to accumulate. In this manuscript, we have tested this model by blocking the replication or spread of murine cytomegalovirus (MCMV) and found, surprisingly, that accumulation of virus-specific T cells occurs independently of viral replication. Moreover, these T cells developed the terminal differentiated phenotype that is indicative of repeated antigenic stimulation. Thus, these data suggest that CMV can remain active and continuously stimulate the immune system, while avoiding immune-mediated clearance, without the capacity to spread from cell to cell.
Collapse
|
154
|
Yatim N, Albert M. Dying to Replicate: The Orchestration of the Viral Life Cycle, Cell Death Pathways, and Immunity. Immunity 2011; 35:478-90. [DOI: 10.1016/j.immuni.2011.10.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 09/20/2011] [Accepted: 10/14/2011] [Indexed: 12/11/2022]
|
155
|
Tsuda Y, Caposio P, Parkins CJ, Botto S, Messaoudi I, Cicin-Sain L, Feldmann H, Jarvis MA. A replicating cytomegalovirus-based vaccine encoding a single Ebola virus nucleoprotein CTL epitope confers protection against Ebola virus. PLoS Negl Trop Dis 2011; 5:e1275. [PMID: 21858240 PMCID: PMC3153429 DOI: 10.1371/journal.pntd.0001275] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 06/29/2011] [Indexed: 12/22/2022] Open
Abstract
Background Human outbreaks of Ebola virus (EBOV) are a serious human health concern in Central Africa. Great apes (gorillas/chimpanzees) are an important source of EBOV transmission to humans due to increased hunting of wildlife including the ‘bush-meat’ trade. Cytomegalovirus (CMV) is an highly immunogenic virus that has shown recent utility as a vaccine platform. CMV-based vaccines also have the unique potential to re-infect and disseminate through target populations regardless of prior CMV immunity, which may be ideal for achieving high vaccine coverage in inaccessible populations such as great apes. Methodology/Principal Findings We hypothesize that a vaccine strategy using CMV-based vectors expressing EBOV antigens may be ideally suited for use in inaccessible wildlife populations. To establish a ‘proof-of-concept’ for CMV-based vaccines against EBOV, we constructed a mouse CMV (MCMV) vector expressing a CD8+ T cell epitope from the nucleoprotein (NP) of Zaire ebolavirus (ZEBOV) (MCMV/ZEBOV-NPCTL). MCMV/ZEBOV-NPCTL induced high levels of long-lasting (>8 months) CD8+ T cells against ZEBOV NP in mice. Importantly, all vaccinated animals were protected against lethal ZEBOV challenge. Low levels of anti-ZEBOV antibodies were only sporadically detected in vaccinated animals prior to ZEBOV challenge suggesting a role, at least in part, for T cells in protection. Conclusions/Significance This study demonstrates the ability of a CMV-based vaccine approach to protect against an highly virulent human pathogen, and supports the potential for ‘disseminating’ CMV-based EBOV vaccines to prevent EBOV transmission in wildlife populations. Human outbreaks of hemorrhagic disease caused by Ebola virus (EBOV) are a serious health concern in Central Africa. Great apes (gorillas/chimpanzees) are an important source of EBOV transmission to humans. Candidate EBOV vaccines do not spread from the initial vaccinee. In addition to being highly immunogenic, vaccines based on the cytomegalovirus (CMV) platform have the unique potential to re-infect and disseminate through target populations. To explore the utility of CMV-based vaccines against EBOV, we constructed a mouse CMV (MCMV) vector expressing a region of nucleoprotein (NP) of Zaire ebolavirus (ZEBOV) (MCMV/ZEBOV-NPCTL). MCMV/ZEBOV-NPCTL induced high levels of long-lasting CD8+ T cells against ZEBOV NP in mice. Importantly, all vaccinated animals were protected against lethal ZEBOV challenge. The absence of ZEBOV neutralizing and only low, sporadic levels of total anti-ZEBOV IgG antibodies in protected animals prior to ZEBOV challenge indicate a role, albeit perhaps not exclusive, for CD8+ T cells in mediating protection. This study demonstrates the ability of a CMV-based vaccine approach to protect against ZEBOV, and provides a ‘proof-of-concept’ for the potential for a ‘disseminating’ CMV-based EBOV vaccine to prevent EBOV transmission in wild animal populations.
Collapse
Affiliation(s)
- Yoshimi Tsuda
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Patrizia Caposio
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Christopher J. Parkins
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Sara Botto
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Ilhem Messaoudi
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Luka Cicin-Sain
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Michael A. Jarvis
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, United States of America
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
156
|
Torti N, Walton SM, Murphy KM, Oxenius A. Batf3 transcription factor-dependent DC subsets in murine CMV infection: differential impact on T-cell priming and memory inflation. Eur J Immunol 2011; 41:2612-8. [PMID: 21604258 DOI: 10.1002/eji.201041075] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 05/15/2011] [Accepted: 05/20/2011] [Indexed: 12/22/2022]
Abstract
Priming of CD8(+) T cells specific for viruses that interfere with the MHC class I presentation pathway is a challenge for the immune system and is believed to rely on cross-presentation. Cytomegalovirus (CMV) infection induces vigorous CD8(+) T-cell responses despite its potent immune evasion strategies. Furthermore, CD8(+) T cells specific for a subset of viral epitopes accumulate and are maintained at high levels exhibiting an activated phenotype - referred to as "inflationary T cells". Taking advantage Batf3(-/-) mice in which the development of cross-presenting CD8α(+) and CD103(+) DCs is severely compromised, we analyzed their role in the induction and inflation of murine (M)CMV-specific CD8(+) T-cell responses. We found that priming of MCMV-specific CD8(+) T cells was severely impaired in the absence of cross-presenting DCs. However, inflation of two immuno-dominant MCMV-specific CD8(+) T-cell populations was largely normal in the absence of cross-presenting DCs, indicating that inflation during latency was mainly dependent on direct antigen presentation. These results highlight differential antigen presentation requirements during acute and latent MCMV infection.
Collapse
Affiliation(s)
- Nicole Torti
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
157
|
Walton SM, Torti N, Mandaric S, Oxenius A. T-cell help permits memory CD8(+) T-cell inflation during cytomegalovirus latency. Eur J Immunol 2011; 41:2248-59. [PMID: 21590767 DOI: 10.1002/eji.201141575] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 04/12/2011] [Accepted: 05/09/2011] [Indexed: 01/10/2023]
Abstract
CD4(+) T cells are implied to sustain CD8(+) T-cell responses during persistent infections. As CD4(+) T cells are often themselves antiviral effectors, they might shape CD8(+) T-cell responses via help or via controlling antigen load. We used persistent murine CMV (MCMV) infection to dissect the impact of CD4(+) T cells on virus-specific CD8(+) T cells, distinguishing between increased viral load in the absence of CD4(+) T cells and CD4(+) T-cell-mediated helper mechanisms. Absence of T-helper cells was associated with sustained lytic MCMV replication and led to a slow and gradual reduction of the size and function of the MCMV-specific CD8(+) T-cell pool. However, when virus replication was controlled in the absence of CD4(+) T cells, CD8(+) T-cell function was comparably impaired, but in addition CD8(+) T-cell inflation, a hallmark of CMV infection, was completely abolished. Thus, CD8(+) T-cell inflation during latent CMV infection is strongly dependent on CD4(+) T-cell helper functions, which can partially be compensated by ongoing lytic viral replication in the absence of CD4(+) T cells.
Collapse
Affiliation(s)
- Senta M Walton
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
158
|
Loewendorf AI, Arens R, Purton JF, Surh CD, Benedict CA. Dissecting the requirements for maintenance of the CMV-specific memory T-cell pool. Viral Immunol 2011; 24:351-5. [PMID: 21721929 DOI: 10.1089/vim.2010.0140] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cytomegalovirus (CMV) infection promotes a broad T-cell response, with the resulting memory cells displaying diverse phenotypes. CMV establishes lifelong persistence/latency, and it is thought that viral antigens expressed during this period may regulate the expansion and/or maintenance of "inflationary" CD8 T-memory populations that display an effector memory phenotype. We show here that mouse CMV (MCMV)-specific inflationary memory T cells do not decrease in number after thymectomy, indicating that recent thymic emigrants are not strictly required for their maintenance. Furthermore, persistent MCMV replication in the salivary gland does not significantly impact the T-cell memory compartment, as surgical removal did not alter its composition. These results shed light upon the mechanisms required for maintenance of the large, MCMV-specific T-cell memory pool.
Collapse
Affiliation(s)
- Andrea I Loewendorf
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
159
|
Schlub TE, Sun JC, Walton SM, Robbins SH, Pinto AK, Munks MW, Hill AB, Brossay L, Oxenius A, Davenport MP. Comparing the kinetics of NK cells, CD4, and CD8 T cells in murine cytomegalovirus infection. THE JOURNAL OF IMMUNOLOGY 2011; 187:1385-92. [PMID: 21697462 DOI: 10.4049/jimmunol.1100416] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
NK cells recognize virus-infected cells with germline-encoded activating and inhibitory receptors that do not undergo genetic recombination or mutation. Accordingly, NK cells are often considered part of the innate immune response. The innate response comprises rapid early defenders that do not form immune memory. However, there is increasing evidence that experienced NK cells provide increased protection to secondary infection, a hallmark of the adaptive response. In this study, we compare the dynamics of the innate and adaptive immune responses by examining the kinetic profiles of the NK and T cell response to murine CMV infection. We find that, unexpectedly, the kinetics of NK cell proliferation is neither earlier nor faster than the CD4 or CD8 T cell response. Furthermore, early NK cell contraction after the peak of the response is slower than that of T cells. Finally, unlike T cells, experienced NK cells do not experience biphasic decay after the response peak, a trait associated with memory formation. Rather, NK cell contraction is continuous, constant, and returns to below endogenous preinfection levels. This indicates that the reason why Ag-experienced NK cells remain detectable for a prolonged period after adoptive transfer and infection is in part due to the high precursor frequency, slow decay rate, and low background levels of Ly49H(+) NK cells in recipient DAP12-deficient mice. Thus, the quantitative contribution of Ag-experienced NK cells in an endogenous secondary response, with higher background levels of Ly49H(+) NK cells, may be not be as robust as the secondary response observed in T cells.
Collapse
Affiliation(s)
- Timothy E Schlub
- Complex Systems in Biology Group, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Cook CH, Trgovcich J. Cytomegalovirus reactivation in critically ill immunocompetent hosts: a decade of progress and remaining challenges. Antiviral Res 2011; 90:151-9. [PMID: 21439328 PMCID: PMC3129598 DOI: 10.1016/j.antiviral.2011.03.179] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 03/14/2011] [Accepted: 03/15/2011] [Indexed: 01/05/2023]
Abstract
Human cytomegalovirus (HCMV) is an undisputed pathogen in humans with severe immune compromise, which has historically been thought to carry little consequence in immunocompetent hosts. During the past decade, however, accumulating data suggest that significant numbers of immunocompetent humans reactivate HCMV during critical illness, and that these reactivation episodes are associated with worsened outcomes. Because most people are infected with this ubiquitous virus by adulthood, confirming pathogenicity has now become a clinical priority. In this article, we will review the incidence and implications of reactivation, the relevant immune responses and reactivation triggers relevant to the immunocompetent host. We will summarize the progress made during the past ten years, outline the work ongoing in this field, and identify the major gaps remaining in our emerging understanding of this phenomenon.
Collapse
Affiliation(s)
- Charles H Cook
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA.
| | | |
Collapse
|
161
|
Seckert CK, Schader SI, Ebert S, Thomas D, Freitag K, Renzaho A, Podlech J, Reddehase MJ, Holtappels R. Antigen-presenting cells of haematopoietic origin prime cytomegalovirus-specific CD8 T-cells but are not sufficient for driving memory inflation during viral latency. J Gen Virol 2011; 92:1994-2005. [PMID: 21632567 DOI: 10.1099/vir.0.031815-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Expansion of the CD8 T-cell memory pool, also known as 'memory inflation', for certain but not all viral epitopes in latently infected host tissues is a special feature of the immune response to cytomegalovirus. The L(d)-presented murine cytomegalovirus (mCMV) immediate-early (IE) 1 peptide is the prototype of an epitope that is associated with memory inflation. Based on the detection of IE1 transcripts in latently infected lungs it was previously proposed that episodes of viral gene expression and antigenic activity due to desilencing of a limited number of viral genes may drive epitope-specific memory inflation. This would imply direct antigen presentation through latently infected host tissue cells rather than cell death-associated cross-presentation of viral antigens derived from productively infected cells through uninfected, professional antigen-presenting cells (profAPCs). To address the role of bone marrow-derived profAPCs in CD8 T-cell priming and memory to mCMV, we have used here a combined sex-mismatched and MHC class-I mismatched dual-marker bone marrow chimera model in which presentation of the IE1 epitope is restricted to donor-derived sry(+)L(d+) cells of haematopoietic differentiation lineages. Successful CD8 T-cell priming specific for the L(d)- and D(d)-presented inflationary epitopes IE1 and m164, respectively, but selective failure in IE1 epitope-specific memory inflation in these chimeras indicates different modes of antigen presentation involved in CD8 T-cell priming and memory inflation. These data suggest that memory inflation during mCMV latency requires expression of the epitope-presenting MHC class-I molecule by latently infected non-haematopoietic host tissue cells and thus predicts a role for direct antigen presentation in memory inflation.
Collapse
Affiliation(s)
- Christof K Seckert
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| | - Sina I Schader
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| | - Stefan Ebert
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| | - Doris Thomas
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| | - Kirsten Freitag
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| | - Angélique Renzaho
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| | - Jürgen Podlech
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| | - Matthias J Reddehase
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| | - Rafaela Holtappels
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| |
Collapse
|
162
|
Arens R, Loewendorf A, Redeker A, Sierro S, Boon L, Klenerman P, Benedict CA, Schoenberger SP. Differential B7-CD28 costimulatory requirements for stable and inflationary mouse cytomegalovirus-specific memory CD8 T cell populations. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:3874-81. [PMID: 21357256 PMCID: PMC3064011 DOI: 10.4049/jimmunol.1003231] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CMV establishes a lifelong persistent infection, and viral immune-modulating strategies are important in facilitating this. A particularly diverse CD8 T cell response develops as a result of this host-virus détente, with the CMV-specific memory T cell pool displaying unique functions and phenotypes. To gain insight into the factors that regulate CMV-specific CD8 T cell responses, we examined the influence of the B7-CD28 costimulatory pathway on magnitude, kinetics, and phenotype. Initial expansion of mouse CMV-specific CD8 T cells that establish stable memory pools was severely lower in mice lacking B7-CD28 signaling, and the resulting memory levels also remained reduced during persistent/latent infection. In contrast, expansion of CD8 T cells that undergo memory inflation during chronic infection was less affected in the absence of B7-CD28 costimulatory signals, eventually reaching the levels seen in wild-type mice at later times. Regardless of their differential requirements for B7-CD28 signals, both stable and inflationary memory T cell populations showed normal cytotoxic capacity. These results reveal that B7-CD28 costimulation differentially regulates the magnitude and kinetics of the multifaceted CD8 T cell response that develops during CMV infection.
Collapse
Affiliation(s)
- Ramon Arens
- Laboratory of Cellular Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Hutchinson S, Sims S, O'Hara G, Silk J, Gileadi U, Cerundolo V, Klenerman P. A dominant role for the immunoproteasome in CD8+ T cell responses to murine cytomegalovirus. PLoS One 2011; 6:e14646. [PMID: 21304910 PMCID: PMC3033404 DOI: 10.1371/journal.pone.0014646] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 01/06/2011] [Indexed: 01/08/2023] Open
Abstract
Murine cytomegalovirus (MCMV) is an important animal model of human cytomegalovirus (HCMV), a β-Herpesvirus that infects the majority of the world's population and causes disease in neonates and immunocompromised adults. CD8+ T cells are a major part of the immune response to MCMV and HCMV. Processing of peptides for presentation to CD8+ T cells may be critically dependent on the immunoproteasome, expression of which is affected by MCMV. However, the overall importance of the immunoproteasome in the generation of immunodominant peptides from MCMV is not known. We therefore examined the role of the immunoproteasome in stimulation of CD8+ T cell responses to MCMV – both conventional memory responses and those undergoing long-term expansion or “inflation”. We infected LMP7−/− and C57BL/6 mice with MCMV or with newly-generated recombinant vaccinia viruses (rVVs) encoding the immunodominant MCMV protein M45 in either full-length or epitope-only minigene form. We analysed CD8+ T cell responses using intracellular cytokine stain (ICS) and MHC Class I tetramer staining for a panel of MCMV-derived epitopes. We showed a critical role for immunoproteasome in MCMV affecting all epitopes studied. Interestingly we found that memory “inflating” epitopes demonstrate reduced immunoproteasome dependence compared to non-inflating epitopes. M45-specific responses induced by rVVs remain immunoproteasome-dependent. These results help to define a critical restriction point for CD8+ T cell epitopes in natural cytomegalovirus (CMV) infection and potentially in vaccine strategies against this and other viruses.
Collapse
Affiliation(s)
- Sarah Hutchinson
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Stuart Sims
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Geraldine O'Hara
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Jon Silk
- Weatherall Institute of Molecular Medicine, Molecular Immunology Group, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Uzi Gileadi
- Weatherall Institute of Molecular Medicine, Molecular Immunology Group, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Vincenzo Cerundolo
- Weatherall Institute of Molecular Medicine, Molecular Immunology Group, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Paul Klenerman
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
164
|
Orloff SL, Hwee YK, Kreklywich C, Andoh TF, Hart E, Smith PA, Messaoudi I, Streblow DN. Cytomegalovirus latency promotes cardiac lymphoid neogenesis and accelerated allograft rejection in CMV naïve recipients. Am J Transplant 2011; 11:45-55. [PMID: 21199347 PMCID: PMC3454525 DOI: 10.1111/j.1600-6143.2010.03365.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Human cytomegalovirus (HCMV) infection is associated with the acceleration of transplant vascular sclerosis (TVS) and chronic allograft rejection (CR). HCMV-negative recipients of latently HCMV infected donor grafts are at highest risk for developing CMV disease. Using a rat heart transplant CR model, we have previously shown that acute rat CMV (RCMV) infection following transplantation significantly accelerates both TVS and CR. Here, we report that RCMV-naïve recipients of heart allografts from latently RCMV-infected donors undergo acceleration of CR with similar kinetics as acutely infected recipients. In contrast to acutely infected recipients, treatment of recipients of latently infected donor hearts with ganciclovir did not prevent CR or TVS. We observed the formation of tertiary lymphoid structures (TLOs) containing macrophages and T cells in latently infected hearts prior to transplantation but not in uninfected rats. Moreover, pathway analysis of gene expression data from allografts from latently infected donors indicated an early and sustained production of TLO-associated genes compared to allografts from uninfected donors. We conclude that RCMV-induced TLO formation and alteration of donor tissue T cell profiles prior to transplantation in part mediate the ganciclovir-insensitive rejection of latently infected donor allografts transplanted into naïve recipients by providing a scaffold for immune activation.
Collapse
Affiliation(s)
- Susan L. Orloff
- Portland Veterans Affairs Medical Center, Portland, OR 97239
,Departments of Surgery, and The Vaccine and Gene Therapy Institute, Oregon Health Sciences University, Portland, OR 97006
,Molecular Microbiology and Immunology, and The Vaccine and Gene Therapy Institute, Oregon Health Sciences University, Portland, OR 97006
| | - Yin-Kan Hwee
- Portland Veterans Affairs Medical Center, Portland, OR 97239
,Departments of Surgery, and The Vaccine and Gene Therapy Institute, Oregon Health Sciences University, Portland, OR 97006
| | - Craig Kreklywich
- Portland Veterans Affairs Medical Center, Portland, OR 97239
,Departments of Surgery, and The Vaccine and Gene Therapy Institute, Oregon Health Sciences University, Portland, OR 97006
,Molecular Microbiology and Immunology, and The Vaccine and Gene Therapy Institute, Oregon Health Sciences University, Portland, OR 97006
| | - Takeshi F. Andoh
- Portland Veterans Affairs Medical Center, Portland, OR 97239
,Departments of Surgery, and The Vaccine and Gene Therapy Institute, Oregon Health Sciences University, Portland, OR 97006
| | - Elaine Hart
- Portland Veterans Affairs Medical Center, Portland, OR 97239
| | | | - Ilhem Messaoudi
- Molecular Microbiology and Immunology, and The Vaccine and Gene Therapy Institute, Oregon Health Sciences University, Portland, OR 97006
| | - Daniel N. Streblow
- Portland Veterans Affairs Medical Center, Portland, OR 97239
,Molecular Microbiology and Immunology, and The Vaccine and Gene Therapy Institute, Oregon Health Sciences University, Portland, OR 97006
| |
Collapse
|
165
|
Reverse genetics modification of cytomegalovirus antigenicity and immunogenicity by CD8 T-cell epitope deletion and insertion. J Biomed Biotechnol 2010; 2011:812742. [PMID: 21253509 PMCID: PMC3021883 DOI: 10.1155/2011/812742] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 10/27/2010] [Indexed: 11/17/2022] Open
Abstract
The advent of cloning herpesviral genomes as bacterial artificial chromosomes (BACs) has made herpesviruses accessible to bacterial genetics and has thus revolutionised their mutagenesis. This opened all possibilities of reverse genetics to ask scientific questions by introducing precisely accurate mutations into the viral genome for testing their influence on the phenotype under study or to create phenotypes of interest. Here, we report on our experience with using BAC technology for a designed modulation of viral antigenicity and immunogenicity with focus on the CD8 T-cell response. One approach is replacing an intrinsic antigenic peptide in a viral carrier protein with a foreign antigenic sequence, a strategy that we have termed "orthotopic peptide swap". Another approach is the functional deletion of an antigenic peptide by point mutation of its C-terminal MHC class-I anchor residue. We discuss the concepts and summarize recently published major scientific results obtained with immunological mutants of murine cytomegalovirus.
Collapse
|
166
|
Humphreys IR, Lee SW, Jones M, Loewendorf A, Gostick E, Price DA, Benedict CA, Ware CF, Croft M. Biphasic role of 4-1BB in the regulation of mouse cytomegalovirus-specific CD8(+) T cells. Eur J Immunol 2010; 40:2762-8. [PMID: 20722077 PMCID: PMC2967573 DOI: 10.1002/eji.200940256] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 06/10/2010] [Accepted: 07/19/2010] [Indexed: 12/14/2022]
Abstract
The initial requirement for the emergence of CMV-specific CD8(+) T cells is poorly understood. Mice deficient in the cosignaling TNF superfamily member, 4-1BB, surprisingly developed exaggerated early CD8(+) T-cell responses to mouse CMV (MCMV). CD8(+) T cells directed against acute MCMV epitopes were enhanced, demonstrating that 4-1BB naturally antagonizes these primary populations. Paradoxically, 4-1BB-deficient mice displayed reduced accumulation of memory CD8(+) T cells that expand during chronic/latent infection. Importantly, the canonical TNF-related ligand, 4-1BBL, promoted the accumulation of these memory CD8(+) T cells, whereas suppression of acute CD8(+) T cells was independent of 4-1BBL. These data highlight the dual nature of the 4-1BB/4-1BBL system in mediating both stimulatory and inhibitory cosignaling activities during the generation of anti-MCMV immunity.
Collapse
Affiliation(s)
- Ian R Humphreys
- Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Jones M, Ladell K, Wynn KK, Stacey MA, Quigley MF, Gostick E, Price DA, Humphreys IR. IL-10 restricts memory T cell inflation during cytomegalovirus infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:3583-92. [PMID: 20713884 PMCID: PMC3655265 DOI: 10.4049/jimmunol.1001535] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The beta-herpesvirus CMV induces a substantial and progressive expansion of virus-specific memory CD8 T cells, which protect the host against viral reactivation from latency. In this paper, we report that this expansion, or "inflation," of memory T cells is amplified dramatically during mouse CMV infection of IL-10 knockout (IL-10(-/-)) mice. T cells from IL-10(-/-) mice were oligoclonal, exhibited a highly activated phenotype, expressed antiviral cytokines, and degranulated in response to cognate Ag encounter ex vivo. Moreover, latent viral load was reduced in IL-10(-/-) mice. Importantly, these results were recapitulated by IL-10R blockade during chronic/latent infection of wild-type mice. These data demonstrate that regulatory immune mechanisms can influence CMV-specific T cell memory and suggest a possible rationale for the acquisition of functional IL-10 orthologs by herpesviruses.
Collapse
Affiliation(s)
- Morgan Jones
- Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Heath Park, CF14 4XN, UK
| | - Kristin Ladell
- Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Heath Park, CF14 4XN, UK
| | - Katherine K. Wynn
- Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Heath Park, CF14 4XN, UK
| | - Maria A. Stacey
- Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Heath Park, CF14 4XN, UK
| | - Máire F. Quigley
- Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Heath Park, CF14 4XN, UK
| | - Emma Gostick
- Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Heath Park, CF14 4XN, UK
| | - David A. Price
- Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Heath Park, CF14 4XN, UK
| | - Ian R. Humphreys
- Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Heath Park, CF14 4XN, UK
| |
Collapse
|
168
|
Gründemann C, Schwartzkopff S, Koschella M, Schweier O, Peters C, Voehringer D, Pircher H. The NK receptor KLRG1 is dispensable for virus-induced NK and CD8+ T-cell differentiation and function in vivo. Eur J Immunol 2010; 40:1303-14. [PMID: 20201037 DOI: 10.1002/eji.200939771] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The killer cell lectin-like receptor G1 (KLRG1) is expressed by NK and T-cell subsets and recognizes members of the classical cadherin family. KLRG1 is widely used as a lymphocyte differentiation marker in both humans and mice but the physiological role of KLRG1 in vivo is still unclear. Here, we generated KLRG1-deficient mice by homologous recombination and used several infection models for their characterization. The results revealed that KLRG1 deficiency did not affect development and function of NK cells examined under various conditions. KLRG1 was also dispensable for normal CD8+ T-cell differentiation and function after viral infections. Thus, KLRG1 is a marker for distinct NK and T-cell differentiation stages but it does not play a deterministic role in the generation and functional characteristics of these lymphocyte subsets. In addition, we demonstrate that E-cadherin expressed by K562 target cells inhibited NK-cell reactivity in transgenic mice over-expressing KLRG1 but not in KLRG1-deficient or WT mice. Hence, the inhibitory potential of KLRG1 in mice is rather weak and strong activation signals during viral infections may override the inhibitory signal in vivo.
Collapse
Affiliation(s)
- Carsten Gründemann
- Institute of Medical Microbiology and Hygiene, Division of Immunology, University of Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
169
|
Loewendorf A, Benedict CA. Modulation of host innate and adaptive immune defenses by cytomegalovirus: timing is everything. J Intern Med 2010; 267:483-501. [PMID: 20433576 PMCID: PMC2902254 DOI: 10.1111/j.1365-2796.2010.02220.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human cytomegalovirus (HCMV) (HHV-5, a beta-herpesvirus) causes the vast majority of infection-related congenital birth defects, and can trigger severe disease in immune suppressed individuals. The high prevalence of societal infection, the establishment of lifelong persistence and the growing number of immune-related diseases where HCMV is touted as a potential promoter is slowly heightening public awareness to this virus. The millions of years of co-evolution between CMV and the immune system of its host provides for a unique opportunity to study immune defense strategies, and pathogen counterstrategies. Dissecting the timing of the cellular and molecular processes that regulate innate and adaptive immunity to this persistent virus has revealed a complex defense network that is shaped by CMV immune modulation, resulting in a finely tuned host-pathogen relationship.
Collapse
Affiliation(s)
- A Loewendorf
- Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | | |
Collapse
|
170
|
Snyder CM, Allan JE, Bonnett EL, Doom CM, Hill AB. Cross-presentation of a spread-defective MCMV is sufficient to prime the majority of virus-specific CD8+ T cells. PLoS One 2010; 5:e9681. [PMID: 20300633 PMCID: PMC2837378 DOI: 10.1371/journal.pone.0009681] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 02/24/2010] [Indexed: 01/08/2023] Open
Abstract
CD8+ T cells can be primed by peptides derived from endogenous proteins (direct presentation), or exogenously acquired protein (cross-presentation). However, the relative ability of these two pathways to prime CD8+ T cells during a viral infection remains controversial. Cytomegaloviruses (CMVs) can infect professional antigen presenting cells (APCs), including dendritic cells, thus providing peptides for direct presentation. However, the viral immune evasion genes profoundly impair recognition of infected cells by CD8+ T cells. Nevertheless, CMV infection elicits a very strong CD8+ T cell response, prompting its recent use as a vaccine vector. We have shown previously that deleting the immune evasion genes from murine cytomegalovirus (MCMV) that target class I MHC presentation, has no impact on the size or breadth of the CD8+ T cell response elicited by infection, suggesting that the majority of MCMV-specific CD8+ T cells in vivo are not directly primed by infected professional APCs. Here we use a novel spread-defective mutant of MCMV, lacking the essential glycoprotein gL, to show that cross-presentation alone can account for the majority of MCMV-specific CD8+ T cell responses to the virus. Our data support the conclusion that cross-presentation is the primary mode of antigen presentation by which CD8+ T cells are primed during MCMV infection.
Collapse
Affiliation(s)
- Christopher M. Snyder
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Jane E. Allan
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Elizabeth L. Bonnett
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Carmen M. Doom
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Ann B. Hill
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
171
|
Abstract
In response to infection or effective vaccination, naive antigen-specific CD8+ T cells undergo a dramatic highly orchestrated activation process. Initial encounter with an appropriately activated antigen-presenting cell leads to blastogenesis and an exponential increase in antigen-specific CD8+ T cell numbers. Simultaneously, a dynamic differentiation process occurs, resulting in formation of both primary effector and long-lived memory cells. Current findings have emphasized the heterogeneity of effector and memory cell populations with the description of multiple cellular subsets based on phenotype, function, and anatomic location. Yet, only recently have we begun to dissect the underlying factors mediating the temporal control of the development of distinct effector and memory CD8+ T cell sublineages. In this review we will focus on the requirements for mounting an effective CD8+ T cell response and highlight the elements regulating the differentiation of effector and memory subsets.
Collapse
Affiliation(s)
- Joshua J Obar
- Center for Integrated Immunology and Vaccine Research, Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut 06107, USA
| | | |
Collapse
|
172
|
Yager EJ, Kim IJ, Freeman ML, Lanzer KG, Burkum CE, Cookenham T, Woodland DL, Blackman MA. Differential impact of ageing on cellular and humoral immunity to a persistent murine gamma-herpesvirus. IMMUNITY & AGEING 2010; 7:3. [PMID: 20181071 PMCID: PMC2843645 DOI: 10.1186/1742-4933-7-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 02/02/2010] [Indexed: 12/03/2022]
Abstract
Background Oncogenic γ-herpesviruses establish life-long infections in their hosts and control of these latent infections is dependent on continual immune surveillance. Immune function declines with age, raising the possibility that immune control of γ-herpesvirus infection becomes compromised with increasing age, allowing viral reactivation and/or increased latent load, both of which are associated with the development of malignancies. Results In this study, we use the experimental mouse γ-herpesvirus model, γHV68, to investigate viral immunity in aged mice. We found no evidence of viral recrudescence or increased latent load in aged latently-infected mice, suggesting that effective immune control of γ-herpesvirus infection remains intact with ageing. As both cellular and humoral immunity have been implicated in host control of γHV68 latency, we independently examined the impact of ageing on γHV68-specific CD8 T cell function and antibody responses. Virus-specific CD8 T cell numbers and cytolytic function were not profoundly diminished with age. In contrast, whereas ELISA titers of virus-specific IgG were maintained over time, there was a progressive decline in neutralizing activity. In addition, although aged mice were able to control de novo acute infection with only slightly delayed viral clearance, serum titers of neutralizing antibody were reduced in aged mice as compared to young mice. Conclusion Although there is no obvious loss of immune control of latent virus, these data indicate that ageing has differential impacts on anti-viral cellular and humoral immune protection during persistent γHV68 infection. This observation has potential relevance for understanding γ-herpesvirus immune control during disease-associated or therapeutic immunosuppression.
Collapse
Affiliation(s)
- Eric J Yager
- Trudeau Institute, 154 Algonquin Ave, Saranac Lake, NY 12983, USA
| | | | | | | | | | | | | | | |
Collapse
|
173
|
Two kinetic patterns of epitope-specific CD8 T-cell responses following murine gammaherpesvirus 68 infection. J Virol 2010; 84:2881-92. [PMID: 20053740 DOI: 10.1128/jvi.02229-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Murine gammaherpesvirus 68 (gammaHV68) provides an important experimental model for understanding mechanisms of immune control of the latent human gammaherpesviruses. Antiviral CD8 T cells play a key role throughout three separate phases of the infection: clearance of lytic virus, control of the latency amplification stage, and prevention of reactivation of latently infected cells. Previous analyses have shown that T-cell responses to two well-characterized epitopes derived from ORF6 and ORF61 progress with distinct kinetics. ORF6(487)-specific cells predominate early in infection and then decline rapidly, whereas ORF61(524)-specific cells continue to expand through early latency, due to sustained epitope expression. However, the paucity of identified epitopes to this virus has limited our understanding of the overall complexities of CD8 T-cell immune control throughout infection. Here we screened 1,383 predicted H-2(b)-restricted peptides and identified 33 responses, of which 21 have not previously been reported. Kinetic analysis revealed a spectrum of T-cell responses based on the rapidity of their decline after the peak acute response that generally corresponded to the expression patterns of the two previously characterized epitopes. The slowly declining responses that were maintained during latency amplification proliferated more rapidly and underwent maturation of functional avidity over time. Furthermore, the kinetics of decline was accelerated following infection with a latency-null mutant virus. Overall, the data show that gammaHV68 infection elicits a highly heterogeneous CD8 T-cell response that segregates into two distinctive kinetic patterns controlled by differential epitope expression during the lytic and latency amplification stages of infection.
Collapse
|
174
|
Antiviral prevention of sepsis induced cytomegalovirus reactivation in immunocompetent mice. Antiviral Res 2009; 85:496-503. [PMID: 20004216 DOI: 10.1016/j.antiviral.2009.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 11/11/2009] [Accepted: 12/02/2009] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Immunocompetent patients can reactivate latent cytomegalovirus (CMV) during critical illness and reactivation is associated with significantly worse outcomes. Prior to clinical trials in humans to prove causality, we sought to determine an optimal antiviral treatment strategy. METHODS Mice latently infected with murine CMV (MCMV) received a septic reactivation trigger and were randomized to receive one of four ganciclovir regimens or saline. Lungs were evaluated for viral transcriptional reactivation and fibrosis after each regimen. Influences of ganciclovir on early sepsis-induced pulmonary inflammation and T-cell activation were studied after sepsis induction. RESULTS All ganciclovir regimens reduced measurable MCMV transcriptional reactivation, and 10mg/day for 7 or 21 days was most effective. Lower dose (5mg/kg/day) or delayed therapy was associated with significant breakthrough reactivation. Higher doses of ganciclovir given early were associated with the lowest incidence of pulmonary fibrosis, and delay of therapy for 1 week was associated with significantly worse pulmonary fibrosis. Although bacterial sepsis induced activation of MCMV-specific pulmonary T-cells, this activation was not influenced by ganciclovir. CONCLUSION These results suggest that antiviral treatment trials in humans should use 10mg/kg/day ganciclovir administered as early as possible in at-risk patients to minimize reactivation events and associated pulmonary injury.
Collapse
|
175
|
Immune evasion proteins of murine cytomegalovirus preferentially affect cell surface display of recently generated peptide presentation complexes. J Virol 2009; 84:1221-36. [PMID: 19906905 DOI: 10.1128/jvi.02087-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
For recognition of infected cells by CD8 T cells, antigenic peptides are presented at the cell surface, bound to major histocompatibility complex class I (MHC-I) molecules. Downmodulation of cell surface MHC-I molecules is regarded as a hallmark function of cytomegalovirus-encoded immunoevasins. The molecular mechanisms by which immunoevasins interfere with the MHC-I pathway suggest, however, that this downmodulation may be secondary to an interruption of turnover replenishment and that hindrance of the vesicular transport of recently generated peptide-MHC (pMHC) complexes to the cell surface is the actual function of immunoevasins. Here we have used the model of murine cytomegalovirus (mCMV) infection to provide experimental evidence for this hypothesis. To quantitate pMHC complexes at the cell surface after infection in the presence and absence of immunoevasins, we generated the recombinant viruses mCMV-SIINFEKL and mCMV-Deltam06m152-SIINFEKL, respectively, expressing the K(b)-presented peptide SIINFEKL with early-phase kinetics in place of an immunodominant peptide of the viral carrier protein gp36.5/m164. The data revealed approximately 10,000 K(b) molecules presenting SIINFEKL in the absence of immunoevasins, which is an occupancy of approximately 10% of all cell surface K(b) molecules, whereas immunoevasins reduced this number to almost the detection limit. To selectively evaluate their effect on preexisting pMHC complexes, cells were exogenously loaded with SIINFEKL peptide shortly after infection with mCMV-SIINFEKA, in which endogenous presentation is prevented by an L174A mutation of the C-terminal MHC-I anchor residue. The data suggest that pMHC complexes present at the cell surface in advance of immunoevasin gene expression are downmodulated due to constitutive turnover in the absence of resupply.
Collapse
|
176
|
Snyder CM, Loewendorf A, Bonnett EL, Croft M, Benedict CA, Hill AB. CD4+ T cell help has an epitope-dependent impact on CD8+ T cell memory inflation during murine cytomegalovirus infection. THE JOURNAL OF IMMUNOLOGY 2009; 183:3932-41. [PMID: 19692644 DOI: 10.4049/jimmunol.0900227] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Murine CMV (MCMV) establishes a systemic, low-level persistent infection resulting in the accumulation of CD8(+) T cells specific for a subset of viral epitopes, a process called memory inflation. Although replicating virus is rarely detected in chronically infected C57BL/6 mice, these inflationary cells display a phenotype suggestive of repeated Ag stimulation, and they remain functional. CD4(+) T cells have been implicated in maintaining the function and/or number of CD8(+) T cells in other chronic infections. Moreover, CD4(+) T cells are essential for complete control of MCMV. Thus, we wondered whether CD4(+) T cell deficiency would result in impaired MCMV-specific CD8(+) T cell responses. Here we show that CD4(+) T cell deficiency had an epitope-specific impact on CD8(+) T cell memory inflation. Of the three codominant T cell responses during chronic infection, only accumulation of the late-appearing IE3-specific CD8(+) T cells was substantially impaired in CD4(+) T cell-deficient mice. Moreover, the increased viral activity did not drive increased CD8(+) T cell division or substantial dysfunction in any MCMV-specific population that we studied. These data show that CD4(+) T cell help is needed for inflation of a response that develops only during chronic infection but is otherwise dispensable for the steady state maintenance and function of MCMV-specific CD8(+) T cells.
Collapse
Affiliation(s)
- Christopher M Snyder
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, OR 97239, USA.
| | | | | | | | | | | |
Collapse
|
177
|
Madan R, Demircik F, Surianarayanan S, Allen JL, Divanovic S, Trompette A, Yogev N, Gu Y, Khodoun M, Hildeman D, Boespflug N, Fogolin MB, Gröbe L, Greweling M, Finkelman FD, Cardin R, Mohrs M, Müller W, Waisman A, Roers A, Karp CL. Nonredundant roles for B cell-derived IL-10 in immune counter-regulation. THE JOURNAL OF IMMUNOLOGY 2009; 183:2312-20. [PMID: 19620304 DOI: 10.4049/jimmunol.0900185] [Citation(s) in RCA: 242] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
IL-10 plays a central role in restraining the vigor of inflammatory responses, but the critical cellular sources of this counter-regulatory cytokine remain speculative in many disease models. Using a novel IL-10 transcriptional reporter mouse, we found an unexpected predominance of B cells (including plasma cells) among IL-10-expressing cells in peripheral lymphoid tissues at baseline and during diverse models of in vivo immunological challenge. Use of a novel B cell-specific IL-10 knockout mouse revealed that B cell-derived IL-10 nonredundantly decreases virus-specific CD8(+) T cell responses and plasma cell expansion during murine cytomegalovirus infection and modestly restrains immune activation after challenge with foreign Abs to IgD. In contrast, no role for B cell-derived IL-10 was evident during endotoxemia; however, although B cells dominated lymphoid tissue IL-10 production in this model, myeloid cells were dominant in blood and liver. These data suggest that B cells are an underappreciated source of counter-regulatory IL-10 production in lymphoid tissues, provide a clear rationale for testing the biological role of B cell-derived IL-10 in infectious and inflammatory disease, and underscore the utility of cell type-specific knockouts for mechanistic limning of immune counter-regulation.
Collapse
Affiliation(s)
- Rajat Madan
- Division of Molecular Immunology, Cincinnati Children's Hospital Research Foundation and the University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Raué HP, Slifka MK. CD8+ T cell immunodominance shifts during the early stages of acute LCMV infection independently from functional avidity maturation. Virology 2009; 390:197-204. [PMID: 19539966 DOI: 10.1016/j.virol.2009.05.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 05/14/2009] [Accepted: 05/16/2009] [Indexed: 02/01/2023]
Abstract
Virus-specific T cell responses are often directed to a small subset of possible epitopes and their relative magnitude defines their hierarchy. We determined the size and functional avidity of 4 representative peptide-specific CD8(+) T cell populations in C57BL/6 mice at different time points after lymphocytic choriomeningitis virus (LCMV) infection. We found that the frequency of different peptide-specific T cell populations in the spleen changed independently over the first 8 days after infection. These changes were not associated with a larger or more rapid increase in functional avidity and yet still resulted in a shift in the final immunodominance hierarchy. Thus, the immunodominance observed at the peak of an antiviral T cell response is not necessarily determined by the initial size or rate of functional avidity maturation of peptide-specific T cell populations.
Collapse
Affiliation(s)
- Hans-Peter Raué
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | | |
Collapse
|
179
|
Swanson PA, Hofstetter AR, Wilson JJ, Lukacher AE. Cutting edge: shift in antigen dependence by an antiviral MHC class Ib-restricted CD8 T cell response during persistent viral infection. THE JOURNAL OF IMMUNOLOGY 2009; 182:5198-202. [PMID: 19380764 DOI: 10.4049/jimmunol.0900421] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The requirement for Ag in maintaining memory CD8 T cells often differs between infections that are acutely resolved and those that persist. Using the mouse polyoma virus (PyV) persistent infection model, we recently described a novel CD8 T cell response directed to a PyV peptide presented by Q9, an MHC class Ib molecule. This antiviral Q9-restricted CD8 T cell response is characterized by a 3-mo expansion phase followed by a long-term plateau phase. In this study, we demonstrate that viral Ag is required for this protracted inflation phase but is dispensable for the maintenance of this Q9-restricted CD8 T cell response. Moreover, proliferation by memory T cells, not recruitment of naive PyV-specific T cells, is primarily responsible for Q9-restricted, anti-PyV CD8 T cell inflation. These data reveal a dynamic shift in Ag dependence by an MHC class Ib-restricted memory CD8 T cell response during a persistent viral infection.
Collapse
Affiliation(s)
- Phillip A Swanson
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
180
|
Busche A, Marquardt A, Bleich A, Ghazal P, Angulo A, Messerle M. The mouse cytomegalovirus immediate-early 1 gene is not required for establishment of latency or for reactivation in the lungs. J Virol 2009; 83:4030-8. [PMID: 19211741 PMCID: PMC2668463 DOI: 10.1128/jvi.02520-08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 02/03/2009] [Indexed: 01/01/2023] Open
Abstract
The immediate-early protein IE1 of human and mouse cytomegalovirus (MCMV) is one of the first proteins expressed during the productive infection cycle and upon reactivation from latency. The CMV IE1 proteins have been found to inhibit histone deacetylases, suggesting a role in the epigenetic regulation of viral gene expression. Consequently, the IE1 protein is considered to have a profound effect on reactivation, because small amounts of IE1 may be decisive for the switch to lytic replication. Here we asked if an MCMV Deltaie1 mutant is able both to establish latency and to reactivate from the lungs of latently infected mice. Since the Deltaie1 mutant was known to be attenuated during acute infection, we first defined conditions that led to comparable levels of viral genomes during latent infection with mutant and wild-type (wt) MCMV. Viral genome copy numbers dropped considerably at the onset of the latent infection but then remained steady for both viruses even after several months. Reactivation of the Deltaie1 mutant and of wt MCMV from latency occurred with similar incidences in lung explant cultures at 4, 7, and 12 months postinfection. The increase in the frequency of a subset of MCMV-specific memory T cells, a possible indicator of frequent transcriptional reactivation events during latency, was in a comparable range for both viruses. Recurrence of the Deltaie1 virus infection in vivo could also be induced by hematoablative treatment of latently infected mice. We conclude that the ie1 gene is not essential for the establishment of latency or for the reactivation of MCMV.
Collapse
Affiliation(s)
- Andreas Busche
- Department of Virology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | |
Collapse
|
181
|
WIESEL MELANIE, WALTON SENTA, RICHTER KIRSTEN, OXENIUS ANNETTE. Virus-specific CD8 T cells: activation, differentiation and memory formation. APMIS 2009; 117:356-81. [DOI: 10.1111/j.1600-0463.2009.02459.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
182
|
Snyder CM, Cho KS, Bonnett EL, van Dommelen S, Shellam GR, Hill AB. Memory inflation during chronic viral infection is maintained by continuous production of short-lived, functional T cells. Immunity 2008; 29:650-9. [PMID: 18957267 DOI: 10.1016/j.immuni.2008.07.017] [Citation(s) in RCA: 244] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 06/03/2008] [Accepted: 07/18/2008] [Indexed: 01/23/2023]
Abstract
During persistent murine cytomegalovirus (MCMV) infection, the T cell response is maintained at extremely high intensity for the life of the host. These cells closely resemble human CMV-specific cells, which compose a major component of the peripheral T cell compartment in most people. Despite a phenotype that suggests extensive antigen-driven differentiation, MCMV-specific T cells remain functional and respond vigorously to viral challenge. We hypothesized that a low rate of antigen-driven proliferation would account for the maintenance of this population. Instead, we found that most of these cells divided only sporadically in chronically infected hosts and had a short half-life in circulation. The overall population was supported, at least in part, by memory T cells primed early in infection, as well as by recruitment of naive T cells at late times. Thus, these data show that memory inflation is maintained by a continuous replacement of short-lived, functional cells during chronic MCMV infection.
Collapse
Affiliation(s)
- Christopher M Snyder
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, OR 97239, USA.
| | | | | | | | | | | |
Collapse
|
183
|
Abstract
The CD8(+) T cell responses to CMV gradually increase in magnitude over time-so-called memory "inflation." In this issue of Immunity, Snyder et al. (2008) examine the dynamics of memory inflation and demonstrate continuous turnover of inflating T cells, drawing on both memory cells and naive cells to replace them.
Collapse
Affiliation(s)
- Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK.
| | | |
Collapse
|
184
|
The CD8 T-cell response against murine gammaherpesvirus 68 is directed toward a broad repertoire of epitopes from both early and late antigens. J Virol 2008; 82:12205-12. [PMID: 18922872 DOI: 10.1128/jvi.01463-08] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection of mice with murine gammaherpesvirus 68 (MHV-68) robustly activates CD8 T cells, but only six class I major histocompatibility complex (MHC)-restricted epitopes have been described to date for the widely used H-2(b) haplotype mice. To explore the specificity and kinetics of the cytotoxic T-lymphocyte response in MHV-68-infected C57BL/6 mice, we screened for H-2K(b)- and H-2D(b)-restricted epitopes using a set of 384 candidate epitopes in an MHC tetramer-based approach and identified 19 new epitopes in 16 different open reading frames. Of the six known H-2K(b)- and H-2D(b)-restricted epitopes, we confirmed a response against three and did not detect CD8 T-cell-specific responses for the remaining three. The peak of the CD8 T-cell response to most peptides occurs between 6 and 10 days postinfection. The respective MHC tetramer-positive CD8 T cells display an activated/effector phenotype (CD62L(lo) and CD44(hi)) and produce gamma interferon upon peptide stimulation ex vivo. MHV-68 infection in vivo elicits a response to multiple viral epitopes, derived from both early and late viral antigens, illustrating a far broader T-cell repertoire and more-rapid activation than those previously recorded.
Collapse
|
185
|
Stapler D, Lee ED, Selvaraj SA, Evans AG, Kean LS, Speck SH, Larsen CP, Gangappa S. Expansion of effector memory TCR Vbeta4+ CD8+ T cells is associated with latent infection-mediated resistance to transplantation tolerance. THE JOURNAL OF IMMUNOLOGY 2008; 180:3190-200. [PMID: 18292543 DOI: 10.4049/jimmunol.180.5.3190] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Therapies that control largely T cell-dependent allograft rejection in humans also possess the undesirable effect of impairing T cell function, leaving transplant recipients susceptible to opportunistic viruses. Prime among these opportunists are the ubiquitous herpesviruses. To date, studies are lacking that address the effect of viruses that establish a true latent state on allograft tolerance or the effect of tolerance protocols on the immune control of latent viruses. By using a mixed chimerism-based tolerance-induction protocol, we found that mice undergoing latent infection with gammaHV68, a murine gamma-herpesvirus closely related to human gamma-herpesviruses such as EBV and Kaposi's sarcoma-associated herpesvirus, significantly resist tolerance to allografts. Limiting the degree of virus reactivation or innate immune response did not reconstitute chimerism in latently infected mice. However, gammaHV68-infected mice showed increased frequency of CD8+ T cell alloreactivity and, interestingly, expansion of virus-induced, alloreactive, "effector/effector memory" TCR Vbeta4+CD8+ T cells driven by the gammaHV68-M1 gene was associated with resistance to tolerance induction in studies using gammaHV68-M1 mutant virus. These results define the viral gene and immune cell types involved in latent infection-mediated resistance to allograft tolerance and underscore the influence of latent herpesviruses on allograft survival.
Collapse
Affiliation(s)
- Dale Stapler
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Walton SM, Wyrsch P, Munks MW, Zimmermann A, Hengel H, Hill AB, Oxenius A. The dynamics of mouse cytomegalovirus-specific CD4 T cell responses during acute and latent infection. THE JOURNAL OF IMMUNOLOGY 2008; 181:1128-34. [PMID: 18606665 DOI: 10.4049/jimmunol.181.2.1128] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The dynamics of mouse cytomegalovirus (MCMV)-specific CD4 T cell responses and the mechanisms by which these cells contribute to viral control are not well understood, mainly due to lack of appropriate tools to characterize MCMV-specific CD4 T cells. We therefore generated MCMV-specific CD4 T cell hybridomas, then used an MCMV expression library and overlapping peptides to identify CD4 T cell epitopes. We used these novel tools to study the long-term kinetics and organ distribution of MCMV-specific CD4 T cells in comparison to MCMV-specific CD8 T cell responses. We demonstrate that the overall MCMV-specific CD4 T cell response stabilizes during the latent stage, which stands in contrast to subpopulations of MCMV-specific CD8 T cells and HCMV-specific CD4 T cells which accumulate over the course of CMV latency. Furthermore, MCMV-specific CD4 T cells displayed a Th1 phenotype, secreting high levels of IFN-gamma and TNF-alpha and to some extent IL-2, cytokines which are involved in protection from CMV disease.
Collapse
Affiliation(s)
- Senta M Walton
- Institute of Microbiology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
187
|
Arens R, Wang P, Sidney J, Loewendorf A, Sette A, Schoenberger SP, Peters B, Benedict CA. Cutting edge: murine cytomegalovirus induces a polyfunctional CD4 T cell response. THE JOURNAL OF IMMUNOLOGY 2008; 180:6472-6. [PMID: 18453564 DOI: 10.4049/jimmunol.180.10.6472] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD4 T lymphocytes regulate the adaptive immune response to most viruses, both by providing help to CD8 T cells and B cells as well as through direct antiviral activity. Currently, no mouse cytomegalovirus (MCMV)-specific CD4 T cell responses are known. In this study, we identify and characterize 15 I-A(b)-restricted CD4 T cell responses specific for MCMV epitopes. CD4 T cells accumulate to high levels in the spleen and lungs during acute infection and produce multiple cytokines (IFN-gamma, TNF, IL-2, IL-10, and IL-17). Interestingly, IL-17 and IFN-gamma production within epitope-specific cells was found to be mutually exclusive. CD4 T cells recognizing a peptide derived from m09 were only detectable at later times of infection and displayed a unique cytokine production profile. In total, this study reveals that the MCMV-specific CD4 T cell response is complex and functionally diverse, highlighting its important role in controlling this persistent pathogen.
Collapse
Affiliation(s)
- Ramon Arens
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
188
|
Abstract
Murine cytomegalovirus (MCMV) is a well-studied model of natural beta-herpesvirus infection. However, many questions remain regarding its control by and evasion of the immune response it generates. CD8 and CD4 T cells have both unique and redundant roles in control of the virus that differ based on the immunocompetence of the infected mice. MCMV encodes major histocompatibility complex (MHC) class I immune evasion genes that can have an impact in vitro, but their role in infection of immunocompetent mice has been difficult to identify. This review addresses the evidence for their in vivo function and suggests why they may be evolutionarily conserved.
Collapse
Affiliation(s)
- Carmen M Doom
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | |
Collapse
|
189
|
Obar JJ, Khanna KM, Lefrançois L. Endogenous naive CD8+ T cell precursor frequency regulates primary and memory responses to infection. Immunity 2008; 28:859-69. [PMID: 18499487 PMCID: PMC2836785 DOI: 10.1016/j.immuni.2008.04.010] [Citation(s) in RCA: 344] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 02/21/2008] [Accepted: 04/04/2008] [Indexed: 10/22/2022]
Abstract
Through genetic recombination, the adaptive immune system generates a diverse T cell repertoire allowing recognition of a vast spectrum of foreign antigens. Any given CD8+ T cell specificity is thought to be rare, but none have been directly quantified. Here, major histocompatibility complex tetramer and magnetic-bead technology were coupled to quantitate naive antigen-specific CD8+ T cells and the early response to infection. Among six specificities measured, the number of naive antigen-specific precursors ranged from approximately 80 to 1200 cells/mouse. After vesicular stomatitis virus infection, the antigen-specific CD8+ T cell response occurred in discrete phases: prolonged activation of a subset of cells over the first 72 hr followed by a rapid proliferative burst. Naive precursor frequency altered response kinetics and regulated immunodominance, as well as the time required for the responding population to shift toward CD62L(hi) memory cells. Thus, initial endogenous precursor frequencies were surprisingly diverse and not only regulated initial immune response characteristics but also controlled memory CD8+ T cell lineage decisions.
Collapse
Affiliation(s)
- Joshua J. Obar
- Department of Immunology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington CT 06030-1319, USA
| | - Kamal M. Khanna
- Department of Immunology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington CT 06030-1319, USA
| | - Leo Lefrançois
- Department of Immunology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington CT 06030-1319, USA
| |
Collapse
|
190
|
Benedict CA, Loewendorf A, Garcia Z, Blazar BR, Janssen EM. Dendritic cell programming by cytomegalovirus stunts naive T cell responses via the PD-L1/PD-1 pathway. THE JOURNAL OF IMMUNOLOGY 2008; 180:4836-47. [PMID: 18354207 DOI: 10.4049/jimmunol.180.7.4836] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Early during infection, CMV targets dendritic cells (DC) and alters their functions. Herein we show that CMV-infected DC maintain the ability to present both virus-derived and exogenous Ags, but that they actively induce tolerance or anergy in Ag-specific T cells. CMV accomplishes this by selectively maintaining high-level expression of the negative costimulatory molecule programmed death ligand-1 (PD-L1), while commensurately down-regulating positive costimulatory molecules and MHC on the DC surface. Consequently, CD4 and CD8 T cells activated by these infected DC have a stunted phenotype, characterized by poor proliferation, effector function. and recall responses. Blocking PD-L1, but not PD-L2, during direct priming of naive T cells by infected DC significantly restores Ag-specific T cell functions. Using systems where direct and cross-priming of T cells can be distinguished revealed that PD-L1/PD-1 signaling contributes only when naive T cells are primed directly by infected DC, and not upon cross-presentation of viral Ags by uninfected DC. These data suggest that murine CMV programs infected DC during acute infection to inhibit early host adaptive antiviral responses by tipping the balance between negative and positive cosignals.
Collapse
Affiliation(s)
- Chris A Benedict
- Department of Molecular Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
191
|
Subdominant CD8 T-cell epitopes account for protection against cytomegalovirus independent of immunodomination. J Virol 2008; 82:5781-96. [PMID: 18367531 DOI: 10.1128/jvi.00155-08] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cytomegalovirus (CMV) infection continues to be a complication in recipients of hematopoietic stem cell transplantation (HSCT). Preexisting donor immunity is recognized as a favorable prognostic factor for the reconstitution of protective antiviral immunity mediated primarily by CD8 T cells. Furthermore, adoptive transfer of CMV-specific memory CD8 T (CD8-T(M)) cells is a therapeutic option for preventing CMV disease in HSCT recipients. Given the different CMV infection histories of donor and recipient, a problem may arise from an antigenic mismatch between the CMV variant that has primed donor immunity and the CMV variant acquired by the recipient. Here, we have used the BALB/c mouse model of CMV infection in the immunocompromised host to evaluate the importance of donor-recipient CMV matching in immundominant epitopes (IDEs). For this, we generated the murine CMV (mCMV) recombinant virus mCMV-DeltaIDE, in which the two memory repertoire IDEs, the IE1-derived peptide 168-YPHFMPTNL-176 presented by the major histocompatibility complex class I (MHC-I) molecule L(d) and the m164-derived peptide 257-AGPPRYSRI-265 presented by the MHC-I molecule D(d), are both functionally deleted. Upon adoptive transfer, polyclonal donor CD8-T(M) cells primed by mCMV-DeltaIDE and the corresponding revertant virus mCMV-revDeltaIDE controlled infection of immunocompromised recipients with comparable efficacy and regardless of whether or not IDEs were presented in the recipients. Importantly, CD8-T(M) cells primed under conditions of immunodomination by IDEs protected recipients in which IDEs were absent. This shows that protection does not depend on compensatory expansion of non-IDE-specific CD8-T(M) cells liberated from immunodomination by the deletion of IDEs. We conclude that protection is, rather, based on the collective antiviral potential of non-IDEs independent of the presence or absence of IDE-mediated immunodomination.
Collapse
|
192
|
Waller ECP, Day E, Sissons JGP, Wills MR. Dynamics of T cell memory in human cytomegalovirus infection. Med Microbiol Immunol 2008; 197:83-96. [PMID: 18301918 DOI: 10.1007/s00430-008-0082-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Indexed: 12/11/2022]
Abstract
Primary human cytomegalovirus (HCMV) infection of an immunocompetent individual leads to the generation of a robust CD4+ and CD8+ T cell response which subsequently controls viral replication. HCMV is never cleared from the host and enters into latency with periodic reactivation and viral replication, which is controlled by reactivation of the memory T cells. In this article, we discuss the magnitude, phenotype and clonality of the T cell response following primary HCMV infection, the selection of responding T cells into the long-term memory pool and maintenance of this memory T cell population in the face of a latent/persistent infection. The article also considers the effect that this long-term surveillance of HCMV has on the T cell memory phenotype, their differentiation, function and the associated concepts of T cell memory inflation and immunosenescence.
Collapse
Affiliation(s)
- Edward C P Waller
- Department of Medicine, Level 5, Addenbrookes Hospital, University of Cambridge, Hills Rd, Cambridge CB2 2QQ, UK
| | | | | | | |
Collapse
|
193
|
Humphreys IR, Loewendorf A, de Trez C, Schneider K, Benedict CA, Munks MW, Ware CF, Croft M. OX40 costimulation promotes persistence of cytomegalovirus-specific CD8 T Cells: A CD4-dependent mechanism. THE JOURNAL OF IMMUNOLOGY 2007; 179:2195-202. [PMID: 17675479 DOI: 10.4049/jimmunol.179.4.2195] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mechanisms that regulate CMV-specific T cell responses in vivo are poorly understood. During murine CMV infection of B6 mice, primary responses in the spleen are dominated by CD8 T cells reactive with antigenic epitopes in M45, M57, and m139 murine CMV gene products. However, during the later persistent phase of infection, CD8 T cell responses to epitopes in m139 and M38 viral gene products predominate. The basis for this shift in CD8 T populations is unknown. In this study, we demonstrate that OX40, a TNFR superfamily member, specifically regulates the accumulation of CD8 T cells reactive with the persistent-phase epitopes. Defective CD8 T cell responses in OX40(-/-) mice were replicated in MHC class II(-/-) mice implying that CD4 T cells in part controlled the differentiation of the CD8 T cell clones responsive to these epitopes during persistent infection. Furthermore, treatment of infected mice with an agonist OX40 Ab induced expansion of protective primary virus-specific CD8 T cells independent of CD4 T cell help, but CD4 T cells were crucial for anti-OX40 to promote CD8 T cells reactive to the persistent dominant epitopes. Collectively, these results indicate manipulation of OX40 may be useful in improving cellular immunotherapy regimes for treatment of persistent virus infections.
Collapse
Affiliation(s)
- Ian R Humphreys
- Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
194
|
Krebs P, Scandella E, Bolinger B, Engeler D, Miller S, Ludewig B. Chronic Immune Reactivity Against Persisting Microbial Antigen in the Vasculature Exacerbates Atherosclerotic Lesion Formation. Arterioscler Thromb Vasc Biol 2007; 27:2206-13. [PMID: 17656668 DOI: 10.1161/atvbaha.107.141846] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objective—
The purpose of this study was to examine the relative contribution of different immunopathological mechanisms during murine cytomegalovirus (MCMV)-mediated acceleration of atheroma formation in apolipoprotein E–deficient (apoE
−/−
) mice.
Methods and Results—
To distinguish between the effects of systemic activation and cognate immune reactivity against a pathogen-derived persisting antigen in the vasculature, we used hypercholesterolemic transgenic mice constitutively expressing the β-galactosidase (β-gal) transgene in the cardiovascular system (apoE
−/−
×SM-LacZ). After infection with β-gal–recombinant MCMV-LacZ, apoE
−/−
, and apoE
−/−
×SM-LacZ mice mounted comparable cellular immune responses against the virus. β-gal–specific CD8
+
T cells expanded rapidly and remained detectable for at least 100 days in both mouse strains. However, compared with apoE
−/−
mice, apoE
−/−
×SM-LacZ mice developed drastically accelerated atherosclerosis. Moreover, atherosclerotic lesions in MCMV-LacZ–infected apoE
−/−
×SM-LacZ but not apoE
−/−
mice were associated with pronounced inflammatory infiltrates.
Conclusions—
Taken together, our data indicate that chronic immune reactivity against pathogen-derived antigens persisting in the vasculature significantly exacerbates atherogenesis.
Collapse
Affiliation(s)
- Philippe Krebs
- Research Department, Kantonsspital St Gallen, Rorschacherstrasse 95, CH-9007 St Gallen, Switzerland
| | | | | | | | | | | |
Collapse
|
195
|
Abstract
Upon acute viral infection, a typical cytotoxic T lymphocyte (CTL) response is characterized by a phase of expansion and contraction after which it settles at a relatively stable memory level. Recently, experimental data from mice infected with murine cytomegalovirus (MCMV) showed different and unusual dynamics. After acute infection had resolved, some antigen specific CTL started to expand over time despite the fact that no replicative virus was detectable. This phenomenon has been termed as "CTL memory inflation". In order to examine the dynamics of this system further, we developed a mathematical model analysing the impact of innate and adaptive immune responses. According to this model, a potentially important contributor to CTL inflation is competition between the specific CTL response and an innate natural killer (NK) cell response. Inflation occurs most readily if the NK cell response is more efficient than the CTL at reducing virus load during acute infection, but thereafter maintains a chronic virus load which is sufficient to induce CTL proliferation. The model further suggests that weaker NK cell mediated protection can correlate with more pronounced CTL inflation dynamics over time. We present experimental data from mice infected with MCMV which are consistent with the theoretical predictions. This model provides valuable information and may help to explain the inflation of CMV specific CD8+T cells seen in humans as they age.
Collapse
Affiliation(s)
- Dominik Wodarz
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
196
|
Morello CS, Kelley LA, Munks MW, Hill AB, Spector DH. DNA immunization using highly conserved murine cytomegalovirus genes encoding homologs of human cytomegalovirus UL54 (DNA polymerase) and UL105 (helicase) elicits strong CD8 T-cell responses and is protective against systemic challenge. J Virol 2007; 81:7766-75. [PMID: 17507492 PMCID: PMC1933361 DOI: 10.1128/jvi.00633-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2007] [Accepted: 05/04/2007] [Indexed: 01/03/2023] Open
Abstract
Human cytomegalovirus (HCMV) establishes a lifelong infection with the potential for reinfection or viral transmission even in the presence of strong and diverse CD8 T-lymphocyte responses. This suggests that the CMVs skew the host T-cell response in order to favor viral persistence. In this study, we hypothesized that the essential, nonstructural proteins that are highly conserved among the CMVs may represent a novel class of T-cell targets for vaccine-mediated protection due to their requirements for expression and sequence stability, but that the observed subdominance of these antigens in the CMV-infected host results from the virus limiting the T-cell responses to otherwise-protective specificities. We found that DNA immunization of mice with the murine CMV (MCMV) homologs of HCMV DNA polymerase (M54) or helicase (M105) was protective against virus replication in the spleen following systemic challenge, with the protection level elicited by the M54 DNA being comparable to that of DNA expressing the immunodominant IE1 (pp89). Intracellular gamma interferon staining of CD8 T cells from mice immunized with either the M54 or M105 DNAs showed strong primary responses that recalled rapidly after viral challenge. M54- and M105-specific CD8 T cells were detected after the primary MCMV infection, but their levels were not consistently above the background level. The conserved, essential proteins of the CMVs thus represent a novel class of CD8 T-cell targets that may contribute to a successful HCMV vaccine strategy.
Collapse
Affiliation(s)
- Christopher S Morello
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0712, USA
| | | | | | | | | |
Collapse
|
197
|
Cush SS, Anderson KM, Ravneberg DH, Weslow-Schmidt JL, Flaño E. Memory generation and maintenance of CD8+ T cell function during viral persistence. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 179:141-53. [PMID: 17579032 PMCID: PMC3110076 DOI: 10.4049/jimmunol.179.1.141] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During infection with viruses that establish latency, the immune system needs to maintain lifelong control of the infectious agent in the presence of persistent Ag. By using a gamma-herpesvirus (gammaHV) infection model, we demonstrate that a small number of virus-specific central-memory CD8+ T cells develop early during infection, and that virus-specific CD8+T cells maintain functional and protective capacities during chronic infection despite low-level Ag persistence. During the primary immune response, we show generation of CD8+ memory T cell precursors expressing lymphoid homing molecules (CCR7, L-selectin) and homeostatic cytokine receptors (IL-7alpha, IL-2/IL-15beta). During long-term persistent infection, central-memory cells constitute 20-50% of the virus-specific CD8+ T cell population and maintain the expression of L-selectin, CCR7, and IL-7R molecules. Functional analyses demonstrate that during viral persistence: 1) CD8+ T cells maintain TCR affinity for peptide/MHC complexes, 2) the functional avidity of CD8+ T cells measured as the capacity to produce IFN-gamma is preserved intact, and 3) virus-specific CD8+ T cells have in vivo killing capacity. Next, we demonstrate that at 8 mo post-virus inoculation, long-term CD8+ T cells are capable of mediating a protective recall response against the establishment of gammaHV68 splenic latency. These observations provide evidence that functional CD8+ memory T cells can be generated and maintained during low-load gammaHV68 persistence.
Collapse
Affiliation(s)
- Stephanie S. Cush
- Center for Vaccines and Immunity, Columbus Children’s Research Institute, Columbus, OH 43205
| | - Kathleen M. Anderson
- Center for Vaccines and Immunity, Columbus Children’s Research Institute, Columbus, OH 43205
| | - David H. Ravneberg
- Center for Vaccines and Immunity, Columbus Children’s Research Institute, Columbus, OH 43205
| | - Janet L. Weslow-Schmidt
- Center for Vaccines and Immunity, Columbus Children’s Research Institute, Columbus, OH 43205
| | - Emilio Flaño
- Center for Vaccines and Immunity, Columbus Children’s Research Institute, Columbus, OH 43205
- College of Medicine, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
198
|
Abstract
Technological advances in recent years have allowed for an ever-expanding ability to analyze and quantify in vivo immune responses. MHC tetramers, intracellular cytokine staining, an increasing repertoire of transgenic and "knockout" mice, and the detailed characterization of a variety of infectious models have all facilitated more precise and definitive analyses of the generation and function of cytotoxic T lymphocytes (CTL). Understanding the mechanisms behind the differentiation of effector and memory CTL is of increasing importance to develop vaccination strategies against a variety of established and emerging infectious diseases. This review focuses on recent advances in our understanding of how effector and memory CTL differentiate and survive in vivo in response to viral or bacterial infection.
Collapse
Affiliation(s)
- Matthew A Williams
- Howard Hughes Medical Institute, Department of Immunology, University of Washington, Seattle, Washington 98195, USA.
| | | |
Collapse
|
199
|
Bachmann MF, Wolint P, Walton S, Schwarz K, Oxenius A. Differential role of IL-2R signaling for CD8+ T cell responses in acute and chronic viral infections. Eur J Immunol 2007; 37:1502-12. [PMID: 17492805 DOI: 10.1002/eji.200637023] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
IL-2 is a cytokine with multiple and even divergent functions; it has been described as a key cytokine for in vitro T cell proliferation but is also essential for down-regulating T cell responses by inducing activation-induced cell death as well as regulatory T cells. The in vivo analysis of IL-2 function in regulating specific T cell responses has been hampered by the fact that mice deficient in IL-2 or its receptors develop lymphoproliferative diseases and/or autoimmunity. Here we generated chimeric mice harboring both IL-2R-competent and IL-2R-deficient T cells and assessed CD8+ T cell induction, function and maintenance after acute or persistent viral infections. Induction and maintenance of CD8+ T cells were relatively independent of IL-2R signaling during acute/resolved viral infection. In marked contrast, IL-2 was crucial for secondary expansion of memory CD8+ T cells and for the maintenance of virus-specific CD8+ T cells during persistent viral infections. Thus, depending on the chronicity of antigen exposure, IL-2R signaling is either essential or largely dispensable for induction and maintenance of virus-specific CD8+ T cell responses.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antigens, Viral/immunology
- Bone Marrow Transplantation
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/transplantation
- Chronic Disease
- Epitopes, T-Lymphocyte/immunology
- Glycoproteins/immunology
- Interferon-gamma/metabolism
- Interleukin-2/metabolism
- Interleukin-2 Receptor alpha Subunit/genetics
- Interleukin-2 Receptor alpha Subunit/physiology
- Interleukin-7 Receptor alpha Subunit/metabolism
- L-Selectin/metabolism
- Lymphocyte Activation/immunology
- Lymphocytic choriomeningitis virus/immunology
- Lysosomal Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Peptide Fragments/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Interleukin-2/genetics
- Receptors, Interleukin-2/physiology
- Signal Transduction
- Tumor Necrosis Factor-alpha/metabolism
- Viral Proteins/immunology
- Virus Diseases/immunology
Collapse
|
200
|
Munks MW, Pinto AK, Doom CM, Hill AB. Viral Interference with Antigen Presentation Does Not Alter Acute or Chronic CD8 T Cell Immunodominance in Murine Cytomegalovirus Infection. THE JOURNAL OF IMMUNOLOGY 2007; 178:7235-41. [PMID: 17513772 DOI: 10.4049/jimmunol.178.11.7235] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Both human CMV and murine CMV (MCMV) elicit large CD8 T cell responses, despite the potent effects of viral genes that interfere with the MHC class I (MHC I) pathway of Ag presentation. To investigate the impact of immune evasion on CD8 T cell priming, we infected mice with wild-type (wt) MCMV or a mutant lacking its MHC I immune evasion genes, Deltam4+m6+m152 MCMV. In acute infection, the two viruses elicited a CD8 T cell response to 26 peptide epitopes that was virtually identical in total size, kinetics, and immunodominance hierarchy. This occurred despite results demonstrating that primary DCs are susceptible to the effects of MCMV's MHC I immune evasion genes. Eight months later, responses to both wt and mutant MCMV displayed the same CD8 T cell "memory inflation" and altered immunodominance that characterize the transition to chronic MCMV infection in C57BL/6 mice. Taken together, these findings suggest either that cross-priming dominates over direct CD8 T cell priming in both acute and chronic MCMV infection, or else that the MHC I immune evasion genes of MCMV are unable to alter direct CD8 T cell priming in vivo. At 2 years postinfection, differences in CD8 T cell immunodominance emerged between individual mice, but on average there were only slight differences between wt and mutant virus infections. Overall, the data indicate that the presence or absence of MHC I immune evasion genes has remarkably little impact on the size or specificity of the MCMV-specific CD8 T cell response over an entire lifetime of infection.
Collapse
MESH Headings
- Acute Disease
- Animals
- Antigen Presentation/immunology
- Antigens, Ly/biosynthesis
- Antigens, Ly/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/virology
- Cell Line
- Cell Line, Tumor
- Cells, Cultured
- Chronic Disease
- Cytotoxicity, Immunologic
- Herpesviridae Infections/immunology
- Herpesviridae Infections/virology
- Immunity, Innate
- Immunodominant Epitopes/biosynthesis
- Immunodominant Epitopes/metabolism
- Lectins, C-Type/biosynthesis
- Lectins, C-Type/metabolism
- Melanoma, Experimental
- Mice
- Mice, Inbred C57BL
- Muromegalovirus/immunology
- Receptors, NK Cell Lectin-Like
- Viral Interference/immunology
Collapse
Affiliation(s)
- Michael W Munks
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | |
Collapse
|