151
|
Wang X, Zhang M, Ma J, Tie Y, Wang S. Biochemical Markers of Zinc Nutrition. Biol Trace Elem Res 2024; 202:5328-5338. [PMID: 38319550 DOI: 10.1007/s12011-024-04091-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Zinc is an important trace element involved in the biochemical and physiological functions of the organism and is essential in the human body. It has been reported that 17.3% of people around the world are at risk of many diseases due to zinc deficiency, which has already affected people's healthy lives. Currently, mild zinc deficiency is difficult to diagnose early due to the lack of typical clinical manifestations, so finding zinc biomarkers is crucial for people's health. The present article reviews the main representative zinc biomarkers, such as body fluid zinc levels, zinc-dependent proteins, tissue zinc, and zinc-containing enzymes, to provide a reference for actively promoting the study of zinc nutritional status and early clinical diagnosis.
Collapse
Affiliation(s)
- Xinying Wang
- North China University of Science and Technology, Tangshan, Hebei Province, 063210, China
| | - Menghui Zhang
- North China University of Science and Technology, Tangshan, Hebei Province, 063210, China
| | - Jing Ma
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, Hebei Province, 050071, China
| | - Yanqing Tie
- Hebei General Hospital, Shijiazhuang, Hebei Province, 050051, China.
| | - Shusong Wang
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, Hebei Province, 050071, China.
| |
Collapse
|
152
|
Deininger S, Schumacher J, Blechschmidt A, Song J, Klugmann C, Antoniadis G, Pedro M, Knöll B, Meyer Zu Reckendorf S. Nerve injury converts Schwann cells in a long-term repair-like state in human neuroma tissue. Exp Neurol 2024; 382:114981. [PMID: 39362479 DOI: 10.1016/j.expneurol.2024.114981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/27/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Peripheral nerve injury (PNI) induces neuroma formation at the severed nerve stump resulting in impaired nerve regeneration and functional recovery in patients. So far, molecular mechanisms and cell types present in the neuroma impeding on regeneration have only sparsely been analyzed. Herein we compare resected human neuroma tissue with intact donor nerves from the same patient. Neuroma from several post-injury timepoints (1-13 months) were included, thereby allowing for temporal correlation with molecular and cellular processes. We observed reduced axonal area and percentage of myelin producing Schwann cells (SCs) compared to intact nerves. However, total SOX10 positive SC numbers were comparable. Notably, markers for SCs in a repair mode including c-JUN, the low-affinity neurotrophin receptor (NTR) p75, SHH (sonic hedgehog) and SC proliferation (phospho-histone H3) were upregulated in neuroma, suggesting presence of SCs in repair status. In agreement, in neuroma, pro-regenerative markers such as phosphorylated i.e. activated CREB (pCREB), ATF3, GAP43 and SCG10 were upregulated. In addition, neuroma tissue was infiltrated by several types of macrophages. Finally, when taken in culture, neuroma SCs were indistinguishable from controls SCs with regard to proliferation and morphology. However, cultured neuroma SCs retained a different molecular signature from control SCs including increased inflammation and reduced gene expression for differentiation markers such as myelin genes. In summary, human neuroma tissue consists of SCs with a repair status and is infiltrated strongly by several types of macrophages.
Collapse
Affiliation(s)
- Stefanie Deininger
- Peripheral Nerve Surgery Unit, Department of Neurosurgery, Ulm University, District Hospital, 89312 Günzburg, Germany
| | - Jakob Schumacher
- Institute of Neurobiochemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Anna Blechschmidt
- Institute of Neurobiochemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Jialei Song
- Institute of Neurobiochemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Claudia Klugmann
- Institute of Neurobiochemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Gregor Antoniadis
- Peripheral Nerve Surgery Unit, Department of Neurosurgery, Ulm University, District Hospital, 89312 Günzburg, Germany
| | - Maria Pedro
- Peripheral Nerve Surgery Unit, Department of Neurosurgery, Ulm University, District Hospital, 89312 Günzburg, Germany
| | - Bernd Knöll
- Institute of Neurobiochemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | | |
Collapse
|
153
|
Ye F, Wei C, Wu A. The potential mechanism of mitochondrial homeostasis in postoperative neurocognitive disorders: an in-depth review. Ann Med 2024; 56:2411012. [PMID: 39450938 PMCID: PMC11514427 DOI: 10.1080/07853890.2024.2411012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 10/26/2024] Open
Abstract
Postoperative neurocognitive disorders (PND) are the most common neurological disorders following surgery and anaesthesia before and within 12 months after surgery, with a high prevalence in the geriatric population. PND can severely deteriorate the quality of life of patients, especially among the elderly, mainly manifested as memory loss, attention, decline and language comprehension disorders, mostly in elderly patients, with an incidence as high as 31%. Previous studies have also raised the possibility of accelerated cognitive decline and underlying neuropathological processes associated with diseases that affect cognitive performance (e.g. Alzheimer's dementia) for reasons related to anaesthesia and surgery. Currently, most research on PND has focused on various molecular pathways, especially in the geriatric population. The various hypotheses that have been proposed regarding the mechanisms imply peripheral neuroinflammation, oxidative stress, mitochondrial homeostasis, synaptic function, autophagy disorder, blood-brain barrier dysfunction, the microbiota-gut-brain axis and lack of neurotrophic support. However, the underlying pathogenesis and molecular mechanisms of PND have not yet been uncovered. Recent research has focused on mitochondrial homeostasis. In this paper, we present a review of various studies to better understand and characterize the mechanisms of associated cognitive dysfunction. As the biochemical basis of PND becomes more clearly defined, future treatments based on mitochondrial homeostasis modulation can prove to be very promising.
Collapse
Affiliation(s)
- Fan Ye
- Department of Anesthesiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Changwei Wei
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Anshi Wu
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
154
|
Colautti L, Iannello P, Silveri MC, Giovagnoli AR, Elia AE, Pepe F, Magni E, Antonietti A. Deepening the decisional processes under value-based conditions in patients affected by Parkinson's disease: A comparative study. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:1167-1185. [PMID: 39266937 PMCID: PMC11525292 DOI: 10.3758/s13415-024-01211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 09/14/2024]
Abstract
Patients affected by Parkinson's disease (PD) display a tendency toward making risky choices in value-based conditions. Possible causes may encompass the pathophysiologic characteristics of PD that affect neural structures pivotal for decision making (DM) and the dopaminergic medications that may bias choices. Nevertheless, excluding patients with concurrent impulse control disorders, results are few and mixed. Conversely, other factors, such as individual differences (e.g., emotional state, impulsivity, consideration for future consequences) and cognitive functioning, in particular executive functions (EFs), are involved, even though few studies investigated their possible role. The present study investigated (1) the differences in value-based DM between 33 patients with PD without impulse control disorders and 33 matched healthy controls, and (2) the relationships among decisional performances, EFs, and individual differences in a group of 42 patients with PD who regularly undertake dopaminergic medications. All participants underwent an individual assessment to investigate value-based DM, cognitive abilities, and individual differences associated with DM. Nonparametric analyses showed the presence of riskier decisions in patients compared with healthy controls, depending on the characteristics of the decisional situation. Moreover, parameters of the decisional tasks involving the number of risky choices were significantly related to the posology of dopaminergic medications, EFs, and individual differences. Findings were discussed, highlighting possible clinical implications.
Collapse
Affiliation(s)
- Laura Colautti
- Department of Psychology, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 1, 20123, Milan, Italy.
| | - Paola Iannello
- Department of Psychology, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 1, 20123, Milan, Italy
| | - Maria Caterina Silveri
- Department of Psychology, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 1, 20123, Milan, Italy
| | - Anna Rita Giovagnoli
- Department of Diagnostics and Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Antonio Emanuele Elia
- Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Fulvio Pepe
- Department of Neuroscience, Fondazione Poliambulanza Istituto Ospedaliero Brescia, Milan, Italy
| | - Eugenio Magni
- Department of Neuroscience, Fondazione Poliambulanza Istituto Ospedaliero Brescia, Milan, Italy
| | - Alessandro Antonietti
- Department of Psychology, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 1, 20123, Milan, Italy
| |
Collapse
|
155
|
Fard YA, Sadeghi EN, Pajoohesh Z, Gharehdaghi Z, Khatibi DM, Khosravifar S, Pishkari Y, Nozari S, Hijazi A, Pakmehr S, Shayan SK. Epigenetic underpinnings of the autistic mind: Histone modifications and prefrontal excitation/inhibition imbalance. Am J Med Genet B Neuropsychiatr Genet 2024; 195:e32986. [PMID: 38837296 DOI: 10.1002/ajmg.b.32986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/30/2024] [Accepted: 04/25/2024] [Indexed: 06/07/2024]
Abstract
Autism spectrum disorder (ASD) is complex neurobehavioral condition influenced by several cellular and molecular mechanisms that are often concerned with synaptogenesis and synaptic activity. Based on the excitation/inhibition (E/I) imbalance theory, ASD could be the result of disruption in excitatory and inhibitory synaptic transmission across the brain. The prefrontal cortex (PFC) is the chief regulator of executive function and can be affected by altered neuronal excitation and inhibition in the course of ASD. The molecular mechanisms involved in E/I imbalance are subject to epigenetic regulation. In ASD, altered enrichment and spreading of histone H3 and H4 modifications such as the activation-linked H3K4me2/3, H3K9ac, and H3K27ac, and repression-linked H3K9me2, H3K27me3, and H4K20me2 in the PFC result in dysregulation of molecules mediating synaptic excitation (ARC, EGR1, mGluR2, mGluR3, GluN2A, and GluN2B) and synaptic inhibition (BSN, EphA7, SLC6A1). Histone modifications are a dynamic component of the epigenetic regulatory elements with a pronounced effect on patterns of gene expression with regards to any biological process. The excitation/inhibition imbalance associated with ASD is based on the excitatory and inhibitory synaptic activity in different regions of the brain, including the PFC, the ultimate outcome of which is highly influenced by transcriptional activity of relevant genes.
Collapse
Affiliation(s)
| | | | - Zohreh Pajoohesh
- Faculty of Medicine, Zabol Univeristy of Medical Sciences, Zabol, Iran
| | - Zahra Gharehdaghi
- Department of Pharmacology, Zabol University of Medical Sciences, Zabol, Iran
| | | | | | - Yasamin Pishkari
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadi Nozari
- School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmed Hijazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Sepideh Karkon Shayan
- Student Research Committee, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
156
|
Kim S, Woo KA, Shin JH, Kim HJ, Jeon B. Clinical comparison of the 2008 and 2022 diagnostic criteria for early multiple system atrophy-cerebellar type. Clin Auton Res 2024; 34:609-611. [PMID: 39259350 DOI: 10.1007/s10286-024-01061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Affiliation(s)
- Seoyeon Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Kyung Ah Woo
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jung Hwan Shin
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Han-Joon Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Beomseok Jeon
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| |
Collapse
|
157
|
Lirio PHC, Gonçalves JV, Filho WNP, Amancio TA, Carlini JT, Dalpiaz PLM, Sartório CL, Rodrigues LCDM, Areas FZDS. A novel weight-drop closed head focal traumatic brain injury: A candidate to translational studies? MethodsX 2024; 13:102806. [PMID: 39071990 PMCID: PMC11278927 DOI: 10.1016/j.mex.2024.102806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/13/2024] [Indexed: 07/30/2024] Open
Abstract
Traumatic brain injury (TBI) is a neurotrauma with a complex pathophysiology caused by an external mechanical force. This global public health problem is a leading cause of death and disability in young adults. In this scenario, many models were developed to try to simulate human TBI. The weight drop model allows the investigation of the pathophysiological cascades of TBI without surgical interference. In this protocol, a new closed-head weight-drop rat model consisting of a 48.5g weight projectile that free falls from 1.10m high onto the skull of the animals was built. We classify the present TBI model performed as moderately severe due to its mortality rate. Animals from TBI and Control (Sham) groups underwent weight for 7 days and temperature assessments within 1 hour after TBI and for 7 days. Results demonstrated that the TBI group showed less body weight gain in the days after the injury. Temperature oscillations within the first-hour post-injury and on the 3rd day after injury were observed. As the results of this study demonstrated similarity to human TBI vital parameters, this new adaptation of the Weight-drop model injury can be a suitable candidate for translational studies.•We developed a novel closed head focal traumatic brain injury using a projectile.•This TBI model does not require surgical intervention.•The validation of this method demonstrates that the vital parameters of the injured rats exhibit similarities with those of TBI patients.
Collapse
Affiliation(s)
| | - Jessica Vaz Gonçalves
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Brazil
| | | | - Thamiris Alves Amancio
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Brazil
| | | | | | - Carmem Luíza Sartório
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, ES, Brazil
| | | | | |
Collapse
|
158
|
Keeley O, Coyne AN. Nuclear and degradative functions of the ESCRT-III pathway: implications for neurodegenerative disease. Nucleus 2024; 15:2349085. [PMID: 38700207 PMCID: PMC11073439 DOI: 10.1080/19491034.2024.2349085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024] Open
Abstract
The ESCRT machinery plays a pivotal role in membrane-remodeling events across multiple cellular processes including nuclear envelope repair and reformation, nuclear pore complex surveillance, endolysosomal trafficking, and neuronal pruning. Alterations in ESCRT-III functionality have been associated with neurodegenerative diseases including Frontotemporal Dementia (FTD), Amyotrophic Lateral Sclerosis (ALS), and Alzheimer's Disease (AD). In addition, mutations in specific ESCRT-III proteins have been identified in FTD/ALS. Thus, understanding how disruptions in the fundamental functions of this pathway and its individual protein components in the human central nervous system (CNS) may offer valuable insights into mechanisms underlying neurodegenerative disease pathogenesis and identification of potential therapeutic targets. In this review, we discuss ESCRT components, dynamics, and functions, with a focus on the ESCRT-III pathway. In addition, we explore the implications of altered ESCRT-III function for neurodegeneration with a primary emphasis on nuclear surveillance and endolysosomal trafficking within the CNS.
Collapse
Affiliation(s)
- Olivia Keeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alyssa N. Coyne
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
159
|
Zhuang H, Ouyang H, Peng Y, Gong S, Xiang K, Chen L, Chen J. Expression patterns and clinical value of key m6A RNA modification regulators in smoking patients with coronary artery disease. Epigenetics 2024; 19:2392400. [PMID: 39167728 PMCID: PMC11340747 DOI: 10.1080/15592294.2024.2392400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
Even though N6-methyladenosine (m6A) RNA modifications are increasingly being implicated in human disease, their mechanisms are not fully understood in smokers with coronary artery disease (CAD). Thirty m6A-related regulators' expression (MRRE) in CAD individuals (smokers and non-smokers) were analyzed from GEO. Support Vector Machine, random forest, and nomogram models were constructed to assess its clinical value. Consensus clustering, principal component analysis, and ssGSEA were used to construct a full picture of m6A-related regulators in smokers with CAD. Oxygen-glucose deprivation (OGD) and qRT-PCR were used to validate hypoxia's effect on MRRE. A comparison between smokers with CAD and controls revealed lower expression levels of RBM15B, YTHDC2, and ZC3H13. Based on three key MRREs, all models showed good clinical value, and smokers with CAD were divided into two distinct molecular subgroups. The correlations were found between key MRRE and the degree of immune infiltration. Three key MRREs in HUVECs and FMC84 mouse cardiomyocytes were reduced in the OGD group. Through hypoxia, smoking might reduce the expression levels of RBM15B, YTHDC2, and ZC3H13 in smokers with CAD. Our findings provide an important theoretical basis for the treatment of smokers with CAD.
Collapse
Affiliation(s)
- Huanwei Zhuang
- Department of Cardiovascular Surgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hua Ouyang
- Department of Thoracic Surgery, ZhuJiang Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Yangfei Peng
- Department of Thoracic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuji Gong
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Kun Xiang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Le Chen
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jinlan Chen
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
160
|
Yang F, Qiu Y, Xie X, Zhou X, Wang S, Weng J, Wu L, Ma Y, Wang Z, Jin W, Chen B. Platelet Membrane-Encapsulated Poly(lactic- co-glycolic acid) Nanoparticles Loaded with Sildenafil for Targeted Therapy of Vein Graft Intimal Hyperplasia. Int J Pharm X 2024; 8:100278. [PMID: 39263002 PMCID: PMC11387714 DOI: 10.1016/j.ijpx.2024.100278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024] Open
Abstract
Autologous vein grafts have attracted widespread attention for their high transplantation success rate and low risk of immune rejection. However, this technique is limited by the postoperative neointimal hyperplasia, recurrent stenosis and vein graft occlusion. Hence, we propose the platelet membrane-coated Poly(lactic-co-glycolic acid) (PLGA) containing sildenafil (PPS). Platelet membrane (PM) is characterised by actively targeting damaged blood vessels. The PPS can effectively target the vein grafts and then slowly release sildenafil to treat intimal hyperplasia in the vein grafts, thereby preventing the progression of vein graft restenosis. PPS effectively inhibits the proliferation and migration of vascular smooth muscle cell (VSMCs) and promotes the migration and vascularisation of human umbilical vein endothelial cells (HUVECs). In a New Zealand rabbit model of intimal hyperplasia in vein grafts, the PPS significantly suppressed vascular stenosis and intimal hyperplasia at 14 and 28 days after surgery. Thus, PPS represents a nanomedicine with therapeutic potential for treating intimal hyperplasia of vein grafts.
Collapse
Affiliation(s)
- Fajing Yang
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, PR China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Yihui Qiu
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, PR China
| | - Xueting Xie
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, PR China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Xingjian Zhou
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Shunfu Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Jialu Weng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Lina Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Yizhe Ma
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, PR China
| | - Ziyue Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, PR China
| | - Wenzhang Jin
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310000, PR China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Bicheng Chen
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, PR China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| |
Collapse
|
161
|
Papp D, Gilbert KM, Cereza G, D'Astous A, Lopez-Rios N, Boudreau M, Couch MJ, Yazdanbakhsh P, Barry RL, Alonso-Ortiz E, Cohen-Adad J. RF shimming in the cervical spinal cord at 7 T. Magn Reson Med 2024; 92:2392-2403. [PMID: 39136249 DOI: 10.1002/mrm.30225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/29/2024] [Accepted: 06/26/2024] [Indexed: 09/28/2024]
Abstract
PURPOSE Advancing the development of 7 T MRI for spinal cord imaging is crucial for the enhanced diagnosis and monitoring of various neurodegenerative diseases and traumas. However, a significant challenge at this field strength is the transmit field inhomogeneity. Such inhomogeneity is particularly problematic for imaging the small, deep anatomical structures of the cervical spinal cord, as it can cause uneven signal intensity and elevate the local specific absorption ratio, compromising image quality. This multisite study explores several RF shimming techniques in the cervical spinal cord. METHODS Data were collected from 5 participants between two 7 T sites with a custom 8Tx/20Rx parallel transmission coil. We explored two radiofrequency (RF) shimming approaches from an MRI vendor and four from an open-source toolbox, showcasing their ability to enhance transmit field and signal homogeneity along the cervical spinal cord. RESULTS The circularly polarized (CP), coefficient of variation (CoV), and specific absorption rate (SAR) efficiency shim modes showed the highest B1 + efficiency, and the vendor-based "patient" and "volume" modes showed the lowest B1 + efficiency. The coefficient of variation method produced the highest CSF/spinal cord contrast on T2*-weighted scans (ratio of 1.27 ± 0.03), and the lowest variation of that contrast along the superior-inferior axis. CONCLUSION The study's findings highlight the potential of RF shimming to advance 7 T MRI's clinical utility for central nervous system imaging by enabling more homogenous and efficient spinal cord imaging. Additionally, the research incorporates a reproducible Jupyter Notebook, enhancing the study's transparency and facilitating peer verification.
Collapse
Affiliation(s)
- Daniel Papp
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
| | - Kyle M Gilbert
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - Gaspard Cereza
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
| | - Alexandre D'Astous
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
- Centre de Recherche du CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Nibardo Lopez-Rios
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
| | - Mathieu Boudreau
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
| | - Marcus J Couch
- Siemens Healthcare Limited, Montreal, Quebec, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Pedram Yazdanbakhsh
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Robert L Barry
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Harvard-Massachusetts Institute of Technology Health Sciences & Technology, Cambridge, Massachusetts, USA
| | - Eva Alonso-Ortiz
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
- Centre de Recherche du CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
- Mila-Quebec AI Institute, Montreal, Quebec, Canada
- Functional Neuroimaging Unit, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
162
|
Pressley KR, Schwegman L, De Oca Arena MM, Huizar CC, Zamvil SS, Forsthuber TG. HLA-transgenic mouse models to study autoimmune central nervous system diseases. Autoimmunity 2024; 57:2387414. [PMID: 39167553 PMCID: PMC11470778 DOI: 10.1080/08916934.2024.2387414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/20/2024] [Accepted: 07/27/2024] [Indexed: 08/23/2024]
Abstract
It is known that certain human leukocyte antigen (HLA) genes are associated with autoimmune central nervous system (CNS) diseases, such as multiple sclerosis (MS), but their exact role in disease susceptibility and etiopathogenesis remains unclear. The best studied HLA-associated autoimmune CNS disease is MS, and thus will be the primary focus of this review. Other HLA-associated autoimmune CNS diseases, such as autoimmune encephalitis and neuromyelitis optica will be discussed. The lack of animal models to accurately capture the complex human autoimmune response remains a major challenge. HLA transgenic (tg) mice provide researchers with powerful tools to investigate the underlying mechanisms promoting susceptibility and progression of HLA-associated autoimmune CNS diseases, as well as for elucidating the myelin epitopes potentially targeted by T cells in autoimmune disease patients. We will discuss the potential role(s) of autoimmune disease-associated HLA alleles in autoimmune CNS diseases and highlight information provided by studies using HLA tg mice to investigate the underlying pathological mechanisms and opportunities to use these models for development of novel therapies.
Collapse
Affiliation(s)
- Kyle R. Pressley
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
- Department of Neuroscience, Developmental, and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Lance Schwegman
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
| | | | - Carol Chase Huizar
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Scott S. Zamvil
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Thomas G. Forsthuber
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
163
|
Shivakumar AB, Mehak SF, Jijimon F, Gangadharan G. Extrahippocampal Contributions to Social Memory: The Role of Septal Nuclei. Biol Psychiatry 2024; 96:835-847. [PMID: 38718881 DOI: 10.1016/j.biopsych.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/22/2024] [Accepted: 04/22/2024] [Indexed: 06/16/2024]
Abstract
Social memory, the ability to recognize and remember individuals within a social group, is crucial for social interactions and relationships. Deficits in social memory have been linked to several neuropsychiatric and neurodegenerative disorders. The hippocampus, especially the circuit that links dorsal CA2 and ventral CA1 neurons, is considered a neural substrate for social memory formation. Recent studies have provided compelling evidence of extrahippocampal contributions to social memory. The septal nuclei, including the medial and lateral septum, make up a basal forebrain region that shares bidirectional neuronal connections with the hippocampus and has recently been identified as critical for social memory. The focus of our review is the neural circuit mechanisms that underlie social memory, with a special emphasis on the septum. We also discuss the social memory dysfunction associated with neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Apoorva Bettagere Shivakumar
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sonam Fathima Mehak
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Feyba Jijimon
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Gireesh Gangadharan
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
164
|
Tavares M, Rein B. The virtual disengagement hypothesis: A neurophysiological framework for reduced empathy on social media. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:965-971. [PMID: 39187670 DOI: 10.3758/s13415-024-01212-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 08/28/2024]
Abstract
Social media is a hotbed of interpersonal conflict and aggression. Platforms such as Twitter and Instagram are used by more than 62% of the global population, facilitating billions of user interactions every day. However, many of these exchanges involve hostile, insensitive, and antisocial behaviors. This raises the question: is empathy blunted on social media? Substantial evidence demonstrates that humans tend to behave more rudely in virtual settings, but considering the scarcity of physiological data collected under these circumstances, it remains unclear how the neural systems guiding social cognition and empathy may function differently in online interactions. We propose the "Virtual Disengagement Hypothesis," a conceptual framework to explain the prevalence of hostility online. It posits that interactions occurring on social media omit social cues that facilitate the assessment of a social partner's affective state, such as facial expressions and vocal tone, and thus fail to sufficiently recruit brain circuitry involved in empathy, such as the anterior cingulate cortex, insula, and prefrontal cortex. Additionally, interactions on social media occur asynchronously and in a "replayed" context, which may further limit recruitment of empathy systems. As a result of this diminished sensitivity to others' states, users may be predisposed to inconsiderate or outright antisocial behaviors. Given the massive and growing base of users on these platforms, we urge researchers to expand efforts that focus on neuroimaging in virtual settings with a particular emphasis on developing social media-relevant behavioral designs.
Collapse
Affiliation(s)
- Maria Tavares
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Ben Rein
- Mind Science Foundation, San Antonio, TX, USA.
| |
Collapse
|
165
|
Garcia A, Cohen RA, Langer KG, O'Neal AG, Porges EC, Woods AJ, Williamson JB. Semantic processing in older adults is associated with distributed neural activation which varies by association and abstractness of words. GeroScience 2024; 46:6195-6212. [PMID: 38822124 PMCID: PMC11493883 DOI: 10.1007/s11357-024-01216-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024] Open
Abstract
The extent to which the neural systems underlying semantic processes degrade with advanced age remains unresolved, which motivated the current study of neural activation on functional magnetic resonance imaging (fMRI) during semantic judgments of associated vs. unassociated, semantic vs. rhyme, and abstract vs. rhyme word pairs. Thirty-eight older adults, 55-85 years of age, performed semantic association decision tasks in a mixed event-related block fMRI paradigm involving binary judgments as to whether word pairs were related (i.e., semantically associated). As hypothesized, significantly greater activation was evident during processing of associated (vs. unassociated) word pairs in cortical areas implicated in semantic processing, including the angular gyrus, temporal cortex, and inferior frontal cortex. Cortical areas showed greater activation to unassociated (vs. associated) word pairs, primarily within a large occipital cluster. Greater activation was evident in cortical areas when response to semantic vs. phonemic word pairs. Contrasting activation during abstract vs. concrete semantic processing revealed areas of co-activation to both semantic classes, and areas that had greater response to either abstract or concrete word pairs. Neural activation across conditions did not vary as a function of greater age, indicating only minimal age-associated perturbation in neural activation during semantic processing. Therefore, the response of the semantic hubs, semantic control, and secondary association areas appear to be largely preserved with advanced age among older adults exhibiting successful cognitive aging. These findings may provide a useful clinical contrast if compared to activation among adults experiencing cognitive decline due Alzheimer's, frontal-temporal dementia, and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Amanda Garcia
- Behavioral Sciences Department, James A. Haley Veterans' Hospital, Tampa, FL, USA
| | - Ronald A Cohen
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA.
- Brain Rehabilitation and Research Center, Malcom Randall VAMC, Gainesville, FL, USA.
| | - Kailey G Langer
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Alexandria G O'Neal
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
- Center for OCD and Anxiety Related Disorders, Department of Psychiatry, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Eric C Porges
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
- Brain Rehabilitation and Research Center, Malcom Randall VAMC, Gainesville, FL, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
- Center for OCD and Anxiety Related Disorders, Department of Psychiatry, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - John B Williamson
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
- Brain Rehabilitation and Research Center, Malcom Randall VAMC, Gainesville, FL, USA
- Center for OCD and Anxiety Related Disorders, Department of Psychiatry, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
166
|
Querry M, Botzung A, Cretin B, Demuynck C, Muller C, Ravier A, Schorr B, Mondino M, Sanna L, de Sousa PL, Philippi N, Blanc F. Neuroanatomical substrates of depression in dementia with Lewy bodies and Alzheimer's disease. GeroScience 2024; 46:5725-5744. [PMID: 38750385 PMCID: PMC11493943 DOI: 10.1007/s11357-024-01190-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/01/2024] [Indexed: 10/23/2024] Open
Abstract
Dementia with Lewy bodies (DLB) and Alzheimer's disease (AD) are often associated with depressive symptoms from the prodromal stage. The aim of the present study was to investigate the neuroanatomical correlates of depression in prodromal to mild DLB patients compared with AD patients. Eighty-three DLB patients, 37 AD patients, and 18 healthy volunteers were enrolled in this study. Depression was evaluated with the Mini International Neuropsychiatric Interview (MINI), French version 5.0.0. T1-weighted three-dimensional anatomical images were acquired for all participants. Regression and comparison analyses were conducted using a whole-brain voxel-based morphometry (VBM) approach on the grey matter volume (GMV). DLB patients presented a significantly higher mean MINI score than AD patients (p = 0.004), 30.1% of DLB patients had clinical depression, and 56.6% had a history of depression, while 0% of AD patients had clinical depression and 29.7% had a history of depression. VBM regression analyses revealed negative correlations between the MINI score and the GMV of right prefrontal regions in DLB patients (p < 0.001, uncorrected). Comparison analyses between DLB patients taking and those not taking an antidepressant mainly highlighted a decreased GMV in the bilateral middle/inferior temporal gyrus (p < 0.001, uncorrected) in treated DLB patients. In line with the literature, our behavioral analyses revealed higher depression scores in DLB patients than in AD patients. We also showed that depressive symptoms in DLB are associated with decreased GMV in right prefrontal regions. Treated DLB patients with long-standing depression would be more likely to experience GMV loss in the bilateral middle/inferior temporal cortex. These findings should be taken into account when managing DLB patients.
Collapse
Affiliation(s)
- Manon Querry
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team University of Strasbourg and CNRS, Strasbourg, France.
| | - Anne Botzung
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team University of Strasbourg and CNRS, Strasbourg, France
- CM2R (Research and Resources Memory Center), Geriatric Day Hospital, Geriatrics Division, University Hospitals of Strasbourg, Strasbourg, France
| | - Benjamin Cretin
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team University of Strasbourg and CNRS, Strasbourg, France
- CM2R, Neuropsychology Unit, Neurology Department, Head and Neck Division, University Hospitals of Strasbourg, Strasbourg, France
| | - Catherine Demuynck
- CM2R (Research and Resources Memory Center), Geriatric Day Hospital, Geriatrics Division, University Hospitals of Strasbourg, Strasbourg, France
| | - Candice Muller
- CM2R (Research and Resources Memory Center), Geriatric Day Hospital, Geriatrics Division, University Hospitals of Strasbourg, Strasbourg, France
| | - Alix Ravier
- CM2R (Research and Resources Memory Center), Geriatric Day Hospital, Geriatrics Division, University Hospitals of Strasbourg, Strasbourg, France
| | - Benoît Schorr
- CM2R (Research and Resources Memory Center), Geriatric Day Hospital, Geriatrics Division, University Hospitals of Strasbourg, Strasbourg, France
| | - Mary Mondino
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team University of Strasbourg and CNRS, Strasbourg, France
| | - Léa Sanna
- CM2R (Research and Resources Memory Center), Geriatric Day Hospital, Geriatrics Division, University Hospitals of Strasbourg, Strasbourg, France
| | - Paulo Loureiro de Sousa
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team University of Strasbourg and CNRS, Strasbourg, France
| | - Nathalie Philippi
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team University of Strasbourg and CNRS, Strasbourg, France
- CM2R, Neuropsychology Unit, Neurology Department, Head and Neck Division, University Hospitals of Strasbourg, Strasbourg, France
| | - Frédéric Blanc
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team University of Strasbourg and CNRS, Strasbourg, France
- CM2R (Research and Resources Memory Center), Geriatric Day Hospital, Geriatrics Division, University Hospitals of Strasbourg, Strasbourg, France
| |
Collapse
|
167
|
Cacciotti A, Pappalettera C, Miraglia F, Rossini PM, Vecchio F. EEG entropy insights in the context of physiological aging and Alzheimer's and Parkinson's diseases: a comprehensive review. GeroScience 2024; 46:5537-5557. [PMID: 38776044 PMCID: PMC11493957 DOI: 10.1007/s11357-024-01185-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/29/2024] [Indexed: 10/23/2024] Open
Abstract
In recent decades, entropy measures have gained prominence in neuroscience due to the nonlinear behaviour exhibited by neural systems. This rationale justifies the application of methods from the theory of nonlinear dynamics to cerebral activity, aiming to detect and quantify its variability more effectively. In the context of electroencephalogram (EEG) signals, entropy analysis offers valuable insights into the complexity and irregularity of electromagnetic brain activity. By moving beyond linear analyses, entropy measures provide a deeper understanding of neural dynamics, particularly pertinent in elucidating the mechanisms underlying brain aging and various acute/chronic-progressive neurological disorders. Indeed, various pathologies can disrupt nonlinear structuring in neural activity, which may remain undetected by linear methods such as power spectral analysis. Consequently, the utilization of nonlinear tools, including entropy analysis, becomes crucial for capturing these alterations. To establish the relevance of entropy analysis and its potential to discern between physiological and pathological conditions, this review discusses its diverse applications in studying healthy brain aging and neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). Various entropy parameters, such as approximate entropy (ApEn), sample entropy (SampEn), multiscale entropy (MSE), and permutation entropy (PermEn), are analysed within this context. By quantifying the complexity and irregularity of EEG signals, entropy analysis may serve as a valuable biomarker for early diagnosis, treatment monitoring, and disease management. Such insights offer clinicians crucial information for devising personalized treatment and rehabilitation plans tailored to individual patients.
Collapse
Affiliation(s)
- Alessia Cacciotti
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Via Val Cannuta, 247, 00166, Rome, Italy
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | - Chiara Pappalettera
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Via Val Cannuta, 247, 00166, Rome, Italy
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | - Francesca Miraglia
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Via Val Cannuta, 247, 00166, Rome, Italy
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Via Val Cannuta, 247, 00166, Rome, Italy
| | - Fabrizio Vecchio
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Via Val Cannuta, 247, 00166, Rome, Italy.
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy.
| |
Collapse
|
168
|
Williamson JN, James SA, Mullen SP, Sutton BP, Wszalek T, Mulyana B, Mukli P, Yabluchanskiy A, Yang Y. Sex differences in interacting genetic and functional connectivity biomarkers in Alzheimer's disease. GeroScience 2024; 46:6071-6084. [PMID: 38598069 PMCID: PMC11493897 DOI: 10.1007/s11357-024-01151-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/01/2024] [Indexed: 04/11/2024] Open
Abstract
As of 2023, it is estimated that 6.7 million individuals in the United States live with Alzheimer's disease (AD). Prior research indicates that AD disproportionality affects females; females have a greater incidence rate, perform worse on a variety of neuropsychological tasks, and have greater total brain atrophy. Recent research shows that hippocampal functional connectivity differs by sex and may be related to the observed sex differences in AD, and apolipoprotein E (ApoE) ε4 carriers have reduced hippocampal functional connectivity. The purpose of this study was to determine if the ApoE genotype plays a role in the observed sex differences in hippocampal functional connectivity in Alzheimer's disease. The resting state fMRI and T2 MRI of individuals with AD (n = 30, female = 15) and cognitively normal individuals (n = 30, female = 15) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) were analyzed using the functional connectivity toolbox (CONN). Our results demonstrated intrahippocampal functional connectivity differed between those without an ε4 allele and those with at least one ε4 allele in each group. Additionally, intrahippocampal functional connectivity differed only by sex when Alzheimer's participants had at least one ε4 allele. These results improve our current understanding of the role of the interacting relationship between sex, ApoE genotype, and hippocampal function in AD. Understanding these biomarkers may aid in the development of sex-specific interventions for improved AD treatment.
Collapse
Affiliation(s)
- Jordan N Williamson
- Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Shirley A James
- Hudson College of Public Health, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Sean P Mullen
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Kinesiology & Community Health, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Informatics Programs, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Center for Social & Behavioral Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Bradley P Sutton
- Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Tracey Wszalek
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Beni Mulyana
- Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Peter Mukli
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yuan Yang
- Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Clinical Imaging Research Center, Stephenson Family Clinical Research Institute, Carle Foundation Hospital, Urbana, IL, USA.
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
169
|
Tan CH, Meyer BI, Kim C, Raja M, Velez Torres JM, Colson J, Dubovy SR, Jiang H, Lam BL. To do or not to do: Large-dose steroid treatment for severe vision loss secondary to compressive inflammatory optic neuropathy in the setting of invasive fungal sinusitis. Am J Ophthalmol Case Rep 2024; 36:102183. [PMID: 39435158 PMCID: PMC11491676 DOI: 10.1016/j.ajoc.2024.102183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/19/2024] [Accepted: 09/28/2024] [Indexed: 10/23/2024] Open
Abstract
Purpose Invasive fungal sinusitis (IFS) is associated with high rates of morbidity and mortality and often presents with orbital apex syndrome. Prompt diagnosis and management are crucial to prevent irreversible visual loss. We report a case of an immunosuppressed patient with rapidly progressive severe visual loss associated with frontal lobe cerebritis and leptomeningitis related to IFS, causing an adjacent compressive inflammatory optic neuropathy, which was treated successfully by large-dose corticosteroids. Observations A 29-year-old woman with acute myeloid leukemia status post chemotherapy presented with right-sided headaches and periorbital swelling. Her examination was significant for subjective red desaturation and trace right eyelid edema and ptosis. The remainder of her initial ocular examination was normal. Her labs demonstrated neutropenia and thrombocytopenia. Imaging of the brain and orbits was concerning for extensive sinus disease with intracranial extension. An urgent multi-sinus and optic nerve decompression was performed given concern for compressive optic neuropathy, and the biopsy was consistent with invasive fungal infection. Despite aggressive antifungal treatment, vision in her right eye decreased rapidly to counting fingers. No optic nerve abnormalities were observed on serial MRIs, but adjacent inferior frontal lobe enhancement was present. After a vigorous debate in a multidisciplinary meeting, her severe vision loss was attributed to cerebritis causing an adjacent compressive inflammatory optic neuropathy, and large-dose intravenous (IV) steroid treatment was initiated while maintaining systemic antifungal therapy. Remarkably, she had a full recovery of her vision. Conclusions and importance Severe vision loss in IFS can occur due to compressive inflammatory optic neuropathy without direct fungal invasion as a contributing factor. Timely and effective intervention is crucial in preventing vision loss. Large-dose steroid therapy may be a potential treatment option for immunocompromised patients with invasive fungal sinusitis and intracranial invasion, provided strict fungal infection control measures are in place.
Collapse
Affiliation(s)
- Charissa H. Tan
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- The Florida Lions Ocular Pathology Laboratory, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Benjamin I. Meyer
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Colin Kim
- University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Mohammed Raja
- Transplant Infectious Diseases, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Jaylou M. Velez Torres
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Jordan Colson
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Sander R. Dubovy
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- The Florida Lions Ocular Pathology Laboratory, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Hong Jiang
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Byron L. Lam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| |
Collapse
|
170
|
Razdan N, V B, Sadhu S. Pure neuritic leprosy: Latest advancements and diagnostic modalities: Diagnosis of Pure Neuritic Leprosy. Diagn Microbiol Infect Dis 2024; 110:116529. [PMID: 39278136 DOI: 10.1016/j.diagmicrobio.2024.116529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
Pure neuritic leprosy (PNL) is characterized by exclusive peripheral neuropathy without dermatological alterations. Diagnosis is difficult since skin lesions and acid-fast bacilli (AFB) in slit smears are absent. Presently, the gold standard for diagnosis is the histopathological examination of peripheral nerve biopsy. Even then, the detection of bacteria is difficult, and histological findings may be non-specific. Nerve biopsy is an invasive procedure that is possible only in specialized centers and limited to certain sensory nerves. Therefore, the establishment of serological, immunological, and molecular laboratory tests could be more beneficial for diagnosing pure neuritic leprosy to achieve effective treatment and reduction in its consequent disabilities. This review suggests that the presence of Mycobacterium leprae (M.leprae) in PNL cases can be proven by using non-invasive procedures, viz., multiplex polymerase chain reaction (M-PCR), serological findings, immunological profiling, and improved nerve-imaging. Findings also indicate the necessity for improving the sensitivity of PCR and further research on specificity in ruling out other clinical conditions that may mimic PNL.
Collapse
Affiliation(s)
- Nadia Razdan
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, UP 201310, India; Stanley Browne Research Laboratory, TLM Hospital, Shahdara, Delhi, India
| | - Barghavi V
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, UP 201310, India
| | - Soumi Sadhu
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, UP 201310, India.
| |
Collapse
|
171
|
Hameed MQ, D'Ambrosio R, Eastman C, Hui B, Lin R, Vermudez SAD, Liebhardt A, Choe Y, Klein P, Rundfeldt C, Löscher W, Rotenberg A. A comparison of the antiepileptogenic efficacy of two rationally chosen multitargeted drug combinations in a rat model of posttraumatic epilepsy. Exp Neurol 2024; 382:114962. [PMID: 39288831 DOI: 10.1016/j.expneurol.2024.114962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/08/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Post-traumatic epilepsy (PTE) is a recurrent and often drug-refractory seizure disorder caused by traumatic brain injury (TBI). No single drug treatment prevents PTE, but preventive drug combinations that may prophylax against PTE have not been studied. Based on a systematic evaluation of rationally chosen drug combinations in the intrahippocampal kainate (IHK) mouse model of acquired epilepsy, we identified two multi-targeted drug cocktails that exert strong antiepileptogenic effects. The first, a combination of levetiracetam (LEV) and topiramate, only partially prevented spontaneous recurrent seizures in the model. We therefore added atorvastatin (ATV) to the therapeutic cocktail (TC) to increase efficacy, forming "TC-001". The second cocktail - a combination of LEV, ATV, and ceftriaxone, termed "TC-002" - completely prevented epilepsy in the mouse IHK model. In the present proof-of-concept study, we tested whether the two drug cocktails prevent epilepsy in a rat PTE model in which recurrent electrographic seizures develop after severe rostral parasagittal fluid percussion injury (FPI). Following FPI, rats were either treated over 3-4 weeks with vehicle or drug cocktails, starting either 1 or 4-6 h after the injury. Using mouse doses of TC-001 and TC-002, no significant antiepileptogenic effect was obtained in the rat PTE model. However, when using allometric scaling of drug doses to consider the differences in body surface area between mice and rats, PTE was prevented by TC-002. Furthermore, the latter drug cocktail partially prevented the loss of perilesional cortical parvalbumin-positive GABAergic interneurons. Plasma and brain drug analysis showed that these effects of TC-002 occurred at clinically relevant levels of the individual TC-002 drug components. In silico analysis of drug-drug brain protein interactions by the STITCH database indicated that TC-002 impacts a larger functional network of epilepsy-relevant brain proteins than each drug alone, providing a potential network pharmacology explanation for the observed antiepileptogenic and neuroprotective effects observed with this combination.
Collapse
Affiliation(s)
- Mustafa Q Hameed
- Department of Neurology and FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Raimondo D'Ambrosio
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Cliff Eastman
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Benjamin Hui
- Department of Neurology and FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rui Lin
- Department of Neurology and FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sheryl Anne D Vermudez
- Department of Neurology and FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amanda Liebhardt
- Department of Neurology and FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yongho Choe
- Department of Neurology and FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pavel Klein
- PrevEp, Inc., Bethesda, MD, USA; Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD, USA
| | | | - Wolfgang Löscher
- PrevEp, Inc., Bethesda, MD, USA; Translational Neuropharmacology Lab, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany.
| | - Alexander Rotenberg
- Department of Neurology and FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; PrevEp, Inc., Bethesda, MD, USA.
| |
Collapse
|
172
|
Chu H, Huang C, Xie F, Guo Q. The Association Between Constipation and Positron Emission Tomography and Blood-Based Biomarkers in Older Cognitively Unimpaired Adults with Higher Amyloid-β Burden. Neurol Ther 2024; 13:1701-1715. [PMID: 39436582 DOI: 10.1007/s40120-024-00666-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/19/2024] [Indexed: 10/23/2024] Open
Abstract
INTRODUCTION Constipation may be linked to cognitive decline and a higher risk of Alzheimer's disease (AD). We aimed to investigate the association between constipation and positron emission tomography (PET) and blood-based AD biomarkers in older cognitively unimpaired (CU) adults with higher Aβ burden. METHODS Constipation was diagnosed according to Rome IV criteria and the severity of constipation was evaluated by using a validated self-reported questionnaire. The participants underwent the examination of plasma AD biomarkers and 18F-florbetapir PET and 18F-MK6240 PET scans; the latter was only performed in the validation cohort. Correlation and multiple linear regression analyses were used to investigate the association between constipation and AD biomarkers. RESULTS Two cohorts were included in our study. A total of 404 older participants with 126 of whom Aβ-PET positive were enrolled in the development cohort. Multiple linear regression analysis showed constipation was associated with plasma t-Tau, p-Tau-181, and neurofilament light chain (NfL) in participants with Aβ-PET (+). Meanwhile, no/mild constipation was associated with lower Aβ-PET standard uptake value ratio. The association between constipation and plasma biomarkers was different in the subgroups stratified by age, sex and APOE ε4 genotype. The above associations were further validated in the validation cohort containing 36 Aβ-PET (+) participants. Importantly, no/mild constipation was associated with less Tau burden evaluated by 18F-MK6240 PET Braak stages. CONCLUSION Our data indicate that no/mild constipation may be associated with lower plasma t-Tau, p-Tau-181, and NfL as well as less Aβ and Tau burden in older CU adults with Aβ deposition. Improving constipation and being away from defecation disorders may help reduce the risk of AD development.
Collapse
Affiliation(s)
- Heling Chu
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600, Yi Shan Road, Shanghai, China
| | - Chuyi Huang
- Health Management Center, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Fang Xie
- PET Center, Huashan Hospital, Fudan University, No. 12 Mid Wulumuqi Road, Shanghai, China.
| | - Qihao Guo
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600, Yi Shan Road, Shanghai, China.
| |
Collapse
|
173
|
Covolan L, Motta Pollo ML, Dos Santos PB, Betta VHC, Saad Barbosa FF, Covolan LAM, Gimenes C, Hamani C. Effects and mechanisms of anterior thalamus nucleus deep brain stimulation for epilepsy: A scoping review of preclinical studies. Neuropharmacology 2024; 260:110137. [PMID: 39218248 DOI: 10.1016/j.neuropharm.2024.110137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) is a safe and effective intervention for the treatment of certain forms of epilepsy. In preclinical models, electrical stimulation of the ANT has antiepileptogenic effects but its underlying mechanisms remain unclear. In this review, we searched multiple databases for studies that described the effects and mechanisms of ANT low or high frequency stimulation (LFS or HFS) in models of epilepsy. Out of 289 articles identified, 83 were pooled for analysis and 34 were included. Overall, ANT DBS was most commonly delivered at high frequency to rodents injected with kainic acid, pilocarpine, or pentylenetetrazole. In most studies, this therapy increased the latency to the first spontaneous seizure and reduced the frequency of seizures by 20%-80%. Electrophysiology data suggested that DBS reduces the severity of electrographic seizures, decreases the duration and increases the threshold of afterdischarges, reduces the power of low-frequency and increase the power high-frequency bands. Mechanistic studies revealed that ANT DBS leads to a series of short- and long-term changes at multiple levels. Some of its anticonvulsant effects were proposed to occur via the modulation of serotonergic and adenosinergic transmission. The latter seems to be derived from the downregulation of adenosine kinase (ADK). ANT DBS was also shown to increase hippocampal levels of lactate, alter the expression of genes involved in calcium signaling, synaptic glutamate, and the NOD-like receptor signaling pathway. When delivered during status epilepticus or following the injection of convulsant agents, DBS was found to reduce the expression of proinflammatory cytokines and apoptosis. When administered chronically, ANT DBS increased the expression of proteins involved in axonal guidance, changed functional connectivity in limbic circuits, and increased the number of hippocampal cells in epileptic animals, suggesting a neuroprotective effect.
Collapse
Affiliation(s)
- Luciene Covolan
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo - SP, 04023-062, Brazil.
| | - Maria Luiza Motta Pollo
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo - SP, 04023-062, Brazil
| | - Pedro Bastos Dos Santos
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo - SP, 04023-062, Brazil
| | | | | | | | - Christiane Gimenes
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo - SP, 04023-062, Brazil
| | - Clement Hamani
- Sunnybrook Research Institute, Harquail Centre for Neuromodulation, Division of Neurosurgery, University of Toronto, ON, M4N3M5, Canada
| |
Collapse
|
174
|
Zaman A, Setton R, Catmur C, Russell C. What is autonoetic consciousness? Examining what underlies subjective experience in memory and future thinking. Cognition 2024; 253:105934. [PMID: 39216189 DOI: 10.1016/j.cognition.2024.105934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Autonoetic consciousness is the awareness that an event we remember is one that we ourselves experienced. It is a defining feature of our subjective experience of remembering and imagining future events. Given its subjective nature, there is ongoing debate about how to measure it. Our goal was to develop a framework to identify cognitive markers of autonoetic consciousness. Across two studies (N = 342) we asked young, healthy participants to provide written descriptions of two autobiographical memories, two plausible future events, and an experimentally encoded video. Participants then rated their subjective experience during remembering and imagining. Exploratory Factor Analysis of this data uncovered the latent variables underlying autonoetic consciousness across these different events. In contrast to work that emphasizes the distinction between Remember and Know as being key to autonoetic consciousness, Re-experiencing, and Pre-experiencing for future events, were consistently identified as core markers of autonoetic consciousness. This was alongside Mental Time Travel in all types of memory events, but not for imagining the future. In addition, our factor analysis allows us to demonstrate directly - for the first time - the features of mental imagery associated with the sense of autonoetic consciousness in autobiographical memory; vivid, visual imagery from a first-person perspective. Finally, with regression analysis, the emergent factor structure of autonoetic consciousness was able to predict the richness of autobiographical memory texts, but not of episodic recall of the encoded video. This work provides a novel way to assess autonoetic consciousness, illustrates how autonoetic consciousness manifests differently in memory and imagination and defines the mental representations intrinsic to this process.
Collapse
Affiliation(s)
- Andreea Zaman
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom.
| | - Roni Setton
- Department of Psychology, Harvard University, United States
| | - Caroline Catmur
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Charlotte Russell
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| |
Collapse
|
175
|
Chen Q, Zheng Y, Jiang X, Wang Y, Chen Z, Wu D. Nature's carriers: leveraging extracellular vesicles for targeted drug delivery. Drug Deliv 2024; 31:2361165. [PMID: 38832506 DOI: 10.1080/10717544.2024.2361165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
With the rapid development of drug delivery systems, extracellular vesicles (EVs) have emerged as promising stars for improving targeting abilities and realizing effective delivery. Numerous studies have shown when compared to conventional strategies in targeted drug delivery (TDD), EVs-based strategies have several distinguished advantages besides targeting, such as participating in cell-to-cell communications and immune response, showing high biocompatibility and stability, penetrating through biological barriers, etc. In this review, we mainly focus on the mass production of EVs including the challenges and strategies for scaling up EVs production in a cost-effective and reproducible manner, the loading and active targeting methods, and examples of EVs as vehicles for TDD in consideration of potential safety and regulatory issues associated. We also conclude and discuss the rigor and reproducibility of EVs production, the current research status of the application of EVs-based strategies to targeted drug delivery, clinical conversion prospects, and existing chances and challenges.
Collapse
Affiliation(s)
- Qi Chen
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou, P. R. China
| | - Yuyi Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuhong Jiang
- Epilepsy Center, Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, PR China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Epilepsy Center, Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
176
|
Yang X, Zhen C, Huang H, Jiao Y, Fan X, Zhang C, Song J, Wang S, Zhou C, Yang X, Yuan J, Zhang J, Xu R, Wang FS. Implications of accumulation of clonally expanded and senescent CD4 +GNLY + T cells in immunological non-responders of HIV-1 infection. Emerg Microbes Infect 2024; 13:2396868. [PMID: 39239709 PMCID: PMC11441045 DOI: 10.1080/22221751.2024.2396868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/02/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024]
Abstract
Increased CD4+GNLY+ T cells have been confirmed to be inversely associated with CD4+ T cell count in immunological non-responders (INRs), however, the underlying mechanisms are unknown. This study aimed to elucidate the characteristics of CD4+GNLY+ T cells and their relationship with immune restoration. Single-cell RNA sequencing, single-cell TCR sequencing, and flow cytometry were used to analyze the frequency, phenotypes, and function of CD4+GNLY+ T cells. Moreover, Enzyme linked immunosorbent assay was performed to detect plasma cytokines production in patients. CD4+GNLY+ T cells were found to be highly clonally expanded, characterized by higher levels of cytotoxicity, senescence, P24, and HIV-1 DNA than CD4+GNLY- T cells. Additionally, the frequency of CD4+GNLY+ T cells increased after ART, and further increased in INRs, and were positively associated with the antiretroviral therapy duration in INR. Furthermore, increased IL-15 levels in INRs positively correlated with the frequency and senescence of CD4+GNLY+ T cells, suggesting that CD4+GNLY+ T cells may provide new insights for understanding the poor immune reconstitution of INRs. In conclusion, increased, highly clonally expanded, and senescent CD4+GNLY+ T cells may contribute to poor immune reconstitution in HIV-1 infection.
Collapse
Affiliation(s)
- Xiuhan Yang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Cheng Zhen
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Huihuang Huang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Yanmei Jiao
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Xing Fan
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Chao Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Jinwen Song
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Songshan Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Chunbao Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - XinXin Yang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Jinhong Yuan
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Jiyuan Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Ruonan Xu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Fu-Sheng Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| |
Collapse
|
177
|
Janssen E, van Dalen JW, Cai M, Jacob MA, Marques J, Duering M, Richard E, Tuladhar AM, de Leeuw FE, Hilkens N. Visit-to-visit blood pressure variability and progression of white matter hyperintensities over 14 years. Blood Press 2024; 33:2314498. [PMID: 38477113 DOI: 10.1080/08037051.2024.2314498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/31/2024] [Indexed: 03/14/2024]
Abstract
Purpose: There is evidence that blood pressure variability (BPV) is associated with cerebral small vessel disease (SVD) and may therefore increase the risk of stroke and dementia. It remains unclear if BPV is associated with SVD progression over years. We examined whether visit-to-visit BPV is associated with white matter hyperintensity (WMH) progression over 14 years and MRI markers after 14 years. Materials and methods: We included participants with SVD from the Radboud University Nijmegen Diffusion tensor Magnetic resonance-imaging Cohort (RUNDMC) who underwent baseline assessment in 2006 and follow-up in 2011, 2015 and 2020. BPV was calculated as coefficient of variation (CV) of BP at all visits. Association between WMH progression rates over 14 years and BPV was examined using linear-mixed effects (LME) model. Regression models were used to examine association between BPV and MRI markers at final visit in participants. Results: A total of 199 participants (60.5 SD 6.6 years) who underwent four MRI scans and BP measurements were included, with mean follow-up of 13.7 (SD 0.5) years. Systolic BPV was associated with higher progression of WMH (β = 0.013, 95% CI 0.005 - 0.022) and higher risk of incident lacunes (OR: 1.10, 95% CI 1.01-1.21). There was no association between systolic BPV and grey and white matter volumes, Peak Skeleton of Mean Diffusivity (PSMD) or microbleed count after 13.7 years. Conclusions: Visit-to-visit systolic BPV is associated with increased progression of WMH volumes and higher risk of incident lacunes over 14 years in participants with SVD. Future studies are needed to examine causality of this association.
Collapse
Affiliation(s)
- Esther Janssen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan Willem van Dalen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mengfei Cai
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
| | - Mina A Jacob
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - José Marques
- Center for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Marco Duering
- Department of Biomedical Engineering, Medical Image Analysis Center (MIAC AG) and qbig, University of Basel, Basel, Switzerland
| | - Edo Richard
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Public and Occupational Health, AMC, Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Anil M Tuladhar
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank-Erik de Leeuw
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nina Hilkens
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
178
|
Barak S, Landa J, Eisenstein E, Gerner M, Ravid Vulkan T, Neeman-Verblun E, Silberg T. Agreement and disagreement in pediatric functional neurological symptom disorders: Comparing patient reported outcome measures (PROMs) and clinician assessments. Comput Struct Biotechnol J 2024; 24:350-361. [PMID: 38741721 PMCID: PMC11089279 DOI: 10.1016/j.csbj.2024.04.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024] Open
Abstract
Youth with functional neurological symptom disorder (FNSD) often perceive themselves as having limited capabilities, which may not align with clinical evaluations. This study assessed the disparities between clinician evaluations and patient-reported outcome measures (PROMs) regarding pain, motor function, and learning difficulties in youth with FNSD. Sixty-two youths with FNSD participated in this study, all of whom reported experiencing pain, motor problems, and/or learning difficulties. Clinicians also assessed these domains, resulting in a two-by-two categorization matrix: (1) agreement: child and clinician report "problems"; (2) agreement: child and clinician report "no problems"; (3) disagreement: child reports "problems" while the clinician does not; and (4) disagreement: clinician reports "problems" while the child does not. Agreement/disagreement differences were analyzed. No significant differences in prevalence were observed between the evaluators regarding pain (clinician-85%, child-88%), motor (clinician-98%, child-95%), or learning problems (clinician-69%, child-61%). More than 80% of the children and clinicians report pain and motor disorders. Instances in which children and clinicians reported learning problems (40.3%) exceeded cases in which both reported no problems (9.6%) or only the child reported problems (20.9%). Overall, the agreement between pain and motor function assessments was high (>90%), whereas that concerning learning difficulties was moderate (49.9%). Disagreement in pain/motor assessments was minimal (<5%), whereas for learning difficulties, disagreement rates were high (>20%). In conclusion, a significant concordance exists between PROMs and clinician assessments of pain and motor problems. However, the higher frequency of disagreements regarding learning difficulties emphasizes the importance of incorporating patient and clinician evaluations in pediatric FNSD treatment.
Collapse
Affiliation(s)
- S. Barak
- Department of Nursing, Faculty of Health Sciences, Ariel University, Ariel, Israel
- Department of Pediatric Rehabilitation, The Chaim Sheba Medical Center, The Edmond and Lily Safra Children's Hospital, Ramat-Gan 5262000, Israel
| | - J. Landa
- Department of Pediatric Rehabilitation, The Chaim Sheba Medical Center, The Edmond and Lily Safra Children's Hospital, Ramat-Gan 5262000, Israel
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv 39040, Israel
| | - E. Eisenstein
- Department of Pediatric Rehabilitation, The Chaim Sheba Medical Center, The Edmond and Lily Safra Children's Hospital, Ramat-Gan 5262000, Israel
| | - M. Gerner
- Department of Pediatric Rehabilitation, The Chaim Sheba Medical Center, The Edmond and Lily Safra Children's Hospital, Ramat-Gan 5262000, Israel
| | - T. Ravid Vulkan
- Department of Pediatric Rehabilitation, The Chaim Sheba Medical Center, The Edmond and Lily Safra Children's Hospital, Ramat-Gan 5262000, Israel
| | - E. Neeman-Verblun
- Department of Pediatric Rehabilitation, The Chaim Sheba Medical Center, The Edmond and Lily Safra Children's Hospital, Ramat-Gan 5262000, Israel
| | - T. Silberg
- Department of Pediatric Rehabilitation, The Chaim Sheba Medical Center, The Edmond and Lily Safra Children's Hospital, Ramat-Gan 5262000, Israel
- Department of Psychology, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
179
|
Miles G, Smith M, Zook N, Zhang W. EM-COGLOAD: An investigation into age and cognitive load detection using eye tracking and deep learning. Comput Struct Biotechnol J 2024; 24:264-280. [PMID: 38638116 PMCID: PMC11024913 DOI: 10.1016/j.csbj.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 04/20/2024] Open
Abstract
Alzheimer's Disease is the most prevalent neurodegenerative disease, and is a leading cause of disability among the elderly. Eye movement behaviour demonstrates potential as a non-invasive biomarker for Alzheimer's Disease, with changes detectable at an early stage after initial onset. This paper introduces a new publicly available dataset: EM-COGLOAD (available at https://osf.io/zjtdq/, DOI: 10.17605/OSF.IO/ZJTDQ). A dual-task paradigm was used to create effects of declined cognitive performance in 75 healthy adults as they carried out visual tracking tasks. Their eye movement was recorded, and time series classification of the extracted eye movement traces was explored using a range of deep learning techniques. The results of this showed that convolutional neural networks were able to achieve an accuracy of 87.5% when distinguishing between eye movement under low and high cognitive load, and 76% when distinguishing between the oldest and youngest age groups.
Collapse
Affiliation(s)
- Gabriella Miles
- Centre for Machine Vision, Bristol Robotics Laboratory, University of the West of England, T Block, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Melvyn Smith
- Centre for Machine Vision, Bristol Robotics Laboratory, University of the West of England, T Block, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Nancy Zook
- Faculty of Health and Applied Sciences, University of the West of England, Bristol BS16 1QY, UK
| | - Wenhao Zhang
- Centre for Machine Vision, Bristol Robotics Laboratory, University of the West of England, T Block, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| |
Collapse
|
180
|
Jin Q, Ren F, Song P. Innovate therapeutic targets for autoimmune diseases: insights from proteome-wide mendelian randomization and Bayesian colocalization. Autoimmunity 2024; 57:2330392. [PMID: 38515381 DOI: 10.1080/08916934.2024.2330392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Despite growing knowledge regarding the pathogenesis of autoimmune diseases (ADs) onset, the current treatment remains unsatisfactory. This study aimed to identify innovative therapeutic targets for ADs through various analytical approaches. RESEARCH DESIGN AND METHODS Utilizing Mendelian randomization, Bayesian co-localization, phenotype scanning, and protein-protein interaction network, we explored potential therapeutic targets for 14 ADs and externally validated our preliminary findings. RESULTS This study identified 12 circulating proteins as potential therapeutic targets for six ADs. Specifically, IL12B was judged to be a risk factor for ankylosing spondylitis (p = 1.61E - 07). TYMP (p = 6.28E - 06) was identified as a protective factor for ulcerative colitis. For Crohn's disease, ERAP2 (p = 4.47E - 14), HP (p = 2.08E - 05), and RSPO3 (p = 6.52E - 07), were identified as facilitators, whereas FLRT3 (p = 3.42E - 07) had a protective effect. In rheumatoid arthritis, SWAP70 (p = 3.26E - 10), SIGLEC6 (p = 2.47E - 05), ISG15 (p = 3.69E - 05), and FCRL3 (p = 1.10E - 10) were identified as risk factors. B4GALT1 (p = 6.59E - 05) was associated with a lower risk of Type 1 diabetes (T1D). Interestingly, CTSH was identified as a protective factor for narcolepsy (p = 1.58E - 09) but a risk factor for T1D (p = 7.36E - 11), respectively. External validation supported the associations of eight of these proteins with three ADs. CONCLUSIONS Our integrated study identified 12 potential therapeutic targets for ADs and provided novel insights into future drug development for ADs.
Collapse
Affiliation(s)
- Qiubai Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Feihong Ren
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate school, Beijing University of Chinese Medicine, Beijing, China
| | - Ping Song
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
181
|
Ye XH, Xu ZM, Shen D, Jin YJ, Li JW, Xu XH, Tong LS, Gao F. Gas6/Axl signaling promotes hematoma resolution and motivates protective microglial responses after intracerebral hemorrhage in mice. Exp Neurol 2024; 382:114964. [PMID: 39288830 DOI: 10.1016/j.expneurol.2024.114964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) stands out as the most fatal subtype of stroke, currently devoid of effective therapy. Recent research underscores the significance of Axl and its ligand growth arrest-specific 6 (Gas6) in normal brain function and a spectrum of neurological disorders, including ICH. This study is designed to delve into the role of Gas6/Axl signaling in facilitating hematoma clearance and neuroinflammation resolution following ICH. METHODS Adult male C57BL/6 mice were randomly assigned to sham and ICH groups. ICH was induced by intrastriatal injection of autologous arterial blood. Recombinant mouse Gas6 (rmGas6) was administered intracerebroventricularly 30 min after ICH. Virus-induced knockdown of Axl or R428 (a selective inhibitor of Axl) treatment was administrated before ICH induction to investigate the protective mechanisms. Molecular changes were assessed using western blot, enzyme-linked immunosorbent assay and immunohistochemistry. Coronal brain slices, brain water content and neurobehavioral tests were employed to evaluate histological and neurofunctional outcomes, respectively. Primary glia cultures and erythrophagocytosis assays were applied for mechanistic studies. RESULTS The expression of Axl increased at 12 h after ICH, peaking on day 3. Gas6 expression did not remarkably changed until day 3 post-ICH. Early administration of rmGas6 following ICH significantly reduced hematoma volume, mitigated brain edema, and restored neurological function. Both Axl-knockdown and Axl inhibitor treatment abolished the neuroprotection of exogenous Gas6 in ICH. In vitro studies demonstrated that microglia exhibited higher capacity for phagocytosing eryptotic erythrocytes compared to normal erythrocytes, a process reversed by blocking the externalized phosphatidylserine on eryptotic erythrocytes. The erythrophagocytosis by microglia was Axl-mediated and Gas6-dependent. Augmentation of Gas6/Axl signaling attenuated neuroinflammation and drove microglia towards pro-resolving phenotype. CONCLUSIONS This study demonstrated the beneficial effects of recombinant Gas6 on hematoma resolution, alleviation of neuroinflammation, and neurofunctional recovery in an animal model of ICH. These effects were primarily mediated by the phagocytotic role of Axl expressed on microglia.
Collapse
Affiliation(s)
- Xiang-Hua Ye
- Department of Rehabilitation, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhi-Ming Xu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Dan Shen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yu-Jia Jin
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jia-Wen Li
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xu-Hua Xu
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Lu-Sha Tong
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Feng Gao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| |
Collapse
|
182
|
Li JM, Bai YZ, Zhang SQ. Advances and challenges in serine in the central nervous system: physicochemistry, physiology, and pharmacology. Metab Brain Dis 2024; 39:1637-1647. [PMID: 39186223 DOI: 10.1007/s11011-024-01418-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Neurological disorders are the primary cause of human disability and mortality globally, however, current medications slightly alleviate some symptoms of degenerative diseases. Serine is an important amino acid for the brain function and involved in a variety of biosynthetic pathways and signal transduction processes. The imbalance of serine metabolism is associated with neurodegeneration, including neuroinflammation, oxidative stress and apoptosis. Altered activities of serine metabolizing enzymes and accumulation of serine metabolites affect the survival and function of nerve cells. Abnormal serine levels are observed in animal models with neurological diseases, but not all human studies, therefore, the maintenance of serine homeostasis is a potentially therapeutic strategy for neurological disorders. To date, physiological and pharmacological roles of serine in neurological diseases have not been systemically recapitulated, and the association between serine and neurological diseases is controversial. In this review, we summarize physicochemical properties of serine, biological processes of serine in the brain (source, biotransformation, and transport), and the application of serine in neurological diseases including Alzheimer's disease, schizophrenia, and depression. Here, we highlight physicochemistry, physiology, pharmacology, and therapeutic potentials of serine in the prevention and treatment of neurological dysfunction. Our work provides valuable hints for future investigation that will lead to a comprehensive understanding of serine and its metabolism in cellular physiology and pharmacology. Although broad by necessity, the review helps researchers to understand great potentials of serine in the prevention and treatment of neurological dysfunction.
Collapse
Affiliation(s)
- Jia-Meng Li
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Beijing, 100050, China
| | - Ya-Zhi Bai
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Beijing, 100050, China
| | - Shuang-Qing Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Beijing, 100050, China.
| |
Collapse
|
183
|
Sheng W, Wang P, Cai Y, Zhai C, Wang H, Zhou F, Liu X, Wang L, Li D, Shu J, Cai C. Epilepsy due to potential loss of ATP6V1B2 function with mechanistic insight by a Drosophila Vha55 model. Clin Genet 2024; 106:702-712. [PMID: 39075926 DOI: 10.1111/cge.14600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024]
Abstract
ATP6V1B2 encodes the subunit of the vacuolar H+-ATPase, which is an enzyme responsible for the acidification of intracellular organelles and essential for cell signaling and neurotransmitter release. The aim of the study is to identify the correlation between ATP6V1B2 and epilepsy. Trio-exome sequencing was performed. Reverse Transcription-PCR and Quantitative real-time PCR analyses were carried out to determine whether this variant leads to nonsense-mediated mRNA decay (NMD). Drosophila models with knocked-down homologous genes of ATP6V1B2 were generated to study the causal relationship between the ATP6V1B2 and the phenotype of epilepsy. We described a 5-year-old male with a novel variant c.1163delT(p.Tyr389IlefsTer13) in ATP6V1B2, who presented with epilepsy. The expression level of the premature termination codon (PTC) transcript was normal in the patient, which indicated that NMD evasion existed in the PTC transcript. We generated an animal model using Drosophila to study the knock down effects of Vha55, which is the ATP6V1B2 ortholog in fly. The Vha55 knockdown flies show seizure-like behaviors and climbing defects. This study expands the variation spectrum of the ATP6V1B2 gene. Cross-species animal model demonstrates the causal relationship between ATP6V1B2 defect and epilepsy, and shed new insights into the disease mechanism caused by ATP6V1B2 LOF variants.
Collapse
Affiliation(s)
- Wenchao Sheng
- Tianjin University Children's Hospital, Tianjin, China
- Tianjin Children's Hospital, Tianjin, China
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital, Tianjin, China
- Clinical Pediatric College of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Ping Wang
- Tianjin Children's Hospital, Tianjin, China
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital, Tianjin, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| | - Yingzi Cai
- Tianjin University Children's Hospital, Tianjin, China
- Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Chaojun Zhai
- The State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin, China
| | - Hong Wang
- Tianjin Children's Hospital, Tianjin, China
- Department of Neuroloy, Tianjin Children's Hospital, Tianjin, China
| | - Feiyu Zhou
- Tianjin University Children's Hospital, Tianjin, China
- Tianjin Children's Hospital, Tianjin, China
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital, Tianjin, China
- Clinical Pediatric College of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Xiaoyu Liu
- Tianjin University Children's Hospital, Tianjin, China
- Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Leyi Wang
- Tianjin University Children's Hospital, Tianjin, China
- Tianjin Children's Hospital, Tianjin, China
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital, Tianjin, China
- Clinical Pediatric College of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Dong Li
- Tianjin Children's Hospital, Tianjin, China
- Department of Neuroloy, Tianjin Children's Hospital, Tianjin, China
| | - Jianbo Shu
- Tianjin University Children's Hospital, Tianjin, China
- Tianjin Children's Hospital, Tianjin, China
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital, Tianjin, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| | - Chunquan Cai
- Tianjin University Children's Hospital, Tianjin, China
- Tianjin Children's Hospital, Tianjin, China
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital, Tianjin, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| |
Collapse
|
184
|
Doyle H, Boisseau CL, Garnaat SL, Rasmussen SA, Desrochers TM. Abstract task sequence initiation deficit dissociates anxiety disorders from obsessive-compulsive disorder and healthy controls. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:1186-1201. [PMID: 39085586 PMCID: PMC11527554 DOI: 10.3758/s13415-024-01207-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 08/02/2024]
Abstract
In everyday life, humans perform sequences of tasks. These tasks may be disrupted in people with obsessive-compulsive disorder (OCD). Symptoms, such as compulsions, can be considered sequential and often cause repetitions of tasks that disrupt daily living (e.g., checking the stove while cooking). Motor sequences have been used to study behavioral deficits in OCD. However, not all sequences are motor sequences. Some are more "abstract" in that they are composed of a series of tasks (e.g., chopping and stirring) rather than being dependent on individual actions or stimuli. These abstract task sequences require cognitive control mechanisms for their execution. Although theory has proposed deficits in these sequences in OCD as well, they have not been directly investigated. We tested the hypotheses that OCD participants exhibit deficits in the control mechanisms specific to abstract task sequences and more general flexible behavior (measured with task switching within the sequences), relative to health controls (HCs) and clinical controls (participants with anxiety disorders [ANX]). A total of 112 participants completed abstract task sequences consisting of simple categorization tasks. Surprisingly, participants with OCD did not perform worse than HCs or ANX. However, ANX participants showed impairments specific to sequential control that did not extend to more general flexible control. Thus, we showed a novel behavioral dissociation between OCD and ANX specific to abstract task sequential control. These results also implicate deficits in specific frontal sequential control neural circuitry in ANX and not in OCD, where implicit sequential deficits may more closely align with striatal circuits.
Collapse
Affiliation(s)
- Hannah Doyle
- Department of Neuroscience, Brown University, Providence, RI, USA
- Robert J. and Nancy D. Carney Institute for Brain Sciences, Brown University, Providence, RI, USA
| | - Christina L Boisseau
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sarah L Garnaat
- Robert J. and Nancy D. Carney Institute for Brain Sciences, Brown University, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
- Department of Psychiatry, Geisel School of Medicine at Dartmouth College & Dartmouth-Hitchcock Medical Center, Hanover, NH, USA
| | - Steven A Rasmussen
- Robert J. and Nancy D. Carney Institute for Brain Sciences, Brown University, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Theresa M Desrochers
- Department of Neuroscience, Brown University, Providence, RI, USA.
- Robert J. and Nancy D. Carney Institute for Brain Sciences, Brown University, Providence, RI, USA.
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
185
|
Smith Z, Cheli VT, Angeliu CG, Wang C, Denaroso GE, Tumuluri SG, Corral J, Garbarini K, Paez PM. Ferritin loss in astrocytes reduces spinal cord oxidative stress and demyelination in the experimental autoimmune encephalomyelitis (EAE) model. Glia 2024; 72:2327-2343. [PMID: 39228110 DOI: 10.1002/glia.24616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/12/2024] [Accepted: 08/24/2024] [Indexed: 09/05/2024]
Abstract
Demyelinating diseases such as multiple sclerosis (MS) cause myelin degradation and oligodendrocyte death, resulting in the release of toxic iron and iron-induced oxidative stress. Astrocytes have a large capacity for iron transport and storage, however the role of astrocytic iron homeostasis in demyelinating disorders is not completely understood. Here we investigate whether astrocytic iron metabolism modulates neuroinflammation, oligodendrocyte survival, and oxidative stress following demyelination. To this aim, we conditionally knock out ferritin in astrocytes and induce experimental autoimmune encephalomyelitis (EAE), an autoimmune-mediated model of demyelination. Ferritin ablation in astrocytes reduced the severity of disease in both the acute and chronic phases. The day of onset, peak disease severity, and cumulative clinical score were all significantly reduced in ferritin KO animals. This corresponded to better performance on the rotarod and increased mobility in ferritin KO mice. Furthermore, the spinal cord of ferritin KO mice display decreased numbers of reactive astrocytes, activated microglia, and infiltrating lymphocytes. Correspondingly, the size of demyelinated lesions, iron accumulation, and oxidative stress were attenuated in the CNS of ferritin KO subjects, particularly in white matter regions of the spinal cord. Thus, deleting ferritin in astrocytes reduced neuroinflammation, oxidative stress, and myelin deterioration in EAE animals. Collectively, these findings suggest that iron storage in astrocytes is a potential therapeutic target to lessen CNS inflammation and myelin loss in autoimmune demyelinating diseases.
Collapse
Affiliation(s)
- Z Smith
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Institute for Myelin and Glia Exploration, The State University of New York, University at Buffalo, Buffalo, New York, USA
| | - V T Cheli
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Institute for Myelin and Glia Exploration, The State University of New York, University at Buffalo, Buffalo, New York, USA
| | - C G Angeliu
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Institute for Myelin and Glia Exploration, The State University of New York, University at Buffalo, Buffalo, New York, USA
| | - C Wang
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Institute for Myelin and Glia Exploration, The State University of New York, University at Buffalo, Buffalo, New York, USA
| | - G E Denaroso
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Institute for Myelin and Glia Exploration, The State University of New York, University at Buffalo, Buffalo, New York, USA
| | - S G Tumuluri
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Institute for Myelin and Glia Exploration, The State University of New York, University at Buffalo, Buffalo, New York, USA
| | - J Corral
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Institute for Myelin and Glia Exploration, The State University of New York, University at Buffalo, Buffalo, New York, USA
| | - K Garbarini
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Institute for Myelin and Glia Exploration, The State University of New York, University at Buffalo, Buffalo, New York, USA
| | - P M Paez
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Institute for Myelin and Glia Exploration, The State University of New York, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
186
|
Ankeny SE, Bacci JR, Decourt B, Sabbagh MN, Mielke MM. Navigating the Landscape of Plasma Biomarkers in Alzheimer's Disease: Focus on Past, Present, and Future Clinical Applications. Neurol Ther 2024; 13:1541-1557. [PMID: 39244522 DOI: 10.1007/s40120-024-00658-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/20/2024] [Indexed: 09/09/2024] Open
Abstract
As the prevalence of Alzheimer's disease (AD) and its impact on healthcare systems increase, developing tools for accurate diagnosis and monitoring of disease progression is a priority. Recent technological advancements have allowed for the development of blood-based biomarkers (BBMs) to aid in the diagnosis of AD, but many questions remain regarding the clinical implementation of these BBMs. This review outlines the historical timeline of AD BBM development. It highlights key breakthroughs that have transformed the perspective of AD BBMs from theoretically ideal but unattainable markers, to clinically valid and reliable BBMs with potential for implementation in healthcare settings. Technological advancements like single-molecule detection and mass spectrometry methods have significantly improved assay sensitivity and accuracy. High-throughput, fully automated platforms have potential for clinical use. Despite these advancements, however, significant work is needed before AD BBMs can be implemented in widespread clinical practice. Cutpoints must be established, the influence of chronic conditions and medications on BBM levels must be better understood, and guidelines must be created for healthcare providers related to interpreting and communicating information obtained from AD BBMs. Additionally, the development of BBMs for synaptic dysfunction, inflammation, and cerebrovascular disease may provide better precision medicine approaches to treating AD and related dementia. Future research and collaboration between scientists and physicians are essential to addressing these challenges and further advancing AD BBMs, with the goal of integration in clinical practice.
Collapse
Affiliation(s)
- Sarrah E Ankeny
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Julia R Bacci
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Boris Decourt
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Marwan N Sabbagh
- Alzheimer's and Memory Disorders Division, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Michelle M Mielke
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
187
|
Kurup D, FitzPatrick AM, Badura A, Serra I. Bridging the gap: neurodevelopmental disorder risks in inborn errors of immunity. Curr Opin Allergy Clin Immunol 2024; 24:472-478. [PMID: 39374040 PMCID: PMC11537469 DOI: 10.1097/aci.0000000000001036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
PURPOSE OF REVIEW The aim of this review is to examine published reports of neurodevelopmental phenotypes in patients with inborn errors of immunity (IEI). We briefly discuss potential interactions between the immune and the central nervous system and the implications of this crosstalk for current clinical management guidelines. RECENT FINDINGS An increasing number of reports have described neurodevelopmental disorders (NDDs) comorbid with immune-mediated signs. However, the prevalence of this association in IEIs remains unknown. SUMMARY IEIs comprise a group of clinically heterogeneous disorders associated with a number of nonimmune comorbidities. Although certain neurological conditions such as microcephaly are recognized as associated features of some IEIs, NDDs are less well described. We reviewed published clinical descriptions of IEIs and found a number of comorbid NDDs in these patients, including autism spectrum disorder (ASD), behavioral deficits, and intellectual disability. Given the lack of uniform assessments for NDDs, we suspect they may be underdiagnosed in IEIs. As NDDs manifest early and can result in life-long cognitive and emotional deficits, which diminish quality of life and increase healthcare utilization, we hope to elucidate relevant pathomechanisms and raise clinician awareness of these comorbidities so appropriate and timely interventions are sought.
Collapse
Affiliation(s)
- Devika Kurup
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
188
|
Zhou D, Liu Z, Gong G, Zhang Y, Lin L, Cai K, Xu H, Cong F, Li H, Chen A. Decreased Functional and Structural Connectivity is Associated with Core Symptom Improvement in Children with Autism Spectrum Disorder After Mini-basketball Training Program. J Autism Dev Disord 2024; 54:4515-4528. [PMID: 37882897 DOI: 10.1007/s10803-023-06160-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2023] [Indexed: 10/27/2023]
Abstract
Exercise intervention has been proven helpful to ameliorate core symptoms of Autism Spectrum Disorder (ASD). However, the underlying mechanisms are not fully understood. In this study, we carried out a 12-week mini-basketball training program (MBTP) on ASD children and examined the changes of brain functional and structural networks before and after exercise intervention. We applied individual-based method to construct functional network and structural morphological network, and investigated their alterations following MBTP as well as their associations with the change in core symptom. Structural MRI and resting-state functional MRI data were obtained from 58 ASD children aged 3-12 years (experiment group: n = 32, control group: n = 26). ASD children who received MBTP intervention showed several distinguishable alternations compared to the control without special intervention. These included decreased functional connectivity within the sensorimotor network (SM) and between SM and the salience network, decreased morphological connectivity strength in a cortical-cortical network centered on the left inferior temporal gyrus, and a subcortical-cortical network centered on the left caudate. Particularly, the aforementioned functional and structural changes induced by MBTP were associated with core symptoms of ASD. Our findings suggested that MBTP intervention could be an effective approach to improve core symptoms in ASD children, decrease connectivity in both structure and function networks, and may drive the brain change towards normal-like neuroanatomy.
Collapse
Affiliation(s)
- Dongyue Zhou
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, China
| | - Zhimei Liu
- College of Physical Education, Yangzhou University, Yangzhou, China
| | - Guanyu Gong
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Yunge Zhang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, China
| | - Lin Lin
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, China
| | - Kelong Cai
- College of Physical Education, Yangzhou University, Yangzhou, China
| | - Huashuai Xu
- Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland
| | - Fengyu Cong
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, China
- Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland
- Key Laboratory of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Huanjie Li
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, China.
- Key Laboratory of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, Liaoning Province, China.
| | - Aiguo Chen
- College of Physical Education, Yangzhou University, Yangzhou, China.
- Key Laboratory of Brain Disease and Integration of Sport and Health, Yangzhou University, Yangzhou, China.
| |
Collapse
|
189
|
Xu Q, Yang C, Wang L, Zhou J. Unveiling the role of RNA methylation in glioma: Mechanisms, prognostic biomarkers, and therapeutic targets. Cell Signal 2024; 124:111380. [PMID: 39236835 DOI: 10.1016/j.cellsig.2024.111380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Gliomas, the most prevalent malignant brain tumors in the central nervous system, are marked by rapid growth, high recurrence rates, and poor prognosis. Glioblastoma (GBM) stands out as the most aggressive subtype, characterized by significant heterogeneity. The etiology of gliomas remains elusive. RNA modifications, particularly reversible methylation, play a crucial role in regulating transcription and translation throughout the RNA lifecycle. Increasing evidence highlights the prevalence of RNA methylation in primary central nervous system malignancies, underscoring its pivotal role in glioma pathogenesis. This review focuses on recent findings regarding changes in RNA methylation expression and their effects on glioma development and progression, including N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), and N7-methylguanosine (m7G). Given the extensive roles of RNA methylation in gliomas, the potential of RNA methylation-related regulators as prognostic markers and therapeutic targets was also explored, aiming to enhance clinical management and improve patient outcomes.
Collapse
Affiliation(s)
- Qichen Xu
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China
| | - Chunsong Yang
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China
| | - Liyun Wang
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China
| | - Jing Zhou
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China.
| |
Collapse
|
190
|
Ubogu EE. Animal models of immune-mediated demyelinating polyneuropathies. Autoimmunity 2024; 57:2361745. [PMID: 38850571 PMCID: PMC11215812 DOI: 10.1080/08916934.2024.2361745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/26/2024] [Indexed: 06/10/2024]
Abstract
Immune-mediated demyelinating polyneuropathies (IMDPs) are rare disorders in which dysregulated adaptive immune responses cause peripheral nerve demyelinating inflammation and axonal injury in susceptible individuals. Despite significant advances in understanding IMDP pathogenesis guided by patient data and representative mammalian models, specific therapies are lacking. Significant knowledge gaps in IMDP pathogenesis still exist, e.g. precise antigen(s) and mechanisms that initially trigger immune system activation and identification of large population disease susceptibility factors. The initial directional cues for antigen-specific effector or autoreactive leukocyte trafficking into peripheral nerves are also unknown. An overview of current animal models, with emphasis on the experimental autoimmune neuritis and spontaneous autoimmune peripheral polyneuropathy models, is provided. Insights on the initial directional cues for peripheral nerve tissue specific autoimmunity using a novel Major Histocompatibility Complex class II conditional knockout mouse strain are also discussed, suggesting an essential research tool to study cell- and time-dependent adaptive immunity in autoimmune diseases.
Collapse
Affiliation(s)
- Eroboghene E Ubogu
- Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
191
|
Eisenbaum M, Bachmeier C. Contribution of astrocytes to the neurovascular elimination of tau. Neural Regen Res 2024; 19:2559-2560. [PMID: 38808980 PMCID: PMC11168527 DOI: 10.4103/nrr.nrr-d-23-01705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 05/30/2024] Open
Affiliation(s)
| | - Corbin Bachmeier
- The Roskamp Institute, Sarasota, FL, USA
- Bay Pines VA Healthcare System, Bay Pines, FL, USA
| |
Collapse
|
192
|
Li X, Zhang J, Zhang S, Shi S, Lu Y, Leng Y, Li C. Biomarkers for neuromyelitis optica: a visual analysis of emerging research trends. Neural Regen Res 2024; 19:2735-2749. [PMID: 38595291 PMCID: PMC11168523 DOI: 10.4103/nrr.nrr-d-24-00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/04/2024] [Accepted: 02/19/2024] [Indexed: 04/11/2024] Open
Abstract
Neuromyelitis optica is an inflammatory demyelinating disease of the central nervous system that differs from multiple sclerosis. Over the past 20 years, the search for biomarkers for neuromyelitis optica has been ongoing. Here, we used a bibliometric approach to analyze the main research focus in the field of biomarkers for neuromyelitis optica. Research in this area is consistently increasing, with China and the United States leading the way on the number of studies conducted. The Mayo Clinic is a highly reputable institution in the United States, and was identified as the most authoritative institution in this field. Furthermore, Professor Wingerchuk from the Mayo Clinic was the most authoritative expert in this field. Keyword analysis revealed that the terms "neuromyelitis optica" (261 times), "multiple sclerosis" (220 times), "neuromyelitis optica spectrum disorder" (132 times), "aquaporin 4" (99 times), and "optical neuritis" (87 times) were the most frequently used keywords in literature related to this field. Comprehensive analysis of the classical literature showed that the majority of publications provide conclusive research evidence supporting the use of aquaporin-4-IgG and neuromyelitis optica-IgG to effectively diagnose and differentiate neuromyelitis optica from multiple sclerosis. Furthermore, aquaporin-4-IgG has emerged as a highly specific diagnostic biomarker for neuromyelitis optica spectrum disorder. Myelin oligodendrocyte glycoprotein-IgG is a diagnostic biomarker for myelin oligodendrocyte glycoprotein antibody-associated disease. Recent biomarkers for neuromyelitis optica include cerebrospinal fluid immunological biomarkers such as glial fibrillary acidic protein, serum astrocyte damage biomarkers like FAM19A5, serum albumin, and gamma-aminobutyric acid. The latest prospective clinical trials are exploring the potential of these biomarkers. Preliminary results indicate that glial fibrillary acidic protein is emerging as a promising candidate biomarker for neuromyelitis optica spectrum disorder. The ultimate goal of future research is to identify non-invasive biomarkers with high sensitivity, specificity, and safety for the accurate diagnosis of neuromyelitis optica.
Collapse
Affiliation(s)
- Xiangjun Li
- Department of Ophthalmology, Affiliated Hospital of Beihua University, Jilin, Jilin Province, China
| | - Jiandong Zhang
- Department of Ophthalmology, Changchun Bright Eye Hospital, Changchun, Jilin Province, China
| | - Siqi Zhang
- Department of Ophthalmology, Affiliated Hospital of Beihua University, Jilin, Jilin Province, China
| | - Shengling Shi
- Department of Ophthalmology, Affiliated Hospital of Beihua University, Jilin, Jilin Province, China
| | - Yi’an Lu
- Department of Ophthalmology, Changchun Bright Eye Hospital, Changchun, Jilin Province, China
| | - Ying Leng
- Department of Ophthalmology, Affiliated Hospital of Beihua University, Jilin, Jilin Province, China
| | - Chunyan Li
- Department of Endocrinology, Affiliated Hospital of Beihua University, Jilin, Jilin Province, China
| |
Collapse
|
193
|
Hermann P, Zerr I. Unmet needs of biochemical biomarkers for human prion diseases. Prion 2024; 18:89-93. [PMID: 38734978 DOI: 10.1080/19336896.2024.2349017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Although the development of aggregation assays has noticeably improved the accuracy of the clinical diagnosis of prion diseases, research on biomarkers remains vital. The major challenges to overcome are non-invasive sampling and the exploration of new biomarkers that may predict the onset or reflect disease progression. This will become extremely important in the near future, when new therapeutics are clinically evaluated and eventually become available for treatment. This article aims to provide an overview of the achievements of biomarker research in human prion diseases, addresses unmet needs in the field, and points out future perspectives.
Collapse
Affiliation(s)
- Peter Hermann
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases, Göttingen, Germany
| |
Collapse
|
194
|
Lan X, Ao WL, Li J. Preimplantation genetic testing as a preventive strategy for the transmission of mitochondrial DNA disorders. Syst Biol Reprod Med 2024; 70:38-51. [PMID: 38323618 DOI: 10.1080/19396368.2024.2306389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/07/2024] [Indexed: 02/08/2024]
Abstract
Mitochondrial diseases are distinct types of metabolic and/or neurologic abnormalities that occur as a consequence of dysfunction in oxidative phosphorylation, affecting several systems in the body. There is no effective treatment modality for mitochondrial disorders so far, emphasizing the clinical significance of preventing the inheritance of these disorders. Various reproductive options are available to reduce the probability of inheriting mitochondrial disorders, including in vitro fertilization (IVF) using donated oocytes, preimplantation genetic testing (PGT), and prenatal diagnosis (PND), among which PGT not only makes it possible for families to have genetically-owned children but also PGT has the advantage that couples do not have to decide to terminate the pregnancy if a mutation is detected in the fetus. PGT for mitochondrial diseases originating from nuclear DNA includes analyzing the nuclear genome for the presence or absence of corresponding mutations. However, PGT for mitochondrial disorders arising from mutations in mitochondrial DNA (mtDNA) is more intricate, due to the specific characteristics of mtDNA such as multicopy nature, heteroplasmy phenomenon, and exclusive maternal inheritance. Therefore, the present review aims to discuss the utility and challenges of PGT as a preventive approach to inherited mitochondrial diseases caused by mtDNA mutations.
Collapse
Affiliation(s)
- Xinpeng Lan
- College of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Wu Liji Ao
- College of Mongolian Medicine and Pharmacy, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, China
| | - Ji Li
- College of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
195
|
Koyama S, Yagita K, Hamasaki H, Noguchi H, Shijo M, Matsuzono K, Takase KI, Kai K, Aishima SI, Itoh K, Ninomiya T, Sasagasako N, Honda H. Novel method for classification of prion diseases by detecting PrP res signal patterns from formalin-fixed paraffin-embedded samples. Prion 2024; 18:40-53. [PMID: 38627365 PMCID: PMC11028012 DOI: 10.1080/19336896.2024.2337981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
Prion disease is an infectious and fatal neurodegenerative disease. Western blotting (WB)-based identification of proteinase K (PK)-resistant prion protein (PrPres) is considered a definitive diagnosis of prion diseases. In this study, we aimed to detect PrPres using formalin-fixed paraffin-embedded (FFPE) specimens from cases of sporadic Creutzfeldt-Jakob disease (sCJD), Gerstmann-Sträussler-Scheinker disease (GSS), glycosylphosphatidylinositol-anchorless prion disease (GPIALP), and V180I CJD. FFPE samples were prepared after formic acid treatment to inactivate infectivity. After deparaffinization, PK digestion was performed, and the protein was extracted. In sCJD, a pronounced PrPres signal was observed, with antibodies specific for type 1 and type 2 PrPres exhibited a strong or weak signals depending on the case. Histological examination of serial sections revealed that the histological changes were compatible with the biochemical characteristics. In GSS and GPIALP, prion protein core-specific antibodies presented as PrPres bands at 8-9 kDa and smear bands, respectively. However, an antibody specific for the C-terminus presented as smears in GSS, with no PrPres detected in GPIALP. It was difficult to detect PrPres in V180I CJD. Collectively, our findings demonstrate the possibility of detecting PrPres in FFPE and classifying the prion disease types. This approach facilitates histopathological and biochemical evaluation in the same sample and is safe owing to the inactivation of infectivity. Therefore, it may be valuable for the diagnosis and research of prion diseases.
Collapse
Affiliation(s)
- Sachiko Koyama
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kaoru Yagita
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideomi Hamasaki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideko Noguchi
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Shijo
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Neurology, Kyushu Central Hospital of the Mutual Aid Association of Public School Teachers, Fukuoka, Japan
| | - Kosuke Matsuzono
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | | | - Keita Kai
- Department of Pathology, Saga University Hospital, Saga, Japan
| | - Shin-Ichi Aishima
- Department of Scientific Pathology Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Toshiharu Ninomiya
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naokazu Sasagasako
- Department of Neurology, Neuro-Muscular Center, National Hospital Organization, Omuta National Hospital, Fukuoka, Japan
| | - Hiroyuki Honda
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Neuropathology Center, National Hospital Organization, Omuta National Hospital, Fukuoka, Japan
| |
Collapse
|
196
|
Di Lisa D, Andolfi A, Masi G, Uras G, Ferrari PF, Martinoia S, Pastorino L. Impact of perfusion on neuronal development in human derived neuronal networks. APL Bioeng 2024; 8:046102. [PMID: 39364213 PMCID: PMC11446581 DOI: 10.1063/5.0221911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
Advanced in vitro models of the brain have evolved in recent years from traditional two-dimensional (2D) ones, based on rodent derived cells, to three-dimensional (3D) ones, based on human neurons derived from induced pluripotent stem cells. To address the dynamic changes of the tissue microenvironment, bioreactors are used to control the in vitro microenvironment for viability, repeatability, and standardization. However, in neuronal tissue engineering, bioreactors have primarily been used for cell expansion purposes, while microfluidic systems have mainly been employed for culturing organoids. In this study, we explored the use of a commercial perfusion bioreactor to control the culture microenvironment of neuronal cells in both 2D and 3D cultures. Namely, neurons differentiated from human induced pluripotent stem cells (iNeurons) were cultured in 2D under different constant flow rates for 72 h. The impact of different flow rates on early-stage neuronal development and synaptogenesis was assessed by morphometric characterization and synaptic analysis. Based on these results, two involving variable flow rates were developed and applied again in 2D culture. The most effective protocol, in terms of positive impact on neuronal development, was then used for a preliminary study on the application of dynamic culturing conditions to neuronal cells in 3D. To this purpose, both iNeurons, co-cultured with astrocytes, and the human neuroblastoma cells SH-SY5Y were embedded into a hydrogel and maintained under perfusion for up to 28 days. A qualitative evaluation by immunocytochemistry and confocal microscopy was carried out to assess cell morphology and the formation of a 3D neuronal network.
Collapse
Affiliation(s)
| | - Andrea Andolfi
- DIBRIS, Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Via Opera Pia 13, 16145 Genoa, Italy
| | - Giacomo Masi
- DIBRIS, Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Via Opera Pia 13, 16145 Genoa, Italy
| | | | | | | | | |
Collapse
|
197
|
Weiß C, Becker LL, Friese J, Blaschek A, Hahn A, Illsinger S, Schwartz O, Bernert G, Hagen MVD, Husain RA, Goldhahn K, Kirschner J, Pechmann A, Flotats-Bastardas M, Schreiber G, Schara U, Plecko B, Trollmann R, Horber V, Wilichowski E, Baumann M, Klein A, Eisenkölbl A, Köhler C, Stettner GM, Cirak S, Hasselmann O, Kaindl AM, Garbade SF, Johannsen J, Ziegler A. Efficacy and safety of gene therapy with onasemnogene abeparvovec in children with spinal muscular atrophy in the D-A-CH-region: a population-based observational study. THE LANCET REGIONAL HEALTH. EUROPE 2024; 47:101092. [PMID: 39434961 PMCID: PMC11492610 DOI: 10.1016/j.lanepe.2024.101092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024]
Abstract
Background Real-world data on gene addition therapy (GAT) with onasemnogene abeparvovec (OA), including all age groups and with or without symptoms of the disease before treatment are needed to provide families with evidence-based advice and realistic therapeutic goals. Aim of this study is therefore a population-based analysis of all patients with SMA treated with OA across Germany, Austria and Switzerland (D-A-CH). Methods This observational study included individuals with Spinal Muscular Atrophy (SMA) treated with OA in 29 specialized neuromuscular centers in the D-A-CH-region. A standardized data set including WHO gross motor milestones, SMA validated motor assessments, need for nutritional and respiratory support, and adverse events was collected using the SMArtCARE registry and the Swiss-Reg-NMD. Outcome data were analyzed using a prespecified statistical analysis plan including potential predictors such as age at GAT, SMN2 copy number, past treatment, and symptom status. Findings 343 individuals with SMA (46% male, 54% female) with a mean age at OA of 14.0 months (range 0-90, IQR 20.0 months) were included in the analysis. 79 (23%) patients were clinically presymptomatic at the time of treatment. 172 (50%) patients received SMN2 splice-modifying drugs prior to GAT (risdiplam: n = 16, nusinersen: n = 154, both: n = 2). Functional motor improvement correlated with lower age at GAT, with the best motor outcome in those younger than 6 weeks, carrying 3 SMN2 copies, and being clinically presymptomatic at time of treatment. The likelihood of requiring ventilation or nutritional support showed a significantly increase with older age at the time of GAT and remained stable thereafter. Pre-treatment had no effect on disease trajectories. Liver-related adverse events occurred significantly less frequently up to 8 months of age. All other adverse events showed an even distribution across all age and weight groups. Interpretation Overall, motor, respiratory, and nutritional outcome were dependent on timing of GAT and initial symptom status. It was best in presymptomatic children treated within the first six weeks of life, but functional motor scores also increased significantly after treatment in all age groups up to 24 months. Additionally, OA was best tolerated when administered at a young age. Our study therefore highlights the need for SMA newborn screening and immediate treatment to achieve the best possible benefit-risk ratio. Funding The SMArtCARE and Swiss-Reg-NMD registries are funded by different sources (see acknowledgements).
Collapse
Affiliation(s)
- Claudia Weiß
- Charité–Universitätsmedizin Berlin, Department of Pediatric Neurology, Augustenburger Platz 1, Berlin 13353, Germany
- Charité–Universitätsmedizin Berlin, Center for Chronically Sick Children, Augustenburger Platz 1, Berlin 13353, Germany
- Department of Child Neurology, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Lena-Luise Becker
- Charité–Universitätsmedizin Berlin, Department of Pediatric Neurology, Augustenburger Platz 1, Berlin 13353, Germany
- Charité–Universitätsmedizin Berlin, Center for Chronically Sick Children, Augustenburger Platz 1, Berlin 13353, Germany
- Charité–Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Augustenburger Platz 1, Berlin 13353, Germany
- Department of Child Neurology, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
- Department of Pediatric Neurology and Developmental Medicine, Ludwig Maximilian University of Munich (LMU), Hauner Children’s Hospital, Lindwurmstr. 4, Munich 80337, Germany
| | - Johannes Friese
- Charité–Universitätsmedizin Berlin, Center for Chronically Sick Children, Augustenburger Platz 1, Berlin 13353, Germany
- Department of Child Neurology, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Astrid Blaschek
- Charité–Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Augustenburger Platz 1, Berlin 13353, Germany
- Department of Pediatric Neurology and Developmental Medicine, Ludwig Maximilian University of Munich (LMU), Hauner Children’s Hospital, Lindwurmstr. 4, Munich 80337, Germany
| | - Andreas Hahn
- Department of Child Neurology, University Hospital, Rudolf-Buchheim-Str. 8, Gießen 35392, Germany
| | - Sabine Illsinger
- Clinic for Pediatric Kidney-, Liver- and Metabolic Diseases, Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
| | - Oliver Schwartz
- Department of Pediatric Neurology, University Hospital, Albert-Schweitzer-Strasse 33, Münster, Germany
| | - Günther Bernert
- Department of Pediatrics, Klinik Favoriten, Kundratstr. 3, Vienna 1100, Austria
| | - Maja von der Hagen
- Department of Neuropediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, Dresden 01307, Germany
| | - Ralf A. Husain
- Department of Neuropediatrics, Jena University Hospital, Bachstr. 18, Jena 07743, Germany
| | - Klaus Goldhahn
- Department of Pediatrics and Neuropediatrics, DRK Klinikum Westend, Spandauer Damm 130, Berlin 14050, Germany
| | - Janbernd Kirschner
- Department of Neuropediatrics and Muscle Disorders, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Heiliggeist-Str. 1, Freiburg 79106, Germany
| | - Astrid Pechmann
- Department of Neuropediatrics and Muscle Disorders, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Heiliggeist-Str. 1, Freiburg 79106, Germany
| | - Marina Flotats-Bastardas
- University Hospital Homburg, Department of Pediatric Neurology, Kirrberger Str. 100, Homburg 66421, Germany
| | - Gudrun Schreiber
- Klinikum Kassel, Department of Pediatric Neurology, Mönchebergstr. 41-43, Kassel 34125, Germany
| | - Ulrike Schara
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Center for Translational Neuro and Behavioral Sciences, University Duisburg-Essen, Germany
| | - Barbara Plecko
- Department of Pediatrics and Adolescent Medicine, Division of General Pediatrics, Medical University Graz, Auenbruggerplatz 2, Graz 8036, Austria
| | - Regina Trollmann
- Department of Pediatrics, Division of Pediatric Neurology, Friedrich-Alexander University of Erlangen-Nürnberg, Maximiliansplatz 2, Erlangen 91054, Germany
| | - Veronka Horber
- Department of Pediatric Neurology, University Children’s Hospital, Hoppe-Seyler-Str. 1, Tübingen 72076, Germany
| | - Ekkehard Wilichowski
- Department of Paediatrics and Adolescent Medicine, Division of Paediatric Neurology, University Medical Centre Göttingen, Georg August University Göttingen, Germany
| | - Matthias Baumann
- Department of Pediatrics I, Division of Pediatric Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Andrea Klein
- Division of Neuropediatrics, Development and Rehabilitation, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Astrid Eisenkölbl
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Kepler University Hospital, Krankenhausstrasse 26-30, Linz 4020, Austria
| | - Cornelia Köhler
- Bochum Department of Neuropediatrics, University Children’s Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Georg M. Stettner
- Neuromuscular Center Zurich and Department of Pediatric Neurology, University Children’s Hospital Zurich, University of Zurich, Steinwiesstrasse 75, Zurich CH-8032, Switzerland
| | - Sebahattin Cirak
- Ulm University, Department of Pediatrics, Albert-Einstein-Allee 23, Ulm 89081, Germany
| | - Oswald Hasselmann
- Department of Neuropediatrics, Children’s Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Angela M. Kaindl
- Charité–Universitätsmedizin Berlin, Department of Pediatric Neurology, Augustenburger Platz 1, Berlin 13353, Germany
- Charité–Universitätsmedizin Berlin, Center for Chronically Sick Children, Augustenburger Platz 1, Berlin 13353, Germany
- Charité–Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Augustenburger Platz 1, Berlin 13353, Germany
- Department of Child Neurology, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
- Department of Pediatric Neurology and Developmental Medicine, Ludwig Maximilian University of Munich (LMU), Hauner Children’s Hospital, Lindwurmstr. 4, Munich 80337, Germany
| | - Sven F. Garbade
- Heidelberg University, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Im Neuenheimer Feld 430, Heidelberg 69120, Germany
| | - Jessika Johannsen
- University Medical Center Hamburg-Eppendorf, Department of Pediatrics, Martinistr. 52, Hamburg 20246, Germany
| | - Andreas Ziegler
- Heidelberg University, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Im Neuenheimer Feld 430, Heidelberg 69120, Germany
| |
Collapse
|
198
|
Deng F, Dounavi ME, Plini ERG, Ritchie K, Muniz-Terrera G, Hutchinson S, Malhotra P, Ritchie CW, Lawlor B, Naci L. Cardiovascular risk of dementia is associated with brain-behaviour changes in cognitively healthy, middle-aged individuals. Neurobiol Aging 2024; 144:78-92. [PMID: 39293163 DOI: 10.1016/j.neurobiolaging.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Alzheimer's Disease (AD) neuropathology start decades before clinical manifestations, but whether risk factors are associated with early cognitive and brain changes in midlife remains poorly understood. We examined whether AD risk factors were associated with cognition and functional connectivity (FC) between the Locus Coeruleus (LC) and hippocampus - two key brain structures in AD neuropathology - cross-sectionally and longitudinally in cognitively healthy midlife individuals. Neuropsychological assessments and functional Magnetic Resonance Imaging were obtained at baseline (N=210), and two-years follow-up (N=188). Associations of cognition and FC with apolipoprotein ε4 (APOE ε4) genotype, family history of dementia, and the Cardiovascular Risk Factors, Aging, and Incidence of Dementia (CAIDE) score were investigated. Cross-sectionally, higher CAIDE scores were associated with worse cognition. Menopausal status interacted with the CAIDE risk on cognition. Furthermore, the CAIDE score significantly moderated the relationship between cognition and LC-Hippocampus FC. Longitudinally, the LC-Hippocampus FC decreased significantly over 2 years. These results suggest that cardiovascular risk of dementia is associated with brain-behaviour changes in cognitively healthy, middle-aged individuals.
Collapse
Affiliation(s)
- Feng Deng
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Maria-Eleni Dounavi
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK
| | - Emanuele R G Plini
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Karen Ritchie
- U1061 Neuropsychiatry, INSERM, University of Montpellier, Montpellier, France
| | - Graciela Muniz-Terrera
- Edinburgh Dementia Prevention, University of Edinburgh, Edinburgh, UK; Department of Social medicine, Ohio University, USA
| | | | - Paresh Malhotra
- Department of Brain Science, Imperial College Healthcare NHS Trust, UK
| | - Craig W Ritchie
- Edinburgh Dementia Prevention, University of Edinburgh, Edinburgh, UK
| | - Brian Lawlor
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
199
|
Flores-Torres J, McRae K, Campos-Arteaga G, Gómez-Pérez L. Enhancing cognitive control of our decisions: Making the most of humor during the IGT in females and males. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:1031-1047. [PMID: 39237775 PMCID: PMC11525253 DOI: 10.3758/s13415-024-01210-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/07/2024]
Abstract
We studied the impact of humor on the Iowa Gambling Task (IGT) decision-making performance and the cognitive control exerted during this task, considering sex as a moderator, and examined whether cognitive control mediated the influence of humor on decision-making. Sixty participants (30 females) performed an extended version of the IGT (500 trials divided into 20 blocks). We randomly assigned them to either an experimental group (Humor Group; Hg; n = 30), where humorous videos were interspersed in the decision-making trials or a control group (Non-Humor Group; NHg; n = 30), where nonhumorous videos were interspersed in the decision-making trials. We recorded participant performance and feedback-related negativity (FRN) and P3b event-related potentials (ERP) during IGT feedback as task monitoring and attention allocation indicators, respectively. We expected that whereas humor would improve IGT decision-making under risk in females during the last blocks (17-20) as well as cognitive control (specifically attention allocation and task monitoring) across the entire IGT, it would impair them in males. Contrary to our expectations, humor improved IGT decision-making under risk for both sexes (specifically at blocks 19 and 20) and attention allocation for most IGT blocks (P3b amplitudes). However, humor impaired IGT decision-making under ambiguity in males during the block six and task monitoring (FRN amplitudes) for most IGT blocks. Attention allocation did not mediate the beneficial effect of humor on decision-making under risk in either sex. Task monitoring decrements fully mediated the humor's detrimental influence on men's decision-making under ambiguity during block six.
Collapse
Affiliation(s)
- Jorge Flores-Torres
- Escuela de Psicología, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratorio Neurociencias, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Kateri McRae
- Department of Psychology, University of Denver, Denver, CO, USA
| | | | - Lydia Gómez-Pérez
- Departamento de Personalidad Evaluación y Tratamiento Psicológico, Facultad de Psicología y Logopedia, Universidad de Málaga, Málaga, Spain.
| |
Collapse
|
200
|
Hanin A, Comi M, Sumida TS, Hafler DA. Cholesterol promotes IFNG mRNA expression in CD4 + effector/memory cells by SGK1 activation. Life Sci Alliance 2024; 7:e202402890. [PMID: 39366761 PMCID: PMC11452476 DOI: 10.26508/lsa.202402890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
IFNγ-secreting T cells are central for the maintenance of immune surveillance within the central nervous system (CNS). It was previously reported in healthy donors that the T-cell environment in the CNS induces distinct signatures related to cytotoxic capacity, CNS trafficking, tissue adaptation, and lipid homeostasis. These findings suggested that the CNS milieu consisting predominantly of lipids mediated the metabolic conditions leading to IFNγ-secreting brain CD4 T cells. Here, we demonstrate that the supplementation of CD4+CD45RO+CXCR3+ cells with cholesterol modulates their function and increases IFNG expression. The heightened IFNG expression was mediated by the activation of the serum/glucocorticoid-regulated kinase (SGK1). Inhibition of SGK1 by a specific enzymatic inhibitor significantly reduces the expression of IFNG Our results confirm the crucial role of lipids in maintaining T-cell homeostasis and demonstrate a putative role of environmental factors to induce effector responses in CD4+ effector/memory cells. These findings offer potential avenues for further research targeting lipid pathways to modulate inflammatory conditions.
Collapse
Affiliation(s)
- Aurélie Hanin
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
- AP-HP, Epilepsy Unit and Clinical Neurophysiology Department, DMU Neurosciences, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Michela Comi
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Tomokazu S Sumida
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - David A Hafler
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|