2251
|
Pan YX, Chen H, Kilberg MS. Interaction of RNA-binding proteins HuR and AUF1 with the human ATF3 mRNA 3'-untranslated region regulates its amino acid limitation-induced stabilization. J Biol Chem 2005; 280:34609-16. [PMID: 16109718 PMCID: PMC3600371 DOI: 10.1074/jbc.m507802200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
ATF3 expression is induced in cells exposed to a variety of stress conditions, including nutrient limitation. Here we demonstrated that the mechanism by which the ATF3 mRNA content is increased following amino acid limitation of human HepG2 hepatoma cells is mRNA stabilization. Analysis of ATF3 mRNA turnover revealed that the half-life was increased from about 1 h in control cells to greater than 8 h in the histidine-deprived state, demonstrating mRNA stabilization in response to nutrient deprivation. Treatment of HepG2 cells with thapsigargin, which causes endoplasmic reticulum stress, also increased the half-life of ATF3 mRNA. HuR is an RNA-binding protein that regulates both the stability and cytoplasmic/nuclear localization of mRNA species containing AU-rich elements. Another RNA-binding protein, AUF1, regulates target mRNA molecules by enhancing their decay. Amino acid limitation caused a slightly elevated mRNA level for HuR and AUF1 mRNA. The nuclear HuR protein content was unchanged, and AUF1 protein increased slightly after amino acid limitation, whereas the cytoplasmic levels of both HuR and AUF1 protein increased. Immunoprecipitation of HuR-RNA complexes followed by reverse transcriptase-PCR analysis showed that HuR interacted with ATF3 mRNA in vivo and that this interaction increased following amino acid limitation. In contrast, the interaction of AUF1 with the ATF3 mRNA is decreased in histidine-deprived cells relative to control cells. Suppression of HuR expression by RNA interference partially blocked the accumulation of ATF3 mRNA following amino acid deprivation. The results demonstrated that coordinated regulation of mRNA stability by HuR and AUF1 proteins contributes to the observed increase in ATF3 expression following amino acid limitation.
Collapse
Affiliation(s)
| | | | - Michael S. Kilberg
- To whom correspondence should be addressed: Dept. of Biochemistry and Molecular Biology, University of Florida College of Medicine, Box 100245,, Gainesville, FL 32610-0245. Tel.: 352-392-2711; Fax: 352-392-6511;
| |
Collapse
|
2252
|
Xue X, Piao JH, Nakajima A, Sakon-Komazawa S, Kojima Y, Mori K, Yagita H, Okumura K, Harding H, Nakano H. Tumor necrosis factor alpha (TNFalpha) induces the unfolded protein response (UPR) in a reactive oxygen species (ROS)-dependent fashion, and the UPR counteracts ROS accumulation by TNFalpha. J Biol Chem 2005; 280:33917-25. [PMID: 16107336 DOI: 10.1074/jbc.m505818200] [Citation(s) in RCA: 331] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Accumulation of unfolded proteins in the endoplasmic reticulum (ER) causes ER overload, resulting in ER stress. To cope with ER stress, mammalian cells trigger a specific response known as the unfolded protein response (UPR). Although recent studies have indicated cross-talk between ER stress and oxidative stress, the mechanistic link is not fully understood. By using murine fibrosarcoma L929 cells, in which tumor necrosis factor (TNF) alpha induces accumulation of reactive oxygen species (ROS) and cell death, we show that TNFalpha induces the UPR in a ROS-dependent fashion. In contrast to TNFalpha, oxidative stresses by H2O2 or arsenite only induce eukaroytic initiation factor 2alpha phosphorylation, but not activation of PERK- or IRE1-dependent pathways, indicating the specificity of downstream signaling induced by various oxidative stresses. Conversely, the UPR induced by tunicamycin substantially suppresses TNFalpha-induced ROS accumulation and cell death by inhibiting reduction of cellular glutathione levels. Collectively, some, but not all, oxidative stresses induce the UPR, and pre-emptive UPR counteracts TNFalpha-induced ROS accumulation.
Collapse
Affiliation(s)
- Xin Xue
- Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2253
|
Lin W, Harding HP, Ron D, Popko B. Endoplasmic reticulum stress modulates the response of myelinating oligodendrocytes to the immune cytokine interferon-gamma. ACTA ACUST UNITED AC 2005; 169:603-12. [PMID: 15911877 PMCID: PMC2171696 DOI: 10.1083/jcb.200502086] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Interferon-gamma (IFN-gamma) is believed to contribute to immune-mediated demyelinating disorders by targeting the myelin-producing oligodendrocyte, a cell known to be highly sensitive to the disruption of protein synthesis and to the perturbation of the secretory pathway. We found that apoptosis induced by IFN-gamma in cultured rat oligodendrocytes was associated with endoplasmic reticulum (ER) stress. ER stress also accompanied oligodendrocyte apoptosis and hypomyelination in transgenic mice that inappropriately expressed IFN-gamma in the central nervous system (CNS). Compared with a wild-type genetic background, the enforced expression of IFN-gamma in mice that were heterozygous for a loss of function mutation in pancreatic ER kinase (PERK) dramatically reduced animal survival, promoted CNS hypomyelination, and enhanced oligodendrocyte loss. PERK encodes an ER stress-inducible kinase that phosphorylates eukaryotic translation initiation factor 2alpha and specifically maintains client protein homeostasis in the stressed ER. Therefore, the hypersensitivity of PERK+/- mice to IFN-gamma implicates ER stress in demyelinating disorders that are induced by CNS inflammation.
Collapse
Affiliation(s)
- Wensheng Lin
- Jack Miller Center for Peripheral Neuropathy, Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
2254
|
Ji C, Mehrian-Shai R, Chan C, Hsu YH, Kaplowitz N. Role of CHOP in Hepatic Apoptosis in the Murine Model of Intragastric Ethanol Feeding. Alcohol Clin Exp Res 2005; 29:1496-503. [PMID: 16131858 PMCID: PMC1432051 DOI: 10.1097/01.alc.0000174691.03751.11] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND CHOP is a transcriptional regulator involved in apoptosis caused by endoplasmic reticulum (ER) stress. We previously reported that CHOP as well as other ER stress response genes is induced in the liver of a murine model of intragastric ethanol feeding. This study was undertaken to determine the role of CHOP in hepatocellular apoptosis and liver injury in this model. METHODS CHOP wild-type (+/+) mice and CHOP null (-/-) mice were fed alcohol for four weeks with glucose as control. Hematoxylin-eosin staining, TUNEL, and caspase 3 staining of liver tissues were performed for assessment of fatty liver, necroinflammation, and apoptosis. Total RNA was extracted for microarray and reverse transcription-PCR analyses, and proteins were used for western blotting. RESULTS Significant increased liver/body ratio, steatosis, liver triglyceride levels, and plasma homocysteine concentrations were observed in alcohol-fed mice as compared with controls in both genotypes. There was no significant difference between wild-type and CHOP null (-/-) mice in the parameters related to fatty liver. Alcohol-induced increased serum alanine aminotransferase levels and necroinflammatory foci were not significantly reduced in CHOP null (-/-) mice. However, apoptosis was present in alcohol-fed wild-type mice but virtually absent in alcohol-fed CHOP null (-/-) mice. The ER stress response indicated by increased Grp78 mRNA was observed in both types of mice fed alcohol. Of 12,423 transcripts analyzed for >or= two-fold changes, several related to apoptosis were influenced by CHOP: Gadd45 and cathepsin B were up-regulated in ethanol-fed wild-type mice but not in CHOP null (-/-) mice, whereas Jun D and Bcl-xL were down-regulated in ethanol-fed wild-type mice but not in ethanol-fed CHOP null (-/-) mice. CONCLUSIONS CHOP null (-/-) mice have remarkable absence of hepatocellular apoptosis in response to alcohol feeding but no protection against hyperhomocysteinemia, ER stress, and fatty liver. Thus, CHOP up-regulation occurs downstream of and contributes to one manifestation of ER stress, namely, apoptosis. Microarray studies confirmed by PCR analysis and western blotting indicate that genes affected by CHOP are both proapoptotic and antiapoptotic and CHOP induction by ethanol may tip the balance of cell survival and death toward apoptosis.
Collapse
Affiliation(s)
- Cheng Ji
- USC/UCLA Research Center for Alcoholic Liver and Pancreatic Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA.
| | | | | | | | | |
Collapse
|
2255
|
Anand S, Chakrabarti E, Kawamura H, Taylor CR, Maytin EV. Ultraviolet Light (UVB and UVA) Induces the Damage-Responsive Transcription Factor CHOP/gadd153 in Murine and Human Epidermis: Evidence for a Mechanism Specific to Intact Skin. J Invest Dermatol 2005; 125:323-33. [PMID: 16098044 DOI: 10.1111/j.0022-202x.2005.23784.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
C/EBP-homologous protein (CHOP)/gadd153 (or CHOP) is a transcription factor induced by endoplasmic reticulum (ER) stress. Forcible overexpression of CHOP causes apoptosis in keratinocytes in culture. Here, we asked whether CHOP might be increased in the skin after UVB (280-320 nm) exposure, thus implicating CHOP in sunburn cell (SBC) formation. SKH-1 hairless mice were exposed to a ultraviolet (UV) source (80 mJ per cm2; approximately 74% UVB, approximately 16% UVA), and skin biopsies examined by immunohistology and immunoprecipitation. Compared with non-irradiated epidermis, CHOP expression was significantly increased at 30 min, and reached maximal levels by 24 h. Similar increases in CHOP following UVB exposure were observed in human buttock skin. The time course of CHOP expression preceded SBC formation and another marker of apoptosis, caspase-3 cleavage. Intracellular CHOP accumulated mainly in cytoplasmic and perinuclear locations, with little remaining in the nucleus. To examine mechanisms, cultured keratinocytes were irradiated in vitro and examined by western blotting. Under conditions that eliminated ER stress because of cell handling, CHOP did not accumulate (and was in fact decreased) in the cells. Thus, induction of CHOP in keratinocytes requires factors present only in the native skin. Overall, the data suggest that CHOP participates in adaptive responses of the epidermis following UVB/UVA exposure in vivo.
Collapse
Affiliation(s)
- Sanjay Anand
- Department of Biomedical Engineering, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
2256
|
Kanemoto S, Kondo S, Ogata M, Murakami T, Urano F, Imaizumi K. XBP1 activates the transcription of its target genes via an ACGT core sequence under ER stress. Biochem Biophys Res Commun 2005; 331:1146-53. [PMID: 15882996 DOI: 10.1016/j.bbrc.2005.04.039] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Indexed: 11/23/2022]
Abstract
In mammals, the transmembrane protein kinase/endoribonuclease IRE1 is activated by endoplasmic reticulum stress and subsequently processes XBP1 mRNA to generate an active form of XBP1 protein. The spliced form of XBP1 protein acts as a transcription factor and induces the expression of ER-resident molecular chaperones. However, the mechanism for how XBP1 promotes the transcription of its target genes as well as the cis-acting elements for XBP1 during ER stress has been unclear. Recently, it was demonstrated that the expression of MDG1/ERdj4, a member of the DnaJ family, is regulated by the IRE1-XBP1 pathway. In the present report, we investigated the regulatory mechanisms of MDG1/ERdj4 gene expression by XBP1. We identified a cis-acting element in the MDG1/ERdj4 promoter region, to which XBP1 specifically binds in response to ER stress. Our results reveal a target sequence for the IRE1-XBP1 pathway under ER stress conditions.
Collapse
Affiliation(s)
- Soshi Kanemoto
- Division of Molecular and Cellular Biology, Department of Anatomy, Faculty of Medicine, University of Miyazaki, Kihara 5200, Kiyotake, Miyazaki 889-1692, Japan
| | | | | | | | | | | |
Collapse
|
2257
|
Chan SW, Egan PA. Hepatitis C virus envelope proteins regulate CHOP via induction of the unfolded protein response. FASEB J 2005; 19:1510-2. [PMID: 16006626 DOI: 10.1096/fj.04-3455fje] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Unfolded protein response (UPR) is a cellular adaptive response that functions to reduce stress caused by malfolded proteins in the endoplasmic reticulum (ER). UPR can be induced under physiological or pathological conditions and is responsible for the pathogenesis of many human diseases. Hepatitis C virus (HCV) is a single-stranded, positive-sense RNA virus causing chronic diseases. Its genome encodes two envelope proteins E1 and E2, which mature in the ER to form a noncovalently bound, native complex and disulfide aggregates and have previously been shown to induce expression of the molecular chaperone immunoglobulin heavy chain binding protein. In this study, we show that HCV envelope protein expression regulates another stress indicator CCAAT/enhancer-binding protein-homologous protein (CHOP). The ER-stress element and the activating transcription factor 4 element in the CHOP promoter were activated to a similar extent by HCV envelope protein expression. Using mouse embryonic fibroblasts deficient in the ER stress kinase RNA-activated protein kinase-like ER-resident kinase (PERK), we showed that PERK was necessary and sufficient for activating the CHOP promoter. Expression of HCV E1 and/or E2 also induced splicing of X-box binding protein 1 and transactivation of the unfolded protein response element, leading to the speculation that HCV E1 and E2 not only regulate the UPR but also ER-associated degradation.
Collapse
Affiliation(s)
- Shiu-Wan Chan
- Faculty of Life Sciences, Jackson's Mill, The University of Manchester, Manchester, UK.
| | | |
Collapse
|
2258
|
Owen CR, Kumar R, Zhang P, McGrath BC, Cavener DR, Krause GS. PERK is responsible for the increased phosphorylation of eIF2alpha and the severe inhibition of protein synthesis after transient global brain ischemia. J Neurochem 2005; 94:1235-42. [PMID: 16000157 DOI: 10.1111/j.1471-4159.2005.03276.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reperfusion after global brain ischemia results initially in a widespread suppression of protein synthesis in neurons that is due to inhibition of translation initiation as a result of the phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 (eIF2). To address the role of the eIF2alpha kinase RNA-dependent protein kinase-like endoplasmic reticulum kinase (PERK) in the reperfused brain, transgenic mice with a targeted disruption of the Perk gene were subjected to 20 min of forebrain ischemia followed by 10 min of reperfusion. In wild-type mice, phosphorylated eIF2alpha was detected in the non-ischemic brain and its levels were elevated threefold after 10 min of reperfusion. Conversely, there was no phosphorylated eIF2alpha detected in the non-ischemic transgenic mice and there was no sizeable rise in phosphorylated eIF2alpha levels in the forebrain after ischemia and reperfusion. Moreover, there was a substantial rescue of protein translation in the reperfused transgenic mice. Neither group showed any change in total eIF2alpha, phosphorylated eukaryotic elongation factor 2 or total eukaryotic elongation factor 2 levels. These data demonstrate that PERK is responsible for the large increase in phosphorylated eIF2alpha and the suppression of translation early in reperfusion after transient global brain ischemia.
Collapse
Affiliation(s)
- Cheri R Owen
- Department of Emergency Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | | | |
Collapse
|
2259
|
Jiang HY, Wek R. GCN2 phosphorylation of eIF2alpha activates NF-kappaB in response to UV irradiation. Biochem J 2005; 385:371-80. [PMID: 15355306 PMCID: PMC1134707 DOI: 10.1042/bj20041164] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In response to UV irradiation, mammalian cells elicit a gene expression programme designed to repair damage and control cell proliferation and apoptosis. Important members of this stress response include the NF-kappaB (nuclear factor-kappaB) family. However, the mechanisms by which UV irradiation activates NF-kappaB are not well understood. In eukaryotes, a variety of environmental stresses are recognized and remediated by a family of protein kinases that phosphorylate the alpha subunit of eIF2 (eukaryotic initiation factor-2). In the present study we show that NF-kappaB in MEF (murine embryo fibroblast) cells is activated by UV-C and UV-B irradiation through a mechanism requiring eIF2alpha phosphorylation. The primary eIF2alpha kinase in response to UV is GCN2 (general control non-derepressible-2), with PEK/PERK (pancreatic eIF2alpha kinase/RNA-dependent-protein-kinase-like endoplasmic-reticulum kinase) carrying out a secondary function. Our studies indicate that lowered protein synthesis accompanying eIF2alpha phosphorylation, combined with eIF2alpha kinase-independent turnover of IkappaBalpha (inhibitor of kappaBalpha), reduces the levels of IkappaBalpha in response to UV irradiation. Release of NF-kappaB from the inhibitory IkappaBalpha would facilitate NF-kappaB entry into the nucleus and targeted transcriptional control. We also find that loss of GCN2 in MEF cells significantly enhances apoptosis in response to UV exposure similar to that measured in cells deleted for the RelA/p65 subunit of NF-kappaB. These results demonstrate that GCN2 is central to recognition of UV stress, and that eIF2alpha phosphorylation provides resistance to apoptosis in response to this environmental insult.
Collapse
Affiliation(s)
- Hao-Yuan Jiang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A
- To whom correspondence should be addressed (email )
| | - Ronald C. Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A
| |
Collapse
|
2260
|
Munn DH, Sharma MD, Baban B, Harding HP, Zhang Y, Ron D, Mellor AL. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 2005; 22:633-42. [PMID: 15894280 DOI: 10.1016/j.immuni.2005.03.013] [Citation(s) in RCA: 952] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 03/09/2005] [Accepted: 03/23/2005] [Indexed: 01/27/2023]
Abstract
Indoleamine 2,3 dioxygenase (IDO) catabolizes the amino acid tryptophan. IDO-expressing immunoregulatory dendritic cells (DCs) have been implicated in settings including tumors, autoimmunity, and transplant tolerance. However, the downstream molecular mechanisms by which IDO functions to regulate T cell responses remain unknown. We now show that IDO-expressing plasmacytoid DCs activate the GCN2 kinase pathway in responding T cells. GCN2 is a stress-response kinase that is activated by elevations in uncharged tRNA. T cells with a targeted disruption of GCN2 were not susceptible to IDO-mediated suppression of proliferation in vitro. In vivo, proliferation of GCN2-knockout T cells was not inhibited by IDO-expressing DCs from tumor-draining lymph nodes. IDO induced profound anergy in responding wild-type T cells, but GCN2-knockout cells were refractory to IDO-induced anergy. We hypothesize that GCN2 acts as a molecular sensor in T cells, allowing them to detect and respond to conditions created by IDO.
Collapse
Affiliation(s)
- David H Munn
- Department of Pediatrics, Medical College of Georgia, Augusta, GA 30912, USA.
| | | | | | | | | | | | | |
Collapse
|
2261
|
Zhan K, Narasimhan J, Wek RC. Differential activation of eIF2 kinases in response to cellular stresses in Schizosaccharomyces pombe. Genetics 2005; 168:1867-75. [PMID: 15611163 PMCID: PMC1448706 DOI: 10.1534/genetics.104.031443] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Phosphorylation of eukaryotic initiation factor-2 (eIF2) is an important mechanism mitigating cellular injury in response to diverse environmental stresses. While all eukaryotic organisms characterized to date contain an eIF2 kinase stress response pathway, the composition of eIF2 kinases differs, with mammals containing four distinct family members and the well-studied lower eukaryote Saccharomyces cerevisiae expressing only a single eIF2 kinase. We are interested in the mechanisms by which multiple eIF2 kinases interface with complex stress signals and elicit response pathways. In this report we find that in addition to two previously described eIF2 kinases related to mammalian HRI, designated Hri1p and Hri2p, the yeast Schizosaccharomyces pombe expresses a third eIF2 kinase, a Gcn2p ortholog. To delineate the roles of each eIF2 kinase, we constructed S. pombe strains expressing only a single eIF2 kinase gene or deleted for the entire eIF2 kinase family. We find that Hri2p is the primary activated eIF2 kinase in response to exposure to heat shock, arsenite, or cadmium. Gcn2p serves as the primary eIF2 kinase induced during a nutrient downshift, treatment with the amino acid biosynthetic inhibitor 3-aminotriazole, or upon exposure to high concentrations of sodium chloride. In one stress example, exposure to H(2)O(2), there is early tandem activation of both Hri2p and Gcn2p. Interestingly, with extended stress conditions there is activation of alternative secondary eIF2 kinases, suggesting that eukaryotes have mechanisms of coordinate activation of eIF2 kinase in their stress remediation responses. Deletion of these eIF2 kinases renders S. pombe more sensitive to many of these stress conditions.
Collapse
Affiliation(s)
- Ke Zhan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
2262
|
Padyana AK, Qiu H, Roll-Mecak A, Hinnebusch AG, Burley SK. Structural basis for autoinhibition and mutational activation of eukaryotic initiation factor 2alpha protein kinase GCN2. J Biol Chem 2005; 280:29289-99. [PMID: 15964839 DOI: 10.1074/jbc.m504096200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The GCN2 protein kinase coordinates protein synthesis with levels of amino acid stores by phosphorylating eukaryotic translation initiation factor 2. The autoinhibited form of GCN2 is activated in cells starved of amino acids by binding of uncharged tRNA to a histidyl-tRNA synthetase-like domain. Replacement of Arg-794 with Gly in the PK domain (R794G) activates GCN2 independently of tRNA binding. Crystal structures of the GCN2 protein kinase domain have been determined for wild-type and R794G mutant forms in the apo state and bound to ATP/AMPPNP. These structures reveal that GCN2 autoinhibition results from stabilization of a closed conformation that restricts ATP binding. The R794G mutant shows increased flexibility in the hinge region connecting the N- and C-lobes, resulting from loss of multiple interactions involving Arg794. This conformational change is associated with intradomain movement that enhances ATP binding and hydrolysis. We propose that intramolecular interactions following tRNA binding remodel the hinge region in a manner similar to the mechanism of enzyme activation elicited by the R794G mutation.
Collapse
|
2263
|
Underhill MF, Birch JR, Smales CM, Naylor LH. eIF2alpha phosphorylation, stress perception, and the shutdown of global protein synthesis in cultured CHO cells. Biotechnol Bioeng 2005; 89:805-14. [PMID: 15688359 DOI: 10.1002/bit.20403] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The perception of environmental stress in animal cells engineered to produce heterologous protein leads to the induction of stress signaling pathways and ultimately apoptosis and cell death. Protein synthesis is regulated in response to various environmental stresses by phosphorylation of the alpha subunit of the eukaryotic initiation factor 2 (eIF2). In this study we have utilized a model system of Chinese hamster ovary cells engineered to secrete recombinant TIMP-1 protein to investigate the relationship between the cellular rate of protein synthesis, eIF2alpha phosphorylation, cellular stress perception, and the rate of cell specific recombinant protein synthesis. The rate of total protein synthesis was maximal after 48 hours of culture, remaining relatively high until 96 hours of culture, after which a decline was observed. Towards the end of culture a marked increase in labeled secreted protein was observed. Total eIF2alpha expression levels were high during the exponential growth phase and decreased slightly towards the end of culture. On the other hand, the relative expression of phosphorylated eIF2alpha showed a bi-phasic response with a small increase in phosphorylated eIF2alpha observed at 48 hours of culture, and a significant increase at 120 hours post-inoculation. The large increase in phosphorylated eIF2alpha coincided with the observed increase in labeled secreted protein and the decline in total cellular protein synthesis. A marked increase in ubiquitination was also observed at 120 hours post-inoculation that coincided with reduced rates of cellular protein synthesis and mRNA translation attenuation. We suggest that eIF2alpha phosphorylation is an indicator of cellular stress perception, which could be exploited in recombinant protein manufacturing to commence feeding and engineering strategies.
Collapse
Affiliation(s)
- Michèle F Underhill
- Research School of Biosciences, University of Kent, Giles Lane, Canterbury, CT2 7NJ, United Kingdom.
| | | | | | | |
Collapse
|
2264
|
Pereira CM, Sattlegger E, Jiang HY, Longo BM, Jaqueta CB, Hinnebusch AG, Wek RC, Mello LEAM, Castilho BA. IMPACT, a protein preferentially expressed in the mouse brain, binds GCN1 and inhibits GCN2 activation. J Biol Chem 2005; 280:28316-23. [PMID: 15937339 DOI: 10.1074/jbc.m408571200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Translational control directed by the eukaryotic translation initiation factor 2 alpha-subunit (eIF2alpha) kinase GCN2 is important for coordinating gene expression programs in response to nutritional deprivation. The GCN2 stress response, conserved from yeast to mammals, is critical for resistance to nutritional deficiencies and for the control of feeding behaviors in rodents. The mouse protein IMPACT has sequence similarities to the yeast YIH1 protein, an inhibitor of GCN2. YIH1 competes with GCN2 for binding to a positive regulator, GCN1. Here, we present evidence that IMPACT is the functional counterpart of YIH1. Overexpression of IMPACT in yeast lowered both basal and amino acid starvation-induced levels of phosphorylated eIF2alpha, as described for YIH1 (31). Overexpression of IMPACT in mouse embryonic fibroblasts inhibited phosphorylation of eIF2alpha by GCN2 under leucine starvation conditions, abolishing expression of its downstream target genes, ATF4 (CREB-2) and CHOP (GADD153). IMPACT bound to the minimal yeast GCN1 segment required for interaction with yeast GCN2 and YIH1 and to native mouse GCN1. At the protein level, IMPACT was detected mainly in the brain. IMPACT was found to be abundant in the majority of hypothalamic neurons. Scattered neurons expressing this protein at higher levels were detected in other regions such as the hippocampus and piriform cortex. The abundance of IMPACT correlated inversely with phosphorylated eIF2alpha levels in different brain areas. These results suggest that IMPACT ensures constant high levels of translation and low levels of ATF4 and CHOP in specific neuronal cells under amino acid starvation conditions.
Collapse
Affiliation(s)
- Cátia M Pereira
- Departamentos de Microbiologia, Imunologia, e Parasitologia and Fisiologia, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
2265
|
Li F, Hayashi T, Jin G, Deguchi K, Nagotani S, Nagano I, Shoji M, Chan PH, Abe K. The protective effect of dantrolene on ischemic neuronal cell death is associated with reduced expression of endoplasmic reticulum stress markers. Brain Res 2005; 1048:59-68. [PMID: 15921666 DOI: 10.1016/j.brainres.2005.04.058] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 04/11/2005] [Accepted: 04/15/2005] [Indexed: 01/21/2023]
Abstract
The endoplasmic reticulum (ER) plays an important role in ischemic neuronal cell death. In order to determine the effect of dantrolene, a ryanodine receptor antagonist, on ER stress response and ischemic brain injury, we investigated changes in ER stress-related molecules, that is phosphorylated form of double-stranded RNA-activated protein kinase (PKR)-like ER kinase (p-PERK), phosphorylated form of eukaryotic initiation factor 2alpha (p-eIF2alpha), activating transcription factor-4 (ATF-4), and C/EBP-homologous protein (CHOP), as well as terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) in the peri-ischemic area and ischemic core region of rat brain after transient middle cerebral artery occlusion (MCAO). In contrast to the cases treated with vehicle, the infarct volume and TUNEL-positive cells were significantly reduced at 24 h of reperfusion by treatment with dantrolene. The immunoreactivities for p-PERK, p-eIF2alpha, ATF-4, and CHOP were increased at the ischemic peripheral region after MCAO, which were partially inhibited by dantrolene treatment. The present results suggest that dantrolene significantly decreased infarct volume and provided neuroprotective effect on rats after transient MCAO by reducing ER stress-mediated apoptotic signal pathway activation in the ischemic area.
Collapse
Affiliation(s)
- Feng Li
- Department of Neurology, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
2266
|
Abstract
In response to amino acid starvation, the kinase GCN2 in yeast activates amino acid biosynthesis. Two recent studies (Maurin et al., 2005; Hao et al., 2005) reveal that GCN2 in the brain of mice restricts intake of diets lacking essential amino acids.
Collapse
Affiliation(s)
- Thomas E Dever
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
2267
|
Dong Z, Liu Y, Zhang JT. Regulation of ribonucleotide reductase M2 expression by the upstream AUGs. Nucleic Acids Res 2005; 33:2715-25. [PMID: 15888728 PMCID: PMC1097769 DOI: 10.1093/nar/gki569] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Ribonucleotide reductase catalyzes a rate-limiting reaction in DNA synthesis by converting ribonucleotides to deoxyribonucleotides. It consists of two subunits and the small one, M2 (or R2), plays an essential role in regulating the enzyme activity and its expression is finely controlled. Changes in the M2 level influence the dNTP pool and, thus, DNA synthesis and cell proliferation. M2 gene has two promoters which produce two major mRNAs with 5′-untranslated regions (5′-UTRs) of different lengths. In this study, we found that the M2 mRNAs with the short (63 nt) 5′-UTR can be translated with high efficiency whereas the mRNAs with the long (222 nt) one cannot. Examination of the long 5′-UTR revealed four upstream AUGs, which are in the same reading frame as the unique physiological translation initiation codon. Further analysis demonstrated that these upstream AUGs act as negative cis elements for initiation at the downstream translation initiation codon and their inhibitory effect on M2 translation is eIF4G dependent. Based on the findings of this study, we conclude that the expression of M2 is likely regulated by fine tuning the translation from the mRNA with a long 5′-UTR during viral infection and during the DNA replication phase of cell proliferation.
Collapse
Affiliation(s)
| | | | - Jian-Ting Zhang
- To whom correspondence should be addressed. Tel: +1 317 278 4503; Fax: +1 317 274 8046;
| |
Collapse
|
2268
|
Abstract
Cells respond to stress stimuli through coordinated changes in gene expression. The regulation of translation is often used under these circumstances because it allows immediate and selective changes in protein levels. There are many examples of translational control in response to stress. Here we examine two representative models, the regulation of eukaryotic initiation factor-2alpha by phosphorylation and internal ribosome initiation through the internal ribosome-entry site, which illustrate the importance of translational control in the cellular stress response and apoptosis.
Collapse
Affiliation(s)
- Martin Holcik
- Apoptosis Research Center, Room R3116, Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada.
| | | |
Collapse
|
2269
|
Roybal CN, Hunsaker LA, Barbash O, Vander Jagt DL, Abcouwer SF. The Oxidative Stressor Arsenite Activates Vascular Endothelial Growth Factor mRNA Transcription by an ATF4-dependent Mechanism. J Biol Chem 2005; 280:20331-9. [PMID: 15788408 DOI: 10.1074/jbc.m411275200] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aberrant retinal expression of vascular endothelial growth factor (VEGF) leading to neovascularization is a central feature of age-related macular degeneration and diabetic retinopathy, two leading causes of vision loss. Oxidative stress is suggested to occur in retinal tissue during age-related macular degeneration and diabetic retinopathy and is suspected in the mechanism of VEGF expression in these diseases. Arsenite, a thiol-reactive oxidative stressor, induces VEGF expression by a HIF-1alpha-independent mechanism. Previously, we demonstrated that homocysteine, an endoplasmic reticulum stressor, increases VEGF transcription by a mechanism dependent upon activating transcription factor ATF4. Because ATF4 is expressed in response to oxidative stress, we hypothesized that ATF4 was also responsible for increased VEGF transcription in response to arsenite. We now show that arsenite increased steady state levels of VEGF mRNA and activated transcription from a VEGF promoter construct. Arsenite induced eIF2alpha phosphorylation, resulting in increased ATF4 protein levels. Inactivation or loss of ATF4 greatly diminished the VEGF response to arsenite treatment. Overexpression of ATF4 was sufficient to activate the VEGF promoter, and arsenite cooperated with exogenous ATF4 to further activate the promoter. A complex containing ATF4 binds a DNA element at +1767 bp relative to the VEGF transcription start site, and DNA binding activity is increased by arsenite treatment. In addition, the ability of a thiol antioxidant, N-acetylcysteine, to inhibit the effect of arsenite on VEGF expression coincided with its ability to inhibit phosphorylation of eIF2alpha and ATF4 protein expression. Thus, arsenite-induced up-regulation of VEGF gene transcription occurs by an ATF4-dependent mechanism.
Collapse
Affiliation(s)
- C Nathaniel Roybal
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131-0001, USA
| | | | | | | | | |
Collapse
|
2270
|
Abstract
The accumulation of misfolded proteins (e.g. mutant or damaged proteins) triggers cellular stress responses that protect cells against the toxic buildup of such proteins. However, prolonged stress due to the buildup of these toxic proteins induces specific death pathways. Dissecting these pathways should be valuable in understanding the pathogenesis of, and ultimately in designing therapy for, neurodegenerative diseases that feature misfolded proteins.
Collapse
Affiliation(s)
- Rammohan V Rao
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, California 94945-1400, USA.
| | | |
Collapse
|
2271
|
Zhou P, Kalakonda N, Comenzo RL. Changes in gene expression profiles of multiple myeloma cells induced by arsenic trioxide (ATO): possible mechanisms to explain ATO resistance in vivo. Br J Haematol 2005; 128:636-44. [PMID: 15725085 DOI: 10.1111/j.1365-2141.2005.05369.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multiple myeloma (MM) is an incurable plasma cell malignancy marked by eventual resistance to therapy. Although arsenic trioxide (ATO) can induce apoptosis in MM cell lines, the in vivo activity of ATO in MM has been disappointing. The existence of ATO resistance mechanisms in MM can be inferred. We sought to generate hypotheses for ATO resistance by studying the gene expression profiles of MM cells that survived in culture with 0.5 micromol/l ATO. Among the 31 genes whose quantitative levels of expression (QLE) significantly increased in ATO were haem oxygenase 1 (HO-1) and metallothionein-2A (MT-2A). Among the 56 genes whose QLE were significantly decreased were genes that modulate cell cycling [BTBD2 and IGFBP7 (mac25)] and sensitivity to reactive oxygen species (ROS) (BACH2). HO-1 exerts an anti-apoptotic effect in ischaemic cells, and MT-2A chelates ATO intracellularly. Inhibition of HO-1 with tin protoporphyrin enhances ROS in MM cells in ATO, and addition of N-acetylcysteine increases MT-2A. Protective antioxidant responses occur in MM cells exposed to ATO, and may occur in stromal cells as well, and act to quench ROS and provide diffusible anti-apoptotic factors. They may also involve cysteine-rich proteins that chelate ATO and modulate redox-sensitive residues on proteins, such as nuclear factor kappa B and p53. A better understanding of ATO resistance will enable ATO to be combined with other agents for MM.
Collapse
Affiliation(s)
- Ping Zhou
- Sloan-Kettering Institute, New York, NY, USA
| | | | | |
Collapse
|
2272
|
Lefebvre DL, Rosen CF. Regulation of SNARK activity in response to cellular stresses. Biochim Biophys Acta Gen Subj 2005; 1724:71-85. [PMID: 15893879 DOI: 10.1016/j.bbagen.2005.03.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 03/09/2005] [Accepted: 03/22/2005] [Indexed: 11/15/2022]
Abstract
SNARK is a member of the AMPK subfamily of serine/threonine protein kinases. In this study, we examined the regulation of SNARK activity in kidney (BHK, HEK293), pancreatic beta-cell insulinoma (INS-1), hepatocarcinoma (H4IIE) and keratinocyte (NRKC)-derived cell lines in response to diverse cellular stresses. We show that SNARK activity is regulated by glucose- or glutamine-deprivation, induction of endoplasmic reticulum stress by homocysteine or DTT, elevation of cellular AMP and/or depletion of ATP, hyperosmotic stress, salt stress, ultraviolet B radiation and oxidative stress caused by hydrogen peroxide. Moreover, the regulation of SNARK activity in response to cellular stresses depends greatly upon cell type. Furthermore, SNARK activity is downregulated by metformin in a dose- and time-dependent manner in H4IIE cells. These observations support a role for SNARK as a molecular component of the cellular stress response.
Collapse
Affiliation(s)
- Diana L Lefebvre
- Department of Medicine, Division of Dermatology, University of Toronto, Toronto General Hospital, Banting Institute, Room 317, 100 College Street, Toronto, Ontario, Canada
| | | |
Collapse
|
2273
|
Ruiz-Vela A, Opferman JT, Cheng EHY, Korsmeyer SJ. Proapoptotic BAX and BAK control multiple initiator caspases. EMBO Rep 2005; 6:379-85. [PMID: 15776018 PMCID: PMC1299285 DOI: 10.1038/sj.embor.7400375] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 02/08/2005] [Accepted: 02/14/2005] [Indexed: 11/09/2022] Open
Abstract
BAX and BAK operate at both the mitochondria and endoplasmic reticulum (ER) to regulate the intrinsic apoptotic pathway. An unresolved issue is whether any caspases can be activated in response to intrinsic apoptotic signals in the absence of BAX and BAK. Following organelle-specific intrinsic stress signals, including DNA damage and ER stress, we detected no activation of CARD-containing caspases (initiator CASP)-1, -2, -9, -11 and -12 in Bax(-/-)Bak(-/-) doubly deficient (DKO) cells. BCL-2 overexpression in these DKO cells provided no further protection to their already strong protection from DNA damage and ER stress. Moreover, there was no activation of effector CASP-3 and -7 in DKO cells, consistent with the lack of initiator caspase activity and disfavouring a BAX, BAK-independent intrinsic apoptotic pathway to activate initiator caspases. Thus, BAX and BAK confer an essential gateway for the activation of caspases in the intrinsic apoptotic pathway.
Collapse
Affiliation(s)
- Antonio Ruiz-Vela
- Howard Hughes Medical Institute, Department of Pathology and Medicine, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
2274
|
Maurin AC, Jousse C, Averous J, Parry L, Bruhat A, Cherasse Y, Zeng H, Zhang Y, Harding HP, Ron D, Fafournoux P. The GCN2 kinase biases feeding behavior to maintain amino acid homeostasis in omnivores. Cell Metab 2005; 1:273-7. [PMID: 16054071 DOI: 10.1016/j.cmet.2005.03.004] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 03/21/2005] [Accepted: 03/22/2005] [Indexed: 11/28/2022]
Abstract
To insure an adequate supply of nutrients, omnivores choose among available food sources. This process is exemplified by the well-characterized innate aversion of omnivores to otherwise nutritious foods of imbalanced amino acid content. We report that brain-specific inactivation of GCN2, a ubiquitously expressed protein kinase that phosphorylates translation initiation factor 2 alpha (eIF2alpha) in response to intracellular amino acid deficiency, impairs this aversive response. GCN2 inactivation also diminishes phosphorylated eIF2alpha levels in the mouse anterior piriform cortex following consumption of an imbalanced meal. An ancient intracellular signal transduction pathway responsive to amino acid deficiency thus affects feeding behavior by activating a neuronal circuit that biases consumption against imbalanced food sources.
Collapse
Affiliation(s)
- Anne-Catherine Maurin
- Unité de Nutrition et Métabolisme Protéique, Institut National de la Recherche Agronomique de Theix, 63122 Saint Genès-Champanelle, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2275
|
Iacono M, Mignone F, Pesole G. uAUG and uORFs in human and rodent 5′untranslated mRNAs. Gene 2005; 349:97-105. [PMID: 15777708 DOI: 10.1016/j.gene.2004.11.041] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 10/28/2004] [Accepted: 11/24/2004] [Indexed: 11/21/2022]
Abstract
The control of translation is a fundamental mechanism in the regulation of gene expression. Among the cis-acting elements that play a role in translation regulation are upstream open reading frames (uORFs) and upstream AUG (uAUGs) located in the 5'UTR of mRNAs. We present here a genome-wide analysis of uAUGs and uORFs in a curated set of human and rodent mRNAs. Our study shows that the occurrence of uAUGs is suppressed more strongly than that of uORFs and that in-frame uAUGs are more strongly suppressed than out-of-frame uAUGs. A very similar pattern of uAUG/uORF frequency was also observed in mouse mRNAs. The analysis of orthologous 5'UTR sequences revealed a remarkable degree of evolutionary conservation only of those uORFs which acquired some functional activity. Our data suggest that besides leaky scanning and reinitiation, which likely occur with variable and gene-specific efficiency, the ribosome-shunt mechanism, eventually coupled to reinitiation after uORF translation, may be a widespread mode of translation regulation in eukaryotes.
Collapse
Affiliation(s)
- Michele Iacono
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università di Milano, Via Celoria, 26, 20133 Milano, Italy
| | | | | |
Collapse
|
2276
|
Park SG, Shin H, Shin YK, Lee Y, Choi EC, Park BJ, Kim S. The novel cytokine p43 stimulates dermal fibroblast proliferation and wound repair. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:387-98. [PMID: 15681823 PMCID: PMC1602330 DOI: 10.1016/s0002-9440(10)62262-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The multifunctional cytokine p43 acts on endothelial and immune cells to control angiogenesis and inflammation. In this report, we describe an additional activity of p43 that specifically promotes fibroblast proliferation and wound repair. In skin wound regions from mice, tumor necrosis factor-alpha induced p43 expression and secretion from macrophages recruited to the site. p43 also promoted fibroblast proliferation through its 146-amino acid N-terminal domain as revealed by deletion mapping. This p43-induced fibroblast proliferation was mediated by extracellular signal-regulated kinase (Erk). Depletion of endogenous p43 in mice by gene disruption retarded wound repair, whereas exogenous supplementation of recombinant human p43 to the wound area stimulated dermal fibroblast proliferation, collagen production, and wound closure. Thus, we have identified a novel p43 activity involving the stimulation of fibroblast proliferation, which could be applied therapeutically to aid wound repair.
Collapse
Affiliation(s)
- Sang Gyu Park
- National Creative Research Initiatives Center for ARS Network, College of Pharmacy, Seoul National University, San 56-1, Shillim-dong, Kwanak-gu, Seoul 151-742, Korea
| | | | | | | | | | | | | |
Collapse
|
2277
|
Shen J, Snapp EL, Lippincott-Schwartz J, Prywes R. Stable binding of ATF6 to BiP in the endoplasmic reticulum stress response. Mol Cell Biol 2005; 25:921-32. [PMID: 15657421 PMCID: PMC543992 DOI: 10.1128/mcb.25.3.921-932.2005] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endoplasmic reticulum (ER) stress-induced activation of ATF6, an ER membrane-bound transcription factor, requires a dissociation step from its inhibitory regulator, BiP. It has been generally postulated that dissociation of the BiP-ATF6 complex is a result of the competitive binding of misfolded proteins generated during ER stress. Here we present evidence against this model and for an active regulatory mechanism for dissociation of the complex. Contradictory to the competition model that is based on dynamic binding of BiP to ATF6, our data reveal relatively stable binding. First, the complex was easily isolated, in contrast to many chaperone complexes that require chemical cross-linking. Second, ATF6 bound at similar levels to wild-type BiP and a BiP mutant form that binds substrates stably because of a defect in its ATPase activity. Third, ER stress specifically induced the dissociation of BiP from ER stress transducers while the competition model would predict dissociation from any specific substrate. Fourth, the ATF6-BiP complex was resistant to ATP-induced dissociation in vitro when isolated without detergents, suggesting that cofactors stabilize the complex. In favor of an active dissociation model, one specific region within the ATF6 lumenal domain was identified as a specific ER stress-responsive sequence required for ER stress-triggered BiP release. Together, our results do not support a model in which competitive binding of misfolded proteins causes dissociation of the BiP-ATF6 complex in stressed cells. We propose that stable BiP binding is essential for ATF6 regulation and that ER stress dissociates BiP from ATF6 by actively restarting the BiP ATPase cycle.
Collapse
Affiliation(s)
- Jingshi Shen
- Department of Biological Sciences, Columbia University, Fairchild 813B, MC 2420, 1212 Amsterdam Avenue, New York, NY 10027, USA
| | | | | | | |
Collapse
|
2278
|
Schröder M, Kaufman RJ. ER stress and the unfolded protein response. Mutat Res 2005; 569:29-63. [PMID: 15603751 DOI: 10.1016/j.mrfmmm.2004.06.056] [Citation(s) in RCA: 1337] [Impact Index Per Article: 66.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Accepted: 06/10/2004] [Indexed: 02/08/2023]
Abstract
Conformational diseases are caused by mutations altering the folding pathway or final conformation of a protein. Many conformational diseases are caused by mutations in secretory proteins and reach from metabolic diseases, e.g. diabetes, to developmental and neurological diseases, e.g. Alzheimer's disease. Expression of mutant proteins disrupts protein folding in the endoplasmic reticulum (ER), causes ER stress, and activates a signaling network called the unfolded protein response (UPR). The UPR increases the biosynthetic capacity of the secretory pathway through upregulation of ER chaperone and foldase expression. In addition, the UPR decreases the biosynthetic burden of the secretory pathway by downregulating expression of genes encoding secreted proteins. Here we review our current understanding of how an unfolded protein signal is generated, sensed, transmitted across the ER membrane, and how downstream events in this stress response are regulated. We propose a model in which the activity of UPR signaling pathways reflects the biosynthetic activity of the ER. We summarize data that shows that this information is integrated into control of cellular events, which were previously not considered to be under control of ER signaling pathways, e.g. execution of differentiation and starvation programs.
Collapse
Affiliation(s)
- Martin Schröder
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, UK
| | | |
Collapse
|
2279
|
Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R, Nagata K, Harding HP, Ron D. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev 2005; 18:3066-77. [PMID: 15601821 PMCID: PMC535917 DOI: 10.1101/gad.1250704] [Citation(s) in RCA: 1589] [Impact Index Per Article: 79.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Unfolded and malfolded client proteins impose a stress on the endoplasmic reticulum (ER), which contributes to cell death in pathophysiological conditions. The transcription factor C/EBP homologous protein (CHOP) is activated by ER stress, and CHOP deletion protects against its lethal consequences. We find that CHOP directly activates GADD34, which promotes ER client protein biosynthesis by dephosphorylating phospho-Ser 51 of the alpha-subunit of translation initiation factor 2 (eIF2alpha) in stressed cells. Thus, impaired GADD34 expression reduces client protein load and ER stress in CHOP(-/-) cells exposed to perturbations that impair ER function. CHOP(-/-) and GADD34 mutant cells accumulate less high molecular weight protein complexes in their stressed ER than wild-type cells. Furthermore, mice lacking GADD34-directed eIF2alpha dephosphorylation, like CHOP(-/-) mice, are resistant to renal toxicity of the ER stress-inducing drug tunicamycin. CHOP also activates ERO1alpha, which encodes an ER oxidase. Consequently, the ER of stressed CHOP(-/-) cells is relatively hypo-oxidizing. Pharmacological and genetic manipulations that promote a hypo-oxidizing ER reduce abnormal high molecular weight protein complexes in the stressed ER and protect from the lethal consequences of ER stress. CHOP deletion thus protects cells from ER stress by decreasing ER client protein load and changing redox conditions within the organelle.
Collapse
Affiliation(s)
- Stefan J Marciniak
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
2280
|
Boyce M, Bryant KF, Jousse C, Long K, Harding HP, Scheuner D, Kaufman RJ, Ma D, Coen DM, Ron D, Yuan J. A Selective Inhibitor of eIF2 Dephosphorylation Protects Cells from ER Stress. Science 2005; 307:935-9. [PMID: 15705855 DOI: 10.1126/science.1101902] [Citation(s) in RCA: 1195] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most protein phosphatases have little intrinsic substrate specificity, making selective pharmacological inhibition of specific dephosphorylation reactions a challenging problem. In a screen for small molecules that protect cells from endoplasmic reticulum (ER) stress, we identified salubrinal, a selective inhibitor of cellular complexes that dephosphorylate eukaryotic translation initiation factor 2 subunit alpha (eIF2alpha). Salubrinal also blocks eIF2alpha dephosphorylation mediated by a herpes simplex virus protein and inhibits viral replication. These results suggest that selective chemical inhibitors of eIF2alpha dephosphorylation may be useful in diseases involving ER stress or viral infection. More broadly, salubrinal demonstrates the feasibility of selective pharmacological targeting of cellular dephosphorylation events.
Collapse
Affiliation(s)
- Michael Boyce
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2281
|
Connor JH, Lyles DS. Inhibition of host and viral translation during vesicular stomatitis virus infection. eIF2 is responsible for the inhibition of viral but not host translation. J Biol Chem 2005; 280:13512-9. [PMID: 15705563 DOI: 10.1074/jbc.m501156200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In cells that allow replication of vesicular stomatitis virus (VSV), there are two phases of translation inhibition: an early block of host translation and a later inhibition of viral translation. We investigated the phosphorylation of the alpha subunit of the eIF2 complex during these two phases of viral infection. In VSV-infected cells, the accumulation of phosphorylated (inactivated) eIF2alpha did not begin until well after host protein synthesis was inhibited, suggesting that it only plays a role in blocking viral translation later after infection. Consistent with this, cells expressing an unphosphorylatable eIF2alpha showed prolonged viral protein synthesis without an effect on host protein synthesis inhibition. Induction of eIF2alpha phosphorylation at early times of viral infection by treatment with thapsigargin showed that virus and host translation are similarly inhibited, demonstrating that viral and host messages are similarly sensitive to eIF2alpha phosphorylation. A recombinant virus that expresses a mutant matrix protein and is defective in the inhibition of host and virus protein synthesis showed an altered phosphorylation of eIF2alpha, demonstrating an involvement of viral protein function in inducing this antiviral response. This analysis of eIF2alpha phosphorylation, coupled with earlier findings that the eIF4F complex is modified earlier during VSV infection, supports a temporal/kinetic model of translation control, where at times soon after infection, changes in the eIF4F complex result in the inhibition of host protein synthesis; at later times, inactivation of the eIF2 complex blocks VSV protein synthesis.
Collapse
Affiliation(s)
- John H Connor
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | |
Collapse
|
2282
|
Naidoo N, Giang W, Galante RJ, Pack AI. Sleep deprivation induces the unfolded protein response in mouse cerebral cortex. J Neurochem 2005; 92:1150-7. [PMID: 15715665 DOI: 10.1111/j.1471-4159.2004.02952.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Little is known about the molecular mechanisms underlying sleep. We show the induction of key regulatory proteins in a cellular protective pathway, the unfolded protein response (UPR), following 6 h of induced wakefulness. Using C57/B6 male mice maintained on a 12:12 light/dark cycle, we examined, in cerebral cortex, the effect of different durations of prolonged wakefulness (0, 3, 6, 9 and 12 h) from the beginning of the lights-on inactivity period, on the protein expression of BiP/GRP78, a chaperone and classical UPR marker. BiP/GRP78 expression is increased with increasing durations of sleep deprivation (6, 9 and 12 h). There is no change in BiP/GRP78 levels in handling control experiments carried out during the lights-off period. PERK, the transmembrane kinase responsible for attenuating protein synthesis, which is negatively regulated by binding to BiP/GRP78, is activated by dissociation from BiP/GRP78 and by autophosphorylation. There is phosphorylation of the elongation initiation factor 2alpha and alteration in ribosomal function. These changes are first observed after 6 h of induced wakefulness. Thus, prolonging wakefulness beyond a certain duration induces the UPR indicating a physiological limit to wakefulness.
Collapse
Affiliation(s)
- Nirinjini Naidoo
- Division of Sleep Medicine/Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | |
Collapse
|
2283
|
Cardozo AK, Ortis F, Storling J, Feng YM, Rasschaert J, Tonnesen M, Van Eylen F, Mandrup-Poulsen T, Herchuelz A, Eizirik DL. Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic beta-cells. Diabetes 2005; 54:452-61. [PMID: 15677503 DOI: 10.2337/diabetes.54.2.452] [Citation(s) in RCA: 424] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cytokines and free radicals are mediators of beta-cell death in type 1 diabetes. Under in vitro conditions, interleukin-1beta (IL-1beta) + gamma-interferon (IFN-gamma) induce nitric oxide (NO) production and apoptosis in rodent and human pancreatic beta-cells. We have previously shown, by microarray analysis of primary beta-cells, that IL-1beta + IFN-gamma decrease expression of the mRNA encoding for the sarcoendoplasmic reticulum pump Ca(2+) ATPase 2b (SERCA2b) while inducing expression of the endoplasmic reticulum stress-related and proapoptotic gene CHOP (C/EBP [CCAAT/enhancer binding protein] homologous protein). In the present study we show that cytokine-induced apoptosis and necrosis in primary rat beta-cells and INS-1E cells largely depends on NO production. IL-1beta + IFN-gamma, via NO synthesis, markedly decreased SERCA2b protein expression and depleted ER Ca(2+) stores. Of note, beta-cells showed marked sensitivity to apoptosis induced by SERCA blockers, as compared with fibroblasts. Cytokine-induced ER Ca(2+) depletion was paralleled by an NO-dependent induction of CHOP protein and activation of diverse components of the ER stress response, including activation of inositol-requiring ER-to-nucleus signal kinase 1alpha (IRE1alpha) and PRK (RNA-dependent protein kinase)-like ER kinase (PERK)/activating transcription factor 4 (ATF4), but not ATF6. In contrast, the ER stress-inducing agent thapsigargin triggered these four pathways in parallel. In conclusion, our results suggest that the IL-1beta + IFN-gamma-induced decrease in SERCA2b expression, with subsequent depletion of ER Ca(2+) and activation of the ER stress pathway, is a potential contributory mechanism to beta-cell death.
Collapse
Affiliation(s)
- Alessandra K Cardozo
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Route de Lennik, 808 CP-618, 1070 Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2284
|
Jiang HY, Wek RC. Phosphorylation of the alpha-subunit of the eukaryotic initiation factor-2 (eIF2alpha) reduces protein synthesis and enhances apoptosis in response to proteasome inhibition. J Biol Chem 2005; 280:14189-202. [PMID: 15684420 DOI: 10.1074/jbc.m413660200] [Citation(s) in RCA: 253] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein ubiquitination and subsequent degradation by the proteasome are important mechanisms regulating cell cycle, growth and differentiation, and apoptosis. Recent studies in cancer therapy suggest that drugs that disrupt the ubiquitin/proteasome pathway induce apoptosis and sensitize malignant cells and tumors to conventional chemotherapy. In this study we addressed the role of phosphorylation of the alpha-subunit eukaryotic initiation factor-2 (eIF2), and its attendant regulation of gene expression, in the cellular stress response to proteasome inhibition. Phosphorylation of eIF2alpha in mouse embryo fibroblast (MEF) cells subjected to proteasome inhibition leads to a significant reduction in protein synthesis, concomitant with induced expression of the bZIP transcription regulator, ATF4, and its target gene CHOP/GADD153. The primary eIF2alpha kinase activated by exposure of these fibroblast cells to proteasome inhibition is GCN2 (EIF2AK4), which has a central role in the recognition of cytoplasmic stress signals. Endoplasmic reticulum (ER) stress is not effectively induced in MEF cells subjected to proteasome inhibition, with minimal activation of the ER stress sensory proteins, eIF2alpha kinase PEK (PERK/EIF2AK3), IRE1 protein kinase and the transcription regulator ATF6 following up to 6 h of proteasome inhibitor treatment. Loss of eIF2alpha phosphorylation thwarts caspase activation and delays apoptosis. Central to this pro-apoptotic function of eIF2alpha kinases during proteasome inhibition is the transcriptional regulator CHOP, as deletion of CHOP in MEF cells impedes apoptosis. We conclude that eIF2alpha kinases are integral to cellular stress pathways induced by proteasome inhibitors, and may be central to the efficacy of anticancer drugs that target the ubiquitin/proteasome pathway.
Collapse
Affiliation(s)
- Hao-Yuan Jiang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | |
Collapse
|
2285
|
McEwen E, Kedersha N, Song B, Scheuner D, Gilks N, Han A, Chen JJ, Anderson P, Kaufman RJ. Heme-regulated inhibitor kinase-mediated phosphorylation of eukaryotic translation initiation factor 2 inhibits translation, induces stress granule formation, and mediates survival upon arsenite exposure. J Biol Chem 2005; 280:16925-33. [PMID: 15684421 DOI: 10.1074/jbc.m412882200] [Citation(s) in RCA: 331] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Exposure to arsenite inhibits protein synthesis and activates multiple stress signaling pathways. Although arsenite has diverse effects on cell metabolism, we demonstrated that phosphorylation of eukaryotic translation initiation factor 2 at Ser-51 on the alpha subunit was necessary to inhibit protein synthesis initiation in arsenite-treated cells and was essential for stress granule formation. Of the four protein kinases known to phosphorylate eukaryotic translation initiation factor 2alpha, only the heme-regulated inhibitor kinase (HRI) was required for the translational inhibition in response to arsenite treatment in mouse embryonic fibroblasts. In addition, HRI expression was required for stress granule formation and cellular survival after arsenite treatment. In vivo studies elucidated a fundamental requirement for HRI in murine survival upon acute arsenite exposure. The results demonstrated an essential role for HRI in mediating arsenite stress-induced phosphorylation of eukaryotic translation initiation factor 2alpha, inhibition of protein synthesis, stress granule formation, and survival.
Collapse
Affiliation(s)
- Edward McEwen
- Howard Hughes Medical Institute and the Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor 48109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
2286
|
Sun S, Han J, Ralph WM, Chandrasekaran A, Liu K, Auborn KJ, Carter TH. Endoplasmic reticulum stress as a correlate of cytotoxicity in human tumor cells exposed to diindolylmethane in vitro. Cell Stress Chaperones 2005; 9:76-87. [PMID: 15270080 PMCID: PMC1065309 DOI: 10.1379/csc-2r.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The dietary phytochemical indole-3-carbinol (I3C) protects against cervical cancer in animal model studies and in human clinical trials. I3C and its physiologic condensation product diindolylmethane (DIM) also induce apoptosis of tumor cells in vitro and in vivo, suggesting that these phytochemicals might be useful as therapeutic agents as well as for cancer prevention. Deoxyribonucleic acid microarray studies on transformed keratinocytes and tumor cell lines exposed to pharmacologic concentrations of DIM in vitro are consistent with a cellular response to nutritional deprivation or disruptions in protein homeostasis such as endoplasmic reticulum (ER) stress. In this report we investigate whether specific stress response pathways are activated in tumor cells exposed to DIM and whether the ER stress response might contribute to DIM's cytotoxicity. Induction of the stress response genes GADD153, GADD34 and GADD45A, XBP-1, GRP78, GRP94, and asparagine synthase was documented by Western blot and real-time reverse transcriptase-polymerase chain reaction in C33A cervical cancer cells, and induction of a subset of these was also observed in cancer cell lines from breast (MCF-7) and prostate (DU145). The results are consistent with activation of more than 1 stress response pathway in C33A cells exposed to 75 microM DIM. Phosphorylation elF2alpha was rapidly and transiently increased, followed by elevated levels of ATF4 protein. Activation of IRE1alpha was indicated by a rapid increase in the stress-specific spliced form of XBP-1 messenger ribonucleic acid and a rapid and persistent phosphorylation of JNK1 and JNK2. Transcriptional activation dependent on an ATF6-XBP-1 binding site was detected by transient expression in MCF-7, C33A, and a transformed epithelial cell line (HaCaT); induction of the GADD153 (CHOP) promoter was also confirmed by transient expression. Cleavage of caspase 12 was observed in both DIM-treated and untreated C33A cells but did not correlate with cytotoxicity, whereas caspase 7 was cleaved at later times, coinciding with the onset of apoptosis. The results support the hypothesis that cytotoxic concentrations of DIM can activate cellular stress response pathways in vitro, including the ER stress response. Conversely, DIM was especially cytotoxic to stressed cells. Thapsigargin and tunicamycin, agents that induce ER stress, sensitized cells to the cytotoxic effects of DIM to differing degrees; nutrient limitation had a similar, but even more pronounced, effect. Because DIM toxicity in vitro is enhanced in cells undergoing nutritional deprivation and ER stress, it is possible that stressed cells in vivo, such as those within developing solid tumors, also have increased sensitivity to killing by DIM.
Collapse
Affiliation(s)
- Shishinn Sun
- North Shore-Long Island Jewish Research Institute, Manhasset, NY 11030, USA
| | | | | | | | | | | | | |
Collapse
|
2287
|
Klann E, Dever TE. Biochemical mechanisms for translational regulation in synaptic plasticity. Nat Rev Neurosci 2005; 5:931-42. [PMID: 15550948 DOI: 10.1038/nrn1557] [Citation(s) in RCA: 325] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Changes in gene expression are required for long-lasting synaptic plasticity and long-term memory in both invertebrates and vertebrates. Regulation of local protein synthesis allows synapses to control synaptic strength independently of messenger RNA synthesis in the cell body. Recent reports indicate that several biochemical signalling cascades couple neurotransmitter and neurotrophin receptors to translational regulatory factors in protein synthesis-dependent forms of synaptic plasticity and memory. In this review, we highlight these translational regulatory mechanisms and the signalling pathways that govern the expression of synaptic plasticity in response to specific types of neuronal stimulation.
Collapse
Affiliation(s)
- Eric Klann
- Departments of Molecular Physiology and Biophysics and Neuroscience, Baylor College of Medicine, One Baylor Plaza BCM 335, Houston, TX 77030, USA.
| | | |
Collapse
|
2288
|
Deng J, Lu PD, Zhang Y, Scheuner D, Kaufman RJ, Sonenberg N, Harding HP, Ron D. Translational repression mediates activation of nuclear factor kappa B by phosphorylated translation initiation factor 2. Mol Cell Biol 2005; 24:10161-8. [PMID: 15542827 PMCID: PMC529034 DOI: 10.1128/mcb.24.23.10161-10168.2004] [Citation(s) in RCA: 524] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Numerous stressful conditions activate kinases that phosphorylate the alpha subunit of translation initiation factor 2 (eIF2alpha), thus attenuating mRNA translation and activating a gene expression program known as the integrated stress response. It has been noted that conditions associated with eIF2alpha phosphorylation, notably accumulation of unfolded proteins in the endoplasmic reticulum (ER), or ER stress, are also associated with activation of nuclear factor kappa B (NF-kappaB) and that eIF2alpha phosphorylation is required for NF-kappaB activation by ER stress. We have used a pharmacologically activable version of pancreatic ER kinase (PERK, an ER stress-responsive eIF2alpha kinase) to uncouple eIF2alpha phosphorylation from stress and found that phosphorylation of eIF2alpha is both necessary and sufficient to activate both NF-kappaB DNA binding and an NF-kappaB reporter gene. eIF2alpha phosphorylation-dependent NF-kappaB activation correlated with decreased levels of the inhibitor IkappaBalpha protein. Unlike canonical signaling pathways that promote IkappaBalpha phosphorylation and degradation, eIF2alpha phosphorylation did not increase phosphorylated IkappaBalpha levels or affect the stability of the protein. Pulse-chase labeling experiments indicate instead that repression of IkappaBalpha translation plays an important role in NF-kappaB activation in cells experiencing high levels of eIF2alpha phosphorylation. These studies suggest a direct role for eIF2alpha phosphorylation-dependent translational control in activating NF-kappaB during ER stress.
Collapse
Affiliation(s)
- Jing Deng
- New York University Medical Center, SI 3-10, 540 First Ave., New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
2289
|
Hayashi T, Saito A, Okuno S, Ferrand-Drake M, Dodd RL, Chan PH. Damage to the endoplasmic reticulum and activation of apoptotic machinery by oxidative stress in ischemic neurons. J Cereb Blood Flow Metab 2005; 25:41-53. [PMID: 15678111 DOI: 10.1038/sj.jcbfm.9600005] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The endoplasmic reticulum (ER), which plays a role in apoptosis, is susceptible to oxidative stress. Because superoxide is produced in the brain after ischemia/reperfusion, oxidative injury to this organelle may be implicated in ischemic neuronal cell death. Activating transcription factor-4 (ATF-4) and C/EBP-homologous protein (CHOP), both of which are involved in apoptosis, are induced by severe ER stress. Using wild-type and human copper/zinc superoxide dismutase transgenic rats, we observed induction of these molecules in the brain after global cerebral ischemia and compared them with neuronal degeneration. In ischemic, wild-type brains, expression of ATF-4 and CHOP was increased in the hippocampal CA1 neurons that would later undergo apoptosis. Transgenic rats had a mild increase in ATF-4 and CHOP and minimal neuronal degeneration, indicating that superoxide was involved in ER stress-induced cell death. We further confirmed attenuation on induction of these molecules in transgenic mouse brains after focal ischemia. When superoxide was visualized with ethidium, signals for ATF-4 and superoxide overlapped in the same cells. Moreover, lipids in the ER were robustly peroxidized by ischemia but were attenuated in transgenic animals. This indicates that superoxide attacked and damaged the ER, and that oxidative ER damage is implicated in ischemic neuronal cell death.
Collapse
Affiliation(s)
- Takeshi Hayashi
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California 94305-5487, USA
| | | | | | | | | | | |
Collapse
|
2290
|
Oliver BL, Cronin CG, Zhang-Benoit Y, Goldring MB, Tanzer ML. Divergent stress responses to IL-1β, nitric oxide, and tunicamycin by chondrocytes. J Cell Physiol 2005; 204:45-50. [PMID: 15605392 DOI: 10.1002/jcp.20261] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As the only cell in cartilage responsible for matrix synthesis, the chondrocyte's viability is crucial to healthy tissue. It must tolerate stresses from both mechanical and cellular sources. This study examines the endoplasmic reticulum (ER) stress response in chondrocytes after exposure to IL-1beta, nitric oxide, or tunicamycin in order to determine whether this form of stress causes cell death. Cultures of the immortalized human juvenile costal chondrocyte cell line, C-28/I2, were treated with IL-1beta, S-nitroso-N-acetylpenicillamine (SNAP), and tunicamycin. Increasing intracellular nitric oxide levels by SNAP treatment or inhibiting protein folding in the ER lumen by tunicamycin induced the ER stress response as evidenced by increased protein and gene expression of GADD153 as well as PERK and eIF2-alpha phosphorylation, and resulted in apoptosis. IL-1beta treatment induced PERK and eIF2-alpha phosphorylation, but not GADD153 expression or apoptosis. The ER stress signaling pathway of IL-1beta involved iNOS because blocking its expression, inhibited ER stress gene expression. Therefore, inducing the ER stress response in chondrocytes results in divergent responses depending on the agent used. Even though IL-1beta, a common proinflammatory cytokine, induces the ER stress response, it is not proapoptotic to chondrocytes. On the other hand, exposure to high levels of intracellular nitric oxide induce chondrocyte apoptosis as part of the ER stress response.
Collapse
Affiliation(s)
- Bonnie L Oliver
- Department of BioStructure and Function, School of Dental Medicine, University of Connecticut Heath Center, Farmington, Connecticut, USA.
| | | | | | | | | |
Collapse
|
2291
|
Shen X, Zhang K, Kaufman RJ. The unfolded protein response--a stress signaling pathway of the endoplasmic reticulum. J Chem Neuroanat 2004; 28:79-92. [PMID: 15363493 DOI: 10.1016/j.jchemneu.2004.02.006] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2003] [Accepted: 02/15/2004] [Indexed: 12/20/2022]
Abstract
The endoplasmic reticulum (ER) is a factory for folding and maturation of newly synthesized transmembrane and secretory proteins. The ER provides stringent quality control systems to ensure that only correctly folded proteins exit the ER and unfolded or misfolded proteins are retained and ultimately degraded. A number of biochemical and physiological stimuli can change ER homeostasis, impose stress to the ER, and subsequently lead to accumulation of unfolded or misfolded proteins in the ER lumen. The ER has evolved stress response signaling pathways collectively called the unfolded protein response (UPR) to cope with the accumulation of unfolded or misfolded proteins. This review summarizes our understanding of the UPR signaling developed in the recent years.
Collapse
Affiliation(s)
- Xiaohua Shen
- Howard Hughes Medical Institute, The University of Michigan Medical Center, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
2292
|
Niwa M, Patil CK, DeRisi J, Walter P. Genome-scale approaches for discovering novel nonconventional splicing substrates of the Ire1 nuclease. Genome Biol 2004; 6:R3. [PMID: 15642095 PMCID: PMC549064 DOI: 10.1186/gb-2004-6-1-r3] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Revised: 11/17/2004] [Accepted: 11/25/2004] [Indexed: 01/17/2023] Open
Abstract
Three different genome-scale screens indicate that the HAC1 mRNA is the only substrate for the Ire1 nuclease in yeast. Background The unfolded protein response (UPR) allows intracellular feedback regulation that adjusts the protein-folding capacity of the endoplasmic reticulum (ER) according to need. The signal from the ER lumen is transmitted by the ER-transmembrane kinase Ire1, which upon activation displays a site-specific endoribonuclease activity. Endonucleolytic cleavage of the intron from the HAC1 mRNA (encoding a UPR-specific transcription factor) is the first step in a nonconventional mRNA splicing pathway; the released exons are then joined by tRNA ligase. Because only the spliced mRNA is translated, splicing is the key regulatory step of the UPR. Results We developed methods to search for additional mRNA substrates of Ire1p in three independent lines of genome-wide analysis. These methods exploited the well characterized enzymology and genetics of the UPR and the yeast genome sequence in conjunction with microarray-based detection. Each method successfully identified HAC1 mRNA as a substrate according to three criteria: HAC1 mRNA is selectively cleaved in vitro by Ire1; the HAC1 mRNA sequence contains two predicted Ire1 cleavage sites; and HAC1 mRNA is selectively degraded in tRNA ligase mutant cells. Conclusion Within the limits of detection, no other mRNA satisfies any of these criteria, suggesting that a unique nonconventional mRNA-processing mechanism has evolved solely for carrying out signal transduction between the ER and the nucleus. The approach described here, which combines biochemical and genetic 'fractionation' of mRNA with a novel application of cDNA microarrays, is generally applicable to the study of pathways in which RNA metabolism and alternative splicing have a regulatory role.
Collapse
Affiliation(s)
- Maho Niwa
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94143-2200, USA
- Current address: Division of Biology, Section of Molecular Biology, University of California at San Diego, La Jolla, CA 92093-0366, USA
| | - Christopher K Patil
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94143-2200, USA
- Current address: Lawrence Berkeley National Laboratory, Life Sciences Division, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Joe DeRisi
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94143-2200, USA
| | - Peter Walter
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94143-2200, USA
| |
Collapse
|
2293
|
Brewer JW, Hendershot LM. Building an antibody factory: a job for the unfolded protein response. Nat Immunol 2004; 6:23-9. [PMID: 15611778 DOI: 10.1038/ni1149] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Accepted: 11/12/2004] [Indexed: 11/09/2022]
Abstract
Plasma cells are highly specialized, terminally differentiated secretory cells that produce tremendous quantities of a single product, the antibody molecule. In differentiating from a quiescent B cell, the plasma cell must undergo a dramatic architectural metamorphosis. This process entails augmenting the secretory organelles and the proteins that populate them, upregulating their energy and translation potential, and increasing the quality control system to do the job. This transformation is accomplished by an interplay between B lineage-specific transcriptional programs that control plasma cell differentiation and an unfolded protein response.
Collapse
Affiliation(s)
- Joseph W Brewer
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153, USA
| | | |
Collapse
|
2294
|
Kimball SR, Jefferson LS. Role of amino acids in the translational control of protein synthesis in mammals. Semin Cell Dev Biol 2004; 16:21-7. [PMID: 15659336 DOI: 10.1016/j.semcdb.2004.11.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Amino acids, long considered simply substrates for protein synthesis, have been recently shown to act as modulators of intracellular signal transduction pathways typically associated with growth-promoting hormones such as insulin and insulin-like growth factor-1. Many of the endpoints of the signaling pathways regulated by amino acids are proteins involved in mRNA translation. Thus, particular amino acids not only serve as substrates for protein synthesis but are also modulators of the process. The focus of this article is to review recent studies that have used intact animals as experimental models to examine the role of amino acids as modulators of signal transduction pathways.
Collapse
Affiliation(s)
- Scot R Kimball
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | | |
Collapse
|
2295
|
Kim AJ, Shi Y, Austin RC, Werstuck GH. Valproate protects cells from ER stress-induced lipid accumulation and apoptosis by inhibiting glycogen synthase kinase-3. J Cell Sci 2004; 118:89-99. [PMID: 15585578 DOI: 10.1242/jcs.01562] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A wide range of agents and conditions are known to disrupt the ability of the endoplasmic reticulum (ER) to fold proteins properly, resulting in the onset of ER dysfunction/stress. We and others have shown that ER stress can induce intracellular lipid accumulation through the activation of the sterol responsive element binding proteins (SREBPs) and initiate programmed cell death by activation of caspases. It has been suggested that ER stress-induced lipid accumulation and cell death play a role in the pathogenesis of disorders including Alzheimer's disease, Parkinson's disease, type-1 diabetes mellitus and hepatic steatosis. Here we show that exposure of HepG2 cells to the branch chain fatty acid, valproate, increases cellular resistance to ER stress-induced dysfunction. Two distinctly different potential mechanisms for this protective effect were investigated. We show that exposure to valproate increases the expression of chaperones that assist in the folding of proteins in the ER including GRP78/BiP, GRP94, PDI and calreticulin as well as the cytosolic chaperone, HSP70. However, exposure of HepG2 cells to valproate does not decrease the apparent ER stress response in cells challenged with tunicamycin, A23187 or glucosamine, suggesting that valproate-conferred protection occurs downstream of ER dysfunction. Finally, we demonstrate that valproate directly inhibits the glycogen synthase kinases (GSK)-3alpha/beta. The ability of lithium, another inhibitor of GSK3alpha/beta to protect cells from ER stress-induced lipid accumulation suggests that GSK3 plays a central role in signaling downstream effects of ER stress. Strategies to protect cells from agents/conditions that induce ER stress may have potential in the treatment of the growing number of diseases and disorders linked to ER dysfunction.
Collapse
Affiliation(s)
- Anna J Kim
- Department of Biochemistry, McMaster University, Hamilton, Ontario, L8S 4LB, Canada
| | | | | | | |
Collapse
|
2296
|
Imaizumi K, Tohyama M. [The regulation of unfolded protein response by OASIS, a transmembrane bZIP transcription factor, in astrocytes]. Nihon Yakurigaku Zasshi 2004; 124:383-90. [PMID: 15572842 DOI: 10.1254/fpj.124.383] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The endoplasmic reticulum (ER) is susceptible to various stresses that provoke the accumulation of unfolded proteins in the ER. Excessive or long-termed stresses in the ER result in apoptotic cell death involving activation of caspase-12 and -3 and the Ask-1-JNK pathway. Eukaryotic cells can adapt for survival to deal with an accumulation of unfolded proteins in the ER by increasing transcription of genes encoding ER-resident chaperones such as GRP78/BiP to facilitate protein folding. The induction system is termed the unfolded protein response (UPR). It has been reported that IRE1 and PERK, transmembrane kinases, and ATF6, a transmembrane transcription factor, are mediators of the UPR through sensing accumulation of unfolded proteins. Cell fates after ER stress are regulated by the balance of both apoptosis and the UPR signaling. In the nervous systems, astrocytes are well known to be resistant to ER stresses induced by ischemia and hypoxia. These findings raise the possibility that astrocytes possess a novel UPR signaling different from that of neuronal cells. Recently, we identified a novel ER stress sensor, OASIS, which is specifically expressed in astrocytes. This protein is a transmembrane protein containing the bZIP domain. The functional analyses of OASIS showed that 1) it was cleaved within the ER membrane in response to the ER stress, 2) overexpression of OASIS induced the transcription of GRP78/BiP mRNA through the activation of cyclic AMP responsive element (CRE) and ER stress responsive element (ERSE), and 3) its stable cell lines were resistant to ER stress compared with the control cells. These results indicate that the ER-resident transcription factor OASIS may be a candidate for leading astrocytes to protect against ER stress.
Collapse
Affiliation(s)
- Kazunori Imaizumi
- Department of Anatomy, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | | |
Collapse
|
2297
|
Hinnebusch AG, Asano K, Olsen DS, Phan L, Nielsen KH, Valásek L. Study of Translational Control of Eukaryotic Gene Expression Using Yeast. Ann N Y Acad Sci 2004; 1038:60-74. [PMID: 15838098 DOI: 10.1196/annals.1315.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Eukaryotic cells respond to starvation by decreasing the rate of general protein synthesis while inducing translation of specific mRNAs encoding transcription factors GCN4 (yeast) or ATF4 (humans). Both responses are elicited by phosphorylation of translation initiation factor 2 (eIF2) and the attendant inhibition of its nucleotide exchange factor eIF2B-decreasing the binding to 40S ribosomes of methionyl initiator tRNA in the ternary complex (TC) with eIF2 and GTP. The reduction in TC levels enables scanning ribosomes to bypass the start codons of upstream open reading frames in the GCN4 mRNA leader and initiate translation at the authentic GCN4 start codon. We exploited the fact that GCN4 translation is a sensitive reporter of defects in TC recruitment to identify the catalytic and regulatory subunits of eIF2B. More recently, we implicated the C-terminal domain of eIF1A in 40S-binding of TC in vivo. Interestingly, we found that TC resides in a multifactor complex (MFC) with eIF3, eIF1, and the GTPase-activating protein for eIF2, known as eIF5. Our biochemical and genetic analyses indicate that physical interactions between MFC components enhance TC binding to 40S subunits and are required for wild-type translational control of GCN4. MFC integrity and eIF3 function also contribute to post-assembly steps in the initiation pathway that impact GCN4 expression. Thus, apart from its critical role in the starvation response, GCN4 regulation is a valuable tool for dissecting the contributions of multiple translation factors in the eukaryotic initiation pathway.
Collapse
Affiliation(s)
- Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Division of Intramural Research, NICHD, NIH, Bldg. 18T, Rm. 106, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
2298
|
Sato H, Nomura S, Maebara K, Sato K, Tamba M, Bannai S. Transcriptional control of cystine/glutamate transporter gene by amino acid deprivation. Biochem Biophys Res Commun 2004; 325:109-16. [PMID: 15522208 DOI: 10.1016/j.bbrc.2004.10.009] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Indexed: 11/18/2022]
Abstract
Recent studies have demonstrated that depletion of amino acids results in the induction of several genes and that a genomic cis-element termed amino acid response element (AARE) is required for the induction. System x(c)(-) is an anionic amino acid transport system highly specific for cystine and glutamate, and its activity is known to be induced by cystine deprivation. This transporter is composed of two protein components, xCT and 4F2 heavy chain, and xCT is thought to mediate the transport activity. In the present study, the molecular mechanism for the induction of xCT by amino acid deprivation has been investigated. In mouse NIH3T3 cells, the activity of system x(c)(-) and xCT mRNA is induced not only by deprivation of cystine but also by deprivation of other amino acids. Two AAREs, each located in the opposite direction with an intervening sequence, were found in the 5'-flanking region of the mouse xCT gene. Promoter analysis revealed that both AAREs were necessary for the maximal induction of xCT mRNA in response to the amino acid deprivation. Glucose deprivation had no effect on the induction of the activity of system x(c)(-). Electrophoretic mobility shift assay showed that ATF4, but not ATF2, is involved in the amino acid control of xCT expression. These results demonstrate that xCT is a new member of the proteins whose transcriptional control by the amino acid deprivation is mediated by AARE.
Collapse
Affiliation(s)
- Hideyo Sato
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | |
Collapse
|
2299
|
Hedtjärn M, Mallard C, Eklind S, Gustafson-Brywe K, Hagberg H. Global gene expression in the immature brain after hypoxia-ischemia. J Cereb Blood Flow Metab 2004; 24:1317-32. [PMID: 15625407 DOI: 10.1097/01.wcb.0000141558.40491.75] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ischemia induces a complex response of differentially expressed genes in the brain. In order to understand the specific mechanisms of injury in the developing brain, it is important to obtain information on global changes in the transcriptome after neonatal hypoxia-ischemia. In this study, oligonucleotide arrays were used to investigate genomic changes at 2, 8, 24, and 72 hours after neonatal hypoxia-ischemia, which was induced in 9-day-old mice by left carotid artery ligation followed by hypoxia (10% O2). In total, 343 genes were differentially expressed in cortex, hippocampus, thalamus, and striatum 2 to 72 hours after hypoxia-ischemia, when comparing ipsilateral with contralateral hemispheres and with controls, using the significance analysis for microarrays. A total of 283 genes were upregulated and 60 were downregulated, and 94% of the genes had not previously been shown after neonatal hypoxia-ischemia. Genes related to transcription factors and metabolism had mostly upregulated transcripts, whereas most downregulated genes belonged to the categories of ion and vesicular transport and signal transduction. Genes involved in transcription, stress, and apoptosis were induced early after the insult, and many new genes that may play important roles in the pathophysiology of neonatal hypoxia-ischemia were identified.
Collapse
Affiliation(s)
- Maj Hedtjärn
- Department of Physiology, Perinatal Center, Göteborg University, Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
2300
|
Gilks N, Kedersha N, Ayodele M, Shen L, Stoecklin G, Dember LM, Anderson P. Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol Biol Cell 2004; 15:5383-98. [PMID: 15371533 PMCID: PMC532018 DOI: 10.1091/mbc.e04-08-0715] [Citation(s) in RCA: 796] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Accepted: 09/08/2004] [Indexed: 01/01/2023] Open
Abstract
TIA-1 is an RNA binding protein that promotes the assembly of stress granules (SGs), discrete cytoplasmic inclusions into which stalled translation initiation complexes are dynamically recruited in cells subjected to environmental stress. The RNA recognition motifs of TIA-1 are linked to a glutamine-rich prion-related domain (PRD). Truncation mutants lacking the PRD domain do not induce spontaneous SGs and are not recruited to arsenite-induced SGs, whereas the PRD forms aggregates that are recruited to SGs in low-level-expressing cells but prevent SG assembly in high-level-expressing cells. The PRD of TIA-1 exhibits many characteristics of prions: concentration-dependent aggregation that is inhibited by the molecular chaperone heat shock protein (HSP)70; resistance to protease digestion; sequestration of HSP27, HSP40, and HSP70; and induction of HSP70, a feedback regulator of PRD disaggregation. Substitution of the PRD with the aggregation domain of a yeast prion, SUP35-NM, reconstitutes SG assembly, confirming that a prion domain can mediate the assembly of SGs. Mouse embryomic fibroblasts (MEFs) lacking TIA-1 exhibit impaired ability to form SGs, although they exhibit normal phosphorylation of eukaryotic initiation factor (eIF)2alpha in response to arsenite. Our results reveal that prion-like aggregation of TIA-1 regulates SG formation downstream of eIF2alpha phosphorylation in response to stress.
Collapse
Affiliation(s)
- Natalie Gilks
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|