2051
|
Harris TJ, Awrey DE, Cox BJ, Ravandi A, Tsang A, Siu CH. Involvement of a triton-insoluble floating fraction in Dictyostelium cell-cell adhesion. J Biol Chem 2001; 276:18640-8. [PMID: 11278598 DOI: 10.1074/jbc.m010016200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We have isolated and characterized a Triton-insoluble floating fraction (TIFF) from Dictyostelium. Ten major proteins were consistently detected in TIFF, and six species were identified by mass spectrometry as actin, porin, comitin, regulatory myosin light chain, a novel member of the CD36 family, and the phospholipid-anchored cell adhesion molecule gp80. TIFF was enriched with many acylated proteins. Also, the sterol/phospholipid ratio of TIFF was 10-fold higher than that of the bulk plasma membrane. Immunoelectron microscopy showed that TIFF has vesicular morphology and confirmed the association of gp80 and comitin with TIFF membranes. Several TIFF properties were similar to those of Dictyostelium contact regions, which were isolated as a cytoskeleton-associated membrane fraction. Mass spectrometry demonstrated that TIFF and contact regions shared the same major proteins. During development, gp80 colocalized with F-actin, porin, and comitin at cell-cell contacts. These proteins were also recruited to gp80 caps induced by antibody cross-linking. Filipin staining revealed high sterol levels in both gp80-enriched cell-cell contacts and gp80 caps. Moreover, sterol sequestration by filipin and digitonin inhibited gp80-mediated cell-cell adhesion. This study reveals that Dictyostelium TIFF has structural properties previously attributed to vertebrate TIFF and establishes a role for Dictyostelium TIFF in cell-cell adhesion during development.
Collapse
Affiliation(s)
- T J Harris
- Banting and Best Department of Medical Research and Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | | | | | | | |
Collapse
|
2052
|
Li XM, Momsen MM, Smaby JM, Brockman HL, Brown RE. Cholesterol decreases the interfacial elasticity and detergent solubility of sphingomyelins. Biochemistry 2001; 40:5954-63. [PMID: 11352730 PMCID: PMC2653693 DOI: 10.1021/bi002791n] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interfacial interactions of cholesterol with sphingomyelins (SMs) containing various homogeneous acyl chains have been investigated by Langmuir film balance approaches. Low in-plane elasticity among the packed lipids was identified as an important physical feature of the cholesterol-sphingomyelin liquid-ordered phase that correlates with detergent resistance, a characteristic property of sphingolipid-sterol rafts. Changes in the in-plane elastic packing, produced by cholesterol, were quantitatively assessed by the surface compressional moduli (C(s)(-1)) of the monolayer isotherms. Of special interest were C(s)(-1) values determined at high surface pressures (>30 mN/m) that mimic the biomembrane situation. To identify structural features that uniquely affect the in-plane elasticity of the sphingomyelin-cholesterol lateral interaction, comparisons were made with phosphatidylcholine (PC)-cholesterol mixtures. Cholesterol markedly decreased the in-plane elasticity of either SM or PC regardless of whether they were fluid or gel phase without cholesterol. The magnitude of the reduction in in-plane elasticity induced by cholesterol was strongly influenced by acyl chain structure and by interfacial functional groups. Liquid-ordered phase formed at lower cholesterol mole fractions when SM's acyl chain was saturated rather than monounsaturated. At similar high cholesterol mole fractions, the in-plane elasticity within SM-cholesterol liquid-ordered phase was significantly lower than that of PC-cholesterol liquid-ordered phase, even when PCs were chain-matched to the SMs. Sphingoid-base functional groups (e.g., amide linkages), which facilitate or strengthen intermolecular hydrogen bonds, appear to be important for forming sphingomyelin-cholesterol, liquid-ordered phases with especially low in-plane elasticity. The combination of structural features that predominates in naturally occurring SMs permits very effective resistance to solubilization by Triton X-100.
Collapse
Affiliation(s)
- Xin-Min Li
- The Hormel Institute, UniVersity of Minnesota, 801 16th AVenue NE, Austin, Minnesota 55912
| | - Maureen M. Momsen
- The Hormel Institute, UniVersity of Minnesota, 801 16th AVenue NE, Austin, Minnesota 55912
| | - Janice M. Smaby
- The Hormel Institute, UniVersity of Minnesota, 801 16th AVenue NE, Austin, Minnesota 55912
| | - Howard L. Brockman
- The Hormel Institute, UniVersity of Minnesota, 801 16th AVenue NE, Austin, Minnesota 55912
| | - Rhoderick E. Brown
- The Hormel Institute, UniVersity of Minnesota, 801 16th AVenue NE, Austin, Minnesota 55912
| |
Collapse
|
2053
|
Li R, Wong N, Jabali MD, Johnson P. CD44-initiated cell spreading induces Pyk2 phosphorylation, is mediated by Src family kinases, and is negatively regulated by CD45. J Biol Chem 2001; 276:28767-73. [PMID: 11369760 DOI: 10.1074/jbc.m100158200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
CD44 is a cell adhesion molecule implicated in leukocyte adhesion and migration, co-stimulation of T cells, and tumor metastasis. CD45 is a leukocyte-specific protein tyrosine phosphatase that dephosphorylates the Src family kinases, Lck and Fyn, in T cells. Positive regulation of Lck by CD45 is required for its effective participation in T cell receptor signaling events. Here, immobilized CD44 antibody induced a distinctive cell spreading in CD45(-), but not CD45(+), T cells, and this correlated with the induction of tyrosine-phosphorylated proteins. Two focal adhesion family kinases, Pyk2 and, to a lesser extent, FAK were inducibly phosphorylated, as was a potential substrate, Cas. CD44-mediated cell spreading and induced tyrosine phosphorylation were prevented by the Src family kinase inhibitor, PP2. Furthermore, 2-fold more Lck associated with CD44 in the low density sucrose fraction from CD45(-) T cells compared with CD45(+) T cells, suggesting that CD45 may regulate the association of Lck with CD44 in this fraction. Therefore, in CD45(-) T cells, CD44 signaling is mediated by Src family kinases, and this leads to Pyk2 phosphorylation, cytoskeletal changes, and cell spreading. This implicates CD45 in the negative regulation of Src family kinase-mediated CD44 signaling leading to T cell spreading.
Collapse
Affiliation(s)
- R Li
- Department of Microbiology and Immunology, 6174 University Blvd., University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | |
Collapse
|
2054
|
Alfsen A, Iniguez P, Bouguyon E, Bomsel M. Secretory IgA specific for a conserved epitope on gp41 envelope glycoprotein inhibits epithelial transcytosis of HIV-1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:6257-65. [PMID: 11342649 DOI: 10.4049/jimmunol.166.10.6257] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
As one of the initial mucosal transmission pathways of HIV (HIV-1), epithelial cells translocate HIV-1 from apical to basolateral surface by nondegradative transcytosis. Transcytosis is initiated when HIV-1 envelope glycoproteins bind to the epithelial cell membrane. Here we show that the transmembrane gp41 subunit of the viral envelope binds to the epithelial glycosphingolipid galactosyl ceramide (Gal Cer), an alternative receptor for HIV-1, at a site involving the conserved ELDKWA epitope. Disrupting the raft organization of the Gal Cer-containing microdomains at the apical surface inhibited HIV-1 transcytosis. Immunological studies confirmed the critical role of the conserved ELDKWA hexapeptide in HIV-1 transcytosis. Mucosal IgA, but not IgG, from seropositive subjects targeted the conserved peptide, neutralized gp41 binding to Gal Cer, and blocked HIV-1 transcytosis. These results underscore the important role of secretory IgA in designing strategies for mucosal protection against HIV-1 infection.
Collapse
Affiliation(s)
- A Alfsen
- Institut National de la Santé et de la Recherche Médicale, Unité 332, Institut Cochin de Genetique Moleculaire, Paris, France
| | | | | | | |
Collapse
|
2055
|
Millar DG, Hirst TR. Cholera toxin and Escherichia coli enterotoxin B-subunits inhibit macrophage-mediated antigen processing and presentation: evidence for antigen persistence in non-acidic recycling endosomal compartments. Cell Microbiol 2001; 3:311-29. [PMID: 11298654 DOI: 10.1046/j.1462-5822.2001.00119.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cholera toxin (Ctx) and the closely related Escherichia coli heat-labile enterotoxin (Etx) not only act as mediators of diarrhoeal disease but also exert potent immunomodulatory properties on mammalian immune systems. The toxins normally exert their diarrhoeagenic effects by initiating receptor-mediated uptake into vesicles that enter a retrograde trafficking pathway, circumventing degradative compartments and targeting them to the trans-Golgi network (TGN) and endoplasmic reticulum. Here, we examine whether receptor-mediated binding and cellular entry by the toxin B-subunits also lead to concomitant changes in uptake and trafficking of exogenous antigens that could contribute to the potent immunomodulatory properties of these toxins. Treatment of the macrophage (J774.2) cell line with Etx B-subunit (EtxB) resulted in EtxB transport to the TGN and also led to the formation of large, translucent, non-acidic, EtxB-devoid vacuoles. When exogenous antigens were added, EtxB-treated cells were found to be proficient in both internalization of ovalbumin (OVA) and phagocytosis of bacterial particles. However, the internalized OVA, instead of trafficking along a lysosome-directed endocytic pathway via acidified endosomes, persisted in a non-acidic, light-density compartment that was distinct from the translucent vacuoles. The rerouted OVA did not co-localize with the endosomal markers rab5 or rab11, nor with EtxB, but was retained in a transferrin receptor-positive compartment. The failure of OVA to enter the late endosomal/lysosomal compartments correlated with a striking inhibition of OVA peptide processing and presentation to OVA-responsive CD4+ T-cells. CtxB also modulated OVA trafficking and inhibited antigen presentation. These findings demonstrate that the B-subunits of Ctx and Etx alter the progression of exogenous antigens along the endocytic processing pathway, and prevent or delay efficient epitope presentation and T-cell stimulation. The formation of such 'antigen depots' could contribute to the immunomodulatory properties of these bacterial virulence determinants.
Collapse
Affiliation(s)
- D G Millar
- Department of Pathology and Microbiology, University of Bristol, School of Medical Sciences, Bristol BS8 1TD, UK
| | | |
Collapse
|
2056
|
Clark TG, Gao Y, Gaertig J, Wang X, Cheng G. The I-antigens of Ichthyophthirius multifiliis are GPI-anchored proteins. J Eukaryot Microbiol 2001; 48:332-7. [PMID: 11411842 DOI: 10.1111/j.1550-7408.2001.tb00322.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The parasitic ciliate Ichthyophthirius multifiliis has abundant surface membrane proteins (i-antigens) that when clustered, trigger rapid, premature exit from the host. Similar antigens are present in free-living ciliates and are GPI-anchored in both Paramecium and Tetrahymena. Although transmembrane signalling through GPI-anchored proteins has been well-documented in metazoan cells, comparable phenomena have yet to be described in protists. Since premature exit of Ichthyophthirius is likely to involve a transmembrane signalling event, we sought to determine whether i-antigens are GPI-anchored in these cells as well. Based on their solubility properties in Triton X-114, the i-antigens of Ichthyophthirius are amphiphilic in nature and partition with the detergent phase. Nevertheless, following treatment of detergent lysates with phospholipase C, the same proteins become hydrophilic. Concomitantly, they are recognized by antibodies against a cross-reacting determinant exposed on virtually all GPI-anchored proteins following cleavage with phospholipase C. Finally, when expressed in recombinant form in Tetrahymena thermophila, full-length i-antigens are restricted to the membrane, while those lacking hydrophobic C-termini are secreted from the cell. Taken together, these observations argue strongly that the i-antigens of Ichthyophthirius multifiliis are, in fact, GPI-anchored proteins.
Collapse
Affiliation(s)
- T G Clark
- Department of Microbiology and Immunology, NYSCVM, Cornell University, Ithaca, New York 14853, USA.
| | | | | | | | | |
Collapse
|
2057
|
Connelly MA, de la Llera-Moya M, Monzo P, Yancey PG, Drazul D, Stoudt G, Fournier N, Klein SM, Rothblat GH, Williams DL. Analysis of chimeric receptors shows that multiple distinct functional activities of scavenger receptor, class B, type I (SR-BI), are localized to the extracellular receptor domain. Biochemistry 2001; 40:5249-59. [PMID: 11318648 DOI: 10.1021/bi002825r] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Scavenger receptor BI (SR-BI) mediates the selective uptake of high-density lipoprotein (HDL) cholesteryl ester (CE), a process by which HDL CE is taken into the cell without degradation of the HDL particle. In addition, SR-BI stimulates the bi-directional flux of free cholesterol (FC) between cells and lipoproteins, an activity that may be responsible for net cholesterol efflux from peripheral cells as well as the rapid hepatic clearance of FC from plasma HDL. SR-BI also increases cellular cholesterol mass and alters cholesterol distribution in plasma membrane domains as judged by the enhanced sensitivity of membrane cholesterol to extracellular cholesterol oxidase. In contrast, CD36, a closely related class B scavenger receptor, has none of these activities despite binding HDL with high affinity. In the present study, analyses of chimeric SR-BI/CD36 receptors and domain-deleted SR-BI have been used to test the various domains of SR-BI for functional activities related to HDL CE selective uptake, bi-directional FC flux, and the alteration of membrane cholesterol mass and distribution. The results show that each of these activities localizes to the extracellular domain of SR-BI. The N-terminal cytoplasmic tail and transmembrane domains appear to play no role in these activities other than targeting the receptor to the plasma membrane. The C-terminal tail of SR-BI is dispensable for activity as well for targeting to the plasma membrane. Thus, multiple distinct functional activities are localized to the SR-BI extracellular domain.
Collapse
Affiliation(s)
- M A Connelly
- Department of Pharmacological Sciences, University Medical Center, State University of New York at Stony Brook, 11794-8651, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2058
|
Zager RA, Johnson A, Anderson K, Wright S. Cholesterol ester accumulation: an immediate consequence of acute in vivo ischemic renal injury. Kidney Int 2001; 59:1750-61. [PMID: 11318945 DOI: 10.1046/j.1523-1755.2001.0590051750.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Cholesterol is a major constituent of plasma membranes, and recent evidence indicates that it is up-regulated during the maintenance phase of acute renal failure (ARF). However, cholesterol's fate and that of the cholesterol ester (CE) cycle [shuttling between free cholesterol (FC) and CEs] during the induction phase of ARF have not been well defined. The present studies sought to provide initial insights into these issues. METHODS FC and CE were measured in mouse renal cortex after in vivo ischemia (15 and 45 minutes)/reperfusion (0 to 120 minutes) and glycerol-induced myoglobinuria (1 to 2 hours). FC/CE were also measured in (1) cultured human proximal tubule (HK-2) cells three hours after ATP depletion and in (2) isolated mouse proximal tubule segments (PTSs) subjected to plasma membrane damage (with cholesterol oxidase, sphingomyelinase, phospholipase A2, or cytoskeletal disruption with cytochalasin B). The impact of cholesterol synthesis inhibition (with mevastatin) and FC traffic blockade (with progesterone) on injury-evoked FC/CE changes was also assessed. RESULTS In vivo ischemia caused approximately threefold to fourfold CE elevations, but not FC elevations, that persisted for at least two hours of reperfusion. Conversely, myoglobinuria had no effect. Isolated CE increments were observed in ATP-depleted HK-2 cells. Neither mevastatin nor progesterone blocked this CE accumulation. Plasma membrane injury induced with sphingomyelinase or cholesterol oxidase, but not with phospholipase A(2) or cytochalasin B, increased tubule CE content. High CE levels, induced with cholesterol oxidase, partially blocked hypoxic PTS attack. CONCLUSIONS In vivo ischemia/reperfusion acutely increases renal cortical CE, but not FC, content, indicating perturbed CE/FC cycling. The available data suggest that this could stem from specific types of plasma membrane damage, which then increase FC flux via aberrant pathways to the endoplasmic reticulum, where CE formation occurs. That CE levels are known to inversely correlate with both renal and nonrenal cell injury suggests the potential relevance of these observations to the induction phase of ischemic ARF.
Collapse
Affiliation(s)
- R A Zager
- University of Washington and Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA.
| | | | | | | |
Collapse
|
2059
|
Taniguchi T, Takaoka A. A weak signal for strong responses: interferon-alpha/beta revisited. Nat Rev Mol Cell Biol 2001; 2:378-86. [PMID: 11331912 DOI: 10.1038/35073080] [Citation(s) in RCA: 402] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Biological systems have acquired adaptability and robustness against rapid environmental changes. A typical example is the immune system, which eradicates invading pathogens such as viruses. Interferons alpha and beta, which are produced in response to viral infection, are essential components of this system but are also produced at low levels in the absence of infection. What is the purpose of the constitutive weak interferon-alpha/beta signal?
Collapse
Affiliation(s)
- T Taniguchi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | |
Collapse
|
2060
|
Pyenta PS, Holowka D, Baird B. Cross-correlation analysis of inner-leaflet-anchored green fluorescent protein co-redistributed with IgE receptors and outer leaflet lipid raft components. Biophys J 2001; 80:2120-32. [PMID: 11325715 PMCID: PMC1301404 DOI: 10.1016/s0006-3495(01)76185-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
To investigate the structural basis for membrane interactions that occur between Lyn tyrosine kinase and IgE-Fc(epsilon)RI or other components of lipid rafts, we prepared a green fluorescent protein analog of Lyn (PM-EGFP) and used cross-correlation analysis to quantify co-redistributions of aggregates that occur after IgE-Fc(epsilon)RI is cross-linked on the cell surface. PM-EGFP, which contains minimally the palmitoylation and myristoylation sites on Lyn, was compared with another inner leaflet probe, EGFP-GG, which contains a prenylation site and a polybasic sequence similar to K-ras. Confocal fluorescence microscopy was used to examine co-redistributions of these inner leaflet components with IgE-Fc(epsilon)RI and outer leaflet raft components, ganglioside GD1b and glycosylphosphotidylinositol-linked Thy-1, under conditions where the latter were cross-linked externally to form large patches at the cell surface. The cross-correlation analysis was developed and characterized with simulations representing cell surface distributions, and parameters from the cross-correlation curves, rho(o) (peak height) and A (peak area), were shown to be reliable measures of the extent of co-redistributed aggregates and their size. Cross-correlation analysis was then applied to quantify co-redistributions of the fluorescently labeled inner and outer leaflet components on RBL-2H3 cells. As visually observed and parameterized in this manner, PM-EGFP was found to co-redistribute with lipid rafts significantly more than EGFP-GG or an endogenous prenylated protein, Cdc42. These quantitative results are consistent with previous analyses of Lyn co-redistributions and support the hypothesis that the functionally important interaction of Lyn with cross-linked IgE- Fc(epsilon)RI is due to their mutual co-association with lipid rafts.
Collapse
Affiliation(s)
- P S Pyenta
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
2061
|
Peiffer I, Bernet-Camard MF, Rousset M, Servin AL. Impairments in enzyme activity and biosynthesis of brush border-associated hydrolases in human intestinal Caco-2/TC7 cells infected by members of the Afa/Dr family of diffusely adhering Escherichia coli. Cell Microbiol 2001; 3:341-57. [PMID: 11298656 DOI: 10.1046/j.1462-5822.2001.00121.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wild-type diffusely adhering Escherichia coli (DAEC) harbouring afimbrial adhesin (Afa) or fimbrial Dr and F1845 adhesins (Afa/Dr DAEC) apically infecting the human intestinal epithelial cells promote injuries in the brush border of the cells. We report here that infection by Afa/Dr DAEC wild-type strains C1845 and IH11128 in polarized human fully differentiated Caco-2/TC7 cells dramatically impaired the enzyme activity of functional brush border-associated proteins sucrase-isomaltase (SI) and dipeptidylpeptidase IV (DPP IV). Blockers of the transduction signal molecules, previously found to be active against the Afa/Dr DAEC-induced cytoskeleton injury, were inactive against the Afa/Dr-induced decrease in sucrase enzyme activity. In parallel, Afa/Dr DAEC infection promotes the blockade of the biosynthesis of SI and DPP IV without affection enzyme stability. The observation that no changes occurred in mRNA levels of SI and DPP IV upon infection suggested that the decrease in biosynthesis probably resulted from a decrease in the translation rate. When the cells were infected with recombinant E. coli strains expressing homologous adhesins of the wild-type strains, neither a decrease in sucrase and DPP IV enzyme activities nor an inhibition of enzyme biosynthesis were observed. In conclusion, taken together, these data give new insights into the mechanisms by which the wild-type Afa/Dr DAEC strains induce functional injuries in polarized fully differentiated human intestinal cells. Moreover, the results revealed that other pathogenic factor(s) distinct from the Afa/Dr adhesins may play(s) a crucial role in this mechanism of pathogenicity.
Collapse
Affiliation(s)
- I Peiffer
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 510, Faculté de Pharmacie Paris XI, F-92296 Châtenay-Malabry Cedex, France
| | | | | | | |
Collapse
|
2062
|
Nichols BJ, Kenworthy AK, Polishchuk RS, Lodge R, Roberts TH, Hirschberg K, Phair RD, Lippincott-Schwartz J. Rapid cycling of lipid raft markers between the cell surface and Golgi complex. J Cell Biol 2001; 153:529-41. [PMID: 11331304 PMCID: PMC2190578 DOI: 10.1083/jcb.153.3.529] [Citation(s) in RCA: 445] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The endocytic itineraries of lipid raft markers, such as glycosyl phosphatidylinositol (GPI)-anchored proteins and glycosphingolipids, are incompletely understood. Here we show that different GPI-anchored proteins have different intracellular distributions; some (such as the folate receptor) accumulate in transferrin-containing compartments, others (such as CD59 and GPI-linked green fluorescent protein [GFP]) accumulate in the Golgi apparatus. Selective photobleaching shows that the Golgi pool of both GPI-GFP and CD59-GFP constantly and rapidly exchanges with the pool of these proteins found on the plasma membrane (PM). We visualized intermediates carrying GPI-GFP from the Golgi apparatus to the PM and separate structures delivering GPI-GFP to the Golgi apparatus.GPI-GFP does not accumulate within endocytic compartments containing transferrin, although it is detected in intracellular structures which are endosomes by the criteria of accessibility to a fluid phase marker and to cholera and shiga toxin B subunits (CTxB and STxB, which are also found in rafts). GPI-GFP and a proportion of the total CTxB and STxB taken up into cells are endocytosed independently of clathrin-associated machinery and are delivered to the Golgi complex via indistinguishable mechanisms. Hence, they enter the Golgi complex in the same intermediates, get there independently of both clathrin and rab5 function, and are excluded from it at 20 degrees C and under conditions of cholesterol sequestration. The PM-Golgi cycling pathway followed by GPI-GFP could serve to regulate lipid raft distribution and function within cells.
Collapse
Affiliation(s)
- Benjamin J. Nichols
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, Bethesda, Maryland 20895
| | - Anne K. Kenworthy
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, Bethesda, Maryland 20895
| | - Roman S. Polishchuk
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, Bethesda, Maryland 20895
| | - Robert Lodge
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, Bethesda, Maryland 20895
| | - Theresa H. Roberts
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, Bethesda, Maryland 20895
| | - Koret Hirschberg
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, Bethesda, Maryland 20895
| | | | - Jennifer Lippincott-Schwartz
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, Bethesda, Maryland 20895
| |
Collapse
|
2063
|
Waheed AA, Shimada Y, Heijnen HF, Nakamura M, Inomata M, Hayashi M, Iwashita S, Slot JW, Ohno-Iwashita Y. Selective binding of perfringolysin O derivative to cholesterol-rich membrane microdomains (rafts). Proc Natl Acad Sci U S A 2001; 98:4926-31. [PMID: 11309501 PMCID: PMC33140 DOI: 10.1073/pnas.091090798] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There is increasing evidence that sphingolipid- and cholesterol-rich microdomains (rafts) exist in the plasma membrane. Specific proteins assemble in these membrane domains and play a role in signal transduction and many other cellular events. Cholesterol depletion causes disassembly of the raft-associated proteins, suggesting an essential role of cholesterol in the structural maintenance and function of rafts. However, no tool has been available for the detection and monitoring of raft cholesterol in living cells. Here we show that a protease-nicked and biotinylated derivative (BCtheta) of perfringolysin O (theta-toxin) binds selectively to cholesterol-rich microdomains of intact cells, the domains that fulfill the criteria of rafts. We fractionated the homogenates of nontreated and Triton X-100-treated platelets after incubation with BCtheta on a sucrose gradient. BCtheta was predominantly localized in the floating low-density fractions (FLDF) where cholesterol, sphingomyelin, and Src family kinases are enriched. Immunoelectron microscopy demonstrated that BCtheta binds to a subpopulation of vesicles in FLDF. Depletion of 35% cholesterol from platelets with cyclodextrin, which accompanied 76% reduction in cholesterol from FLDF, almost completely abolished BCtheta binding to FLDF. The staining patterns of BCtheta and filipin in human epidermoid carcinoma A431 cells with and without cholesterol depletion suggest that BCtheta binds to specific membrane domains on the cell surface, whereas filipin binding is indiscriminate to cell cholesterol. Furthermore, BCtheta binding does not cause any damage to cell membranes, indicating that BCtheta is a useful probe for the detection of membrane rafts in living cells.
Collapse
Affiliation(s)
- A A Waheed
- Department of Protein Biochemistry, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
2064
|
Lu ML, Schneider MC, Zheng Y, Zhang X, Richie JP. Caveolin-1 interacts with androgen receptor. A positive modulator of androgen receptor mediated transactivation. J Biol Chem 2001; 276:13442-51. [PMID: 11278309 DOI: 10.1074/jbc.m006598200] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Androgen receptor (AR) belongs to the steroid hormone nuclear receptor superfamily. It functions as an androgen-dependent transcriptional factor that regulates genes for cell proliferation and differentiation. Caveolin is a principal component of caveolae membranes serving as a scaffold protein of many signal transduction pathways. Recent results correlate caveolin-1 expression with androgen sensitivity in murine prostate cancer. Furthermore, immunohistochemical staining of patient specimens suggests that caveolin expression may be an independent predictor of progression of prostate cancer. In this study, we investigate the potential interactions between AR signaling and caveolin-1 and demonstrate that overexpression of caveolin-1 potentiates ligand-dependent AR activation. Conversely, down-regulation of caveolin-1 expression by a caveolin-1 antisense expression construct can down-regulate ligand-dependent AR activation. Association between these two molecules is also demonstrated by co-localization of AR with caveolin-rich, low-density membrane fractions isolated by an equilibrium sucrose gradient centrifugation method. Co-immunoprecipitation and glutathione S-transferase fusion protein pull-down experiments demonstrate that interaction between AR and caveolin-1 is an androgen-dependent process, offering further evidence for a physiological role of this interaction. Using a mammalian two-hybrid assay system, we determine that the NH(2) terminus region of caveolin-1 is responsible for the interaction with both the NH(2)-terminal domain and the ligand-binding domain of AR.
Collapse
Affiliation(s)
- M L Lu
- Division of Urologic Surgery, Department of Surgery, Renal Division, Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
2065
|
Higuchi M, Izumi KM, Kieff E. Epstein-Barr virus latent-infection membrane proteins are palmitoylated and raft-associated: protein 1 binds to the cytoskeleton through TNF receptor cytoplasmic factors. Proc Natl Acad Sci U S A 2001; 98:4675-80. [PMID: 11296297 PMCID: PMC31893 DOI: 10.1073/pnas.081075298] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr virus encodes integral membrane proteins LMP1 and LMP2A in transformed lymphoblastoid cell lines. We now find that LMP1 associates with the cell cytoskeleton through a tumor necrosis factor receptor-associated factor-interacting domain, most likely mediated by tumor necrosis factor receptor-associated factor 3. LMP1 is palmitoylated, and the transmembrane domains associate with lipid rafts. Mutation of LMP1 cysteine-78 abrogates palmitoylation but does not affect raft association or NF-kappaB or c-Jun N-terminal kinase activation. LMP2A also associates with rafts and is palmitoylated but does not associate with the cell cytoskeleton. The associations of LMP1 and LMP2A with rafts and of LMP1 with the cell cytoskeleton are likely to effect interactions with cell proteins involved in shape, motility, signal transduction, growth, and survival.
Collapse
Affiliation(s)
- M Higuchi
- Department of Medicine, Brigham and Women's Hospital, Channing Laboratory, Harvard Medical School, Boston, MA 02115-5804, USA
| | | | | |
Collapse
|
2066
|
c-Src is required for glial cell line-derived neurotrophic factor (GDNF) family ligand-mediated neuronal survival via a phosphatidylinositol-3 kinase (PI-3K)-dependent pathway. J Neurosci 2001. [PMID: 11222636 DOI: 10.1523/jneurosci.21-05-01464.2001] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs), consisting of GDNF, neurturin, persephin, and artemin, signal via a multicomponent complex composed of Ret tyrosine kinase and the glycosyl-phosphatidylinositol (GPI)-anchored coreceptors GFRalpha1-alpha4. In previous work we have demonstrated that the localization of Ret to membrane microdomains known as lipid rafts is essential for GDNF-induced downstream signaling, differentiation, and neuronal survival. Moreover, we have found that Ret interacts with members of the Src family kinases (SFK) only when it is localized to these microdomains. In the present work we show by pharmacological and genetic approaches that Src activity was necessary to elicit optimal GDNF-mediated signaling, neurite outgrowth, and survival. In particular, p60Src, but not the other ubiquitous SFKs, Fyn and Yes, was responsible for the observed effects. Moreover, Src appeared to promote neuronal survival via a phosphatidylinositol-3 kinase (PI-3K)-dependent pathway because the PI-3K inhibitor LY294002 prevented GFL-mediated neuronal survival and prevented activated Src-mediated neuronal survival. In contrast, the inhibition of Src activity had no effects on NGF-mediated survival, indicating that the requirement for Src was selective for GFL-mediated neuronal survival. These data confirm the importance of protein-protein interactions between Ret and raft-associated proteins in the signaling pathways elicited by GDNF, and the data implicate Src as one of the major signaling molecules involved in GDNF-mediated bioactivity.
Collapse
|
2067
|
Membrane lipid rafts are necessary for the maintenance of the (alpha)7 nicotinic acetylcholine receptor in somatic spines of ciliary neurons. J Neurosci 2001. [PMID: 11160430 DOI: 10.1523/jneurosci.21-02-00504.2001] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Calcium-permeable neurotransmitter receptors are concentrated into structurally and biochemically isolated cellular compartments to localize calcium-mediated events during neurotransmission. The cytoplasmic membrane contains lipid microdomains called lipid rafts, which can gather into microscopically visible clusters, and thus the association of a particular protein with lipid rafts can result in its redistribution on the cell surface. The present study asks whether lipid rafts participate in the formation and maintenance of the calcium-permeable alpha7-subunit nicotinic acetylcholine receptor (alpha7nAChR) clusters found in somatic spines of ciliary neurons. Lipid rafts and alpha7nAChR become progressively colocalized within somatic spines during synaptogenesis. To determine whether these rafts are required for the maintenance of alpha7nAChR aggregates, cholesterol was extracted from dissociated ciliary neurons by treatment with methyl-beta-cyclodextrin. This treatment caused the dispersion of lipid rafts and the redistribution of alpha7nAChR into small clusters over the cell surface, suggesting that the integrity of lipid rafts is required to maintain the receptor clustering. However, lipid raft dispersion also caused the depolymerization of the F-actin cytoskeleton, which can also tether the receptor at specific sites. To assess whether interaction between rafts and alpha7nAChR is independent of F-actin filaments, the lipid raft patches were stabilized with a combination of the cholera toxin B subunit (CTX), which specifically binds to the raft component ganglioside GM1, and an antibody against CTX. The stabilized rafts were then treated with latrunculin-A to depolymerize F-actin. Under these conditions, large patches of CTX persisted and were colocalized with alpha7nAChR, indicating that the aggregates of receptors can be maintained independently of the underlying F-actin cytoskeleton. Moreover, it was found that the alpha7nAChR is resistant to detergent extraction at 4 degrees C and floats with the caveolin-containing lipid-rich fraction during density gradient centrifugation, properties that are consistent with a direct association between the receptor and the membrane microdomains.
Collapse
|
2068
|
Huang H, Schroeder F, Zeng C, Estes MK, Schoer JK, Ball JM. Membrane interactions of a novel viral enterotoxin: rotavirus nonstructural glycoprotein NSP4. Biochemistry 2001; 40:4169-80. [PMID: 11300798 DOI: 10.1021/bi002346s] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The rotavirus enterotoxin, NSP4, is a novel secretory agonist that also plays a role in the unique rotavirus morphogenesis that involves a transient budding of newly made immature viral particles into the endoplasmic reticulum. NSP4 and an active peptide corresponding to NSP4 residues 114 to 135 (NSP4(114-135)) mobilize intracellular calcium and induce secretory chloride currents when added exogenously to intestinal cells or mucosa. Membrane-NSP4 interactions may contribute to these alterations; however, details of a lipid-binding domain are unresolved. Therefore, circular dichroism was used to determine (i) the interaction(s) of NSP4 and NSP4(114-135) with model membranes, (ii) the conformational changes elicited in NSP4 upon interacting with membranes, (iii) if NSP4(114-135) is a membrane interacting domain, and (iv) the molar dissociation constant (K(d)) of NSP4(114-135) with defined lipid vesicles. Circular dichroism revealed for the first time that NSP4 and NSP4(114-135) undergo secondary structural changes upon interaction with membrane vesicles. This interaction was highly dependent on both the membrane surface curvature and the lipid composition. NSP4 and NSP4(114-135) preferentially interacted with highly curved, small unilamellar vesicle membranes (SUV), but significantly less with low-curvature, large unilamellar vesicle membranes (LUV). Binding to SUV, but not LUV, was greatly enhanced by negatively charged phospholipids. Increasing the SUV cholesterol content, concomitant with the presence of negatively charged phospholipids, further potentiated the interaction of NSP4(114-135) with the SUV membrane. The K(d) of NSP4(114-135) was determined as well as partitioning of NSP4(114-135) with SUVs in a filtration-binding assay. These data confirmed NSP4 and its active peptide interact with model membranes that mimic caveolae.
Collapse
Affiliation(s)
- H Huang
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, Texas 77843-4466, USA
| | | | | | | | | | | |
Collapse
|
2069
|
Chatterjee S, Smith ER, Hanada K, Stevens VL, Mayor S. GPI anchoring leads to sphingolipid-dependent retention of endocytosed proteins in the recycling endosomal compartment. EMBO J 2001; 20:1583-92. [PMID: 11285223 PMCID: PMC145477 DOI: 10.1093/emboj/20.7.1583] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI) anchoring is important for the function of several proteins in the context of their membrane trafficking pathways. We have shown previously that endocytosed GPI-anchored proteins (GPI-APs) are recycled to the plasma membrane three times more slowly than other membrane components. Recently, we found that GPI-APs are delivered to endocytic organelles, devoid of markers of the clathrin-mediated pathway, prior to their delivery to a common recycling endosomal compartment (REC). Here we show that the rate-limiting step in the recycling of GPI-APs is their slow exit from the REC; replacement of the GPI anchor with a transmembrane protein sequence abolishes retention in this compartment. Depletion of endogenous sphingolipid levels using sphingolipid synthesis inhibitors or in a sphingolipid-synthesis mutant cell line specifically enhances the rate of endocytic recycling of GPI-APs to that of other membrane components. We have shown previously that endocytic retention of GPI-APs is also relieved by cholesterol depletion. These findings strongly suggest that functional retention of GPI-APs in the REC occurs via their association with sphingolipid and cholesterol-enriched sorting platforms or 'rafts'.
Collapse
Affiliation(s)
| | - Elizabeth R. Smith
- National Center for Biological Sciences, UAS-GKVK Campus, Bellary Road, Bangalore 560 065, India,
Department of Radiation Oncology, Emory University, Atlanta, GA, USA and National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan Corresponding author e-mail:
| | - Kentaro Hanada
- National Center for Biological Sciences, UAS-GKVK Campus, Bellary Road, Bangalore 560 065, India,
Department of Radiation Oncology, Emory University, Atlanta, GA, USA and National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan Corresponding author e-mail:
| | - Victoria L. Stevens
- National Center for Biological Sciences, UAS-GKVK Campus, Bellary Road, Bangalore 560 065, India,
Department of Radiation Oncology, Emory University, Atlanta, GA, USA and National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan Corresponding author e-mail:
| | - Satyajit Mayor
- National Center for Biological Sciences, UAS-GKVK Campus, Bellary Road, Bangalore 560 065, India,
Department of Radiation Oncology, Emory University, Atlanta, GA, USA and National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan Corresponding author e-mail:
| |
Collapse
|
2070
|
Van Laethem F, Baus E, Smyth LA, Andris F, Bex F, Urbain J, Kioussis D, Leo O. Glucocorticoids attenuate T cell receptor signaling. J Exp Med 2001; 193:803-14. [PMID: 11283153 PMCID: PMC2193373 DOI: 10.1084/jem.193.7.803] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Glucocorticoids (GCs) affect peripheral immune responses by inhibiting T cell immunity at several stages of the activation cascade, causing impaired cytokine production and effector function. The recent demonstration that the thymic epithelium and possibly thymocytes themselves produce steroids suggests that endogenous GCs also play a role in the control of T cell development. As both peripheral responsiveness and thymic differentiation appear to be regulated by the quantity and quality of intracellular signals issued by antigen-major histocompatibility complex-engaged T cell receptor (TCR) complexes, we investigated the effects of GCs on the signaling properties of T cells stimulated by anti-CD3 monoclonal antibodies or agonist peptides. We demonstrate in this work that dexamethasone, a synthetic GC, inhibits the early signaling events initiated upon TCR ligation, such as tyrosine phosphorylation of several TCR-associated substrates including the zeta chain, the ZAP70 kinase, and the transmembrane adapter molecule linker for activation of T cells. Hypophosphorylation was not a consequence of reduced kinase activity of src protein tyrosine kinases, but was correlated with an altered- membrane compartmentalization of these molecules. These observations indicate that in addition to their well-described ability to interfere with the transcription of molecules involved in peripheral responses, GCs inhibit T cell activation by affecting the early phosphorylating events induced after TCR ligation.
Collapse
Affiliation(s)
- François Van Laethem
- Laboratoire de Physiologie Animale, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Erika Baus
- Laboratoire de Physiologie Animale, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Lesley A. Smyth
- Division of Molecular Immunology, The National Institute of Medical Research, London NW7 1AA, United Kingdom
| | - Fabienne Andris
- Laboratoire de Physiologie Animale, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Françoise Bex
- Laboratoire de Microbiologie, Institut CERIA, Université Libre de Bruxelles, 1070 Bruxelles, Belgium
| | - Jacques Urbain
- Laboratoire de Physiologie Animale, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Dimitris Kioussis
- Division of Molecular Immunology, The National Institute of Medical Research, London NW7 1AA, United Kingdom
| | - Oberdan Leo
- Laboratoire de Physiologie Animale, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| |
Collapse
|
2071
|
Høyrup P, Davidsen J, Jørgensen K. Lipid Membrane Partitioning of Lysolipids and Fatty Acids: Effects of Membrane Phase Structure and Detergent Chain Length§. J Phys Chem B 2001. [DOI: 10.1021/jp003631o] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2072
|
van der Goot FG, Harder T. Raft membrane domains: from a liquid-ordered membrane phase to a site of pathogen attack. Semin Immunol 2001; 13:89-97. [PMID: 11308292 DOI: 10.1006/smim.2000.0300] [Citation(s) in RCA: 197] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
While the existence of cholesterol/sphingolipid (raft) membrane domains in the plasma membrane is now supported by strong experimental evidence, the structure of these domains, their size, their dynamics, and their molecular composition remain to be understood. Raft domains are thought to represent a specific physical state of lipid bilayers, the liquid-ordered phase. Recent observations suggest that in the mammalian plasma membrane small raft domains in ordered lipid phases are in a dynamic equilibrium with a less ordered membrane environment. Rafts may be enlarged and/or stabilized by protein-mediated cross-linking of raft-associated components. These changes of plasma membrane structure are perceived by the cells as signals, most likely an important element of immunoreceptor signalling. Pathogens abuse raft domains on the host cell plasma membrane as concentration devices, as signalling platforms and/or entry sites into the cell. Elucidation of these interactions requires a detailed understanding raft structure and dynamics.
Collapse
Affiliation(s)
- F G van der Goot
- Department of Biochemistry, University of Geneva, 1211 Geneva, 30 quai E. Ansermet, Switzerland.
| | | |
Collapse
|
2073
|
Gilroy S, Trewavas A. Signal processing and transduction in plant cells: the end of the beginning? Nat Rev Mol Cell Biol 2001; 2:307-14. [PMID: 11283728 DOI: 10.1038/35067109] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Plants have a very different lifestyle to animals, and one might expect that unique molecules and processes would underpin plant-cell signal transduction. But, with a few notable exceptions, the list is remarkably familiar and could have been constructed from animal studies. Wherein, then, does lifestyle specificity emerge?
Collapse
|
2074
|
Abstract
Whereas endosomes connect with both exocytic and endocytic organelle via extensive lipid and protein traffic, each endosome has a distinct lipid and protein composition. Recent observations suggest that different lipid membrane domains exist even in the same endosome. These lipid domains, together with low pH milieu, may present a variety of micro-environments to cargo molecules. Evidence is accumulating which suggests that the alteration of these lipid microdomains may be involved in a number of pathological conditions.
Collapse
Affiliation(s)
- T Kobayashi
- Supra-Biomolecular System Research Group, RIKEN (Institute of Physical and Chemical Research), Frontier Research System, Wako-shi, Saitama 351-0198, Japan.
| | | | | |
Collapse
|
2075
|
Abstract
Heterotrimeric G protein alpha,beta, and gamma subunits are subject to several kinds of co- and post-translational covalent modifications. Among those relevant to G protein-coupled receptor signaling in normal cell function are lipid modifications and phosphorylation. N-myristoylation is a co-translational modification occurring for members of the G(i) family of Galpha subunits, while palmitoylation is a post-translational modification that occurs for these and most other Galpha subunits. One or both modifications are required for plasma membrane targeting and contribute to regulating strength of interaction with the Gbetagamma heterodimer, effectors, and regulators of G protein signaling (RGS proteins). Galpha subunits, including those with transforming activity, are often inactive when unable to be modified with lipids. The reversible nature of palmitoylation is intriguing in this regard, as it lends itself to a regulation integrated with the activation state of the G protein. Several Galpha subunits are substrates for phosphorylation by protein kinase C and at least one is a substrate for phosphorylation by the p21-activated protein kinase. Phosphorylation in both instances inhibits the interactions of these subunits with the Gbetagamma heterodimer and RGS proteins. Several Galpha subunits are also substrates for tyrosine phosphorylation. A Ggamma subunit is phosphorylated by protein kinase C, with the consequence that it interacts more tightly with a Galpha subunit but less well with an effector.
Collapse
Affiliation(s)
- C A Chen
- Department of Pharmacology, University of Pennsylvania School of Medicine, 3620 Hamilton Walk, Philadelphia, PA 19104-6084, USA
| | | |
Collapse
|
2076
|
Claas C, Stipp CS, Hemler ME. Evaluation of prototype transmembrane 4 superfamily protein complexes and their relation to lipid rafts. J Biol Chem 2001; 276:7974-84. [PMID: 11113129 DOI: 10.1074/jbc.m008650200] [Citation(s) in RCA: 244] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent literature suggests that tetraspanin proteins (transmembrane 4 superfamily; TM4SF proteins) may associate with each other and with many other transmembrane proteins to form large complexes that sometimes may be found in lipid rafts. Here we show that prototype complexes of CD9 or CD81 (TM4SF proteins) with alpha(3)beta(1) (an integrin) and complexes of CD63 (a TM4SF protein) with phosphatidylinositol 4-kinase (PtdIns 4-K) may indeed localize within lipid raft-like microdomains, as seen by three different criteria. First, these complexes localize to low density light membrane fractions in sucrose gradients. Second, CD9 and alpha(3) integrin colocalized with ganglioside GM1 as seen by double staining of fixed cells. Third, CD9-alpha3beta1 and CD81-alpha3beta1 complexes were shifted to a higher density upon cholesterol depletion from intact cells or cell lysate. However, CD9-alpha3beta1, CD81-alpha3beta1, and CD63-PtdIns 4-K complex formation itself was not dependent on localization into raftlike lipid microdomains. These complexes did not require cholesterol for stabilization, were maintained within well solubilized dense fractions from sucrose gradients, were stable at 37 degrees C, and were small enough to be included within CL6B gel filtration columns. In summary, prototype TM4SF protein complexes (CD9-alpha3beta1, CD81-alpha3beta1, and CD63-PtdIns 4-K) can be solubilized as discrete units, independent of lipid microdomains, although they do associate with microdomains resembling lipid rafts.
Collapse
Affiliation(s)
- C Claas
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute and Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
2077
|
Abstract
In the central nervous system (CNS), the myelin sheath is synthesised by oligodendrocytes as a specialised subdomain of an extended plasma membrane, reminiscent of the segregated membrane domains of polarised cells. Myelination takes place within a relatively short period of time and oligodendrocytes must have adapted membrane sorting and transport mechanisms to achieve such a high rate of myelin synthesis and to maintain the unique organisation of the myelin membrane. In adult life, maintenance of the functional myelin sheath requires a carefully orchestrated balance of myelin synthesis and turnover. Imbalance in these processes may cause dys- or demyelination and disease. This review summarises what is currently known about myelin protein trafficking and mistrafficking in oligodendrocytes. We also present data demonstrating distinct transport pathways for myelin structural proteins and the expression of SNARE proteins in differentiating oligodendrocytes. Myelinating glial cells may well serve as a model system for studying general aspects of membrane trafficking and organisation of membrane domains.
Collapse
Affiliation(s)
- E M Krämer
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37035 Göttingen, Germany.
| | | | | |
Collapse
|
2078
|
Abstract
Genetic and biochemical studies in yeast and animal cells have led to the identification of many components required for endocytosis. In this review, we summarize our understanding of the endocytic machinery with an emphasis on the proteins regulating the internalization step of endocytosis and endosome fusion. Even though the overall endocytic machinery appears to be conserved between yeast and animals, clear differences exist. We also discuss the roles of phosphoinositides, sterols, and sphingolipid precursors in endocytosis, because in addition to proteins, these lipids have emerged as important determinants in the spatial and most likely temporal specificity of endocytic membrane trafficking events.
Collapse
Affiliation(s)
- K D'Hondt
- Biozentrum-University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland.
| | | | | |
Collapse
|
2079
|
Huai J, Drescher U. An ephrin-A-dependent signaling pathway controls integrin function and is linked to the tyrosine phosphorylation of a 120-kDa protein. J Biol Chem 2001; 276:6689-94. [PMID: 11053419 DOI: 10.1074/jbc.m008127200] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Eph family of receptor tyrosine kinases and their ligands, the ephrins, have been implicated in the development of the retinotectal projection. Here, glycosylphosphatidylinositol-anchored A-ephrins are not only expressed in the tectum but also on retinal axons, raising the possibility that they function in this context as receptors. We now show that activation of ephrin-A2 or ephrin-A5 by one of their receptors, ephA3, results in a beta 1-integrin-dependent increased adhesion of ephrin-A-expressing cells to laminin. In the search for an ephrin-A-dependent signaling pathway controlling integrin activation, we identified a 120-kDa raft membrane protein that is tyrosine-phosphorylated specifically after ephrin-A activation. Tyrosine phosphorylation of this protein is not seen after stimulating ephrin-A2-expressing cells with basic fibroblast growth factor, epidermal growth factor, insulin growth factor, or fetal calf serum containing a large set of different growth factors. The role of p120 as a mediator of an ephrin-A-integrin coupling is supported by the finding that inhibiting tyrosine phosphorylation of p120 correlates with an abolishment of the beta 1-dependent cell adhesion.
Collapse
Affiliation(s)
- J Huai
- Department of Physical Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | | |
Collapse
|
2080
|
Lamaze C, Dujeancourt A, Baba T, Lo CG, Benmerah A, Dautry-Varsat A. Interleukin 2 receptors and detergent-resistant membrane domains define a clathrin-independent endocytic pathway. Mol Cell 2001; 7:661-71. [PMID: 11463390 DOI: 10.1016/s1097-2765(01)00212-x] [Citation(s) in RCA: 402] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Clathrin-dependent endocytosis has long been presented as the only efficient mechanism by which transmembrane receptors are internalized. We selectively blocked this process using dominant-negative mutants of Eps15 and showed that clathrin-mediated endocytosis of transferrin was inhibited, while endocytosis of interleukin 2 (IL2) receptors proceeded normally. Ultrastructural and biochemical experiments showed that clathrin-independent endocytosis of IL2 receptors exists constitutively in lymphocytes and is coupled to their association with detergent-resistant membrane domains. Finally, clathrin-independent endocytosis requires dynamin and is specifically regulated by Rho family GTPases. These results define novel properties of receptor-mediated endocytosis and establish that the IL2 receptor is efficiently internalized through this clathrin-independent pathway.
Collapse
Affiliation(s)
- C Lamaze
- Unité de Biologie des Interactions Cellulaires, URA CNRS 1960, Institut Pasteur, Paris, France.
| | | | | | | | | | | |
Collapse
|
2081
|
Dietrich C, Bagatolli LA, Volovyk ZN, Thompson NL, Levi M, Jacobson K, Gratton E. Lipid rafts reconstituted in model membranes. Biophys J 2001; 80:1417-28. [PMID: 11222302 PMCID: PMC1301333 DOI: 10.1016/s0006-3495(01)76114-0] [Citation(s) in RCA: 1055] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
One key tenet of the raft hypothesis is that the formation of glycosphingolipid- and cholesterol-rich lipid domains can be driven solely by characteristic lipid-lipid interactions, suggesting that rafts ought to form in model membranes composed of appropriate lipids. In fact, domains with raft-like properties were found to coexist with fluid lipid regions in both planar supported lipid layers and in giant unilamellar vesicles (GUVs) formed from 1) equimolar mixtures of phospholipid-cholesterol-sphingomyelin or 2) natural lipids extracted from brush border membranes that are rich in sphingomyelin and cholesterol. Employing headgroup-labeled fluorescent phospholipid analogs in planar supported lipid layers, domains typically several microns in diameter were observed by fluorescence microscopy at room temperature (24 degrees C) whereas non-raft mixtures (PC-cholesterol) appeared homogeneous. Both raft and non-raft domains were fluid-like, although diffusion was slower in raft domains, and the probe could exchange between the two phases. Consistent with the raft hypothesis, GM1, a glycosphingolipid (GSL), was highly enriched in the more ordered domains and resistant to detergent extraction, which disrupted the GSL-depleted phase. To exclude the possibility that the domain structure was an artifact caused by the lipid layer support, GUVs were formed from the synthetic and natural lipid mixtures, in which the probe, LAURDAN, was incorporated. The emission spectrum of LAURDAN was examined by two-photon fluorescence microscopy, which allowed identification of regions with high or low order of lipid acyl chain alignment. In GUVs formed from the raft lipid mixture or from brush border membrane lipids an array of more ordered and less ordered domains that were in register in both monolayers could reversibly be formed and disrupted upon cooling and heating. Overall, the notion that in biomembranes selected lipids could laterally aggregate to form more ordered, detergent-resistant lipid rafts into which glycosphingolipids partition is strongly supported by this study.
Collapse
Affiliation(s)
- C Dietrich
- Department of Cell Biology and Anatomy, University of North Carolina at Chapel Hill, 27599, USA
| | | | | | | | | | | | | |
Collapse
|
2082
|
Guignot J, Bernet-Camard MF, Poüs C, Plançon L, Le Bouguenec C, Servin AL. Polarized entry of uropathogenic Afa/Dr diffusely adhering Escherichia coli strain IH11128 into human epithelial cells: evidence for alpha5beta1 integrin recognition and subsequent internalization through a pathway involving caveolae and dynamic unstable microtubules. Infect Immun 2001; 69:1856-68. [PMID: 11179364 PMCID: PMC98093 DOI: 10.1128/iai.69.3.1856-1868.2001] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2000] [Accepted: 12/12/2000] [Indexed: 01/09/2023] Open
Abstract
Afa/Dr diffusely adhering Escherichia coli strain IH11128 bacteria basolaterally entered polarized epithelial cells by a CD55- and CD66e-independent mechanism through interaction with the alpha5beta1 integrin and a pathway involving caveolae and dynamic microtubules (MTs). IH11128 invasion within HeLa cells was dramatically decreased after the cells were treated with the cholesterol-extracting drug methyl-beta-cyclodextrin or the caveola-disrupting drug filipin. Disassembly of the dynamically unstable MT network by the compound 201-F resulted in a total abolition of IH11128 entry. In apically infected polarized fully differentiated Caco-2/TC7 cells, no IH11128 entry was observed. The entry of bacteria into apically IH11128-infected fully differentiated Caco-2/TC7 cells was greatly enhanced by treating cells with Ca2+-free medium supplemented with EGTA, a procedure that disrupts intercellular junctions and thus exposes the basolateral surface to bacteria. Basally infected fully differentiated polarized Caco-2/TC7 cells grown on inverted inserts mounted in chamber culture showed a highly significant level of intracellular IH11128 bacteria compared with cells subjected to the apical route of infection. No expression of CD55 and CD66e, the receptors for the Afa/Dr adhesins, was found at the basolateral domains of these cells. Consistent with the hypothesis that a cell-to-cell adhesion molecule acts as a receptor for polarized IH11128 entry, an antibody blockade using anti-alpha5beta1 integrin polyclonal antibody completely abolished bacterial entry. Experiments conducted with the laboratory strain E. coli K-12 EC901 carrying the recombinant plasmid pBJN406, which expresses Dr hemagglutinin, demonstrated that the dra operon is involved in polarized entry of IH11128 bacteria. Examined as a function of cell differentiation, the number of internalized bacteria decreased dramatically beyond cell confluency. Surviving intracellular IH11128 bacteria residing intracellularly had no effect on the functional differentiation of Caco-2/TC7 cells.
Collapse
Affiliation(s)
- J Guignot
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 510, France
| | | | | | | | | | | |
Collapse
|
2083
|
Torgersen KM, Vaage JT, Rolstad B, Taskén K. A soluble LAT deletion mutant inhibits T-cell activation: reduced recruitment of signalling molecules to glycolipid-enriched microdomains. Cell Signal 2001; 13:213-20. [PMID: 11282460 DOI: 10.1016/s0898-6568(01)00131-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The type III transmembrane adaptor protein linker for activation of T cells (LAT) is essential for membrane recruitment of signalling molecules following TCR activation. Here we show that although LAT deleted in the transmembrane domain is completely soluble, it can be tyrosine phosphorylated after anti-CD3 stimulation or pervanadate treatment. Overexpression of this deletion mutant in transiently transfected Jurkat TAg cells inhibits transcriptional activation of nuclear factor of activated T cells (NF-AT)/AP-1 reporter construct in a concentration-dependent manner. Furthermore, by selection of transiently transfected cells, a clear reduction of TCR-induced CD69 expression was observed in cells expressing the mutant. These dominant negative effects seemed to be dependent both on the ability of the membrane deletion mutant to reduce phosphorylation of endogenous LAT and to reduce interaction of endogenous LAT with PLC-gamma1 and Grb2. Consistent with this, the redistribution of PLC-gamma1 and Grb2 to glycolipid-enriched microdomains, called lipid rafts, after stimulation was inhibited when the soluble form of LAT was overexpressed. We suggest that the dominant negative effect is caused by the ability of the mutant to sequester signalling molecules in cytosol and thereby inhibit redistribution of signalling molecules to lipid rafts upon T-cell activation.
Collapse
Affiliation(s)
- K M Torgersen
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | | |
Collapse
|
2084
|
Dykstra ML, Cherukuri A, Pierce SK. Floating the raft hypothesis for immune receptors: access to rafts controls receptor signaling and trafficking. Traffic 2001; 2:160-6. [PMID: 11260521 DOI: 10.1034/j.1600-0854.2001.020302.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The B cell antigen receptor (BCR) is a member of an important family of multichain immune recognition receptors, which are complexes composed of ligand-binding domains associated with signal-transduction complexes. The signaling components of these receptors have no inherent kinase activity but become tyrosine phosphorylated in their cytoplasmic domains by Src-family kinases upon oligomerization, thus initiating signaling cascades. The BCR is unique in this family in that, in addition to its signaling function, it also serves to deliver antigen to intracellular compartments where the antigen is processed and presented bound to major histocompatibility complex (MHC) class II molecules. Recent evidence indicates that both the signaling and antigen-trafficking functions of the BCR are regulated by cholesterol- and sphingolipid-rich plasma membrane microdomains termed rafts. Indeed, upon oligomerization, the BCR translocates into rafts that concentrate the Src-family kinase Lyn and is subsequently internalized directly from the rafts. Thus, translocation into rafts allows the association of the oligomerized BCR with Lyn and the initiation of both signaling and trafficking. Significantly, the access of the BCR to rafts appears to be controlled by a variety of B lymphocyte co-receptors, as well as factors including the developmental state of the B cell and viral infection. Thus, the translocation of the immune receptors into signaling-competent microdomains may represent a novel mechanism to initiate and regulate immune-cell activation.
Collapse
Affiliation(s)
- M L Dykstra
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Laboratory of Immunogenetics, Rockville, MD 20852, USA
| | | | | |
Collapse
|
2085
|
Denny PW, Field MC, Smith DF. GPI-anchored proteins and glycoconjugates segregate into lipid rafts in Kinetoplastida. FEBS Lett 2001; 491:148-53. [PMID: 11226438 DOI: 10.1016/s0014-5793(01)02172-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The plasma membranes of the divergent eukaryotic parasites, Leishmania and Trypanosoma, are highly specialised, with a thick coat of glycoconjugates and glycoproteins playing a central role in virulence. Unusually, the majority of these surface macro-molecules are attached to the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor. In mammalian cells and yeast, many GPI-anchored molecules associate with sphingolipid and cholesterol-rich detergent-resistant membranes, known as lipid rafts. Here we show that GPI-anchored parasite macro-molecules (but not the dual acylated Leishmania surface protein (hydrophilic acylated surface protein) or a subset of the GPI-anchored glycoinositol phospholipid glycolipids) are enriched in a sphingolipid/sterol-rich fraction resistant to cold detergent extraction. This observation is consistent with the presence of functional lipid rafts in these ancient, highly polarised organisms.
Collapse
Affiliation(s)
- P W Denny
- Wellcome Trust Laboratories for Molecular Parasitology, Department of Biochemistry, Imperial College of Science, Technology and Medicine, SW7 1AZ, London, UK.
| | | | | |
Collapse
|
2086
|
Stipp CS, Orlicky D, Hemler ME. FPRP, a major, highly stoichiometric, highly specific CD81- and CD9-associated protein. J Biol Chem 2001; 276:4853-62. [PMID: 11087758 DOI: 10.1074/jbc.m009859200] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
CD81 and CD9, members of the transmembrane-4 superfamily (TM4SF; tetraspanins), form extensive complexes with other TM4SF proteins, integrins, and other proteins, especially in mild detergents. In moderately stringent Brij 96 lysis conditions, CD81 and CD9 complexes are virtually identical to each other, but clearly distinct from other TM4SF complexes. One of the most prominent proteins within CD81 and CD9 complexes is identified here as FPRP, the 133-kDa prostaglandin F(2alpha) receptor regulatory protein. FPRP, a cell-surface Ig superfamily protein, associates specifically with CD81 or with CD81 and CD9, but not with integrins or other TM4SF proteins. In contrast to other CD81- and CD9-associating proteins, FPRP associates at very high stoichiometry, with essentially 100% of cell-surface FPRP on 293 cells being CD81- and CD9-associated. Also, CD81.CD9.FPRP complexes have a discrete size (<4 x 10(6) Da) as measured by gel permeation chromatography and remain intact after disruption of cholesterol-rich membrane microdomains by methyl-beta-cyclodextrin. Although CD81 associated with both alpha(3) integrin and FPRP in 293 cells, the alpha(3)beta(1).CD81 and CD81.CD9.FPRP complexes were distinct, as determined by immunoprecipitation and immunodepletion experiments. In conclusion, our data affirm the existence of distinct TM4SF complexes with unique compositions and specifically characterize FPRP as the most robust, highly stoichiometric CD81- and/or CD9-associated protein yet described.
Collapse
Affiliation(s)
- C S Stipp
- Dana-Farber Cancer Institute and the Department of Pathology, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| | | | | |
Collapse
|
2087
|
Abstract
The phase behavior of mixed lipid dispersions representing the inner leaflet of the cell membrane has been characterized by X-ray diffraction. Aqueous dispersions of phosphatidylethanolamine:phosphatidylserine (4:1 mole/mole) have a heterogeneous structure comprising an inverted hexagonal phase H(II) and a lamellar phase. Both phases coexist in the temperature range 20-45 degrees C. The fluid-to-gel mid-transition temperature of the lamellar phase assigned to phosphatidylserine is decreased from 27 to 24 degrees C in the presence of calcium. Addition of sphingomyelin to phosphatidylethanolamine/phosphatidylserine prevents phase separation of the hexagonal H(II) phase of phosphatidylethanolamine but the ternary mixture phase separates into two lamellar phases of periodcity 6.2 and 5.6 nm, respectively. The 6.2-nm periodicity is assigned to the gel phase enriched in sphingomyelin of molecular species comprising predominantly long saturated hydrocarbon chains because it undergoes a gel-to-fluid phase transition above 40 degrees C. The coexisting fluid phase we assign to phosphatidylethanolamine and phosphatidylserine and low melting point molecular species of sphingomyelin which suppresses the tendency of phosphatidylethanolamine to phase-separate into hexagonal H(II) structure. There is evidence for considerable hysteresis in the separation of lamellar fluid and gel phases during cooling. The addition of cholesterol prevents phase separation of the gel phase of high melting point sphingomyelin in mixtures with phosphatidylserine and phosphatidylethanolamine. In the quaternary mixture the lamellar fluid phase, however, is phase separated into two lamellar phases of periodicities of 6.3 and 5.6 nm (20 degrees C), respectively. The lamellar phase of periodicity 5.6 nm is assigned to a phase enriched in aminoglycerophospholipids and the periodicity 6.3 nm to a liquid-ordered phase formed from cholesterol and high melting point molecular species of sphingomyelin characterized previously by ESR. Substituting 7-dehydrocholesterol for cholesterol did not result in evidence for lamellar phase separation in the mixture within the temperature range 20-40 degrees C. The specificity of cholesterol in creation of liquid-ordered lamellar phase is inferred.
Collapse
Affiliation(s)
- C Wolf
- Biochimie, INSERM U538, Laboratoire Commun de Spectrometrie, Faculté de Médecine de Saint Antoine, Paris, France.
| | | | | | | |
Collapse
|
2088
|
Riemann D, Hansen GH, Niels-Christiansen L, Thorsen E, Immerdal L, Santos AN, Kehlen A, Langner J, Danielsen EM. Caveolae/lipid rafts in fibroblast-like synoviocytes: ectopeptidase-rich membrane microdomains. Biochem J 2001; 354:47-55. [PMID: 11171078 PMCID: PMC1221627 DOI: 10.1042/0264-6021:3540047] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Membrane peptidases play important roles in cell activation, proliferation and communication. Human fibroblast-like synoviocytes express considerable amounts of aminopeptidase N/CD13, dipeptidyl peptidase IV/CD26, and neprilysin/CD10, transmembrane proteins previously proposed to be involved in the regulation of intra-articular levels of neuropeptides and chemotactic mediators as well as in adhesion and cell-cell interactions. Here, we report these peptidases in synoviocytes to be localized predominantly in glycolipid- and cholesterol-rich membrane microdomains known as 'rafts'. At the ultrastructural level, aminopeptidase N/CD13 and dipeptidyl peptidase IV/CD26 were found in caveolae, in particular in intracellular yet surface-connected vesicle-like structures and 'rosettes' made up of several caveolae. In addition, clusters of peptidases were seen at the cell surface in flat patches ranging in size from about 60 to 160 nm. Cholesterol depletion of synoviocytes by methyl-beta-cyclodextrin disrupted >90% of the caveolae and reduced the raft localization of aminopeptidase N/CD13 without affecting Ala-p-nitroanilide-cleaving activity of confluent cell cultures. In co-culture experiments with T-lymphocytes, cholesterol depletion of synoviocytes greatly reduced their capability to induce an early lymphocytic expression of aminopeptidase N/CD13. We propose caveolae/rafts to be peptidase-rich 'hot-spot' regions of the synoviocyte plasma membrane required for functional cell-cell interactions with lymphocytes. The peptidases may act in concert with other types of proteins such as receptors and signal transducers localized in these specialized membrane domains.
Collapse
Affiliation(s)
- D Riemann
- Institute of Medical Immunology, Martin Luther University, Halle-Wittenberg, Strasse der OdF 6, D-06097 Halle, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
2089
|
Salzer U, Prohaska R. Stomatin, flotillin-1, and flotillin-2 are major integral proteins of erythrocyte lipid rafts. Blood 2001; 97:1141-3. [PMID: 11159550 DOI: 10.1182/blood.v97.4.1141] [Citation(s) in RCA: 261] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipid rafts are sphingolipid- and cholesterol-rich membrane microdomains that are insoluble in nonionic detergents, have a low buoyant density, and preferentially contain lipid-modified proteins, like glycosyl phosphatidylinositol (GPI)-anchored proteins. The lipid rafts were isolated from human erythrocytes and major protein components were identified. Apart from the GPI-anchored proteins, the most abundant integral proteins were found to be the distantly related membrane proteins stomatin (band 7.2b), flotillin-1, and flotillin-2. Flotillins, already described as lipid raft components in neurons and caveolae-associated proteins in A498 kidney cells, have not been recognized as red cell components yet. In addition, it was shown that the major cytoskeletal proteins, spectrin, actin, band 4.1, and band 4.2, are partly associated with the lipid rafts. Stomatin and the flotillins are present as independently organized high-order oligomers, suggesting that these complexes act as separate scaffolding components at the cytoplasmic face of erythrocyte lipid rafts.
Collapse
Affiliation(s)
- U Salzer
- Institute of Medical Biochemistry, University of Vienna, Vienna Biocenter, Vienna, Austria
| | | |
Collapse
|
2090
|
Schlegel A, Arvan P, Lisanti MP. Caveolin-1 binding to endoplasmic reticulum membranes and entry into the regulated secretory pathway are regulated by serine phosphorylation. Protein sorting at the level of the endoplasmic reticulum. J Biol Chem 2001; 276:4398-408. [PMID: 11078729 DOI: 10.1074/jbc.m005448200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caveolin-1 serves as the main coat protein of caveolae membranes, as an intracellular cholesterol shuttle, and as a regulator of diverse signaling molecules. Of the 12 residues conserved across all caveolin isoforms from all species examined to date, only Ser(80) and Ser(168) could serve as phosphorylation sites. We show here that mimicking chronic phosphorylation of Ser(80) by mutation to Glu (i.e. Cav-1(S80E)), blocks phosphate incorporation. However, Cav-1(S168E) is phosphorylated to the same extent as wild-type caveolin-1. Cav-1(S80E) targets to the endoplasmic reticulum membrane, remains oligomeric, and maintains normal membrane topology. In contrast, Cav-1(S80A), which cannot be phosphorylated, targets to caveolae membranes. Some exocrine cells secrete caveolin-1 in a regulated manner. Cav-1(S80A) is not secreted by AR42J pancreatic adenocarcinoma cells even in the presence of dexamethasone, an agent that induces the secretory phenotype. Conversely, Cav-1(S80E) is secreted to a greater extent than wild-type caveolin-1 following dexamethasone treatment. We conclude that caveolin-1 phosphorylation on invariant serine residue 80 is required for endoplasmic reticulum retention and entry into the regulated secretory pathway.
Collapse
Affiliation(s)
- A Schlegel
- Department of Molecular Pharmacology, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
2091
|
|
2092
|
Kawasaki K, Yin JJ, Subczynski WK, Hyde JS, Kusumi A. Pulse EPR detection of lipid exchange between protein-rich raft and bulk domains in the membrane: methodology development and its application to studies of influenza viral membrane. Biophys J 2001; 80:738-48. [PMID: 11159441 PMCID: PMC1301272 DOI: 10.1016/s0006-3495(01)76053-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A pulse saturation-recovery electron paramagnetic resonance (EPR) method has been developed that allows estimation of the exchange rates of a spin-labeled lipid between the bulk domain and the protein-rich membrane domain, in which the rate of collision between the spin label and molecular oxygen is reduced (slow-oxygen transport domain, or SLOT domain). It is based on the measurements of saturation-recovery signals of a lipid spin label as a function of concentrations of both molecular oxygen and the spin label. Influenza viral membrane, one of the simplest paradigms for the study of biomembranes, showed the presence of two membrane domains with slow and fast collision rates with oxygen (a 16-fold difference) at 30 degrees C. The outbound rate from and the inbound rate into the SLOT domain (or possibly the rate of the domain disintegration and formation) were estimated to be 7.7 x 10(4) and 4.6 x 10(4) s(-1), (15 micros residency time), respectively, indicating that the SLOT domain is highly dynamic and that the entire SLOT domain represents about one-third of the membrane area. Because the oxygen transport rate in the SLOT domain is a factor of two smaller than that in purple membrane, where bacteriorhodopsin is aggregated, we propose that the SLOT domain in the viral membrane is the cholesterol-rich raft domain stabilized by the trimers of hemagglutinin and/or the tetramers of neuraminidase.
Collapse
Affiliation(s)
- K Kawasaki
- National Institute of Bioscience and Human Technology, Tsukuba 305-8566, Japan
| | | | | | | | | |
Collapse
|
2093
|
Vyas KA, Patel HV, Vyas AA, Schnaar RL. Segregation of gangliosides GM1 and GD3 on cell membranes, isolated membrane rafts, and defined supported lipid monolayers. Biol Chem 2001; 382:241-50. [PMID: 11308022 DOI: 10.1515/bc.2001.031] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Lateral assemblies of sphingolipids, glycosphingolipids and cholesterol, termed rafts, are postulated to be present in biological membranes and to function in important cellular phenomena. We probed whether rafts are heterogeneous by determining the relative distribution of two gangliosides, GM1 and GD3, in artificial supported monolayers, in intact rat primary cerebellar granule neurones, and in membrane rafts isolated from rat cerebellum. Fluorescence resonance energy transfer (FRET) using fluorophore-labelled cholera toxin B subunit (which binds GM1) and mAb R24 (which binds GD3) revealed that GM1 spontaneously self-associates but does not co-cluster with GD3 in supported monolayers and on intact neurones. Cholera toxin and immunocytochemical labelling of isolated membrane rafts from rat cerebellum further demonstrated that GM1 does not co-localise with GD3. Furthermore, whereas the membrane raft resident proteins Lyn and caveolin both co-localise with GD3 in isolated membrane rafts, GM1 appears in separate and distinct aggregates. These data support prior reports that membrane rafts are heterogeneous, although the mechanisms for establishing and maintaining such heterogeneity remain to be determined.
Collapse
Affiliation(s)
- K A Vyas
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
2094
|
Borbat PP, Costa-Filho AJ, Earle KA, Moscicki JK, Freed JH. Electron spin resonance in studies of membranes and proteins. Science 2001; 291:266-9. [PMID: 11253218 DOI: 10.1126/science.291.5502.266] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We provide a review of current electron spin resonance (ESR) techniques for studying basic molecular mechanisms in membranes and proteins by using nitroxide spin labels. In particular, nitroxide spin label studies with high-field/high-frequency ESR and two-dimensional Fourier transform ESR enable one to accurately determine distances in biomolecules, unravel the details of the complex dynamics in proteins, characterize the dynamic structure of membrane domains, and discriminate between bulk lipids and boundary lipids that coat transmembrane peptides or proteins; these studies can also provide time resolution to studies of functional dynamics of proteins. We illustrate these capabilities with recent examples.
Collapse
Affiliation(s)
- P P Borbat
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301, USA
| | | | | | | | | |
Collapse
|
2095
|
Merchant M, Swart R, Katzman RB, Ikeda M, Ikeda A, Longnecker R, Dykstra ML, Pierce SK. The effects of the Epstein-Barr virus latent membrane protein 2A on B cell function. Int Rev Immunol 2001; 20:805-35. [PMID: 11913951 DOI: 10.3109/08830180109045591] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Epstein-Barr Virus (EBV) infects B-lymphocytes circulating through the oral epithelium and establishes a lifelong latent infection in a subset of mature-memory B cells. In these latently infected B cells, EBV exhibits limited gene expression with the latent membrane protein 2A (LMP2A) being the most consistently detected transcript. This persistent expression, coupled with many studies ofthe function of LMP2A in vitro and invivo, indicates that LMP2A is functioning to control some aspect of viral latency. Establishment and maintenance of viral latency requires exquisite manipulation of normal B cell signaling and function. LMP2A is capable of blocking normal B cell signal transduction in vitro, suggesting that LMP2A may act to regulate lytic activation from latency in vivo. Furthermore, LMP2A is capable of providing B cells with survival signals in the absence of normal BCR signaling. These data show that LMP2A may help EBV-infected cells to persist in vivo. This review discusses the advances that have been made in our understanding of LMP2A and the effects it has on B cell development, activation, and viral latency.
Collapse
Affiliation(s)
- M Merchant
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
2096
|
Walk SF, Alexander M, Maier B, Hammarskjold ML, Rekosh DM, Ravichandran KS. Design and use of an inducibly activated human immunodeficiency virus type 1 Nef to study immune modulation. J Virol 2001; 75:834-43. [PMID: 11134296 PMCID: PMC113979 DOI: 10.1128/jvi.75.2.834-843.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Nef protein of the human immunodeficiency virus type 1 (HIV-1) has been shown to enhance the infectivity of virus particles, downmodulate cell surface proteins, and associate with many intracellular proteins that are thought to facilitate HIV infection. One of the challenges in defining the molecular events regulated by Nef has been obtaining good expression of Nef protein in T cells. This has been attributed to effects of Nef on cell proliferation and apoptosis. We have designed a Nef protein that is readily expressed in T-cell lines and whose function is inducibly activated. It is composed of a fusion between full-length Nef and the estrogen receptor hormone-binding domain (Nef-ER). The Nef-ER is kept in an inactive state due to steric hindrance, and addition of the membrane-permeable drug 4-hydroxytamoxifen (4-HT), which binds to the ER domain, leads to inducible activation of Nef-ER within cells. We demonstrate that Nef-ER inducibly associates with the 62-kDa Ser/Thr kinase and is localized to specific membrane microdomains (lipid rafts) only after activation. Using this inducible Nef, we also compared the specific requirements for CD4 and HLA-A2 downmodulation in a SupT1 T-cell line. Half-maximal downmodulation of cell surface CD4 required very little active Nef-ER and occurred as early as 4 h after addition of 4-HT. In contrast, 50% downmodulation of HLA-A2 by Nef required 16 to 24 h and about 50- to 100-fold-greater concentrations of 4-HT. These data suggest that HLA-A2 downmodulation may require certain threshold levels of active Nef. The differential timing of CD4 and HLA-A2 downmodulation may have implications for HIV pathogenesis and immune evasion.
Collapse
Affiliation(s)
- S F Walk
- Carter Immunology Center, Myles H. Thaler Center for AIDS and Human Retrovirus Research and the Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | |
Collapse
|
2097
|
Giocondi MC, Pacheco L, Milhiet PE, Le Grimellec C. Temperature dependence of the topology of supported dimirystoyl-distearoyl phosphatidylcholine bilayers. Ultramicroscopy 2001; 86:151-7. [PMID: 11215618 DOI: 10.1016/s0304-3991(00)00086-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Topology of fluid and gel domains in the supported bilayer two-component system formed from equimolar mixtures of dimyristoylphosphatidylcholine (DMPC) and distearoylphosphatidylcholine (DSPC) was determined by AFM, at various temperatures corresponding to the gel and the gel + fluid region of the phase diagram. The data show that, in the disconnected fluid part of the DMPC/DSPC gel-liquid crystal-phase-separation region, the size of fluid domains markedly exceeds that predicted from spectroscopic experiments or from Monte Carlo simulations. They provide a direct evidence for the transition from the disconnected fluid to the disconnected gel region of the phase diagram, again with gel-phase domains much larger than expected. Finally, images of the gel phase at different temperatures suggest that structural rearrangements of the phospholipids can disrupt the continuity of the supported bilayer.
Collapse
Affiliation(s)
- M C Giocondi
- Centre de Biochimie Structurale, INSERM U414, Université Montpellier I, France
| | | | | | | |
Collapse
|
2098
|
Essential Components of Antimicrobial Gastrointestinal Epithelial Barrier: Specific Interaction of Mucin with an Integral Apical Membrane Protein of Gastric Mucosa. Mol Med 2001. [DOI: 10.1007/bf03401833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
2099
|
Goodlett DR, Keller A, Watts JD, Newitt R, Yi EC, Purvine S, Eng JK, von Haller P, Aebersold R, Kolker E. Differential stable isotope labeling of peptides for quantitation and de novo sequence derivation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2001; 15:1214-1221. [PMID: 11445905 DOI: 10.1002/rcm.362] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We have demonstrated the use of per-methyl esterification of peptides for relative quantification of proteins between two mixtures of proteins and automated de novo sequence derivation on the same dataset. Protein mixtures for comparison were digested to peptides and resultant peptides methylated using either d0- or d3-methanol. Methyl esterification of peptides converted carboxylic acids, such as are present on the side chains of aspartic and glutamic acid as well as the carboxyl terminus, to their corresponding methyl esters. The separate d0- and d3-methylated peptide mixtures were combined and the mixture subjected to microcapillary high performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS). Parent proteins of methylated peptides were identified by correlative database searching of peptide tandem mass spectra. Ratios of proteins in the two original mixtures could be calculated by normalization of the area under the curve for identical charge states of d0- to d3-methylated peptides. An algorithm was developed that derived, without intervention, peptide sequence de novo by comparison of tandem mass spectra of d0- and d3-peptide methyl esters.
Collapse
Affiliation(s)
- D R Goodlett
- The Institute for Systems Biology, 4225 Roosevelt Way NE, Suite 200, Seattle, WA 98105, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2100
|
Abstract
The matrix metalloproteinases (MMPs) constitute a multigene family of over 25 secreted and cell surface enzymes that process or degrade numerous pericellular substrates. Their targets include other proteinases, proteinase inhibitors, clotting factors, chemotactic molecules, latent growth factors, growth factor-binding proteins, cell surface receptors, cell-cell adhesion molecules, and virtually all structural extracellular matrix proteins. Thus MMPs are able to regulate many biologic processes and are closely regulated themselves. We review recent advances that help to explain how MMPs work, how they are controlled, and how they influence biologic behavior. These advances shed light on how the structure and function of the MMPs are related and on how their transcription, secretion, activation, inhibition, localization, and clearance are controlled. MMPs participate in numerous normal and abnormal processes, and there are new insights into the key substrates and mechanisms responsible for regulating some of these processes in vivo. Our knowledge in the field of MMP biology is rapidly expanding, yet we still do not fully understand how these enzymes regulate most processes of development, homeostasis, and disease.
Collapse
Affiliation(s)
- Mark D. Sternlicht
- Department of Anatomy, University of California, San Francisco, California 94143-0452
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, California 94143-0452
| |
Collapse
|