151
|
Baria K, De Toni EN, Yu B, Jiang Z, Kabadi SM, Malvezzi M. Worldwide Incidence and Mortality of Biliary Tract Cancer. GASTRO HEP ADVANCES 2022; 1:618-626. [PMID: 39132071 PMCID: PMC11307584 DOI: 10.1016/j.gastha.2022.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/12/2022] [Indexed: 08/13/2024]
Abstract
Background and Aims Biliary tract cancer (BTC) consists of a group of hepatic and perihepatic tumors that are in close proximity but are anatomically different, including gallbladder cancer (GBC), cholangiocarcinoma (extrahepatic and intrahepatic [ICC]), and ampulla of Vater cancer (AVC). Most epidemiologic research has focused on 1 or more anatomic subtypes, or does not differentiate BTC from hepatocellular carcinoma or other primary liver cancers. Here, we provide a descriptive update on global incidence and mortality rates for BTC, overall and by anatomic subtypes. Methods Age-standardized rates (per 100,000 person-years) were derived from the International Agency for Research on Cancer, Cancer Incidence in Five Continents, Volume XI (2008-2012; 22 countries), and the World Health Organization Mortality Database (2006-2016; 38 countries). Results BTC incidence varied by country, with the highest in Chile (14.35) and the lowest in Vietnam (1.25). Mortality rates for BTC were highest for the Republic of Korea (11.64) and lowest for the Republic of Moldova (1.65). BTC mortality rates increased over time in 24 of 34 countries. Patients aged ≥75 years had 5-10 times higher mortality rates than the overall BTC rate in all countries. In most countries, incidence rates were highest for GBC, and mortality rates highest for ICC, while both were lowest for AVC. Females had and died from GBC more frequently than males. For ICC, extrahepatic cholangiocarcinoma, and AVC, males trended toward higher incidence and mortality rates. Conclusion The increasing incidence and mortality trends reported here indicate a need for improved prevention and treatment for all BTC subtypes.
Collapse
Affiliation(s)
- Katherine Baria
- Global Medical Affairs, AstraZeneca Pharmaceuticals, Gaithersburg, Maryland
| | - Enrico N. De Toni
- Department of Internal Medicine II, Ludwig Maximilian University of Munich, München, Germany
| | - Binbing Yu
- Oncology Biometrics, AstraZeneca Pharmaceuticals, Gaithersburg, Maryland
| | - Zhuoxin Jiang
- Epidemiology and Real-World Evidence, AstraZeneca Pharmaceuticals, Gaithersburg, Maryland
| | - Shaum M. Kabadi
- Epidemiology and Real-World Evidence, AstraZeneca Pharmaceuticals, Gaithersburg, Maryland
| | - Matteo Malvezzi
- Department of Clinical Medicine and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
152
|
Zheng Q, Xue C, Gu X, Shan D, Chu Q, Wang J, Zhu H, Chen Z. Multi-Omics Characterizes the Effects and Mechanisms of CD1d in Nonalcoholic Fatty Liver Disease Development. Front Cell Dev Biol 2022; 10:830702. [PMID: 35465315 PMCID: PMC9024148 DOI: 10.3389/fcell.2022.830702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a class of metabolic-associated liver diseases. Aberrant lipid consumption plays an important role in NAFLD pathogenesis. It has been shown CD1d can bind to multiple different lysophospholipids and associated with NAFLD progression. However, the mechanism of CD1d regulation in NAFLD is not completely understood. In this study, we established a NAFLD mouse model by feeding C57/BL6J mice a high-fat diet (HFD) for 24 weeks. Subsequently, we performed integrated transcriptomics and metabolomics analyses to thoroughly probe the role of CD1d in NAFLD progression. In the present study, we demonstrate that CD1d expression was significantly decreased in our murine model of NAFLD. Additionally, we show CD1d knockdown (CD1d KO) in HFD-fed wild-type (WT) mice induced NAFLD, which resulted in weight gain, exaggerated liver injury, and hepatic steatosis. We uncover the crucial roles of CD1d deficiency results in accumulated lipid accumulation. We further explored the CD1d deficiency in NAFLD regarding the transcriptional landscapes, microbiota environment, metabolomics change, and transcriptomics differences. In conclusion, our data demonstrate CD1d plays an important role in NAFLD pathogenesis and may represent a potential therapeutic target for the further therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhi Chen
- *Correspondence: Zhi Chen, ; Haihong Zhu,
| |
Collapse
|
153
|
Abohashem S, Blankstein R. Hepatosteatosis and Atherosclerotic Disease: Disentangling the Overlap. Radiol Cardiothorac Imaging 2022; 4:e220083. [PMID: 35506133 PMCID: PMC9059086 DOI: 10.1148/ryct.220083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Shady Abohashem
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Mass (S.A.) and Cardiovascular Imaging Program, Cardiovascular Division (Department of Medicine) and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 (R.B.)
| | - Ron Blankstein
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Mass (S.A.) and Cardiovascular Imaging Program, Cardiovascular Division (Department of Medicine) and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 (R.B.)
| |
Collapse
|
154
|
Swift O, Sharma S, Ramanarayanan S, Umar H, Laws KR, Vilar E, Farrington K. Prevalence and outcomes of chronic liver disease in patients receiving dialysis: systematic review and meta-analysis. Clin Kidney J 2022; 15:747-757. [PMID: 35371444 PMCID: PMC8967682 DOI: 10.1093/ckj/sfab230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
Background Patients receiving dialysis for end-stage kidney disease (ESKD) commonly co-exhibit risk factors for hepatic impairment. This systematic review and meta-analysis aimed to quantify the coexistence of chronic liver disease (CLD) and characterize risk factors and outcomes. Methods We searched the following databases from inception to May 2021: CINAHL, Cochrane Library, Embase, Kings Fund Library, MEDLINE and PubMed. The protocol was pre-registered on PROSPERO (study ID: CRD42020206486). Studies were assessed against three inclusion criteria: adults (>18 years) with ESKD receiving dialysis, primary outcome involving CLD prevalence and publications in English. Moderator analysis was performed for age, gender, study size and publication year. Sensitivity analysis was performed where applicable by removing outlier results and studies at high risk of bias. Results Searches yielded 7195 articles; of these 15 met the inclusion criteria. A total of 320 777 patients were included. The prevalence of cirrhosis and non-alcoholic fatty liver disease (NAFLD) was 5% and 55%, respectively. Individuals with CLD had 2-fold higher mortality than those without {odds ratio [OR] 2.19 [95% confidence interval (CI) 1.39-3.45]}. Hepatitis B [OR 13.47 (95% CI 1.37-132.55)] and hepatitis C [OR 7.05 (95% CI 4.00-12.45)], but not diabetes, conferred increased cirrhosis risk. All studies examining NAFLD were judged to be at high risk of bias. We found no data on non-alcoholic steatohepatitis (NASH). Deaths from CLD, cancer and infection were greater among cirrhotic patients. Conclusions CLD is prevalent in dialysis patients. Hepatitis B and C confer increased risk of CLD. The impact of NAFLD and NASH cirrhosis requires further study. CLD is associated with an increased risk of mortality in this setting.
Collapse
Affiliation(s)
- Oscar Swift
- Department of Renal Medicine, Lister Hospital, East and North Hertfordshire NHS Trust, Stevenage, UK
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, UK
| | - Shivani Sharma
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, UK
| | | | - Hamza Umar
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Keith R Laws
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, UK
| | - Enric Vilar
- Department of Renal Medicine, Lister Hospital, East and North Hertfordshire NHS Trust, Stevenage, UK
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, UK
| | - Ken Farrington
- Department of Renal Medicine, Lister Hospital, East and North Hertfordshire NHS Trust, Stevenage, UK
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, UK
| |
Collapse
|
155
|
Cui J, Wang Y, Xue H. Long non-coding RNA GAS5 contributes to the progression of nonalcoholic fatty liver disease by targeting the microRNA-29a-3p/NOTCH2 axis. Bioengineered 2022; 13:8370-8381. [PMID: 35322757 PMCID: PMC9161890 DOI: 10.1080/21655979.2022.2026858] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been widely recognized as critical players in the development of nonalcoholic fatty liver disease (NAFLD), one of the most prevalent liver diseases globally. In this study, we established a HFD-induced NAFLD mouse model and explored the role of lncRNA GAS5 in NAFLD progression and its possible underlying mechanisms. We showed that NAFLD activity score was elevated in the HFD mice. GAS5 knockdown attenuated HFD-induced hepatic steatosis and lipid accumulation and reduced NAFLD activity score in HFD mice. In addition, GAS5 knockdown reduced serum triglyceride cholesterol levels and inhibited alanine aminotransferase and aspartate aminotransferase activities in HFD mice. Moreover, GAS5 overexpression enhanced NOTCH2 levels in liver cells and promoted NAFLD progression by sponging miR-29a-3p in vivo. Furthermore, miR-29a-3p inhibited NAFLD progression by targeting NOTCH2 in vivo. Overall, our results indicated that GAS5 acts as a sponge of miR-29a-3p to increase NOTCH2 expression and facilitate NAFLD progression by targeting the miR-29a-3p/NOTCH2 axis and demonstrated a new GAS5-mediated mechanism underlying NAFLD development, suggesting that GAS5 could be a potential therapeutic target of NAFLD. Abbreviations: Alanine aminotransferase: ALT; Aspartate aminotransferase: AST; Enzyme linked immunosorbent assay: ELISA; Hepatocellular carcinoma: HCC; High-fat diet: HFD; Long non-coding RNA: Lnc RNA; Long non-coding RNA GAS5: GAS5; MicroRNAs: MiRNAs; Nonalcoholic fatty liver disease: NAFLD; Quantitative reverse transcription PCRs: RT-qPCRs; siRNA negative control: si-NC; Total cholesterol: TC; Triglyceride: TG
Collapse
Affiliation(s)
- Juanjuan Cui
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei, P. R. China
| | - Yang Wang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, P. R. China
| | - Haowei Xue
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei, P. R. China
| |
Collapse
|
156
|
Lee J, Hong SW, Kim MJ, Moon SJ, Kwon H, Park SE, Rhee EJ, Lee WY. Dulaglutide Ameliorates Palmitic Acid-Induced Hepatic Steatosis by Activating FAM3A Signaling Pathway. Endocrinol Metab (Seoul) 2022; 37:74-83. [PMID: 35144334 PMCID: PMC8901965 DOI: 10.3803/enm.2021.1293] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/23/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Dulaglutide, a long-acting glucagon-like peptide-1 receptor agonist (GLP-1RA), has been shown to reduce body weight and liver fat content in patients with type 2 diabetes. Family with sequence similarity 3 member A (FAM3A) plays a vital role in regulating glucose and lipid metabolism. The aim of this study was to determine the mechanisms by which dulaglutide protects against hepatic steatosis in HepG2 cells treated with palmitic acid (PA). METHODS HepG2 cells were pretreated with 400 μM PA for 24 hours, followed by treatment with or without 100 nM dulaglutide for 24 hours. Hepatic lipid accumulation was determined using Oil red O staining and triglyceride (TG) assay, and the expression of lipid metabolism-associated factor was analyzed using quantitative real time polymerase chain reaction and Western blotting. RESULTS Dulaglutide significantly decreased hepatic lipid accumulation and reduced the expression of genes associated with lipid droplet binding proteins, de novo lipogenesis, and TG synthesis in PA-treated HepG2 cells. Dulaglutide also increased the expression of proteins associated with lipolysis and fatty acid oxidation and FAM3A in PA-treated cells. However, exendin-(9-39), a GLP-1R antagonist, reversed the expression of FAM3A, and fatty acid oxidation-associated factors increased due to dulaglutide. In addition, inhibition of FAM3A by siRNA attenuated the reducing effect of dulaglutide on TG content and its increasing effect on regulation of fatty acid oxidation. CONCLUSION These results suggest that dulaglutide could be used therapeutically for improving nonalcoholic fatty liver disease, and its effect could be mediated in part via upregulation of FAM3A expression through a GLP-1R-dependent pathway.
Collapse
Affiliation(s)
- Jinmi Lee
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seok-Woo Hong
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Min-Jeong Kim
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun Joon Moon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyemi Kwon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se Eun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun-Jung Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won-Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
157
|
Tetrahydrocurcumin protects against nonalcoholic fatty liver disease by improving lipid metabolism and redox homeostasis. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
158
|
Action Mechanism Underlying Improvement Effect of Fuzi Lizhong Decoction on Nonalcoholic Fatty Liver Disease: A Study Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1670014. [PMID: 35096103 PMCID: PMC8794673 DOI: 10.1155/2022/1670014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 12/30/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE This study aimed to decipher the bioactive compounds and potential mechanism of traditional Chinese medicine (TCM) formula Fuzi Lizhong Decoction (FLD) for nonalcoholic fatty liver disease (NAFLD) treatment via an integrative network pharmacology approach. METHODS The candidate compounds of FLD and its relative targets were obtained from the TCMSP and PharmMapper web server, and the intersection genes for NAFLD were discerned using OMIM, GeneCards, and DisGeNET. Then, the PPI and component-target-pathway networks were constructed. Moreover, GO enrichment and KEGG pathway analysis were performed to investigate the potential signaling pathways associated with FLD's effect on NAFLD. Eventually, molecular docking simulation was carried out to validate the binding affinity between potential core components and key targets. RESULTS A total of 143 candidate active compounds and 129 relative drug targets were obtained, in which 61 targets were overlapped with NAFLD. The PPI network analysis identified ALB, MAPK1, CASP3, MARK8, and AR as key targets, mainly focusing on cellular response to organic cyclic compound, steroid metabolic process, and response to steroid hormone in the biological processes. The KEGG pathway analysis demonstrated that 16 signaling pathways were closely correlated with FLD's effect on NALFD with cancer pathways, Th17 cell differentiation, and IL-17 signaling pathways as the most significant ones. In addition, the molecular docking analysis revealed that the core active compounds of FLD, such as 3'-methoxyglabridin, chrysanthemaxanthin, and Gancaonin H, had a high binding activity with such key targets as ALB, MAPK1, and CASP3. CONCLUSIONS This study suggested that FLD exerted its effect on NAFLD via modulating multitargets with multicompounds through multipathways. It also demonstrated that the network pharmacology-based approach might provide insights for understanding the interrelationship between complex diseases and interventions of the TCM formula.
Collapse
|
159
|
Zhou H, Zhu X, Yao Y, Su Y, Xie J, Zhu M, He C, Ding J, Xu Y, Shan R, Wang Y, Zhao X, Ding Y, Liu B, Shao Z, Liu Y, Xu T, Xie Y. TMEM88 Modulates Lipid Synthesis and Metabolism Cytokine by Regulating Wnt/β-Catenin Signaling Pathway in Non-Alcoholic Fatty Liver Disease. Front Pharmacol 2022; 12:798735. [PMID: 35058782 PMCID: PMC8764240 DOI: 10.3389/fphar.2021.798735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/29/2021] [Indexed: 01/13/2023] Open
Abstract
Objective: To clarify the molecular mechanism of TMEM88 regulating lipid synthesis and metabolism cytokine in NAFLD. Methods:In vivo, NAFLD model mice were fed by a Methionine and Choline-Deficient (MCD) diet. H&E staining and immunohistochemistry experiments were used to analyze the mice liver tissue. RT-qPCR and Western blotting were used to detect the lipid synthesis and metabolism cytokine. In vitro, pEGFP-C1-TMEM88 and TMEM88 siRNA were transfected respectively in free fat acid (FFA) induced AML-12 cells, and the expression level of SREBP-1c, PPAR-α, FASN, and ACOX-1 were evaluated by RT-qPCR and Western blotting. Results: The study found that the secretion of PPAR-α and its downstream target ACOX-1 were upregulated, and the secretion of SREBP-1c and its downstream target FASN were downregulated after transfecting with pEGFP-C1-TMEM88. But when TMEM88 was inhibited, the experimental results were opposite to the aforementioned conclusions. The data suggested that it may be related to the occurrence, development, and end of NAFLD. Additionally, the study proved that TMEM88 can inhibit Wnt/β-catenin signaling pathway. Meanwhile, TMEM88 can accelerate the apoptotic rate of FFA-induced AML-12 cells. Conclusion: Overall, the study proved that TMEM88 takes part in regulating the secretion of lipid synthesis and metabolism cytokine through the Wnt/β-catenin signaling pathway in AML-12 cells. Therefore, TMEM88 may be involved in the progress of NAFLD. Further research will bring new ideas for the study of NAFLD.
Collapse
Affiliation(s)
- Huan Zhou
- National Drug Clinical Trial Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,School of Pharmacy, Bengbu Medical College, Bengbu, China.,School of Public Foundation, Bengbu Medical University, Bengbu, China
| | - Xingyu Zhu
- National Drug Clinical Trial Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Yan Yao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yue Su
- National Drug Clinical Trial Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,School of Public Foundation, Bengbu Medical University, Bengbu, China
| | - Jing Xie
- National Drug Clinical Trial Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Minhui Zhu
- National Drug Clinical Trial Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Cuixia He
- National Drug Clinical Trial Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Jiaxiang Ding
- National Drug Clinical Trial Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,School of Public Foundation, Bengbu Medical University, Bengbu, China
| | - Yuanyuan Xu
- National Drug Clinical Trial Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Rongfang Shan
- National Drug Clinical Trial Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Ying Wang
- National Drug Clinical Trial Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Xiangdi Zhao
- National Drug Clinical Trial Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Yuzhou Ding
- National Drug Clinical Trial Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Bingyan Liu
- National Drug Clinical Trial Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhonghuan Shao
- National Drug Clinical Trial Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yuanyuan Liu
- National Drug Clinical Trial Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yunqiu Xie
- National Drug Clinical Trial Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
160
|
Wen F, Bian D, Wu X, Liu R, Wang C, Gan J. SU5, a new Auraptene analog with improved metabolic stability, ameliorates nonalcoholic fatty liver disease in methionine- and choline-deficient diet-fed db/db mice. Chem Biol Drug Des 2022; 99:504-511. [PMID: 35040254 DOI: 10.1111/cbdd.14021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/16/2021] [Accepted: 01/08/2022] [Indexed: 11/29/2022]
Abstract
Farnesoid X receptor (FXR) has been considered as a promising target for non-alcoholic steatohepatitis (NASH), while existing FXR agonists suffer from serious side effects. Thus, it is very necessary to identify novel FXR agonists with good safety. Auraptene (AUR) is a new FXR agonist with excellent safety and extensive pharmacological activities, while the lactone of AUR is vulnerable to esterolysis. In this study, the lactone of AUR was converted to metabolically stable amide moiety, and the obtained analog SU5 revealed comparable activity and better metabolic stability than that of AUR. In NASH model, SU5 showed stronger efficacy than AUR on fatty liver by up-regulating gene expressions related to FXR in vivo. Moreover, SU5 improved lipid metabolism by down-regulating the gene expressions of lipid synthesis, while up-regulating the gene expressions of fatty acid β-oxidation and triglyceride metabolism. Besides, the inflammation-related genes were significantly decreased in SU5 treated group. These positive results highlighted the pharmacological potential of SU5 for the treatment of NASH.
Collapse
Affiliation(s)
- Fen Wen
- Department of Infectious Disease, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China.,Department of General Practice, Yancheng First People's Hospital, 166 YulongWest Road, Yancheng City, 224005, Jiangsu, China
| | - DeZhi Bian
- Department of General Practice, Yancheng First People's Hospital, 166 YulongWest Road, Yancheng City, 224005, Jiangsu, China
| | - XuDong Wu
- Department of General Practice, Yancheng First People's Hospital, 166 YulongWest Road, Yancheng City, 224005, Jiangsu, China
| | - RuoBing Liu
- Department of General Practice, Yancheng First People's Hospital, 166 YulongWest Road, Yancheng City, 224005, Jiangsu, China
| | - ChaoNan Wang
- Department of General Practice, Yancheng First People's Hospital, 166 YulongWest Road, Yancheng City, 224005, Jiangsu, China
| | - JianHe Gan
- Department of Infectious Disease, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China
| |
Collapse
|
161
|
Sun R, Xiao R, Lv P, Guo F, Gong Y, Yan M. Pink Lotus Essential Oil and Alleviates on Free Fatty Acid Induced Steatosis in HepG2 Cells via PI3K/Akt and NF-κB Pathways. J Oleo Sci 2022; 71:95-104. [PMID: 35013040 DOI: 10.5650/jos.ess21228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pink lotus essential oil (PLEO) is the volatile components extracted from lotus flowers and there are few relevant research. The purpose of this study was to observe the effect of PLEO on NAFLD in vitro model and its possible mechanism. The ingredients of PLEO were determined by gas chromatography-mass spectrometry (GS-MS) and its lipid-lowering and hepatoprotective activities were investigated. HepG2 cells were treated with free fatty acid (FFA) to establish a cell model of NAFLD. Cell viability was evaluated by 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) method. Total cholesterol (TC), triglyceride (TG), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) were determined by Enzyme-Linked Immune Sorbent Assay (ELISA). Oil red O staining was performed to observe the lipid accumulation in the HepG2 cells. Lipid metabolism enzymes including fatty acid synthase (FAS), acetyl-coA carboxylase (ACC), stearoyl-CoA desaturase 1 (SCD-1), and carnitine palmitoyltransferase-1 (CPT-1), insulin signaling pathways including phosphatidylinositol 3 kinase (PI3K) and protein kinase B Akt, inflammatory signaling pathways such as nuclear factor kappa-B (NF-κB), were determined by Western blotting. There were 46 components determined in PLEO with many terpenoids compounds. PLEO decreased TC and TG contents in the FFA-treated HepG2 cells. Furthermore, PLEO inhibited TNF-α, IL-6 and IL-1β excretion, decreased NF-κB, FAS, ACC and SCD-1 while increased phosphorylation of NF-κB, PI3K, Akt, and CPT-1 expression. It is the first time to reveal that PLEO alleviates FFA-induced steatosis in HepG2 cells by regulating lipid metabolism, inhibiting inflammatory response, and improving insulin sensitivity.
Collapse
Affiliation(s)
- Runzhou Sun
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology
| | - Ruixin Xiao
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology
| | - Pengfei Lv
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology
| | - Feifei Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University
| | - Yanling Gong
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology
| | | |
Collapse
|
162
|
Thalla S, Kamaraj R, Kavitha A. Increasing risk factors of non-alcoholic fatty liver disease, a look into chronic periodontitis and insulin resistance. Endocr Metab Immune Disord Drug Targets 2022; 22:807-814. [PMID: 34983354 DOI: 10.2174/1871530322666220104095534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 11/22/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is marked by the excessive intrusion of triglycerides into hepatocytes without any role of alcohol consumption. Various risk factors have been attributed to this disease pathogenesis which involves metabolic disorders, immune response, and even an intricate relationship between the two. The role of insulin resistance (IR) in NAFLD has long been known; however, the molecular basis of disease progression under this metabolic backdrop is still being investigated. Similarly, the periodontitis-mediated immune response is another major factor involved in NAFLD manifestation which has generated huge interest. The prevalence of pathogenic bacteria elicits a strong immune response which according to studies shows a strong correlation with NAFLD state. Such pre-existing conditions have a strong probability of explaining the disease onset. Additionally, increasing reports of inflammatory response and its links to insulin resistance have further increased the scope of understanding NAFLD. Through this review, we aim to elaborate on these factors explaining their role in the disease progression.
Collapse
Affiliation(s)
- Sreenu Thalla
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankalathur, Tamil Nadu - 603203
| | - Kamaraj R
- SRM College of Pharmacy, SRMIST, Kattankalathur, Tamil Nadu - 603203
| | - Kavitha A
- Department of Gastroenterology, Guntur Medical College & Government General Hospital, Guntur, Andhra Pradesh - 522004
| |
Collapse
|
163
|
Portincasa P, Bonfrate L, Khalil M, Angelis MD, Calabrese FM, D’Amato M, Wang DQH, Di Ciaula A. Intestinal Barrier and Permeability in Health, Obesity and NAFLD. Biomedicines 2021; 10:83. [PMID: 35052763 PMCID: PMC8773010 DOI: 10.3390/biomedicines10010083] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023] Open
Abstract
The largest surface of the human body exposed to the external environment is the gut. At this level, the intestinal barrier includes luminal microbes, the mucin layer, gastrointestinal motility and secretion, enterocytes, immune cells, gut vascular barrier, and liver barrier. A healthy intestinal barrier is characterized by the selective permeability of nutrients, metabolites, water, and bacterial products, and processes are governed by cellular, neural, immune, and hormonal factors. Disrupted gut permeability (leaky gut syndrome) can represent a predisposing or aggravating condition in obesity and the metabolically associated liver steatosis (nonalcoholic fatty liver disease, NAFLD). In what follows, we describe the morphological-functional features of the intestinal barrier, the role of major modifiers of the intestinal barrier, and discuss the recent evidence pointing to the key role of intestinal permeability in obesity/NAFLD.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.D.A.); (F.M.C.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.D.A.); (F.M.C.)
| | - Francesco Maria Calabrese
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.D.A.); (F.M.C.)
| | - Mauro D’Amato
- Gastrointestinal Genetics Lab, CIC bioGUNE-BRTA, 48160 Derio, Spain;
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York, NY 10461, USA;
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
| |
Collapse
|
164
|
Kim TH, Hong DG, Yang YM. Hepatokines and Non-Alcoholic Fatty Liver Disease: Linking Liver Pathophysiology to Metabolism. Biomedicines 2021; 9:biomedicines9121903. [PMID: 34944728 PMCID: PMC8698516 DOI: 10.3390/biomedicines9121903] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/12/2021] [Accepted: 12/12/2021] [Indexed: 12/16/2022] Open
Abstract
The liver plays a key role in maintaining energy homeostasis by sensing and responding to changes in nutrient status under various metabolic conditions. Recently highlighted as a major endocrine organ, the contribution of the liver to systemic glucose and lipid metabolism is primarily attributed to signaling crosstalk between multiple organs via hepatic hormones, cytokines, and hepatokines. Hepatokines are hormone-like proteins secreted by hepatocytes, and a number of these have been associated with extra-hepatic metabolic regulation. Mounting evidence has revealed that the secretory profiles of hepatokines are significantly altered in non-alcoholic fatty liver disease (NAFLD), the most common hepatic manifestation, which frequently precedes other metabolic disorders, including insulin resistance and type 2 diabetes. Therefore, deciphering the mechanism of hepatokine-mediated inter-organ communication is essential for understanding the complex metabolic network between tissues, as well as for the identification of novel diagnostic and/or therapeutic targets in metabolic disease. In this review, we describe the hepatokine-driven inter-organ crosstalk in the context of liver pathophysiology, with a particular focus on NAFLD progression. Moreover, we summarize key hepatokines and their molecular mechanisms of metabolic control in non-hepatic tissues, discussing their potential as novel biomarkers and therapeutic targets in the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Tae Hyun Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea;
| | - Dong-Gyun Hong
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Korea;
- KNU Researcher Training Program for Developing Anti-Viral Innovative Drugs, Kangwon National University, Chuncheon 24341, Korea
| | - Yoon Mee Yang
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Korea;
- KNU Researcher Training Program for Developing Anti-Viral Innovative Drugs, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: ; Tel.: +82-33-250-6909
| |
Collapse
|
165
|
Zarghamravanbakhsh P, Frenkel M, Poretsky L. Metabolic causes and consequences of nonalcoholic fatty liver disease (NAFLD). Metabol Open 2021; 12:100149. [PMID: 34870138 PMCID: PMC8626571 DOI: 10.1016/j.metop.2021.100149] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a multifactorial metabolic disorder that was first described in 1980. It has been prevalent and on the rise for many years and is associated with other metabolic disorders such as obesity and type 2 diabetes mellitus (T2DM). NAFLD can be best described as a metabolic dysfunction that stems from insulin resistance-induced hepatic lipogenesis. This lipogenesis increases oxidative stress and hepatic inflammation and is often potentiated by genetic and gut microbiome dysfunction. As NAFLD progresses from simple steatosis to non-alcoholic steatohepatitis (NASH) and to cirrhosis and hepatocellular carcinoma (HCC), the odds of complications including cardiovascular disease (CVD), chronic kidney disease (CKD), and overall mortality increase. The aim of this review is to describe the metabolic causes and consequences of NAFLD while examining the risks that each stage of NAFLD poses. In this review, the etiology of "lean" NAFLD, the impact of obesity, T2DM, genetics, and microbiome dysbiosis on NAFLD progression are all explored. This review will also discuss the core issue behind the progression of NAFLD: insulin resistance (IR). Upon describing the causes and consequences of NAFLD, the effectiveness of diet modification, lifestyle changes, and glucagon-like peptide 1 receptor (GLP-1) agonists to retard NAFLD progression and stem the rate of complications is examined.
Collapse
Affiliation(s)
- Paria Zarghamravanbakhsh
- Division of Endocrinology, Department of Medicine, Lenox Hill Hospital, Northwell Health, 110 East 59th St #8B, New York, NY, 10022, USA
| | - Michael Frenkel
- The Gerald J. Friedman Diabetes Institute, Northwell Health, 110 East 59th St #8B, New York, NY, 10022, USA
| | - Leonid Poretsky
- Division of Endocrinology, Department of Medicine, Lenox Hill Hospital, Northwell Health, 110 East 59th St #8B, New York, NY, 10022, USA
- The Gerald J. Friedman Diabetes Institute, Northwell Health, 110 East 59th St #8B, New York, NY, 10022, USA
| |
Collapse
|
166
|
Xie Y, Tian H, Xiang B, Li D, Liu J, Cai Z, Liu Y, Xiang H. Total polyunsaturated fatty acid intake and the risk of non-alcoholic fatty liver disease in Chinese Han adults: a secondary analysis based on a case-control study. BMC Gastroenterol 2021; 21:451. [PMID: 34847883 PMCID: PMC8638208 DOI: 10.1186/s12876-021-02039-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/23/2021] [Indexed: 02/23/2023] Open
Abstract
Background Previous studies have revealed obesity, nutrition, lifestyle, genetic and epigenetic factors may be risk factors for the occurrence and development of non-alcoholic fatty liver disease (NAFLD). However, the effect of total polyunsaturated fatty acid (PUFA) consumption on the risk of NAFLD is uncertain. Therefore, this study aimed to determine whether the total PUFA intake is independently associated with the risk of NAFLD and explore the threshold of PUFA intake better illustrate the correlation between them in Chinese Han adults. Methods The present study was a retrospective case–control study. A total of 534 NAFLD patients and 534 controls matched by gender and age in the same center were included in this study. Using a semi-quantitative food frequency questionnaire in a health examination center in China to collect information about dietary intake and calculate nutrient consumption. A multivariate logistic regression model was used to estimate the association between total PUFA daily intake and its quartile and the incidence of NAFLD. Results Multivariate analyses suggested a significant association between total PUFA intake and the occurrence of NAFLD. A non-linear relationship between total PUFA consumption and NAFLD risk was detected after adjusting for potential confounding factors. There was a significant connection between PUFA and the risk of NAFLD (OR: 1.32, 95% CI: 1.23–1.41, P < 0.0001) when PUFA intake is between 18.8 and 29.3 g/day. Conclusions The relationship between total PUFA intake and NAFLD is non-linear. Total PUFA was positively related to the risk of NAFLD when PUFA intake is between 18.8 and 29.3 g/day among Chinese Han adults.
Collapse
Affiliation(s)
- Yong Xie
- Institute of Clinical Interventional Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, 410005, China.
| | - Huan Tian
- Department of Radiology, The Second Affiliated Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Bin Xiang
- Institute of Clinical Interventional Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, 410005, China
| | - Ding Li
- Institute of Clinical Interventional Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, 410005, China
| | - Jian Liu
- Institute of Clinical Interventional Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, 410005, China
| | - Zhuoyan Cai
- Institute of Clinical Interventional Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, 410005, China
| | - Yuzhou Liu
- Institute of Clinical Interventional Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, 410005, China
| | - Hua Xiang
- Institute of Clinical Interventional Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, 410005, China.
| |
Collapse
|
167
|
Machine Learning-Based Identification of Potentially Novel Non-Alcoholic Fatty Liver Disease Biomarkers. Biomedicines 2021; 9:biomedicines9111636. [PMID: 34829865 PMCID: PMC8615894 DOI: 10.3390/biomedicines9111636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease that presents a great challenge for treatment and prevention.. This study aims to implement a machine learning approach that employs such datasets to identify potential biomarker targets. We developed a pipeline to identify potential biomarkers for NAFLD that includes five major processes, namely, a pre-processing step, a feature selection and a generation of a random forest model and, finally, a downstream feature analysis and a provision of a potential biological interpretation. The pre-processing step includes data normalising and variable extraction accompanied by appropriate annotations. A feature selection based on a differential gene expression analysis is then conducted to identify significant features and then employ them to generate a random forest model whose performance is assessed based on a receiver operating characteristic curve. Next, the features are subjected to a downstream analysis, such as univariate analysis, a pathway enrichment analysis, a network analysis and a generation of correlation plots, boxplots and heatmaps. Once the results are obtained, the biological interpretation and the literature validation is conducted over the identified features and results. We applied this pipeline to transcriptomics and lipidomic datasets and concluded that the C4BPA gene could play a role in the development of NAFLD. The activation of the complement pathway, due to the downregulation of the C4BPA gene, leads to an increase in triglyceride content, which might further render the lipid metabolism. This approach identified the C4BPA gene, an inhibitor of the complement pathway, as a potential biomarker for the development of NAFLD.
Collapse
|
168
|
Tutunchi H, Naeini F, Ebrahimi-Mameghani M, Najafipour F, Mobasseri M, Ostadrahimi A. Metabolically healthy and unhealthy obesity and the progression of liver fibrosis: A cross-sectional study. Clin Res Hepatol Gastroenterol 2021; 45:101754. [PMID: 34303827 DOI: 10.1016/j.clinre.2021.101754] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND The development of liver fibrosis is the most important predictor of adverse outcomes in patients with non-alcoholic fatty liver disease (NAFLD). Little is known regarding the risk factors for the progression of NAFLD to liver fibrosis. The present cross-sectional study aimed to examine the association of liver fibrosis with metabolically healthy and unhealthy obesity among patients with NAFLD. METHODS The severity of fatty liver was examined using ultrasonography. We used the NAFLD fibrosis score to determine the severity of liver fibrosis. Anthropometric indices, physical activity, and body composition were assessed. Blood samples were collected to determine serum metabolic parameters. Participants without any component of metabolic syndrome and homeostasis model assessment of insulin resistance (HOMA-IR) <2.5 were considered as metabolically healthy. To examine the association of liver fibrosis with metabolically healthy and unhealthy obesity, multivariable-adjusted odds ratios (ORs) were applied. RESULTS The current study included a total of 246 patients with NAFLD and low probability of fibrosis. 46.3% of subjects were metabolically healthy and 53.7% were metabolically unhealthy. Among metabolically healthy subjects, multivariable-adjusted ORs (CIs) for worsening of NAFLD fibrosis score comparing body mass indexes (BMIs) 23.0-24.9, 25-29.9, and ≥30 with a BMI=18.5-22.9 kg/m2 were 1.28 (1.09-1.56), 1.99 (1.49-2.63), and 3.96 (2.89-4.71), respectively. The corresponding ORs (95% CIs) among metabolically unhealthy subjects were 1.39 (1.32-1.64), 2.27 (1.98-2.49), and 4.11 (3.12-4.93), respectively. Moreover, in both healthy and unhealthy individuals, higher percentages of body fat and waist circumference were significantly associated with worsening of NAFLD fibrosis score. CONCLUSION Excess body fat contributes to the progression of liver fibrosis regardless of metabolic health status.
Collapse
Affiliation(s)
- Helda Tutunchi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Naeini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran university of medical science, Tehran, Iran
| | - Mehrangiz Ebrahimi-Mameghani
- Social Determinant of Health Research Center, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzad Najafipour
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Mobasseri
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
169
|
Sotiropoulou M, Katsaros I, Vailas M, Lidoriki I, Papatheodoridis GV, Kostomitsopoulos NG, Valsami G, Tsaroucha A, Schizas D. Nonalcoholic fatty liver disease: The role of quercetin and its therapeutic implications. Saudi J Gastroenterol 2021; 27:319-330. [PMID: 34810376 PMCID: PMC8656328 DOI: 10.4103/sjg.sjg_249_21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/29/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease, affecting almost one-third of the general population and 75% of obese patients with type 2 diabetes. The aim of this article is to review the current evidence concerning the role of quercetin, a natural compound and flavonoid, and its possible therapeutic effects on this modern-day disease. Despite the fact that the exact pathophysiological mechanisms through which quercetin has a hepatoprotective effect on NAFLD are still not fully elucidated, this review clearly demonstrates that this flavonoid has potent antioxidative stress action and inhibitory effects on hepatocyte apoptosis, inflammation, and generation of reactive oxygen species, factors which are linked to the development of the disease. NAFLD is closely associated with increased dietary fat consumption, especially in Western countries. The hepatoprotective effect of quercetin against NAFLD merits serious consideration and further validation by future studies.
Collapse
Affiliation(s)
- Maria Sotiropoulou
- Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Ioannis Katsaros
- Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Michail Vailas
- Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Irene Lidoriki
- Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - George V Papatheodoridis
- Department of Gastroenterology, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Nikolaos G Kostomitsopoulos
- Center of Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Georgia Valsami
- Department of Pharmacy, Laboratory of Biopharmaceutics-Pharmacokinetics, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandra Tsaroucha
- Laboratory of Experimental Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dimitrios Schizas
- Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| |
Collapse
|
170
|
van Kleef LA, Choi HS, Brouwer WP, Hansen BE, Patel K, de Man RA, Janssen HL, de Knegt RJ, Sonneveld MJ. Metabolic dysfunction-associated fatty liver disease increases risk of adverse outcomes in patients with chronic hepatitis B. JHEP Rep 2021; 3:100350. [PMID: 34557660 PMCID: PMC8446794 DOI: 10.1016/j.jhepr.2021.100350] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/29/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND & AIMS A recent consensus document has defined metabolic dysfunction-associated fatty liver disease (MAFLD) as hepatic steatosis together with overweight, diabetes, and/or a combination of other metabolic risk factors. The clinical relevance of this novel diagnosis is unknown among patients with chronic hepatitis B (CHB). We studied the association between MAFLD (with or without steatohepatitis) and adverse clinical outcomes in patients with CHB. METHODS We performed a retrospective long-term follow-up cohort study at 2 tertiary hospitals in patients with CHB who underwent liver biopsy. Biopsies were reassessed for steatosis, degree of fibrosis, and presence of steatohepatitis. Associations with event-free hepatocellular carcinoma (HCC)-free and transplant-free survival were explored. RESULTS In our cohort, 1076 patients were included, median follow-up was 9.8 years (25th-75th percentile: 6.6-14.0), and 107 events occurred in 78 patients, comprising death (n = 43), HCC (n = 36), liver decompensation (n = 21), and/or liver transplantation (n = 7). MAFLD was present in 296 (27.5%) patients and was associated with reduced event-free (adjusted hazard ratio [aHR] 2.00, 95% CI 1.26-3.19), HCC-free (aHR 1.93, 95% CI 1.17-3.21), and transplant-free survival (aHR 1.80, 95% CI 0.98-3.29) in multivariable analysis. Among patients with MAFLD, the presence of steatohepatitis (p = 0.95, log-rank test) was not associated with adverse outcomes. CONCLUSIONS The presence of MAFLD in patients with CHB was associated with an increased risk for liver-related clinical events and death. Among patients with MAFLD, steatohepatitis did not increase the risk of adverse outcomes. Our findings highlight the importance of metabolic dysfunction in patients with CHB. LAY SUMMARY Recently, metabolic dysfunction-associated fatty liver disease (MAFLD) has been defined as fatty liver disease with signs of metabolic dysfunction. Among patients with chronic hepatitis B, MAFLD was associated with liver-related events and death. Metabolic health assessment should be encouraged among patients with chronic hepatitis B, especially in those with fatty liver disease.
Collapse
Key Words
- ALT, alanine aminotransferase
- Adverse clinical outcomes
- CHB
- CHB, chronic hepatitis B
- Chronic hepatitis B
- FLD, fatty liver disease
- HBV
- HCC
- HCC, hepatocellular carcinoma
- HR, hazard rate
- Hepatitis B
- Hepatocellular carcinoma
- MAFLD
- MAFLD, metabolic dysfunction-associated fatty liver disease
- Metabolic dysfunction-associated fatty liver disease
- NAFLD, non-alcoholic fatty liver disease
- NAS, NAFLD activity score
- NASH, non-alcoholic steatohepatitis
- NHANES, National Health and Nutrition Examination Survey
- P25–P75, 25th–75th percentile
- Steatohepatitis
- Survival
- ULN, upper limit of normal
- aHR, adjusted hazard rate
Collapse
Affiliation(s)
- Laurens A. van Kleef
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Hannah S.J. Choi
- Toronto Centre for Liver Disease, University Health Network, Toronto, Canada
| | - Willem P. Brouwer
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Bettina E. Hansen
- Toronto Centre for Liver Disease, University Health Network, Toronto, Canada
| | - Keyur Patel
- Toronto Centre for Liver Disease, University Health Network, Toronto, Canada
| | - Robert A. de Man
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Harry L.A. Janssen
- Toronto Centre for Liver Disease, University Health Network, Toronto, Canada
| | - Robert J. de Knegt
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Milan J. Sonneveld
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
171
|
Xu P, Wang S, Pang D. A Novel Identified Peptide Hormone "Metabolitin" Attenuates Lipid Absorption in the Small Intestine of Diabetic Mice with Nonalcoholic Fatty Liver Disease by Regulating Neurotensin and AMPK Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8386848. [PMID: 34621326 PMCID: PMC8492287 DOI: 10.1155/2021/8386848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/18/2021] [Indexed: 11/23/2022]
Abstract
AIM The purpose of this study was to explore the effect of a novel identified peptide hormone "metabolitin" on lipid absorption in the small intestine of mice with type 2 diabetes mellitus (T2DM) and nonalcoholic fatty liver disease (NAFLD) and potential mechanisms. METHODS T2DM was induced in mice by 4-6 weeks of high-fat diets followed by intraperitoneal injection of 35 mg/kg STZ. NAFLD was induced in diabetic mice by a month of high-fat diets. Oral administration of 4 pmol/g or 12 pmol/g metabolitin every two days was performed during one-month high-fat diets. Triglyceride (TG) and total cholesterol (TC) detection and Oil Red O staining were performed to evaluate lipid absorption. The neurotensin (NT) levels in the intestinal tissues and serum were determined by ELISA. Lipogenesis- and lipolysis-related proteins, AMP-activated protein kinase (AMPK), and p-AMPK were examined by Western blot analysis. RESULTS It was found that glucose tolerance test (GTT), insulin tolerance test (ITT), TG, and TC indicated lower levels in the serum of NAFLD/T2DM mice receiving 4 pmol/g and 12 pmol/g metabolitin compared to the mice receiving normal saline (P < 0.05). No significant difference was noted in the TC level of the feces among mice with different diets (P > 0.05), but compared to NAFLD/T2DM mice with normal saline, the mice administrated with 4 pmol/g and 12 pmol/g metabolitin revealed much higher TG levels in the feces (P < 0.05). The results of Oil Red O staining revealed that the intestinal epithelial cells of NAFLD/T2DM mice receiving 12 pmol/g metabolitin indicated resistance to lipid absorption and the area of staining was smaller than that of NAFLD/T2DM mice with normal saline (P < 0.05). The NAFLD/T2DM mice receiving 4 pmol/g and 12 pmol/g metabolitin showed a higher extent of p-AMPK concomitant with lower levels of NT in the serum and small intestine than the mice with normal saline (P < 0.05). Western blot analysis also suggested that NAFLD/T2DM mice receiving 4 pmol/g and 12 pmol/g metabolitin revealed lower expressions in fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), stearoyl-CoA desaturase-1 (SCD-1), and sterol regulatory element-binding transcription factor-1 (SREBP1) proteins and higher expressions in carnitine palmitoyltransferase 1 (CPT1), peroxisome proliferator-activated receptor alpha (PPARα), and fatty acid translocase (CD36) proteins than NAFLD/T2DM mice with normal saline (P < 0.05). CONCLUSION According to the data we observed, oral administration of metabolitin could attenuate lipid absorption in the small intestine of NAFLD/T2DM mice, which may be a novel therapeutic approach for NAFLD/T2DM.
Collapse
Affiliation(s)
- Peng Xu
- Gastroenterology Department, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Shanjuan Wang
- Gastroenterology Department, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Dongyue Pang
- Endocrine Department, Jiading Branch of Shanghai General Hospital, Shanghai, China
| |
Collapse
|
172
|
Aguiar AJFC, de Queiroz JLC, Santos PPA, Camillo CS, Serquiz AC, Costa IS, Oliveira GS, Gomes AFT, Matias LLR, Costa ROA, Passos TS, Morais AHA. Beneficial Effects of Tamarind Trypsin Inhibitor in Chitosan-Whey Protein Nanoparticles on Hepatic Injury Induced High Glycemic Index Diet: A Preclinical Study. Int J Mol Sci 2021; 22:9968. [PMID: 34576130 PMCID: PMC8470918 DOI: 10.3390/ijms22189968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Several studies have sought new therapies for obesity and liver diseases. This study investigated the effect of the trypsin inhibitor isolated from tamarind seeds (TTI), nanoencapsulated in chitosan and whey protein isolate (ECW), on the liver health status of the Wistar rats fed with a high glycemic index (HGLI) diet. The nanoformulations without TTI (CW) and ECW were obtained by nanoprecipitation technique, physically and chemically characterized, and then administered to the animals. The adult male Wistar rats (n = 20) were allocated to four groups: HGLI diet + water; standard diet + water; HGLI diet + ECW (12.5 mg/kg); and HGLI diet + CW (10.0 mg/kg), 1 mL per gagave, for ten days. They were evaluated using biochemical and hematological parameters, Fibrosis-4 Index for Liver Fibrosis (FIB-4), AST to Platelet Ratio Index (APRI) scores, and liver morphology. Both nanoparticles presented spherical shape, smooth surface, and nanometric size [120.7 nm (ECW) and 136.4 nm (CW)]. In animals, ECW reduced (p < 0.05) blood glucose (17%), glutamic oxalacetic transaminase (39%), and alkaline phosphatase (24%). Besides, ECW reduced (p < 0.05) APRI and FIB-4 scores and presented a better aspect of hepatic morphology. ECW promoted benefits over a liver injury caused by the HGLI diet.
Collapse
Affiliation(s)
- Ana J. F. C. Aguiar
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (A.J.F.C.A.); (J.L.C.d.Q.); (I.S.C.); (L.L.R.M.); (R.O.A.C.)
| | - Jaluza L. C. de Queiroz
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (A.J.F.C.A.); (J.L.C.d.Q.); (I.S.C.); (L.L.R.M.); (R.O.A.C.)
| | - Pedro P. A. Santos
- Structural and Functional Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (P.P.A.S.); (C.S.C.)
| | - Christina S. Camillo
- Structural and Functional Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (P.P.A.S.); (C.S.C.)
| | - Alexandre C. Serquiz
- Nutrition Course, University Center of Rio Grande do Norte, Natal 59.014-545, RN, Brazil;
| | - Izael S. Costa
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (A.J.F.C.A.); (J.L.C.d.Q.); (I.S.C.); (L.L.R.M.); (R.O.A.C.)
- Nutrition Course, Potiguar University, Natal 59.056-000, RN, Brazil
| | - Gerciane S. Oliveira
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (G.S.O.); (A.F.T.G.)
| | - Ana F. T. Gomes
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (G.S.O.); (A.F.T.G.)
| | - Lídia L. R. Matias
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (A.J.F.C.A.); (J.L.C.d.Q.); (I.S.C.); (L.L.R.M.); (R.O.A.C.)
| | - Rafael O. A. Costa
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (A.J.F.C.A.); (J.L.C.d.Q.); (I.S.C.); (L.L.R.M.); (R.O.A.C.)
| | - Thaís S. Passos
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil;
| | - Ana H. A. Morais
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (A.J.F.C.A.); (J.L.C.d.Q.); (I.S.C.); (L.L.R.M.); (R.O.A.C.)
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (G.S.O.); (A.F.T.G.)
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil;
| |
Collapse
|
173
|
Babu AF, Csader S, Lok J, Gómez-Gallego C, Hanhineva K, El-Nezami H, Schwab U. Positive Effects of Exercise Intervention without Weight Loss and Dietary Changes in NAFLD-Related Clinical Parameters: A Systematic Review and Meta-Analysis. Nutrients 2021; 13:nu13093135. [PMID: 34579012 PMCID: PMC8466505 DOI: 10.3390/nu13093135] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/05/2021] [Accepted: 09/05/2021] [Indexed: 12/13/2022] Open
Abstract
One of the focuses of non-alcoholic fatty liver disease (NAFLD) treatment is exercise. Randomized controlled trials investigating the effects of exercise without dietary changes on NAFLD-related clinical parameters (liver parameters, lipid metabolism, glucose metabolism, gut microbiota, and metabolites) were screened using the PubMed, Scopus, Web of Science, and Cochrane databases on 13 February 2020. Meta-analyses were performed on 10 studies with 316 individuals who had NAFLD across three exercise regimens: aerobic exercise, resistance training, and a combination of both. No studies investigating the role of gut microbiota and exercise in NAFLD were found. A quality assessment via the (RoB)2 tool was conducted and potential publication bias, statistical outliers, and influential cases were identified. Overall, exercise without significant weight loss significantly reduced the intrahepatic lipid (IHL) content (SMD: −0.76, 95% CI: −1.04, −0.48) and concentrations of alanine aminotransaminase (ALT) (SMD: −0.52, 95% CI: −0.90, −0.14), aspartate aminotransaminase (AST) (SMD: −0.68, 95% CI: −1.21, −0.15), low-density lipoprotein cholesterol (SMD: −0.34, 95% CI: −0.66, −0.02), and triglycerides (TG) (SMD: −0.59, 95% CI: −1.16, −0.02). The concentrations of high-density lipoprotein cholesterol, total cholesterol (TC), fasting glucose, fasting insulin, and glycated hemoglobin were non-significantly altered. Aerobic exercise alone significantly reduced IHL, ALT, and AST; resistance training alone significantly reduced TC and TG; a combination of both exercise types significantly reduced IHL. To conclude, exercise overall likely had a beneficial effect on alleviating NAFLD without significant weight loss. The study was registered at PROSPERO: CRD42020221168 and funded by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement no. 813781.
Collapse
Affiliation(s)
- Ambrin Farizah Babu
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland; (A.F.B.); (S.C.); (J.L.); (C.G.-G.); (K.H.); (H.E.-N.)
- Afekta Technologies Ltd., Yliopistonranta 1L, 70211 Kuopio, Finland
| | - Susanne Csader
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland; (A.F.B.); (S.C.); (J.L.); (C.G.-G.); (K.H.); (H.E.-N.)
| | - Johnson Lok
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland; (A.F.B.); (S.C.); (J.L.); (C.G.-G.); (K.H.); (H.E.-N.)
| | - Carlos Gómez-Gallego
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland; (A.F.B.); (S.C.); (J.L.); (C.G.-G.); (K.H.); (H.E.-N.)
| | - Kati Hanhineva
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland; (A.F.B.); (S.C.); (J.L.); (C.G.-G.); (K.H.); (H.E.-N.)
- Afekta Technologies Ltd., Yliopistonranta 1L, 70211 Kuopio, Finland
- Department of Life Technologies, Food Chemistry and Food Development Unit, University of Turku, 20500 Turku, Finland
| | - Hani El-Nezami
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland; (A.F.B.); (S.C.); (J.L.); (C.G.-G.); (K.H.); (H.E.-N.)
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Ursula Schwab
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland; (A.F.B.); (S.C.); (J.L.); (C.G.-G.); (K.H.); (H.E.-N.)
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, 70210 Kuopio, Finland
- Correspondence: ; Tel.: +358-403552791
| |
Collapse
|
174
|
Zhang X, Shang X, Jin S, Ma Z, Wang H, Ao N, Yang J, Du J. Vitamin D ameliorates high-fat-diet-induced hepatic injury via inhibiting pyroptosis and alters gut microbiota in rats. Arch Biochem Biophys 2021; 705:108894. [PMID: 33965368 DOI: 10.1016/j.abb.2021.108894] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/16/2021] [Accepted: 04/25/2021] [Indexed: 12/12/2022]
Abstract
Accumulating evidence suggests that vitamin D (VD) has a therapeutic effect on non-alcoholic fatty liver disease (NAFLD). Pyroptosis and gut microbiota have been recognized as critical factors of the progression of NAFLD. However, the effect of VD on the pyroptosis and gut microbiota in NAFLD remains inconclusive. Herein, rats were fed high fat diet (HFD) for 12 weeks and concurrently treated with 5 μg/kg 1,25(OH)2D3 twice a week. BRL-3A cells were stimulated with 0.4 mmol/L palmitic acid (PA) and 1 μg/ml lipopolysaccharide (LPS) for 16 h and treated with 10-6 mol/L 1,25(OH)2D3. Effect of VD on the hepatic injury, lipid accumulation, activation of NLRP3 inflammasome and pyroptosis was determined in vivo and in vitro. Next, gasdermin D N-terminal (GSDMD-N) fragment was overexpressed in BRL-3A cells to investigate the role of pyroptosis in the therapeutic effect of VD on NAFLD. In addition, gut microbiota in NAFLD rats was also analyzed. Results showed that VD attenuated HFD-induced hepatic injury in vivo and PA-LPS-induced impairment of cell viability in vitro, and inhibited lipid accumulation, activation of NLRP3 inflammasome and pyroptosis in vivo and in vitro. GSDMD-N fragment overexpression suppressed the protective effect of VD on PA-LPS-induced activation of NLRP3 inflammasome, impairment of cell viability and lipid accumulation, indicating that VD might attenuate NAFLD through inhibiting pyroptosis. Additionally, VD also restored HFD-induced gut microbiota dysbiosis by increasing the relative abundance of Lactobacillus and reducing that of Acetatifactor, Oscillibacter and Flavonifractor. This study provides a novel mechanism underlying VD therapy against NAFLD.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xueying Shang
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shi Jin
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhuoqi Ma
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - He Wang
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Na Ao
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jing Yang
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jian Du
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
175
|
Chen BB, Yan JH, Zheng J, Peng HW, Cai XL, Pan XT, Li HQ, Hong QZ, Peng XE. Copy number variation in the CES1 gene and the risk of non-alcoholic fatty liver in a Chinese Han population. Sci Rep 2021; 11:13984. [PMID: 34234263 PMCID: PMC8263572 DOI: 10.1038/s41598-021-93549-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
A recent genome-wide copy number variations (CNVs) scan identified a 16q12.2 deletion that included the carboxylesterase 1 (CES1) gene, which is important in the metabolism of fatty acids and cholesterol. We aimed to investigate whether CES1 CNVs was associated with susceptibility to non-alcoholic fatty liver disease (NAFLD) in a Chinese Han population. A case-control study was conducted among 303 patients diagnosed with NAFLD and 303 age (± 5) and sex-matched controls from the Affiliated Nanping First Hospital of Fujian Medical University in China. The copy numbers of CES1 were measured using TaqMan quantitative real-time polymerase chain reaction (qPCR) and serum CES1 was measured using enzyme-linked immunosorbent assays. The Chi-squared test and a logistic regression model were used to evaluate the association between CES1 CNVs and NAFLD susceptibility. The distribution of CES1 CNVs showed a higher frequency of CNVs loss (< 2) among patients; however, the difference was not significant (P = 0.05). After controlling for other known or suspected risk factors for NAFLD, CES1 CNVs loss was significantly associated with greater risk of NAFLD (adjusted OR = 2.75, 95% CI 1.30-5.85, P = 0.01); while CES1 CNVs gain (> 2) was not. There was a suggestion of an association between increased CES1 serum protein levels and CNVs losses among cases, although this was not statistically significant (P = 0.07). Copy number losses (< 2) of CES1 contribute to susceptibility to NAFLD in the Chinese Han population.
Collapse
Affiliation(s)
- Bing Bing Chen
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fujian, 350122, China.,Department of Hospital Infection Control, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Jian Hui Yan
- Department of Infectious Disease, The Second Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Jing Zheng
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fujian, 350122, China
| | - He Wei Peng
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fujian, 350122, China
| | - Xiao Ling Cai
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fujian, 350122, China
| | - Xin Ting Pan
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fujian, 350122, China
| | - Hui Quan Li
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fujian, 350122, China
| | - Qi Zhu Hong
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fujian, 350122, China
| | - Xian-E Peng
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fujian, 350122, China. .,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fujian, China.
| |
Collapse
|
176
|
Yefimenko T, Mykytyuk M. Non-alcoholic fatty liver disease: time for changes. INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (UKRAINE) 2021; 17:334-345. [DOI: 10.22141/2224-0721.17.4.2021.237350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The review contains updated information on the epidemiology, etiology, pathogenesis, diagnosis, treatment and prevention of non-alcoholic fatty liver disease (NAFLD). We searched for terms including NAFLD, non-alcoholic steatohepatitis (NASH), metabolic syndrome and type 2 diabetes mellitus in literature published over the past 5 years using the Scopus, Web of Science, CyberLeninka, PubMed databases. The concept of NAFLD includes two morphological forms of the disease with different prognosis: non-alcoholic fatty hepatosis and NASH. The severity of NASH is quite variable, including fibrosis, cirrhosis and hepatocellular carcinoma. NAFLD, a spectrum of fatty liver disorders of viral, autoimmune, drug-induced, and genetic origin, which are not caused by alcohol abuse, has recently been renamed as metabolic (dysfunction) associated fatty liver disease (MAFLD). The average prevalence of NAFLD is approximately 25% among the adult population worldwide, and in some regions exceeds 30%. An increase in the prevalence of this pathology is in parallel with the global epidemic of obesity and type 2 diabetes mellitus in the world. It is time to reach a general consensus in the scientific community on changing the nomenclature and moving from a negative to a positive definition of NAFLD/NASH. The new nomenclature points to the “positive” determinants of the disease, namely the close relationship with metabolic disorders, instead of defining it as what it is not (ie. non-alcoholic). The MAFLD abbreviation more accurately discloses existing knowledge about fatty liver diseases associated with metabolic dysfunction and should replace NAFLD/NASH, as this will stimulate the research community’s efforts to update the disease nomenclature and subphenotype and accelerate the transition to new treatments. It is important that primary care physicians, endocrinologists, and other specialists are aware of the extent and long-term consequences of NAFLD. Early identification of patients with NASH can help improve treatment outcomes, avoid liver transplantation in patients with decompensated cirrhosis. There are currently no effective treatments for NAFLD, so it is important to follow a multidisciplinary approach, which means using measures to improve prognosis, reduce the risk of death associated with NAFLD, the development of cirrhosis or hepatocellular carcinoma. Epidemiological data suggest a close relationship between unhealthy lifestyles and NAFLD, so lifestyle adjustments are needed to all patients. Insulin sensitizers, statins, ezetimibe, a cholesterol absorption inhibitor, hepatoprotectors, antioxidants, incretin analogues, dipeptidyl peptidase 4 inhibitors, pentoxifylline, probiotics, angiotensin-converting enzyme inhibitors, and endocannabinoid antagonists are used in the treatment of NAFLD.
Collapse
|
177
|
Weng J, Wang X, Xu B, Li W. Augmenter of liver regeneration ameliorates ischemia-reperfusion injury in steatotic liver via inhibition of the TLR4/NF-κB pathway. Exp Ther Med 2021; 22:863. [PMID: 34178136 PMCID: PMC8220637 DOI: 10.3892/etm.2021.10295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 05/17/2021] [Indexed: 01/14/2023] Open
Abstract
Hepatocytes from donors with preexisting hepatic steatosis exhibited increased sensitivity to ischemia-reperfusion injury (IRI) during liver transplantation. Augmenter of liver regeneration (ALR) protected the liver against IRI, but the mechanism was not clarified. Therefore, the hypothesis that ALR attenuated IRI in steatotic liver by inhibition of inflammation and downregulation of the Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) pathway was examined. C57BL/6 mice were subjected to a methionine-choline-deficient (MCD) diet to induce liver steatosis. Mice were transfected with ALR-containing adenovirus 3 days prior to partial warm hepatic IRI. After 30 min of ischemia and 6 h of reperfusion injury, liver function, hepatic injury, the inflammatory response and TLR4/NF-κB signaling pathway activation were assessed. ALR maintained liver function and alleviated hepatic injury as indicated by the decreased levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), preserved hepatic structure and reduced apoptosis. ALR also reduced the IRI-induced inflammatory response by suppressing Kupffer cell activation, inhibiting neutrophil chemotaxis and reducing inflammatory cytokine production. Further investigation using reverse transcription-quantitative PCR, western blotting and immunohistochemistry revealed that ALR reduced TLR4/NF-κB signaling pathway activation, which led to a decreased synthesis of inflammatory cytokines. ALR functioned as a regulator of the IRI-induced inflammatory response by suppressing the TLR4/NF-κB pathway, which supports the use of ALR in therapeutic applications for fatty liver transplantation.
Collapse
Affiliation(s)
- Junhua Weng
- Department of Gastroenterology, Beijing Lu He Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Xin Wang
- Beijing Key Laboratory of Diabetes Research and Care Center for Endocrine Metabolism and Immune Diseases, Beijing Lu He Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Baohong Xu
- Department of Gastroenterology, Beijing Lu He Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Wen Li
- Department of Cell Biology and Municipal Laboratory of Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
178
|
Arumugam MK, Paal MC, Donohue TM, Ganesan M, Osna NA, Kharbanda KK. Beneficial Effects of Betaine: A Comprehensive Review. BIOLOGY 2021; 10:456. [PMID: 34067313 PMCID: PMC8224793 DOI: 10.3390/biology10060456] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 02/05/2023]
Abstract
Medicinal herbs and many food ingredients possess favorable biological properties that contribute to their therapeutic activities. One such natural product is betaine, a stable, nontoxic natural substance that is present in animals, plants, and microorganisms. Betaine is also endogenously synthesized through the metabolism of choline or exogenously consumed through dietary intake. Betaine mainly functions as (i) an osmolyte and (ii) a methyl-group donor. This review describes the major physiological effects of betaine in whole-body health and its ability to protect against both liver- as well as non-liver-related diseases and conditions. Betaine's role in preventing/attenuating both alcohol-induced and metabolic-associated liver diseases has been well studied and is extensively reviewed here. Several studies show that betaine protects against the development of alcohol-induced hepatic steatosis, apoptosis, and accumulation of damaged proteins. Additionally, it can significantly prevent/attenuate progressive liver injury by preserving gut integrity and adipose function. The protective effects are primarily associated with the regulation of methionine metabolism through removing homocysteine and maintaining cellular SAM:SAH ratios. Similarly, betaine prevents metabolic-associated fatty liver disease and its progression. In addition, betaine has a neuroprotective role, preserves myocardial function, and prevents pancreatic steatosis. Betaine also attenuates oxidant stress, endoplasmic reticulum stress, inflammation, and cancer development. To conclude, betaine exerts significant therapeutic and biological effects that are potentially beneficial for alleviating a diverse number of human diseases and conditions.
Collapse
Affiliation(s)
- Madan Kumar Arumugam
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (MK.A.); (M.C.P.); (T.M.D.J.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Matthew C. Paal
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (MK.A.); (M.C.P.); (T.M.D.J.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Terrence M. Donohue
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (MK.A.); (M.C.P.); (T.M.D.J.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (MK.A.); (M.C.P.); (T.M.D.J.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (MK.A.); (M.C.P.); (T.M.D.J.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (MK.A.); (M.C.P.); (T.M.D.J.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
179
|
Cadney MD, Hiramatsu L, Thompson Z, Zhao M, Kay JC, Singleton JM, Albuquerque RLD, Schmill MP, Saltzman W, Garland T. Effects of early-life exposure to Western diet and voluntary exercise on adult activity levels, exercise physiology, and associated traits in selectively bred High Runner mice. Physiol Behav 2021; 234:113389. [PMID: 33741375 PMCID: PMC8106885 DOI: 10.1016/j.physbeh.2021.113389] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/02/2021] [Accepted: 03/13/2021] [Indexed: 01/08/2023]
Abstract
Exercise behavior is under partial genetic control, but it is also affected by numerous environmental factors, potentially including early-life experiences whose effects persist into adulthood. We studied genetic and early-life environmental effects on wheel-running behavior in a mouse model that includes four replicate high runner (HR) lines selectively bred for increased voluntary wheel running as young adults and four non-selected control (C) lines. In a full factorial design, mice from each line were granted wheel access or not and administered either standard or Western diet (WD) from weaning (3 weeks old) to 6 weeks of age (sexual maturity). In addition to acute effects, after a washout period of 8 weeks (∼6 human years) in which all mice had standard diet and no wheel access, we found both beneficial and detrimental effects of these early-life exposures. During the first week of treatments, WD increased distance run by 29% in C mice and 48% in HR mice (significant Diet × Linetype interaction), but diet effects disappeared by the third week. Across the three weeks of juvenile treatment, WD significantly increased fat mass (with lean mass as a covariate). Tested as adults, early-life exercise increased wheel running of C mice but not HR mice in the first week. Early-life exercise also reduced adult anxiety-like behavior and increased adult fasted blood glucose levels, triceps surae mass, subdermal fat pad mass, and brain mass, but decreased heart ventricle mass. Using fat mass as a covariate, early-life exercise treatment increased adult leptin concentration. In contrast, early-life WD increased adult wheel running of HR mice but not C mice. Early-life WD also increased adult lean mass and adult preference for Western diet in all groups. Surprisingly, early-life treatment had no significant effect on adult body fat or maximal aerobic capacity (VO2max). No previous study has tested for combined or interactive effects of early-life WD and exercise. Our results demonstrate that both factors can have long-lasting effects on adult voluntary exercise and related phenotypes, and that these effects are modulated by genetic background. Overall, the long-lasting effects of early-life exercise were more pervasive than those of WD, suggesting critical opportunities for health intervention in childhood habits, as well as possible threats from modern challenges. These results may be relevant for understanding potential effects of activity reductions and dietary changes associated with the obesity epidemic and COVID-19 pandemic.
Collapse
Affiliation(s)
- Marcell D Cadney
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Layla Hiramatsu
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Zoe Thompson
- Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
| | - Meng Zhao
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Jarren C Kay
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Jennifer M Singleton
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | | | - Margaret P Schmill
- Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
| | - Wendy Saltzman
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
180
|
Hernández-Ceballos W, Cordova-Gallardo J, Mendez-Sanchez N. Gut Microbiota in Metabolic-associated Fatty Liver Disease and in Other Chronic Metabolic Diseases. J Clin Transl Hepatol 2021; 9:227-238. [PMID: 34007805 PMCID: PMC8111113 DOI: 10.14218/jcth.2020.00131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
The gut microbiome plays a key role in the health-disease balance in the human body. Although its composition is unique for each person and tends to remain stable throughout lifetime, it has been shown that certain bacterial patterns may be determining factors in the onset of certain chronic metabolic diseases, such as type 2 diabetes mellitus (T2DM), obesity, metabolic-associated fatty liver disease (MAFLD), and metabolic syndrome. The gut-liver axis embodies the close relationship between the gut and the liver; disturbance of the normal gut microbiota, also known as dysbiosis, may lead to a cascade of mechanisms that modify the epithelial properties and facilitate bacterial translocation. Regulation of gut microbiota is fundamental to maintaining gut integrity, as well as the bile acids composition. In the present review, we summarize the current knowledge regarding the microbiota, bile acids composition and their association with MAFLD, obesity, T2DM and metabolic syndrome.
Collapse
Affiliation(s)
- Winston Hernández-Ceballos
- Plan of Combined Studies in Medicine (PECEM-MD/PhD), Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Jacqueline Cordova-Gallardo
- Department of Hepatology, Service of Surgery and Obesity Clinic, General Hospital “Dr. Manuel Gea González”, Mexico City, Mexico
- Faculty of Medicine. National Autonomous University of Mexico, Mexico City, Mexico
| | - Nahum Mendez-Sanchez
- Faculty of Medicine. National Autonomous University of Mexico, Mexico City, Mexico
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| |
Collapse
|
181
|
Abstract
UNLABELLED Abstract. AIMS The longitudinal relationship between depression and the risk of non-alcoholic fatty liver disease is uncertain. We examined: (a) the association between depressive symptoms and incident hepatic steatosis (HS), both with and without liver fibrosis; and (b) the influence of obesity on this association. METHODS A cohort of 142 005 Korean adults with neither HS nor excessive alcohol consumption at baseline were followed for up to 8.9 years. The validated Center for Epidemiologic Studies-Depression score (CES-D) was assessed at baseline, and subjects were categorised as non-depressed (a CES-D < 8, reference) or depression (CES-D ⩾ 16). HS was diagnosed by ultrasonography. Liver fibrosis was assessed by the fibrosis-4 index (FIB-4). Parametric proportional hazards models were used to estimate the adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs). RESULTS During a median follow-up of 4.0 years, 27 810 people with incident HS and 134 with incident HS plus high FIB-4 were identified. Compared with the non-depressed category, the aHR (95% CIs) for incident HS was 1.24 (1.15-1.34) for CES-D ⩾ 16 among obese individuals, and 1.00 (0.95-1.05) for CES-D ⩾ 16 among non-obese individuals (p for interaction with obesity <0.001). The aHR (95% CIs) for developing HS plus high FIB-4 was 3.41 (1.33-8.74) for CES-D ⩾ 16 among obese individuals, and 1.22 (0.60-2.47) for CES-D ⩾ 16 among non-obese individuals (p for interaction = 0.201). CONCLUSIONS Depression was associated with an increased risk of incident HS and HS plus high probability of advanced fibrosis, especially among obese individuals.
Collapse
|
182
|
Lupsor-Platon M, Serban T, Silion AI, Tirpe GR, Tirpe A, Florea M. Performance of Ultrasound Techniques and the Potential of Artificial Intelligence in the Evaluation of Hepatocellular Carcinoma and Non-Alcoholic Fatty Liver Disease. Cancers (Basel) 2021; 13:790. [PMID: 33672827 PMCID: PMC7918928 DOI: 10.3390/cancers13040790] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/14/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Global statistics show an increasing percentage of patients that develop non-alcoholic fatty liver disease (NAFLD) and NAFLD-related hepatocellular carcinoma (HCC), even in the absence of cirrhosis. In the present review, we analyzed the diagnostic performance of ultrasonography (US) in the non-invasive evaluation of NAFLD and NAFLD-related HCC, as well as possibilities of optimizing US diagnosis with the help of artificial intelligence (AI) assistance. To date, US is the first-line examination recommended in the screening of patients with clinical suspicion of NAFLD, as it is readily available and leads to a better disease-specific surveillance. However, the conventional US presents limitations that significantly hamper its applicability in quantifying NAFLD and accurately characterizing a given focal liver lesion (FLL). Ultrasound contrast agents (UCAs) are an essential add-on to the conventional B-mode US and to the Doppler US that further empower this method, allowing the evaluation of the enhancement properties and the vascular architecture of FLLs, in comparison to the background parenchyma. The current paper also explores the new universe of AI and the various implications of deep learning algorithms in the evaluation of NAFLD and NAFLD-related HCC through US methods, concluding that it could potentially be a game changer for patient care.
Collapse
Affiliation(s)
- Monica Lupsor-Platon
- Medical Imaging Department, Regional Institute of Gastroenterology and Hepatology, Iuliu Hatieganu University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania
| | - Teodora Serban
- Medical Imaging Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (T.S.); (A.I.S.)
| | - Alexandra Iulia Silion
- Medical Imaging Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (T.S.); (A.I.S.)
| | - George Razvan Tirpe
- County Emergency Hospital Cluj-Napoca, 3-5 Clinicilor Street, 400000 Cluj-Napoca, Romania;
| | - Alexandru Tirpe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania;
| | - Mira Florea
- Community Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400001 Cluj-Napoca, Romania;
| |
Collapse
|
183
|
Esteve-Luque V, Padró-Miquel A, Fanlo-Maresma M, Corbella E, Corbella X, Pintó X, Candás-Estébanez B. Implication between Genetic Variants from APOA5 and ZPR1 and NAFLD Severity in Patients with Hypertriglyceridemia. Nutrients 2021; 13:nu13020552. [PMID: 33567543 PMCID: PMC7914661 DOI: 10.3390/nu13020552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/28/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Lipid metabolism disorders, especially hypertriglyceridemia (HTG), are risk factors for non-alcoholic fatty liver disease (NAFLD). However, the association between genetic factors related to HTG and the risk of NAFLD has been scarcely studied. Methods: A total of 185 subjects with moderate HTG were prospectively included. We investigated the association between genetic factors’ (five allelic variants with polygenic hypertriglyceridemia) clinical and biochemical biomarkers with NAFLD severity. The five allelic variants’ related clinical and biochemical data of HTG were studied in all the subjects. NAFLD was assessed by abdominal ultrasound and patients were divided into two groups, one with no or mild NAFLD and another with moderate/severe NAFLD. Results: Patients with moderate/severe NAFLD had higher weight and waist values and a higher prevalence of insulin resistance than patients with no or mild NAFLD. Moderate/severe NAFLD was independently associated with APOA5 rs3134406 and ZPR1 rs964184 variants, and also showed a significant inverse relationship with lipoprotein(a) [Lp(a)] concentrations. Conclusions: APOA5 rs3135506 and ZPR1 rs964184 variants and lipoprotein(a) are associated with moderate/severe NAFLD. This association was independent of body weight, insulin resistance, and other factors related to NAFLD.
Collapse
Affiliation(s)
- Virginia Esteve-Luque
- Cardiovascular Risk Unit, Internal Medicine Department, Hospital Universitari de Bellvitge, 08907 L’Hospitalet de Llobregat, Spain; (V.E.-L.); (M.F.-M.); (E.C.); (X.C.)
- Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain; (A.P.-M.); (B.C.-E.)
- Medicine and Translational Research, University of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Ariadna Padró-Miquel
- Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain; (A.P.-M.); (B.C.-E.)
- Clinical Laboratory, Hospital Universitari de Bellvitge, 08907 L’Hospitalet de Llobregat, Spain
- CIBEROBN Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marta Fanlo-Maresma
- Cardiovascular Risk Unit, Internal Medicine Department, Hospital Universitari de Bellvitge, 08907 L’Hospitalet de Llobregat, Spain; (V.E.-L.); (M.F.-M.); (E.C.); (X.C.)
- Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain; (A.P.-M.); (B.C.-E.)
- Medicine and Translational Research, University of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Emili Corbella
- Cardiovascular Risk Unit, Internal Medicine Department, Hospital Universitari de Bellvitge, 08907 L’Hospitalet de Llobregat, Spain; (V.E.-L.); (M.F.-M.); (E.C.); (X.C.)
- Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain; (A.P.-M.); (B.C.-E.)
- CIBEROBN Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Xavier Corbella
- Cardiovascular Risk Unit, Internal Medicine Department, Hospital Universitari de Bellvitge, 08907 L’Hospitalet de Llobregat, Spain; (V.E.-L.); (M.F.-M.); (E.C.); (X.C.)
- Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain; (A.P.-M.); (B.C.-E.)
- School of Medicine, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| | - Xavier Pintó
- Cardiovascular Risk Unit, Internal Medicine Department, Hospital Universitari de Bellvitge, 08907 L’Hospitalet de Llobregat, Spain; (V.E.-L.); (M.F.-M.); (E.C.); (X.C.)
- Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain; (A.P.-M.); (B.C.-E.)
- CIBEROBN Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
- School of Medicine, Universitat de Barcelona, 08907 Barcelona, Spain
- Correspondence:
| | - Beatriz Candás-Estébanez
- Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain; (A.P.-M.); (B.C.-E.)
- Clinical Laboratory, Hospital Universitari de Bellvitge, 08907 L’Hospitalet de Llobregat, Spain
- CIBEROBN Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Clinical Biochemistry, SCIAS-Hospital de Barcelona, 08034 Barcelona, Spain
| |
Collapse
|
184
|
Fatty liver index and left ventricular mass: prospective associations from two independent cohorts. J Hypertens 2021; 39:961-969. [PMID: 33560053 DOI: 10.1097/hjh.0000000000002716] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Heart disease is the most common cause of death in patients with nonalcoholic fatty liver disease (NAFLD). Emerging data have shown that NAFLD may affect subclinical myocardial remodeling, mainly left ventricular hypertrophy; however, evidence from the prospective studies is still lacking. METHODS Prospective analyses were performed to investigate the association of fatty liver index (FLI) with left ventricular mass (LVM) among 1962 participants from the Bogalusa Heart Study (BHS, 1995-2010) and 1547 participants from the Cardiovascular Risk in Young Finns Study (YFS, 2001-2011) free of cardiovascular diseases (CVD) at baseline. LVM was assessed by two-dimensional guided M-mode echocardiography and indexed (LVMI) to body height (m2.7). Multivariable regression models were applied after adjustment for traditional CVD risk factors. RESULTS In both cohorts, we observed significant and positive associations between FLI and LVM (BHS: β=0.59, P < 0.001; YFS: β=0.41, P < 0.001) and LVMI (BHS: β=0.14, P < 0.001; YFS: β=0.09, P < 0.001). In addition, we found that the relationship between FLI and LVMI was stronger in women than men (BHS: P-interaction = 0.01; YFS: P-interaction < 0.01); and the relationship between FLI and LVM/LVMI was stronger in black than white individuals (LVM: P-interaction = 0.02; LVMI: P-interaction = 0.04). Moreover, we found that the associations of FLI with LVM and LVMI were attenuated by high physical activity, especially in BHS (P-interaction = 0.02). CONCLUSION Our findings from two independent prospective cohorts indicate that FLI is positively associated with LVM/LVMI, independent of traditional cardiovascular risk factors. Such relationships are more pronounced among women and black individuals and are attenuated by high physical activity.
Collapse
|
185
|
Palmieri B, Corazzari V, Panariello Brasile DG, Sangiovanni V, VadalÀ M. Hepatic steatosis integrated approach: nutritional guidelines and joined nutraceutical administration. MINERVA GASTROENTERO 2021; 66:307-320. [PMID: 33443240 DOI: 10.23736/s1121-421x.20.02738-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The nonalcoholic fat liver disease (NAFLD) progresses in 30% of the patients to not alcoholic steatohepatitis (NASH) and subsequently in liver fibrosis and even primary cancer and death. Due to the complex physiopathology of the liver steatosis, NASH is an area orphan of specific drugs, but many authors suggest an integrated treatment based upon diet, lifestyle change, and pharmacology. METHODS Our clinical study selected from a wider patient cohort, 13 subjects, appealing to the Second Opinion Medical Consulting Network, for liver and nutritional problems. The diet was integrated with regular prescription of an herbal derivative based on Chrysanthellum americanum and Pistacia lentiscus L. extracts. Clinical data of the recruited patients including body weight, Body Mass Index, were recorded before and after treatment. Each patient underwent pre-post accurate clinical examination and lab exams. The liver stiffness and liver steatosis were evaluated by a trained hepatologist with FibroScan®. RESULTS A significant reduction of anthropometric parameters was detected in all the patients at the end of the study; liver fibrosis and steatosis were instrumentally decreased in 8 subjects, but not significant changes in lab exams and no adverse effects were reported. CONCLUSIONS Chrysanthellum americanum and Pistacia lentiscus L. extracts were absolutely safe and effective and gave a substantial contribution to the life quality benefit, metabolic balance and gut function in patients with hepatic steatosis.
Collapse
Affiliation(s)
- Beniamino Palmieri
- Second Opinion Medical Network, Modena, Italy.,Medico Cura Te Stesso Onlus, Modena, Italy
| | - Veronica Corazzari
- Second Opinion Medical Network, Modena, Italy - .,Medico Cura Te Stesso Onlus, Modena, Italy
| | | | | | | |
Collapse
|
186
|
Contribution of Modern Echocardiographic Techniques in the Detection of Subclinical Heart Dysfunction in Young Adults with Non-Alcoholic Fatty Liver Disease. CURRENT HEALTH SCIENCES JOURNAL 2021; 47:275-283. [PMID: 34765249 PMCID: PMC8551884 DOI: 10.12865/chsj.47.02.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/15/2021] [Indexed: 11/18/2022]
Abstract
Non-alcoholic fatty liver disease affects about 30% of the population and it has a growing tendecy with the increasing incidence of obesity. Currently, a large amount of clinical evidence has shown that cardiovascular disease represents the main cause of mortality in patients suffering from non-alcoholic fatty liver disease. OBJECTIVE In this study we investigated the structural and functional changes of the left ventricle in young adults with hepatic steatosis using modern echocardiographic techniques. METHODS By using tissue Doppler imaging and also Speckle tracking echocardiography the left ventricle systolic function was assessed. RESULTS All patients included in the study had a normal left ventricular ejection fraction but, when the longitudinal function of the left ventricle was assessed using the tissue Doppler technique (maximum systolic velocity S) statistically significant differences were found in both the group of patients with non-alcoholic fatty liver as well as in the group of patients associated with diabetes. Using speckle tracking echocardiography, we found a statistically significant decrease of the global longitudinal strain in the endocardium, in the group of patients with non-alcoholic liver disease but also in the group of those with diabetes. The overall longitudinal strain at the myocardium was significantly reduced only in the group of patients with non-alcoholic fatty liver disease and diabetes, while the overall longitudinal strain at the epicardium showed no changes in any of the groups studied. Also, no changes were observed at the circumferential strain. CONCLUSION Non-alcoholic fatty liver disease, diagnosed in asymptomatic young adults may be a risk factor for remodeling the left ventricle over time, being associated with subclinical myocardial dysfunction, regardless of the presence of other cardiovascular risk factors.
Collapse
|
187
|
Ogłuszka M, Lipiński P, Starzyński RR. Interaction between iron and omega-3 fatty acids metabolisms: where is the cross-link? Crit Rev Food Sci Nutr 2020; 62:3002-3022. [DOI: 10.1080/10408398.2020.1862047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Magdalena Ogłuszka
- Department of Genomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Rafał Radosław Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| |
Collapse
|
188
|
MAFLD vs. NAFLD: shared features and potential changes in epidemiology, pathophysiology, diagnosis, and pharmacotherapy. Chin Med J (Engl) 2020; 134:8-19. [PMID: 33323806 PMCID: PMC7862804 DOI: 10.1097/cm9.0000000000001263] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, placing an increasing burden on human health. NAFLD is a complex multifactorial disease involving genetic, metabolic, and environmental factors. It is closely associated with metabolic syndrome, obesity, and type 2 diabetes, of which insulin resistance is the main pathophysiological mechanism. Over the past few decades, investigation of the pathogenesis, diagnosis, and treatments has revealed different aspects of NAFLD, challenging the accuracy of definition and therapeutic strategy for the clinical practice. Recently, experts reach a consensus that NAFLD does not reflect the current knowledge, and metabolic (dysfunction) associated fatty liver disease (MAFLD) is suggested as a more appropriate term. The new definition puts increased emphasis on the important role of metabolic dysfunction in it. Herein, the shared features and potential changes in epidemiology, pathophysiology, diagnosis, and pharmacotherapy of the newly defined MAFLD, as compared with the formerly defined NAFLD, are reviewed for updating our understanding.
Collapse
|
189
|
Bae CR, Zhang H, Kwon YG. The endothelial dysfunction blocker CU06-1004 ameliorates choline-deficient L-amino acid diet-induced non-alcoholic steatohepatitis in mice. PLoS One 2020; 15:e0243497. [PMID: 33275637 PMCID: PMC7717513 DOI: 10.1371/journal.pone.0243497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a severe, advanced form of non-alcoholic fatty liver disease (NAFLD) that is associated with features of metabolic syndrome and characterized by hepatic steatosis, inflammation, and fibrosis. In addition, NASH is associated with endothelial dysfunction within the hepatic vasculature. Treatment with CU06-1004 (previously called Sac-1004) ameliorates endothelial dysfunction by inhibiting hyperpermeability and inflammation. In this study, we investigated the protective effects of CU06-1004 in a choline-deficient L-amino acid (CDAA)-induced mouse model of NASH for 3 or 6 weeks. Specifically, we evaluated the effects of CU06-1004 on lipid accumulation, inflammation, hepatic fibrosis, and liver sinusoidal endothelial cell (LSEC) capillarization through biochemical analysis, immunohistochemistry, and real-time PCR. We found that the administration of CU06-1004 to mice improved liver triglyceride (TG) and serum alanine aminotransferase (ALT) in this CDAA-induced model of NASH for 6 weeks. In groups of NASH induced mice for both 3 and 6 weeks, CU06-1004 significantly reduced the hepatic expression of genes related to lipogenesis, inflammation, and cell adhesion. However, expression of genes related to hepatic fibrosis and vascular endothelial changes were only decreased in animals with mild NASH. These results suggest that the administration of CU06-1004 suppresses hepatic steatosis, inflammation, fibrosis, and LSEC capillarization in a CDAA-induced mouse model of NASH. This suggests that CU06-1004 has therapeutic potential for the treatment of mild NASH.
Collapse
Affiliation(s)
- Cho-Rong Bae
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Haiying Zhang
- CURACLE Co., Ltd., Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
190
|
Chidambaranathan-Reghupaty S, Fisher PB, Sarkar D. Hepatocellular carcinoma (HCC): Epidemiology, etiology and molecular classification. Adv Cancer Res 2020; 149:1-61. [PMID: 33579421 PMCID: PMC8796122 DOI: 10.1016/bs.acr.2020.10.001] [Citation(s) in RCA: 528] [Impact Index Per Article: 105.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC), the primary malignancy of hepatocytes, is a diagnosis with bleak outcome. According to National Cancer Institute's SEER database, the average five-year survival rate of HCC patients in the US is 19.6% but can be as low as 2.5% for advanced, metastatic disease. When diagnosed at early stages, it is treatable with locoregional treatments including surgical resection, Radio-Frequency Ablation, Trans-Arterial Chemoembolization or liver transplantation. However, HCC is usually diagnosed at advanced stages when the tumor is unresectable, making these treatments ineffective. In such instances, systemic therapy with tyrosine kinase inhibitors (TKIs) becomes the only viable option, even though it benefits only 30% of patients, provides only a modest (~3months) increase in overall survival and causes drug resistance within 6months. HCC, like many other cancers, is highly heterogeneous making a one-size fits all option problematic. The selection of liver transplantation, locoregional treatment, TKIs or immune checkpoint inhibitors as a treatment strategy depends on the disease stage and underlying condition(s). Additionally, patients with similar disease phenotype can have different molecular etiology making treatment responses different. Stratification of patients at the molecular level would facilitate development of the most effective treatment option. With the increase in efficiency and affordability of "omics"-level analysis, considerable effort has been expended in classifying HCC at the molecular, metabolic and immunologic levels. This review examines the results of these efforts and the ways they can be leveraged to develop targeted treatment options for HCC.
Collapse
Affiliation(s)
- Saranya Chidambaranathan-Reghupaty
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
191
|
Human Insulin Growth Factor 2 mRNA Binding Protein 2 Increases MicroRNA 33a/b Inhibition of Liver ABCA1 Expression and Alters Low-Density Apolipoprotein Levels in Mice. Mol Cell Biol 2020; 40:MCB.00058-20. [PMID: 32482798 DOI: 10.1128/mcb.00058-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
Genome-wide association studies (GWAS) have linked IGF2BP2 single-nucleotide polymorphisms (SNPs) with type 2 diabetes (T2D). Mice overexpressing mIGF2BP2 have elevated cholesterol levels when fed a diet that induces hepatic steatosis. These and other studies suggest an important role for insulin growth factor 2 mRNA binding protein 2 (IGF2BP2) in the initiation and progression of several metabolic disorders. The ATPase binding cassette protein ABCA1 initiates nascent high-density apolipoprotein (HDL) biogenesis by transferring phospholipid and cholesterol to delipidated apolipoprotein AI (ApoAI). Individuals with mutational ablation of ABCA1 have Tangier disease, which is characterized by a complete loss of HDL. MicroRNA 33a and 33b (miR-33a/b) bind to the 3' untranslated region (UTR) of ABCA1 and repress its posttranscriptional gene expression. Here, we show that IGF2BP2 works together with miR-33a/b in repressing ABCA1 expression. Our data suggest that IGF2BP2 is an accessory protein of the argonaute (AGO2)-miR-33a/b-RISC complex, as it directly binds to miR-33a/b, AGO2, and the 3' UTR of ABCA1 Finally, we show that mice overexpressing human IGF2BP2 have decreased ABCA1 expression, increased low-density lipoprotein-cholesterol (LDL-C) and cholesterol blood levels, and elevated SREBP-dependent signaling. Our data support the hypothesis that IGF2BP2 has an important role in maintaining lipid homeostasis through its modulation of ABCA1 expression, as its overexpression or loss leads to dyslipidemia.
Collapse
|
192
|
Cremonini E, Iglesias DE, Kang J, Lombardo GE, Mostofinejad Z, Wang Z, Zhu W, Oteiza PI. (-)-Epicatechin and the comorbidities of obesity. Arch Biochem Biophys 2020; 690:108505. [PMID: 32679195 DOI: 10.1016/j.abb.2020.108505] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 02/07/2023]
Abstract
Obesity has major adverse consequences on human health contributing to the development of, among others, insulin resistance and type 2 diabetes, cardiovascular disease, non-alcoholic fatty liver disease, altered behavior and cognition, and cancer. Changes in dietary habits and lifestyle could contribute to mitigate the development and/or progression of these pathologies. This review will discuss current evidence on the beneficial actions of the flavan-3-ol (-)-epicatechin (EC) on obesity-associated comorbidities. These benefits can be in part explained through EC's capacity to mitigate several common events underlying the development of these pathologies, including: i) high circulating levels of glucose, lipids and endotoxins; ii) chronic systemic inflammation; iii) tissue endoplasmic reticulum and oxidative stress; iv) insulin resistance; v) mitochondria dysfunction and vi) dysbiosis. The currently known underlying mechanisms and cellular targets of EC's beneficial effects are discussed. While, there is limited evidence from human studies supplementing with pure EC, other studies involving cocoa supplementation in humans, pure EC in rodents and in vitro studies, support a potential beneficial action of EC on obesity-associated comorbidities. This evidence also stresses the need of further research in the field, which would contribute to the development of human dietary strategies to mitigate the adverse consequences of obesity.
Collapse
Affiliation(s)
- Eleonora Cremonini
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA
| | - Dario E Iglesias
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA
| | - Jiye Kang
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA
| | - Giovanni E Lombardo
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Zahra Mostofinejad
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA
| | - Ziwei Wang
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA
| | - Wei Zhu
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA
| | - Patricia I Oteiza
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA.
| |
Collapse
|
193
|
Asbaghi O, Emamat H, Kelishadi MR, Hekmatdoost A. The Association between Nuts Intake and Non-Alcoholic Fatty Liver Disease (NAFLD) Risk: a Case-Control Study. Clin Nutr Res 2020; 9:195-204. [PMID: 32789149 PMCID: PMC7402977 DOI: 10.7762/cnr.2020.9.3.195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/29/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease. Nuts are nutrient- and calorie-dense foods with several health-promoting compounds. In this case-control study, we investigated the association between nut intake and NAFLD risk. Hundred ninety-six subjects with NAFLD and eight hundred three controls were recruited. The participants' dietary intakes were assessed by a valid and reliable semi-quantitative food frequency questionnaire (FFQ). Participants were categorized according to deciles of daily nuts intake. Multivariable logistic regression models were used with NAFLD as the dependent and deciles of daily nuts intake as an independent variables. Range of age was 18 to 75 years. Forty three percent of participants were male. Range of nuts intake was between 0 to 90.90 g/day. In model 3, after adjusting for potential confounding variables including, age, sex, BMI, alcohol consumption, smoking, diabetes and physical activity, the relation between daily nuts intake and risk of NAFLD was positive and significant in the deciles 9 and 10 compared to the lowest decile (odds ratio [OR], 3.22; 95% confidence interval [CI], 1.04-7.49; p = 0.039 and OR, 3.03; 95% CI, 1.03-8.90; p = 0.046, respectively). However, in the final model after additional adjusting for energy intake, no significant association was found. According to the findings, there is not any significant relationship between nuts intake and NAFLD risk; while higher intake of nuts is related to the higher risk of NAFLD mediated by energy intake.
Collapse
Affiliation(s)
- Omid Asbaghi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad 6813833946, Iran
| | - Hadi Emamat
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran 1981619573, Iran
| | - Mahnaz Rezaei Kelishadi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran 1981619573, Iran
| |
Collapse
|
194
|
Soluble Epoxide Hydrolase Inhibition in Liver Diseases: A Review of Current Research and Knowledge Gaps. BIOLOGY 2020; 9:biology9060124. [PMID: 32545637 PMCID: PMC7345757 DOI: 10.3390/biology9060124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
Emerging evidence suggests that soluble epoxide hydrolase (sEH) inhibition is a valuable therapeutic strategy for the treatment of numerous diseases, including those of the liver. sEH rapidly degrades cytochrome P450-produced epoxygenated lipids (epoxy-fatty acids), which are synthesized from omega-3 and omega-6 polyunsaturated fatty acids, that generally exert beneficial effects on several cellular processes. sEH hydrolysis of epoxy-fatty acids produces dihydroxy-fatty acids which are typically less biologically active than their parent epoxide. Efforts to develop sEH inhibitors have made available numerous compounds that show therapeutic efficacy and a wide margin of safety in a variety of different diseases, including non-alcoholic fatty liver disease, liver fibrosis, portal hypertension, and others. This review summarizes research efforts which characterize the applications, underlying effects, and molecular mechanisms of sEH inhibitors in these liver diseases and identifies gaps in knowledge for future research.
Collapse
|
195
|
Khaleghzadeh H, Afzalpour ME, Ahmadi MM, Nematy M, Sardar MA. Effect of high intensity interval training along with Oligopin supplementation on some inflammatory indices and liver enzymes in obese male Wistar rats with non-alcoholic fatty liver disease. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.obmed.2019.100177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
196
|
Demyanets S, Kaun C, Kaider A, Speidl W, Prager M, Oravec S, Hohensinner P, Wojta J, Rega-Kaun G. The pro-inflammatory marker soluble suppression of tumorigenicity-2 (ST2) is reduced especially in diabetic morbidly obese patients undergoing bariatric surgery. Cardiovasc Diabetol 2020; 19:26. [PMID: 32101157 PMCID: PMC7045735 DOI: 10.1186/s12933-020-01001-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND High soluble suppression of tumorigenicity-2 (sST2) is a marker of poor prognosis in chronic inflammatory conditions. ST2 and its ligand interleukin (IL)-33 are elevated in adipose tissue of obese individuals. We aimed to evaluate circulating sST2 and IL-33 as possible markers of metabolic benefit in morbidly overweight patients after Roux-en-Y gastric bypass (RYGB) bariatric surgery. METHODS sST2, IL-33, high sensitive IL-6, high sensitive C-reactive protein (hsCRP), leptin, cholesterol metabolism and liver parameters were measured in 80 morbidly obese individuals before and 1 year after bariatric surgery. RESULTS sST2 was higher (P = 0.03) in diabetics as compared to individuals without diabetes. Baseline sST2 was also higher in males than in females (P= 0.0002). One year after bariatric surgery, sST2 levels were decreased (median 120, IQR 59-176 pg/mL) as compared to sST2 before surgery (median 141, IQR 111-181, P = 0.0024), and the diabetic group showed most pronounced reduction in sST2 (P = 0.0016). An association was found between sST2 and liver function parameters before and after bariatric surgery, and between baseline sST2 and total cholesterol, triglyceride, total low density lipoprotein (LDL), small dense LDL, Apolipoprotein B as well as with small dense high density lipoproteins (HDL). In the subgroup of diabetic patients positive correlation between IL-33 and sST2 (r = 0.44, P = 0.05) was noticed. CONCLUSIONS Circulating sST2 is associated with markers of liver functions and lipid metabolism in severely obese patients and a reduction of sST2 was shown after successful bariatric surgery, most prominently in diabetic patients.
Collapse
Affiliation(s)
- Svitlana Demyanets
- Department of Laboratory Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Christoph Kaun
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Alexandra Kaider
- Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Walter Speidl
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Manfred Prager
- Department of Surgery, Hospital Hietzing, Wolkersbergenstraße 1, 1130, Vienna, Austria
| | - Stanislav Oravec
- Krankenanstalten Dr. Dostal, Saarplatz 9, 1190, Vienna, Austria
- 2nd Department of Internal Medicine, Faculty of Medicine, Comenius University, Šafárikovo námestie 6, 814 99, Bratislava 1, Slovakia
| | - Philipp Hohensinner
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Johann Wojta
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Core Facilities, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Ludwig Boltzmann Institute for Cardiovascular Research, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Gersina Rega-Kaun
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- 5th Medical Department, Wilhelminenhospital, Montleartstraße 37, 1160, Vienna, Austria
| |
Collapse
|
197
|
Li X, Wang Y, Xing Y, Xing R, Liu Y, Xu Y. Changes of gut microbiota during silybin-mediated treatment of high-fat diet-induced non-alcoholic fatty liver disease in mice. Hepatol Res 2020; 50:5-14. [PMID: 31661720 DOI: 10.1111/hepr.13444] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/17/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022]
Abstract
AIM Gut microbiota are involved in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Silybin (Sil), a naturally occurring hepatoprotective agent, is widely used for treating NAFLD. Whether Sil affects gut microbiota during its actions in treating NAFLD is unknown. We aimed to examine the effect of Sil on intestinal flora dysbiosis induced by a high-fat diet (HFD). METHODS After 10 weeks of feeding normal chow diet or HFD, mice were given a daily gavage for 8 weeks. Cecal contents were harvested for study of short-chain fatty acids, bile acids, and gut microbiota alteration. RESULTS Sil showed protective effects against dietary-induced obesity and liver steatosis; accordingly, gut microbiota composition changed. At the phylum level, compared with the HFD group, mice in the Sil-treated group had significantly lower levels of Firmicutes, and the ratio of Firmicutes-to-Bacteroidetes was lower (P < 0.05). At the genus level, the Sil-treated group have significantly lower levels of Lachnoclostridium, Lachnospiraceae_UCG-006, and Mollicutes_RF9, which were reported to be potentially related to diet-induced obesity, and increased levels of Blautia (P < 0.05), Akkermansia (P < 0.05), and Bacteroides (P < 0.05), which are known to have a beneficial effect on improving NAFLD. Sil also showed an inhibitory effect on well-known beneficial bacteria, such as Alloprevotella and Lactobacillus. Furthermore, the production of acetate, propionate, and butyrate increased, whereas the generation of formate and conversion of cytotoxic secondary metabolites (lithocholic acid and deoxy-cholic acid) decreased in mice treated with Sil. CONCLUSIONS Sil might have beneficial effects on ameliorating NAFLD and mediating HFD-induced change of gut microbiota composition, followed by major changes in secondary metabolites, such as short-chain fatty acids and bile acids.
Collapse
Affiliation(s)
- Xiuxia Li
- Eastern Hospital, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Yanping Wang
- Eastern Hospital, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Yilan Xing
- Eastern Hospital, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Renxin Xing
- Eastern Hospital, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Yongsheng Liu
- Eastern Hospital, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Yinsheng Xu
- Eastern Hospital, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
198
|
Gan M, Shen L, Fan Y, Tan Y, Zheng T, Tang G, Niu L, Zhao Y, Chen L, Jiang D, Li X, Zhang S, Zhu L. MicroRNA-451 and Genistein Ameliorate Nonalcoholic Steatohepatitis in Mice. Int J Mol Sci 2019; 20:E6084. [PMID: 31816816 PMCID: PMC6928943 DOI: 10.3390/ijms20236084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 01/18/2023] Open
Abstract
Effective, targeted therapy for chronic liver disease nonalcoholic steatohepatitis (NASH) is imminent. MicroRNAs (miRNAs) are a potential therapeutic target, and natural products that regulate miRNA expression may be a safe and effective treatment strategy for liver disease. Here, we investigated the functional role of miR-451 and the therapeutic effects of genistein in the NASH mouse model. MiR-451 was downregulated in various types of liver inflammation, and subsequent experiments showed that miR-451 regulates liver inflammation via IL1β. Genistein is a phytoestrogen with anti-inflammatory and anti-oxidant effects. Interestingly, we found that the anti-inflammatory effects of genistein were related to miR-451 and was partially antagonized by the miR-451 inhibitor. MiR-451 overexpression or genistein treatment inhibited IL1β expression and inflammation. Taken together, this study shows that miR-451 has a protective effect on hepatic inflammation, and genistein can be used as a natural promoter of miR-451 to ameliorate NASH.
Collapse
Affiliation(s)
- Mailin Gan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuan Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya Tan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Science, Guiyang 550005, China
| | - Ting Zheng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Guoqing Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Dongmei Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
199
|
Salva-Pastor N, Chávez-Tapia NC, Uribe M, Nuño-Lámbarri N. Understanding the association of polycystic ovary syndrome and non-alcoholic fatty liver disease. J Steroid Biochem Mol Biol 2019; 194:105445. [PMID: 31381969 DOI: 10.1016/j.jsbmb.2019.105445] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/25/2019] [Accepted: 07/28/2019] [Indexed: 02/07/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among reproductive-age women. Patients with non-alcoholic fatty liver disease (NAFLD) often suffer from metabolic syndrome, atherosclerosis, ischemic heart disease, and extrahepatic tumors, conferring a lower survival than the general population; therefore it is crucial to study the association between NAFLD and PCOS since it remains poorly understood. Insulin resistance (IR) plays a central role in the pathogenesis of NAFLD and PCOS; also, hyperandrogenism enhances IR in these patients. IR, present in the NAFLD-PCOS association could decrease the hepatic production of sex hormone-binding globulin through a possible regulation mediated by hepatocyte nuclear factor 4 alpha. On the other hand, apoptotic processes initiated by androgens actively contribute to the progression of NAFLD. Considering the association between the two conditions, the screening of women with PCOS for the presence of NAFLD appears reasonable. The pathophysiological mechanisms of PCOS-NAFLD association and the initial approach will be reviewed here.
Collapse
Affiliation(s)
- Nicolás Salva-Pastor
- Traslational Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra Tlalpan, Z.C. 14050, Mexico City, Mexico; School of Medicine, Benemérita Universidad Autónoma de Puebla, 13 Sur 2702, Los Volcanes, Z.C. 72420, Puebla, Mexico.
| | - Norberto C Chávez-Tapia
- Traslational Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra Tlalpan, Z.C. 14050, Mexico City, Mexico; Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra Tlalpan, Z.C. 14050, Mexico City, Mexico.
| | - Misael Uribe
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra Tlalpan, Z.C. 14050, Mexico City, Mexico.
| | - Natalia Nuño-Lámbarri
- Traslational Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra Tlalpan, Z.C. 14050, Mexico City, Mexico.
| |
Collapse
|
200
|
Chen BB, Han Y, Pan X, Yan J, Liu W, Li Y, Lin X, Xu S, Peng XE. Association between nut intake and non-alcoholic fatty liver disease risk: a retrospective case-control study in a sample of Chinese Han adults. BMJ Open 2019; 9:e028961. [PMID: 31488477 PMCID: PMC6731785 DOI: 10.1136/bmjopen-2019-028961] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Nut consumption has been associated with a lower risk of type 2 diabetes, metabolic syndrome and insulin resistance. However, its effect on the risk of non-alcoholic fatty liver disease (NAFLD) is unknown. Therefore, we investigated the relationship between nut consumption and NAFLD risk. SETTING AND PARTICIPANTS We conducted a retrospective case-control study including 534 patients diagnosed with NAFLD and 534 controls matched by sex and age (±5 years) from the Affiliated Nanping First Hospital of Fujian Medical University in China. MAIN OUTCOME MEASURES Information on dietary intake was collected using a semiquantitative food frequency questionnaire and nut consumption was calculated. Nut consumption was categorised using quartiles based on the distribution of daily nut intake of the controls. Binary logistic regression models were used to estimate ORs and the 95% CIs for the association between nut consumption and NAFLD risk. RESULTS After adjusting for potential confounding variables, nut consumption was not associated with NAFLD risk in the overall sample. When the fully adjusted model was stratified by sex, a significant inverse association was found between high nut consumption and NAFLD only among the men in the highest quartile (OR=0.43; 95% CI 0.26 to 0.71; Ptrend = 0.01). The inverse association of nut consumption with NAFLD risk in men remained significant after controlling for other known or suspected risk factors for NAFLD. CONCLUSIONS Diets with a higher intake of nuts may be associated with a decreased risk of NAFLD, particularly in men.
Collapse
Affiliation(s)
- Bing Bing Chen
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Ying Han
- Fujian Hypertension Research Institute, VIP ward, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xinting Pan
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Jianhui Yan
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Wenjuan Liu
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yangfan Li
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Xu Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fujian, China
| | - Shanghua Xu
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, China
| | - Xian-E Peng
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fujian, China
| |
Collapse
|