151
|
Surendran N, Durasiewicz CP, Hoffmann T, Wille A, Bussmann AB, Richter M. Microfluidic Delivery of High Viscosity Liquids Using Piezoelectric Micropumps for Subcutaneous Drug Infusion Applications. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2024; 5:21-31. [PMID: 38487095 PMCID: PMC10939327 DOI: 10.1109/ojemb.2024.3355692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/13/2023] [Accepted: 01/15/2024] [Indexed: 03/17/2024] Open
Abstract
Goal: Auto-injectors for self-administration of drugs are usually refrigerated. If not warmed up prior to the injection, ejection of the total drug volume is not guaranteed, as their spring and plunger mechanism cannot adjust for a change in viscosity of the drug. Here, we develop piezoelectric micro diaphragm pump that allows these modifications possible while investigating the effectiveness of this alternative dosing method. Methods: The dosing of highly viscous liquid of 25 mPa·s is made possible using application-specific micropump design. By comparing the analytical with experimental results, the practicality of the concept is verified. Results: Using a powerful piezoelectric stack actuator, the micropump achieves high fluid pressures of up to (368 ± 17) kPa. In order to assess the influence of viscosity, we characterize the fluidic performance of the designed micropump through 27G gauge needle for various water-glycerin mixtures. We find maximum flow rates of 2 mL/min for viscosities of up to 25 mPa·s. Conclusions: The developed micro diaphragm pump enables the development of smart auto-injectors with flow rate regulation to achieve drug delivery for high viscosity drugs through 27G needles.
Collapse
Affiliation(s)
- Nivedha Surendran
- Fraunhofer EMFT Institute for Electronic Microsystems and Solid-State Technologies80686MunichGermany
| | - Claudia Patricia Durasiewicz
- Fraunhofer EMFT Institute for Electronic Microsystems and Solid-State Technologies80686MunichGermany
- Fraunhofer IMTE Research Institute for Individualized and Cell-based Medical Engineering23562LübeckGermany
| | - Thalia Hoffmann
- Fraunhofer EMFT Institute for Electronic Microsystems and Solid-State Technologies80686MunichGermany
| | - Axel Wille
- Fraunhofer EMFT Institute for Electronic Microsystems and Solid-State Technologies80686MunichGermany
| | - Agnes Beate Bussmann
- Fraunhofer EMFT Institute for Electronic Microsystems and Solid-State Technologies80686MunichGermany
| | - Martin Richter
- Fraunhofer EMFT Institute for Electronic Microsystems and Solid-State Technologies80686MunichGermany
| |
Collapse
|
152
|
Sokol MB, Beganovskaya VA, Mollaeva MR, Yabbarov NG, Chirkina MV, Belykh DV, Startseva OM, Egorov AE, Kostyukov AA, Kuzmin VA, Lomakin SM, Shilkina NG, Krivandin AV, Shatalova OV, Gradova MA, Abakumov MA, Nikitin AA, Maksimova VP, Kirsanov KI, Nikolskaya ED. Pharmaceutical Approach to Develop Novel Photosensitizer Nanoformulation: An Example of Design and Characterization Rationale of Chlorophyll α Derivative. Pharmaceutics 2024; 16:126. [PMID: 38258135 PMCID: PMC10818748 DOI: 10.3390/pharmaceutics16010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
In this study, we described physico-chemical properties of novel nanoformulation of photosensitizer-pyropheophorbide α 17-diethylene glycol ester (XL) (chlorophyll α derivative), revealing insights into antitumor activity and maintaining quality, meeting the pharmaceutical approach of new nanoformulation design. Our formulation, based on poly(lactic-co-glycolic acid) (PLGA) nanoparticles, increased XL solubility and selective tumor-targeted accumulation. In our research, we revealed, for the first time, that XL binding to polyvinyl alcohol (PVA) enhances XL photophysical activity, providing the rationale for PVA application as a stabilizer for nanoformulations. Results of FTIR, DSC, and XRD revealed the physical interactions between XL and excipients, including PVA, indicating that the encapsulation maintained XL binding to PVA. The encapsulated XL exhibited higher photophysical activity compared to non-encapsulated substance, which can be attributed to the influence of residual PVA. Gamma-irradiation led to degradation of XL; however, successful sterilization of the samples was achieved through the filtration. Importantly, the encapsulated and sterilized XL retained cytotoxicity against both 2D and 3D tumor cell models, demonstrating the potential of the formulated NP-XL for photodynamic therapy applications, but lacked the ability to reactivate epigenetically silenced genes. These findings provide valuable insights into the design and characterization of PLGA-based nanoparticles for the encapsulation of photosensitizers.
Collapse
Affiliation(s)
- Maria B. Sokol
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.B.S.); (V.A.B.); (M.R.M.); (M.V.C.); (A.E.E.); (V.A.K.); (S.M.L.); (A.V.K.); (O.V.S.)
| | - Veronika A. Beganovskaya
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.B.S.); (V.A.B.); (M.R.M.); (M.V.C.); (A.E.E.); (V.A.K.); (S.M.L.); (A.V.K.); (O.V.S.)
| | - Mariia R. Mollaeva
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.B.S.); (V.A.B.); (M.R.M.); (M.V.C.); (A.E.E.); (V.A.K.); (S.M.L.); (A.V.K.); (O.V.S.)
| | - Nikita G. Yabbarov
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.B.S.); (V.A.B.); (M.R.M.); (M.V.C.); (A.E.E.); (V.A.K.); (S.M.L.); (A.V.K.); (O.V.S.)
| | - Margarita V. Chirkina
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.B.S.); (V.A.B.); (M.R.M.); (M.V.C.); (A.E.E.); (V.A.K.); (S.M.L.); (A.V.K.); (O.V.S.)
| | - Dmitry V. Belykh
- Institute of Chemistry, Komi Scientific Center, Ural Division of the Russian Academy of Sciences, 167982 Syktyvkar, Russia;
| | - Olga M. Startseva
- Pitirim Sorokin Syktyvkar State University, 167001 Syktyvkar, Russia;
| | - Anton E. Egorov
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.B.S.); (V.A.B.); (M.R.M.); (M.V.C.); (A.E.E.); (V.A.K.); (S.M.L.); (A.V.K.); (O.V.S.)
| | - Alexey A. Kostyukov
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.B.S.); (V.A.B.); (M.R.M.); (M.V.C.); (A.E.E.); (V.A.K.); (S.M.L.); (A.V.K.); (O.V.S.)
| | - Vladimir A. Kuzmin
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.B.S.); (V.A.B.); (M.R.M.); (M.V.C.); (A.E.E.); (V.A.K.); (S.M.L.); (A.V.K.); (O.V.S.)
- National Research Nuclear University MEPhI, 115409 Moscow, Russia
| | - Sergei M. Lomakin
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.B.S.); (V.A.B.); (M.R.M.); (M.V.C.); (A.E.E.); (V.A.K.); (S.M.L.); (A.V.K.); (O.V.S.)
- N. N. Semenov Federal Research Center for Chemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (N.G.S.)
| | - Natalia G. Shilkina
- N. N. Semenov Federal Research Center for Chemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (N.G.S.)
| | - Alexey V. Krivandin
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.B.S.); (V.A.B.); (M.R.M.); (M.V.C.); (A.E.E.); (V.A.K.); (S.M.L.); (A.V.K.); (O.V.S.)
| | - Olga V. Shatalova
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.B.S.); (V.A.B.); (M.R.M.); (M.V.C.); (A.E.E.); (V.A.K.); (S.M.L.); (A.V.K.); (O.V.S.)
| | - Margarita A. Gradova
- N. N. Semenov Federal Research Center for Chemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (N.G.S.)
| | - Maxim A. Abakumov
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology (MISIS), 119049 Moscow, Russia; (M.A.A.); (A.A.N.)
| | - Aleksey A. Nikitin
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology (MISIS), 119049 Moscow, Russia; (M.A.A.); (A.A.N.)
| | - Varvara P. Maksimova
- Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (V.P.M.); (K.I.K.)
| | - Kirill I. Kirsanov
- Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (V.P.M.); (K.I.K.)
| | - Elena D. Nikolskaya
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.B.S.); (V.A.B.); (M.R.M.); (M.V.C.); (A.E.E.); (V.A.K.); (S.M.L.); (A.V.K.); (O.V.S.)
| |
Collapse
|
153
|
Sharma P, Chaturvedi S, Khan MA, Rai Y, Bhatt AN, Najmi AK, Akhtar M, Mishra AK. Nanoemulsion potentiates the anti-cancer activity of Myricetin by effective inhibition of PI3K/AKT/mTOR pathway in triple-negative breast cancer cells. Med Oncol 2024; 41:56. [PMID: 38218749 DOI: 10.1007/s12032-023-02274-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/28/2023] [Indexed: 01/15/2024]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous tumor with a poor prognosis and high metastatic potential, resulting in poor clinical outcomes, necessitating investigation to devise effective therapeutic strategies. Multiple studies have substantiated the anti-cancer properties of the naturally occurring flavonoid "Myricetin" in various malignancies. However, the therapeutic application of Myricetin is impeded by its poor water solubility and low oral bioavailability. To overcome this limitation, we aimed to develop nanoemulsion of Myricetin (Myr-NE) and evaluate its advantage over Myricetin alone in TNBC cells. The nanoemulsion was formulated using Capryol 90 (oil), Tween 20 (surfactant), and Transcutol HP (co-surfactant). The optimized nano-formulation underwent an evaluation to determine its size, zeta potential, morphology, stability, drug encapsulation efficiency, and in vitro release properties. The anti-cancer activity of Myr-NE was further studied to examine its distinct impact on intracellular drug uptake, cell-viability, anti-tumor signaling, oxidative stress, clonogenicity, and cell death, compared with Myricetin alone in MDA-MB-231 (TNBC) cells. The in vitro drug release and intracellular drug uptake of Myricetin was significantly increased in Myr-NE formulation as compared to Myricetin alone. Moreover, Myr-NE exhibited significant inhibition of cell proliferation, clonogenicity, and increased apoptosis with ~ 2.5-fold lower IC50 as compared to Myricetin. Mechanistic investigation revealed that nanoemulsion augmented the anti-cancer efficacy of Myricetin, most likely by inhibiting the PI3K/AKT/mTOR pathway, eventually leading to enhanced cell death in TNBC cells. The study provides substantial experimental evidence to support the notion that the Myr-NE formulation has the potential to be an effective therapeutic drug for TNBC treatment.
Collapse
Affiliation(s)
- Preeti Sharma
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard (Hamdard University), New Delhi, 110062, India
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Timarpur, Delhi, 110054, India
| | - Shubhra Chaturvedi
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Timarpur, Delhi, 110054, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard (Hamdard University), New Delhi, 110062, India
| | - Yogesh Rai
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Timarpur, Delhi, 110054, India
| | - Anant Narayan Bhatt
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Timarpur, Delhi, 110054, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard (Hamdard University), New Delhi, 110062, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard (Hamdard University), New Delhi, 110062, India.
| | - Anil Kumar Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Timarpur, Delhi, 110054, India.
| |
Collapse
|
154
|
Kuperkar K, Atanase LI, Bahadur A, Crivei IC, Bahadur P. Degradable Polymeric Bio(nano)materials and Their Biomedical Applications: A Comprehensive Overview and Recent Updates. Polymers (Basel) 2024; 16:206. [PMID: 38257005 PMCID: PMC10818796 DOI: 10.3390/polym16020206] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Degradable polymers (both biomacromolecules and several synthetic polymers) for biomedical applications have been promising very much in the recent past due to their low cost, biocompatibility, flexibility, and minimal side effects. Here, we present an overview with updated information on natural and synthetic degradable polymers where a brief account on different polysaccharides, proteins, and synthetic polymers viz. polyesters/polyamino acids/polyanhydrides/polyphosphazenes/polyurethanes relevant to biomedical applications has been provided. The various approaches for the transformation of these polymers by physical/chemical means viz. cross-linking, as polyblends, nanocomposites/hybrid composites, interpenetrating complexes, interpolymer/polyion complexes, functionalization, polymer conjugates, and block and graft copolymers, are described. The degradation mechanism, drug loading profiles, and toxicological aspects of polymeric nanoparticles formed are also defined. Biomedical applications of these degradable polymer-based biomaterials in and as wound dressing/healing, biosensors, drug delivery systems, tissue engineering, and regenerative medicine, etc., are highlighted. In addition, the use of such nano systems to solve current drug delivery problems is briefly reviewed.
Collapse
Affiliation(s)
- Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Piplod, Surat 395007, Gujarat, India;
| | - Leonard Ionut Atanase
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Anita Bahadur
- Department of Zoology, Sir PT Sarvajanik College of Science, Surat 395001, Gujarat, India;
| | - Ioana Cristina Crivei
- Department of Public Health, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 700449 Iasi, Romania;
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Udhana-Magdalla Road, Surat 395007, Gujarat, India;
| |
Collapse
|
155
|
To NDK, Theruvathu JA. Determination and Quantification of Acetaldehyde, Acetone, and Methanol in Hand Sanitizers Using Headspace GC/MS: Effect of Storage Time and Temperature. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:74. [PMID: 38248538 PMCID: PMC10815429 DOI: 10.3390/ijerph21010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/23/2024]
Abstract
Accurate determination of the concentration of alcohols and their metabolites is important in forensics and in several life science areas. A new headspace gas chromatography-mass spectrometry method has been developed to quantify alcohols and their oxidative products using isotope-labeled internal standards. The limit of detection (LOD) of the analytes in the developed method was 0.211 µg/mL for methanol, 0.158 µg/mL for ethanol, 0.157 µg/mL for isopropanol, 0.010 µg/mL for n-propanol, 0.157 µg/mL for acetone, and 0.209 µg/mL for acetaldehyde. The precision and accuracy of the method were evaluated, and the relative standard deviation percentages were found to be less than 3%. This work demonstrates the application of this method, specifically in quantifying the concentration of oxidative products of alcohol and other minor alcohols found in hand sanitizers, which have become an essential household item since the COVID-19 pandemic. Apart from the major components, the minor alcohols found in hand sanitizers include methanol, isopropanol, and n-propanol. The concentration range of these minor alcohols found in ethanol-based hand sanitizer samples was as follows: methanol, 0.000921-0.0151 mg/mL; isopropanol, 0.454-13.8 mg/mL; and n-propanol, 0.00474-0.152 mg/mL. In ethanol-based hand sanitizers, a significant amount of acetaldehyde (0.00623-0.231 mg/mL) was observed as an oxidation product, while in the isopropanol-based hand sanitizer, acetone (0.697 mg/mL) was observed as an oxidation product. The concentration of acetaldehyde in ethanol-based hand sanitizers significantly increased with storage time and temperature, whereas no such increase in acetone concentration was observed in isopropanol-based hand sanitizers with storage time and temperature. In two of the selected hand sanitizers, the acetaldehyde levels increased by almost 200% within a week when stored at room temperature. Additionally, exposing the hand sanitizers to a temperature of 45 °C for 24 h resulted in a 100% increase in acetaldehyde concentration. On the contrary, the acetone level remained constant upon the change in storage time and temperature.
Collapse
Affiliation(s)
| | - Jacob A. Theruvathu
- Department of Natural Sciences, University of Houston-Downtown, Houston, TX 77002, USA;
| |
Collapse
|
156
|
Brown K, Theofanous D, Britton RG, Aburido G, Pepper C, Sri Undru S, Howells L. Resveratrol for the Management of Human Health: How Far Have We Come? A Systematic Review of Resveratrol Clinical Trials to Highlight Gaps and Opportunities. Int J Mol Sci 2024; 25:747. [PMID: 38255828 PMCID: PMC10815776 DOI: 10.3390/ijms25020747] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Resveratrol has long been proposed as being beneficial to human health across multiple morbidities, yet there is currently no conclusive clinical evidence to advocate its recommendation in any healthcare setting. A large cohort with high-quality clinical data and clearly defined biomarkers or endpoints are required to draw meaningful conclusions. This systematic review compiles every clinical trial conducted using a defined dose of resveratrol in a purified form across multiple morbidities to highlight the current 'state-of-play' and knowledge gaps, informing future trial designs to facilitate the realisation of resveratrol's potential benefits to human health. Over the last 20 years, there have been almost 200 studies evaluating resveratrol across at least 24 indications, including cancer, menopause symptoms, diabetes, metabolic syndrome, and cardiovascular disease. There are currently no consensus treatment regimens for any given condition or endpoint, beyond the fact that resveratrol is generally well-tolerated at a dose of up to 1 g/day. Additionally, resveratrol consistently reduces inflammatory markers and improves aspects of a dysregulated metabolism. In conclusion, over the last 20 years, the increasing weight of clinical evidence suggests resveratrol can benefit human health, but more large, high-quality clinical trials are required to transition this intriguing compound from health food shops to the clinic.
Collapse
Affiliation(s)
- Karen Brown
- Leicester Cancer Research Centre, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK; (D.T.); (R.G.B.); (G.A.); (S.S.U.); (L.H.)
| | - Despoina Theofanous
- Leicester Cancer Research Centre, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK; (D.T.); (R.G.B.); (G.A.); (S.S.U.); (L.H.)
| | - Robert G. Britton
- Leicester Cancer Research Centre, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK; (D.T.); (R.G.B.); (G.A.); (S.S.U.); (L.H.)
| | - Grandezza Aburido
- Leicester Cancer Research Centre, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK; (D.T.); (R.G.B.); (G.A.); (S.S.U.); (L.H.)
| | - Coral Pepper
- Odames Library, Victoria Building, Leicester Royal Infirmary, Leicester LE1 5WW, UK
| | - Shanthi Sri Undru
- Leicester Cancer Research Centre, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK; (D.T.); (R.G.B.); (G.A.); (S.S.U.); (L.H.)
| | - Lynne Howells
- Leicester Cancer Research Centre, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK; (D.T.); (R.G.B.); (G.A.); (S.S.U.); (L.H.)
| |
Collapse
|
157
|
Velásquez PA, Hernandez JC, Galeano E, Hincapié-García J, Rugeles MT, Zapata-Builes W. Effectiveness of Drug Repurposing and Natural Products Against SARS-CoV-2: A Comprehensive Review. Clin Pharmacol 2024; 16:1-25. [PMID: 38197085 PMCID: PMC10773251 DOI: 10.2147/cpaa.s429064] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/14/2023] [Indexed: 01/11/2024] Open
Abstract
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a betacoronavirus responsible for the COVID-19 pandemic, causing respiratory disorders, and even death in some individuals, if not appropriately treated in time. To face the pandemic, preventive measures have been taken against contagions and the application of vaccines to prevent severe disease and death cases. For the COVID-19 treatment, antiviral, antiparasitic, anticoagulant and other drugs have been reused due to limited specific medicaments for the disease. Drug repurposing is an emerging strategy with therapies that have already tested safe in humans. One promising alternative for systematic experimental screening of a vast pool of compounds is computational drug repurposing (in silico assay). Using these tools, new uses for approved drugs such as chloroquine, hydroxychloroquine, ivermectin, zidovudine, ribavirin, lamivudine, remdesivir, lopinavir and tenofovir/emtricitabine have been conducted, showing effectiveness in vitro and in silico against SARS-CoV-2 and some of these, also in clinical trials. Additionally, therapeutic options have been sought in natural products (terpenoids, alkaloids, saponins and phenolics) with promising in vitro and in silico results for use in COVID-19 disease. Among these, the most studied are resveratrol, quercetin, hesperidin, curcumin, myricetin and betulinic acid, which were proposed as SARS-CoV-2 inhibitors. Among the drugs reused to control the SARS-CoV2, better results have been observed for remdesivir in hospitalized patients and outpatients. Regarding natural products, resveratrol, curcumin, and quercetin have demonstrated in vitro antiviral activity against SARS-CoV-2 and in vivo, a nebulized formulation has demonstrated to alleviate the respiratory symptoms of COVID-19. This review shows the evidence of drug repurposing efficacy and the potential use of natural products as a treatment for COVID-19. For this, a search was carried out in PubMed, SciELO and ScienceDirect databases for articles about drugs approved or under study and natural compounds recognized for their antiviral activity against SARS-CoV-2.
Collapse
Affiliation(s)
- Paula Andrea Velásquez
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Juan C Hernandez
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Elkin Galeano
- Grupo Productos Naturales Marinos, Departamento de Farmacia, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Jaime Hincapié-García
- Grupo de investigación, Promoción y prevención farmacéutica, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Medellín, Colombia
| | - María Teresa Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Wildeman Zapata-Builes
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
158
|
Li R, Dere E, Kwong M, Fei M, Dave R, Masih S, Wang J, McNamara E, Huang H, Liang WC, Schutt L, Kamath AV, Ovacik MA. A Bispecific Modeling Framework Enables the Prediction of Efficacy, Toxicity, and Optimal Molecular Design of Bispecific Antibodies Targeting MerTK. AAPS J 2024; 26:11. [PMID: 38167740 DOI: 10.1208/s12248-023-00881-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Inhibiting MerTK on macrophages is a promising therapeutic strategy for augmenting anti-tumor immunity. However, blocking MerTK on retinal pigment epithelial cells (RPEs) results in retinal toxicity. Bispecific antibodies (bsAbs) containing an anti-MerTK therapeutic and anti-PD-L1 targeting arm were developed to reduce drug binding to MerTK on RPEs, since PD-L1 is overexpressed on macrophages but not RPEs. In this study, we present a modeling framework using in vitro receptor occupancy (RO) and pharmacokinetics (PK) data to predict efficacy, toxicity, and therapeutic index (TI) of anti-MerTK bsAbs. We first used simulations and in vitro RO data of anti-MerTK monospecific antibody (msAb) to estimate the required MerTK RO for in vivo efficacy and toxicity. Using these estimated RO thresholds, we employed our model to predict the efficacious and toxic doses for anti-MerTK bsAbs with varying affinities for MerTK. Our model predicted the highest TI for the anti-MerTK/PD-L1 bsAb with an attenuated MerTK binding arm, which was consistent with in vivo efficacy and toxicity observations. Subsequently, we used the model, in combination with sensitivity analysis and parameter scans, to suggest an optimal molecular design of anti-MerTK bsAb with the highest predicted TI in humans. Our prediction revealed that this optimized anti-MerTK bsAb should contain a MerTK therapeutic arm with relatively low affinity, along with a high affinity targeting arm that can bind to a low abundance target with slow turnover rate. Overall, these results demonstrated that our modeling framework can guide the rational design of bsAbs.
Collapse
Affiliation(s)
- Ran Li
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA.
| | - Edward Dere
- Safety Assessment, Genentech Inc., South San Francisco, California, 94080, USA
| | - Mandy Kwong
- Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, California, 94080, USA
| | - Mingjian Fei
- Molecular Oncology, Genentech Inc, South San Francisco, California, 94080, USA
| | - Rutwij Dave
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Shabkhaiz Masih
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Joy Wang
- Molecular Oncology, Genentech Inc, South San Francisco, California, 94080, USA
| | - Erin McNamara
- Molecular Oncology, Genentech Inc, South San Francisco, California, 94080, USA
| | - Haochu Huang
- Molecular Oncology, Genentech Inc, South San Francisco, California, 94080, USA
| | - Wei-Ching Liang
- Antibody Engineering, Genentech Inc, South San Francisco, California, 94080, USA
| | - Leah Schutt
- Safety Assessment, Genentech Inc., South San Francisco, California, 94080, USA
| | - Amrita V Kamath
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Meric A Ovacik
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA.
| |
Collapse
|
159
|
Valentine JL, Dengler A, Zhao A, Truong T, McAfee S, Hassanein M, Irvin SC, Chen J, Meng X, Yan H, Torri A, Sumner G, Andisik MD, Paccaly A, Partridge MA. Immunogenicity of Cemiplimab: Low Incidence of Antidrug Antibodies and Cut-Point Suitability Across Tumor Types. J Clin Pharmacol 2024; 64:125-136. [PMID: 37656820 DOI: 10.1002/jcph.2340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
The immunogenicity of cemiplimab, a fully human immunoglobulin G4 monoclonal antibody directed against programmed cell death 1, was assessed in patients across multiple tumor types. The development of antidrug antibodies (ADAs) against cemiplimab was monitored using a validated bridging immunoassay. To identify ADA-positive samples in the assay, statistically determined cut points were established by analyzing baseline clinical study samples from a mixed population of different tumor types, and this validation cut point was used to assess immunogenicity in all subsequent studies. Regulatory guidance requires that ADA assay cut points be verified for appropriateness in different patient populations. Thus, for the cemiplimab ADA assay, we evaluated whether each new oncology population was comparable with the validation population used to set the cut point. Assay responses from 2393 individual serum samples from 8 different tumor types were compared with the validation population, using established statistical methods for cut-point determination and comparison, with no significant differences observed. Across tumor types, the immunogenicity of cemiplimab was low, with an overall treatment-emergent ADA incidence rate of 1.9% and 2.5% at intravenous dose regimens of 3 mg/kg every 2 weeks and 350 mg every 3 weeks, respectively. Moreover, no neutralizing antibodies to cemiplimab were detected in patients with ADA-positive samples, and there was no observed impact of cemiplimab ADAs on pharmacokinetics. Study-specific cut points may be required in some diseases, such as immune and inflammatory diseases; however, based on this analysis, in-study cut points are not required for each new oncology disease indication for cemiplimab.
Collapse
Affiliation(s)
- Jenny L Valentine
- Bioanalytical Sciences and Pharmacometrics, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Andrew Dengler
- Bioanalytical Sciences and Pharmacometrics, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - An Zhao
- Bioanalytical Sciences and Pharmacometrics, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Tiffany Truong
- Bioanalytical Sciences and Pharmacometrics, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Sean McAfee
- Bioanalytical Sciences and Pharmacometrics, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Mohamed Hassanein
- Bioanalytical Sciences and Pharmacometrics, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Susan C Irvin
- Bioanalytical Sciences and Pharmacometrics, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Jihua Chen
- Bioanalytical Sciences and Pharmacometrics, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Xiao Meng
- Bioanalytical Sciences and Pharmacometrics, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Hong Yan
- Bioanalytical Sciences and Pharmacometrics, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Albert Torri
- Bioanalytical Sciences and Pharmacometrics, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Giane Sumner
- Bioanalytical Sciences and Pharmacometrics, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Matthew D Andisik
- Bioanalytical Sciences and Pharmacometrics, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Anne Paccaly
- Bioanalytical Sciences and Pharmacometrics, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Michael A Partridge
- Bioanalytical Sciences and Pharmacometrics, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| |
Collapse
|
160
|
Sangwan K, Sharma V, Goyal PK. Pharmacological Profile of Novel Anti-cancer Drugs Approved by USFDA in 2022: A Review. Curr Mol Med 2024; 24:734-750. [PMID: 37350009 DOI: 10.2174/1566524023666230622151034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND For any drug molecule, it is mandatory to pass the drug approval process of the concerned regulatory authority, before being marketed. The Food and Drug Administration (FDA), throughout the year, approves several new drugs for safety and efficacy. In addition to new drug approvals, FDA also works on improving access to generic drugs, aimed to lower the cost of drugs for patients and improve access to treatments. In the year 2022 twelve new drug therapies were approved for managing varying cancers. METHODS This manuscript is focused to describe the pharmacological aspects including therapeutic uses, mechanisms of actions, pharmacokinetics, adverse effects, doses, indication for special cases, contraindications, etc., of novel FDA-approved anticancer drug therapies in the year 2022. RESULT FDA has approved about 29% (11 out of 37) novel drug therapies for varying types of cancers such as lung cancer, breast cancer, prostate cancer, melanoma, leukemia, etc. The Center for Drug Evaluation and Research CDER has reported that 90% of these anticancer drugs (e.g. Adagrasib, Futibatinib, Mirvetuximabsoravtansinegynx, Mosunetuzumab-axb, Nivolumab and relatlimab-rmbw, Olutasidenib, Pacritinib, Tebentafusp-tebn, Teclistamab-cqyv, and Tremelimumab-actl) as orphan drugs and recommended to treat rare or uncommon cancers such as non-small cell lung cancer, metastatic intrahepatic cholangio-carcinoma, epithelial ovarian cancer, follicular lymphoma, metastatic melanoma, metastatic uveal melanoma, etc. CDER has identified six anticancer drugs (e.g. Lutetium (177Lu)vipivotidetetraxetan, Mirvetuximabsoravtansine- gynx, Mosunetuzumab-axb, Nivolumab and relatlimab-rmbw, Tebentafusp-tebn, Teclistamab-cqyv) as first-in-class drugs i.e. drugs having different mechanisms of action from the already existing ones. The newly approved anticancer drugs shall provide more efficient treatment options for cancer patients. Three FDA-approved anticancer drugs in the year 2023 are also briefly described in the manuscript. CONCLUSION This manuscript, describing the pharmacological aspects of eleven anticancer novel drug therapies approved by the FDA, shall serve as a helpful document for cancer patients, concerned academicians, researchers, and clinicians, especially oncologists.
Collapse
Affiliation(s)
- Kavita Sangwan
- Department of Pharmacy, Panipat Institute of Engineering and Technology (PIET), Samalkha, Panipat, 132102, Haryana, India
| | - Vipasha Sharma
- Department of Pharmacy, Panipat Institute of Engineering and Technology (PIET), Samalkha, Panipat, 132102, Haryana, India
| | - Parveen Kumar Goyal
- Department of Pharmacy, Panipat Institute of Engineering and Technology (PIET), Samalkha, Panipat, 132102, Haryana, India
| |
Collapse
|
161
|
Park E, Izadi S. Molecular surface descriptors to predict antibody developability: sensitivity to parameters, structure models, and conformational sampling. MAbs 2024; 16:2362788. [PMID: 38853585 PMCID: PMC11168226 DOI: 10.1080/19420862.2024.2362788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/29/2024] [Indexed: 06/11/2024] Open
Abstract
In silico assessment of antibody developability during early lead candidate selection and optimization is of paramount importance, offering a rapid and material-free screening approach. However, the predictive power and reproducibility of such methods depend heavily on the selection of molecular descriptors, model parameters, accuracy of predicted structure models, and conformational sampling techniques. Here, we present a set of molecular surface descriptors specifically designed for predicting antibody developability. We assess the performance of these descriptors by benchmarking their correlations with an extensive array of experimentally determined biophysical properties, including viscosity, aggregation, hydrophobic interaction chromatography, human pharmacokinetic clearance, heparin retention time, and polyspecificity. Further, we investigate the sensitivity of these surface descriptors to methodological nuances, such as the choice of interior dielectric constant, hydrophobicity scales, structure prediction methods, and the impact of conformational sampling. Notably, we observe systematic shifts in the distribution of surface descriptors depending on the structure prediction method used, driving weak correlations of surface descriptors across structure models. Averaging the descriptor values over conformational distributions from molecular dynamics mitigates the systematic shifts and improves the consistency across different structure prediction methods, albeit with inconsistent improvements in correlations with biophysical data. Based on our benchmarking analysis, we propose six in silico developability risk flags and assess their effectiveness in predicting potential developability issues for a set of case study molecules.
Collapse
Affiliation(s)
- Eliott Park
- Pharmaceutical Development, Genentech Inc, South San Francisco, CA, USA
| | - Saeed Izadi
- Pharmaceutical Development, Genentech Inc, South San Francisco, CA, USA
| |
Collapse
|
162
|
Saini AK, Anil N, Vijay AN, Mangla B, Javed S, Kumar P, Ahsan W. Recent Advances in the Treatment Strategies of Friedreich's Ataxia: A Review of Potential Drug Candidates and their Underlying Mechanisms. Curr Pharm Des 2024; 30:1472-1489. [PMID: 38638052 DOI: 10.2174/0113816128288707240404051856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Friedreich's Ataxia (FRDA) is a rare hereditary neurodegenerative disorder characterized by progressive ataxia, cardiomyopathy, and diabetes. The disease is caused by a deficiency of frataxin, a mitochondrial protein involved in iron-sulfur cluster synthesis and iron metabolism. OBJECTIVE This review aims to summarize recent advances in the development of treatment strategies for FRDA, with a focus on potential drug candidates and their mechanisms of action. METHODS A comprehensive literature search was conducted using various authentic scientific databases to identify studies published in the last decade that investigated potential treatment strategies for FRDA. The search terms used included "Friedreich's ataxia", "treatment", "drug candidates", and "mechanisms of action". RESULTS To date, only one drug got approval from US-FDA in the year 2023; however, significant developments were achieved in FRDA-related research focusing on diverse therapeutic interventions that could potentially alleviate the symptoms of this disease. Several promising drug candidates have been identified for the treatment of FRDA, which target various aspects of frataxin deficiency and aim to restore frataxin levels, reduce oxidative stress, and improve mitochondrial function. Clinical trials have shown varying degrees of success, with some drugs demonstrating significant improvements in neurological function and quality of life in FRDA patients. CONCLUSION While there has been significant progress in the development of treatment strategies for FRDA, further research is needed to optimize these approaches and identify the most effective and safe treatment options for patients. The integration of multiple therapeutic strategies may be necessary to achieve the best outcomes in FRDA management.
Collapse
Affiliation(s)
- Aman Kumar Saini
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Neha Anil
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Ardra N Vijay
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Bharti Mangla
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, P. Box No. 114, Saudi Arabia
| | - Pankaj Kumar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, P. Box No. 114, Saudi Arabia
| |
Collapse
|
163
|
Gregoritza K, Theodorou C, Heitz M, Graf T, Germershaus O, Gregoritza M. Enzymatic degradation pattern of polysorbate 20 impacts interfacial properties of monoclonal antibody formulations. Eur J Pharm Biopharm 2024; 194:74-84. [PMID: 38042510 DOI: 10.1016/j.ejpb.2023.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Polysorbate 20 (PS20) is widely used to maintain protein stability in biopharmaceutical formulations. However, PS20 is susceptible to hydrolytic degradation catalyzed by trace amounts of residual host cell proteins present in monoclonal antibody (mAb) formulations. The resulting loss of intact surfactant and the presence of PS20 degradation products, such as free fatty acids (FFAs), may impair protein stability. In this study, two hydrolytically-active immobilized lipases, which primarily targeted either monoester or higher-order ester species in PS20, were used to generate partially-degraded PS20. The impact of PS20 degradation pattern on critical micelle concentration (CMC), surface tension, interfacial rheology parameters and agitation protection was assessed. CMC was slightly increased upon monoester degradation, but significantly increased upon higher-order ester degradation. The PS20 degradation pattern also significantly impacted the dynamic surface tension of a mAb formulation, whereas changes in the equilibrium surface tension were mainly caused by the adsorption of FFAs onto the air-water interface. In an agitation protection study, monoester degradation resulted in the formation of soluble mAb aggregates and proteinaceous particles, suggesting that preferential degradation of PS20 monoester species can significantly impair mAb stability. Additional mAbs should be tested in the future to assess the impact of the protein format.
Collapse
Affiliation(s)
- Kathrin Gregoritza
- Pharmaceutical and Processing Development, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| | - Christos Theodorou
- Pharmaceutical and Processing Development, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Marc Heitz
- Pharmaceutical and Processing Development, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Tobias Graf
- Analytical Development and Quality Control, Pharma Technical Development Biologics Europe, Roche Diagnostics GmbH, Penzberg, Germany
| | - Oliver Germershaus
- Institute for Pharma Technology, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Manuel Gregoritza
- Analytical Development and Quality Control, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| |
Collapse
|
164
|
Bittner B, Schmidt J. Advancing Subcutaneous Dosing Regimens for Biotherapeutics: Clinical Strategies for Expedited Market Access. BioDrugs 2024; 38:23-46. [PMID: 37831325 PMCID: PMC10789662 DOI: 10.1007/s40259-023-00626-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/14/2023]
Abstract
In recent years, subcutaneous administration of biotherapeutics has made significant progress. The self-administration market for rheumatoid arthritis has witnessed the introduction of additional follow-on biologics, while the first subcutaneous dosing options for monoclonal antibodies have become available for multiple sclerosis. Oncology has also seen advancements with the authorization of high-volume subcutaneous formulations, facilitated by the development of high-concentration formulations and innovative delivery systems. Regulatory and Health Technology Assessment bodies increasingly consider preference data in filing dossiers, particularly in evaluating novel drug delivery methods. The adoption of a pharmacokinetic-based clinical bridging approach has become standard for transitioning from intravenous to subcutaneous administration. Non-inferiority studies with pharmacokinetics as the only primary endpoint have started deviating from traditional randomization schemes, favoring the subcutaneous route and comparing with historical intravenous data. While nonclinical and computational models made progress in predicting safety and immunogenicity for subcutaneously dosed antibodies, clinical trial evidence remains essential due to inter-individual variations and the impact of formulation parameters on anti-drug antibody formation. Ongoing technological advancements and the expanding knowledge base on pharmacokinetic-pharmacodynamic correlation across specialty areas are expected to further accelerate clinical development of subcutaneous biologics.
Collapse
Affiliation(s)
- Beate Bittner
- Global Product Strategy, Product Optimization, F. Hoffmann-La Roche, Grenzacher Strasse 124, 4070, Basel, Switzerland.
| | - Johannes Schmidt
- Global Product Strategy, Product Optimization, F. Hoffmann-La Roche, Grenzacher Strasse 124, 4070, Basel, Switzerland
| |
Collapse
|
165
|
Hastedt JE, Bäckman P, Cabal A, Clark A, Ehrhardt C, Forbes B, Hickey AJ, Hochhaus G, Jiang W, Kassinos S, Kuehl PJ, Prime D, Son YJ, Teague S, Tehler U, Wylie J. iBCS: 3. A Biopharmaceutics Classification System for Orally Inhaled Drug Products. Mol Pharm 2024; 21:164-172. [PMID: 38059771 PMCID: PMC10762654 DOI: 10.1021/acs.molpharmaceut.3c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/28/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
In this article, we specify for the first time a quantitative biopharmaceutics classification system for orally inhaled drugs. To date, orally inhaled drug product developers have lacked a biopharmaceutics classification system like the one developed to navigate the development of immediate release of oral medicines. Guideposts for respiratory drug discovery chemists and inhalation product formulators have been elusive and difficult to identify due to the complexity of pulmonary physiology, the intricacies of drug deposition and disposition in the lungs, and the influence of the inhalation delivery device used to deliver the drug as a respirable aerosol. The development of an inhalation biopharmaceutics classification system (iBCS) was an initiative supported by the Product Quality Research Institute (PQRI). The goal of the PQRI iBCS working group was to generate a qualitative biopharmaceutics classification system that can be utilized by inhalation scientists as a "rule of thumb" to identify desirable molecular properties and recognize and manage CMC product development risks based on physicochemical properties of the drug and the deposited lung dose. Herein, we define the iBCS classes quantitatively according to the dose number and permeability. The proposed iBCS was evaluated for its ability to categorize marketed inhaled drugs using data from the literature. The appropriateness of the classification of each drug was assessed based on published development, clinical and nonclinical data, and mechanistic physiologically based biopharmaceutics modeling. The inhaled drug product development challenges for each iBCS classification are discussed and illustrated for different classes of marketed inhaled drugs. Finally, it is recognized that discriminatory laboratory methods to characterize regional lung deposition, dissolution, and permeability will be key to fully realizing the benefits of an iBCS to streamline and derisk inhaled drug development.
Collapse
Affiliation(s)
- Jayne E. Hastedt
- JDP
Pharma Consulting, San Carlos, California 94070, United States
| | | | - Antonio Cabal
- Eisai, Woodcliff Lake, New Jersey 07677, United States
| | - Andy Clark
- Aerogen
Pharma, San Mateo, California 94402, United States
| | - Carsten Ehrhardt
- School
of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Ben Forbes
- King’s
College London, London SE1 9NH, U.K.
| | - Anthony J. Hickey
- University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- RTI
International, Research Triangle
Park, North Carolina 27709, United States
| | | | - Wenlei Jiang
- Center
for Drug Evaluation and Research, Office of Generic Drugs, Office
of Research and Standards, U.S. FDA, Silver Spring, Maryland 20993, United States
| | | | - Philip J. Kuehl
- Lovelace Biomedical, Albuquerque, New Mexico 87108, United States
| | - David Prime
- Pulmonary Drug
Delivery Consultant, Ware Royston, SG8 7ED, U.K.
| | - Yoen-Ju Son
- Genentech, South
San Francisco, California 94080, United States
| | | | - Ulrika Tehler
- Advanced
Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, 431 83 Gothenburg, Sweden
| | - Jennifer Wylie
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
166
|
Singh V, Shirbhate E, Kore R, Mishra A, Johariya V, Veerasamy R, Tiwari AK, Rajak H. Dietary Plant Metabolites Induced Epigenetic Modification as a Novel Strategy for the Management of Prostate Cancer. Mini Rev Med Chem 2024; 24:1409-1426. [PMID: 38385496 DOI: 10.2174/0113895575283895240207065454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
Prostate cancer is a widespread malignancy among men, with a substantial global impact on morbidity and mortality. Despite advances in conventional therapies, the need for innovative and less toxic treatments remains a priority. Emerging evidence suggests that dietary plant metabolites possess epigenetic-modifying properties, making them attractive candidates for prostate cancer treatment. The present work reviews the epigenetic effects of dietary plant metabolites in the context of prostate cancer therapy. We first outline the key epigenetic mechanisms involved in prostate cancer pathogenesis, including histone modifications, DNA methylation, and miRNA or Long Noncoding RNA (lncRNA) dysregulation. Next, we delve into the vast array of dietary plant metabolites that have demonstrated promising anti-cancer effects through epigenetic regulation. Resveratrol, minerals, isothiocyanates, curcumin, tea polyphenols, soy isoflavones and phytoestrogens, garlic compounds, anthocyanins, lycopene, and indoles are among the most extensively studied compounds. These plant-derived bioactive compounds have been shown to influence DNA methylation patterns, histone modifications, and microRNA expression, thereby altering the gene expression allied with prostate cancer progression, cell proliferation, and apoptosis. We also explore preclinical and clinical studies investigating the efficacy of dietary plant metabolites as standalone treatments or in combination with traditional treatments for people with prostate cancer. The present work highlights the potential of dietary plant metabolites as epigenetic modulators to treat prostate cancer. Continued research in this field may pave the way for personalized and precision medicine approaches, moving us closer to the goal of improved prostate cancer management.
Collapse
Affiliation(s)
- Vaibhav Singh
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| | - Ekta Shirbhate
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| | - Rakesh Kore
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| | - Aditya Mishra
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| | - Varsha Johariya
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| | - Ravichandran Veerasamy
- Departement of Pharmaceutical chemistry, Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah Darul Aman, Malaysia
| | - Amit K Tiwari
- UAMS College of Pharmacy, College of Pharmacy and Pharmaceutical Sciences, UAMS - University of Arkansas for Medical Sciences, Arkansas, (AR) USA
| | - Harish Rajak
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| |
Collapse
|
167
|
Nqeketo S, Sagandira CR. Towards continuous flow manufacturing of active pharmaceutical ingredients in Africa: a perspective. REACT CHEM ENG 2024; 9:2532-2551. [DOI: 10.1039/d4re00299g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Building start-of-the-art, sustainable and competitive local API manufacturing in Africa using continuous flow technology.
Collapse
Affiliation(s)
- Sinazo Nqeketo
- Council for Scientific and Industrial Research (CSIR), Pharmaceutical Technologies, Pretoria, South Africa
| | - Cloudius R. Sagandira
- Council for Scientific and Industrial Research (CSIR), Pharmaceutical Technologies, Pretoria, South Africa
| |
Collapse
|
168
|
Modhave D, Barrios B, Iyer J, Paudel A. Influence of Crystal Disorder on the Forced Oxidative Degradation of Vortioxetine HBr. AAPS PharmSciTech 2023; 25:10. [PMID: 38158448 DOI: 10.1208/s12249-023-02721-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
The present study investigates the impact of the solid-state disorder of vortioxetine hydrobromide (HBr) on oxidative degradation under accelerated conditions. A range of solid-state disorders was generated via cryogenic ball milling. The solid-state properties were evaluated by calorimetry, infrared-, and Raman spectroscopies. While salt disproportionation occurred upon milling, no chemical degradation occurred by milling. The amorphous fraction remained physically intact under ambient storage conditions. Subsequently, samples with representative disordered fractions were mixed with a solid oxidative stressor (PVP-H2O2 complex) and were compressed to compacts. The compacts were exposed to 40°C/75% RH for up to 6 h. The sample was periodically withdrawn and analyzed for the physical transformations and degradation. Two oxidative degradation products (DPs) were found to be formed, for which dissimilar relations to the degree of disorder and kinetics of formation were observed. The degradation rate of the major DP formation obtained by fitting the exponential model to the experimental data was found to increase up to a certain degree of disorder and decrease with a further increase in the disordered fraction. In contrast, the minor DP formation kinetics was found to increase monotonically with the increase in the disorder content. For the similar crystallinity level, the degradation trend (rate and extent) differed between the single-phase disorder generated by milling and physically mixed two-phase systems. Overall, the study demonstrates the importance of evaluating the physical and chemical (in)stabilities of the disordered solid state of a salt form of a drug substance, generated through mechano-activation.
Collapse
Affiliation(s)
- Dattatray Modhave
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| | - Brenda Barrios
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| | - Jayant Iyer
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria.
- Institute of Process and Particle Engineering, Graz University of Technology, Graz, Austria.
| |
Collapse
|
169
|
Farnós O, Martins Fernandes Paes BC, Getachew B, Rourou S, Chaabene A, Gelaye E, Tefera TA, Kamen AA. Intranasally Delivered Adenoviral Vector Protects Chickens against Newcastle Disease Virus: Vaccine Manufacturing and Stability Assessments for Liquid and Lyophilized Formulations. Vaccines (Basel) 2023; 12:41. [PMID: 38250854 PMCID: PMC10819614 DOI: 10.3390/vaccines12010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Newcastle disease (ND) remains a critical disease affecting poultry in sub-Saharan Africa. In some countries, repeated outbreaks have a major impact on local economies and food security. Recently, we developed an adenovirus-vectored vaccine encoding the Fusion protein from an Ethiopian isolate of Newcastle disease virus (NDV). The adenoviral vector was designed, and a manufacturing process was developed in the context of the Livestock Vaccine Innovation Fund initiative funded by the International Development Research Centre (IDRC) of Canada. The industrially relevant recombinant vaccine technology platform is being transferred to the National Veterinary Institute (Ethiopia) for veterinary applications. Here, a manufacturing process using HEK293SF suspension cells cultured in stirred-tank bioreactors for the vaccine production is proposed. Taking into consideration supply chain limitations, options for serum-free media selection were evaluated. A streamlined downstream process including a filtration, an ultrafiltration, and a concentration step was developed. With high volumetric yields (infectious titers up to 5 × 109 TCID50/mL) in the culture supernatant, the final formulations were prepared at 1010 TCID50/mL, either in liquid or lyophilized forms. The liquid formulation was suitable and safe for mucosal vaccination and was stable for 1 week at 37 °C. Both the liquid and lyophilized formulations were stable after 6 months of storage at 4 °C. We demonstrate that the instillation of the adenoviral vector through the nasal cavity can confer protection to chickens against a lethal challenge with NDV. Overall, a manufacturing process for the adenovirus-vectored vaccine was developed, and protective doses were determined using a convenient route of delivery. Formulation and storage conditions were established, and quality control protocols were implemented.
Collapse
Affiliation(s)
- Omar Farnós
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada (B.C.M.F.P.)
| | | | - Belayneh Getachew
- Research and Development Directorate, National Veterinary Institute, Bishoftu P.O. Box 19, Ethiopia (E.G.); (T.A.T.)
| | - Samia Rourou
- Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Group of Biotechnology Development, Institut Pasteur de Tunis, Université Tunis El Manar, 13, Place Pasteur. BP.74., Tunis 1002, Tunisia; (S.R.)
| | - Ameni Chaabene
- Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Group of Biotechnology Development, Institut Pasteur de Tunis, Université Tunis El Manar, 13, Place Pasteur. BP.74., Tunis 1002, Tunisia; (S.R.)
| | - Esayas Gelaye
- Research and Development Directorate, National Veterinary Institute, Bishoftu P.O. Box 19, Ethiopia (E.G.); (T.A.T.)
| | - Takele A. Tefera
- Research and Development Directorate, National Veterinary Institute, Bishoftu P.O. Box 19, Ethiopia (E.G.); (T.A.T.)
| | - Amine A. Kamen
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada (B.C.M.F.P.)
| |
Collapse
|
170
|
Sokol MB, Sokhraneva VA, Groza NV, Mollaeva MR, Yabbarov NG, Chirkina MV, Trufanova AA, Popenko VI, Nikolskaya ED. Thymol-Modified Oleic and Linoleic Acids Encapsulated in Polymeric Nanoparticles: Enhanced Bioactivity, Stability, and Biomedical Potential. Polymers (Basel) 2023; 16:72. [PMID: 38201737 PMCID: PMC10781094 DOI: 10.3390/polym16010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Unsaturated fatty acids, such as oleic acid (OA) and linoleic acid (LA), are promising antimicrobial and cytostatic agents. We modified OA and LA with thymol (TOA and TLA, respectively) to expand their bioavailability, stability, and possible applications, and encapsulated these derivatives in polymeric nanoparticles (TOA-NPs and TLA-NPs, respectively). Prior to synthesis, we performed mathematical simulations with PASS and ADMETlab 2.0 to predict the biological activity and pharmacokinetics of TOA and TLA. TOA and TLA were synthesized via esterification in the presence of catalysts. Next, we formulated nanoparticles using the single-emulsion solvent evaporation technique. We applied dynamic light scattering, Uv-vis spectroscopy, release studies under gastrointestinal (pH 1.2-6.8) and blood environment simulation conditions (pH 7.4), and in vitro biological activity testing to characterize the nanoparticles. PASS revealed that TOA and TLA have antimicrobial and anticancer therapeutic potential. ADMETlab 2.0 provided a rationale for TOA and TLA encapsulation. The nanoparticles had an average size of 212-227 nm, with a high encapsulation efficiency (71-93%), and released TOA and TLA in a gradual and prolonged mode. TLA-NPs possessed higher antibacterial activity against B. cereus and S. aureus and pronounced cytotoxic activity against MCF-7, K562, and A549 cell lines compared to TOA-NPs. Our findings expand the biomedical application of fatty acids and provide a basis for further in vivo evaluation of designed derivatives and formulations.
Collapse
Affiliation(s)
- Maria B. Sokol
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.R.M.); (N.G.Y.); (M.V.C.); (A.A.T.)
| | - Vera A. Sokhraneva
- N.A. Preobrazhensky Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119571 Moscow, Russia; (V.A.S.); (N.V.G.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 11999 Moscow, Russia;
| | - Nataliya V. Groza
- N.A. Preobrazhensky Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119571 Moscow, Russia; (V.A.S.); (N.V.G.)
| | - Mariia R. Mollaeva
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.R.M.); (N.G.Y.); (M.V.C.); (A.A.T.)
| | - Nikita G. Yabbarov
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.R.M.); (N.G.Y.); (M.V.C.); (A.A.T.)
| | - Margarita V. Chirkina
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.R.M.); (N.G.Y.); (M.V.C.); (A.A.T.)
| | - Anna A. Trufanova
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.R.M.); (N.G.Y.); (M.V.C.); (A.A.T.)
| | - Vladimir I. Popenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 11999 Moscow, Russia;
| | - Elena D. Nikolskaya
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.R.M.); (N.G.Y.); (M.V.C.); (A.A.T.)
| |
Collapse
|
171
|
Derdau V, Elmore CS, Hartung T, McKillican B, Mejuch T, Rosenbaum C, Wiebe C. The Future of (Radio)-Labeled Compounds in Research and Development within the Life Science Industry. Angew Chem Int Ed Engl 2023; 62:e202306019. [PMID: 37610759 DOI: 10.1002/anie.202306019] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/24/2023]
Abstract
In this review the applications of isotopically labeled compounds are discussed and put into the context of their future impact in the life sciences. Especially discussing their use in the pharma and crop science industries to follow their fate in the environment, in vivo or in complex matrices to understand the potential harm of new chemical structures and to increase the safety of human society.
Collapse
Affiliation(s)
- Volker Derdau
- Sanofi-Aventis Deutschland GmbH, Research & Development, Integrated Drug Discovery, Isotope Chemistry, Industriepark Höchst, G876, 65926, Frankfurt am Main, Germany
| | - Charles S Elmore
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Mölndal, Sweden
| | - Thomas Hartung
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Bruce McKillican
- Syngenta Crop Protection, LLC, North America Product Safety (retired), USA
| | - Tom Mejuch
- BASF SE, Agricultural Solutions, Ludwigshafen, Germany
| | | | | |
Collapse
|
172
|
Stafford M, Dunn RL, Gupta N, Kakarla R, Kirkpatrick D, Magparangalan D, Ngo D, Gryniewicz-Ruzicka C, Smith A, Stark M, Ye W, Yilmaz H, Woodruff J, Manibusan M, Stiber N, Viehmann A. Quality of New Domestic Hand Sanitizer Drug Product Manufacturers During COVID-19. AAPS J 2023; 26:7. [PMID: 38114792 DOI: 10.1208/s12248-023-00877-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023] Open
Abstract
The FDA initiated a cross-sectional, statistically based sampling and testing study to characterize the quality of marketed alcohol-based hand sanitizer (ABHS) by evaluating the alcohol content and impurities present in ABHS products manufactured by establishments that registered with the FDA during March-April 2020. A stratified sampling design divided the population of manufacturers into independent groups based on each establishment's level of experience with FDA oversight and its geographic location. ABHS products were collected and analyzed by spatially offset Raman spectroscopy and gas chromatography with mass spectrometry (GC-MS). The GC-MS results for 310 products, from 196 newly registered domestic manufacturers, showed that 71.6% (± 5.7%) of these manufacturers had violative products. In 104 (33.5%) cases, the alcohol content did not meet label claim assay specifications but still fell within CDC efficacy ranges. Ethanol ABHS products failed more often overall (assay and impurities) (84.3%) and for impurities (84.3%), than isopropanol ABHS products (11.2% and 6.2%, respectively). Differences in test results across active ingredients were statistically significant. Ethanol ABHS products often (63.5% of cases) failed due to the presence of acetal or acetaldehyde, particularly in products with pH ≤ 6. Other impurities were also detected in several ABHS products, suggesting the use of low-grade alcohol in the manufacture of these products. Evidence was insufficient to conclude that having experience manufacturing FDA-regulated products, or lack thereof, influenced product-level violative results. This study highlights the importance of sourcing and testing active pharmaceutical ingredients to produce quality drug products.
Collapse
Affiliation(s)
- Michelle Stafford
- United States Food and Drug Administration, Center of Drug Evaluation and Research/Office of Pharmaceutical Quality, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA
| | - Rachel Linck Dunn
- United States Food and Drug Administration, Center of Drug Evaluation and Research/Office of Pharmaceutical Quality, 645 South Newstead Ave, Saint Louis, MO, 63110, USA
| | - Nirzari Gupta
- United States Food and Drug Administration, Center of Drug Evaluation and Research/Office of Pharmaceutical Quality, 645 South Newstead Ave, Saint Louis, MO, 63110, USA
| | - Raghavi Kakarla
- United States Food and Drug Administration, Center of Drug Evaluation and Research/Office of Pharmaceutical Quality, 645 South Newstead Ave, Saint Louis, MO, 63110, USA
| | - Douglas Kirkpatrick
- United States Food and Drug Administration, Center of Drug Evaluation and Research/Office of Pharmaceutical Quality, 645 South Newstead Ave, Saint Louis, MO, 63110, USA
| | - Daniel Magparangalan
- United States Food and Drug Administration, Center of Drug Evaluation and Research/Office of Pharmaceutical Quality, 645 South Newstead Ave, Saint Louis, MO, 63110, USA
| | - Diem Ngo
- United States Food and Drug Administration, Center of Drug Evaluation and Research/Office of Pharmaceutical Quality, 645 South Newstead Ave, Saint Louis, MO, 63110, USA
| | - Connie Gryniewicz-Ruzicka
- United States Food and Drug Administration, Center of Drug Evaluation and Research/Office of Pharmaceutical Quality, 645 South Newstead Ave, Saint Louis, MO, 63110, USA
| | - Anjanette Smith
- United States Food and Drug Administration, Center of Drug Evaluation and Research/Office of Pharmaceutical Quality, 645 South Newstead Ave, Saint Louis, MO, 63110, USA
| | - Matthew Stark
- United States Food and Drug Administration, Center of Drug Evaluation and Research/Office of Pharmaceutical Quality, 645 South Newstead Ave, Saint Louis, MO, 63110, USA
| | - Wei Ye
- United States Food and Drug Administration, Center of Drug Evaluation and Research/Office of Pharmaceutical Quality, 645 South Newstead Ave, Saint Louis, MO, 63110, USA
| | - Huzeyfe Yilmaz
- United States Food and Drug Administration, Center of Drug Evaluation and Research/Office of Pharmaceutical Quality, 645 South Newstead Ave, Saint Louis, MO, 63110, USA
| | - Jeffrey Woodruff
- United States Food and Drug Administration, Center of Drug Evaluation and Research/Office of Pharmaceutical Quality, 645 South Newstead Ave, Saint Louis, MO, 63110, USA
| | - Mary Manibusan
- United States Food and Drug Administration, Center of Drug Evaluation and Research/Office of Pharmaceutical Quality, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA.
| | - Neil Stiber
- United States Food and Drug Administration, Center of Drug Evaluation and Research/Office of Pharmaceutical Quality, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA
| | - Alex Viehmann
- United States Food and Drug Administration, Center of Drug Evaluation and Research/Office of Pharmaceutical Quality, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA
| |
Collapse
|
173
|
Weber J, Buske J, Mäder K, Garidel P, Diederichs T. Oxidation of polysorbates - An underestimated degradation pathway? Int J Pharm X 2023; 6:100202. [PMID: 37680877 PMCID: PMC10480556 DOI: 10.1016/j.ijpx.2023.100202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/03/2023] [Accepted: 07/24/2023] [Indexed: 09/09/2023] Open
Abstract
To ensure the stability of biologicals over their entire shelf-life, non-ionic surface-active compounds (surfactants) are added to protect biologics from denaturation and particle formation. In this context, polysorbate 20 and 80 are the most used detergents. Despite their benefits of low toxicity and high biocompatibility, specific factors are influencing the intrinsic stability of polysorbates, leading to degradation, loss in efficacy, or even particle formation. Polysorbate degradation can be categorized into chemical or enzymatic hydrolysis and oxidation. Under pharmaceutical relevant conditions, hydrolysis is commonly originated from host cell proteins, whereas oxidative degradation may be caused by multiple factors such as light, presence of residual metal traces, peroxides, or temperature, which can be introduced upon manufacturing or could be already present in the raw materials. In this review, we provide an overview of the current knowledge on polysorbates with a focus on oxidative degradation. Subsequently, degradation products and key characteristics of oxidative-mediated polysorbate degradation in respect of different types and grades are summarized, followed by an extensive comparison between polysorbate 20 and 80. A better understanding of the radical-induced oxidative PS degradation pathway could support specific mitigation strategies. Finally, buffer conditions, various stressors, as well as appropriate mitigation strategies, reagents, and alternative stabilizers are discussed. Prior manufacturing, careful consideration and a meticulous risk-benefit analysis are highly recommended in terms of polysorbate qualities, buffers, storage conditions, as well as mitigation strategies.
Collapse
Affiliation(s)
- Johanna Weber
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, Halle (Saale) 06120, Germany
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, TIP, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany
| | - Karsten Mäder
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, Halle (Saale) 06120, Germany
| | - Patrick Garidel
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, Halle (Saale) 06120, Germany
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, TIP, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany
| | - Tim Diederichs
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, TIP, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany
| |
Collapse
|
174
|
Dinakar YH, Rajana N, Kumari NU, Jain V, Mehra NK. Recent Advances of Multifunctional PLGA Nanocarriers in the Management of Triple-Negative Breast Cancer. AAPS PharmSciTech 2023; 24:258. [PMID: 38097825 DOI: 10.1208/s12249-023-02712-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Even though chemotherapy stands as a standard option in the therapy of TNBC, problems associated with it such as anemia, bone marrow suppression, immune suppression, toxic effects on healthy cells, and multi-drug resistance (MDR) can compromise their effects. Nanoparticles gained paramount importance in overcoming the limitations of conventional chemotherapy. Among the various options, nanotechnology has appeared as a promising path in preclinical and clinical studies for early diagnosis of primary tumors and metastases and destroying tumor cells. PLGA has been extensively studied amongst various materials used for the preparation of nanocarriers for anticancer drug delivery and adjuvant therapy because of their capability of higher encapsulation, easy surface functionalization, increased stability, protection of drugs from degradation versatility, biocompatibility, and biodegradability. Furthermore, this review also provides an overview of PLGA-based nanoparticles including hybrid nanoparticles such as the inorganic PLGA nanoparticles, lipid-coated PLGA nanoparticles, cell membrane-coated PLGA nanoparticles, hydrogels, exosomes, and nanofibers. The effects of all these systems in various in vitro and in vivo models of TNBC were explained thus pointing PLGA-based NPs as a strategy for the management of TNBC.
Collapse
Affiliation(s)
- Yirivinti Hayagreeva Dinakar
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500 037, India
| | - Naveen Rajana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500 037, India
| | - Nalla Usha Kumari
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500 037, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500 037, India.
| |
Collapse
|
175
|
Sharma D, Pooja, Nirban S, Ojha S, Kumar T, Jain N, Mohamad N, Kumar P, Pandey M. Nano vs Resistant Tuberculosis: Taking the Lung Route. AAPS PharmSciTech 2023; 24:252. [PMID: 38049695 DOI: 10.1208/s12249-023-02708-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/19/2023] [Indexed: 12/06/2023] Open
Abstract
Tuberculosis (TB) is among the top 10 infectious diseases worldwide. It is categorized among the leading killer diseases that are the reason for the death of millions of people globally. Although a standardized treatment regimen is available, non-adherence to treatment has increased multi-drug resistance (MDR) and extensive drug-resistant (XDR) TB development. Another challenge is targeting the death of TB reservoirs in the alveoli via conventional treatment. TB Drug resistance may emerge as a futuristic restraint of TB with the scarcity of effective Anti-tubercular drugs. The paradigm change towards nano-targeted drug delivery systems is mostly due to the absence of effective therapy and increased TB infection recurrent episodes with MDR. The emerging field of nanotechnology gave an admirable opportunity to combat MDR and XDR via accurate diagnosis with effective treatment. The new strategies targeting the lung via the pulmonary route may overcome the new incidence of MDR and enhance patient compliance. Therefore, this review highlights the importance and recent research on pulmonary drug delivery with nanotechnology along with prevalence, the need for the development of nanotechnology, beneficial aspects of nanomedicine, safety concerns of nanocarriers, and clinical studies.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Pooja
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Sunita Nirban
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Smriti Ojha
- Department of Pharmaceutical Science and Technology, Madan Mohan Malaviya University of Technology, Gorakhpur, India
| | - Tarun Kumar
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Najwa Mohamad
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, 63000, Cyberjaya, Selangor Darul Ehsan, Malaysia
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India.
| |
Collapse
|
176
|
Ahmed N, Ly H, Pan A, Chiang B, Raines K, Janwatin T, Hamed S, Dave K. Retrospective analysis of the biopharmaceutics characteristics of solid oral Modified-Release drug products in approved US FDA NDAs designated as Extended-Release or Delayed-Release formulations. Eur J Pharm Biopharm 2023; 193:294-305. [PMID: 37984592 DOI: 10.1016/j.ejpb.2023.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Modified Release (MR) orally administered drugs products [Extended-Release (ER) and Delayed-Release (DR)] differ from Immediate-Release (IR) drug products in their drug release site and/or rate to offer therapeutic advantages. It is important to understand the biopharmaceutics factors that determine how a drug works in the gastrointestinal tract and the various pharmacokinetic properties that determine a drug's rate of absorption and release in the human body. To better understand the biopharmaceutics characteristics of ER and DR drug products, this study retrospectively analyzed submissions approved by the US Food and Drug Administration (FDA), from 2001 to 2021, and their corresponding review documents. This review work is expected to enhance the readers' understanding regarding the biopharmaceutics properties that supported approval of these products' ER claims, as per 21 CFR 320.25(f), and DR claims. METHODS A comprehensive search was conducted using the FDA's internal New Drug Application (NDA) database for ER and DR oral drug products approved between 2001 and 2021. The search yielded 87 ER applications (23 ER capsules and 64 ER tablets) and 21 DR applications (10 DR capsules, 11 DR tablets) for which electronic records were accessible. These products were analyzed for overall drug product design, dosing frequency compared to the reference (if applicable), degree of fluctuation, dissolution method, and alcohol dose-dumping. RESULTS Out of 87 total applications for ER drug products that were assessed, 62% of the ER tablets contained a polymer matrix formulation, and hypromellose (HPMC) was used in 50% of these products. 52% of the ER capsules consisted of polymer beads while about half of the DR drug products contained a non-bead formulation with a combination of polymers. The majority of ER drug products were found to have a reduction in dosing frequency and a decrease in the degree of fluctuation when compared to the IR reference product. The 13 ER drug products that exhibited an increase in degree of fluctuation exhibited general and pharmacodynamic benefits, such as reduced dosing frequency and reduced pill burden. The majority of DR formulations were developed to prevent drug degradation in the stomach, followed by to decrease potential stomach irritation, and lastly for localized release in the colon. The majority of ER drug products had 1:1 ratios of dissolution duration compared to dosing frequency (i.e., the majority of ER drug products had a dissolution duration of 24 h and were dosed every 24 h while those with a dissolution duration of 12 h were dosed every 12 h). The majority of ER applications had single-stage dissolution methods while most DR drug products used biphasic dissolution methods. All of the DR dissolution methods incorporated an acid stage of 2 h and a buffer stage with various timeframes. 53% the DR drug products had a ratio of dissolution duration to dosing frequency of 1:4 (e.g. a dissolution duration of 2 h to a dosing frequency of 8 h) or 1:8 (e.g. a dissolution duration of 2 h to a dosing frequency of 16 h). Of the ER tablets and DR drug products, 72% exhibited no alcohol dose-dumping under in vitro testing conditions. ER capsules, however, did not yield similar results-most of which exhibited alcohol induced dose-dumping. Alcohol dose dumping was mitigated by either in vivo studies or warnings on the drug product label. CONCLUSION The results of this study help the reader understand the design, characteristics, and pharmacological advantages of the ER and DR drug products for patient benefit; as well as the regulations governing the FDA's assessment of ER claims.
Collapse
Affiliation(s)
- Nadia Ahmed
- U.S. Food and Drug Administration (FDA), United States.
| | | | - Amanda Pan
- University of North Carolina, United States
| | | | | | | | | | | |
Collapse
|
177
|
Moammeri A, Chegeni MM, Sahrayi H, Ghafelehbashi R, Memarzadeh F, Mansouri A, Akbarzadeh I, Abtahi MS, Hejabi F, Ren Q. Current advances in niosomes applications for drug delivery and cancer treatment. Mater Today Bio 2023; 23:100837. [PMID: 37953758 PMCID: PMC10632535 DOI: 10.1016/j.mtbio.2023.100837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/21/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
The advent of nanotechnology has led to an increased interest in nanocarriers as a drug delivery system that is efficient and safe. There have been many studies addressing nano-scale vesicular systems such as liposomes and niosome is a newer generation of vesicular nanocarriers. The niosomes provide a multilamellar carrier for lipophilic and hydrophilic bioactive substances in the self-assembled vesicle, which are composed of non-ionic surfactants in conjunction with cholesterol or other amphiphilic molecules. These non-ionic surfactant vesicles, simply known as niosomes, can be utilized in a wide variety of technological applications. As an alternative to liposomes, niosomes are considered more chemically and physically stable. The methods for preparing niosomes are more economic. Many reports have discussed niosomes in terms of their physicochemical properties and applications as drug delivery systems. As drug carriers, nano-sized niosomes expand the horizons of pharmacokinetics, decreasing toxicity, enhancing drug solvability and bioavailability. In this review, we review the components and fabrication methods of niosomes, as well as their functionalization, characterization, administration routes, and applications in cancer gene delivery, and natural product delivery. We also discuss the limitations and challenges in the development of niosomes, and provide the future perspective of niosomes.
Collapse
Affiliation(s)
- Ali Moammeri
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Hamidreza Sahrayi
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Farkhondeh Memarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Afsoun Mansouri
- School of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Iman Akbarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Maryam Sadat Abtahi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Faranak Hejabi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014, St. Gallen, Switzerland
| |
Collapse
|
178
|
Alsaidan OA, Zafar A, Al-Ruwaili RH, Yasir M, Alzarea SI, Alsaidan AA, Singh L, Khalid M. Niosomes gel of apigenin to improve the topical delivery: development, optimization, ex vivo permeation, antioxidant study, and in vivo evaluation. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:604-617. [PMID: 37910394 DOI: 10.1080/21691401.2023.2274526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/14/2023] [Indexed: 11/03/2023]
Abstract
Niosomes (NS) are the promising and novel carrier of the drug for effective transdermal delivery. Apigenin (AN) is a natural bioactive compound and has various pharmacological activities. AN is poorly water soluble which directly affects therapeutic efficacy. The aim of this research work was to develop the AN-NS gel to improve transdermal delivery. The thin-film hydration method was used for the development of AN-NS. The optimized AN-NS (AN-NS2) has a vesicle size of 272.56 ± 12.49 nm, PDI is 0.249, zeta potential is -38.7 mV, and entrapment efficiency of 86.19 ± 1.51%. The FTIR spectra of the AN-NS2 depicted that AN encapsulated in the NS matrix. AN-NS2 formulation was successfully incorporated into chitosan gel and evaluated. The optimized AN-NS2 gel (AN-NS2G4) has 2110 ± 14cps of viscosity, 10.40 ± 0.21g.cm/sec of spreadability, and 99.65 ± 0.53% of drug content. AN-NS2G4 displayed significantly (p < 0.05) higher AN released (67.64 ± 3.03%) than pure AN-gel (37.31 ± 2.87%). AN-NS2G4 showed the Korsmeyer Peppas release model. AN-NS2G4 displayed significantly (p < 0.05) higher antioxidant activity (90.72%) than pure AN (64.53%) at 300 µg/ml. AN-NS2G4 displayed significantly (p < 0.05) higher % inhibition of swelling than pane AN-gel in carrageenin-induced paw oedema in rats. The finding concluded that niosomes-laden gel is a good carrier of drugs to improve transdermal delivery and therapeutic efficacy.
Collapse
Affiliation(s)
- Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Rayan Hamood Al-Ruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Mohd Yasir
- Department of Pharmacy, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Aseel Awad Alsaidan
- Department of Family and Community Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Lubhan Singh
- Kharvel Subharti College of Pharmacy, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Saudi Arabia
| |
Collapse
|
179
|
Krishna SS, Sudheesh MS, Viswanad V. Liposomal drug delivery to the lungs: a post covid-19 scenario. J Liposome Res 2023; 33:410-424. [PMID: 37074963 DOI: 10.1080/08982104.2023.2199068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/10/2023] [Indexed: 04/20/2023]
Abstract
High local delivery of anti-infectives to the lungs is required for activity against infections of the lungs. The present pandemic has highlighted the potential of pulmonary delivery of anti-infective agents as a viable option for infections like Covid-19, which specifically causes lung infections and mortality. To prevent infections of such type and scale in the future, target-specific delivery of drugs to the pulmonary region is a high-priority area in the field of drug delivery. The suboptimal effect of oral delivery of anti-infective drugs to the lungs due to the poor biopharmaceutical property of the drugs makes this delivery route very promising for respiratory infections. Liposomes have been used as an effective delivery system for drugs due to their biocompatible and biodegradable nature, which can be used effectively for target-specific drug delivery to the lungs. In the present review, we focus on the use of liposomal drug delivery of anti-infectives for the acute management of respiratory infections in the wake of Covid-19 infection.
Collapse
Affiliation(s)
- S Swathi Krishna
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS, Kochi, India
| | - M S Sudheesh
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS, Kochi, India
| | - Vidya Viswanad
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS, Kochi, India
| |
Collapse
|
180
|
Shah HS, Michelle C, Xie T, Chaturvedi K, Kuang S, Abramov YA. Computational and Experimental Screening Approaches to Aripiprazole Salt Crystallization. Pharm Res 2023; 40:2779-2789. [PMID: 37127778 DOI: 10.1007/s11095-023-03522-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
INTRODUCTION The screening of multicomponent crystal system (MCC) is a key method for improving physicochemical properties of active pharmaceutical ingredients (APIs). The challenges associated with experimental salt screening include a large number of potential counterions and solvent systems and tendency to undergo disproportionation to produce free form during crystallization. These challenges may be mitigated by a combination of experimental and computational approaches to salt screening. The goal of this study is to evaluate performance of the counterion screening methods and propose and validate novel approaches to virtual solvent screening for MCC crystallization. METHODS The actual performance of the ΔpKa > 3 rule for counterion selection was validated using multiple screenings reports. Novel computational models for virtual solvent screening to avoid MCC incongruent crystallization were proposed. Using the ΔpKa rule, 10 acid counterions were selected for experimental aripiprazole (APZ) salt screening using 10 organic solvents. The experimental results were used to validate the proposed novel virtual solvent screen models. RESULTS Experimental APZ salt screening resulted in a total of eight MCCs which included glucuronate, mesylate, oxalate, tartrate, salicylate and mandelate. The new model to virtually screen solvents provided a general agreement with APZ experimental findings in terms of selecting the optimal solvent for MCC crystallization. CONCLUSION The rational selection of counterions and organic solvents for MCC crystallization was presented using combined novel computational model as well as experimental studies. The current virtual solvent screen model was successfully implemented and validated which can be easily applied to newly discovered APIs.
Collapse
Affiliation(s)
- Harsh S Shah
- J-Star Research Inc., 6 Cedarbrook Drive, Cranbury, NJ, 08512, USA.
| | | | - Tian Xie
- J-Star Research Inc., 6 Cedarbrook Drive, Cranbury, NJ, 08512, USA
| | | | - Shanming Kuang
- J-Star Research Inc., 6 Cedarbrook Drive, Cranbury, NJ, 08512, USA
| | - Yuriy A Abramov
- J-Star Research Inc., 6 Cedarbrook Drive, Cranbury, NJ, 08512, USA.
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
181
|
Wang EY, Sarmadi M, Ying B, Jaklenec A, Langer R. Recent advances in nano- and micro-scale carrier systems for controlled delivery of vaccines. Biomaterials 2023; 303:122345. [PMID: 37918182 DOI: 10.1016/j.biomaterials.2023.122345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
Vaccines provide substantial safety against infectious diseases, saving millions of lives each year. The recent COVID-19 pandemic highlighted the importance of vaccination in providing mass-scale immunization against outbreaks. However, the delivery of vaccines imposes a unique set of challenges due to their large molecular size and low room temperature stability. Advanced biomaterials and delivery systems such as nano- and mciro-scale carriers are becoming critical components for successful vaccine development. In this review, we provide an updated overview of recent advances in the development of nano- and micro-scale carriers for controlled delivery of vaccines, focusing on carriers compatible with nucleic acid-based vaccines and therapeutics that emerged amid the recent pandemic. We start by detailing nano-scale delivery systems, focusing on nanoparticles, then move on to microscale systems including hydrogels, microparticles, and 3D printed microneedle patches. Additionally, we delve into emerging methods that move beyond traditional needle-based applications utilizing innovative delivery systems. Future challenges for clinical translation and manufacturing in this rapidly advancing field are also discussed.
Collapse
Affiliation(s)
- Erika Yan Wang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Morteza Sarmadi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Binbin Ying
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ana Jaklenec
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
182
|
Kopf R, Paschen C, Müller L, Kocar B, Wolfring M, Vincent M, Klemm D, Bell C, Pinto C. Leveraging mass detection to simultaneously quantify surfactant content and degradation mode for highly concentrated biopharmaceuticals. J Pharm Biomed Anal 2023; 236:115651. [PMID: 37688908 DOI: 10.1016/j.jpba.2023.115651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/11/2023]
Abstract
Non-ionic surfactants are commonly used in parenteral protein formulations and include polysorbate 20, polysorbate 80 and poloxamer188. Recently, quantification and characterization of surfactants has generated considerable interest due to their connection to visible particle formation, a critical quality attribute for parenteral formulations. Typically, surfactant quantification is performed by mixed mode chromatography with evaporative light scattering detection (ELSD) or charged aerosol detection (CAD). However, these methods often suffer from loss of specificity in highly concentrated protein formulations. Here we present a mixed mode chromatography method using single quad mass detection, overcoming current limitations for highly concentrated proteins. In addition to content determination of intact surfactants, this method allows to quantify and characterize the predominant degradation patterns of polysorbates within a single measurement. Formulations with up to 200 mg/mL active pharmaceutical product (API) containing surfactant levels between 0.16 and 0.64 mg/mL were tested during method qualification. The obtained results for linearity (r > 0.99), precision (max. 3.8 % RSD) and accuracy (96-116 % recovery) meet current requirements for pharmaceutical products as defined in ICH Q2.
Collapse
Affiliation(s)
- Robert Kopf
- F. Hoffmann-La Roche AG, Grenzacherstrasse 24, CH-4070 Basel, Switzerland.
| | - Christoph Paschen
- F. Hoffmann-La Roche AG, Grenzacherstrasse 24, CH-4070 Basel, Switzerland
| | - Lavinia Müller
- F. Hoffmann-La Roche AG, Grenzacherstrasse 24, CH-4070 Basel, Switzerland
| | - Berk Kocar
- F. Hoffmann-La Roche AG, Grenzacherstrasse 24, CH-4070 Basel, Switzerland
| | - Martin Wolfring
- F. Hoffmann-La Roche AG, Grenzacherstrasse 24, CH-4070 Basel, Switzerland
| | - Mathilde Vincent
- F. Hoffmann-La Roche AG, Grenzacherstrasse 24, CH-4070 Basel, Switzerland
| | - Denis Klemm
- F. Hoffmann-La Roche AG, Grenzacherstrasse 24, CH-4070 Basel, Switzerland
| | - Christian Bell
- F. Hoffmann-La Roche AG, Grenzacherstrasse 24, CH-4070 Basel, Switzerland
| | - Cosimo Pinto
- F. Hoffmann-La Roche AG, Grenzacherstrasse 24, CH-4070 Basel, Switzerland
| |
Collapse
|
183
|
Chau J, Altan S, Burggraeve A, Coppenolle H, Kifle YW, Prokopcova H, Van Daele T, Sterckx H. A Bayesian Approach to Kinetic Modeling of Accelerated Stability Studies and Shelf Life Determination. AAPS PharmSciTech 2023; 24:250. [PMID: 38036798 DOI: 10.1208/s12249-023-02695-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Kinetic modeling of accelerated stability data serves an important purpose in the development of pharmaceutical products, providing support for shelf life claims and expediting the path to clinical implementation. In this context, a Bayesian kinetic modeling framework is considered, accommodating different types of nonlinear kinetics with temperature and humidity dependent rates of degradation and accounting for the humidity conditions within the packaging to predict the shelf life. In comparison to kinetic modeling based on nonlinear least-squares regression, the Bayesian approach allows for interpretable posterior inference, flexible error modeling and the opportunity to include prior information based on historical data or expert knowledge. While both frameworks perform comparably for high-quality data from well-designed studies, the Bayesian approach provides additional robustness when the data are sparse or of limited quality. This is illustrated by modeling accelerated stability data from two solid dosage forms and is further examined by means of artificial data subsets and simulated data.
Collapse
Affiliation(s)
| | - Stan Altan
- Statistics and Decision Sciences, Janssen Research, Raritan, New Jersey, USA
| | - Anneleen Burggraeve
- Chemical and Pharmaceutical Development & Supply, Janssen Research, Beerse, Belgium
| | - Hans Coppenolle
- Statistics and Decision Sciences, Janssen Research, Beerse, Belgium
| | | | - Hana Prokopcova
- Chemical and Pharmaceutical Development & Supply, Janssen Research, Beerse, Belgium
| | - Timothy Van Daele
- Chemical and Pharmaceutical Development & Supply, Janssen Research, Beerse, Belgium
| | - Hans Sterckx
- Chemical and Pharmaceutical Development & Supply, Janssen Research, Turnhoutseweg 30, 2340, Beerse, Belgium.
| |
Collapse
|
184
|
Kim S, Day CM, Song Y, Holmes A, Garg S. Innovative Topical Patches for Non-Melanoma Skin Cancer: Current Challenges and Key Formulation Considerations. Pharmaceutics 2023; 15:2577. [PMID: 38004557 PMCID: PMC10674480 DOI: 10.3390/pharmaceutics15112577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Non-melanoma skin cancer (NMSC) is the most prevalent malignancy worldwide, with approximately 6.3 million new cases worldwide in 2019. One of the key management strategies for NMSC is a topical treatment usually utilised for localised and early-stage disease owing to its non-invasive nature. However, the efficacy of topical agents is often hindered by poor drug penetration and patient adherence. Therefore, various research groups have employed advanced drug delivery systems, including topical patches to overcome the problem of conventional topical treatments. This review begins with an overview of NMSC as well as the current landscape of topical treatments for NMSC, specifically focusing on the emerging technology of topical patches. A detailed discussion of their potential to overcome the limitations of existing therapies will then follow. Most importantly, to the best of our knowledge, this work unprecedentedly combines and discusses all the current advancements in innovative topical patches for the treatment of NMSC. In addition to this, the authors present our insights into the key considerations and emerging trends in the construction of these advanced topical patches. This review is meant for researchers and clinicians to consider utilising advanced topical patch systems in research and clinical trials toward localised interventions of NMSC.
Collapse
Affiliation(s)
| | | | | | | | - Sanjay Garg
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (S.K.); (C.M.D.); (Y.S.); (A.H.)
| |
Collapse
|
185
|
Zhang Y, Aldamarany WAS, Song G, Liu J, Liu S, Chen Y, Jiang W, Zhong G. Influence of konjac glucomannan and its derivatives on the oral pharmacokinetics of antimicrobial agent in antibiotics cocktails: Keep vigilant on dietary fiber supplement. Int J Biol Macromol 2023; 251:126306. [PMID: 37573922 DOI: 10.1016/j.ijbiomac.2023.126306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
In this study, konjac glucomannan (KGM) and its derivatives were gavaged as dietary fiber supplements, followed by a single dose of antibiotic cocktail (Abx) containing amoxicillin, neomycin, metronidazole and vancomycin in mice. The effects of dietary fiber on the pharmacokinetics and tissue distribution of each antibiotic were investigated. The results showed that the specific effects of KGM and its derivatives on the absorption, distribution, and elimination of certain antibiotics varied and depended on the nature of the fibers and the characteristics of the antibiotics. Explicitly, the ingestion of KGM and its derivatives enhanced the absorption of metronidazole by 1.7 times and hindered that of amoxicillin by nearly 36 % without affecting the absorption of neomycin sulfate and vancomycin. KGM and its derivatives had no effect on the distribution of amoxicillin and metronidazole, but DKGM and KGM hindered the distributions of neomycin sulfate (from 1.25 h to 1.62 h) and vancomycin (from 0.95 h to 1.14 h), respectively. KGM and its derivatives promoted the elimination of amoxicillin by nearly 38 % while prolonging that of metronidazole by >50 %. KOGM boosted the elimination of neomycin sulfate and vancomycin, but KGM differed from DKGM in acting on the elimination of both.
Collapse
Affiliation(s)
- Yuan Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
| | - Waleed A S Aldamarany
- College of Food Science, Southwest University, Chongqing 400715, China; Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University (Assiut Branch), Assiut 71524, Egypt
| | - Guangming Song
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
| | - Jie Liu
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
| | - Sha Liu
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
| | - Yuanyuan Chen
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
| | - Wenjing Jiang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
| | - Geng Zhong
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China.
| |
Collapse
|
186
|
Firaha D, Liu YM, van de Streek J, Sasikumar K, Dietrich H, Helfferich J, Aerts L, Braun DE, Broo A, DiPasquale AG, Lee AY, Le Meur S, Nilsson Lill SO, Lunsmann WJ, Mattei A, Muglia P, Putra OD, Raoui M, Reutzel-Edens SM, Rome S, Sheikh AY, Tkatchenko A, Woollam GR, Neumann MA. Predicting crystal form stability under real-world conditions. Nature 2023; 623:324-328. [PMID: 37938708 PMCID: PMC10632141 DOI: 10.1038/s41586-023-06587-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/30/2023] [Indexed: 11/09/2023]
Abstract
The physicochemical properties of molecular crystals, such as solubility, stability, compactability, melting behaviour and bioavailability, depend on their crystal form1. In silico crystal form selection has recently come much closer to realization because of the development of accurate and affordable free-energy calculations2-4. Here we redefine the state of the art, primarily by improving the accuracy of free-energy calculations, constructing a reliable experimental benchmark for solid-solid free-energy differences, quantifying statistical errors for the computed free energies and placing both hydrate crystal structures of different stoichiometries and anhydrate crystal structures on the same energy landscape, with defined error bars, as a function of temperature and relative humidity. The calculated free energies have standard errors of 1-2 kJ mol-1 for industrially relevant compounds, and the method to place crystal structures with different hydrate stoichiometries on the same energy landscape can be extended to other multi-component systems, including solvates. These contributions reduce the gap between the needs of the experimentalist and the capabilities of modern computational tools, transforming crystal structure prediction into a more reliable and actionable procedure that can be used in combination with experimental evidence to direct crystal form selection and establish control5.
Collapse
Affiliation(s)
| | | | | | | | | | - Julian Helfferich
- Avant-garde Materials Simulation, Merzhausen, Germany
- JobRad, Freiburg, Germany
| | - Luc Aerts
- UCB Pharma SA, Chemin du Foriest, Braine-l'Alleud, Belgium
| | - Doris E Braun
- Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Anders Broo
- Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg, Mölndal, Sweden
| | | | - Alfred Y Lee
- Merck, Analytical Research & Development, Rahway, NJ, USA
| | - Sarah Le Meur
- UCB Pharma SA, Chemin du Foriest, Braine-l'Alleud, Belgium
| | - Sten O Nilsson Lill
- Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg, Mölndal, Sweden
| | | | - Alessandra Mattei
- Solid State Chemistry, Research & Development, AbbVie, North Chicago, IL, USA
| | | | - Okky Dwichandra Putra
- Early Product Development and Manufacturing, Pharmaceutical Sciences R&D, AstraZeneca Gothenburg, Mölndal, Sweden
| | | | - Susan M Reutzel-Edens
- Cambridge Crystallographic Data Centre, Cambridge, UK
- SuRE Pharma Consulting, Zionsville, IN, USA
| | - Sandrine Rome
- UCB Pharma SA, Chemin du Foriest, Braine-l'Alleud, Belgium
| | - Ahmad Y Sheikh
- Solid State Chemistry, Research & Development, AbbVie, North Chicago, IL, USA
| | - Alexandre Tkatchenko
- Department of Physics and Materials Science, University of Luxembourg, Luxembourg City, Luxembourg
| | | | | |
Collapse
|
187
|
Bartlett BA, Feng Y, Fromen CA, Ford Versypt AN. Computational fluid dynamics modeling of aerosol particle transport through lung airway mucosa. Comput Chem Eng 2023; 179:108458. [PMID: 37946856 PMCID: PMC10634618 DOI: 10.1016/j.compchemeng.2023.108458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Delivery of aerosols to the lung can treat various lung diseases. However, the conducting airways are coated by a protective mucus layer with complex properties that make this form of delivery difficult. Mucus is a non-Newtonian fluid and is cleared from the lungs over time by ciliated cells. Further, its gel-like structure hinders the diffusion of particles through it. Any aerosolized treatment of lung diseases must penetrate the mucosal barrier. Using computational fluid dynamics, a model of the airway mucus and periciliary layer was constructed to simulate the transport of impacted aerosol particles. The model predicts the dosage fraction of particles of a certain size that penetrate the mucus and reach the underlying tissue, as well as the distance downstream of the dosage site where tissue concentration is maximized. Reactions that may occur in the mucus are also considered, with simulated data for the interaction of a model virus and an antibody.
Collapse
Affiliation(s)
- Blake A. Bartlett
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Yu Feng
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| | - Catherine A. Fromen
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Ashlee N. Ford Versypt
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Institute for Artificial Intelligence and Data Science, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
188
|
Kothawade SM, Buttar HS, Tuli HS, Kaur G. Therapeutic potential of flavonoids in the management of obesity-induced Alzheimer's disease: an overview of preclinical and clinical studies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2813-2830. [PMID: 37231172 DOI: 10.1007/s00210-023-02529-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
Obesity is a global epidemic that affects people of all ages, genders, and backgrounds. It can lead to a plethora of disorders, including diabetes mellitus, renal dysfunction, musculoskeletal problems, metabolic syndrome, cardiovascular, and neurodegenerative abnormalities. Obesity has also been linked to neurological diseases such as cognitive decline, dementia, and Alzheimer's disease (AD), caused by oxidative stress, pro-inflammatory cytokines, and the production of reactive oxygen free radicals (ROS). Secretion of insulin hormone is impaired in obese people, leading to hyperglycaemia and increased accumulation of amyloid-β in the brain. Acetylcholine, a key neurotransmitter necessary for forming new neuronal connections in the brain, decreases in AD patients. To alleviate acetylcholine deficiency, researchers have proposed dietary interventions and adjuvant therapies that enhance the production of acetylcholine and assist in the management of AD patients. Such measures include dietary intervention with antioxidant and anti-inflammatory flavonoid-rich diets, which have been found to bind to tau receptors, reduce gliosis, and reduce neuroinflammatory markers in animal models. Furthermore, flavonoids like curcumin, resveratrol, epigallocatechin-3-gallate, morin, delphinidins, quercetin, luteolin, and oleocanthal have shown to cause significant reductions in interleukin-1β, increase BDNF levels, stimulate hippocampal neurogenesis and synapse formation, and ultimately prevent the loss of neurons in the brain. Thus, flavonoid-rich nutraceuticals can be a potential cost-effective therapeutic option for treating obesity-induced AD, but further well-designed, randomized, and placebo-controlled clinical studies are needed to assess their optimal dosages, efficacy, and long-term safety of flavonoids in humans. The main objectives of this review are to underscore the therapeutic potential of different nutraceuticals containing flavonoids that can be added in the daily diet of AD patients to enhance acetylcholine and reduce neuronal inflammation in the brain.
Collapse
Affiliation(s)
- Sakshi M Kothawade
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai-56, Maharashtra, India
| | - Harpal Singh Buttar
- Department of Pathology & Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Haryana, Mullana, India
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai-56, Maharashtra, India.
| |
Collapse
|
189
|
Mahajan R, Ravi PR, Khan MS. Optimization of a HPLC-UV bioanalytical method using Box-Behnken design to determine the oral pharmacokinetics of neratinib maleate in Wistar rats. Biomed Chromatogr 2023; 37:e5731. [PMID: 37651999 DOI: 10.1002/bmc.5731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 09/02/2023]
Abstract
The current research work reports the development and validation of a sensitive, robust and reproducible bioanalytical method for quantifying neratinib maleate in rat plasma. More than 85% of the drug was extracted from the plasma samples by protein precipitation. The method was optimized using Box-Behnken design, a response surface method. The effect of three critical factors, viz., the pH of the buffer (X1 ), the aqueous phase proportion in the mobile phase (X2 ) and the mobile phase flow rate (X3 ), was studied on two response variables, retention time (Y1 ) and United States Pharmacopoeia (USP) width (Y2 ). With the highest overall desirability function value of 0.943, the obtained optimized method conditions were: X1 = 2.4 ± 0.1; X2 = 66.7 ml, and X3 = 0.85 ml/min. Under the optimized conditions, the values of Y1 and Y2 for a sample containing 1 ppm of the drug were found to be 14.1 min and 0.50 ± 0.003, respectively. Single-dose intravenous bolus (7.5 mg/kg) and oral (15 mg/kg) pharmacokinetic studies were performed to determine the absolute bioavailability of the drug. The optimized bioanalytical method was sensitive enough to capture 95% of the drug eliminated from the body. The absolute oral bioavailability of the drug was 49.30%.
Collapse
Affiliation(s)
- Radhika Mahajan
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Medchal District, Telangana, India
| | - Punna Rao Ravi
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Medchal District, Telangana, India
| | - Md Shareef Khan
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Medchal District, Telangana, India
| |
Collapse
|
190
|
Abstracts from The International Society for Aerosols in Medicine. J Aerosol Med Pulm Drug Deliv 2023. [PMID: 37906031 DOI: 10.1089/jamp.2023.ab02.abstracts] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
|
191
|
Shi J, Chen X, Hu H, Ung COL. Benchmarking Drug Regulatory Systems for Capacity Building: An Integrative Review of Tools, Practice, and Recommendations. Int J Health Policy Manag 2023; 12:8100. [PMID: 38618782 PMCID: PMC10699822 DOI: 10.34172/ijhpm.2023.8100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/30/2023] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Benchmarking has been increasingly used on drug regulatory systems to achieve sustainable pharmaceutical system strengthening. This study aimed to identify the scope, tools and benefits of benchmarking regulatory capacities and the most recent development in such phenomenon. Method: This study employed an integrative and critical review of the literature and documents on benchmarking drug regulatory capacities identified from 6 databases and 5 websites of related organizations and government agencies in compliance with the Preferred Reporting Items for Systematic Review (PRISMA) guidelines. RESULTS Forty-three studies and 6 documents about regulatory benchmarking published between 2005 and 2022 were included in this review. Five benchmarking assessment tools or programmes recommended or adopted by international organizations or government agencies had been identified, which collectively covered 12 major regulatory functions (4 at system level and 8 at operational level) involving 9 indicator categories and 382 sub-indicators. Benchmarking drug regulatory systems was reportedly employed at national, regional and international levels for either internal assessment (mostly on regulatory system establishment, drug review process and post marketing surveillance) or external evaluation (mostly on regulatory standards, drug review process and pharmacovigilance systems) to assess current status, monitor performance, determine major challenges and inform actions for capacity building. Priority of actions in areas such as regulatory process, resources allocation, cooperation and communication, and stakeholder engagement have been suggested for strengthening drug regulatory systems. Nevertheless, the evidence about benchmarking in optimizing regulatory capacities remained underreported. CONCLUSION This integrative review depicted a framework for decision-makers about why and how benchmarking drug regulatory systems should be undertaken. For effective benchmarking, well-informed decisions about the goals, the scope, the choice of reference points and benchmarking tools are essential to guide the implementation strategies. Further studies about the positive effects of regulatory benchmarking are warranted to engage continuous commitment to the practice.
Collapse
Affiliation(s)
- Junnan Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Xianwen Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Hao Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
- Centre for Pharmaceutical Regulatory Sciences, University of Macau, Macao SAR, China
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Carolina Oi Lam Ung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
- Centre for Pharmaceutical Regulatory Sciences, University of Macau, Macao SAR, China
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| |
Collapse
|
192
|
Anderson C, Algorri M, Abernathy MJ. Real-time algorithmic exchange and processing of pharmaceutical quality data and information. Int J Pharm 2023; 645:123342. [PMID: 37619807 DOI: 10.1016/j.ijpharm.2023.123342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Herein, a modern method is proposed for exchanging and processing real-time medicinal product information using Health Level 7 International's (HL7) Fast Healthcare Interoperability Resources (FHIR®) standard, Application Programming Interfaces (API), digitization and artificial intelligence. FHIR is presently in use largely to facilitate interactions between patient-facing healthcare institutions, such as hospitals, doctor's offices, and laboratories, for electronic health record management and exchange. There are several ongoing efforts to adapt the FHIR standard for regulatory use cases to support the needs of the global biopharmaceutical industry, including the exchange of Electronic Product Information (ePI); chemistry, manufacturing, and controls (CMC) data; and adverse event reporting. Once in place, this new method of data exchange is expected to (1) improve efficiency by reducing the time and effort needed to manage regulatory information; (2) accelerate decision making; (3) encourage innovation in pharmaceutical manufacturing; (4) improve the ability and agility of information exchange. Currently, the end-to-end timescale for the pharmaceutical regulatory workflow is measured in months and years. This new paradigm will use FHIR APIs and other supporting technologies to reduce the potential time for data exchange from months to days, hours, minutes, and eventually sub-seconds. With such drastic improvements in speed provided by digitization, automation, and interoperability, the biopharmaceutical industry can reach more patients, and more quickly than at any time in the industry's 100+ year history. The present work will focus on examining specific real-world implementation examples for using FHIR to support exchange of CMC information within and across the biopharmaceutical industry.
Collapse
Affiliation(s)
- Craig Anderson
- Department of Global Regulatory Science - International Labeling Group, Pfizer Inc., Kirkland, Quebec H9J 2M5, Canada.
| | - Marquerita Algorri
- Department of Global Regulatory Affairs and Strategy - CMC, Amgen Inc, Thousand Oaks, CA 91320, USA
| | - Michael J Abernathy
- Department of Global Regulatory Affairs and Strategy - CMC, Amgen Inc, Thousand Oaks, CA 91320, USA
| |
Collapse
|
193
|
Nguyen V, Cheung A, Hendricks R, Peng K, Chung S. An Antibody-Dependent Cellular Cytotoxicity Assay for Detecting Ocrelizumab Neutralizing Antibody. AAPS J 2023; 25:97. [PMID: 37783946 DOI: 10.1208/s12248-023-00858-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/26/2023] [Indexed: 10/04/2023] Open
Abstract
Ocrelizumab (OCREVUS®) is a humanized anti-CD20 monoclonal antibody approved for the treatment of adult patients with relapsing multiple sclerosis (RMS) and primary progressive multiple sclerosis (PPMS). Here, we discuss the strategic and technical considerations needed to develop a robust antibody-dependent cellular cytotoxicity (ADCC)-based neutralizing antibody (NAb) assay to detect anti-ocrelizumab NAb in patients enrolled in the ocrelizumab registered clinical trials. The NAb detection assay consisted of a two-tier assay that included a screening assay and a confirmation assay. In the screening assay, patient samples were analyzed in the presence of ocrelizumab. Samples that tested positive in the screening assay were subsequently analyzed in the confirmatory assay where another anti-CD20 mAb, obinutuzumab, was replaced by ocrelizumab, to verify NAb specificity. Both assays utilized MEC-2 cells, a chronic B cell leukemia cell line, pre-labeled with calcein AM as the target cells, and natural killer (NK) cells engineered to stably express Fc gamma receptor IIIa_ F158 as effector cells. Both cell lines were prepared to be thaw-and-use cells. The NAb assay measures fluorescence from the calcein AM released into the assay media upon the lysis of target cells by ADCC in the presence of ocrelizumab or obinutuzumab. Our validated NAb assay showed a relative sensitivity of 743 ng/mL and can detect 1500 ng/mL of a surrogate positive control antibody in the presence of 1500 ng/mL ocrelizumab. This ADCC assay is the first reported NAb assay that directly measures target cell lysis by using thaw-and-use target and effector cells simultaneously.
Collapse
Affiliation(s)
- Van Nguyen
- Department of BioAnalytical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, California, 94080, USA.
| | - Anthony Cheung
- Department of BioAnalytical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Robert Hendricks
- Department of BioAnalytical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Kun Peng
- Department of BioAnalytical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Shan Chung
- Department of BioAnalytical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| |
Collapse
|
194
|
Hejmady S, Pradhan R, Kumari S, Pandey M, Dubey SK, Taliyan R. Pharmacokinetics and toxicity considerations for antibody-drug conjugates: an overview. Bioanalysis 2023; 15:1193-1202. [PMID: 37724472 DOI: 10.4155/bio-2023-0104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023] Open
Abstract
Antibody-drug conjugates (ADCs) is one of the fastest-growing drug-delivery systems. It involves a monoclonal antibody conjugated with payload via a ligand that directly targets the expressive protein of diseased cell. Hence, it reduces systemic exposure and provides site-specific delivery along with reduced toxicity. Because of this advantage, researchers have gained interest in this novel system. ADCs have displayed great promise in drug delivery and biomedical applications. However, a lack of understanding exists on their mechanisms of biodistribution, metabolism and side effects. To gain a better understanding of the therapeutics, careful consideration of the pharmacokinetics and toxicity needs to be undertaken. In this review, different pharmacokinetics parameters including distribution, bioanalysis and heterogeneity are discussed for developing novel therapeutics.
Collapse
Affiliation(s)
- Siddhanth Hejmady
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Rajesh Pradhan
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Shobha Kumari
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Meghna Pandey
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Sunil K Dubey
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Pilani Campus, Rajasthan, 333031, India
- Medical Research, R&D Healthcare Division, Emami Ltd, Kolkata 700056, India
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Pilani Campus, Rajasthan, 333031, India
| |
Collapse
|
195
|
Jakaria SM, Budil DE, Murtagh J. Strategies to Stabilize Dalbavancin in Aqueous Solutions; Section-1: the Effects of Metal Ions and Buffers. Pharm Res 2023; 40:2469-2478. [PMID: 37697173 DOI: 10.1007/s11095-023-03588-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/13/2023] [Indexed: 09/13/2023]
Abstract
PURPOSE The effect of monovalent (Na+ and K+) and divalent (Ca2+, Mg2+, and Zn2+) metal ions combined with citrate or acetate buffers (pH 4.5) on the stability of dalbavancin in aqueous solutions was investigated. METHOD RP-HPLC and HP-SEC were used to evaluate the stability of aqueous solutions of dalbavancin in different combinations of buffers and metal ions after four weeks of storage at 5°C and 55°C. A long-term study of formulations with divalent metal ions was conducted over six months at 5°C., 25°C and 40°C using RP-HPLC. RESULTS All formulations in citrate buffered solutions precipitated. Dalbavancin solutions in 10 mM acetate buffer at 55°C were more stable in 10 mM CaCl2, 5 mM ZnCl2 and 10 mM MgCl2 than those containing 2 mM NaCl or 5 mM KCl, although the MgCl2 formulations precipitated slightly. No significant effect was observed for any of the divalent metal ions at 40°C for six months. CONCLUSION Dalbavancin's stability in solution was improved by a combination of acetate and divalent metal ions at 55°C for four weeks. No effect was observed with acetate or metal ions alone, and no effect was observed after six months at 40°C suggesting that acetate and divalent metal ions together interact with dalbavancin via a thermally activated step to inhibit hydrolysis of the drug.
Collapse
Affiliation(s)
- Sardar M Jakaria
- Hikma Pharmaceuticals, Bedford, OH, 44146, USA.
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA.
| | - David E Budil
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| | | |
Collapse
|
196
|
Bianchera A, Vilardo V, Giaccari R, Michielon A, Bazzoli G, Buttini F, Aiello M, Chetta A, Bruno S, Bettini R. Nebulizers effectiveness on pulmonary delivery of alpha-1 antitrypsin. Drug Deliv Transl Res 2023; 13:2653-2663. [PMID: 37097606 PMCID: PMC10468431 DOI: 10.1007/s13346-023-01346-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2023] [Indexed: 04/26/2023]
Abstract
The nebulization of alpha-1 antitrypsin (AAT) for its administration to the lung could be an interesting alternative to parenteral infusion for patients suffering from AAT genetic deficiency (AATD). In the case of protein therapeutics, the effect of the nebulization mode and rate on protein conformation and activity must be carefully considered. In this paper two types of nebulizers, i.e., a jet and a mesh vibrating system, were used to nebulize a commercial preparation of AAT for infusion and compared. The aerosolization performance, in terms of mass distribution, respirable fraction, and drug delivery efficiency, as well as the activity and aggregation state of AAT upon in vitro nebulization were investigated. The two nebulizers demonstrated equivalent aerosolization performances, but the mesh nebulizer provided a higher efficiency in the delivery of the dose. The activity of the protein was acceptably preserved by both nebulizers and no aggregation or changes in its conformation were identified. This suggests that nebulization of AAT represents a suitable administration strategy ready to be translated to the clinical practice for delivering the protein directly to the lungs in AATD patients, either as a support therapy to parenteral administration or for subjects with a precocious diagnosis, to prevent the onset of pulmonary symptoms.
Collapse
Affiliation(s)
- Annalisa Bianchera
- Food and Drug Department, University of Parma, Parco Area Delle Scienze 27/a, Parma, Italy
- Interdepartmental Center Biopharmanet-Tec, University of Parma, Parco Area Delle Scienze Building 33, Parma, Italy
| | - Viviana Vilardo
- Food and Drug Department, University of Parma, Parco Area Delle Scienze 27/a, Parma, Italy
| | - Roberta Giaccari
- Food and Drug Department, University of Parma, Parco Area Delle Scienze 27/a, Parma, Italy
| | - Annalisa Michielon
- Food and Drug Department, University of Parma, Parco Area Delle Scienze 27/a, Parma, Italy
| | - Gianluca Bazzoli
- Food and Drug Department, University of Parma, Parco Area Delle Scienze 27/a, Parma, Italy
| | - Francesca Buttini
- Food and Drug Department, University of Parma, Parco Area Delle Scienze 27/a, Parma, Italy
- Interdepartmental Center Biopharmanet-Tec, University of Parma, Parco Area Delle Scienze Building 33, Parma, Italy
| | - Marina Aiello
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, Parma, Italy
| | - Alfredo Chetta
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, Parma, Italy
| | - Stefano Bruno
- Food and Drug Department, University of Parma, Parco Area Delle Scienze 27/a, Parma, Italy
- Interdepartmental Center Biopharmanet-Tec, University of Parma, Parco Area Delle Scienze Building 33, Parma, Italy
| | - Ruggero Bettini
- Food and Drug Department, University of Parma, Parco Area Delle Scienze 27/a, Parma, Italy.
- Interdepartmental Center Biopharmanet-Tec, University of Parma, Parco Area Delle Scienze Building 33, Parma, Italy.
| |
Collapse
|
197
|
Yu H, Zhang L, Liu M, Yang D, He G, Zhang B, Gong N, Lu Y, Du G. Enhancing Solubility and Dissolution Rate of Antifungal Drug Ketoconazole through Crystal Engineering. Pharmaceuticals (Basel) 2023; 16:1349. [PMID: 37895820 PMCID: PMC10610424 DOI: 10.3390/ph16101349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
To improve the solubility and dissolution rate of the BCS class II drug ketoconazole, five novel solid forms in 1:1 stoichiometry were obtained upon liquid-assisted grinding, slurry, and slow evaporation methods in the presence of coformers, namely, glutaric, vanillic, 2,6-dihydroxybenzoic, protocatechuic, and 3,5-dinitrobenzoic acids. Single-crystal X-ray diffraction analysis revealed that the hydroxyl/carboxylic acid. . .N-imidazole motif acts as the dominant supramolecular interaction in the obtained solid forms. The solubility of ketoconazole in distilled water significantly increased from 1.2 to 2165.6, 321.6, 139.1, 386.3, and 191.7 μg mL-1 in the synthesized multi-component forms with glutaric, vanillic, 2,6-dihydroxybenzoic, protocatechuic, and 3,5-dinitrobenzoic acid, respectively. In particular, the cocrystal form with glutaric acid showed an 1800-fold solubility increase in water concerning ketoconazole. Our study provides an alternative approach to improve the solubility and modify the release profile of poorly water-soluble drugs such as ketoconazole.
Collapse
Affiliation(s)
- Hongmei Yu
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (H.Y.); (L.Z.); (M.L.); (D.Y.); (B.Z.)
| | - Li Zhang
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (H.Y.); (L.Z.); (M.L.); (D.Y.); (B.Z.)
| | - Meiju Liu
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (H.Y.); (L.Z.); (M.L.); (D.Y.); (B.Z.)
| | - Dezhi Yang
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (H.Y.); (L.Z.); (M.L.); (D.Y.); (B.Z.)
| | - Guorong He
- Beijing City Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (G.H.); (G.D.)
| | - Baoxi Zhang
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (H.Y.); (L.Z.); (M.L.); (D.Y.); (B.Z.)
| | - Ningbo Gong
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (H.Y.); (L.Z.); (M.L.); (D.Y.); (B.Z.)
| | - Yang Lu
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (H.Y.); (L.Z.); (M.L.); (D.Y.); (B.Z.)
| | - Guanhua Du
- Beijing City Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (G.H.); (G.D.)
| |
Collapse
|
198
|
Shi C, Guo K, Zhang L, Guo Y, Feng Y, Cvijić S, Cun D, Yang M. In Vitro and In Vivo Evaluation of Inhalable Ciprofloxacin Sustained Release Formulations. Pharmaceutics 2023; 15:2287. [PMID: 37765256 PMCID: PMC10537253 DOI: 10.3390/pharmaceutics15092287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Respiratory antibiotics delivery has been appreciated for its high local concentration at the infection sites. Certain formulation strategies are required to improve pulmonary drug exposure and to achieve effective antimicrobial activity, especially for highly permeable antibiotics. This study aimed to investigate lung exposure to various inhalable ciprofloxacin (CIP) formulations with different drug release rates in a rat model. Four formulations were prepared, i.e., CIP-loaded PLGA micro-particles (CHPM), CIP microcrystalline dry powder (CMDP), CIP nanocrystalline dry powder (CNDP), and CIP spray-dried powder (CHDP), which served as a reference. The physicochemical properties, drug dissolution rate, and aerosolization performance of these powders were characterized in vitro. Pharmacokinetic profiles were evaluated in rats. All formulations were suitable for inhalation (mass median aerodynamic diameter < 5 µm). CIP in CHPM and CHDP was amorphous, whereas the drug in CMDP and CNDP remained predominantly crystalline. CHDP exhibited the fastest drug release rate, while CMDP and CNDP exhibited much slower drug release. In addition, CMDP and CNDP exhibited significantly higher in vivo lung exposure to CIP compared with CHDP and CHPM. This study suggests that lung exposure to inhaled drugs with high permeability is governed by drug release rate, implying that lung exposure of inhaled antibiotics could be improved by a sustained-release formulation strategy.
Collapse
Affiliation(s)
- Changzhi Shi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang 110016, China
| | - Kewei Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang 110016, China
| | - Li Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang 110016, China
| | - Yi Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang 110016, China
| | - Yu Feng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang 110016, China
| | - Sandra Cvijić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang 110016, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang 110016, China
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
199
|
Li J, Sonje J, Suryanarayanan R. Role of Poloxamer 188 in Preventing Ice-Surface-Induced Protein Destabilization during Freeze-Thawing. Mol Pharm 2023; 20:4587-4596. [PMID: 37535010 DOI: 10.1021/acs.molpharmaceut.3c00312] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The phase behavior of poloxamer 188 (P188) in aqueous solutions, characterized by differential scanning calorimetry (DSC) and synchrotron X-ray diffractometry, revealed solute crystallization during both freezing and thawing. Sucrose and trehalose inhibited P188 crystallization during freeze-thawing (FT). While trehalose inhibited P188 crystallization only during cooling, sucrose completely suppressed P188 crystallization during both cooling and heating. Lactate dehydrogenase (LDH) served as a model protein to evaluate the stabilizing effect of P188. The ability of P188, over a concentration range of 0.003-0.800% w/v, to prevent LDH (10 μg/mL) destabilization was evaluated. After five FT cycles, the aggregation behavior (by dynamic light scattering) and activity recovery were evaluated. While LDH alone was sensitive to interfacial stress, P188 at concentrations of ≥0.100% w/v stabilized the protein. However, as the surfactant concentration decreased, protein aggregation after FT increased. The addition of sugar (1.0% w/v; sucrose or trehalose) improved the stabilizing function of P188 at lower concentrations (≤0.010% w/v), possibly due to the inhibition of surfactant crystallization. Based on a comparison with the stabilization effect of polysorbate (both 20 and 80), it was evident that P188 could be a promising alternative surfactant in frozen protein formulations. However, when the surfactant concentration is low, the potential for P188 crystallization and the consequent compromise in its functionality warrant careful consideration.
Collapse
Affiliation(s)
- Jinghan Li
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jayesh Sonje
- Pfizer Biotherapeutics, Pfizer Inc., Andover, Massachusetts 01810, United States
| | - Raj Suryanarayanan
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
200
|
Chen W, Klemm D, Gregoritza K, Satya Krishna Kishore R, Olaf Stracke J, Wurth C, Pinto C, Sancho Oltra N. Screening techniques for monitoring the sub-visible particle formation of free fatty acids in biopharmaceuticals. Eur J Pharm Biopharm 2023; 190:242-247. [PMID: 37524212 DOI: 10.1016/j.ejpb.2023.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Free fatty acid (FFA) particles that originate from the enzymatic hydrolysis of polysorbate (PS) via co-purified host cell proteins generally appear abruptly in drug products during real-time (long-term) storage. Efforts were taken to understand the kinetics of FFA particle formation, aiming for a mitigation strategy. However, it is rather challenging particularly in the sub-visible particle (SVP) range, due to either the insufficient sensitivity of the analytical techniques used or the interference of the formulation matrices of proteinaceous drug products. In this study, we examined the feasibility of Raman microscopy, backgrounded membrane imaging (BMI) and total holographic characterization (THC) on the detection of FFA sub-visible particles (SVPs). The results indicate that THC is the most sensitive technique to track their occurrence during the course of PS hydrolysis. Moreover, with this technique we are able to distinguish different stages of FFA particle formation in the medium. In addition, a real time stability study of a biopharmaceutical was analyzed, demonstrating the viability of THC to monitor SVPs in a real sample and correlate it to the visible particles (VPs) occurrence.
Collapse
Affiliation(s)
- Wei Chen
- F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Denis Klemm
- F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | | | | | - Jan Olaf Stracke
- F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Christine Wurth
- F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Cosimo Pinto
- F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland.
| | - Nuria Sancho Oltra
- F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland.
| |
Collapse
|