151
|
Zhang F, Wan W, Li Y, Wang B, Shao Y, Di X, Zhang H, Cai W, Wei Y, Ma X. Construction of a Full-Length transcriptome resource for the African sharptooth catfish (Clarias gariepinus), a prototypical air-breathing Fish, based on isoform sequencing (Iso-Seq). Gene 2024; 930:148802. [PMID: 39094712 DOI: 10.1016/j.gene.2024.148802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
The African sharptooth catfish (Clarias gariepinus) assumes significance in aquaculture, given its role as a farmed freshwater species with modified gill structures functioning as an air-breathing organ (ABO). To provide a scientific basis for further elucidating the air-breathing formation mechanism and deeply utilizing the genetic resources of Clarias gariepinus, we utilized the PacBio sequencing platform to acquire a comprehensive full-length transcriptome from five juvenile developmental stages and various adult tissues, including the ABO, gills, liver, skin, and muscle. We generated 25,766,688 high-quality reads, with an average length of 2,006 bp and an N50 of 2,241 bp. Following rigorous quality control, 34,890 (97.7 %) of the high-quality isoforms were mapped to the reference genome for gene and transcript annotation, yielding 387 novel isoforms and 14,614 new isoforms. Additionally, we identified 28,582 open reading frames, 48 SNPs, 5,464 variable splices, and 6,141 variable polyadenylation sites, along with 475 long non-coding RNAs. Many DEGs were involved with low oxygen GO terms and KEGG pathways, such as response to stimulus, biological regulation and catalytic activities. Furthermore, it was found that transcription factors such as zf-C2H2, Homeobox, bHLH, and MYB could underpin the African sharptooth catfish's developmental plasticity and its capacity to adapt its morphology and function to its environment. Through the comprehensive analysis of its genomic characteristics, it was found that the African sharptooth catfish has developed a series of unique respiratory adaptive mechanisms during the evolutionary process, These results not only advances the understanding of genetic adaptations to hypoxia in Clarias fish but also provides a valuable framework for future studies aimed at improving aquaculture practices,besides provide important references and inspirations for the evolution of aquatic organisms.
Collapse
Affiliation(s)
- Feiran Zhang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, China
| | - Wenjing Wan
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, China
| | - Yang Li
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, China
| | - Bo Wang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, China
| | - Yiting Shao
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, China
| | - Xiangyi Di
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, China
| | - Han Zhang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, China
| | - Wenlong Cai
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Yiliang Wei
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, China.
| | - Xiaoli Ma
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, China.
| |
Collapse
|
152
|
Gronkowska K, Robaszkiewicz A. Genetic dysregulation of EP300 in cancers in light of cancer epigenome control - targeting of p300-proficient and -deficient cancers. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200871. [PMID: 39351073 PMCID: PMC11440307 DOI: 10.1016/j.omton.2024.200871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Some cancer types including bladder, cervical, and uterine cancers are characterized by frequent mutations in EP300 that encode histone acetyltransferase p300. This enzyme can act both as a tumor suppressor and oncogene. In this review, we describe the role of p300 in cancer initiation and progression regarding EP300 aberrations that have been identified in TGCA Pan-Cancer Atlas studies and we also discuss possible anticancer strategies that target EP300 mutated cancers. Copy number alterations, truncating mutations, and abnormal EP300 transcriptions that affect p300 abundance and activity are associated with several pathological features such as tumor grading, metastases, and patient survival. Elevated EP300 correlates with a higher mRNA level of other epigenetic factors and chromatin remodeling enzymes that co-operate with p300 in creating permissive conditions for malignant transformation, tumor growth and metastases. The status of EP300 expression can be considered as a prognostic marker for anticancer immunotherapy efficacy, as EP300 mutations are followed by an increased expression of PDL-1.HAT activators such as CTB or YF2 can be applied for p300-deficient patients, whereas the natural and synthetic inhibitors of p300 activity, as well as dual HAT/bromodomain inhibitors and the PROTAC degradation of p300, may serve as strategies in the fight against p300-fueled cancers.
Collapse
Affiliation(s)
- Karolina Gronkowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
- Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Agnieszka Robaszkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
153
|
Yang C, Ali T, Li A, Gao R, Yu X, Li S, Li T. Ketamine reverses chronic corticosterone-induced behavioral deficits and hippocampal synaptic dysfunction by regulating eIF4E/BDNF signaling. Neuropharmacology 2024; 261:110156. [PMID: 39326783 DOI: 10.1016/j.neuropharm.2024.110156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
Major depressive disorder (MDD) is a debilitating illness with a high global burden. While Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, offers rapid-acting antidepressant effects, its mechanism remains incompletely understood. Recent research suggests that dysregulation of mRNA translation via the Eukaryotic initiation factor 4E (eIF4E) pathway might contribute to depression pathophysiology. This study investigates whether Ketamine modulates eIF4E signaling in the hippocampus during its antidepressant action. Herein, adult male mice were exposed to Corticosterone, a well-established model for anxiety and depression, followed by behavioral testing and biochemical analysis. Corticosterone induced depression-like symptoms and disrupted synaptic function, including reduced TrkB/BDNF and eIF4E/MNK1/p-eIF2α/ubiquitin signaling. Ketamine treatment reversed these deficits. Notably, the eIF4E/MNK1 signaling inhibitor, eFT508, blocked Ketamine's antidepressant effect, leading to a return of depression-like phenotype and impaired synaptic signaling. Importantly, these effects were reversed by 7,8-DHF, a BDNF/TrkB signaling agonist. Mice treated with Corticosterone, Ketamine, and eFT508 and subsequently exposed to 7,8-DHF displayed normalized depression-like behaviors and restored synaptic signaling, including increased eIF4E phosphorylation and MNK1 expression. Besides, 7,8-DHF treatment enhanced p-eIF2α levels compared to the eFT508-treated group. These findings suggest that Ketamine exerts its antidepressant action through the regulation of the eIF4E/BDNF signaling pathway in the hippocampus. This study provides novel insights into the molecular mechanisms underlying Ketamine's therapeutic effects and highlights the potential of targeting this pathway for future MDD treatment strategies.
Collapse
Affiliation(s)
- Canyu Yang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, China; State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Tahir Ali
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, China.
| | - Axiang Li
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, China; State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Ruyan Gao
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Xiaoming Yu
- Cancer Center, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, People's Republic of China.
| | - Shupeng Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, China; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Tao Li
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, China; NHC Key Laboratory of Forensic Science, College of Forensic Medicine, Xi'an Jiaotong University. Xi'an, Shaanxi, People's Republic of China.
| |
Collapse
|
154
|
Kindt CK, Alves CL, Ehmsen S, Kragh A, Reinert T, Vogsen M, Kodahl AR, Rønlev JD, Ardik D, Sørensen AL, Evald K, Clemmensen ML, Staaf J, Ditzel HJ. Genomic alterations associated with resistance and circulating tumor DNA dynamics for early detection of progression on CDK4/6 inhibitor in advanced breast cancer. Int J Cancer 2024; 155:2211-2222. [PMID: 39128978 DOI: 10.1002/ijc.35126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024]
Abstract
Combined CDK4/6 inhibitor (CDK4/6i) and endocrine therapy significantly improves outcome for patients with estrogen receptor-positive (ER+) metastatic breast cancer, but drug resistance and thus disease progression inevitably occur. Herein, we aimed to identify genomic alterations associated with combined CDK4/6i and endocrine therapy resistance, and follow the levels of specific mutations in longitudinal circulating tumor DNA (ctDNA) for early detection of progression. From a cohort of 86 patients with ER+ metastatic breast cancer we performed whole exome sequencing or targeted sequencing of paired tumor (N = 8) or blood samples (N = 5) obtained before initiation of combined CDK4/6i and endocrine therapy and at disease progression. Mutations in oncogenic genes at progression were rare, while amplifications of growth-regulating genes were more frequent. The most frequently acquired alterations observed were PIK3CA and TP53 mutations and PDK1 amplification. Longitudinal ctDNA dynamics of mutant PIK3CA or private mutations revealed increased mutation levels at progression in 8 of 10 patients (80%). Impressively, rising levels of PIK3CA-mutated ctDNA were detected 4-17 months before imaging. Our data add to the growing evidence supporting longitudinal ctDNA analysis for real-time monitoring of CDK4/6i response and early detection of progression in advanced breast cancer. Further, our analysis suggests that amplification of growth-related genes may contribute to combined CDK4/6i and endocrine therapy resistance.
Collapse
Affiliation(s)
- Charlotte K Kindt
- Department of Cancer Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Carla L Alves
- Department of Cancer Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Sidse Ehmsen
- Department of Cancer Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Odense University Hospital; Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Amalie Kragh
- Department of Oncology, Odense University Hospital; Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Thomas Reinert
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Aarhus, Denmark
| | - Marianne Vogsen
- Department of Oncology, Odense University Hospital; Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Annette R Kodahl
- Department of Oncology, Odense University Hospital; Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jeanette D Rønlev
- Department of Oncology, Odense University Hospital; Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | | | | | | | - Johan Staaf
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, Lund, Sweden
| | - Henrik J Ditzel
- Department of Cancer Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Odense University Hospital; Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
155
|
Wu L, Ning P, Liang Y, Wang T, Chen L, Lu D, Tang H. Methyltransferase METTL3 regulates neuropathic pain through m6A methylation modification of SOCS1. Neuropharmacology 2024; 261:110176. [PMID: 39357736 DOI: 10.1016/j.neuropharm.2024.110176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/16/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
The mechanisms of neuropathic pain (NP) are considered multifactorial. Alterations in the suppressor of cytokine signaling 1 (SOCS1) play a critical role in neural damage and inflammation. Epigenetic RNA modifications, specifically N6-methyladenosine (m6A) methylation, have increasingly been observed to impact the nervous system. Nevertheless, there is a scarcity of studies investigating the connection between m6A methylation and SOCS1 in the molecular mechanisms of NP. This study investigates the roles and potential mechanisms of the m6A methyltransferase like 3 (METTL3) and SOCS1 in female rats with spinal nerve ligation (SNL)-induced NP. It was found that in NP, both METTL3 and overall m6A levels were downregulated, leading to the activation of pro-inflammatory cytokines, such as interleukin-1β, interleukin 6, and tumor necrosis factor-α. Notably, The SOCS1 mRNA is significantly enriched with m6A methylation modifications, with the most prevalent m6A methyltransferase METTL3 stabilizing the downregulation of SOCS1 by targeting m6A methylation modifications at positions 151, 164, and 966.Exogenous supplementation of METTL3 improved NP-related neuroinflammation and behavioral dysfunctions, but these effects could be reversed by the absence of SOCS1. Additionally, the depletion of endogenous SOCS1 promoted NP progression by inducing the toll-like receptor 4 (TLR4) signaling pathway. The dysregulation of METTL3 and the resulting m6A modification of SOCS1 form a crucial epigenetic regulatory loop that promotes the progression of NP. Targeting the METTL3/SOCS1 axis might offer new insights into potential therapeutic strategies for NP.
Collapse
Affiliation(s)
- Liping Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China; The First Clinical College of Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Peng Ning
- The First Clinical College of Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Yingye Liang
- The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Tianyi Wang
- The First Clinical College of Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Lingnv Chen
- The First Clinical College of Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Dongming Lu
- The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Hongliang Tang
- Guangxi University of Traditional Chinese Medicine Affiliated Fangchenggang Hospital, Fangchenggang, China.
| |
Collapse
|
156
|
Li C, Li Q, Jiang R, Zhang C, Qi E, Wu M, Zhang M, Zhao H, Zhao F, Zhou H. Dynamic changes in pyroptosis following spinal cord injury and the identification of crucial molecular signatures through machine learning and single-cell sequencing. J Pharm Biomed Anal 2024; 251:116449. [PMID: 39217701 DOI: 10.1016/j.jpba.2024.116449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
The pathological cascade of spinal cord injury (SCI) is highly intricate. The onset of neuroinflammation can exacerbate the extent of damage. Pyroptosis is a form of inflammation-linked programmed cell death (PCD), the inhibition of pyroptosis can partially mitigate neuroinflammation. It is imperative to delineate the principal cell types susceptible to pyroptosis and concomitantly identify key genes associated with this process. We initially defined the pyroptosis-related genes (PRGs) and analyzed their expression at different time points post SCI. The results demonstrate a substantial upregulation of differentially expressed genes (DEGs) related to pyroptosis on the 7 days post-injury (dpi), these DEGs in the 7 dpi are closely related to the inflammatory response. Subsequently, immune infiltration analysis revealed a predominant presence of inflammatory microglia. Through correlation analysis, we postulated that pyroptosis primarily manifested within the inflammatory microglia. Employing machine learning algorithms, we identified four pyroptosis-related molecular signatures, which were experimentally validated using BV2 cells and spinal cord tissue samples. The robustness of the identified molecular signatures was further confirmed through single-cell sequencing data analysis. Overall, our study elucidates the temporal dynamics of pyroptosis and identifies key molecular signatures following SCI. These findings can provide novel evidence for therapeutic interventions in SCI.
Collapse
Affiliation(s)
- Chuang Li
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China; Department of Orthopaedics, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, PR China.
| | - Qingyang Li
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| | - Ruizhi Jiang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| | - Chi Zhang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| | - Enlin Qi
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| | - Mingxin Wu
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, PR China.
| | - Mingzhe Zhang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| | - Hua Zhao
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| | - Fenge Zhao
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| | - Hengxing Zhou
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
157
|
Wang Q, Wang Y, Liu Y, Yuan K, Lin Y, Qian X, Pei H, Weng L, Fan K, Hu Y, Yang Y. A low-molecular-weight α-glucan from edible fungus Agaricus blazei Murrill activates macrophage TFEB-mediated antibacterial defense to combat implant-associated infection. Carbohydr Polym 2024; 346:122659. [PMID: 39245534 DOI: 10.1016/j.carbpol.2024.122659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/10/2024]
Abstract
Implant-associated infection (IAI) is a prevalent and potentially fatal complication of orthopaedic surgery. Boosting antibacterial immunity, particularly the macrophage-mediated response, presents a promising therapeutic approach for managing persistent infections. In this study, we successfully isolated and purified a homogeneous and neutral water-soluble polysaccharide, designated as AM-1, from the edible fungus Agaricus blazei Murrill. Structure analysis revealed that AM-1 (Mw = 3.87 kDa) was a low-molecular-weight glucan characterized by a primary chain of →4)-α-D-Glcp-(1 → and side chains that were linked at the O-6 and O-3 positions. In vivo assays showed that AM-1 effectively attenuated the progression of infection and mitigated infectious bone destruction in IAI mouse models. Mechanistically, AM-1 promotes intracellular autophagy-lysosomal biogenesis by inducing the nuclear translocation of transcription factor EB, finally enhancing the bactericidal capabilities and immune-modulatory functions of macrophages. These findings demonstrate that AM-1 significantly alleviates the progression of challenging IAIs as a presurgical immunoenhancer. Our research introduces a novel therapeutic strategy that employs natural polysaccharides to combat refractory infections.
Collapse
Affiliation(s)
- Qishan Wang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yuehong Wang
- State Key Laboratory of Systems Medicine for Cancer, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Cancer Institute, Shanghai 200127, China
| | - Yihao Liu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Kai Yuan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Yixuan Lin
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Xian Qian
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai 201908, China
| | - Hongyan Pei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Liangliang Weng
- Department of Infectious Diseases, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China
| | - Kaijian Fan
- Department of Pharmacy, Mental Health Center, Chongming District, Shanghai 202150, China.
| | - Yihe Hu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Yiqi Yang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
158
|
Seyedabadi M, Gurevich VV. Flavors of GPCR signaling bias. Neuropharmacology 2024; 261:110167. [PMID: 39306191 DOI: 10.1016/j.neuropharm.2024.110167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/06/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
GPCRs are inherently flexible molecules existing in an equilibrium of multiple conformations. Binding of GPCR agonists shifts this equilibrium. Certain agonists can increase the fraction of active-like conformations that predispose the receptor to coupling to a particular signal transducer or a select group of transducers. Such agonists are called biased, in contrast to balanced agonists that facilitate signaling via all transducers the receptor couples to. These biased agonists preferentially channel the signaling of a GPCR to particular G proteins, GRKs, or arrestins. Preferential activation of particular G protein or arrestin subtypes can be beneficial, as it would reduce unwanted on-target side effects, widening the therapeutic window. However, biasing GPCRs has two important limitations: a) complete bias is impossible due to inherent flexibility of GPCRs; b) receptor-independent functions of signal transducer proteins cannot be directly affected by GPCR ligands or differential receptor barcoding by GRK phosphorylation. This article is part of the Special Issue on "Ligand Bias".
Collapse
Affiliation(s)
- Mohammad Seyedabadi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Ave South, PRB, Rm. 417D, Nashville, TN, 37232, USA.
| |
Collapse
|
159
|
Baudouin SJ, Giles AR, Pearson N, Deforges S, He C, Boileau C, Partouche N, Borta A, Gautron J, Wartel M, Bočkaj I, Scavarda D, Bartolomei F, Penchet G, Aupy J, Sims J, Smith J, Mercer A, Danos O, Mulle C, Crépel V, Porter R. A novel AAV9-dual microRNA-vector targeting GRIK2 in the hippocampus as a treatment for mesial temporal lobe epilepsy. Mol Ther Methods Clin Dev 2024; 32:101342. [PMID: 39429724 PMCID: PMC11489344 DOI: 10.1016/j.omtm.2024.101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/12/2024] [Indexed: 10/22/2024]
Abstract
Mesial temporal lobe epilepsy (mTLE) is the most prevalent type of epilepsy in adults. First and subsequent generations of anti-epileptic therapy regimens fail to decrease seizures in a large number of patients suffering from mTLE, leaving surgical ablation of part of the hippocampus as the only therapeutic option to potentially reach seizure freedom. GluK2 has recently been identified as a promising target for the treatment of mTLE using gene therapy. Here, we engineered an adeno-associated virus serotype 9 vector expressing a cluster of two synthetic microRNAs (miRNAs), expressed from the human synapsin promoter, that target GRIK2 mRNA. Intra-hippocampal delivery of this vector in a mouse model of mTLE significantly reduced GRIK2 expression and daily seizure frequency. This treatment also improved the animals' health, reduced their anxiety, and restored working memory. Focal administration of the vector to the hippocampus of cynomolgus monkeys in GLP toxicology studies led to the selective transduction of hippocampal neurons with little exposure elsewhere in the brain and no transduction outside the central nervous system. Expression of miRNAs in hippocampal neurons resulted in substantially decreased GRIK2 mRNA expression. These data suggest that the intra-hippocampal delivery of a GMP-grade AAV9 encoding a synthetic miRNAs targeting GRIK2 is a promising treatment strategy for mTLE.
Collapse
Affiliation(s)
| | | | - Nick Pearson
- uniQure (Corlieve Therapeutics AG), 4052 Basel, Switzerland
| | | | - Chenxia He
- uniQure (Corlieve Therapeutics AG), 4052 Basel, Switzerland
| | - Céline Boileau
- INSERM, INMED, Aix-Marseille University, 13009 Marseille, France
| | | | - Andreas Borta
- uniQure (Corlieve Therapeutics AG), 4052 Basel, Switzerland
| | | | - Morgane Wartel
- uniQure biopharma B.V., 1105BP Amsterdam, the Netherlands
| | - Irena Bočkaj
- uniQure biopharma B.V., 1105BP Amsterdam, the Netherlands
| | - Didier Scavarda
- APHM, INSERM, Aix-Marseille University, Timone Hospital, Pediatric Neurosurgery, 13005 Marseille, France
| | - Fabrice Bartolomei
- APHM, INSERM, Aix-Marseille University, INS, Timone Hospital, Epileptology Department, 13005 Marseille, France
| | - Guillaume Penchet
- Pellegrin Hospital, Neurosurgery Department, CHU, 33000 Bordeaux, France
| | - Jérôme Aupy
- Pellegrin Hospital, Neurosurgery Department, CHU, 33000 Bordeaux, France
| | | | | | | | | | | | - Valérie Crépel
- INSERM, INMED, Aix-Marseille University, 13009 Marseille, France
| | - Richard Porter
- uniQure (Corlieve Therapeutics AG), 4052 Basel, Switzerland
| |
Collapse
|
160
|
Hicks SM, Frias JA, Mishra SK, Scotti M, Muscato DR, Valero MC, Adams LM, Cleary JD, Nakamori M, Wang E, Berglund JA. Alternative splicing dysregulation across tissue and therapeutic approaches in a mouse model of myotonic dystrophy type 1. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102338. [PMID: 39391766 PMCID: PMC11465180 DOI: 10.1016/j.omtn.2024.102338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024]
Abstract
Myotonic dystrophy type 1 (DM1), the leading cause of adult-onset muscular dystrophy, is caused by a CTG repeat expansion. Expression of the repeat causes widespread alternative splicing (AS) defects and downstream pathogenesis, including significant skeletal muscle impacts. The HSA LR mouse model plays a significant role in therapeutic development. This mouse model features a transgene composed of approximately 220 interrupted CTG repeats, which results in skeletal muscle pathology that mirrors DM1. To better understand this model and the growing number of therapeutic approaches developed with it, we performed a meta-analysis of publicly available RNA sequencing data for AS changes across three widely examined skeletal muscles: quadriceps, gastrocnemius, and tibialis anterior. Our analysis demonstrated that transgene expression correlated with the extent of splicing dysregulation across these muscles from gastrocnemius (highest), quadriceps (medium), to tibialis anterior (lowest). We identified 95 splicing events consistently dysregulated across all examined datasets. Comparison of splicing rescue across seven therapeutic approaches showed a range of rescue across the 95 splicing events from the three muscle groups. This analysis contributes to our understanding of the HSA LR model and the growing number of therapeutic approaches currently in preclinical development for DM1.
Collapse
Affiliation(s)
- Sawyer M. Hicks
- Department of Biological Sciences, College of Arts and Sciences, University at Albany, SUNY, Albany, NY 12222, USA
- The RNA Institute, College of Arts and Sciences, University at Albany, SUNY, Albany, NY 12222, USA
| | - Jesus A. Frias
- Department of Biological Sciences, College of Arts and Sciences, University at Albany, SUNY, Albany, NY 12222, USA
- The RNA Institute, College of Arts and Sciences, University at Albany, SUNY, Albany, NY 12222, USA
| | - Subodh K. Mishra
- The RNA Institute, College of Arts and Sciences, University at Albany, SUNY, Albany, NY 12222, USA
| | - Marina Scotti
- Center for NeuroGenetics and Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32603, USA
| | - Derek R. Muscato
- Center for NeuroGenetics and Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32603, USA
| | - M. Carmen Valero
- Center for NeuroGenetics and Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32603, USA
| | - Leanne M. Adams
- Center for NeuroGenetics and Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32603, USA
| | - John D. Cleary
- The RNA Institute, College of Arts and Sciences, University at Albany, SUNY, Albany, NY 12222, USA
| | - Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Eric Wang
- Center for NeuroGenetics and Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32603, USA
| | - J. Andrew Berglund
- Department of Biological Sciences, College of Arts and Sciences, University at Albany, SUNY, Albany, NY 12222, USA
- The RNA Institute, College of Arts and Sciences, University at Albany, SUNY, Albany, NY 12222, USA
| |
Collapse
|
161
|
Liao H, Wu J, VanDusen NJ, Li Y, Zheng Y. CRISPR-Cas9-mediated homology-directed repair for precise gene editing. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102344. [PMID: 39494147 PMCID: PMC11531618 DOI: 10.1016/j.omtn.2024.102344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
CRISPR-Cas9-mediated homology-directed repair (HDR) is a versatile platform for creating precise site-specific DNA insertions, deletions, and substitutions. These precise edits are made possible through the use of exogenous donor templates that carry the desired sequence. CRISPR-Cas9-mediated HDR can be widely used to study protein functions, disease modeling, and gene therapy. However, HDR is limited by its low efficiency, especially in postmitotic cells. Here, we review CRISPR-Cas9-mediated HDR, with a focus on methodologies for boosting HDR efficiency, and applications of precise editing via HDR. First, we describe two common mechanisms of DNA repair, non-homologous end joining (NHEJ), and HDR, and discuss their impact on CRISPR-Cas9-mediated precise genome editing. Second, we discuss approaches for improving HDR efficiency through inhibition of the NHEJ pathway, activation of the HDR pathway, modification of donor templates, and delivery of Cas9/sgRNA reagents. Third, we summarize the applications of HDR for protein labeling in functional studies, disease modeling, and ex vivo and in vivo gene therapies. Finally, we discuss alternative precise editing platforms and their limitations, and describe potential avenues to improving CRISPR-Cas9-mediated HDR efficiency and fidelity in future research.
Collapse
Affiliation(s)
- Hongyu Liao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041 China
| | - Jiahao Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041 China
| | - Nathan J. VanDusen
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041 China
| | - Yanjiang Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041 China
| |
Collapse
|
162
|
Sakai A, Singh G, Khoshbakht M, Bittner S, Löhr CV, Diaz-Tapia R, Warang P, White K, Luo LL, Tolbert B, Blanco M, Chow A, Guttman M, Li C, Bao Y, Ho J, Maurer-Stroh S, Chatterjee A, Chanda S, García-Sastre A, Schotsaert M, Teijaro JR, Moulton HM, Stein DA. Inhibition of SARS-CoV-2 growth in the lungs of mice by a peptide-conjugated morpholino oligomer targeting viral RNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102331. [PMID: 39376996 PMCID: PMC11456799 DOI: 10.1016/j.omtn.2024.102331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024]
Abstract
Further development of direct-acting antiviral agents against human SARS-CoV-2 infections remains a public health priority. Here, we report that an antisense peptide-conjugated morpholino oligomer (PPMO) named 5'END-2, targeting a highly conserved sequence in the 5' UTR of SARS-CoV-2 genomic RNA, potently suppressed SARS-CoV-2 growth in vitro and in vivo. In HeLa-ACE 2 cells, 5'END-2 produced IC50 values of between 40 nM and 1.15 μM in challenges using six genetically disparate strains of SARS-CoV-2, including JN.1. In vivo, using K18-hACE2 mice and the WA-1/2020 virus isolate, two doses of 5'END-2 at 10 mg/kg, administered intranasally on the day before and the day after infection, produced approximately 1.4 log10 virus titer reduction in lung tissue at 3 days post-infection. Under a similar dosing schedule, intratracheal administration of 1.0-2.0 mg/kg 5'END-2 produced over 3.5 log10 virus growth suppression in mouse lungs. Electrophoretic mobility shift assays characterized specific binding of 5'END-2 to its complementary target RNA. Furthermore, using reporter constructs containing SARS-CoV-2 5' UTR leader sequence, in an in-cell system, we observed that 5'END-2 could interfere with translation in a sequence-specific manner. The results demonstrate that direct pulmonary delivery of 5'END-2 PPMO is a promising antiviral strategy against SARS-CoV-2 infections and warrants further development.
Collapse
Affiliation(s)
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mahsa Khoshbakht
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Scott Bittner
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Christiane V. Löhr
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Randy Diaz-Tapia
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kris White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Luke Le Luo
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Blanton Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mario Blanco
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Amy Chow
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mitchell Guttman
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Cuiping Li
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
| | - Yiming Bao
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Joses Ho
- GISAID @ A∗STAR Bioinformatics Institute, Singapore 138632, Singapore
| | | | | | - Sumit Chanda
- Scripps Research Institute, La Jolla, CA 92037, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Hong M. Moulton
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - David A. Stein
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
163
|
Huart C, Gupta MS, Van Ginderachter JA. The role of RNA modifications in disease-associated macrophages. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102315. [PMID: 39296330 PMCID: PMC11408368 DOI: 10.1016/j.omtn.2024.102315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
In recent years, the field of epitranscriptomics has witnessed significant breakthroughs with the identification of more than 150 different chemical modifications in different RNA species. It has become increasingly clear that these chemical modifications play an important role in the regulation of fundamental processes linked to cell fate and development. Further interest was sparked by the ability of the epitranscriptome to regulate pathogenesis. However, despite the involvement of macrophages in a multitude of diseases, a clear knowledge gap exists in the understanding of how RNA modifications regulate the phenotype of these cells. Here, we provide a comprehensive overview of the known roles of macrophage RNA modifications in the context of different diseases.
Collapse
Affiliation(s)
- Camille Huart
- Lab of Cellular and Molecular Immunology, Brussels Center for Immunology (BCIM), Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Mayuk Saibal Gupta
- Lab of Cellular and Molecular Immunology, Brussels Center for Immunology (BCIM), Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Jo A Van Ginderachter
- Lab of Cellular and Molecular Immunology, Brussels Center for Immunology (BCIM), Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| |
Collapse
|
164
|
Hörberg J, Carlesso A, Reymer A. Mechanistic insights into ASO-RNA complexation: Advancing antisense oligonucleotide design strategies. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102351. [PMID: 39494149 PMCID: PMC11530825 DOI: 10.1016/j.omtn.2024.102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024]
Abstract
Oligonucleotide drugs, an emerging modulator class, hold promise for targeting previously undruggable biomacromolecules. To date, only 18 oligonucleotide drugs, including sought-after antisense oligonucleotides (ASOs) and splice-switching oligonucleotides, have approval from the U.S. Food and Drug Administration. These agents effectively bind mRNA, inducing degradation or modulating splicing. Current oligonucleotide drug design strategies prioritize full Watson-Crick base pair (bp) complementarity, overlooking mRNA target three-dimensional shapes. Given that mRNA conformational diversity can impact hybridization, incorporating mRNA key structural properties into the design may expedite ASO lead discovery. Using atomistic molecular dynamics simulations inspired by experimental data, we demonstrate the advantages of incorporating common triple bps into the design of ASOs targeting RNA hairpin motifs, which are highly accessible regions for interactions. By using an RNA pseudoknot modified into an ASO-hairpin complex, we investigate the effects of ASO length and hairpin loop mutations. Our findings suggest that ASO-mRNA complex stability is influenced by ASO length, number of common triple bps, and the dynamic accessibility of bases in the hairpin loop. Our study offers new mechanistic insights into ASO-mRNA complexation and underscores the value of pseudoknots in constructing training datasets for machine learning models aimed at designing novel ASO leads.
Collapse
Affiliation(s)
- Johanna Hörberg
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Antonio Carlesso
- Department of Pharmacology, Sahlgrenska Academy, University of Gothenburg, Box 431, SE-405 30 Gothenburg, Sweden
| | - Anna Reymer
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
165
|
Rizvi SZ, Chan WS, Maino E, Steiman S, Forguson G, Klepfish M, Cohn RD, Ivakine EA. Multi-gene duplication removal in an engineered human cellular MECP2 duplication syndrome model with an IRAK1-MECP2 duplication. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102356. [PMID: 39507402 PMCID: PMC11539574 DOI: 10.1016/j.omtn.2024.102356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 10/04/2024] [Indexed: 11/08/2024]
Abstract
Recent progress in genome editing technologies has catalyzed the generation of sophisticated cell models; however, the precise modeling of copy-number variation (CNV) diseases remains a significant challenge despite their substantial prevalence in the human population. To overcome this barrier, we have explored the utility of HAP1 cells for the accurate modeling of disease genomes with large structural variants. As an example, this study details the strategy to generate a novel cell line that serves as a model for the neurological disorder methyl CpG binding protein 2 (MECP2) duplication syndrome (MDS), featuring the critical duplication of both the MECP2 and IRAK1 genes. This model faithfully recapitulates MDS genomic rearrangement, allowing for the mechanistic study of gene overexpression and the development of therapeutic interventions. Employing a single-guide RNA (gRNA) CRISPR-Cas9 strategy, we successfully excised the duplicated genomic segment, notably halving both MECP2 and IRAK1 expression levels. The evidence establishes our model as a crucial tool for research into MDS. Furthermore, the outlined workflow is readily adaptable to model other CNV disorders and subsequently test genomic and pharmacological interventions.
Collapse
Affiliation(s)
- Samar Z. Rizvi
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Wing Suen Chan
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Eleonora Maino
- Biozentrum, The Center for Molecular Life Sciences, University of Basel, Basel 4056, Switzerland
| | - Sydney Steiman
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Georgiana Forguson
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Maya Klepfish
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Ronald D. Cohn
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Pediatrics, The Hospital for Sick Children, Toronto, ON M5G 1E8, Canada
| | - Evgueni A. Ivakine
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
166
|
Xie B, Li J, Lou Y, Chen Q, Yang Y, Zhang R, Liu Z, He L, Cheng Y. Reprogramming macrophage metabolism following myocardial infarction: A neglected piece of a therapeutic opportunity. Int Immunopharmacol 2024; 142:113019. [PMID: 39217876 DOI: 10.1016/j.intimp.2024.113019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Given the global prevalence of myocardial infarction (MI) as the leading cause of mortality, there is an urgent need to devise novel strategies that target reducing infarct size, accelerating cardiac tissue repair, and preventing detrimental left ventricular (LV) remodeling. Macrophages, as a predominant type of innate immune cells, undergo metabolic reprogramming following MI, resulting in alterations in function and phenotype that significantly impact the progression of MI size and LV remodeling. This article aimed to delineate the characteristics of macrophage metabolites during reprogramming in MI and elucidate their targets and functions in cardioprotection. Furthermore, we summarize the currently proposed regulatory mechanisms of macrophage metabolic reprogramming and identify the regulators derived from endogenous products and natural small molecules. Finally, we discussed the challenges of macrophage metabolic reprogramming in the treatment of MI, with the goal of inspiring further fundamental and clinical research into reprogramming macrophage metabolism and validating its potential therapeutic targets for MI.
Collapse
Affiliation(s)
- Baoping Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Jiahua Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China
| | - Yanmei Lou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China
| | - Qi Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China
| | - Ying Yang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China
| | - Rong Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China
| | - Zhongqiu Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China.
| | - Liu He
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong 510006, China.
| | - Yuanyuan Cheng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China.
| |
Collapse
|
167
|
Lou W, Zhang L, Wang J. Current status of nucleic acid therapy and its new progress in cancer treatment. Int Immunopharmacol 2024; 142:113157. [PMID: 39288629 DOI: 10.1016/j.intimp.2024.113157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/05/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Nucleic acid is an essential biopolymer in all living cells, performing the functions of storing and transmitting genetic information and synthesizing protein. In recent decades, with the progress of science and biotechnology and the continuous exploration of the functions performed by nucleic acid, more and more studies have confirmed that nucleic acid therapy for living organisms has great medical therapeutic potential. Nucleic acid drugs began to become independent therapeutic agents. As a new therapeutic method, nucleic acid therapy plays an important role in the treatment of genetic diseases, viral infections and cancers. There are currently 19 nucleic acid drugs approved by the Food and Drug Administration (FDA). In the following review, we start from principles and advantages of nucleic acid therapy, and briefly describe development history of nucleic acid drugs. And then we give examples of various RNA therapeutic drugs, including antisense oligonucleotides (ASO), mRNA vaccines, small interfering RNA (siRNA) and microRNA (miRNA), aptamers, and small activating RNA (saRNA). In addition, we also focused on the current status of nucleic acid drugs used in cancer therapy and the breakthrough in recent years. Clinical trials of nucleic acid drugs for cancer treatment are under way, conventional radiotherapy and chemotherapy combined with the immunotherapies such as checkpoint inhibitors and nucleic acid drugs may be the main prospects for successful cancer treatment.
Collapse
Affiliation(s)
- Wenting Lou
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| | - Leqi Zhang
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| | - Jianwei Wang
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China; Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 2nd Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou 310009, China.
| |
Collapse
|
168
|
Sharma O, Kaur Grewal A, Khan H, Gurjeet Singh T. Exploring the nexus of cGAS STING pathway in neurodegenerative terrain: A therapeutic odyssey. Int Immunopharmacol 2024; 142:113205. [PMID: 39332091 DOI: 10.1016/j.intimp.2024.113205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
By detecting and responding to cytosolic DNA, the cGAS STING pathway regulates the innate immune responses bymediatinginflammatory reactions and antiviral defense. Thederegulation and modification of this system have been linked to variousneurodegenerative diseases like AD, PD and ALS. Accumulation of tau protein and Aβ aggregates to activate the pathway and releases neuroinflammatory cytokines which accelerates neuronal dysfunction and cognitive impairment as the symptom of AD. Similarly, in PD Alpha-synuclein aggregates activate the cGAS STING pathway and regulate the neuroinflammation and oxidative stress. In ALS, mutation of the genes causes the activation of the pathway which leads to motor neuron degeneration. Alteration of the cGAS STING pathway also leads to mitochondrial dysfunction and impaired autophagy. Preclinical investigations of AD, PD, and ALS animal models showed that STING pathway inhibitors reduced inflammation and improved neurological outcomes and modulators of the cGAS STING pathway may treat these neurodegenerative disorders. In this review we focus on the fact thatneuroinflammation, neuronal dysfunction, and various disease progressions can be treated byaltering the cGAS STING pathway. Understanding the processes and creating specific interventions for this route may offer new treatments for these terrible illnesses.
Collapse
Affiliation(s)
- Ojashvi Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India.
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| |
Collapse
|
169
|
Yang Y, Li S, Shi W, Jin G, Guo D, Li A, Wang B, Lu B, Feng S. Pterostilbene suppresses the growth of esophageal squamous cell carcinoma by inhibiting glycolysis and PKM2/STAT3/c-MYC signaling pathway. Int Immunopharmacol 2024; 142:113247. [PMID: 39321706 DOI: 10.1016/j.intimp.2024.113247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Pterostilbene (PTS) is a dietary phytochemical that has shown antitumor activity in many types of cancer, but the molecular mechanism remains unclear. It has also not been adequately studied on PTS against esophageal squamous cell carcinoma (ESCC). Thus, this study investigated the effect of PTS on ESCC in vitro and in vivo and explored the underlying molecular mechanism. We found that PTS can inhibit the proliferation, colony formation, and migration of ESCC cells. According to the bioinformatics analysis of proteomics, PTS had a great influence on the metabolic process of ESCC cells. KEGG analysis showed that PTS down-regulated the pyruvate metabolism pathway. Moreover, PTS can inhibit the PK activity, glucose consumption, and lactate production in ESCC cells. By administration of PTS into xenograft mice, experiment results demonstrated that PTS can suppress tumor progress and the PKM2/STAT3/c-MYC signaling pathway. We found that PTS inhibited the PKM2/STAT3/c-MYC signaling pathway by targeting PKM2 in ESCC cells. Collectively, this study revealed that PTS inhibited ESCC growth by suppressing PKM2 mediated aerobic glycolysis and PKM2/STAT3/c-MYC signaling pathway, which enriching the anti-tumor molecular mechanism of PTS and providing a theoretical basis for its clinical application.
Collapse
Affiliation(s)
- Yi Yang
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046 China; Henan Engineering Research Center for Chinese Medicine Foods for Special Medical Purpose, Zhengzhou 450046 China
| | - Shan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046 China; Henan Engineering Research Center for Chinese Medicine Foods for Special Medical Purpose, Zhengzhou 450046 China
| | - Wenjie Shi
- The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450046 China
| | - Guoguo Jin
- Henan Key Laboratory of Chronic Disease Management, Fuwai Central China Cardiovascular Hospital, Zhengzhou 450018 China
| | - Dandan Guo
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046 China; Henan Engineering Research Center for Chinese Medicine Foods for Special Medical Purpose, Zhengzhou 450046 China
| | - Aifang Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046 China; Henan Engineering Research Center for Chinese Medicine Foods for Special Medical Purpose, Zhengzhou 450046 China
| | - Baiyan Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046 China; Henan Engineering Research Center for Chinese Medicine Foods for Special Medical Purpose, Zhengzhou 450046 China
| | - Baoping Lu
- Henan Engineering Research Center for Chinese Medicine Foods for Special Medical Purpose, Zhengzhou 450046 China; The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450046 China.
| | - Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046 China; Henan Engineering Research Center for Chinese Medicine Foods for Special Medical Purpose, Zhengzhou 450046 China.
| |
Collapse
|
170
|
Shen C, Peng C, Zhang S, Li R, Liu S, Kuang Y, Su F, Liu Y, Liang L, Xiao Y, Xu H. Eukaryotic translation initiation factor 6-mediated ribosome biogenesis promotes synovial aggression and inflammation by increasing the translation of SP1 in rheumatoid arthritis. Int Immunopharmacol 2024; 142:113164. [PMID: 39288622 DOI: 10.1016/j.intimp.2024.113164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
INTRODUCTION Fibroblast-like synoviocytes (FLSs) play critical roles in synovial inflammation and aggression in rheumatoid arthritis (RA). Here, we explored the role of eukaryotic translation initiation factor 6 (eIF6) in regulating the biological behaviors of FLSs from patients with RA. METHODS FLSs were isolated from the synovial tissues of RA patients. Gene expression was assessed via RT-qPCR, and protein expression was evaluated via Western blotting or immunohistochemistry. Proliferation and nascent peptide synthesis were evaluated via EdU incorporation and HPG labeling, respectively. Cell migration and invasion were observed via Transwell assays. Polysome profiling was conducted to analyze the distribution of ribosomes and combined mRNAs. The in vivo effect of eIF6 inhibition was evaluated in a collagen-induced arthritis (CIA) rat model. RESULTS We found that eIF6 expression was elevated in FLSs and synovial tissues from RA patients compared to those from healthy controls and osteoarthritis patients. Knockdown of eIF6 inhibited the migration, invasion, inflammation, and proliferation of FLSs from patients with RA. Mechanistically, eIF6 knockdown downregulated ribosome biogenesis in FLSs from with RA, leading to a decrease in the proportion of polysome-associated specificity protein 1 (SP1) mRNA and a subsequent reduction in the translation initiation efficiency of SP1 mRNA. Thus, eIF6 controls SP1 expression through translation-mediated mechanisms. Interestingly, intra-articular eIF6 siRNA treatment attenuated symptoms and histological manifestations in CIA rats. CONCLUSIONS Our findings suggest that an increase in synovial eIF6 might contribute to rheumatoid synovial inflammation and aggression and that targeting eIF6 may have therapeutic potential in RA patients.
Collapse
Affiliation(s)
- Chuyu Shen
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Chenxi Peng
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Shuoyang Zhang
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Ruiru Li
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Suling Liu
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Yu Kuang
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Fan Su
- Department of Geriatrics, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Yingli Liu
- Department of Medical Ultrasonics, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Liuqin Liang
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Youjun Xiao
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Hanshi Xu
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China.
| |
Collapse
|
171
|
Hwang K, Bae J, Jhe YL, Kim J, Cheong JH, Choi HS, Sim T. Targeted degradation of METTL3 against acute myeloid leukemia and gastric cancer. Eur J Med Chem 2024; 279:116843. [PMID: 39288597 DOI: 10.1016/j.ejmech.2024.116843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024]
Abstract
Accumulating evidence reveals the oncogenic role of methyltransferase-like 3 (METTL3) in a variety of cancers, either dependent or independent of its m6A methyl transferase activity. We have explored PROTACs targeting METTL3 and identified KH12 as a potent METTL3 degrader. Treatment of KH12 on MOLM-13 cells causes degradation of METTL3 with a DC50 value of 220 nM in a dose-, time- and ubiquitin-dependent fashion. In addition, KH12 is capable of reversing differentiation and possesses anti-proliferative effects surpassing the small molecule inhibitors on MOLM-13 cells. Notably, we first present that METTL3 degrader significantly suppresses the growth of various gastric cancer (GC) cells, where the m6A-independent activity of METTL3 plays a crucial role in tumorigenesis. The anti-GC effects of KH12 were further confirmed in patient-derived organoids (PDOs). This study offers therapeutic potentials of targeted degradation of METTL3 against GC implicated with non-catalytic function of METTL3 as well as against AML.
Collapse
Affiliation(s)
- Kyubin Hwang
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Department of Biomedical Sciences, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Juhyeon Bae
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Department of Biomedical Sciences, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yoo-Lim Jhe
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea; Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jungmin Kim
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea; Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Ho Cheong
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea; Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ha-Soon Choi
- Magicbullettherapeutics Inc., 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Taebo Sim
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Department of Biomedical Sciences, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Graduate School of Clinical Drug Discovery & Development, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Clinical Candidate Discovery & Development Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
172
|
Lv R, Zhao Y, Wang X, He Y, Dong N, Min X, Liu X, Yu Q, Yuan K, Yue H, Yin Q. GLP-1 analogue liraglutide attenuates CIH-induced cognitive deficits by inhibiting oxidative stress, neuroinflammation, and apoptosis via the Nrf2/HO-1 and MAPK/NF-κB signaling pathways. Int Immunopharmacol 2024; 142:113222. [PMID: 39321702 DOI: 10.1016/j.intimp.2024.113222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Obstructive sleep apnea (OSA) is a common clinical condition linked to cognitive impairment, mainly characterized by chronic intermittent hypoxia (CIH). GLP-1 receptor agonist, known for promoting insulin secretion and reducing glucose levels, has demonstrated neuroprotective effects in various experimental models such as stroke, Alzheimer's disease, and Parkinson's disease. This study aims to investigate the potential role and mechanisms of the GLP-1 receptor agonist liraglutide in ameliorating OSA-induced cognitive deficits. CIH exposure, a well-established and mature OSA pathological model, was used both in vitro and in vivo. In vitro, CIH significantly activated oxidative stress, inflammation, and apoptosis in SH-SY5Y cells. Liraglutide enhanced the nuclear translocation of Nrf2, activating its downstream pathways, thereby mitigating CIH-induced injury in SH-SY5Y cells. Additionally, liraglutide modulated the MAPK/NF-κB signaling pathway, reducing the expression of inflammatory factors and proteins. In vivo, we subjected mice to an intermittent hypoxia incubator to mimic the pathogenesis of human OSA. The Morris water maze test revealed that CIH exposure substantially impaired spatial memory. Subsequent western blot analyses and histopathological examinations indicated that liraglutide could activate the Nrf2/HO-1 axis and inhibit the MAPK/NF-κB signaling pathway, thereby alleviating OSA-associated cognitive dysfunction in mice. These findings suggest that GLP-1 receptor agonists may offer a promising preventive strategy for OSA-associated cognitive impairment. By refining these findings, we provide new insights into GLP-1's protective mechanisms in combating cognitive deficits associated with CIH, underscoring its potential as a therapeutic agent for conditions linked to OSA.
Collapse
Affiliation(s)
- Renjun Lv
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Yan Zhao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Xiao Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Yao He
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Na Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Xiangzhen Min
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Xueying Liu
- Jinan Third People's Hospital, Jinan, Shandong 250132, China
| | - Qin Yu
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Peking University, Beijing, China
| | - Hongmei Yue
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China; Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China.
| |
Collapse
|
173
|
Peng J, Ni B, Li D, Cheng B, Yang R. Overview of the PRMT6 modulators in cancer treatment: Current progress and emerged opportunity. Eur J Med Chem 2024; 279:116857. [PMID: 39276585 DOI: 10.1016/j.ejmech.2024.116857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
Protein Arginine Methyltransferase 6 (PRMT6) is a Type I PRMT enzyme that plays a role in the epigenetic regulation of gene expression by methylating histone and non-histone proteins. It is also involved in various cellular processes, including alternative splicing, DNA repair, and cell signaling. Furthermore, PRMT6 exerts multiple effects on cellular processes such as growth, migration, invasion, apoptosis, and drug resistance in various cancers, positioning it as a promising target for anti-tumor therapeutics. In this review, we initially provide an overview of the structure and biological functions of PRMT6, along with its association with cancer. Subsequently, we focus on recent progress in the design and development of modulators targeting PRMT6. This includes a comprehensive review of PRMT6 inhibitors (isoform-selective and non-selective), dual-target inhibitors based on PRMT6, PRMT6 covalent inhibitors, and PRMT6-targeting hydrophobic tagging (HyT) degraders, from the perspectives of rational design, pharmacodynamics, pharmacokinetics, and the clinical status of these modulators. Finally, we also provided the challenges and prospective directions for PRMT6 targeting drug discovery in cancer therapy.
Collapse
Affiliation(s)
- Jinjin Peng
- Department of Pharmacy, First Affinity Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Bin Ni
- Department of Pharmacy, First Affinity Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Deping Li
- Department of Pharmacy, First Affinity Hospital of Gannan Medical University, Ganzhou 341000, China.
| | - Binbin Cheng
- School of Medicine, Hubei Polytechnic University, Huangshi 435003, China.
| | - Renze Yang
- Department of Pharmacy, First Affinity Hospital of Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
174
|
Yokoyama T, Hisatomi K, Oshima S, Tanaka I, Okada T, Toyooka N. Discovery and optimization of isoliquiritigenin as a death-associated protein kinase 1 inhibitor. Eur J Med Chem 2024; 279:116836. [PMID: 39243455 DOI: 10.1016/j.ejmech.2024.116836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Death-associated protein kinase 1 (DAPK1) is a phosphotransferase in the serine/threonine kinase family. Inhibiting DAPK1 is expected to be beneficial in treating Alzheimer's disease and protecting neuronal cells during cerebral ischemia. In this study, we demonstrated that the natural chalcone isoliquiritigenin inhibits DAPK1 in an ATP-competitive manner, and we synthesized halogen derivatives to amplify the inhibitory effect. Among the compounds tested, the chlorine, bromine, and iodine derivatives exhibited high DAPK1 inhibitory activity and binding affinity. Crystal structure analysis revealed that this improvement is attributable to the halogen atoms fitting well into the hydrophobic pocket formed by I77, L93, and I160. In particular, the chlorine derivative showed a significant enthalpic contribution to the interaction with DAPK1, suggesting its potential as a primary compound for new DAPK1 inhibitors.
Collapse
Affiliation(s)
- Takeshi Yokoyama
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0914, Japan.
| | - Kotono Hisatomi
- Graduate School of Pharma-Medical Sciences, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan
| | - Saki Oshima
- Graduate School of Pharma-Medical Sciences, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan
| | - Ichiro Tanaka
- Graduate School of Science and Engineering, Ibaraki University, Nakanarusawa 4-12-1, Hitachi, Ibaraki, 316-8511, Japan
| | - Takuya Okada
- Graduate School of Pharma-Medical Sciences, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan
| | - Naoki Toyooka
- Graduate School of Pharma-Medical Sciences, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan
| |
Collapse
|
175
|
Jiang HY, Gu WW, Gan J, Yang Q, Shi Y, Lian WB, Xu HR, Yang SH, Yang L, Zhang X, Wang J. MNSFβ promotes LPS-induced TNFα expression by increasing the localization of RC3H1 to stress granules, and the interfering peptide HEPN2 reduces TNFα production by disrupting the MNSFβ-RC3H1 interaction in macrophages. Int Immunopharmacol 2024; 142:113053. [PMID: 39260307 DOI: 10.1016/j.intimp.2024.113053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Abnormally elevated tumor necrosis factor-α (TNFα) levels at the maternal-fetal interface can lead to adverse pregnancy outcomes, including recurrent miscarriage (RM), but the mechanism underlying upregulated TNFα expression is not fully understood. We previously reported that the interaction between monoclonal nonspecific suppressor factor-β (MNSFβ) and RC3H1 upregulates TNFα expression, but the precise mechanisms are unknown. In this study, we found that MNSFβ stimulated the LPS-induced TNFα expression by inactivating the promoting effect of RC3H1 on TNFα mRNA degradation rather than directly inhibiting the expression of RC3H1 in THP1-Mϕs. Mechanistically, the 81-326 aa region of the RC3H1 protein binds to the 101-133 aa region of the MNSFβ protein, and MNSFβ facilitated stress granules (SGs) formation and the translocation of RC3H1 to SGs by interacting with RC3H1 and fragile X mental retardation 1 (FMR1) in response to LPS-induced stress. The SGs-localization of RC3H1 reduced its inhibitory effect on TNFα expression in LPS-treated THP1-Mϕs. The designed HEPN2 peptide effectively reduced the LPS-induced expression of TNFα in THP1-Mϕs by interfering with the MNSFβ-RC3H1 interaction. Treatment with the HEPN2 peptide significantly improved adverse pregnancy outcomes, including early pregnancy loss (EPL) and lower fetal weight (LFW), which are induced by LPS in mice. These data indicated that MNSFβ promoted TNFα expression at least partially by increasing the localization of RC3H1 to SGs under inflammatory stimulation and that the HEPN2 peptide improved the adverse pregnancy outcomes induced by LPS in mice, suggesting that MNSFβ is a potential pharmacological target for adverse pregnancy outcomes caused by abnormally increased inflammation at early pregnancy.
Collapse
Affiliation(s)
- Han-Yu Jiang
- Shanghai Key Lab of Disease and Health Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 20032, China
| | - Wen-Wen Gu
- Shanghai Key Lab of Disease and Health Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 20032, China
| | - Jie Gan
- Shanghai Key Lab of Disease and Health Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 20032, China
| | - Qian Yang
- Shanghai Key Lab of Disease and Health Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 20032, China
| | - Yan Shi
- Shanghai Key Lab of Disease and Health Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 20032, China
| | - Wen-Bo Lian
- Shanghai Key Lab of Disease and Health Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 20032, China
| | - Hao-Ran Xu
- Shanghai Key Lab of Disease and Health Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 20032, China
| | - Shu-Han Yang
- Shanghai Key Lab of Disease and Health Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 20032, China
| | - Long Yang
- Shanghai Key Lab of Disease and Health Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 20032, China.
| | - Xuan Zhang
- Shanghai Key Lab of Disease and Health Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 20032, China
| | - Jian Wang
- Shanghai Key Lab of Disease and Health Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 20032, China.
| |
Collapse
|
176
|
Wang Z, Chen G, Li H, Liu J, Yang Y, Zhao C, Li Y, Shi J, Chen H, Chen G. Zotarolimus alleviates post-trabeculectomy fibrosis via dual functions of anti-inflammation and regulating AMPK/mTOR axis. Int Immunopharmacol 2024; 142:113176. [PMID: 39303539 DOI: 10.1016/j.intimp.2024.113176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVE Postoperative scar formation is the primary cause of uncontrolled intraocular pressure following trabeculectomy failure. This study aimed to evaluate the efficacy of zotarolimus as an adjuvant anti-scarring agent in the experimental trabeculectomy. METHODS We performed differential gene and Gene Ontology enrichment analysis on rabbit follicular transcriptome sequencing data (GSE156781). New Zealand white Rabbits were randomly assigned into three groups: Surgery only, Surgery with mitomycin-C treatment, Surgery with zotarolimus treatment. Rabbits were euthanized 3 days or 28 days post-trabeculectomy. Pathological sections were analyzed using immunohistochemistry, immunofluorescence, and Masson staining. In vitro, primary human tenon's capsule fibroblasts (HTFs) were stimulated by transforming growth factor-β1 (TGF-β1) and treated with either mitomycin-C or zotarolimus. Cell proliferation and migration were evaluated using cell counting kit-8, cell cycle, and scratch assays. Mitochondrial membrane potential was detected with the JC-1 probe, and reactive oxygen species were detected using the DCFH-DA probe. RNA and protein expressions were quantified using RT-qPCR and immunofluorescence. RESULTS Transcriptome sequencing analysis revealed the involvement of complex immune factors and metabolic disorders in trabeculectomy outcomes. Zotarolimus effectively inhibited fibrosis, reduced proinflammatory factor release and immune cell infiltration, and improved the surgical outcomes of trabeculectomy. In TGF-β1-induced HTFs, zotarolimus reduced fibrosis, proliferation, and migration without cytotoxicity via the dual regulation of the TGF-β1/Smad2/3 and AMPK/AKT/mTOR pathways. CONCLUSION Our study demonstrates that zotarolimus mitigates fibrosis by reducing immune infiltration and correcting metabolic imbalances, offering a potential treatment for improving trabeculectomy surgical outcomes.
Collapse
Affiliation(s)
- Zhiruo Wang
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Gong Chen
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Haoyu Li
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Jingyuan Liu
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Yuanyuan Yang
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Cong Zhao
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Yunping Li
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Jingming Shi
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Huihui Chen
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China; Clinical Immunology Research Center of Central South University, Changsha, China.
| | - Guochun Chen
- Clinical Immunology Research Center of Central South University, Changsha, China; Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
177
|
Li M, Xu Q, Fan Q, Li H, Zhang Y, Jiang F, Qu Y. Small molecule SIRT1 activators counteract oxidative stress-induced inflammasome activation and nucleolar stress in retinal degeneration. Int Immunopharmacol 2024; 142:113167. [PMID: 39303543 DOI: 10.1016/j.intimp.2024.113167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND The nicotinamide adenosine dinucleotide-dependent deacetylase Sirtuin 1 (SIRT1) has been identified as a protective factor that inhibits the activation of nucleotide-binding and oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasome. However, whether pharmacological SIRT1 activators can protect retinal pigment epithelial (RPE) cells against oxidative and inflammatory injuries related to age-related macular degeneration remains to be explored. METHODS Two small molecule specific SIRT1 activators (SRT2104 and CAY10602) were tested, with resveratrol being used as a positive control. Mouse models with sodium iodate-induced retinal degeneration were constructed. ARPE-19 cells in culture were used for in vitro experiments. The effects of SIRT1 activators on H2O2-induced ARPE-19 cell injury were determined by reactive oxygen species quantification, western blotting, flow cytometry and immunofluorescence staining. In vivo, the severity of retinal damage was assessed using flash electroretinography and histopathological analysis. RESULTS In vitro, SRT2104, CAY10602 and resveratrol significantly attenuated H2O2-induced cell death, nucleolar stress response, and reactive oxygen species accumulation. In H2O2-stimulated cells, SIRT1 activators reduced the level of NLRP3, inhibited the activation of caspase-1, and decreased the production of interleukin (IL)-1β and IL-18. The inhibitory effects of SIRT1 activators on caspase-1 activation and IL-1β production were blunted by SIRT1 gene silencing. In vivo, treatment with SRT2104 or CAY10602 in mice with sodium iodate-induced retinal degeneration markedly improved the retinal functions and reduced the loss of RPE cells. CONCLUSION Our study suggests that small molecule SIRT1 activators are effective for protection of RPE cells against oxidative stress-induced NLRP3 inflammasome activation, highlighting potential applications in the treatment of macular degeneration associated RPE dysfunctions.
Collapse
Affiliation(s)
- Mengyao Li
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China; Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, Shandong Province, China
| | - Qian Xu
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China; Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, Shandong Province, China
| | - Qian Fan
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China; Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, Shandong Province, China
| | - Haiming Li
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China; Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, Shandong Province, China
| | - Yu Zhang
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China; Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, Shandong Province, China
| | - Fan Jiang
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China; Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, Shandong Province, China.
| | - Yi Qu
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China; Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, Shandong Province, China.
| |
Collapse
|
178
|
Sun WD, Zhu XJ, Li JJ, Mei YZ, Li WS, Li JH. Nicotinamide N-methyltransferase (NNMT): A key enzyme in cancer metabolism and therapeutic target. Int Immunopharmacol 2024; 142:113208. [PMID: 39312861 DOI: 10.1016/j.intimp.2024.113208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
Emerging research has positioned Nicotinamide N-methyltransferase (NNMT) as a key player in oncology, with its heightened expression frequently observed across diverse cancers. This increased presence is tightly linked to tumor initiation, proliferation, and metastasis. The enzymatic function of NNMT is centered on the methylation of nicotinamide (NAM), utilizing S-adenosylmethionine (SAM) as the methyl donor, which results in the generation of S-adenosyl-L-homocysteine (SAH) and methyl nicotinamide (MNAM). This metabolic process reduces the availability of NAM, necessary for Nicotinamide adenine dinucleotide (NAD+) synthesis, and generates SAH, precursor to homocysteine (Hcy). These alterations are theorized to foster the resilience, expansion, and invasiveness of cancer cells. Furthermore, NNMT is implicated in enhancing cancer malignancy by affecting multiple signaling pathways, such as phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT), cancer-associated fibroblasts (CAFs) and 5-Methyladenosine (5-MA), epithelial-mesenchymal transition (EMT), and epigenetic mechanisms. Upregulation of NNMT metabolism plays a key role in the formation and maintenance of the tumour microenvironment. While the use of small molecule inhibitors and RNA interference (RNAi) to target NNMT has shown therapeutic promise, the full extent of NNMT's influence on cancer is not yet fully understood, and clinical evidence is limited. This article systematically describes the relationship between the functional metabolism of NNMT enzymes and the cancer and tumour microenvironments, describing the mechanisms by which NNMT contributes to cancer initiation, proliferation, and metastasis, as well as targeted therapies. Additionally, we discuss the future opportunities and challenges of NNMT in targeted anti-cancer treatments.
Collapse
Affiliation(s)
- Wei-Dong Sun
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Xiao-Juan Zhu
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Jing-Jing Li
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Ya-Zhong Mei
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Wen-Song Li
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Jiang-Hua Li
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China.
| |
Collapse
|
179
|
Zhang W, Yan Y, Yi C, Jiang X, Guo L, Huang S, Xia T, Huang F, Jiao Y, Li H, Yu B, Dai Y. Targeting ferroptosis in the neurovascular unit: A promising approach for treating diabetic cognitive impairment. Int Immunopharmacol 2024; 142:113146. [PMID: 39298819 DOI: 10.1016/j.intimp.2024.113146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/12/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
The cognitive decline associated with chronic metabolic disease diabetes has garnered extensive scrutiny, yet its pathogenesis remains incompletely understood, and the advancement of targeted therapeutics has posed a persistent challenge. Ferroptosis, a novel form of cell death characterized by intracellular lipid peroxidation and iron overload, has recently emerged as a significant factor. Numerous contemporary studies have corroborated that ferroptosis within the neurovascular unit is intimately associated with the onset of diabetes-induced cognitive impairment. Numerous contemporary studies have corroborated that ferroptosis within the neurovascular unit is intimately associated with the onset of diabetic cognitive impairment (DCI). This article initially conducts a profound analysis of the mechanism of ferroptosis, followed by a detailed elucidation of the specific manifestations of neurovascular unit ferroptosis in the context of diabetic cognitive function impairment. Furthermore, an exhaustive review of pertinent literature from April 2020 to March 2024 has been undertaken, resulting in the selection of 31 documents of significant reference value. These documents encompass studies on 11 distinct drugs, all of which are centered around investigating methods to inhibit the ferroptosis pathway as a potential treatment for DCI. Simultaneously, we conducted a review of 12 supplementary literary sources that presented 10 pharmacological agents with anti-ferroptosis properties in other neurodegenerative disorders. This article critically examines the potential influence of neurovascular unit ferroptosis on the progression of cognitive impairment in diabetes, from the three aforementioned perspectives, and organizes the existing and potential therapeutic drugs. It is our aspiration that this article will serve as a theoretical foundation for scholars in related disciplines when conceptualizing, investigating, and developing novel clinical drugs for DCI.
Collapse
Affiliation(s)
- Wenlan Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yijing Yan
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunmei Yi
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shanshan Huang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tong Xia
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fayin Huang
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yike Jiao
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huhu Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yongna Dai
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
180
|
Gu P, Ding W, Zhu W, Shen L, Zhang L, Wang W, Wang R, Wang W, Wang Y, Yan B, Sun X. MIR4435-2HG: A novel biomarker for triple-negative breast cancer diagnosis and prognosis, activating cancer-associated fibroblasts and driving tumor invasion through EMT associated with JNK/c-Jun and p38 MAPK signaling pathway activation. Int Immunopharmacol 2024; 142:113191. [PMID: 39317050 DOI: 10.1016/j.intimp.2024.113191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/29/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Breast cancer has the highest incidence rate and causes the most fatalities among all female cancers worldwide. Triple-negative breast cancer (TNBC) is known for its strong invasiveness and higher rates of recurrence. In this research, we aimed to identify MIR4435-2HG as a promising long non-coding RNA (lncRNA) biomarker and therapeutic target for TNBC. METHODS Utilizing clinicopathological information and transcriptome data from The Cancer Genome Atlas (TCGA) database, we assessed the clinical relevance of MIR4435-2HG in breast cancer through univariate and multivariate COX regression, receiver operating characteristic (ROC) analysis, as well as Kaplan-Meier survival analysis. To investigate the biological role of MIR4435-2HG in TNBC, we conducted gene set enrichment analysis (GSEA), as well as Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Additionally, we constructed and validated a nomogram to predict disease-free survival (DFS). Both the R package "pRRophetic" and the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm were employed to forecast the sensitivity to different therapeutics between the high- and low-MIR4435-2HG groups. We employed single-cell RNA sequencing analysis and tumor microenvironment infiltration analysis to investigate the potential involvement of MIR4435-2HG in the TNBC tumor microenvironment. Cellular biological behaviors were assessed utilizing CCK-8, transwell assays, and wound-healing assays. Furthermore, we performed RNA-seq, qRT-PCR, and western blotting analyses to elucidate and confirm the specific mechanisms underlying the role of MIR4435-2HG in TNBC. RESULTS In our study, we have identified MIR4435-2HG as a significant diagnostic and prognostic factor for TNBC. We observed that MIR4435-2HG is widely expressed and might have a significant impact on the reshaping of the TNBC tumor microenvironment. Patients with TNBC in the high-MIR4435-2HG group may show reduced sensitivity to cisplatin, doxorubicin, and gemcitabine and have an increased propensity for immune escape. Knockdown of MIR4435-2HG inhibits cancer-associated fibroblasts (CAFs) activation. Notably, MIR4435-2HG predominantly enhances the migratory and invasive capabilities of TNBC cells through the epithelial-mesenchymal transition (EMT) process. Mechanistically, we validated that MIR4435-2HG activates the JNK/c-Jun and p38 non-classical MAPK signaling pathway in TNBC cells. CONCLUSIONS Our findings highlight the significant potential of MIR4435-2HG as a highly promising biomarker for TNBC. Targeting MIR4435-2HG could represent an appealing therapeutic approach for TNBC.
Collapse
Affiliation(s)
- Peng Gu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China
| | - Wentao Ding
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China
| | - Wenting Zhu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China
| | - Ling Shen
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China; Clinical Medical School, Shanghai General Hospital of Nanjing Medical University, Shanghai 211166, China
| | - Lei Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China; Clinical Medical School, Shanghai General Hospital of Nanjing Medical University, Shanghai 211166, China
| | - Wei Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China
| | - Ruitao Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China
| | - Wenhao Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China
| | - Yanhao Wang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai 200032, China
| | - Bin Yan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China.
| | - Xing Sun
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China.
| |
Collapse
|
181
|
Chang YT, Huang KC, Pranata R, Chen YL, Chen SN, Cheng YH, Chen RJ. Evaluation of the protective effects of chondroitin sulfate oligosaccharide against osteoarthritis via inactivation of NLRP3 inflammasome by in vivo and in vitro studies. Int Immunopharmacol 2024; 142:113148. [PMID: 39276449 DOI: 10.1016/j.intimp.2024.113148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/12/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Osteoarthritis (OA) is the most prevalent degenerative arthritis disease linked to aging, obesity, diet, and accumulation of octacalcium phosphate (OCP) crystals in joints. Current research has focused on inflammation and chondrocytes apoptosis as underlying OA mechanisms. Inflammatory cytokines like IL-1β activate matrix metalloproteinase-13 (MMP-13) and aggrecanase (the member of A Disintegrin and Metalloproteinase with Thrombospondin motifs family, ADAMTS), leading to cartilage matrix degradation. The NLRP3 inflammasome also contributes to OA pathogenesis by maturing IL-1β. Natural products like chondroitin sulfate oligosaccharides (oligo-CS) show promise in OA treatment by inhibiting inflammation. Our study evaluates the protective effects of oligo-CS against OA by targeting NLRP3 inflammation. Stimulating human SW1353 chondrocytes and human mononuclear macrophage THP-1 cells with OCP showed increased NLRP3 inflammation initiation, NF-κB pathway activation, and the production of inflammatory cytokines (IL-1β, IL-6) and the metabolic index (MMP-13, ADAMTS-5), leading to cartilage matrix degradation. However, oligo-CS treatment significantly reduced inflammation. In a 28-day in vivo study with C57BL/6 female mice, OCP was injected into their right knee and oligo-CS was orally administered. The OCP group exhibited significant joint space narrowing and chondrocyte loss, while the oligo-CS group maintained cartilage integrity. Oligo-CS groups also regulated gut microbiota composition to a healthier state. Taken together, our findings suggest that oligo-CS can be considered as a protective compound against OA.
Collapse
Affiliation(s)
- Yu-Ting Chang
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuo-Ching Huang
- Division of Nephrology, Department of Internal Medicine, Chi Mei Hospital, Liouying District, Tainan, Taiwan; Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Rosita Pranata
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Lin Chen
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute, Hsinchu 300, Taiwan.
| | - Ssu-Ning Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Hsuan Cheng
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Rong-Jane Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
182
|
Jiang Y, Zou Y, Wang H. Review of research progress on different modalities of Macrophage death in Mycobacterium leprae infection. Int Immunopharmacol 2024; 142:113240. [PMID: 39332094 DOI: 10.1016/j.intimp.2024.113240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/26/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
Leprosy, caused by Mycobacterium leprae (M. leprae), is a chronic infectious disease primarily affecting the skin and peripheral nerves. The interaction between M. leprae and macrophages, its primary host cell, plays a critical role in disease progression. This review explores the various forms of macrophage cell death induced by M. leprae infection, including apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis and necrosis. The regulation and implications of these cell death pathways on the host immune response are discussed. Apoptosis and autophagy are highlighted as mechanisms that may limit M. leprae proliferation, while necroptosis and pyroptosis contribute to inflammation and immune response. Notably, recent studies have identified CYBB-mediated ferroptosis as essential for macrophages infected with M. leprae to polarize towards the M2 phenotype, facilitating immune evasion by the pathogen. This review underscores the complexity of macrophage cell death in leprosy, and summarize their corresponding molecular mechanisms and potential impact on the host immunity.
Collapse
Affiliation(s)
- Yumeng Jiang
- Department of Mycobacterium, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology & Hospital for Skin Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China
| | - Yidie Zou
- Department of Mycobacterium, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology & Hospital for Skin Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China
| | - Hongsheng Wang
- Department of Mycobacterium, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology & Hospital for Skin Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
183
|
Zhang F, Lu L, Ma S, Sun J, Liu J, Gao N, Gou Z, Zhou Y, Lai C, Li Y, Sun M, Jiang H. Artemisinin attenuates perinatal inflammation and consequent oxidative stress in oligodendrocyte precursor cells by inhibiting IRAK-4 and IRAK-1. Int Immunopharmacol 2024; 142:113117. [PMID: 39293313 DOI: 10.1016/j.intimp.2024.113117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND The main causes of abnormal white matter development (periventricular leukomalacia) in premature infants are perinatal inflammation and the consequent oxidant/antioxidant imbalance in oligodendrocyte precursor cells (OPCs); however, the underlying mechanisms remain largely unclear. In this work, a rat model of prenatal inflammation was used to examine the mechanism by which artemisinin (ART) protects against white matter dysplasia. METHODS We established a primary OPC model and rat model of perinatal inflammation. ART was identified from the FDA-approved medicinal chemical library to be beneficial for treating OPC inflammation in model systems. Based on bioinformatics analysis of protein interactions and molecular docking analysis, we further identified the possible targets of ART and evaluated its specific effects and the underlying molecular mechanisms in vivo and in vitro. RESULTS Following inflammatory stimulation, ART strongly promoted the maturation of OPCs and the development of white matter in the brain. A Cellular thermal shift assay (CETSA) demonstrated that interleukin-1 receptor-associated kinase-4 (IRAK-4) and interleukin-1 receptor-associated kinase-1 (IRAK-1) may be targets of ART, which was consistent with the findings from molecular modelling with Autodock software. Experiments conducted both in vivo and in vitro demonstrated the activation of the IRAK-4/IRAK-1/nuclear factor kappa-B (NF-κB) pathway and the production of inflammatory factors (IL-1β, IL-6, and TNF-α) in OPCs were greatly suppressed in the group treated with ART compared to the lipopolysaccharide (LPS)-treated group. Moreover, ART dramatically decreased reactive oxygen species (ROS) levels in OPCs while increasing nuclear factor e2-related factor 2 (Nrf2) levels. CONCLUSION Our findings suggest that ART can significantly reduce OPC perinatal inflammation and consequent oxidative stress. The targeted inhibition of IRAK-4 and IRAK-1 by ART may be a potential therapeutic strategy for alleviating abnormalities in white matter development in premature newborns.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China; Animal Experiment Center, Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China
| | - Liqun Lu
- Department of Pediatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan Province 610500, China
| | - Shiyi Ma
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China; Animal Experiment Center, Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China
| | - Junfang Sun
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China; Animal Experiment Center, Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China
| | - Jingyi Liu
- Department of Pediatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan Province 610500, China
| | - Na Gao
- Department of Pediatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan Province 610500, China
| | - Zhixian Gou
- Department of Pediatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan Province 610500, China
| | - Yue Zhou
- Department of Pediatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan Province 610500, China
| | - Chunchi Lai
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China; Animal Experiment Center, Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China
| | - Yishi Li
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China; Animal Experiment Center, Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China
| | - Mengya Sun
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China; Animal Experiment Center, Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China
| | - Hong Jiang
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China; Animal Experiment Center, Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China.
| |
Collapse
|
184
|
Xiao Y, Gao Y, Hu Y, Zhang X, Wang L, Li H, Yu L, Ma Q, Dai J, Ning Z, Liu J, Zhang L, Yang Y, Xiong H, Dong G. FASN contributes to the pathogenesis of lupus by promoting TLR-mediated activation of macrophages and dendritic cells. Int Immunopharmacol 2024; 142:113136. [PMID: 39293316 DOI: 10.1016/j.intimp.2024.113136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/08/2024] [Accepted: 09/08/2024] [Indexed: 09/20/2024]
Abstract
Hyper-activations of monocytes/macrophages and dendritic cells (DCs) contribute to the pathogenesis of various autoimmune diseases, such as systemic lupus erythematosus (SLE). Fatty acid synthase (FASN) is essential for the de novo synthesis of long-chain fatty acids, which play a key role in controlling the activation, differentiation, and function of immune cells. However, the role of FASN in regulating the activations of monocytes/macrophages and DCs has not been studied. In this study, we investigated the involvement of the FASN in modulating the activations of macrophages and DCs, as well as the pathogenesis of SLE. Importantly, we observed a significant upregulation of FASN expression in monocytes and DCs from patients with SLE. This increase is strongly correlated with disease severity and activation status of the immune cells. Furthermore, overexpression of FASN significantly boosts the TLR4/7/9-mediated activation of macrophages and DCs, while knockdown of FASN markedly inhibits this activation. Notably, knockdown of FASN alleviates TLR7 agonist imiquimod (IMQ)-induced lupus in mice and the activation of macrophages and DCs. It makes more sense that pharmaceutical targeting of FASN by using TVB-2640 significantly alleviates IMQ-induced lupus in mice and the activation of macrophages and DCs, as well as in spontaneous lupus MRL/lpr mice. Thus, FASN contributes to the TLRs-mediated activation of macrophages and DCs, as well as the pathogenesis of SLE. More importantly, FASN inhibitor TVB-2640 is expected to be an effective drug in the treatment of SLE.
Collapse
Affiliation(s)
- Yucai Xiao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yangzhe Gao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Yuxin Hu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Xin Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Lin Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Haochen Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Lu Yu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Qun Ma
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Jun Dai
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Zhaochen Ning
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Jiakun Liu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Lili Zhang
- Department of Rheumatology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272007, China
| | - Yonghong Yang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, Shandong 272007, China.
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China.
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
185
|
Zeng T, Lei GL, Yu ML, Zhang TY, Wang ZB, Wang SZ. The role and mechanism of various trace elements in atherosclerosis. Int Immunopharmacol 2024; 142:113188. [PMID: 39326296 DOI: 10.1016/j.intimp.2024.113188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
Atherosclerosis is a slow and complex disease that involves various factors, including lipid metabolism disorders, oxygen-free radical production, inflammatory cell infiltration, platelet adhesion and aggregation, and local thrombosis. Trace elements play a crucial role in human health. Many trace elements, especially metallic ones, not only maintain the normal functions of organs but also participate in basic metabolic processes. The latest studies have revealed a close correlation between trace elements and the occurrence and progression of atherosclerosis. The imbalance of these trace elements can induce atherosclerosis or accelerate its progression through various mechanisms, which poses a significant threat to human health. Therefore, exploring the specific mechanism of trace elements on atherosclerosis is highly significant. In this review, we summarized the roles and mechanisms of iron, copper, zinc, magnesium, and selenium homeostasis and imbalance in atherosclerosis development, in order to identify novel targets and therapeutic strategies for treating atherosclerosis.
Collapse
Affiliation(s)
- Tao Zeng
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Guan-Lan Lei
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Mei-Ling Yu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Ting-Yu Zhang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Zong-Bao Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| | - Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| |
Collapse
|
186
|
Ali A, Azmat U, Ji Z, Khatoon A, Murtaza B, Akbar K, Irshad U, Raza R, Su Z. Beyond Genes: Epiregulomes as Molecular Commanders in Innate Immunity. Int Immunopharmacol 2024; 142:113149. [PMID: 39278059 DOI: 10.1016/j.intimp.2024.113149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/09/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
The natural fastest way to deal with pathogens or danger signals is the innate immune system. This system prevents too much inflammation and tissue damage and efficiently eliminates pathogens. The epiregulome is the chromatin structure influenced by epigenetic factors and linked to cis-regulatory elements (CREs). The epiregulome helps to end the inflammatory response and also assists innate immune cells to show specific action by making cell-specific gene expression patterns. This inspection unfolds two concepts: (1) how epiregulomes are shaped by switching the expression levels of genes, manoeuvre enzyme activity and earmark of chromatin modifiers on specific genes; during and after the infection, and (2) how the expression of specific genes (aids in prompt management of innate cell growth, or the reaction to aggravation and illness) command by epiregulomes that formed during the above process. In this review, the consequences of intrinsic immuno-metabolic remodelling on epiregulomes and potential difficulties in identifying the master epiregulome that regulates innate immunity and inflammation have been discussed.
Collapse
Affiliation(s)
- Ashiq Ali
- Department of Histology and Embryology, Shantou University Medical College, China.
| | - Urooj Azmat
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Ziyi Ji
- Department of Histology and Embryology, Shantou University Medical College, China
| | - Aisha Khatoon
- Department of Pathology, University of Agriculture Faisalabad, Pakistan
| | - Bilal Murtaza
- School of Bioengineering, Dalian University of Science and Technology, Dalian, China
| | - Kaynaat Akbar
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Urooj Irshad
- Department Biological Sciences, Faculty of Sciences, Superior University Lahore, Punjab, Pakistan
| | - Rameen Raza
- Department of Pathology, University of Agriculture Faisalabad, Pakistan
| | - Zhongjing Su
- Department of Histology and Embryology, Shantou University Medical College, China.
| |
Collapse
|
187
|
Ma J, Zhang H, Wang Z, Xu C, Tan H, Sun Y, Zheng R, Jin Z, Li Y, Ge X, Wu Y, Zhou Y. Lycopodium japonicum Thunb. inhibits chondrocyte apoptosis, senescence and inflammation in osteoarthritis through STING/NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118660. [PMID: 39121926 DOI: 10.1016/j.jep.2024.118660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/21/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Osteoarthritis (OA) is a degenerative disease, its characteristic lies in the inflammation and extracellular matrix (ECM) degradation, can lead to significant personal disability and social burden. Lycopodium japonicum Thunb. (LJT) is a lycopinaceae plant with anti-inflammatory and analgesic effects. In traditional Oriental medicine, LJT is commonly used to treat a variety of conditions, including osteoarthritis and low back pain. AIM OF THE STUDY To investigate the anti-apoptotic, anti-inflammatory and anti-senescence properties of LJT in IL-1β-induced mouse chondrocytes, and to clarify the underlying mechanisms involved. In addition, the study also examined the effects of LJT by establishing a mouse model of osteoarthritis. The ultimate goal is to identify the mechanism of LJT as an anti-osteoarthritis agent. MATERIALS AND METHODS In this research, molecular docking and network pharmacology analysis were performed to identify the latent pathways and key targets of LJT action. The CCK-8 kit was used to evaluate LJT's effect on chondrocyte viability. Western blotting, Immunofluorescence, TUNEL staining kit, and SA-β-gal staining were employed to verify LJT's impact on chondrocytes. Additionally, SO, HE, and Immunohistochemical were utilized to assess LJT's effects on osteoarthritis in mice. In vitro and in vivo experiments were performed to verify the potential mechanism of LJT in OA. RESULTS Network pharmacology analysis revealed that AKT1, PTGS2, and ESR1 were the key candidate targets for the treatment of OA with LJT. The results of molecular docking indicated that AKT1 exhibited a low binding affinity to the principal constituents of LJT. Hence, we have chosen STING, an upstream regulator of PTGS2, as our target for investigation. Molecular docking revealed that sitosterol, formononetin, stigmasterol and alpha-Onocerin, the main components of LJT, have good binding activity with STING. In vitro experiments showed that LJT inhibited IL-1β-mediated secretion of inflammatory mediators, apoptosis and senescence of chondrocytes. The results showed that LJT abolished cartilage degeneration induced by unstable medial meniscus (DMM) in mice. Mechanism research has shown that LJT by inhibiting the STING/NF-κB signaling pathways, down-regulating the NF-κB activation, so as to inhibit the development of OA. CONCLUSION LJT reversed the progression of OA by inhibiting inflammation, apoptosis and senescence in animal models and chondrocytes. The effects of LJT are mediated through the STING/NF-κB pathway.
Collapse
Affiliation(s)
- Jiawei Ma
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hanwen Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ze Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Cong Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hongye Tan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yun Sun
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Rukang Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zebin Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yuanyuan Li
- Department of Orthopaedics, The First People's Hospital of Aksu Region, Aksu City, Xinjiang Province, China.
| | - Xinjiang Ge
- Department of Orthopaedics, The First People's Hospital of Aksu Region, Aksu City, Xinjiang Province, China.
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
188
|
Zhao X, Cheng X, Liu Z, Chen W, Hao W, Ma S, Zhang J, Huang W, Yao D. Design, synthesis and biological evaluation of plant-derived miliusol derivatives achieve TNBC profound regression in vivo. Eur J Med Chem 2024; 279:116882. [PMID: 39305634 DOI: 10.1016/j.ejmech.2024.116882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 10/28/2024]
Abstract
Triple-negative breast cancer has become a major problem in clinical treatment due to its high heterogeneity, and Plant-derived drug discovery has been the focus of attention for novel anti-tumor therapeutics. In this study, Miliusol, a natural product isolated from the rarely reported plant Miliusa tenuistipitata, was identified as the lead compound, and 25 miliusol derivatives were designed and synthesized under antiproliferative activity guidance. The results revealed that ZMF-24 was demonstrated to have potent anti-TNBC proliferation with IC50 values of 0.22 μM and 0.44 μM in BT-549 cells and MDA-MB-231 cells respectively with low cytotoxicity to MCF10A cells, and could significantly downregulate proliferation and migration markers. Through RNAseq analysis, molecular docking and CETSA experiment, we found that ZMF-24 could inhibit Eukaryotic translation initiation factor 3 subunit D (EIF3D) that further disrupted the energy supply of TNBC by inhibiting glycolysis, induced profound TNBC apoptosis by stimulating persistent ER stress. Importantly, ZMF-24 exhibited remarkable anti-proliferation and anti-metastasis potential in nude mice xenograft TNBC model without obvious toxicity. Collectively, the findings demonstrate ZMF-24 has significant potential as a potent chemotherapy agent against triple-negative breast cancer.
Collapse
Affiliation(s)
- Xi Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Xiaoling Cheng
- School of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Zhiying Liu
- School of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Weiji Chen
- School of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China; School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Wenli Hao
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Shuangshuang Ma
- School of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Dahong Yao
- School of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China.
| |
Collapse
|
189
|
Cao C, Hu B, Wang J, Li W, Guo L, Sheng J, Zhang C. Swertianin Promotes Anti-Tumor activity by facilitating Macrophage M1 polarization via STING signaling. Int Immunopharmacol 2024; 142:113182. [PMID: 39298821 DOI: 10.1016/j.intimp.2024.113182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
To investigate the mechanism by which swertiamarin (swertianin, SWE) regulates the polarization of tumor microenvironment-associated macrophages to M1 phenotype, thereby exerting anti-tumor effects.SWE promoted the formation of M1 cells and increased the proportion of CD86 + cells in both RAW264.7 and primary monocyte-derived macrophages, while activating the STING-NF-κB pathway. When STING or P65 was knocked out, the effects of SWE were antagonized, inhibiting the formation of CD86 + M1 cells. At the animal level, SWE inhibited tumor growth, activated STING-NF-κB, and promoted the formation of CD86 + cells. STING-KO inhibited the effects of SWE.SWE can activate the STING-NF-κB signal to promote macrophage M1 polarization, playing an anti-tumor role.
Collapse
Affiliation(s)
- Chenxi Cao
- The Second Affiliated Hospital of Jiaxing University, 314001, China.
| | - Biwen Hu
- The Second Affiliated Hospital of Jiaxing University, 314001, China.
| | - Jin Wang
- The Second Affiliated Hospital of Jiaxing University, 314001, China.
| | - Wenyan Li
- The Second Affiliated Hospital of Jiaxing University, 314001, China.
| | - Li Guo
- The Second Affiliated Hospital of Jiaxing University, 314001, China.
| | - Jian Sheng
- The Second Affiliated Hospital of Jiaxing University, 314001, China.
| | - Caiqun Zhang
- The Second Affiliated Hospital of Jiaxing University, 314001, China.
| |
Collapse
|
190
|
Wang W, Li Q, Jia M, Wang C, Liang W, Liu Y, Kong H, Qin Y, Zhao C, Zhao W, Song H. RNF39 facilitates antiviral immune responses by promoting K63-linked ubiquitination of STING. Int Immunopharmacol 2024; 142:113091. [PMID: 39255680 DOI: 10.1016/j.intimp.2024.113091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
The cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS)-dependent pathway is a key DNA-sensing pathway that recognizes cytosolic DNA and plays a crucial role in initiating innate immune responses against pathogenic microbes and cancer. Various molecules have been identified as regulators of the cGAS-dependent pathway that controls innate immune responses. However, despite the important roles of Stimulator-of-interferon genes (STING) in the cGAS-dependent pathway, the regulation of its activation has not been elucidated. Here, we show that the E3 ubiquitin ligase, RING finger protein 39 (RNF39), interacts with STING in macrophages and HERK293T cells. Moreover, RNF39 accelerates DNA-sensing pathways by promoting lysine (K)63-linked ubiquitination of STING, and then facilitating the formation of STING-TBK1 complex. Concordantly, Rnf39 deficiency inhibits innate immune responses triggered by DNA viral infection and accelerates viral replication. Furthermore, herpes simplex virus-1 (HSV-1) infection induces RNF39 expression in an IFN-I-dependent manner. Thus, we outline a novel mechanism for controlling STING activation and a feedback mechanism for controlling antiviral immune responses. RNF39 could be a priming intervention target for the prevention and treatment of viral diseases, especially DNA viral infections.
Collapse
Affiliation(s)
- Wenwen Wang
- Department of Pathogenic Biology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Department of Clinical Laboratory, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Qi Li
- Department of Pathogenic Biology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Mutian Jia
- Department of Pathogenic Biology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Caiwei Wang
- Department of Pathogenic Biology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Wenbo Liang
- Department of Pathogenic Biology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yinlong Liu
- Department of Pathogenic Biology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hongyi Kong
- Department of Pathogenic Biology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ying Qin
- Department of Pathogenic Biology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Chunyuan Zhao
- Department of Cell Biology, School of Basic Medical Science, Shandong University, Jinan, Shandong, 250012, China
| | - Wei Zhao
- Department of Pathogenic Biology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hui Song
- Department of Pathogenic Biology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
191
|
Zhang W, Zhang P, Wang X, Lin Y, Xu H, Mao R, Zhu S, Lin T, Cai J, Lin J, Kang M. SORBS2-Mediated inhibition of malignant behaviors in esophageal squamous cell carcinoma through TIMP3. Int Immunopharmacol 2024; 142:113096. [PMID: 39288625 DOI: 10.1016/j.intimp.2024.113096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is characterized by high invasiveness and poor prognosis. The role of Sorbin and SH3 domain-containing protein 2 (SORBS2) in ESCC remains largely unexplored. METHODS The expression levels of SORBS2 in ESCC were detected using RNA-seq and proteomics data. The biological functions of SORBS2 in ESCC were investigated through in vivo and in vitro experiments. The mechanism of SORBS2 was explored using RIP-seq technology, which identified the key downstream molecule metalloproteinase-3 (TIMP3). The interaction between SORBS2 and TIMP3, including specific binding sites, was validated through RIP-qPCR and RNA pull-down assays. The impact of altered SORBS2 expression in ESCC on HUVECs was assessed using endothelial tube formation assays. RESULTS SORBS2 expression was significantly downregulated in ESCC tissues, and its decreased expression was associated with poor prognosis. Overexpression of SORBS2 in ESCC cell lines inhibited cell proliferation, migration, and invasion both in vitro and in vivo. Mechanistically, SORBS2 bound to the 3' UTR of TIMP3 mRNA, enhancing its stability and thereby regulating TIMP3 expression. Rescue experiments demonstrated that increased TIMP3 expression could reverse the promotive effects of SORBS2 knockdown on ESCC, confirming TIMP3 as a critical downstream molecule of SORBS2. Furthermore, downregulation of SORBS2 in ESCC cells was associated with activation of HUVEC functions, whereas upregulation of TIMP3 could reverse this effect. The SORBS2/TIMP3 axis may exert tumor suppressive effects by influencing extracellular matrix degradation. CONCLUSION This study confirms that SORBS2 inhibits ESCC tumor progression by regulating extracellular matrix degradation through TIMP3, providing a potential therapeutic target for future treatment interventions.
Collapse
Affiliation(s)
- Weiguang Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Peipei Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Xiaoqing Wang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ye Lin
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hui Xu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Renyan Mao
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Shujing Zhu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Tianxin Lin
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Junlan Cai
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jihong Lin
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China.
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Department of Cardiothoracic Surgery, Affiliated Hospital of Putian University, Putian, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China; Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China.
| |
Collapse
|
192
|
Qin X, Huo X, Dong J, Liu X, Wei X, Chen S, Gu W. METTL14 depletion induces trophoblast cell dysfunction by inhibiting miR-21-5p processing in an m6A-dependent manner. Int Immunopharmacol 2024; 142:113200. [PMID: 39332090 DOI: 10.1016/j.intimp.2024.113200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/07/2024] [Accepted: 09/15/2024] [Indexed: 09/29/2024]
Abstract
Spontaneous abortion (SA) is a devastating, but common outcome for expectant parents and their families. However, the mechanism of SA occurrence remains mostly unknown. Herein, we examined human SA villi samples and found decreased N6-methyladenosine (m6A) levels and methyltransferase-like protein 14 (METTL14) expression compared with those in healthy women. Knockdown of METTL14 in trophoblast HTR8 cells induced cellular dysfunction. We identified candidate differentially expressed microRNAs and found that METTL14 accelerated miR-21-5p processing by modulating its m6A modification level. Exogenous miR-21-5p expression attenuated METTL14 knockdown-induced cellular dysfunction. Subsequently, we found that SMAD family member 7 (SMAD7) expression is inhibited by miR-21-5p and that knockdown of SMAD7 rescued the trophoblast cell dysfunction induced by miR-21-5p inhibitors. Then, we revealed that METTL14 can regulate the SMAD7 pathway by modulating miR-21-5p. Finally, we found that exposing pregnant mice to an m6A inhibitor caused embryo loss and reduced expression levels of Mettl14 and miR-21-5p while increasing Smad7 levels. Taken together, this study establishes the involvement of m6A in SA and identified a novel SA signaling pathway. These results reveal the underlying molecular mechanisms of trophoblast cell dysfunction induced by m6A modification and provide new strategies to identify and mitigate SA.
Collapse
Affiliation(s)
- Xiaoli Qin
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Shanghai Municipal Key Clinical Specialty Project, Shanghai, China
| | - Xiaona Huo
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Shanghai Municipal Key Clinical Specialty Project, Shanghai, China
| | - Junpeng Dong
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Shanghai Municipal Key Clinical Specialty Project, Shanghai, China
| | - Xueqing Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Shanghai Municipal Key Clinical Specialty Project, Shanghai, China
| | - Xiaowei Wei
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Shanghai Municipal Key Clinical Specialty Project, Shanghai, China
| | - Shufang Chen
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Shanghai Municipal Key Clinical Specialty Project, Shanghai, China.
| | - Wei Gu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Shanghai Municipal Key Clinical Specialty Project, Shanghai, China.
| |
Collapse
|
193
|
Zhang R, Cui NP, He Y, Wang T, Feng D, Wang Y, Bao T, Su C, Qin Y, Shi JH, Li JH. Pirarubicin combined with TLR3 or TLR4 agonists enhances anti-tumor efficiency. Int Immunopharmacol 2024; 142:113068. [PMID: 39241516 DOI: 10.1016/j.intimp.2024.113068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/15/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is prone to relapse due to the lack of effective therapeutic targets. Macrophages are the most abundant immune cells in the tumor microenvironment (TME) of breast cancer. Targeting the cross-talk between macrophages and cancer cells provides a more efficient strategy for anti-tumor therapy. Toll-like receptors (TLRs) are important players involved in macrophage activation, and TLR agonists are known to play roles in cancer therapy. However, the combination strategy of TLR agonists with chemotherapy drugs is still not well characterized. METHODS RT-PCR and Western blot were used to detect the expression of TLRs. The communication between breast cancer cells and macrophages were determined by co-culture in vitro. Tumor cells proliferation and migration were investigated by MTT assay and scratch wound assay. The effects of drug combinations and toxic side effects were assessed by immunohistochemistry and Hematoxylin & Eosin staining. RESULTS Expression of TLR3 and TLR4 were lower in breast tumor tissues compared with adjacent normal tissues. Patients with higher TLR3 or TLR4 expression levels had a better prognosis than those with lower expression levels. TLR3/4 expression was significantly inhibited when breast cancer cells MDA-MB-231 and E0771 were conditioned-cultured with macrophages in vitro and was also inhibited by pirarubicin (THP). However, the combination of TLR agonists and THP could reverse this response and inhibit the proliferation and migration of breast cancer cells. Additionally, this combination significantly reduced the tumor volume and weight in the murine model, increased the expression of TLR3/4 in mouse breast tumors. CONCLUSIONS Our results provide new ideas for the combination strategy of THP with TLR agonists which improves prognosis of breast cancer.
Collapse
Affiliation(s)
- Ruobing Zhang
- Central Laboratory, Hebei Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Affiliated Hospital of Hebei University, Baoding, 071000 Hebei, China; Clinical Medical College, Hebei University, Baoding, 071000 Hebei, China; Department of Breast Surgery, Affiliated Hospital of Hebei University, Baoding, 071000 Hebei, China
| | - Nai-Peng Cui
- Department of Breast Surgery, Affiliated Hospital of Hebei University, Baoding, 071000 Hebei, China; Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, 071000 Hebei, China.
| | - Yanqiu He
- Clinical Medical College, Hebei University, Baoding, 071000 Hebei, China; Department of Breast Surgery, Affiliated Hospital of Hebei University, Baoding, 071000 Hebei, China
| | - Tingting Wang
- Central Laboratory, Hebei Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Affiliated Hospital of Hebei University, Baoding, 071000 Hebei, China; Clinical Medical College, Hebei University, Baoding, 071000 Hebei, China
| | - Decheng Feng
- Clinical Medical College, Hebei University, Baoding, 071000 Hebei, China; Department of Breast Surgery, Affiliated Hospital of Hebei University, Baoding, 071000 Hebei, China
| | - Yaqiong Wang
- Department of Breast Surgery, Affiliated Hospital of Hebei University, Baoding, 071000 Hebei, China; Affiliated Hospital of Chongqing Medical University, Changshou People's Hospital, Changshou, 401220 Chongqing, China
| | - Tong Bao
- Clinical Medical College, Hebei University, Baoding, 071000 Hebei, China
| | - Chenghan Su
- Clinical Medical College, Hebei University, Baoding, 071000 Hebei, China
| | - Yan Qin
- Central Laboratory, Hebei Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Affiliated Hospital of Hebei University, Baoding, 071000 Hebei, China
| | - Jian-Hong Shi
- Central Laboratory, Hebei Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Affiliated Hospital of Hebei University, Baoding, 071000 Hebei, China; Clinical Medical College, Hebei University, Baoding, 071000 Hebei, China.
| | - Jing-Hua Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, 071000 Hebei, China; Hebei Key Laboratory of General Surgery for Digital Medicine, Baoding, 071000 Hebei, China.
| |
Collapse
|
194
|
Liu Y, Liang J, Huang J, Li X, Huang J, Wang J. Unveiling the immunoregulatory role of interferon-induced transmembrane protein 2 through the JAK/STAT3/PDL1 pathway in gastric cancer. Int Immunopharmacol 2024; 142:113221. [PMID: 39321709 DOI: 10.1016/j.intimp.2024.113221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/12/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Programmed cell death ligand 1 (PDL1) has been implicated in immune evasion in various tumor types. The objective of this investigation was to assess the correlation between metastasis-associated interferon-induced transmembrane protein 2 (IFITM2) and PDL1, and explore their impact on tumor immunity in gastric cancer (GC). The expression of IFITM2 and PDL1 in human GC tissues was initially evaluated using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, as well as immunohistochemistry (IHC). Subsequently, the relationship between IFITM2 and PDL1 was analyzed through Real-time quantitative PCR (RT-qPCR) and western blotting after cell transfection and inhibitor treatment in vitro. The role of IFITM2 and PDL1 in immune killing was further elucidated in both in vitro and in vivo settings. Our study revealed frequent overexpression of IFITM2 and PDL1 in GC. Notably, IFITM2 expression was significantly associated with lymphatic metastasis, clinical stage, and poor survival. Moreover, a positive correlation between PDL1 expression and IFITM2 expression in GC was identified. The activation of tumor-derived IFITM2 was found to enhance PDL1 expression via the JAK/STAT3 pathway in human GC cells (MKN28 and MKN45), leading to apoptosis of Jurkat T cells. Furthermore, IFITM2 induced PDL1 expression in a xenograft mouse model of GC. Based on our findings, we propose that IFITM2 modulates PDL1 expression and tumor immunity through the JAK/STAT3 pathway in GC cells, highlighting the potential of IFITM2 as a therapeutic target for GC immunotherapy.
Collapse
Affiliation(s)
- Yonggang Liu
- Department of Oncology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 Jiazi Road, Shunde District, Foshan, Guangdong, 528308, PR China.
| | - Jiyun Liang
- Department of Oncology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 Jiazi Road, Shunde District, Foshan, Guangdong, 528308, PR China
| | - Junyong Huang
- Department of Oncology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 Jiazi Road, Shunde District, Foshan, Guangdong, 528308, PR China
| | - Xi Li
- Department of Oncology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 Jiazi Road, Shunde District, Foshan, Guangdong, 528308, PR China
| | - Jiangyuan Huang
- Department of Oncology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 Jiazi Road, Shunde District, Foshan, Guangdong, 528308, PR China
| | - Jiale Wang
- Department of Oncology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 Jiazi Road, Shunde District, Foshan, Guangdong, 528308, PR China
| |
Collapse
|
195
|
Lv B, Xing S, Wang Z, Zhang A, Wang Q, Bian Y, Pei Y, Sun H, Chen Y. NRF2 inhibitors: Recent progress, future design and therapeutic potential. Eur J Med Chem 2024; 279:116822. [PMID: 39241669 DOI: 10.1016/j.ejmech.2024.116822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a crucial transcription factor involved in oxidative stress response, which controls the expression of various cytoprotective genes. Recent research has indicated that constitutively activated NRF2 can enhance patients' resistance to chemotherapy drugs, resulting in unfavorable prognosis. Therefore, the development of NRF2 inhibitors has emerged as a promising approach for overcoming drug resistance in cancer treatment. However, there are limited reports and reviews focusing on NRF2 inhibitors. This review aims to provide a comprehensive analysis of the structure and regulation of the NRF2 signaling pathway, followed by a comprehensive review of reported NRF2 inhibitors. Moreover, the current design strategies and future prospects of NRF2 inhibitors will be discussed, aiming to establish a foundation for the development of more effective NRF2 inhibitors.
Collapse
Affiliation(s)
- Bingbing Lv
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Zhiqiang Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Ao Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Qinjie Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Yaoyao Bian
- Jiangsu Provincial Engineering Center of TCM External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Yuqiong Pei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
196
|
Guadagni A, Barone S, Alfano AI, Pelliccia S, Bello I, Panza E, Summa V, Brindisi M. Tackling triple negative breast cancer with HDAC inhibitors: 6 is the isoform! Eur J Med Chem 2024; 279:116884. [PMID: 39321690 DOI: 10.1016/j.ejmech.2024.116884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
Triple negative breast cancer (TNBC) is a highly aggressive breast cancer subtype characterized by the lack in the expression of estrogen and progesterone receptors, and human epidermal growth factor receptors 2. TNBC stands out among other breast cancers subtypes for its high aggressiveness and invasiveness, and for the limited therapeutic options available, which justify the poor survival rates registered for this breast cancer subtype. Compelling new evidence pointed out the role of epigenetic modifications in cancer, prompting tumor cell uncontrolled proliferation, epithelial-to-mesenchymal transition, and metastatic events. In this review we showcase the latest evidence supporting the involvement of histone deacetylase 6 (HDAC6) in cancer pathways strictly related to TNBC subtype, also tracking the latest advancements in the identification of novel HDAC6 inhibitors which showed efficacy in TNBC models, offering insights into the potential of targeting this key epigenetic player as an innovative therapeutic option for the treatment of TNBC.
Collapse
Affiliation(s)
- Anna Guadagni
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Simona Barone
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Antonella Ilenia Alfano
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Sveva Pelliccia
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Ivana Bello
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Elisabetta Panza
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Vincenzo Summa
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Margherita Brindisi
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy.
| |
Collapse
|
197
|
Mohammed EZ, El-Dydamony NM, Taha EA, Taha MN, Mehany ABM, Abdel Aziz HA, Abd El-Aleam RH. Design, synthesis, and molecular dynamic simulations of some novel benzo[d]thiazoles with anti-virulence activity against Pseudomonas aeruginosa. Eur J Med Chem 2024; 279:116880. [PMID: 39303517 DOI: 10.1016/j.ejmech.2024.116880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Inhibition of quorum sensing (QS) is an impending approach for targeting bacterial infection. Fourteen benzo[d]thiazole and 2-pyrazolo[1,5-a]pyrimidin-3-yl)benzo[d]thiazoles analogues were designed and synthesized as promising LasR antagonists with QS inhibition activity. Among the investigated compounds, compounds 3c, 3e, and 8d exhibited the highest percentage inhibition in biofilm formation (77 %, 63.9 %, 69.4 %), pyocyanin production (74.6 %, 64.9, 69.4 %), and rhamnolipids production (58.5 %, 51 %, 54.3 %) in P. aeruginosa, respectively. Additionally, compounds 3c, 3e and 8d achieved IC50 values against Las R equal 1.37 ± 0.35, 1.55 ± 0.24, 1.1 ± 0.15 μM respectively. Also, molecular docking of the target compounds into the LasR binding site co-crystalized "odDHL" revealed their binding with the essential residues for protein inhibition. Additionally, molecular dynamics simulation (MDS) experiments over 200 ns of compound 3c showed its ability to interact with the LasR binding site with dissociation of the protein's dimer confirming its action as a LasR antagonist. The obtained findings inspire further investigation for benzo[d]thiazole and 2-pyrazolo[1,5-a]pyrimidin-3-yl)benzo[d]thiazoles aiming to design and synthesize more potential QS inhibitors.
Collapse
Affiliation(s)
- Esraa Z Mohammed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, October 6 University, Giza, 12585, Egypt.
| | - Nehad M El-Dydamony
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Egypt
| | - Enas A Taha
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, October 6 University, Giza, 12585, Egypt
| | - Mostafa N Taha
- Microbiology and Immunology Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Ahmed B M Mehany
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Hatem A Abdel Aziz
- Applied Organic Chemistry Department, National Research Centre, Dokki, Giza, P.O.Box 12622, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria, 21648, Egypt.
| | - Rehab H Abd El-Aleam
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information MTI, Cairo, 11571, Egypt
| |
Collapse
|
198
|
Xue L, Liu R, Zhang L, Qiu T, Liu L, Yin R, Jiang T. Discovery of novel nitrofuran PROTAC-like compounds as dual inhibitors and degraders targeting STING. Eur J Med Chem 2024; 279:116883. [PMID: 39303513 DOI: 10.1016/j.ejmech.2024.116883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Aberrant activation of the innate immune molecule STING can initiate inflammation and autoimmune diseases. Small molecule inhibitors targeting STING have demonstrated therapeutic efficacy against these conditions. Moreover, employing degradants to target STING represents a novel approach to drug design strategy. Consequently, we have designed and synthesized a series of covalent degradants targeting STING. Among them, compound P8 exhibited the highest degradation capacity, with a 24-h DC50 of 2.58 μM in THP-1 cells. In THP-1 cells, P8 specifically degraded STING proteins through the lysosomal pathway, acting as dual a degrader and inhibitor to manifest anti-inflammatory effects. Conversely, in RAW264.7 cells, P8 solely acted as an inhibitor without exhibiting degradative capacity towards the STING protein level. Additionally, P8 displayed renal-protective properties in a cisplatin-induced acute kidney injury model. These results highlight the significant potential of further investigating compound P8.
Collapse
Affiliation(s)
- Liang Xue
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Ruixue Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Lican Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Tingting Qiu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Lu Liu
- Marine Biomedical Research Institute of Qingdao, Qingdao, 266237, China
| | - Ruijuan Yin
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266237, China.
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Center for Innovative Drug Discovery, Greater Bay Area Institute of Precision Medicine (Guangzhou), Guangzhou, 511455, China.
| |
Collapse
|
199
|
Zhao H, Zhang L, Du D, Mai L, Liu Y, Morigen M, Fan L. The RIG-I-like receptor signaling pathway triggered by Staphylococcus aureus promotes breast cancer metastasis. Int Immunopharmacol 2024; 142:113195. [PMID: 39303544 DOI: 10.1016/j.intimp.2024.113195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Host microbes are increasingly recognized as key components in various types of cancer, although their exact impact remains unclear. This study investigated the functional significance of Staphylococcus aureus (S. aureus) in breast cancer tumorigenesis and progression. We found that S. aureus invasion resulted in a compromised DNA damage response process, as evidenced by the absence of G1-phase arrest and apoptosis in breast cells in the background of double strand breaks production and the activation of the ataxia-telangiectasia mutated (ATM)-p53 signaling pathway. The high-throughput mRNA sequencing, bioinformatics analysis and pharmacological studies revealed that S. aureus facilitates breast cell metastasis through the innate immune pathway, particularly in cancer cells. During metastasis, S. aureus initially induced the expression of RIG-I-like receptors (RIG-I in normal breast cells, RIG-I and MDA5 in breast cancer cells), which in turn activated NF-κB p65 expression. We further showed that NF-κB p65 activated the CCL5-CCR5 pathway, contributing to breast cell metastasis. Our study provides novel evidence that the innate immune system, triggered by bacterial infection, plays a role in bacterial-driven cancer metastasis.
Collapse
Affiliation(s)
- Haile Zhao
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Linzhe Zhang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Dongdong Du
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Lisu Mai
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Yaping Liu
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, PR China
| | - Morigen Morigen
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China.
| | - Lifei Fan
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China.
| |
Collapse
|
200
|
Ma J, Zhang P, Wang Y, Lu M, Cao K, Wei S, Qi C, Ling X, Zhu J. LncRNA HAR1A inhibits non-small cell lung cancer growth by downregulating c-MYC transcripts and facilitating its proteasomal degradation. Int Immunopharmacol 2024; 142:113264. [PMID: 39340992 DOI: 10.1016/j.intimp.2024.113264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
Non-small cell lung cancer (NSCLC) is a primary cause of cancer-related mortality on a global scale. Research increasingly shows that long non-coding RNAs (lncRNAs) play crucial regulatory roles and serve as biomarkers for diagnosis, prognosis, therapy monitoring, and druggable targets in NSCLC. We previously identified HAR1A as a tumor-suppressing lncRNA in NSCLC, with its loss also observed in oral and hepatocellular carcinoma. This study aimed to expand the understanding of the functional role of HAR1A in NSCLC and uncover its underlying mechanisms. Our results demonstrated that elevating HAR1A levels impeded NSCLC cell proliferation and migration but promoted apoptosis, thereby boosting their susceptibility to cisplatin. Subsequently, we discovered that HAR1A enhanced cisplatin's cytotoxicity in NSCLC cells by curbing adaptive autophagy through the downregulation of MYC. Further analysis revealed that HAR1A suppresses MYC by both lowering its transcript levels and promoting protein ubiquitination and degradation, thereby restricting tumor cell proliferation, migration, and adaptive autophagy. In exploring MYC's targets, we observed that MYC upregulated the transcription of heat shock protein 90 alpha family class B member 1 (HSP90AB1/HSP90β) gene. Rescue experiments verified that HAR1A mitigated NSCLC cell proliferation and migration and induced apoptosis through the MYC/HSP90β axis. Finally, we confirmed that HAR1A overexpression increased cisplatin efficacy in nude mouse NSCLC xenograft models.In conclusion, the findings suggest that HAR1A could be a promising therapeutic target in treating NSCLC and biomarkers for predicting chemotherapy outcomes. This study provides new insights into the molecular mechanisms of chemoresistance in NSCLC and underscores the potential of lncRNA-based strategies in cancer therapy.
Collapse
Affiliation(s)
- Jianqun Ma
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150040, Heilongjiang, China
| | - Ping Zhang
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150040, Heilongjiang, China
| | - Yuning Wang
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150040, Heilongjiang, China
| | - Mengdi Lu
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150040, Heilongjiang, China
| | - Kui Cao
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150040, Heilongjiang, China
| | - Shenshui Wei
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150040, Heilongjiang, China
| | - Cuicui Qi
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150040, Heilongjiang, China
| | - Xiaodong Ling
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150040, Heilongjiang, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150040, Heilongjiang, China; Biobank, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150040, Heilongjiang, China.
| |
Collapse
|