151
|
Laboissonniere LA, Sonoda T, Lee SK, Trimarchi JM, Schmidt TM. Single-cell RNA-Seq of Defined Subsets of Retinal Ganglion Cells. J Vis Exp 2017. [PMID: 28570514 DOI: 10.3791/55229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The discovery of cell type-specific markers can provide insight into cellular function and the origins of cellular heterogeneity. With a recent push for the improved understanding of neuronal diversity, it is important to identify genes whose expression defines various subpopulations of cells. The retina serves as an excellent model for the study of central nervous system diversity, as it is composed of multiple major cell types. The study of each major class of cells has yielded genetic markers that facilitate the identification of these populations. However, multiple subtypes of cells exist within each of these major retinal cell classes, and few of these subtypes have known genetic markers, although many have been characterized by morphology or function. A knowledge of genetic markers for individual retinal subtypes would allow for the study and mapping of brain targets related to specific visual functions and may also lend insight into the gene networks that maintain cellular diversity. Current avenues used to identify the genetic markers of subtypes possess drawbacks, such as the classification of cell types following sequencing. This presents a challenge for data analysis and requires rigorous validation methods to ensure that clusters contain cells of the same function. We propose a technique for identifying the morphology and functionality of a cell prior to isolation and sequencing, which will allow for the easier identification of subtype-specific markers. This technique may be extended to non-neuronal cell types, as well as to rare populations of cells with minor variations. This protocol yields excellent-quality data, as many of the libraries have provided read depths greater than 20 million reads for single cells. This methodology overcomes many of the hurdles presented by Single-cell RNA-Seq and may be suitable for researchers aiming to profile cell types in a straightforward and highly efficient manner.
Collapse
Affiliation(s)
| | | | - Seul Ki Lee
- Department of Neurobiology, Northwestern University
| | - Jeffrey M Trimarchi
- Department of Genetics, Development, and Cell Biology, Iowa State University;
| | | |
Collapse
|
152
|
Hierarchical Specification of Pruriceptors by Runt-Domain Transcription Factor Runx1. J Neurosci 2017; 37:5549-5561. [PMID: 28476948 DOI: 10.1523/jneurosci.0094-17.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/11/2017] [Accepted: 04/26/2017] [Indexed: 02/04/2023] Open
Abstract
The somatic sensory neurons in dorsal root ganglia (DRG) detect and transmit a diverse array of sensory modalities, such as pain, itch, cold, warm, touch, and others. Recent genetic and single-cell RNA sequencing studies have revealed a group of DRG neurons that could be particularly relevant for acute and chronic itch information transmission. They express the natriuretic peptide type B (NPPB), as well as a cohort of receptors and neuropeptides that have been implicated in chronic itch manifestation, including the interleukin-31 receptor A (IL-31ra) and its coreceptor oncostatin M receptor (Osmr), the cysteinyl leukotriene receptor 2 (Cysltr2), somatostatin, and neurotensin. However, how these neurons are generated during development remains unclear. Here we report that Runx1 is required to establish all these molecular features of NPPB+ neurons. We further show that while early embryonic Runx1 activity is required for the formation of NPPB+ cells, at later stages Runx1 switches to a genetic repressor and thus its downregulation becomes a prerequisite for the proper development of these pruriceptors. This mode by Runx1 is analogous to that in controlling another group of pruriceptors that specifically express the chloroquine receptor MrgprA3. Finally, behavioral studies using both sexes of mice revealed marked deficits in processing acute and chronic itch in Runx1 conditional knock-out mice, possibly attributable to impaired development of various pruriceptors.SIGNIFICANCE STATEMENT Our studies reveal a generalized control mode by Runx1 for pruriceptor development and consolidate a hierarchical control mechanism for the formation of sensory neurons transmitting distinct modalities. Among dorsal root ganglion neurons that initially express the neurotrophin receptor TrkA, Runx1 is necessary for the proper development of those neurons that innervate tissues derived from the ectoderm such as skin epidermis and hair follicles. These Runx1-dependent cutaneous sensory neurons are then divided into two groups based on persistent or transient Runx1 expression. The Runx1-persistent group is involved in transmitting mechanical and thermal information, whereas the Runx1-transient group transmits pruriceptive information. Such hierarchical control mechanisms may provide a developmental solution for the formation of sensory circuits that transmit distinct modalities.
Collapse
|
153
|
Kornecook TJ, Yin R, Altmann S, Be X, Berry V, Ilch CP, Jarosh M, Johnson D, Lee JH, Lehto SG, Ligutti J, Liu D, Luther J, Matson D, Ortuno D, Roberts J, Taborn K, Wang J, Weiss MM, Yu V, Zhu DXD, Fremeau RT, Moyer BD. Pharmacologic Characterization of AMG8379, a Potent and Selective Small Molecule Sulfonamide Antagonist of the Voltage-Gated Sodium Channel NaV1.7. J Pharmacol Exp Ther 2017; 362:146-160. [DOI: 10.1124/jpet.116.239590] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/03/2017] [Indexed: 02/05/2023] Open
|
154
|
Kim TH, Park SK, Choi SY, Lee JS, Bae YC. Morphologic Change of Parvalbumin-positive Myelinated Axons in the Human Dental Pulp. J Endod 2017; 43:977-981. [PMID: 28389070 DOI: 10.1016/j.joen.2017.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/22/2016] [Accepted: 01/09/2017] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Information on the nerve fibers innervating the dental pulp is crucial for understanding dental pain and hypersensitivity. This study investigated the morphologic differences of parvalbumin (PV)-positive (+) myelinated fibers in 3 different regions of the human dental pulp. METHODS Light and electron microscopic immunohistochemistry for parvalbumin, a marker for myelinated fibers, and quantitative analysis were performed in the apical root, core of coronal pulp, and peripheral pulp of human premolar teeth. RESULTS About 40% of the myelinated fibers in the apical root pulp became unmyelinated in the core of the coronal pulp, and virtually all the remaining fibers became unmyelinated at the peripheral pulp. The size of myelinated axons decreased from root to peripheral pulp. PV+ axons showed extensive axonal varicosities in the peripheral pulp. CONCLUSIONS These findings suggest that the myelinated fibers innervating the human dental pulp undergo extensive morphologic change in the extrapulpal region and in the coronal and peripheral pulp, and that PV-mediated regulation of calcium concentration and its downstream events may occur primarily in axonal varicosities in the peripheral pulp.
Collapse
Affiliation(s)
- Tae Heon Kim
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Sook Kyung Park
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - So Young Choi
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Jae Sik Lee
- Department of Pediatric Dentistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
155
|
An Intestinal Organ Culture System Uncovers a Role for the Nervous System in Microbe-Immune Crosstalk. Cell 2017; 168:1135-1148.e12. [PMID: 28262351 DOI: 10.1016/j.cell.2017.02.009] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/23/2016] [Accepted: 02/03/2017] [Indexed: 02/07/2023]
Abstract
Investigation of host-environment interactions in the gut would benefit from a culture system that maintained tissue architecture yet allowed tight experimental control. We devised a microfabricated organ culture system that viably preserves the normal multicellular composition of the mouse intestine, with luminal flow to control perturbations (e.g., microbes, drugs). It enables studying short-term responses of diverse gut components (immune, neuronal, etc.). We focused on the early response to bacteria that induce either Th17 or RORg+ T-regulatory (Treg) cells in vivo. Transcriptional responses partially reproduced in vivo signatures, but these microbes elicited diametrically opposite changes in expression of a neuronal-specific gene set, notably nociceptive neuropeptides. We demonstrated activation of sensory neurons by microbes, correlating with RORg+ Treg induction. Colonic RORg+ Treg frequencies increased in mice lacking TAC1 neuropeptide precursor and decreased in capsaicin-diet fed mice. Thus, differential engagement of the enteric nervous system may partake in bifurcating pro- or anti-inflammatory responses to microbes.
Collapse
|
156
|
Neural regulation of immunity: molecular mechanisms and clinical translation. Nat Neurosci 2017; 20:156-166. [PMID: 28092663 DOI: 10.1038/nn.4477] [Citation(s) in RCA: 334] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/12/2016] [Indexed: 12/14/2022]
Abstract
Studies bridging neuroscience and immunology have identified neural pathways that regulate immunity and inflammation. Recent research using methodological advances in molecular genetics has improved our understanding of the neural control of immunity. Here we outline mechanistic insights, focusing on translational relevance and conceptual developments. We also summarize findings from recent clinical studies of bioelectronic neuromodulation in inflammatory and autoimmune diseases.
Collapse
|
157
|
Lin SH, Steinhoff M, Ikoma A, Chang YC, Cheng YR, Chandra Kopparaju R, Ishii S, Sun WH, Chen CC. Involvement of TRPV1 and TDAG8 in Pruriception Associated with Noxious Acidosis. J Invest Dermatol 2017; 137:170-178. [DOI: 10.1016/j.jid.2016.07.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 06/27/2016] [Accepted: 07/18/2016] [Indexed: 02/06/2023]
|
158
|
Dueck HR, Ai R, Camarena A, Ding B, Dominguez R, Evgrafov OV, Fan JB, Fisher SA, Herstein JS, Kim TK, Kim JM(H, Lin MY, Liu R, Mack WJ, McGroty S, Nguyen JD, Salathia N, Shallcross J, Souaiaia T, Spaethling JM, Walker CP, Wang J, Wang K, Wang W, Wildberg A, Zheng L, Chow RH, Eberwine J, Knowles JA, Zhang K, Kim J. Assessing characteristics of RNA amplification methods for single cell RNA sequencing. BMC Genomics 2016; 17:966. [PMID: 27881084 PMCID: PMC5122016 DOI: 10.1186/s12864-016-3300-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 11/15/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Recently, measurement of RNA at single cell resolution has yielded surprising insights. Methods for single-cell RNA sequencing (scRNA-seq) have received considerable attention, but the broad reliability of single cell methods and the factors governing their performance are still poorly known. RESULTS Here, we conducted a large-scale control experiment to assess the transfer function of three scRNA-seq methods and factors modulating the function. All three methods detected greater than 70% of the expected number of genes and had a 50% probability of detecting genes with abundance greater than 2 to 4 molecules. Despite the small number of molecules, sequencing depth significantly affected gene detection. While biases in detection and quantification were qualitatively similar across methods, the degree of bias differed, consistent with differences in molecular protocol. Measurement reliability increased with expression level for all methods and we conservatively estimate measurements to be quantitative at an expression level greater than ~5-10 molecules. CONCLUSIONS Based on these extensive control studies, we propose that RNA-seq of single cells has come of age, yielding quantitative biological information.
Collapse
Affiliation(s)
- Hannah R. Dueck
- Department of Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Rizi Ai
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA USA
| | - Adrian Camarena
- Department of Psychiatry & The Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Bo Ding
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA USA
| | - Reymundo Dominguez
- Department of Physiology & Biophysics, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA USA
| | - Oleg V. Evgrafov
- Department of Psychiatry & The Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | | | - Stephen A. Fisher
- Department of Biology, University of Pennsylvania, 415 S. University Ave, Philadelphia, PA 19104 USA
| | - Jennifer S. Herstein
- Department of Psychiatry & The Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Tae Kyung Kim
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Present address: Allen Institute for Brain Science, Seattle, WA USA
| | - Jae Mun (Hugo) Kim
- Department of Psychiatry & The Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Ming-Yi Lin
- Department of Physiology & Biophysics, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA USA
| | - Rui Liu
- Department of Bioengineering, University of California at San Diego, La Jolla, CA USA
| | - William J. Mack
- Department of Neurological Surgery, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA USA
| | - Sean McGroty
- Department of Biology, University of Pennsylvania, 415 S. University Ave, Philadelphia, PA 19104 USA
| | - Joseph D. Nguyen
- Department of Psychiatry & The Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | | | - Jamie Shallcross
- Department of Biology, University of Pennsylvania, 415 S. University Ave, Philadelphia, PA 19104 USA
| | - Tade Souaiaia
- Department of Psychiatry & The Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Jennifer M. Spaethling
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Christopher P. Walker
- Department of Psychiatry & The Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Jinhui Wang
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Kai Wang
- Department of Psychiatry & The Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA USA
| | - Andre Wildberg
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA USA
| | - Lina Zheng
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA USA
| | - Robert H. Chow
- Department of Physiology & Biophysics, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA USA
| | - James Eberwine
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - James A. Knowles
- Department of Psychiatry & The Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Kun Zhang
- Department of Bioengineering, University of California at San Diego, La Jolla, CA USA
| | - Junhyong Kim
- Department of Biology, University of Pennsylvania, 415 S. University Ave, Philadelphia, PA 19104 USA
| |
Collapse
|
159
|
Abstract
The mammalian nervous system encodes many different forms of pain, from those that arise as a result of short-term low-grade interactions with noxious thermal, chemical, or mechanical sources to more serious forms of pain induced by trauma and disease. In this Review, we highlight recent advances in our understanding of the neural circuits that encode these types of pain. Promising therapeutic strategies based on recent advances are also highlighted.
Collapse
Affiliation(s)
- Cedric Peirs
- Departments of Neurobiology and Otolaryngology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, BST3, Pittsburgh, PA 15213, USA
- Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Rebecca P Seal
- Departments of Neurobiology and Otolaryngology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, BST3, Pittsburgh, PA 15213, USA.
- Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| |
Collapse
|
160
|
Levels of Cocaine- and Amphetamine-Regulated Transcript in Vagal Afferents in the Mouse Are Unaltered in Response to Metabolic Challenges. eNeuro 2016; 3:eN-FTR-0174-16. [PMID: 27822503 PMCID: PMC5088776 DOI: 10.1523/eneuro.0174-16.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 12/21/2022] Open
Abstract
Cocaine- and amphetamine-regulated transcript (CART) is one of the most abundant neuropeptides in vagal afferents, including those involved in regulating feeding. Recent observations indicate that metabolic challenges dramatically alter the neuropeptidergic profile of CART-producing vagal afferents. Here, using confocal microscopy, we reassessed the distribution and regulation of CART(55–102) immunoreactivity in vagal afferents of the male mouse in response to metabolic challenges, including fasting and high-fat-diet feeding. Importantly, the perikarya and axons of vagal C-fibers were labeled using mice expressing channelrodhopsin-2 (ChR2-YFP) in Nav1.8-Cre–expressing neurons. In these mice, approximately 82% of the nodose ganglion neurons were labeled with ChR2-YFP. Furthermore, ChR2-YFP–labeled axons could easily be identified in the dorsovagal complex. CART(55–102) immunoreactivity was observed in 55% of the ChR2-YFP–labeled neurons in the nodose ganglion and 22% of the ChR2-YFP–labeled varicosities within the area postrema of fed, fasted, and obese mice. The distribution of positive profiles was also identical across the full range of CART staining in fed, fasted, and obese mice. In contrast to previous studies, fasting did not induce melanin-concentrating hormone (MCH) immunoreactivity in vagal afferents. Moreover, prepro-MCH mRNA was undetectable in the nodose ganglion of fasted mice. In summary, this study showed that the perikarya and central terminals of vagal afferents are invariably enriched in CART and devoid of MCH.
Collapse
|
161
|
Cheah M, Andrews MR, Chew DJ, Moloney EB, Verhaagen J, Fässler R, Fawcett JW. Expression of an Activated Integrin Promotes Long-Distance Sensory Axon Regeneration in the Spinal Cord. J Neurosci 2016; 36:7283-97. [PMID: 27383601 PMCID: PMC4938867 DOI: 10.1523/jneurosci.0901-16.2016] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/05/2016] [Accepted: 05/30/2016] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED After CNS injury, axon regeneration is blocked by an inhibitory environment consisting of the highly upregulated tenascin-C and chondroitin sulfate proteoglycans (CSPGs). Tenascin-C promotes growth of axons if they express a tenascin-binding integrin, particularly α9β1. Additionally, integrins can be inactivated by CSPGs, and this inhibition can be overcome by the presence of a β1-binding integrin activator, kindlin-1. We examined the synergistic effect of α9 integrin and kindlin-1 on sensory axon regeneration in adult rat spinal cord after dorsal root crush and adeno-associated virus transgene expression in dorsal root ganglia. After 12 weeks, axons from C6-C7 dorsal root ganglia regenerated through the tenascin-C-rich dorsal root entry zone into the dorsal column up to C1 level and above (>25 mm axon length) through a normal pathway. Animals also showed anatomical and electrophysiological evidence of reconnection to the dorsal horn and behavioral recovery in mechanical pressure, thermal pain, and ladder-walking tasks. Expression of α9 integrin or kindlin-1 alone promoted much less regeneration and recovery. SIGNIFICANCE STATEMENT The study demonstrates that long-distance sensory axon regeneration over a normal pathway and with sensory and sensory-motor recovery can be achieved. This was achieved by expressing an integrin that recognizes tenascin-C, one of the components of glial scar tissue, and an integrin activator. This enabled extensive long-distance (>25 mm) regeneration of both myelinated and unmyelinated sensory axons with topographically correct connections in the spinal cord. The extent of growth and recovery we have seen would probably be clinically significant. Restoration of sensation to hands, perineum, and genitalia would be a significant improvement for a spinal cord-injured patient.
Collapse
Affiliation(s)
- Menghon Cheah
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, United Kingdom
| | - Melissa R Andrews
- School of Medicine, University of St. Andrews, St. Andrews KY16 9TF, United Kingdom,
| | - Daniel J Chew
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, United Kingdom
| | - Elizabeth B Moloney
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands, and
| | - Joost Verhaagen
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands, and
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - James W Fawcett
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, United Kingdom,
| |
Collapse
|
162
|
Fattori V, Hohmann MSN, Rossaneis AC, Pinho-Ribeiro FA, Verri WA. Capsaicin: Current Understanding of Its Mechanisms and Therapy of Pain and Other Pre-Clinical and Clinical Uses. Molecules 2016; 21:E844. [PMID: 27367653 PMCID: PMC6273101 DOI: 10.3390/molecules21070844] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 02/06/2023] Open
Abstract
In this review, we discuss the importance of capsaicin to the current understanding of neuronal modulation of pain and explore the mechanisms of capsaicin-induced pain. We will focus on the analgesic effects of capsaicin and its clinical applicability in treating pain. Furthermore, we will draw attention to the rationale for other clinical therapeutic uses and implications of capsaicin in diseases such as obesity, diabetes, cardiovascular conditions, cancer, airway diseases, itch, gastric, and urological disorders.
Collapse
Affiliation(s)
- Victor Fattori
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid KM480 PR445, Caixa Postal 10.011, 86057-970 Londrina, Paraná, Brazil.
| | - Miriam S N Hohmann
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid KM480 PR445, Caixa Postal 10.011, 86057-970 Londrina, Paraná, Brazil.
| | - Ana C Rossaneis
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid KM480 PR445, Caixa Postal 10.011, 86057-970 Londrina, Paraná, Brazil.
| | - Felipe A Pinho-Ribeiro
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid KM480 PR445, Caixa Postal 10.011, 86057-970 Londrina, Paraná, Brazil.
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid KM480 PR445, Caixa Postal 10.011, 86057-970 Londrina, Paraná, Brazil.
| |
Collapse
|
163
|
Cellular Deconstruction: Finding Meaning in Individual Cell Variation. Trends Cell Biol 2016; 25:569-578. [PMID: 26410403 DOI: 10.1016/j.tcb.2015.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 06/26/2015] [Accepted: 07/17/2015] [Indexed: 12/21/2022]
Abstract
The advent of single cell transcriptome analysis has permitted the discovery of cell-to-cell variation in transcriptome expression of even presumptively identical cells. We hypothesize that this variability reflects a many-to-one relation between transcriptome states and the phenotype of a cell. In this relation, the molecular ratios of the subsets of RNA are determined by the stoichiometric constraints of the cell systems, which underdetermine the transcriptome state. Furthermore, the variability is, in part, induced by the tissue context and is important for system-level function. This theory is analogous to theories of literary deconstruction, where multiple 'signifiers' work in opposition to one another to create meaning. By analogy, transcriptome phenotypes should be defined as subsets of RNAs comprising selected RNA systems where the system-associated RNAs are balanced with each other to produce the associated cellular function. This idea provides a framework for understanding cellular heterogeneity in phenotypic responses to variant conditions, such as disease challenge.
Collapse
|
164
|
Honjo K, Mauthner SE, Wang Y, Skene JHP, Tracey WD. Nociceptor-Enriched Genes Required for Normal Thermal Nociception. Cell Rep 2016; 16:295-303. [PMID: 27346357 DOI: 10.1016/j.celrep.2016.06.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 05/02/2016] [Accepted: 05/23/2016] [Indexed: 11/24/2022] Open
Abstract
Here, we describe a targeted reverse genetic screen for thermal nociception genes in Drosophila larvae. Using laser capture microdissection and microarray analyses of nociceptive and non-nociceptive neurons, we identified 275 nociceptor-enriched genes. We then tested the function of the enriched genes with nociceptor-specific RNAi and thermal nociception assays. Tissue-specific RNAi targeted against 14 genes caused insensitive thermal nociception while targeting of 22 genes caused hypersensitive thermal nociception. Previously uncategorized genes were named for heat resistance (i.e., boilerman, fire dancer, oven mitt, trivet, thawb, and bunker gear) or heat sensitivity (firelighter, black match, eucalyptus, primacord, jet fuel, detonator, gasoline, smoke alarm, and jetboil). Insensitive nociception phenotypes were often associated with severely reduced branching of nociceptor neurites and hyperbranched dendrites were seen in two of the hypersensitive cases. Many genes that we identified are conserved in mammals.
Collapse
Affiliation(s)
- Ken Honjo
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Stephanie E Mauthner
- Gill Center for Biomolecular Sciences and Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Yu Wang
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - J H Pate Skene
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - W Daniel Tracey
- Gill Center for Biomolecular Sciences and Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
165
|
Affiliation(s)
- Hsu-Hsin Chen
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
166
|
Calvo M, Richards N, Schmid AB, Barroso A, Zhu L, Ivulic D, Zhu N, Anwandter P, Bhat MA, Court FA, McMahon SB, Bennett DLH. Altered potassium channel distribution and composition in myelinated axons suppresses hyperexcitability following injury. eLife 2016; 5:e12661. [PMID: 27033551 PMCID: PMC4841771 DOI: 10.7554/elife.12661] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/15/2016] [Indexed: 12/25/2022] Open
Abstract
Neuropathic pain following peripheral nerve injury is associated with hyperexcitability in damaged myelinated sensory axons, which begins to normalise over time. We investigated the composition and distribution of shaker-type-potassium channels (Kv1 channels) within the nodal complex of myelinated axons following injury. At the neuroma that forms after damage, expression of Kv1.1 and 1.2 (normally localised to the juxtaparanode) was markedly decreased. In contrast Kv1.4 and 1.6, which were hardly detectable in the naïve state, showed increased expression within juxtaparanodes and paranodes following injury, both in rats and humans. Within the dorsal root (a site remote from injury) we noted a redistribution of Kv1-channels towards the paranode. Blockade of Kv1 channels with α-DTX after injury reinstated hyperexcitability of A-fibre axons and enhanced mechanosensitivity. Changes in the molecular composition and distribution of axonal Kv1 channels, therefore represents a protective mechanism to suppress the hyperexcitability of myelinated sensory axons that follows nerve injury.
Collapse
Affiliation(s)
- Margarita Calvo
- Wolfson Centre for Age-Related Diseases, Kings College London, London, United Kingdom.,Departamento de Fisiologia, Facultad de Ciencias Biologicas- Pontificia Universidad Catolica de Chile, Santiago, Chile.,Departamento de Anestesiologia, Facultad de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Natalie Richards
- Wolfson Centre for Age-Related Diseases, Kings College London, London, United Kingdom
| | - Annina B Schmid
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Alejandro Barroso
- Wolfson Centre for Age-Related Diseases, Kings College London, London, United Kingdom.,Hospital Regional Universitario de Málaga. Servicio de Anestesiología, Málaga, Spain
| | - Lan Zhu
- Wolfson Centre for Age-Related Diseases, Kings College London, London, United Kingdom.,School of Allied Health Sciences, Faculty of Health and Life Sciences, De Montfort University, Leicester, United Kingdom
| | - Dinka Ivulic
- Departamento de Fisiologia, Facultad de Ciencias Biologicas- Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Ning Zhu
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Philipp Anwandter
- Departamento Ortopedia y Traumatologia, Facultad de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Manzoor A Bhat
- Department of Physiology, UT Health Science Center at San Antonio, San Antonio, United States.,School of Medicine, UT Health Science Center at San Antonio, San Antonio, United States
| | - Felipe A Court
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile.,FONDAP, Geroscience Center for Brain Health and Metabolism, Santiago, Chile.,Millenium Nucleus for Regenerative Biology, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Stephen B McMahon
- Wolfson Centre for Age-Related Diseases, Kings College London, London, United Kingdom
| | - David L H Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
167
|
Ordovas-Montanes J, Rakoff-Nahoum S, Huang S, Riol-Blanco L, Barreiro O, von Andrian UH. The Regulation of Immunological Processes by Peripheral Neurons in Homeostasis and Disease. Trends Immunol 2016; 36:578-604. [PMID: 26431937 DOI: 10.1016/j.it.2015.08.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 08/13/2015] [Accepted: 08/13/2015] [Indexed: 02/06/2023]
Abstract
The nervous system and the immune system are the principal sensory interfaces between the internal and external environment. They are responsible for recognizing, integrating, and responding to varied stimuli, and have the capacity to form memories of these encounters leading to learned or 'adaptive' future responses. We review current understanding of the cross-regulation between these systems. The autonomic and somatosensory nervous systems regulate both the development and deployment of immune cells, with broad functions that impact on hematopoiesis as well as on priming, migration, and cytokine production. In turn, specific immune cell subsets contribute to homeostatic neural circuits such as those controlling metabolism, hypertension, and the inflammatory reflex. We examine the contribution of the somatosensory system to autoimmune, autoinflammatory, allergic, and infectious processes in barrier tissues and, in this context, discuss opportunities for therapeutic manipulation of neuro-immune interactions.
Collapse
Affiliation(s)
- Jose Ordovas-Montanes
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Seth Rakoff-Nahoum
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Boston Children's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Siyi Huang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Olga Barreiro
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ulrich H von Andrian
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard University, Cambridge, MA 02139, USA.
| |
Collapse
|
168
|
Liu XP, Wooltorton JRA, Gaboyard-Niay S, Yang FC, Lysakowski A, Eatock RA. Sodium channel diversity in the vestibular ganglion: NaV1.5, NaV1.8, and tetrodotoxin-sensitive currents. J Neurophysiol 2016; 115:2536-55. [PMID: 26936982 DOI: 10.1152/jn.00902.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/02/2016] [Indexed: 01/02/2023] Open
Abstract
Firing patterns differ between subpopulations of vestibular primary afferent neurons. The role of sodium (NaV) channels in this diversity has not been investigated because NaV currents in rodent vestibular ganglion neurons (VGNs) were reported to be homogeneous, with the voltage dependence and tetrodotoxin (TTX) sensitivity of most neuronal NaV channels. RT-PCR experiments, however, indicated expression of diverse NaV channel subunits in the vestibular ganglion, motivating a closer look. Whole cell recordings from acutely dissociated postnatal VGNs confirmed that nearly all neurons expressed NaV currents that are TTX-sensitive and have activation midpoints between -30 and -40 mV. In addition, however, many VGNs expressed one of two other NaV currents. Some VGNs had a small current with properties consistent with NaV1.5 channels: low TTX sensitivity, sensitivity to divalent cation block, and a relatively negative voltage range, and some VGNs showed NaV1.5-like immunoreactivity. Other VGNs had a current with the properties of NaV1.8 channels: high TTX resistance, slow time course, and a relatively depolarized voltage range. In two NaV1.8 reporter lines, subsets of VGNs were labeled. VGNs with NaV1.8-like TTX-resistant current also differed from other VGNs in the voltage dependence of their TTX-sensitive currents and in the voltage threshold for spiking and action potential shape. Regulated expression of NaV channels in primary afferent neurons is likely to selectively affect firing properties that contribute to the encoding of vestibular stimuli.
Collapse
Affiliation(s)
- Xiao-Ping Liu
- Speech and Hearing Bioscience and Technology Program, Harvard-Massachusetts Institute of Technology Health Sciences and Technology Program, Cambridge, Massachusetts; Eaton-Peabody Laboratories, Massachusetts Eye and Ear, and Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts
| | | | - Sophie Gaboyard-Niay
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois
| | - Fu-Chia Yang
- Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Neurobiology, Harvard Medical School, Boston, Massachusetts; and
| | - Anna Lysakowski
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois; Department of Otolaryngology-Head and Neck Surgery, University of Illinois at Chicago, Chicago, Illinois
| | - Ruth Anne Eatock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, and Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts; Department of Neurobiology, Harvard Medical School, Boston, Massachusetts; and Department of Otolaryngology-Head and Neck Surgery, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
169
|
Patthey C, Clifford H, Haerty W, Ponting CP, Shimeld SM, Begbie J. Identification of molecular signatures specific for distinct cranial sensory ganglia in the developing chick. Neural Dev 2016; 11:3. [PMID: 26819088 PMCID: PMC4730756 DOI: 10.1186/s13064-016-0057-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/08/2016] [Indexed: 11/22/2022] Open
Abstract
Background The cranial sensory ganglia represent populations of neurons with distinct functions, or sensory modalities. The production of individual ganglia from distinct neurogenic placodes with different developmental pathways provides a powerful model to investigate the acquisition of specific sensory modalities. To date there is a limited range of gene markers available to examine the molecular pathways underlying this process. Results Transcriptional profiles were generated for populations of differentiated neurons purified from distinct cranial sensory ganglia using microdissection in embryonic chicken followed by FAC-sorting and RNAseq. Whole transcriptome analysis confirmed the division into somato- versus viscerosensory neurons, with additional evidence for subdivision of the somatic class into general and special somatosensory neurons. Cross-comparison of distinct ganglia transcriptomes identified a total of 134 markers, 113 of which are novel, which can be used to distinguish trigeminal, vestibulo-acoustic and epibranchial neuronal populations. In situ hybridisation analysis provided validation for 20/26 tested markers, and showed related expression in the target region of the hindbrain in many cases. Conclusions One hundred thirty-four high-confidence markers have been identified for placode-derived cranial sensory ganglia which can now be used to address the acquisition of specific cranial sensory modalities. Electronic supplementary material The online version of this article (doi:10.1186/s13064-016-0057-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cedric Patthey
- Department of Zoology, University of Oxford, Oxford, UK. .,Umeå Center for Molecular Medicine, Umeå University, Umeå, Sweden.
| | - Harry Clifford
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK. .,MRC Functional Genomics, University of Oxford, Oxford, UK.
| | - Wilfried Haerty
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK. .,MRC Functional Genomics, University of Oxford, Oxford, UK.
| | - Chris P Ponting
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK. .,MRC Functional Genomics, University of Oxford, Oxford, UK.
| | | | - Jo Begbie
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
170
|
Abstract
UNLABELLED Understanding why adult CNS neurons fail to regenerate their axons following injury remains a central challenge of neuroscience research. A more complete appreciation of the biological mechanisms shaping the injured nervous system is a crucial prerequisite for the development of robust therapies to promote neural repair. Historically, the identification of regeneration associated signaling pathways has been impeded by the limitations of available genetic and molecular tools. As we progress into an era in which the high-throughput interrogation of gene expression is commonplace and our knowledge base of interactome data is rapidly expanding, we can now begin to assemble a more comprehensive view of the complex biology governing axon regeneration. Here, we highlight current and ongoing work featuring transcriptomic approaches toward the discovery of novel molecular mechanisms that can be manipulated to promote neural repair. SIGNIFICANCE STATEMENT Transcriptional profiling is a powerful technique with broad applications in the field of neuroscience. Recent advances such as single-cell transcriptomics, CNS cell type-specific and developmental stage-specific expression libraries are rapidly enhancing the power of transcriptomics for neuroscience applications. However, extracting biologically meaningful information from large transcriptomic datasets remains a formidable challenge. This mini-symposium will highlight current work using transcriptomic approaches to identify regulatory networks in the injured nervous system. We will discuss analytical strategies for transcriptomics data, the significance of noncoding RNA networks, and the utility of multiomic data integration. Though the studies featured here specifically focus on neural repair, the approaches highlighted in this mini-symposium will be of broad interest and utility to neuroscientists working in diverse areas of the field.
Collapse
|
171
|
Therapeutic Strategies for Neuropathic Pain: Potential Application of Pharmacosynthetics and Optogenetics. Mediators Inflamm 2016; 2016:5808215. [PMID: 26884648 PMCID: PMC4738689 DOI: 10.1155/2016/5808215] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/27/2015] [Accepted: 12/17/2015] [Indexed: 11/17/2022] Open
Abstract
Chronic pain originating from neuronal damage remains an incurable symptom debilitating patients. Proposed molecular modalities in neuropathic pain include ion channel expressions, immune reactions, and inflammatory substrate diffusions. Recent advances in RNA sequence analysis have discovered specific ion channel expressions in nociceptors such as transient receptor potential (TRP) channels, voltage-gated potassium, and sodium channels. G protein-coupled receptors (GPCRs) also play an important role in triggering surrounding immune cells. The multiple protein expressions complicate therapeutic development for neuropathic pain. Recent progress in optogenetics and pharmacogenetics may herald the development of novel therapeutics for the incurable pain. Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) facilitate the artificial manipulation of intracellular signaling through excitatory or inhibitory G protein subunits activated by biologically inert synthetic ligands. Expression of excitatory channelrhodopsins and inhibitory halorhodopsins on injured neurons or surrounding cells can attenuate neuropathic pain precisely controlled by light stimulation. To achieve the discrete treatment of injured neurons, we can exploit the transcriptome database obtained by RNA sequence analysis in specific neuropathies. This can recommend the suitable promoter information to target the injury sites circumventing intact neurons. Therefore, novel strategies benefiting from pharmacogenetics, optogenetics, and RNA sequencing might be promising for neuropathic pain treatment in future.
Collapse
|
172
|
Li CL, Li KC, Wu D, Chen Y, Luo H, Zhao JR, Wang SS, Sun MM, Lu YJ, Zhong YQ, Hu XY, Hou R, Zhou BB, Bao L, Xiao HS, Zhang X. Somatosensory neuron types identified by high-coverage single-cell RNA-sequencing and functional heterogeneity. Cell Res 2015; 26:83-102. [PMID: 26691752 DOI: 10.1038/cr.2015.149] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/04/2015] [Accepted: 12/01/2015] [Indexed: 11/09/2022] Open
Abstract
Sensory neurons are distinguished by distinct signaling networks and receptive characteristics. Thus, sensory neuron types can be defined by linking transcriptome-based neuron typing with the sensory phenotypes. Here we classify somatosensory neurons of the mouse dorsal root ganglion (DRG) by high-coverage single-cell RNA-sequencing (10 950 ± 1 218 genes per neuron) and neuron size-based hierarchical clustering. Moreover, single DRG neurons responding to cutaneous stimuli are recorded using an in vivo whole-cell patch clamp technique and classified by neuron-type genetic markers. Small diameter DRG neurons are classified into one type of low-threshold mechanoreceptor and five types of mechanoheat nociceptors (MHNs). Each of the MHN types is further categorized into two subtypes. Large DRG neurons are categorized into four types, including neurexophilin 1-expressing MHNs and mechanical nociceptors (MNs) expressing BAI1-associated protein 2-like 1 (Baiap2l1). Mechanoreceptors expressing trafficking protein particle complex 3-like and Baiap2l1-marked MNs are subdivided into two subtypes each. These results provide a new system for cataloging somatosensory neurons and their transcriptome databases.
Collapse
Affiliation(s)
- Chang-Lin Li
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 20031, China
| | - Kai-Cheng Li
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 20031, China
| | - Dan Wu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 20031, China
| | - Yan Chen
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 20031, China
| | - Hao Luo
- School of Life Science and Technology, ShanghaiTec University, Shanghai 200031, China
| | - Jing-Rong Zhao
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 20031, China
| | - Sa-Shuang Wang
- School of Life Science and Technology, ShanghaiTec University, Shanghai 200031, China
| | - Ming-Ming Sun
- National Engineering Center for Biochip at Shanghai, Shanghai, China
| | - Ying-Jin Lu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 20031, China
| | - Yan-Qing Zhong
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 20031, China
| | - Xu-Ye Hu
- Shanghai Clinical Center, Chinese Academy of Sciences/XuHui Central Hospital, Shanghai, China
| | - Rui Hou
- National Engineering Center for Biochip at Shanghai, Shanghai, China
| | - Bei-Bei Zhou
- National Engineering Center for Biochip at Shanghai, Shanghai, China
| | - Lan Bao
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.,School of Life Science and Technology, ShanghaiTec University, Shanghai 200031, China
| | - Hua-Sheng Xiao
- National Engineering Center for Biochip at Shanghai, Shanghai, China
| | - Xu Zhang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 20031, China.,School of Life Science and Technology, ShanghaiTec University, Shanghai 200031, China
| |
Collapse
|
173
|
Dueck H, Eberwine J, Kim J. Variation is function: Are single cell differences functionally important?: Testing the hypothesis that single cell variation is required for aggregate function. Bioessays 2015; 38:172-80. [PMID: 26625861 PMCID: PMC4738397 DOI: 10.1002/bies.201500124] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
There is a growing appreciation of the extent of transcriptome variation across individual cells of the same cell type. While expression variation may be a byproduct of, for example, dynamic or homeostatic processes, here we consider whether single-cell molecular variation per se might be crucial for population-level function. Under this hypothesis, molecular variation indicates a diversity of hidden functional capacities within an ensemble of identical cells, and this functional diversity facilitates collective behavior that would be inaccessible to a homogenous population. In reviewing this topic, we explore possible functions that might be carried by a heterogeneous ensemble of cells; however, this question has proven difficult to test, both because methods to manipulate molecular variation are limited and because it is complicated to define, and measure, population-level function. We consider several possible methods to further pursue the hypothesis that variation is function through the use of comparative analysis and novel experimental techniques.
Collapse
Affiliation(s)
- Hannah Dueck
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - James Eberwine
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA.,Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.,Penn Program in Single Cell Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Junhyong Kim
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA.,Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.,Penn Program in Single Cell Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.,Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
174
|
Bao L. Trafficking regulates the subcellular distribution of voltage-gated sodium channels in primary sensory neurons. Mol Pain 2015; 11:61. [PMID: 26423360 PMCID: PMC4590712 DOI: 10.1186/s12990-015-0065-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/23/2015] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (Navs) comprise at least nine pore-forming α subunits. Of these, Nav1.6, Nav1.7, Nav1.8 and Nav1.9 are the most frequently studied in primary sensory neurons located in the dorsal root ganglion and are mainly localized to the cytoplasm. A large pool of intracellular Navs raises the possibility that changes in Nav trafficking could alter channel function. The molecular mediators of Nav trafficking mainly consist of signals within the Navs themselves, interacting proteins and extracellular factors. The surface expression of Navs is achieved by escape from the endoplasmic reticulum and proteasome degradation, forward trafficking and plasma membrane anchoring, and it is also regulated by channel phosphorylation and ubiquitination in primary sensory neurons. Axonal transport and localization of Navs in afferent fibers involves the motor protein KIF5B and scaffold proteins, including contactin and PDZ domain containing 2. Localization of Nav1.6 to the nodes of Ranvier in myelinated fibers of primary sensory neurons requires node formation and the submembrane cytoskeletal protein complex. These findings inform our understanding of the molecular and cellular mechanisms underlying Nav trafficking in primary sensory neurons.
Collapse
Affiliation(s)
- Lan Bao
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
| |
Collapse
|
175
|
|