1951
|
Sak K, Everaus H. Nanotechnological approach to improve the bioavailability of dietary flavonoids with chemopreventive and anticancer properties. NUTRACEUTICALS 2016:427-479. [DOI: 10.1016/b978-0-12-804305-9.00012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
|
1952
|
Baines A, Martin P, Rorie C. Current and Emerging Targeting Strategies for Treatment of Pancreatic Cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 144:277-320. [DOI: 10.1016/bs.pmbts.2016.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
1953
|
Liu Y, Luo F, Wang B, Li H, Xu Y, Liu X, Shi L, Lu X, Xu W, Lu L, Qin Y, Xiang Q, Liu Q. STAT3-regulated exosomal miR-21 promotes angiogenesis and is involved in neoplastic processes of transformed human bronchial epithelial cells. Cancer Lett 2016; 370:125-35. [PMID: 26525579 DOI: 10.1016/j.canlet.2015.10.011] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/02/2015] [Accepted: 10/09/2015] [Indexed: 12/14/2022]
Abstract
Although microRNA (miRNA) enclosed in exosomes can mediate intercellular communication, the roles of exosomal miRNA and angiogenesis in lung cancer remain unclear. We investigated functions of STAT3-regulated exosomal miR-21 derived from cigarette smoke extract (CSE)-transformed human bronchial epithelial (HBE) cells in the angiogenesis of CSE-induced carcinogenesis. miR-21 levels in serum were higher in smokers than those in non-smokers. The medium from transformed HBE cells promoted miR-21 levels in normal HBE cells and angiogenesis of human umbilical vein endothelial cells (HUVEC). Transformed cells transferred miR-21 into normal HBE cells via exosomes. Knockdown of STAT3 reduced miR-21 levels in exosomes derived from transformed HBE cells, which blocked the angiogenesis. Exosomes derived from transformed HBE cells elevated levels of vascular endothelial growth factor (VEGF) in HBE cells and thereby promoted angiogenesis in HUVEC cells. Inhibition of exosomal miR-21, however, decreased VEGF levels in recipient cells, which blocked exosome-induced angiogenesis. Thus, miR-21 in exosomes leads to STAT3 activation, which increases VEGF levels in recipient cells, a process involved in angiogenesis and malignant transformation of HBE cells. These results, demonstrating the function of exosomal miR-21 from transformed HBE cells, provide a new perspective for intervention strategies to prevent carcinogenesis of lung cancer.
Collapse
Affiliation(s)
- Yi Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Fei Luo
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Bairu Wang
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Huiqiao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yuan Xu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xinlu Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Le Shi
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaolin Lu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wenchao Xu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Lu Lu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yu Qin
- Institute of Chronic Non-communicable Disease Control, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, China
| | - Quanyong Xiang
- Institute of Chronic Non-communicable Disease Control, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, China
| | - Qizhan Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
1954
|
Teoh HK, Chong PP, Abdullah M, Sekawi Z, Tan GC, Leong CF, Cheong SK. Small interfering RNA silencing of interleukin-6 in mesenchymal stromal cells inhibits multiple myeloma cell growth. Leuk Res 2016; 40:44-53. [DOI: 10.1016/j.leukres.2015.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 10/09/2015] [Accepted: 10/11/2015] [Indexed: 12/21/2022]
|
1955
|
Abstract
Research on extracellular vesicles (EVs) is a new and emerging field that is rapidly growing. Many features of these structures still need to be described and discovered. This concerns their biogenesis, their release and cellular entrance mechanisms, as well as their functions, particularly in vivo. Hence our knowledge on EV is constantly evolving and sometimes changing. In our review we summarize the most important facts of our current knowledge about extracellular vesicles and described some of the assumed functions in the context of cancer and HIV infection.
Collapse
Affiliation(s)
- Florian Dreyer
- Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Hartmannstr. 14, 91054, Erlangen, Germany
| | - Andreas Baur
- Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Hartmannstr. 14, 91054, Erlangen, Germany.
| |
Collapse
|
1956
|
Woo J, Sharma S, Gimzewski J. The Role of Isolation Methods on a Nanoscale Surface Structure and its Effect on the Size of Exosomes. J Circ Biomark 2016; 5:11. [PMID: 28936259 PMCID: PMC5548320 DOI: 10.5772/64148] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/09/2016] [Indexed: 12/21/2022] Open
Abstract
Exosomes are ∼100 nanometre diameter vesicles secreted by mammalian cells. These emerging disease biomarkers carry nucleic acids, proteins and lipids specific to the parental cells that secrete them. Exosomes are typically isolated in bulk by ultracentrifugation, filtration or immunoaffinity precipitation for downstream proteomic, genomic, or lipidomic analysis. However, the structural properties and heterogeneity of isolated exosomes at the single vesicle level are not well characterized due to their small size. In this paper, by using high-resolution atomic force microscope imaging, we show the nanoscale morphology and structural heterogeneity in exosomes derived from U87 cells. Quantitative assessment of single exosomes reveals nanoscale variations in morphology, surface roughness and counts isolated by ultracentrifugation (UC) and immunoaffinity (IA) purification. Both methods produce intact globular, 30-120 nm sized vesicles when imaged under fluid and in air. However, IA exosomes had higher surface roughness and bimodal size population compared to UC exosomes. The study highlights the differences in size and surface topography of exosomes purified from a single cell type using different isolation methods.
Collapse
Affiliation(s)
- JungReem Woo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA
| | - Shivani Sharma
- California NanoSystems Institute, University of California, Los Angeles, California, USA
| | - James Gimzewski
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA
- California NanoSystems Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
1957
|
Sarkar FH. Novel Holistic Approaches for Overcoming Therapy Resistance in Pancreatic and Colon Cancers. Med Princ Pract 2016; 25 Suppl 2:3-10. [PMID: 26228733 PMCID: PMC5588517 DOI: 10.1159/000435814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/08/2015] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal (GI) cancers, such as of the colon and pancreas, are highly resistant to both standard and targeted therapeutics. Therapy-resistant and heterogeneous GI cancers harbor highly complex signaling networks (the resistome) that resist apoptotic programming. Commonly used gemcitabine or platinum-based regimens fail to induce meaningful (i.e. disease-reversing) perturbations in the resistome, resulting in high rates of treatment failure. The GI cancer resistance networks are, in part, due to interactions between parallel signaling and aberrantly expressed microRNAs (miRNAs) that collectively promote the development and survival of drug-resistant cancer stem cells with epithelial-to-mesenchymal transition (EMT) characteristics. The lack of understanding of the resistance networks associated with this subpopulation of cells as well as reductionist, single protein-/pathway-targeted approaches have made 'effective drug design' a difficult task. We propose that the successful design of novel therapeutic regimens to target drug-resistant GI tumors is only possible if network-based drug avenues and agents, in particular 'natural agents' with no known toxicity, are correctly identified. Natural agents (dietary agents or their synthetic derivatives) can individually alter miRNA profiles, suppress EMT pathways and eliminate cancer stem-like cells that derive from pancreatic cancer and colon cancer, by partially targeting multiple yet meaningful networks within the GI cancer resistome. However, the efficacy of these agents as combinations (e.g. consumed in the diet) against this resistome has never been studied. This short review article provides an overview of the different challenges involved in the understanding of the GI resistome, and how novel computational biology can help in the design of effective therapies to overcome resistance.
Collapse
Affiliation(s)
- Fazlul H. Sarkar
- *Fazlul H. Sarkar, PhD, Departments of Pathology and Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, 740 HWCRC, Detroit, MI 48201 (USA), E-Mail
| |
Collapse
|
1958
|
Mora EM, Álvarez-Cubela S, Oltra E. Biobanking of Exosomes in the Era of Precision Medicine: Are We There Yet? Int J Mol Sci 2015; 17:ijms17010013. [PMID: 26712742 PMCID: PMC4730260 DOI: 10.3390/ijms17010013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 12/14/2015] [Accepted: 12/17/2015] [Indexed: 12/21/2022] Open
Abstract
The emerge of personalized medicine demands high-quality human biospecimens with appropriate clinical annotation, especially in complex diseases such as cancer, neurodegenerative, cardiovascular, and metabolic alterations in which specimen heterogeneity and individual responses often complicate the development of precision therapeutic programs. In the growing field of extracellular vesicles (EVs) research, exosomes (EXOs)—a particular type of EVs—have been proposed as an advantageous diagnostic tool, as effective delivery vehicles and as therapeutic targets. However, the lack of consensus on isolation methods and rigorous criteria to characterize them puts the term EXO into question at the time that might explain some of the controversial results found in the literature. A lack of response in the biobank network to warrant standard optimized procedures for the isolation, characterization, and storage of EXOs will undoubtedly lead to a waste of resources and failure. This review is aimed at highlighting the increasing importance of EXOs for the clinic, especially in the cancer field, and at summarizing the initiatives taken to improve current isolation procedures, classification criteria, and storage conditions of EXOs as an effort to identify technological demands that biobank platforms face for the incorporation of EXOs and other extracellular vesicle fractions as valuable biospecimens for research.
Collapse
Affiliation(s)
- Edna M Mora
- Department of Surgery, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan 00936, Puerto Rico.
- University of Puerto Rico Comprehensive Cancer Center, San Juan 00936, Puerto Rico.
| | | | - Elisa Oltra
- Facultad de Medicina, Universidad Católica de Valencia "San Vicente Mártir", Valencia 46001, Spain.
- Instituto Valenciano de Patología (IVP) de la Universidad Católica de Valencia "San Vicente Mártir", Centro de Investigación Príncipe Felipe (CIPF), Valencia 46012, Spain.
| |
Collapse
|
1959
|
Muqbil I, Mohammad RM. Selecting efficacious Bcl-2 family inhibitors for optimal clinical outcome. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:312. [PMID: 26697472 DOI: 10.3978/j.issn.2305-5839.2015.09.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Irfana Muqbil
- 1 Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA ; 2 Interim translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Ramzi M Mohammad
- 1 Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA ; 2 Interim translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
1960
|
Philip R, Heiler S, Mu W, Büchler MW, Zöller M, Thuma F. Claudin-7 promotes the epithelial-mesenchymal transition in human colorectal cancer. Oncotarget 2015; 6:2046-63. [PMID: 25514462 PMCID: PMC4385835 DOI: 10.18632/oncotarget.2858] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/02/2014] [Indexed: 12/14/2022] Open
Abstract
In colorectal cancer (CoCa) EpCAM is frequently associated with claudin-7. There is evidence that tumor-promoting EpCAM activities are modulated by the association with claudin-7. To support this hypothesis, claudin-7 was knocked-down (kd) in HT29 and SW948 cells. HT29-cld7kd and SW948-cld7kd cells display decreased anchorage-independent growth and the capacity for holoclone-, respectively, sphere-formation is reduced. Tumor growth is delayed and cld7kd cells poorly metastasize. In line with this, migratory and invasive potential of cld7kd clones is strongly impaired, migration being inhibited by anti-CD49c, but not anti-EpCAM, although motility is reduced in EpCAM siRNA-treated cells. This is due to claudin-7 recruiting EpCAM in glycolipid-enriched membrane fractions towards claudin-7-associated TACE and presenilin2, which cleave EpCAM. The cleaved intracellular domain, EpIC, promotes epithelial-mesenchymal transition (EMT)-associated transcription factor expression, which together with fibronectin and vimentin are reduced in claudin-7kd cells. But, uptake of HT29wt and SW948wt exosomes by the claudin-7kd lines sufficed for transcription factor upregulation and for restoring motility. Thus, claudin-7 contributes to motility and invasion and is required for recruiting EpCAM towards TACE/presenilin2. EpIC generation further supports motility by promoting a shift towards EMT. Notably, EMT features of cld7-competent metastatic CoCa cells can be transferred via exosomes to poorly metastatic cells.
Collapse
Affiliation(s)
- Rahel Philip
- Department of Tumor Cell Biology, University Hospital of Surgery, Heidelberg
| | - Sarah Heiler
- Department of Tumor Cell Biology, University Hospital of Surgery, Heidelberg
| | - Wei Mu
- Department of Tumor Cell Biology, University Hospital of Surgery, Heidelberg
| | | | - Margot Zöller
- Department of Tumor Cell Biology, University Hospital of Surgery, Heidelberg
| | - Florian Thuma
- Department of Tumor Cell Biology, University Hospital of Surgery, Heidelberg
| |
Collapse
|
1961
|
Park SH, Choi YP, Park J, Share A, Francesconi O, Nativi C, Namkung W, Sessler JL, Roelens S, Shin I. Synthetic aminopyrrolic receptors have apoptosis inducing activity. Chem Sci 2015; 6:7284-7292. [PMID: 28757987 PMCID: PMC5512143 DOI: 10.1039/c5sc03200h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/25/2015] [Indexed: 12/18/2022] Open
Abstract
We report two synthetic aminopyrrolic compounds that induce apoptotic cell death. These compounds have been previously shown to act as receptors for mannosides. The extent of receptor-induced cell death is greater in cells expressing a high level of high-mannose oligosaccharides than in cells producing lower levels of high-mannose glycans. The ability of synthetic receptors to induce cell death is attenuated in the presence of external mannosides. The present results provide support for the suggestion that the observed cell death reflects an ability of the receptors to bind mannose displayed on the cell surface. Signaling pathway studies indicate that the synthetic receptors of the present study promote JNK activation, induce Bax translocation to the mitochondria, and cause cytochrome c release from the mitochondria into the cytosol, thus promoting caspase-dependent apoptosis. Such effects are also observed in cells treated with mannose-binding ConA. The present results thus serve to highlight what may be an attractive new approach to triggering apoptosis via modes of action that differ from those normally used to promote apoptosis.
Collapse
Affiliation(s)
- Seong-Hyun Park
- Center for Biofunctional Molecules , Department of Chemistry , Yonsei University , 03722 Seoul , Korea .
| | - Yoon Pyo Choi
- Center for Biofunctional Molecules , Department of Chemistry , Yonsei University , 03722 Seoul , Korea .
| | - Jinhong Park
- College of Pharmacy , Yonsei Institute of Pharmaceutical Sciences , Yonsei University , 21983 Incheon , Korea
| | - Andrew Share
- Department of Chemistry , The University of Texas at Austin , 78712-1224 Austin , Texas , USA
| | - Oscar Francesconi
- Department of Chemistry and INSTM , University of Florence , Polo Scientifico e Tecnologico, 50019 Sesto Fiorentino , Firenze , Italy
| | - Cristina Nativi
- Department of Chemistry and INSTM , University of Florence , Polo Scientifico e Tecnologico, 50019 Sesto Fiorentino , Firenze , Italy
| | - Wan Namkung
- College of Pharmacy , Yonsei Institute of Pharmaceutical Sciences , Yonsei University , 21983 Incheon , Korea
| | - Jonathan L Sessler
- Department of Chemistry , The University of Texas at Austin , 78712-1224 Austin , Texas , USA
| | - Stefano Roelens
- Istituto di Metodologie Chimiche (IMC) , Consiglio Nazionale delle Ricerche (CNR) , Department of Chemistry and INSTM , University of Florence , Polo Scientifico e Tecnologico, 50019 Sesto Fiorentino , Firenze , Italy
| | - Injae Shin
- Center for Biofunctional Molecules , Department of Chemistry , Yonsei University , 03722 Seoul , Korea .
| |
Collapse
|
1962
|
Mohammad RM, Muqbil I, Lowe L, Yedjou C, Hsu HY, Lin LT, Siegelin MD, Fimognari C, Kumar NB, Dou QP, Yang H, Samadi AK, Russo GL, Spagnuolo C, Ray SK, Chakrabarti M, Morre JD, Coley HM, Honoki K, Fujii H, Georgakilas AG, Amedei A, Niccolai E, Amin A, Ashraf SS, Helferich WG, Yang X, Boosani CS, Guha G, Bhakta D, Ciriolo MR, Aquilano K, Chen S, Mohammed SI, Keith WN, Bilsland A, Halicka D, Nowsheen S, Azmi AS. Broad targeting of resistance to apoptosis in cancer. Semin Cancer Biol 2015; 35 Suppl:S78-S103. [PMID: 25936818 PMCID: PMC4720504 DOI: 10.1016/j.semcancer.2015.03.001] [Citation(s) in RCA: 538] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 12/15/2022]
Abstract
Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer.
Collapse
Affiliation(s)
- Ramzi M Mohammad
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States; Interim translational Research Institute, Hamad Medical Corporation, Doha, Qatar.
| | - Irfana Muqbil
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada
| | - Clement Yedjou
- C-SET, [Jackson, #229] State University, Jackson, MS, United States
| | - Hsue-Yin Hsu
- Department of Life Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Markus David Siegelin
- Department of Pathology and Cell Biology, Columbia University, New York City, NY, United States
| | - Carmela Fimognari
- Dipartimento di Scienze per la Qualità della Vita Alma Mater Studiorum-Università di Bologna, Italy
| | - Nagi B Kumar
- Moffit Cancer Center, University of South Florida College of Medicine, Tampa, FL, United States
| | - Q Ping Dou
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States; Departments of Pharmacology and Pathology, Karmanos Cancer Institute, Detroit MI, United States
| | - Huanjie Yang
- The School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | | | - Gian Luigi Russo
- Institute of Food Sciences National Research Council, Avellino, Italy
| | - Carmela Spagnuolo
- Institute of Food Sciences National Research Council, Avellino, Italy
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Mrinmay Chakrabarti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - James D Morre
- Mor-NuCo, Inc, Purdue Research Park, West Lafayette, IN, United States
| | - Helen M Coley
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Japan
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Japan
| | - Alexandros G Georgakilas
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou 15780, Athens, Greece
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, university of florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, university of florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, UAE University, United Arab Emirates; Faculty of Science, Cairo University, Egypt
| | - S Salman Ashraf
- Department of Chemistry, College of Science, UAE University, United Arab Emirates
| | - William G Helferich
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Xujuan Yang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Chandra S Boosani
- Department of BioMedical Sciences, School of Medicine Creighton University, Omaha NE, United States
| | - Gunjan Guha
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | - Dipita Bhakta
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | | | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Italy
| | - Sophie Chen
- Ovarian and Prostate Cancer Research Trust Laboratory, Guildford, Surrey, United Kingdom
| | - Sulma I Mohammed
- Department of Comparative Pathobiology and Purdue University Center for Cancer Research, Purdue, West Lafayette, IN, United States
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Ireland
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Ireland
| | - Dorota Halicka
- Department of Pathology, New York Medical College, Valhalla, NY, United States
| | - Somaira Nowsheen
- Mayo Graduate School, Mayo Medical School, Mayo Clinic Medical Scientist Training Program, Rochester, MN, United States
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| |
Collapse
|
1963
|
Philley JV, Kannan A, Qin W, Sauter ER, Ikebe M, Hertweck KL, Troyer DA, Semmes OJ, Dasgupta S. Complex-I Alteration and Enhanced Mitochondrial Fusion Are Associated With Prostate Cancer Progression. J Cell Physiol 2015; 231:1364-74. [PMID: 26530043 DOI: 10.1002/jcp.25240] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/03/2015] [Indexed: 12/21/2022]
Abstract
Mitochondria (mt) encoded respiratory complex-I (RCI) mutations and their pathogenicity remain largely unknown in prostate cancer (PCa). Little is known about the role of mtDNA loss on mt integrity in PCa. We determined mtDNA mutation in human and mice PCa and assessed the impact of mtDNA depletion on mt integrity. We also examined whether the circulating exosomes from PCa patients are transported to mt and carry mtDNA or mt proteins. We have employed next generation sequencing of the whole mt genome in human and Hi-myc PCa. The impact of mtDNA depletion on mt integrity, presence of mtDNA, and protein in sera exosomes was determined. A co-culture of human PCa cells and the circulating exosomes followed by confocal imaging determined co-localization of exosomes and mt. We observed frequent RCI mutations in human and Hi-myc PCa which disrupted corresponding complex protein expression. Depletion of mtDNA in PCa cells influenced mt integrity, increased expression of MFN1, MFN2, PINK1, and decreased expression of MT-TFA. Increased mt fusion and expression of PINK1 and DNM1L were also evident in the Hi-myc tumors. RCI-mtDNA, MFN2, and IMMT proteins were detected in the circulating exosomes of men with benign prostate hyperplasia (BPH) and progressive PCa. Circulating exosomes and mt co-localized in PCa cells. Our study identified new pathogenic RCI mutations in PCa and defined the impact of mtDNA loss on mt integrity. Presence of mtDNA and mt proteins in the circulating exosomes implicated their usefulness for biomarker development.
Collapse
Affiliation(s)
- Julie V Philley
- Department of Medicine, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Anbarasu Kannan
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Wenyi Qin
- Department of Surgery, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Edward R Sauter
- Department of Surgery, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Mitsuo Ikebe
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Kate L Hertweck
- Department of Biology, The University of Texas at Tyler, Tyler, Texas
| | - Dean A Troyer
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia
| | - Oliver J Semmes
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia
| | - Santanu Dasgupta
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| |
Collapse
|
1964
|
Topological robustness analysis of protein interaction networks reveals key targets for overcoming chemotherapy resistance in glioma. Sci Rep 2015; 5:16830. [PMID: 26582089 PMCID: PMC4652178 DOI: 10.1038/srep16830] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/21/2015] [Indexed: 12/15/2022] Open
Abstract
Biological networks display high robustness against random failures but are vulnerable to targeted attacks on central nodes. Thus, network topology analysis represents a powerful tool for investigating network susceptibility against targeted node removal. Here, we built protein interaction networks associated with chemoresistance to temozolomide, an alkylating agent used in glioma therapy, and analyzed their modular structure and robustness against intentional attack. These networks showed functional modules related to DNA repair, immunity, apoptosis, cell stress, proliferation and migration. Subsequently, network vulnerability was assessed by means of centrality-based attacks based on the removal of node fractions in descending orders of degree, betweenness, or the product of degree and betweenness. This analysis revealed that removing nodes with high degree and high betweenness was more effective in altering networks' robustness parameters, suggesting that their corresponding proteins may be particularly relevant to target temozolomide resistance. In silico data was used for validation and confirmed that central nodes are more relevant for altering proliferation rates in temozolomide-resistant glioma cell lines and for predicting survival in glioma patients. Altogether, these results demonstrate how the analysis of network vulnerability to topological attack facilitates target prioritization for overcoming cancer chemoresistance.
Collapse
|
1965
|
Ohkoshi S, Yano M, Matsuda Y. Oncogenic role of p21 in hepatocarcinogenesis suggests a new treatment strategy. World J Gastroenterol 2015; 21:12150-6. [PMID: 26576099 PMCID: PMC4641132 DOI: 10.3748/wjg.v21.i42.12150] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/30/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
A well-known tumor suppressor, p21, acts paradoxically by promoting tumor growth in some cellular conditions. These conflicting functions have been demonstrated in association with the HBx gene and in hepatocarcinogenesis. The molecular behavior of p21 depends on its subcellular localization. Nuclear p21 may inhibit cell proliferation and be proapoptotic, while cytoplasmic p21 may have oncogenic and anti-apoptotic functions. Because most typical tumor suppressive proteins also have different effects according to subcellular localization, elucidating the regulatory mechanisms underlying nucleo-cytoplasmic transport of these proteins would be significant and may lead to a new strategy for anti-hepatocellular carcinoma (HCC) therapy. Chromosome region maintenance 1 (CRM1) is a major nuclear export receptor involved in transport of tumor suppressors from nucleus to cytoplasm. Expression of CRM1 is enhanced in a variety of malignancies and in vitro studies have shown the efficacy of specific inhibition of CRM1 against cancer cell lines. Interestingly, interferon may keep p21 in the nucleus; this is one of the mechanisms of its anti-hepatocarcinogenic function. Here we review the oncogenic property of p21, which depends on its subcellular localization, and discuss the rationale underlying a new strategy for HCC treatment and prevention.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Animals
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- Cyclin-Dependent Kinase Inhibitor p21/metabolism
- Drug Design
- Humans
- Karyopherins/metabolism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Molecular Targeted Therapy
- Oncogene Proteins/metabolism
- Receptors, Cytoplasmic and Nuclear/metabolism
- Signal Transduction
- Tumor Suppressor Proteins/metabolism
- Exportin 1 Protein
Collapse
|
1966
|
Mao L, Li J, Chen WX, Cai YQ, Yu DD, Zhong SL, Zhao JH, Zhou JW, Tang JH. Exosomes decrease sensitivity of breast cancer cells to adriamycin by delivering microRNAs. Tumour Biol 2015; 37:5247-56. [DOI: 10.1007/s13277-015-4402-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/05/2015] [Indexed: 12/20/2022] Open
|
1967
|
Azmi AS, Muqbil I, Wu J, Aboukameel A, Senapedis W, Baloglu E, Bollig-Fischer A, Dyson G, Kauffman M, Landesman Y, Shacham S, Philip PA, Mohammad RM. Targeting the Nuclear Export Protein XPO1/CRM1 Reverses Epithelial to Mesenchymal Transition. Sci Rep 2015; 5:16077. [PMID: 26536918 PMCID: PMC4633607 DOI: 10.1038/srep16077] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/29/2015] [Indexed: 12/11/2022] Open
Abstract
Here we demonstrate for the first time that targeted inhibition of nuclear exporter protein exportin 1 (XPO1) also known as chromosome maintenance region 1 (CRM1) by Selective Inhibitor of Nuclear Export (SINE) compounds results in reversal of EMT in snail-transduced primary human mammary epithelial cells (HMECs). SINE compounds selinexor (KPT-330) and KPT-185, leptomycin B (LMB as +ve control) but not KPT-301 (-ve control) reverse EMT, suppress mesenchymal markers and consequently induce growth inhibition, apoptosis and prevent spheroid formation. SINE treatment resulted in nuclear retention of snail regulator FBXL5 that was concurrent with suppression of snail and down-regulation of mesenchymal markers. FBXL5 siRNA or transfection with cys528 mut-Xpo1 (lacking SINE binding site) markedly abrogated SINE activity highlighting an XPO1 and FBXL5 mediated mechanism of action. Silencing XPO1 or snail caused re-expression of FBXL5 as well as EMT reversal. Pathway analysis on SINE treated HMECs further verified the involvement of additional F-Box family proteins and confirmed the suppression of snail network. Oral administration of selinexor (15 mg/kg p.o. QoDx3/week for 3weeks) resulted in complete cures (no tumor rebound at 120 days) of HMLER-Snail xenografts. These findings raise the unique possibility of blocking EMT at the nuclear pore.
Collapse
Affiliation(s)
- Asfar S. Azmi
- Department of Oncology, Wayne State University School of Medicine, Detroit MI 48201
| | - Irfana Muqbil
- Department of Oncology, Wayne State University School of Medicine, Detroit MI 48201
| | - Jack Wu
- Department of Oncology, Wayne State University School of Medicine, Detroit MI 48201
| | - Amro Aboukameel
- Department of Oncology, Wayne State University School of Medicine, Detroit MI 48201
| | | | | | | | - Gregory Dyson
- Department of Oncology, Wayne State University School of Medicine, Detroit MI 48201
| | | | | | | | - Philip A. Philip
- Department of Oncology, Wayne State University School of Medicine, Detroit MI 48201
| | - Ramzi M. Mohammad
- Department of Oncology, Wayne State University School of Medicine, Detroit MI 48201
- iTRI Hamad Medical Corporation, Doha Qatar
| |
Collapse
|
1968
|
Role of Extracellular Vesicles in Hematological Malignancies. BIOMED RESEARCH INTERNATIONAL 2015; 2015:821613. [PMID: 26583135 PMCID: PMC4637071 DOI: 10.1155/2015/821613] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/13/2015] [Indexed: 12/11/2022]
Abstract
In recent years the role of tumor microenvironment in the progression of hematological malignancies has been widely recognized. Recent studies have focused on how cancer cells communicate within the microenvironment. Among several factors (cytokines, growth factors, and ECM molecules), a key role has been attributed to extracellular vesicles (EV), released from different cell types. EV (microvesicles and exosomes) may affect stroma remodeling, host cell functions, and tumor angiogenesis by inducing gene expression modulation in target cells, thus promoting cancer progression and metastasis. Microvesicles and exosomes can be recovered from the blood and other body fluids of cancer patients and contain and deliver genetic and proteomic contents that reflect the cell of origin, thus constituting a source of new predictive biomarkers involved in cancer development and serving as possible targets for therapies. Moreover, due to their specific cell-tropism and bioavailability, EV can be considered natural vehicles suitable for drug delivery. Here we will discuss the recent advances in the field of EV as actors in hematological cancer progression, pointing out the role of these vesicles in the tumor-host interplay and in their use as biomarkers for hematological malignancies.
Collapse
|
1969
|
Wang G, Wang Y, Wang L, Han L, Hou X, Fu H, Fang H. Design, synthesis and preliminary bioactivity studies of imidazolidine-2,4-dione derivatives as Bcl-2 inhibitors. Bioorg Med Chem 2015; 23:7359-65. [PMID: 26558516 DOI: 10.1016/j.bmc.2015.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 01/07/2023]
Abstract
Anti-apoptotic B-cell lymphoma-2 (Bcl-2) proteins are promising targets for cancer therapy. In the present study, a series of imidazolidine-2,4-dione derivatives were designed and synthesized to test their inhibitory activities against anti-apoptotic Bcl-2 proteins. Among them, compound 8k had better growth inhibitory effects on K562 and PC-3 cell lines compared to lead compound WL-276.
Collapse
Affiliation(s)
- Gang Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Yutao Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Lei Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Leiqiang Han
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Xuben Hou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Huansheng Fu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Hao Fang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China.
| |
Collapse
|
1970
|
Krause M, Samoylenko A, Vainio SJ. Exosomes as renal inductive signals in health and disease, and their application as diagnostic markers and therapeutic agents. Front Cell Dev Biol 2015; 3:65. [PMID: 26539435 PMCID: PMC4611857 DOI: 10.3389/fcell.2015.00065] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/05/2015] [Indexed: 12/17/2022] Open
Abstract
Cells secrete around 30–1000 nm membrane-enclosed vesicles, of which members of the subgroup between 30 and 100 nm are termed exosomes (EXs). EXs are released into the extracellular space and are widely present in body fluids and incorporated mRNA, miRNA, proteins, and signaling molecules. Increasing amounts of evidence suggest that EXs play an important role not only in cell-to-cell communication but also in various physiological and disease processes. EXs secreted by kidney cells control nephron function and are involved in kidney diseases and cancers. This makes them potential targets for diagnostic and therapeutic applications such as non-invasive biomarkers and cell-free vaccines and for use as drug delivery vehicles. This review provides an overview on the known roles of EXs in kidney development and diseases, including renal cancer. Additionally, it covers recent findings on their significance as diagnostic markers and on therapeutic applications to renal diseases and cancers. The intention is to promote an awareness of how many questions still remain open but are certainly worth investigating.
Collapse
Affiliation(s)
- Mirja Krause
- Biocenter Oulu, Infotech Oulu, Developmental Biology Lab, Faculty of Biochemistry and Molecular Medicine, Center for Cell Matrix Research, University of Oulu Oulu, Finland
| | - Anatoliy Samoylenko
- Biocenter Oulu, Infotech Oulu, Developmental Biology Lab, Faculty of Biochemistry and Molecular Medicine, Center for Cell Matrix Research, University of Oulu Oulu, Finland
| | - Seppo J Vainio
- Biocenter Oulu, Infotech Oulu, Developmental Biology Lab, Faculty of Biochemistry and Molecular Medicine, Center for Cell Matrix Research, University of Oulu Oulu, Finland
| |
Collapse
|
1971
|
Arnason T, Harkness T. Development, Maintenance, and Reversal of Multiple Drug Resistance: At the Crossroads of TFPI1, ABC Transporters, and HIF1. Cancers (Basel) 2015; 7:2063-82. [PMID: 26501324 PMCID: PMC4695877 DOI: 10.3390/cancers7040877] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/10/2015] [Indexed: 12/21/2022] Open
Abstract
Early detection and improved therapies for many cancers are enhancing survival rates. Although many cytotoxic therapies are approved for aggressive or metastatic cancer; response rates are low and acquisition of de novo resistance is virtually universal. For decades; chemotherapeutic treatments for cancer have included anthracyclines such as Doxorubicin (DOX); and its use in aggressive tumors appears to remain a viable option; but drug resistance arises against DOX; as for all other classes of compounds. Our recent work suggests the anticoagulant protein Tissue Factor Pathway Inhibitor 1α (TFPI1α) plays a role in driving the development of multiple drug resistance (MDR); but not maintenance; of the MDR state. Other factors; such as the ABC transporter drug efflux pumps MDR-1/P-gp (ABCB1) and BCRP (ABCG2); are required for MDR maintenance; as well as development. The patient population struggling with therapeutic resistance specifically requires novel treatment options to resensitize these tumor cells to therapy. In this review we discuss the development, maintenance, and reversal of MDR as three distinct phases of cancer biology. Possible means to exploit these stages to reverse MDR will be explored. Early molecular detection of MDR cancers before clinical failure has the potential to offer new approaches to fighting MDR cancer.
Collapse
Affiliation(s)
- Terra Arnason
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
- Correspondence: ; Tel.:+1-306-844-1119; Fax: +1-306-844-1512
| | - Troy Harkness
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada;
| |
Collapse
|
1972
|
Bisaro B, Mandili G, Poli A, Piolatto A, Papa V, Novelli F, Cenacchi G, Forni M, Zanini C. Proteomic analysis of extracellular vesicles from medullospheres reveals a role for iron in the cancer progression of medulloblastoma. MOLECULAR AND CELLULAR THERAPIES 2015; 3:8. [PMID: 26464805 PMCID: PMC4603768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/06/2015] [Indexed: 11/21/2023]
Abstract
BACKGROUND Medulloblastoma (MB) is the most common malignant childhood brain tumor with the propensity to disseminate at an early stage, and is associated with high morbidity. New treatment strategies are needed to improve cure rates and to reduce life-long cognitive and functional deficits associated with current therapies. Extracellular Vesicles (EVs) are important players in cell-to-cell communication in health and diseases. A clearer understanding of cell-to-cell communication in tumors can be achieved by studying EV secretion in medullospheres. This can reveal subtle modifications induced by the passage from adherent to non-adherent growth, as spheres may account for the adaptation of tumor cells to the mutated environment. METHODS Formation of medullospheres from MB cell lines stabilized in adherent conditions was obtained through culture conditioning based on low attachment flasks and specialized medium. EVs collected by ultracentrifugation, in adherent conditions and as spheres, were subjected to electron microscopy, NanoSight measurements and proteomics. RESULTS Interestingly, iron carrier proteins were only found in EVs shed by CSC-enriched tumor cell population of spheres. We used iron chelators when culturing MB cell lines as spheres. Iron chelators induced a decrease in number/size of spheres and in stem cell populations able to initiate in vitro spheres formation. CONCLUSIONS This work suggests a not yet identified role of iron metabolism in MB progression and invasion and opens the possibility to use chelators as adjuvants in anti-tumoral chemotherapy.
Collapse
Affiliation(s)
- Brigitte Bisaro
- />EuroClone S.p.A Research Laboratory, Molecular Biotechnology Centre (MBC), University of Turin, Turin, Italy
| | - Giorgia Mandili
- />Centre for Experimental and Clinical Studies CERMS, Azienda Universitaria Ospedaliera Città della Salute e della Scienza Città di Torino, Turin, Italy
| | - Alice Poli
- />BioDigitalValley srl, Pont-Saint-Martin (AO), Turin, Italy
| | - Andrea Piolatto
- />Department of Molecular Biotechnology and Heath Sciences, University of Turin, Turin, Italy
| | - Valentina Papa
- />Department of Neuromotor and Biomedical Sciences, Alma Mater University of Bologna, Bologna, Italy
| | - Francesco Novelli
- />Department of Molecular Biotechnology and Heath Sciences, University of Turin, Turin, Italy
| | - Giovanna Cenacchi
- />Department of Neuromotor and Biomedical Sciences, Alma Mater University of Bologna, Bologna, Italy
| | - Marco Forni
- />Department of Molecular Biotechnology and Heath Sciences, University of Turin, Turin, Italy
| | - Cristina Zanini
- />EuroClone S.p.A Research Laboratory, Molecular Biotechnology Centre (MBC), University of Turin, Turin, Italy
| |
Collapse
|
1973
|
Bisaro B, Mandili G, Poli A, Piolatto A, Papa V, Novelli F, Cenacchi G, Forni M, Zanini C. Proteomic analysis of extracellular vesicles from medullospheres reveals a role for iron in the cancer progression of medulloblastoma. MOLECULAR AND CELLULAR THERAPIES 2015; 3:8. [PMID: 26464805 PMCID: PMC4603768 DOI: 10.1186/s40591-015-0045-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/06/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Medulloblastoma (MB) is the most common malignant childhood brain tumor with the propensity to disseminate at an early stage, and is associated with high morbidity. New treatment strategies are needed to improve cure rates and to reduce life-long cognitive and functional deficits associated with current therapies. Extracellular Vesicles (EVs) are important players in cell-to-cell communication in health and diseases. A clearer understanding of cell-to-cell communication in tumors can be achieved by studying EV secretion in medullospheres. This can reveal subtle modifications induced by the passage from adherent to non-adherent growth, as spheres may account for the adaptation of tumor cells to the mutated environment. METHODS Formation of medullospheres from MB cell lines stabilized in adherent conditions was obtained through culture conditioning based on low attachment flasks and specialized medium. EVs collected by ultracentrifugation, in adherent conditions and as spheres, were subjected to electron microscopy, NanoSight measurements and proteomics. RESULTS Interestingly, iron carrier proteins were only found in EVs shed by CSC-enriched tumor cell population of spheres. We used iron chelators when culturing MB cell lines as spheres. Iron chelators induced a decrease in number/size of spheres and in stem cell populations able to initiate in vitro spheres formation. CONCLUSIONS This work suggests a not yet identified role of iron metabolism in MB progression and invasion and opens the possibility to use chelators as adjuvants in anti-tumoral chemotherapy.
Collapse
Affiliation(s)
- Brigitte Bisaro
- EuroClone S.p.A Research Laboratory, Molecular Biotechnology Centre (MBC), University of Turin, Turin, Italy
| | - Giorgia Mandili
- Centre for Experimental and Clinical Studies CERMS, Azienda Universitaria Ospedaliera Città della Salute e della Scienza Città di Torino, Turin, Italy
| | - Alice Poli
- BioDigitalValley srl, Pont-Saint-Martin (AO), Turin, Italy
| | - Andrea Piolatto
- Department of Molecular Biotechnology and Heath Sciences, University of Turin, Turin, Italy
| | - Valentina Papa
- Department of Neuromotor and Biomedical Sciences, Alma Mater University of Bologna, Bologna, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Heath Sciences, University of Turin, Turin, Italy
| | - Giovanna Cenacchi
- Department of Neuromotor and Biomedical Sciences, Alma Mater University of Bologna, Bologna, Italy
| | - Marco Forni
- Department of Molecular Biotechnology and Heath Sciences, University of Turin, Turin, Italy
| | - Cristina Zanini
- EuroClone S.p.A Research Laboratory, Molecular Biotechnology Centre (MBC), University of Turin, Turin, Italy
| |
Collapse
|
1974
|
Liu S, Liu D, Chen C, Hamamura K, Moshaverinia A, Yang R, Liu Y, Jin Y, Shi S. MSC Transplantation Improves Osteopenia via Epigenetic Regulation of Notch Signaling in Lupus. Cell Metab 2015; 22:606-18. [PMID: 26365178 PMCID: PMC4731233 DOI: 10.1016/j.cmet.2015.08.018] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 06/20/2015] [Accepted: 08/12/2015] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cell transplantation (MSCT) has been used to treat human diseases, but the detailed mechanisms underlying its success are not fully understood. Here we show that MSCT rescues bone marrow MSC (BMMSC) function and ameliorates osteopenia in Fas-deficient-MRL/lpr mice. Mechanistically, we show that Fas deficiency causes failure of miR-29b release, thereby elevating intracellular miR-29b levels, and downregulates DNA methyltransferase 1 (Dnmt1) expression in MRL/lpr BMMSCs. This results in hypomethylation of the Notch1 promoter and activation of Notch signaling, in turn leading to impaired osteogenic differentiation. Furthermore, we show that exosomes, secreted due to MSCT, transfer Fas to recipient MRL/lpr BMMSCs to reduce intracellular levels of miR-29b, which results in recovery of Dnmt1-mediated Notch1 promoter hypomethylation and thereby improves MRL/lpr BMMSC function. Collectively our findings unravel the means by which MSCT rescues MRL/lpr BMMSC function through reuse of donor exosome-provided Fas to regulate the miR-29b/Dnmt1/Notch epigenetic cascade.
Collapse
Affiliation(s)
- Shiyu Liu
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Dawei Liu
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA; Department of Orthodontics, Peking University School & Hospital of Stomatology, #22 Zhongguancun South Avenue, Beijing 100081, China
| | - Chider Chen
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Kazunori Hamamura
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Alireza Moshaverinia
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Ruili Yang
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA; Department of Orthodontics, Peking University School & Hospital of Stomatology, #22 Zhongguancun South Avenue, Beijing 100081, China
| | - Yao Liu
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Yan Jin
- State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Songtao Shi
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA.
| |
Collapse
|
1975
|
Yu DD, Wu Y, Zhang XH, Lv MM, Chen WX, Chen X, Yang SJ, Shen H, Zhong SL, Tang JH, Zhao JH. Exosomes from adriamycin-resistant breast cancer cells transmit drug resistance partly by delivering miR-222. Tumour Biol 2015; 37:3227-35. [DOI: 10.1007/s13277-015-4161-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/27/2015] [Indexed: 12/21/2022] Open
|
1976
|
Watkins R, Wu L, Zhang C, Davis RM, Xu B. Natural product-based nanomedicine: recent advances and issues. Int J Nanomedicine 2015; 10:6055-74. [PMID: 26451111 PMCID: PMC4592057 DOI: 10.2147/ijn.s92162] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Natural products have been used in medicine for many years. Many top-selling pharmaceuticals are natural compounds or their derivatives. These plant- or microorganism-derived compounds have shown potential as therapeutic agents against cancer, microbial infection, inflammation, and other disease conditions. However, their success in clinical trials has been less impressive, partly due to the compounds’ low bioavailability. The incorporation of nanoparticles into a delivery system for natural products would be a major advance in the efforts to increase their therapeutic effects. Recently, advances have been made showing that nanoparticles can significantly increase the bioavailability of natural products both in vitro and in vivo. Nanotechnology has demonstrated its capability to manipulate particles in order to target specific areas of the body and control the release of drugs. Although there are many benefits to applying nanotechnology for better delivery of natural products, it is not without issues. Drug targeting remains a challenge and potential nanoparticle toxicity needs to be further investigated, especially if these systems are to be used to treat chronic human diseases. This review aims to summarize recent progress in several key areas relevant to natural products in nanoparticle delivery systems for biomedical applications.
Collapse
Affiliation(s)
- Rebekah Watkins
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Program in Nanoscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Ling Wu
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Chenming Zhang
- Center for Drug Discovery, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Institute for Critical Technology and Applied Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Richey M Davis
- Center for Drug Discovery, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Institute for Critical Technology and Applied Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Bin Xu
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Center for Drug Discovery, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
1977
|
Fatima F, Nawaz M. Stem cell-derived exosomes: roles in stromal remodeling, tumor progression, and cancer immunotherapy. CHINESE JOURNAL OF CANCER 2015; 34:541-53. [PMID: 26369565 PMCID: PMC4593342 DOI: 10.1186/s40880-015-0051-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/27/2015] [Indexed: 12/18/2022]
Abstract
Stem cells are known to maintain stemness at least in part through secreted factors that promote stem-like phenotypes in resident cells. Accumulating evidence has clarified that stem cells release nano-vesicles, known as exosomes, which may serve as mediators of cell-to-cell communication and may potentially transmit stem cell phenotypes to recipient cells, facilitating stem cell maintenance, differentiation, self-renewal, and repair. It has become apparent that stem cell-derived exosomes mediate interactions among stromal elements, promote genetic instability in recipient cells, and induce malignant transformation. This review will therefore discuss the potential of stem cell-derived exosomes in the context of stromal remodeling and their ability to generate cancer-initiating cells in a tumor niche by inducing morphologic and functional differentiation of fibroblasts into tumor-initiating fibroblasts. In addition, the immunosuppressive potential of stem cell-derived exosomes in cancer immunotherapy and their prospective applications in cell-free therapies in future translational medicine is discussed.
Collapse
Affiliation(s)
- Farah Fatima
- Department of Pathology and Forensic Medicine, Faculty of Medicine Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, Ribeirao Preto, Sao Paulo, Brazil. .,Department of Rheumatology and Inflammation Research, University of Gothenburg, 480, 40530, Gothenburg, Sweden.
| | - Muhammad Nawaz
- Department of Pathology and Forensic Medicine, Faculty of Medicine Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, Ribeirao Preto, Sao Paulo, Brazil. .,Department of Rheumatology and Inflammation Research, University of Gothenburg, 480, 40530, Gothenburg, Sweden.
| |
Collapse
|
1978
|
Tabe Y, Kojima K, Yamamoto S, Sekihara K, Matsushita H, Davis RE, Wang Z, Ma W, Ishizawa J, Kazuno S, Kauffman M, Shacham S, Fujimura T, Ueno T, Miida T, Andreeff M. Ribosomal Biogenesis and Translational Flux Inhibition by the Selective Inhibitor of Nuclear Export (SINE) XPO1 Antagonist KPT-185. PLoS One 2015; 10:e0137210. [PMID: 26340096 PMCID: PMC4560410 DOI: 10.1371/journal.pone.0137210] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 08/13/2015] [Indexed: 01/01/2023] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive B-cell lymphoma characterized by the aberrant expression of several growth-regulating, oncogenic effectors. Exportin 1 (XPO1) mediates the nucleocytoplasmic transport of numerous molecules including oncogenic growth-regulating factors, RNAs, and ribosomal subunits. In MCL cells, the small molecule KPT-185 blocks XPO1 function and exerts anti-proliferative effects. In this study, we investigated the molecular mechanisms of this putative anti-tumor effect on MCL cells using cell growth/viability assays, immunoblotting, gene expression analysis, and absolute quantification proteomics. KPT-185 exhibited a p53-independent anti-lymphoma effect on MCL cells, by suppression of oncogenic mediators (e.g., XPO1, cyclin D1, c-Myc, PIM1, and Bcl-2 family members), repression of ribosomal biogenesis, and downregulation of translation/chaperone proteins (e.g., PIM2, EEF1A1, EEF2, and HSP70) that are part of the translational/transcriptional network regulated by heat shock factor 1. These results elucidate a novel mechanism in which ribosomal biogenesis appears to be a key component through which XPO1 contributes to tumor cell survival. Thus, we propose that the blockade of XPO1 could be a promising, novel strategy for the treatment of MCL and other malignancies overexpressing XPO1.
Collapse
Affiliation(s)
- Yoko Tabe
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX, United States of America
- Department of Clinical Laboratory Medicine, Biomedical Research Center Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kensuke Kojima
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX, United States of America
| | - Shinichi Yamamoto
- Department of Clinical Laboratory Medicine, Biomedical Research Center Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Leading Center for the Development and Research of Cancer Medicine, Biomedical Research Center Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kazumasa Sekihara
- Department of Clinical Laboratory Medicine, Biomedical Research Center Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Leading Center for the Development and Research of Cancer Medicine, Biomedical Research Center Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Hiromichi Matsushita
- Department of Laboratory Medicine, Tokai University of Medicine, Kanagawa, Japan
| | - Richard Eric Davis
- Department of Lymphoma and Myeloma, The University of Texas M. D. Anderson Cancer Center, Houston, TX, United States of America
| | - Zhiqiang Wang
- Department of Lymphoma and Myeloma, The University of Texas M. D. Anderson Cancer Center, Houston, TX, United States of America
| | - Wencai Ma
- Department of Lymphoma and Myeloma, The University of Texas M. D. Anderson Cancer Center, Houston, TX, United States of America
| | - Jo Ishizawa
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX, United States of America
| | - Saiko Kazuno
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Center Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Michael Kauffman
- Karyopharm Therapeutics Inc., Natick, MA, United States of America
| | - Sharon Shacham
- Karyopharm Therapeutics Inc., Natick, MA, United States of America
| | - Tsutomu Fujimura
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Center Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Takashi Ueno
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Center Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Biomedical Research Center Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX, United States of America
| |
Collapse
|
1979
|
Liu B, Ezeogu L, Zellmer L, Yu B, Xu N, Joshua Liao D. Protecting the normal in order to better kill the cancer. Cancer Med 2015; 4:1394-403. [PMID: 26177855 PMCID: PMC4567024 DOI: 10.1002/cam4.488] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/21/2015] [Accepted: 05/27/2015] [Indexed: 12/23/2022] Open
Abstract
Chemotherapy is the only option for oncologists when a cancer has widely spread to different body sites. However, almost all currently available chemotherapeutic drugs will eventually encounter resistance after their initial positive effect, mainly because cancer cells develop genetic alterations, collectively coined herein as mutations, to adapt to the therapy. Some patients may still respond to a second chemo drug, but few cases respond to a third one. Since it takes time for cancer cells to develop new mutations and then select those life-sustaining ones via clonal expansion, "run against time for mutations to emerge" should be a crucial principle for treatment of those currently incurable cancers. Since cancer cells constantly change to adapt to the therapy whereas normal cells are stable, it may be a better strategy to shift our focus from killing cancer cells per se to protecting normal cells from chemotherapeutic toxicity. This new strategy requires the development of new drugs that are nongenotoxic and can quickly, in just hours or days, kill cancer cells without leaving the still-alive cells with time to develop mutations, and that should have their toxicities confined to only one or few organs, so that specific protections can be developed and applied.
Collapse
Affiliation(s)
- Bingya Liu
- Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai, 200025, China
| | - Lewis Ezeogu
- Hormel Institute, University of MinnesotaAustin, Minnesota, 55912
| | - Lucas Zellmer
- Hormel Institute, University of MinnesotaAustin, Minnesota, 55912
| | - Baofa Yu
- Beijing Baofa Cancer Hospital, Shahe Wangzhuang Gong Ye YuanChang Pin Qu, Beijing, 102206, China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology, Cancer Institute, Chinese Academy of Medical ScienceBeijing, 100021, China
| | | |
Collapse
|
1980
|
Probing the potential of apigenin liposomes in enhancing bacterial membrane perturbation and integrity loss. J Colloid Interface Sci 2015; 453:48-59. [DOI: 10.1016/j.jcis.2015.04.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/07/2015] [Accepted: 04/07/2015] [Indexed: 11/23/2022]
|
1981
|
Endo-Munoz L, Cai N, Cumming A, Macklin R, Merida de Long L, Topkas E, Mukhopadhyay P, Hill M, Saunders NA. Progression of Osteosarcoma from a Non-Metastatic to a Metastatic Phenotype Is Causally Associated with Activation of an Autocrine and Paracrine uPA Axis. PLoS One 2015; 10:e0133592. [PMID: 26317203 PMCID: PMC4552671 DOI: 10.1371/journal.pone.0133592] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 06/29/2015] [Indexed: 12/18/2022] Open
Abstract
Pulmonary metastasis is the major untreatable complication of osteosarcoma (OS) resulting in 10-20% long-term survival. The factors and pathways regulating these processes remain unclear, yet their identification is crucial in order to find new therapeutic targets. In this study we used a multi-omics approach to identify molecules in metastatic and non-metastatic OS cells that may contribute to OS metastasis, followed by validation in vitro and in vivo. We found elevated levels of the urokinase plasminogen activator (uPA) and of the uPA receptor (uPAR) exclusively in metastatic OS cells. uPA was secreted in soluble form and as part of the protein cargo of OS-secreted extracellular vesicles, including exosomes. In addition, in the tumour microenvironment, uPA was expressed and secreted by bone marrow cells (BMC), and OS- and BMC-derived uPA significantly and specifically stimulated migration of metastatic OS cells via uPA-dependent signaling pathways. Silencing of uPAR in metastatic OS cells abrogated the migratory response to uPA in vitro and decreased metastasis in vivo. Finally, a novel small-molecule inhibitor of uPA significantly (P = 0.0004) inhibited metastasis in an orthotopic mouse model of OS. Thus, we show for the first time that malignant conversion of OS cells to a metastatic phenotype is defined by activation of the uPA/uPAR axis in both an autocrine and paracrine fashion. Furthermore, metastasis is driven by changes in OS cells as well as in the microenvironment. Finally, our data show that pharmacological inhibition of the uPA/uPAR axis with a novel small-molecule inhibitor can prevent the emergence of metastatic foci.
Collapse
Affiliation(s)
- Liliana Endo-Munoz
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland 4102, Australia
- * E-mail:
| | - Na Cai
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Andrew Cumming
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Rebecca Macklin
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Lilia Merida de Long
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Eleni Topkas
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Pamela Mukhopadhyay
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Michelle Hill
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Nicholas A Saunders
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland 4102, Australia
| |
Collapse
|
1982
|
Dickmanns A, Kehlenbach RH, Fahrenkrog B. Nuclear Pore Complexes and Nucleocytoplasmic Transport: From Structure to Function to Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 320:171-233. [PMID: 26614874 DOI: 10.1016/bs.ircmb.2015.07.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nucleocytoplasmic transport is an essential cellular activity and occurs via nuclear pore complexes (NPCs) that reside in the double membrane of the nuclear envelope. Significant progress has been made during the past few years in unravelling the ultrastructural organization of NPCs and their constituents, the nucleoporins, by cryo-electron tomography and X-ray crystallography. Mass spectrometry and genomic approaches have provided deeper insight into the specific regulation and fine tuning of individual nuclear transport pathways. Recent research has also focused on the roles nucleoporins play in health and disease, some of which go beyond nucleocytoplasmic transport. Here we review emerging results aimed at understanding NPC architecture and nucleocytoplasmic transport at the atomic level, elucidating the specific function individual nucleoporins play in nuclear trafficking, and finally lighting up the contribution of nucleoporins and nuclear transport receptors in human diseases, such as cancer and certain genetic disorders.
Collapse
Affiliation(s)
- Achim Dickmanns
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Ralph H Kehlenbach
- Department of Molecular Biology, Faculty of Medicine, Georg-August-University of Göttingen, Göttingen, Germany
| | - Birthe Fahrenkrog
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi, Belgium
| |
Collapse
|
1983
|
Hui L, Chen Y. Tumor microenvironment: Sanctuary of the devil. Cancer Lett 2015; 368:7-13. [PMID: 26276713 DOI: 10.1016/j.canlet.2015.07.039] [Citation(s) in RCA: 513] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/28/2015] [Accepted: 07/16/2015] [Indexed: 12/24/2022]
Abstract
Tumor cells constantly interact with the surrounding microenvironment. Increasing evidence indicates that targeting the tumor microenvironment could complement traditional treatment and improve therapeutic outcomes for these malignancies. In this paper, we review new insights into the tumor microenvironment, and summarize selected examples of the cross-talk between tumor cells and their microenvironment, which have enhanced our understanding of pathophysiology of the microenvironment. We believe that this rapidly moving field promises many more to come, and they will guide the rational design of combinational therapies for success in cancer eradication.
Collapse
Affiliation(s)
- Lanlan Hui
- Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ye Chen
- Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.
| |
Collapse
|
1984
|
Yu DD, Wu Y, Shen HY, Lv MM, Chen WX, Zhang XH, Zhong SL, Tang JH, Zhao JH. Exosomes in development, metastasis and drug resistance of breast cancer. Cancer Sci 2015; 106:959-64. [PMID: 26052865 PMCID: PMC4556383 DOI: 10.1111/cas.12715] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/25/2015] [Accepted: 06/03/2015] [Indexed: 02/06/2023] Open
Abstract
Transport through the cell membrane can be divided into active, passive and vesicular types (exosomes). Exosomes are nano-sized vesicles released by a variety of cells. Emerging evidence shows that exosomes play a critical role in cancers. Exosomes mediate communication between stroma and cancer cells through the transfer of nucleic acid and proteins. It is demonstrated that the contents and the quantity of exosomes will change after occurrence of cancers. Over the last decade, growing attention has been paid to the role of exosomes in the development of breast cancer, the most life-threatening cancer in women. Breast cancer could induce salivary glands to secret specific exosomes, which could be used as biomarkers in the diagnosis of early breast cancer. Exosome-delivered nucleic acid and proteins partly facilitate the tumorigenesis, metastasis and resistance of breast cancer. Exosomes could also transmit anti-cancer drugs outside breast cancer cells, therefore leading to drug resistance. However, exosomes are effective tools for transportation of anti-cancer drugs with lower immunogenicity and toxicity. This is a promising way to establish a drug delivery system.
Collapse
Affiliation(s)
- Dan-dan Yu
- The First Clinical School of Nanjing Medical University, Nanjing, China.,Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Ying Wu
- The First Clinical School of Nanjing Medical University, Nanjing, China.,Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Hong-yu Shen
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Meng-meng Lv
- The First Clinical School of Nanjing Medical University, Nanjing, China
| | - Wei-xian Chen
- The First Clinical School of Nanjing Medical University, Nanjing, China.,Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Xiao-hui Zhang
- Center of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Shan-liang Zhong
- Center of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Jin-hai Tang
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Jian-hua Zhao
- Center of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| |
Collapse
|
1985
|
Madera L, Greenshields A, Coombs MRP, Hoskin DW. 4T1 Murine Mammary Carcinoma Cells Enhance Macrophage-Mediated Innate Inflammatory Responses. PLoS One 2015; 10:e0133385. [PMID: 26177198 PMCID: PMC4503418 DOI: 10.1371/journal.pone.0133385] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/22/2015] [Indexed: 12/12/2022] Open
Abstract
Tumor progression and the immune response are intricately linked. While it is known that cancers alter macrophage inflammatory responses to promote tumor progression, little is known regarding how cancers affect macrophage-dependent innate host defense. In this study, murine bone-marrow-derived macrophages (BMDM) were exposed to murine carcinoma-conditioned media prior to assessment of the macrophage inflammatory response. BMDMs exposed to 4T1 mammary carcinoma-conditioned medium demonstrated enhanced production of pro-inflammatory cytokines tumor necrosis factor α, interleukin-6, and CCL2 in response to lipopolysaccharide (LPS) while production of interleukin-10 remained unchanged. The increased LPS-induced production of pro-inflammatory cytokines was transient and correlated with enhanced cytokine production in response to other Toll-like receptor agonists, including peptidoglycan and flagellin. In addition, 4T1-conditioned BMDMs exhibited strengthened LPS-induced nitric oxide production and enhanced phagocytosis of Escherichia coli. 4T1-mediated augmentation of macrophage responses to LPS was partially dependent on the NFκB pathway, macrophage-colony stimulating factor, and actin polymerization, as well as the presence of 4T1-secreted extracellular vesicles. Furthermore, peritoneal macrophages obtained from 4T1 tumor-bearing mice displayed enhanced pro-inflammatory cytokine production in response to LPS. These results suggest that uptake of 4T1-secreted factors and actin-mediated ingestion of 4T1-secreted exosomes by macrophages cause a transient enhancement of innate inflammatory responses. Mammary carcinoma-mediated regulation of innate immunity may have significant implications for our understanding of host defense and cancer progression.
Collapse
Affiliation(s)
- Laurence Madera
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail:
| | - Anna Greenshields
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - David W. Hoskin
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Surgery, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
1986
|
Abstract
The health-promoting benefits of exercise have been recognized for centuries, yet the molecular and cellular mechanisms for the acute and chronic adaptive response to a variety of physical activities remain incompletely described. This Perspective will take a forward view to highlight emerging questions and frontiers in the ever-changing landscape of exercise biology. The biology of exercise is complex, highly variable, and involves a myriad of adaptive responses in multiple organ systems. Given the multitude of changes that occur in each organ during exercise, future researchers will need to integrate tissue-specific responses with large-scale omics to resolve the integrated biology of exercise. The ultimate goal will be to understand how these system-wide, tissue-specific exercise-induced changes lead to measurable physiological outcomes at the whole-body level to improve health and well-being.
Collapse
|
1987
|
Milane L, Singh A, Mattheolabakis G, Suresh M, Amiji MM. Exosome mediated communication within the tumor microenvironment. J Control Release 2015; 219:278-294. [PMID: 26143224 DOI: 10.1016/j.jconrel.2015.06.029] [Citation(s) in RCA: 514] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/19/2015] [Indexed: 12/21/2022]
Abstract
It is clear that exosomes (endosome derived vesicles) serve important roles in cellular communication both locally and distally and that the exosomal process is abnormal in cancer. Cancer cells are not malicious cells; they are cells that represent 'survival of the fittest' at its finest. All of the mutations, abnormalities, and phenomenal adaptations to a hostile microenvironment, such as hypoxia and nutrient depletion, represent the astute ability of cancer cells to adapt to their environment and to intracellular changes to achieve a single goal - survival. The aberrant exosomal process in cancer represents yet another adaptation that promotes survival of cancer. Cancer cells can secrete more exosomes than healthy cells, but more importantly, the content of cancer cells is distinct. An illustrative distinction is that exosomes derived from cancer cells contain more microRNA than healthy cells and unlike exosomes released from healthy cells, this microRNA can be associated with the RNA-induced silencing complex (RISC) which is required for processing mature and biologically active microRNA. Cancer derived exosomes have the ability to transfer metastatic potential to a recipient cell and cancer exosomes function in the physical process of invasion. In this review we conceptualize the aberrant exosomal process (formation, content selection, loading, trafficking, and release) in cancer as being partially attributed to cancer specific differences in the endocytotic process of receptor recycling/degradation and plasma membrane remodeling and the function of the endosome as a signaling entity. We discuss this concept and, to advance comprehension of exosomal function in cancer as mediators of communication, we detail and discuss exosome biology, formation, and communication in health and cancer; exosomal content in cancer; exosomal biomarkers in cancer; exosome mediated communication in cancer metastasis, drug resistance, and interfacing with the immune system; and discuss the therapeutic manipulation of exosomal content for cancer treatment including current clinical trials of exosomal therapeutics. Often referred to as cellular nanoparticles, understanding exosomes, and how cancer cells use these cellular nanoparticles in communication is at the cutting edge frontier of advancing cancer biology.
Collapse
Affiliation(s)
- Lara Milane
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, United States
| | - Amit Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, United States
| | - George Mattheolabakis
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, United States
| | - Megha Suresh
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, United States
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, United States.
| |
Collapse
|
1988
|
Ramteke A, Ting H, Agarwal C, Mateen S, Somasagara R, Hussain A, Graner M, Frederick B, Agarwal R, Deep G. Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules. Mol Carcinog 2015; 54:554-65. [PMID: 24347249 PMCID: PMC4706761 DOI: 10.1002/mc.22124] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/16/2013] [Accepted: 11/26/2013] [Indexed: 12/14/2022]
Abstract
Hypoxic conditions in prostate cancer (PCA) are associated with poor prognosis; however, precise mechanism/s through which hypoxia promotes malignant phenotype remains unclear. Here, we analyzed the role of exosomes from hypoxic PCA cells in enhancing the invasiveness and stemness of naïve PCA cells, as well as in promoting cancer-associated fibroblast (CAF) phenotype in prostate stromal cells (PrSC). Human PCA LNCaP and PC3 cells were exposed to hypoxic (1% O2 ) or normoxic (21% O2 ) conditions, and exosomes secreted under hypoxic (Exo(Hypoxic) ) and normoxic (Exo(Normoxic) ) conditions were isolated from conditioned media. Nanoparticle tracking analysis revealed that Exo(Hypoxic) have smaller average size as compared to Exo(Normoxic) . Immunoblotting results showed a higher level of tetraspanins (CD63 and CD81), heat shock proteins (HSP90 and HSP70), and Annexin II in Exo(Hypoxic) compared to Exo(Normoxic) . Co-culturing with Exo(Hypoxic) increased the invasiveness and motility of naïve LNCaP and PC3 cells, respectively. Exo(Hypoxic) also promoted prostasphere formation by both LNCaP and PC3 cells, and enhanced α-SMA (a CAF biomarker) expression in PrSC. Compared to Exo(Normoxic) , Exo(Hypoxic) showed higher metalloproteinases activity and increased level of diverse signaling molecules (TGF-β2, TNF1α, IL6, TSG101, Akt, ILK1, and β-catenin). Furthermore, proteome analysis revealed a higher number of proteins in Exo(Hypoxic) (160 proteins) compared to Exo(Normoxic) (62 proteins), primarily associated with the remodeling of epithelial adherens junction pathway. Importantly, Exo(Hypoxic) targeted the expression of adherens junction proteins in naïve PC3 cells. These findings suggest that Exo(Hypoxic) are loaded with unique proteins that could enhance invasiveness, stemness, and induce microenvironment changes; thereby, promoting PCA aggressiveness.
Collapse
Affiliation(s)
- Anand Ramteke
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Harold Ting
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver
- University of Colorado Cancer Center, Aurora, Colorado
| | - Samiha Mateen
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver
| | - Ranganathan Somasagara
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver
| | - Anowar Hussain
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Michael Graner
- Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| | - Barbara Frederick
- University of Colorado Cancer Center, Aurora, Colorado
- Department of Radiation Oncology Anschutz Medical Campus, Aurora, Colorado
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver
- University of Colorado Cancer Center, Aurora, Colorado
| | - Gagan Deep
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver
- University of Colorado Cancer Center, Aurora, Colorado
- Corresponding Author: Gagan Deep, University of Colorado Denver, 12850 E. Montview Blvd, C238, Aurora, CO 80045. Phone: (303) 724-5553, Fax: (303) 724-7266,
| |
Collapse
|
1989
|
Abstract
The discovery of the first microRNA (miRNA) over 20 years ago has ushered in a new era in molecular biology. There are now over 2000 miRNAs that have been discovered in humans and it is believed that they collectively regulate one third of the genes in the genome. miRNAs have been linked to many human diseases and are being pursued as clinical diagnostics and as therapeutic targets. This review presents an overview of the miRNA pathway, including biogenesis routes, biological roles, and clinical approaches.
Collapse
Affiliation(s)
- Scott M Hammond
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
1990
|
Manda G, Isvoranu G, Comanescu MV, Manea A, Debelec Butuner B, Korkmaz KS. The redox biology network in cancer pathophysiology and therapeutics. Redox Biol 2015; 5:347-357. [PMID: 26122399 PMCID: PMC4501561 DOI: 10.1016/j.redox.2015.06.014] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 12/21/2022] Open
Abstract
The review pinpoints operational concepts related to the redox biology network applied to the pathophysiology and therapeutics of solid tumors. A sophisticated network of intrinsic and extrinsic cues, integrated in the tumor niche, drives tumorigenesis and tumor progression. Critical mutations and distorted redox signaling pathways orchestrate pathologic events inside cancer cells, resulting in resistance to stress and death signals, aberrant proliferation and efficient repair mechanisms. Additionally, the complex inter-cellular crosstalk within the tumor niche, mediated by cytokines, redox-sensitive danger signals (HMGB1) and exosomes, under the pressure of multiple stresses (oxidative, inflammatory, metabolic), greatly contributes to the malignant phenotype. The tumor-associated inflammatory stress and its suppressive action on the anti-tumor immune response are highlighted. We further emphasize that ROS may act either as supporter or enemy of cancer cells, depending on the context. Oxidative stress-based therapies, such as radiotherapy and photodynamic therapy, take advantage of the cytotoxic face of ROS for killing tumor cells by a non-physiologically sudden, localized and intense oxidative burst. The type of tumor cell death elicited by these therapies is discussed. Therapy outcome depends on the differential sensitivity to oxidative stress of particular tumor cells, such as cancer stem cells, and therefore co-therapies that transiently down-regulate their intrinsic antioxidant system hold great promise. We draw attention on the consequences of the damage signals delivered by oxidative stress-injured cells to neighboring and distant cells, and emphasize the benefits of therapeutically triggered immunologic cell death in metastatic cancer. An integrative approach should be applied when designing therapeutic strategies in cancer, taking into consideration the mutational, metabolic, inflammatory and oxidative status of tumor cells, cellular heterogeneity and the hypoxia map in the tumor niche, along with the adjoining and systemic effects of oxidative stress-based therapies. Critical point mutations and distorted redox-sensitive signaling pathways underlie the tumorigenic phenotype. Inter-cellular crosstalk under stress conditions in the tumor niche drives the behavior of tumor cells. ROS may act as either as supporter or enemy of tumor cells, depending on the context. Oxidative stress-injured cells deliver danger signals to neighboring and distant cells, hence dictating the outcome of therapy in cancer.
Collapse
Affiliation(s)
- Gina Manda
- Cellular and Molecular Medicine Department, Radiobiology Laboratory, "Victor Babes" National Institute of Pathology, Bucharest, Romania.
| | - Gheorghita Isvoranu
- Cellular and Molecular Medicine Department, Radiobiology Laboratory, "Victor Babes" National Institute of Pathology, Bucharest, Romania
| | - Maria Victoria Comanescu
- Cellular and Molecular Medicine Department, Radiobiology Laboratory, "Victor Babes" National Institute of Pathology, Bucharest, Romania
| | - Adrian Manea
- Cellular and Molecular Pharmacology Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Bilge Debelec Butuner
- Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, Ege University, Izmir, Turkey
| | - Kemal Sami Korkmaz
- Department of Bioengineering, Cancer Biology Laboratory, Ege University, İzmir, Turkey
| |
Collapse
|
1991
|
Mahmoudi K, Ezrin A, Hadjipanayis C. Small extracellular vesicles as tumor biomarkers for glioblastoma. Mol Aspects Med 2015; 45:97-102. [PMID: 26118341 DOI: 10.1016/j.mam.2015.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/16/2015] [Indexed: 12/21/2022]
Abstract
Small extracellular organelles such as exosomes and microvesicles are currently being studied as a novel way to track tumor progression, pseudoprogression, and treatment monitoring. Their role in intercellular communication shows potential in the treatment of even the most formidable cancers. Glioblastoma (GBM) is the most common malignancy of the brain and has no known cure. A large emphasis has been placed on trying to improve the prognosis of this aggressive primary brain tumor. It has recently been discovered that small extracellular vesicles, mainly exosomes and microvesicles, play a role in the cell signaling process that leads to uncontrollable cell growth indicative of a tumor state. Here we describe the role of exosomes and microvesicles as a tumor biomarker for tracking the progression of different types of cancer, with an emphasis on GBM.
Collapse
Affiliation(s)
- Keon Mahmoudi
- Georgia Institute of Technology, School of Biology, Atlanta, GA, USA
| | | | - Costas Hadjipanayis
- Brain Tumor Nanotechnology Laboratory, Winship Cancer Institute of Emory University, Atlanta, GA, USA; Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
1992
|
Arregi I, Falces J, Olazabal-Herrero A, Alonso-Mariño M, Taneva SG, Rodríguez JA, Urbaneja MA, Bañuelos S. Leukemia-Associated Mutations in Nucleophosmin Alter Recognition by CRM1: Molecular Basis of Aberrant Transport. PLoS One 2015; 10:e0130610. [PMID: 26091065 PMCID: PMC4474691 DOI: 10.1371/journal.pone.0130610] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 05/21/2015] [Indexed: 12/31/2022] Open
Abstract
Nucleophosmin (NPM) is a nucleocytoplasmic shuttling protein, normally enriched in nucleoli, that performs several activities related to cell growth. NPM mutations are characteristic of a subtype of acute myeloid leukemia (AML), where mutant NPM seems to play an oncogenic role. AML-associated NPM mutants exhibit altered subcellular traffic, being aberrantly located in the cytoplasm of leukoblasts. Exacerbated export of AML variants of NPM is mediated by the nuclear export receptor CRM1, and due, in part, to a mutationally acquired novel nuclear export signal (NES). To gain insight on the molecular basis of NPM transport in physiological and pathological conditions, we have evaluated the export efficiency of NPM in cells, and present new data indicating that, in normal conditions, wild type NPM is weakly exported by CRM1. On the other hand, we have found that AML-associated NPM mutants efficiently form complexes with CRM1HA (a mutant CRM1 with higher affinity for NESs), and we have quantitatively analyzed CRM1HA interaction with the NES motifs of these mutants, using fluorescence anisotropy and isothermal titration calorimetry. We have observed that the affinity of CRM1HA for these NESs is similar, which may help to explain the transport properties of the mutants. We also describe NPM recognition by the import machinery. Our combined cellular and biophysical studies shed further light on the determinants of NPM traffic, and how it is dramatically altered by AML-related mutations.
Collapse
Affiliation(s)
- Igor Arregi
- Unidad de Biofísica (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Jorge Falces
- Unidad de Biofísica (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Anne Olazabal-Herrero
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, Leioa, Spain
| | - Marián Alonso-Mariño
- Unidad de Biofísica (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Stefka G. Taneva
- Unidad de Biofísica (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - José A. Rodríguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, Leioa, Spain
| | - María A. Urbaneja
- Unidad de Biofísica (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Sonia Bañuelos
- Unidad de Biofísica (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| |
Collapse
|
1993
|
Ji R, Zhang B, Zhang X, Xue J, Yuan X, Yan Y, Wang M, Zhu W, Qian H, Xu W. Exosomes derived from human mesenchymal stem cells confer drug resistance in gastric cancer. Cell Cycle 2015; 14:2473-83. [PMID: 26091251 DOI: 10.1080/15384101.2015.1005530] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem cells (MSCs) play an important role in chemoresistance. Exosomes have been reported to modify cellular phenotype and function by mediating cell-cell communication. In this study, we aimed to investigate whether exosomes derived from MSCs (MSC-exosomes) are involved in mediating the resistance to chemotherapy in gastric cancer and to explore the underlying molecular mechanism. We found that MSC-exosomes significantly induced the resistance of gastric cancer cells to 5-fluorouracil both in vivo and ex vivo. MSC-exosomes antagonized 5-fluorouracil-induced apoptosis and enhanced the expression of multi-drug resistance associated proteins, including MDR, MRP and LRP. Mechanistically, MSC-exosomes triggered the activation of calcium/calmodulin-dependent protein kinases (CaM-Ks) and Raf/MEK/ERK kinase cascade in gastric cancer cells. Blocking the CaM-Ks/Raf/MEK/ERK pathway inhibited the promoting role of MSC-exosomes in chemoresistance. Collectively, MSC-exosomes could induce drug resistance in gastric cancer cells by activating CaM-Ks/Raf/MEK/ERK pathway. Our findings suggest that MSC-exosomes have profound effects on modifying gastric cancer cells in the development of drug resistance. Targeting the interaction between MSC-exosomes and cancer cells may help improve the efficacy of chemotherapy in gastric cancer.
Collapse
Affiliation(s)
- Runbi Ji
- a Jiangsu Key Laboratory of Medical Science and Laboratory Medicine; School of Medicine ; Jiangsu University ; Zhenjiang , Jiangsu , PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1994
|
An T, Qin S, Xu Y, Tang Y, Huang Y, Situ B, Inal JM, Zheng L. Exosomes serve as tumour markers for personalized diagnostics owing to their important role in cancer metastasis. J Extracell Vesicles 2015; 4:27522. [PMID: 26095380 PMCID: PMC4475684 DOI: 10.3402/jev.v4.27522] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/24/2015] [Accepted: 05/26/2015] [Indexed: 12/18/2022] Open
Abstract
Exosomes, membrane vesicles of 40–100 nm in diameter, are derived from endosomes in various cells. The bioactive molecules specifically packed into exosomes can be horizontally transferred into recipient cells changing their biological properties, by which tumour cells continuously modify their surrounding microenvironment and distant target cells favouring cancer metastasis. It has been suspected for a long time that exosomes participate in the whole process of tumour metastasis. Although there is much unknown and many controversies in the role of cancer exosome, the major contribution of tumour-associated exosomes to different steps of cancer metastasis are demonstrated in this review. Mainly because these exosomes are easily accessible and capable of representing their parental cells, exosomes draw much attention as a promising biomarker for tumour screening, diagnosis and prognosis. Currently, researchers have found numerous biomarkers in exosomes with great potential to be utilized in personalized medicine. In this article, we summarize the roles of biomarkers, which are validated by clinical samples. Even though many conundrums remain, such as exosome extraction, large multicentre validation of biomarkers and data interpretation, exosomes are certain to be used in clinical practice in the near future as the field rapidly expands.
Collapse
Affiliation(s)
- Taixue An
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Sihua Qin
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yong Xu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yueting Tang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yiyao Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Bo Situ
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jameel M Inal
- Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University, London, UK;
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China;
| |
Collapse
|
1995
|
Skvortsov S, Arnold CR, Debbage P, Lukas P, Skvortsova I. Proteomic approach to understand metastatic spread. Proteomics Clin Appl 2015; 9:1069-77. [DOI: 10.1002/prca.201400128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 04/07/2015] [Accepted: 04/22/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Sergej Skvortsov
- Laboratory for Experimental and Translational Research on Radiation Oncology (EXTRO-Lab); Department of Therapeutic Radiology and Oncology; Innsbruck Medical University; Innsbruck Austria
| | - Christoph R. Arnold
- Laboratory for Experimental and Translational Research on Radiation Oncology (EXTRO-Lab); Department of Therapeutic Radiology and Oncology; Innsbruck Medical University; Innsbruck Austria
| | - Paul Debbage
- Department of Anatomy; Histology and Embryology; Innsbruck Medical University; Innsbruck Austria
| | - Peter Lukas
- Laboratory for Experimental and Translational Research on Radiation Oncology (EXTRO-Lab); Department of Therapeutic Radiology and Oncology; Innsbruck Medical University; Innsbruck Austria
| | - Ira Skvortsova
- Laboratory for Experimental and Translational Research on Radiation Oncology (EXTRO-Lab); Department of Therapeutic Radiology and Oncology; Innsbruck Medical University; Innsbruck Austria
| |
Collapse
|
1996
|
The hypoxic tumor microenvironment: A driving force for breast cancer progression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:382-391. [PMID: 26079100 DOI: 10.1016/j.bbamcr.2015.05.036] [Citation(s) in RCA: 380] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/26/2015] [Indexed: 12/21/2022]
Abstract
Intratumoral hypoxia is a common finding in breast cancer and is associated with a significantly increased risk of metastasis and patient mortality. Hypoxia-inducible factors activate the transcription of a large battery of genes encoding proteins that promote primary tumor vascularization and growth, stromal cell recruitment, extracellular matrix remodeling, premetastatic niche formation, cell motility, local tissue invasion, extravasation at sites of metastasis, and maintenance of the cancer stem cell phenotype that is required to generate secondary tumors. Recent preclinical studies suggest that the combination of cytotoxic chemotherapy with drugs that inhibit hypoxia-inducible factors may improve outcome for women with triple-negative breast cancer. This article is part of a Special Issue entitled: Tumor Microenvironment Regulation of Cancer Cell Survival, Metastasis, Inflammation, and Immune Surveillance edited by Peter Ruvolo and Gregg L. Semenza.
Collapse
|
1997
|
Wulan WN, Heydet D, Walker EJ, Gahan ME, Ghildyal R. Nucleocytoplasmic transport of nucleocapsid proteins of enveloped RNA viruses. Front Microbiol 2015; 6:553. [PMID: 26082769 PMCID: PMC4451415 DOI: 10.3389/fmicb.2015.00553] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/19/2015] [Indexed: 12/25/2022] Open
Abstract
Most viruses with non-segmented single stranded RNA genomes complete their life cycle in the cytoplasm of infected cells. However, despite undergoing replication in the cytoplasm, the structural proteins of some of these RNA viruses localize to the nucleus at specific times in the virus life cycle, primarily early in infection. Limited evidence suggests that this enhances successful viral replication by interfering with or inhibiting the host antiviral response. Nucleocapsid proteins of RNA viruses have a well-established, essential cytoplasmic role in virus replication and assembly. Intriguingly, nucleocapsid proteins of some RNA viruses also localize to the nucleus/nucleolus of infected cells. Their nuclear function is less well understood although significant advances have been made in recent years. This review will focus on the nucleocapsid protein of cytoplasmic enveloped RNA viruses, including their localization to the nucleus/nucleolus and function therein. A greater understanding of the nuclear localization of nucleocapsid proteins has the potential to enhance therapeutic strategies as it can be a target for the development of live-attenuated vaccines or antiviral drugs.
Collapse
Affiliation(s)
- Wahyu N Wulan
- Centre for Research in Therapeutic Solutions, University of Canberra, Bruce, ACT Australia ; Faculty of Education, Science, Technology and Mathematics, University of Canberra, Bruce, ACT Australia
| | - Deborah Heydet
- Centre for Research in Therapeutic Solutions, University of Canberra, Bruce, ACT Australia
| | - Erin J Walker
- Centre for Research in Therapeutic Solutions, University of Canberra, Bruce, ACT Australia
| | - Michelle E Gahan
- Faculty of Education, Science, Technology and Mathematics, University of Canberra, Bruce, ACT Australia
| | - Reena Ghildyal
- Centre for Research in Therapeutic Solutions, University of Canberra, Bruce, ACT Australia ; Faculty of Education, Science, Technology and Mathematics, University of Canberra, Bruce, ACT Australia
| |
Collapse
|
1998
|
Hannafon BN, Ding WQ. Cancer stem cells and exosome signaling. Stem Cell Investig 2015; 2:11. [PMID: 27358879 DOI: 10.3978/j.issn.2306-9759.2015.05.02] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/28/2015] [Indexed: 12/23/2022]
Abstract
Exosomes have been recognized as mediators of intercellular communication among different cell populations in various biological model systems. By transfer of signaling molecules such as proteins, lipids, and RNAs between different cell types, exosomes are implicated in both physiological and pathological processes. The tumor microenvironment consists of multiple types of cells including adult stem cells, cancer stem cells, and stromal cells. These cells are known to intercommunicate with each other thereby modulating tumor progression. Recent studies have provided evidence demonstrating that exosomes mediate the interactions among different types of cells within the tumor microenvironment, providing new insight into how these cells interact with each other through exosome signaling. This review is focused on recent studies that have examined exosome-mediated intercommunication among cancer stem cells, adult stem cells, cancer cells, and stromal cells within the tumor microenvironment. Based on the current literature, it seems clear that adult stem cells and cancer stem cells secret exosomes that can be transferred to their surrounding cells thereby modulating cancer progression. Likewise, cancer cells and stromal cells also release exosomes that can be taken up by cancer stem cells or adult stem cells, leading to alterations to their phenotype. The molecular mechanisms and biological consequences of the exosome-mediated interactions of these cells remain to be further elucidated. A better understanding of how exosomes mediate intercellular communication in the tumor microenvironment and the specific biological consequences of these interactions will likely offer new opportunities in the development of diagnostic or therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Bethany N Hannafon
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
1999
|
Fuhrmann G, Herrmann IK, Stevens MM. Cell-derived vesicles for drug therapy and diagnostics: opportunities and challenges. NANO TODAY 2015; 10:397-409. [PMID: 28458718 PMCID: PMC5409525 DOI: 10.1016/j.nantod.2015.04.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Extracellular vesicles are small lipid-based membrane-bound entities shed by cells under both physiological and pathological conditions. Their discovery as intercellular communicators through transfer of nucleic acid- and protein-based cargos between cells locally and at distance in a highly specific manner has created recent excitement. The information they transport and their composition may vary depending on the cell of origin as well as the eliciting stimulus. Such sensitive changes in vesicle characteristics hold significant promise for the improved diagnosis of pathological conditions, including infections and neoplastic lesions in a minimally invasive way. Similarly, these cell-derived vesicles exhibit promising characteristics that could enhance drug targeting efficiencies. Recent developments in the field have aimed at studying EVs as novel drug carriers due to their natural composition, biological function and selective cell interaction. In this review, we discuss new research avenues in diagnostics and drug therapy based on extracellular vesicles. We show how cell-derived vesicles can be harvested and engineered to meet application-specific design requirements. We finally discuss potential risks encountered when translating extracellular vesicle based approaches into (pre)clinical applications.
Collapse
Affiliation(s)
- Gregor Fuhrmann
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, SW7 2AZ London, United Kingdom
| | - Inge K. Herrmann
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, SW7 2AZ London, United Kingdom
| | - Molly M. Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, SW7 2AZ London, United Kingdom
| |
Collapse
|
2000
|
Meng FD, Li Y, Tian X, Ma P, Sui CG, Fu LY, Jiang YH. Synergistic effects of snail and quercetin on renal cell carcinoma Caki-2 by altering AKT/mTOR/ERK1/2 signaling pathways. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:6157-6168. [PMID: 26261493 PMCID: PMC4525827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/22/2015] [Indexed: 06/04/2023]
Abstract
Renal cell carcinoma has become the most common subtype of kidney cancer, and has the highest propensity to manifest as metastatic disease. Because of lack of knowledge in events that correlated with tumor cell migration and invasion, few therapeutic options are available. Therefore, in current study, we explore the anti-tumoral effect of a potential chemopreventive natural product, quercetin, combined with anti-sense oligo gene therapy (inhibiting Snail gene). We found that either one of them had the remarkable effects in suppressing cell proliferation and migration, inducing cell cycle arrest and apoptosis in a ccRCC cell line, Caki-2 cells. The combination of both means provides even strong suppressive effects toward these ccRCC cells. Our study, for the first time, provides the possibility of using a novel treatment for renal cancer, by combining natural product and gene therapy.
Collapse
Affiliation(s)
- Fan-Dong Meng
- Department of Molecular Oncology, Cancer Research Institution, The First Affiliated Hospital of China Medical University Shenyang 110001, Liaoning Province, China
| | - Yan Li
- Department of Molecular Oncology, Cancer Research Institution, The First Affiliated Hospital of China Medical University Shenyang 110001, Liaoning Province, China
| | - Xin Tian
- Department of Molecular Oncology, Cancer Research Institution, The First Affiliated Hospital of China Medical University Shenyang 110001, Liaoning Province, China
| | - Ping Ma
- Department of Molecular Oncology, Cancer Research Institution, The First Affiliated Hospital of China Medical University Shenyang 110001, Liaoning Province, China
| | - Cheng-Guang Sui
- Department of Molecular Oncology, Cancer Research Institution, The First Affiliated Hospital of China Medical University Shenyang 110001, Liaoning Province, China
| | - Li-Ye Fu
- Department of Molecular Oncology, Cancer Research Institution, The First Affiliated Hospital of China Medical University Shenyang 110001, Liaoning Province, China
| | - You-Hong Jiang
- Department of Molecular Oncology, Cancer Research Institution, The First Affiliated Hospital of China Medical University Shenyang 110001, Liaoning Province, China
| |
Collapse
|