2401
|
Prunskaite-Hyyryläinen R, Shan J, Railo A, Heinonen KM, Miinalainen I, Yan W, Shen B, Perreault C, Vainio SJ. Wnt4, a pleiotropic signal for controlling cell polarity, basement membrane integrity, and antimüllerian hormone expression during oocyte maturation in the female follicle. FASEB J 2013; 28:1568-81. [PMID: 24371124 DOI: 10.1096/fj.13-233247] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Wnt4 is a key signal that channels the developmental fate of the indifferent mammalian gonad toward the ovary, but whether Wnt4 has later roles during ovary development remains unknown. To investigate this, we inactivated the Wnt4 gene by crossing Amhr2Cre and doxycycline-inducible Rosa(rtTA)-knock-in Cre mice with mice carrying a floxed Wnt4 allele and used a novel Wnt4(mCherry)-knock-in mouse. In these models, ovarian folliculogenesis was compromised, and female fertility was severely reduced, and Wnt4 deficiency eventually led to premature ovarian failure. These anomalies were associated with cell polarity defects in the follicle. Within the follicle, laminin and type IV collagen assembled ectopic basement membrane-like structures, the cell adherens junction components N-cadherin and β-catenin lost their polarized expression pattern, and expression of the gap junction protein connexin 43 was reduced by ~30% when compared with that of the controls. Besides these changes, expression of antimüllerian hormone (Amh) was inhibited in the absence of Wnt4 signaling in vivo. Consistent with this, Wnt4 signaling up-regulated Amh gene expression in KK1 cells in vitro. Thus, Wnt4 signaling is necessary during maturation of the ovarian follicles, where it coordinates expression of Amh, cell survival, and polarized organization of the follicular cells.
Collapse
Affiliation(s)
- Renata Prunskaite-Hyyryläinen
- 1Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, University of Oulu and Biocenter Oulu, Aapistie 5, P. O. Box 5000, FIN-90220, Oulu, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
2402
|
Prostatic inflammation enhances basal-to-luminal differentiation and accelerates initiation of prostate cancer with a basal cell origin. Proc Natl Acad Sci U S A 2013; 111:E592-600. [PMID: 24367088 DOI: 10.1073/pnas.1318157111] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chronic inflammation has been shown to promote the initiation and progression of diverse malignancies by inducing genetic and epigenetic alterations. In this study, we investigate an alternative mechanism through which inflammation promotes the initiation of prostate cancer. Adult murine prostate epithelia are composed predominantly of basal and luminal cells. Previous studies revealed that the two lineages are largely self-sustained when residing in their native microenvironment. To interrogate whether tissue inflammation alters the differentiation program of basal cells, we conducted lineage tracing of basal cells using a K14-CreER;mTmG model in concert with a murine model of prostatitis induced by infection from the uropathogenic bacteria CP9. We show that acute prostatitis causes tissue damage and creates a tissue microenvironment that induces the differentiation of basal cells into luminal cells, an alteration that rarely occurs under normal physiological conditions. Previously we showed that a mouse model with prostate basal cell-specific deletion of Phosphatase and tensin homolog (K14-CreER;Pten(fl/fl)) develops prostate cancer with a long latency, because disease initiation in this model requires and is limited by the differentiation of transformation-resistant basal cells into transformation-competent luminal cells. Here, we show that CP9-induced prostatitis significantly accelerates the initiation of prostatic intraepithelial neoplasia in this model. Our results demonstrate that inflammation results in a tissue microenvironment that alters the normal prostate epithelial cell differentiation program and that through this cellular process inflammation accelerates the initiation of prostate cancer with a basal cell origin.
Collapse
|
2403
|
Bandiera R, Vidal VPI, Motamedi FJ, Clarkson M, Sahut-Barnola I, von Gise A, Pu WT, Hohenstein P, Martinez A, Schedl A. WT1 maintains adrenal-gonadal primordium identity and marks a population of AGP-like progenitors within the adrenal gland. Dev Cell 2013; 27:5-18. [PMID: 24135228 DOI: 10.1016/j.devcel.2013.09.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 07/12/2013] [Accepted: 09/04/2013] [Indexed: 12/26/2022]
Abstract
Adrenal glands and gonads share a common primordium (AGP), but the molecular events driving differentiation are poorly understood. Here we demonstrate that the Wilms tumor suppressor WT1 is a key factor defining AGP identity by inhibiting the steroidogenic differentiation process. Indeed, ectopic expression of WT1 precludes differentiation into adrenocortical steroidogenic cells by locking them into a progenitor state. Chromatin immunoprecipitation experiments identify Tcf21 and Gli1 as direct targets of WT1. Moreover, cell lineage tracing analyses identify a long-living progenitor population within the adrenal gland, characterized by the expression of WT1, GATA4, GLI1, and TCF21, that can generate steroidogenic cells in vivo. Strikingly, gonadectomy dramatically activates these WT1(+) cells and leads to their differentiation into gonadal steroidogenic tissue. Thus, our data describe a mechanism of response to organ loss by recreating hormone-producing cells at a heterotopic site.
Collapse
Affiliation(s)
- Roberto Bandiera
- Institute of Biology Valrose, iBV, University of Nice Sophia-Antipolis, 06108 Nice Cedex 2, France; INSERM UMR 1091, CNRS UMR 7277 Parc Valrose, 06108 Nice Cedex 2, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2404
|
Cheung KJ, Gabrielson E, Werb Z, Ewald AJ. Collective invasion in breast cancer requires a conserved basal epithelial program. Cell 2013; 155:1639-51. [PMID: 24332913 DOI: 10.1016/j.cell.2013.11.029] [Citation(s) in RCA: 627] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 05/02/2013] [Accepted: 11/11/2013] [Indexed: 12/14/2022]
Abstract
Carcinomas typically invade as a cohesive multicellular unit, a process termed collective invasion. It remains unclear how different subpopulations of cancer cells contribute to this process. We developed three-dimensional (3D) organoid assays to identify the most invasive cancer cells in primary breast tumors. Collective invasion was led by specialized cancer cells that were defined by their expression of basal epithelial genes, such as cytokeratin-14 (K14) and p63. Furthermore, K14+ cells led collective invasion in the major human breast cancer subtypes. Importantly, luminal cancer cells were observed to convert phenotypically to invasive leaders following induction of basal epithelial genes. Although only a minority of cells within luminal tumors expressed basal epithelial genes, knockdown of either K14 or p63 was sufficient to block collective invasion. Our data reveal that heterotypic interactions between epithelial subpopulations are critical to collective invasion. We suggest that targeting the basal invasive program could limit metastatic progression.
Collapse
Affiliation(s)
- Kevin J Cheung
- Departments of Cell Biology and Oncology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Edward Gabrielson
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Andrew J Ewald
- Departments of Cell Biology and Oncology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
2405
|
Flk2/Flt3 promotes both myeloid and lymphoid development by expanding non-self-renewing multipotent hematopoietic progenitor cells. Exp Hematol 2013; 42:218-229.e4. [PMID: 24333663 DOI: 10.1016/j.exphem.2013.11.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/22/2013] [Accepted: 11/22/2013] [Indexed: 12/21/2022]
Abstract
Defining differentiation pathways is central to understanding the pathogenesis of hematopoietic disorders, including leukemia. The function of the receptor tyrosine kinase Flk2 (Flt3) in promoting myeloid development remains poorly defined, despite being commonly mutated in acute myeloid leukemia. We investigated the effect of Flk2 deficiency on myelopoiesis, focusing on specification of progenitors between HSC and mature cells. We provide evidence that Flk2 is critical for proliferative expansion of multipotent progenitors that are common precursors for all lymphoid and myeloid lineages, including megakaryocyte/erythroid (MegE) cells. Flk2 deficiency impaired the generation of both lymphoid and myeloid progenitors by abrogating propagation of their common upstream precursor. At steady state, downstream compensatory mechanisms masked the effect of Flk2 deficiency on mature myeloid output, whereas transplantation of purified progenitors revealed impaired generation of all mature lineages. Flk2 deficiency did not affect lineage choice, thus dissociating the role of Flk2 in promoting cell expansion and regulating cell fate. Surprisingly, despite impairing myeloid development, Flk2 deficiency afforded protection against myeloablative insult. This survival advantage was attributed to reduced cell cycling and proliferation of progenitors in Flk2-deficient mice. Our data support the existence of a common Flk2(+) intermediate for all hematopoietic lineages and provide insight into how activating Flk2 mutations promote hematopoietic malignancy by non-Flk2-expressing myeloid cells.
Collapse
|
2406
|
Zhao C, Guo H, Li J, Myint T, Pittman W, Yang L, Zhong W, Schwartz RJ, Schwarz JJ, Singer HA, Tallquist MD, Wu M. Numb family proteins are essential for cardiac morphogenesis and progenitor differentiation. Development 2013; 141:281-95. [PMID: 24335256 DOI: 10.1242/dev.093690] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Numb family proteins (NFPs), including Numb and numb-like (Numbl), are cell fate determinants for multiple progenitor cell types. Their functions in cardiac progenitor differentiation and cardiac morphogenesis are unknown. To avoid early embryonic lethality and study NFP function in later cardiac development, Numb and Numbl were deleted specifically in heart to generate myocardial double-knockout (MDKO) mice. MDKOs were embryonic lethal and displayed a variety of defects in cardiac progenitor differentiation, cardiomyocyte proliferation, outflow tract (OFT) and atrioventricular septation, and OFT alignment. By ablating NFPs in different cardiac populations followed by lineage tracing, we determined that NFPs in the second heart field (SHF) are required for OFT and atrioventricular septation and OFT alignment. MDKOs displayed an SHF progenitor cell differentiation defect, as revealed by a variety of methods including mRNA deep sequencing. Numb regulated cardiac progenitor cell differentiation in an endocytosis-dependent manner. Studies including the use of a transgenic Notch reporter line showed that Notch signaling was upregulated in the MDKO. Suppression of Notch1 signaling in MDKOs rescued defects in p57 expression, proliferation and trabecular thickness. Further studies showed that Numb inhibits Notch1 signaling by promoting the degradation of the Notch1 intracellular domain in cardiomyocytes. This study reveals that NFPs regulate trabecular thickness by inhibiting Notch1 signaling, control cardiac morphogenesis in a Notch1-independent manner, and regulate cardiac progenitor cell differentiation in an endocytosis-dependent manner. The function of NFPs in cardiac progenitor differentiation and cardiac morphogenesis suggests that NFPs might be potential therapeutic candidates for cardiac regeneration and congenital heart diseases.
Collapse
Affiliation(s)
- Chen Zhao
- Cardiovascular Science Center, Albany Medical College, Albany, NY 12208, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2407
|
Lim X, Tan SH, Koh WLC, Chau RMW, Yan KS, Kuo CJ, van Amerongen R, Klein AM, Nusse R. Interfollicular epidermal stem cells self-renew via autocrine Wnt signaling. Science 2013; 342:1226-30. [PMID: 24311688 PMCID: PMC4081860 DOI: 10.1126/science.1239730] [Citation(s) in RCA: 269] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The skin is a classical example of a tissue maintained by stem cells. However, the identity of the stem cells that maintain the interfollicular epidermis and the source of the signals that control their activity remain unclear. Using mouse lineage tracing and quantitative clonal analyses, we showed that the Wnt target gene Axin2 marks interfollicular epidermal stem cells. These Axin2-expressing cells constitute the majority of the basal epidermal layer, compete neutrally, and require Wnt/β-catenin signaling to proliferate. The same cells contribute robustly to wound healing, with no requirement for a quiescent stem cell subpopulation. By means of double-labeling RNA in situ hybridization in mice, we showed that the Axin2-expressing cells themselves produce Wnt signals as well as long-range secreted Wnt inhibitors, suggesting an autocrine mechanism of stem cell self-renewal.
Collapse
Affiliation(s)
- Xinhong Lim
- Department of Developmental Biology, Howard Hughes Medical Institute (HHMI), Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Si Hui Tan
- Program in Cancer Biology, School of Medicine, Stanford University, Stanford, CA, USA
| | | | | | - Kelley S. Yan
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Calvin J. Kuo
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Renée van Amerongen
- Department of Developmental Biology, Howard Hughes Medical Institute (HHMI), Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Allon Moshe Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Roel Nusse
- Department of Developmental Biology, Howard Hughes Medical Institute (HHMI), Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
2408
|
Microarray and morphological analysis of early postnatal CRB2 mutant retinas on a pure C57BL/6J genetic background. PLoS One 2013; 8:e82532. [PMID: 24324803 PMCID: PMC3855766 DOI: 10.1371/journal.pone.0082532] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/25/2013] [Indexed: 02/06/2023] Open
Abstract
In humans, the Crumbs homologue-1 (CRB1) gene is mutated in progressive types of autosomal recessive retinitis pigmentosa and Leber congenital amaurosis. The severity of the phenotype due to human CRB1 or mouse Crb1 mutations is dependent on the genetic background. Mice on C57BL/6J background with Crb1 mutations show late onset of retinal spotting phenotype or no phenotype. Recently, we showed that conditional deletion of mouse Crb2 in the retina results in early retinal disorganization leading to severe and progressive retinal degeneration with concomitant visual loss that mimics retinitis pigmentosa due to mutations in the CRB1 gene. Recent studies in the fruit fly and zebrafish suggest roles of the Crumbs (CRB) complex members in the regulation of cellular signalling pathways including the Notch1, mechanistic target of rapamycin complex 1 (mTORC1) and the Hippo pathway. Here, we demonstrate that mice backcrossed to C57BL/6J background with loss of CRB2 in the retina show a progressive disorganization and degeneration phenotype during late retinal development. We used microarray gene profiling to study the transcriptome of retinas lacking CRB2 during late retinal development. Unexpectedly, the retinas of newborn mice lacking CRB2 showed no changes in the transcriptome during retinal development. These findings suggest that loss of CRB2 in the developing retina results in retinal disorganization and subsequent degeneration without major changes in the transcriptome of the retina. These mice might be an interesting model to study the onset of retinal degeneration upon loss of CRB proteins.
Collapse
|
2409
|
Henderson NC, Arnold TD, Katamura Y, Giacomini MM, Rodriguez JD, McCarty JH, Pellicoro A, Raschperger E, Betsholtz C, Ruminski PG, Griggs DW, Prinsen MJ, Maher JJ, Iredale JP, Lacy-Hulbert A, Adams RH, Sheppard D. Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat Med 2013; 19:1617-24. [PMID: 24216753 PMCID: PMC3855865 DOI: 10.1038/nm.3282] [Citation(s) in RCA: 688] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/17/2013] [Indexed: 02/06/2023]
Abstract
Myofibroblasts are the major source of extracellular matrix components that accumulate during tissue fibrosis, and hepatic stellate cells (HSCs) are believed to be the major source of myofibroblasts in the liver. To date, robust systems to genetically manipulate these cells have not been developed. We report that Cre under control of the promoter of Pdgfrb (Pdgfrb-Cre) inactivates loxP-flanked genes in mouse HSCs with high efficiency. We used this system to delete the gene encoding α(v) integrin subunit because various α(v)-containing integrins have been suggested as central mediators of fibrosis in multiple organs. Such depletion protected mice from carbon tetrachloride-induced hepatic fibrosis, whereas global loss of β₃, β₅ or β₆ integrins or conditional loss of β₈ integrins in HSCs did not. We also found that Pdgfrb-Cre effectively targeted myofibroblasts in multiple organs, and depletion of the α(v) integrin subunit using this system was protective in other models of organ fibrosis, including pulmonary and renal fibrosis. Pharmacological blockade of α(v)-containing integrins by a small molecule (CWHM 12) attenuated both liver and lung fibrosis, including in a therapeutic manner. These data identify a core pathway that regulates fibrosis and suggest that pharmacological targeting of all α(v) integrins may have clinical utility in the treatment of patients with a broad range of fibrotic diseases.
Collapse
Affiliation(s)
- Neil C Henderson
- Lung Biology Center, Department of Medicine, University of California, San Francisco, California, USA
- MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Thomas D Arnold
- Department of Pediatrics, University of California, San Francisco, California, USA
| | - Yoshio Katamura
- Lung Biology Center, Department of Medicine, University of California, San Francisco, California, USA
| | - Marilyn M Giacomini
- Lung Biology Center, Department of Medicine, University of California, San Francisco, California, USA
| | - Juan D Rodriguez
- Lung Biology Center, Department of Medicine, University of California, San Francisco, California, USA
| | - Joseph H McCarty
- Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Antonella Pellicoro
- MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Elisabeth Raschperger
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Peter G Ruminski
- Center for World Health and Medicine, Saint Louis University, Edward A. Doisy Research Center, St. Louis, Missouri, USA
| | - David W Griggs
- Center for World Health and Medicine, Saint Louis University, Edward A. Doisy Research Center, St. Louis, Missouri, USA
| | - Michael J Prinsen
- Center for World Health and Medicine, Saint Louis University, Edward A. Doisy Research Center, St. Louis, Missouri, USA
| | - Jacquelyn J Maher
- The Liver Center, Department of Medicine, University of California, San Francisco, California, USA
| | - John P Iredale
- MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Adam Lacy-Hulbert
- Program of Developmental Immunology, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Faculty of Medicine, Max Planck Institute for Molecular Biomedicine, University of Münster, Münster, Germany
| | - Dean Sheppard
- Lung Biology Center, Department of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
2410
|
Hackl MJ, Burford JL, Villanueva K, Lam L, Suszták K, Schermer B, Benzing T, Peti-Peterdi J. Tracking the fate of glomerular epithelial cells in vivo using serial multiphoton imaging in new mouse models with fluorescent lineage tags. Nat Med 2013; 19:1661-6. [PMID: 24270544 PMCID: PMC3884556 DOI: 10.1038/nm.3405] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/07/2013] [Indexed: 12/13/2022]
Abstract
Podocytes are critical in the maintenance of a healthy glomerular filter, however they have been difficult to study in the intact kidney due to technical limitations. Here we report the development of serial multiphoton microscopy (MPM) of the same glomeruli over several days to visualize the motility of podocytes and parietal epithelial cells (PEC) in vivo. In Podocin-GFP mice podocytes formed sporadic multi-cellular clusters after unilateral ureteral ligation (UUO) and migrated into the parietal Bowman’s capsule. The tracking of single cells in Podocin-confetti mice featuring cell-specific expression of CFP, GFP, YFP, or RFP revealed the simultaneous migration of multiple podocytes. In PEPCK-GFP mice serial MPM found PEC-to-podocyte migration and nanotubule connections. Our data support the highly dynamic rather than static nature of the glomerular environment and cellular composition. Future application of this new approach promises to advance our understanding of the mechanisms of glomerular injury and regeneration.
Collapse
Affiliation(s)
- Matthias J Hackl
- 1] Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA. [2] Department of Medicine, University of Southern California, Los Angeles, California, USA. [3] Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
2411
|
Perivascular macrophages mediate neutrophil recruitment during bacterial skin infection. Nat Immunol 2013; 15:45-53. [PMID: 24270515 DOI: 10.1038/ni.2769] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/18/2013] [Indexed: 12/12/2022]
Abstract
Transendothelial migration of neutrophils in postcapillary venules is a key event in the inflammatory response against pathogens and tissue damage. The precise regulation of this process is incompletely understood. We report that perivascular macrophages are critical for neutrophil migration into skin infected with the pathogen Staphylococcus aureus. Using multiphoton intravital microscopy we showed that neutrophils extravasate from inflamed dermal venules in close proximity to perivascular macrophages, which are a major source of neutrophil chemoattractants. The virulence factor α-hemolysin produced by S. aureus lyses perivascular macrophages, which leads to decreased neutrophil transmigration. Our data illustrate a previously unrecognized role for perivascular macrophages in neutrophil recruitment to inflamed skin and indicate that S. aureus uses hemolysin-dependent killing of these cells as an immune evasion strategy.
Collapse
|
2412
|
Wood MA, Acharya A, Finco I, Swonger JM, Elston MJ, Tallquist MD, Hammer GD. Fetal adrenal capsular cells serve as progenitor cells for steroidogenic and stromal adrenocortical cell lineages in M. musculus. Development 2013; 140:4522-32. [PMID: 24131628 PMCID: PMC3817941 DOI: 10.1242/dev.092775] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The lineage relationships of fetal adrenal cells and adrenal capsular cells to the differentiated adrenal cortex are not fully understood. Existing data support a role for each cell type as a progenitor for cells of the adult cortex. This report reveals that subsets of capsular cells are descendants of fetal adrenocortical cells that once expressed Nr5a1. These fetal adrenocortical cell descendants within the adrenal capsule express Gli1, a known marker of progenitors of steroidogenic adrenal cells. The capsule is also populated by cells that express Tcf21, a known inhibitor of Nr5a1 gene expression. We demonstrate that Tcf21-expressing cells give rise to Nr5a1-expressing cells but only before capsular formation. After the capsule has formed, capsular Tcf21-expressing cells give rise only to non-steroidogenic stromal adrenocortical cells, which also express collagen 1a1, desmin and platelet-derived growth factor (alpha polypeptide) but not Nr5a1. These observations integrate prior observations that define two separate origins of adult adrenocortical steroidogenic cells (fetal adrenal cortex and/or the adrenal capsule). Thus, these observations predict a unique temporal and/or spatial role of adult cortical cells that arise directly from either fetal cortical cells or from fetal cortex-derived capsular cells. Last, the data uncover the mechanism by which two populations of fetal cells (fetal cortex derived Gli1-expressing cells and mesenchymal Tcf21-expressing mesenchymal cells) participate in the establishment of the homeostatic capsular progenitor cell niche of the adult cortex.
Collapse
Affiliation(s)
- Michelle A. Wood
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - Asha Acharya
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Isabella Finco
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jessica M. Swonger
- Molecular and Cell Biology Program, University of Hawaii, Honolulu, HI 96813, USA
| | - Marlee J. Elston
- Molecular and Cell Biology Program, University of Hawaii, Honolulu, HI 96813, USA
| | - Michelle D. Tallquist
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Gary D. Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA., University of Michigan Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA., Author for correspondence ()
| |
Collapse
|
2413
|
Distinct and overlapping sarcoma subtypes initiated from muscle stem and progenitor cells. Cell Rep 2013; 5:933-40. [PMID: 24239359 DOI: 10.1016/j.celrep.2013.10.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/29/2013] [Accepted: 10/11/2013] [Indexed: 10/26/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children, whereas undifferentiated pleomorphic sarcoma (UPS) is one of the most common soft tissue sarcomas diagnosed in adults. To investigate the myogenic cell(s) of origin of these sarcomas, we used Pax7-CreER and MyoD-CreER mice to transform Pax7(+) and MyoD(+) myogenic progenitors by expressing oncogenic Kras(G12D) and deleting Trp53 in vivo. Pax7-CreER mice developed RMS and UPS, whereas MyoD-CreER mice developed UPS. Using gene set enrichment analysis, RMS and UPS each clustered specifically within their human counterparts. These results suggest that RMS and UPS have distinct and overlapping cells of origin within the muscle lineage. Taking them together, we have established mouse models of soft tissue sarcoma from muscle stem and progenitor cells.
Collapse
|
2414
|
Zhang W, Menke DB, Jiang M, Chen H, Warburton D, Turcatel G, Lu CH, Xu W, Luo Y, Shi W. Spatial-temporal targeting of lung-specific mesenchyme by a Tbx4 enhancer. BMC Biol 2013; 11:111. [PMID: 24225400 PMCID: PMC3907025 DOI: 10.1186/1741-7007-11-111] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 11/05/2013] [Indexed: 12/21/2022] Open
Abstract
Background Reciprocal interactions between lung mesenchymal and epithelial cells play essential roles in lung organogenesis and homeostasis. Although the molecular markers and related animal models that target lung epithelial cells are relatively well studied, molecular markers of lung mesenchymal cells and the genetic tools to target and/or manipulate gene expression in a lung mesenchyme-specific manner are not available, which becomes a critical barrier to the study of lung mesenchymal biology and the related pulmonary diseases. Results We have identified a mouse Tbx4 gene enhancer that contains conserved DNA sequences across many vertebrate species with lung or lung-like gas exchange organ. We then generate a mouse line to express rtTA/LacZ under the control of the Tbx4 lung enhancer, and therefore a Tet-On inducible transgenic system to target lung mesenchymal cells at different developmental stages. By combining a Tbx4-rtTA driven Tet-On inducible Cre expression mouse line with a Cre reporter mouse line, the spatial-temporal patterns of Tbx4 lung enhancer targeted lung mesenchymal cells were defined. Pulmonary endothelial cells and vascular smooth muscle cells were targeted by the Tbx4-rtTA driver line prior to E11.5 and E15.5, respectively, while other subtypes of lung mesenchymal cells including airway smooth muscle cells, fibroblasts, pericytes could be targeted during the entire developmental stage. Conclusions Developmental lung mesenchymal cells can be specifically marked by Tbx4 lung enhancer activity. With our newly created Tbx4 lung enhancer-driven Tet-On inducible system, lung mesenchymal cells can be specifically and differentially targeted in vivo for the first time by controlling the doxycycline induction time window. This novel system provides a unique tool to study lung mesenchymal cell lineages and gene functions in lung mesenchymal development, injury repair, and regeneration in mice.
Collapse
Affiliation(s)
- Wenming Zhang
- Developmental Biology and Regenerative Medicine Program, Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, 4650 Sunset Blvd,, MS 35, Los Angeles, CA 90027, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2415
|
Joseph C, Quach JM, Walkley CR, Lane SW, Lo Celso C, Purton LE. Deciphering hematopoietic stem cells in their niches: a critical appraisal of genetic models, lineage tracing, and imaging strategies. Cell Stem Cell 2013; 13:520-33. [PMID: 24209759 DOI: 10.1016/j.stem.2013.10.010] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, technical developments in mouse genetics and imaging equipment have substantially advanced our understanding of hematopoietic stem cells (HSCs) and their niche. The availability of numerous Cre strains for targeting HSCs and microenvironmental cells provides extensive flexibility in experimental design, but it can also pose significant challenges due to strain-specific differences in cell specificity. Here we outline various genetic approaches for isolating, detecting, and ablating HSCs and niche components and provide a guide for advantages and caveats to consider. We also discuss opportunities and limitations presented by imaging technologies that allow investigation of HSC behavior in situ.
Collapse
Affiliation(s)
- Chacko Joseph
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia; Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, 3065, Australia
| | | | | | | | | | | |
Collapse
|
2416
|
Qiao L, Nishimura T, Shi L, Sessions D, Thrasher A, Trudell JR, Berry GJ, Pearl RG, Kao PN. Endothelial fate mapping in mice with pulmonary hypertension. Circulation 2013; 129:692-703. [PMID: 24201301 DOI: 10.1161/circulationaha.113.003734] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pulmonary endothelial injury triggers a reparative program, which in susceptible individuals is characterized by neointima formation, vascular narrowing, and the development of pulmonary arterial hypertension. The neointimal cells in human pathological plexiform lesions frequently coexpress smooth muscle α-actin and the endothelial von Willebrand antigen, creating a question about their cellular lineage of origin. METHODS AND RESULTS Experimental pulmonary hypertension with neointima formation develops in C57Bl/6 mice subjected to left pneumonectomy followed 1 week later by jugular vein injection of monocrotaline pyrrole (20 μg/μL and 1 μL/g; group P/MCTP). Compared with the group vehicle, by day 35, group P/MCTP developed higher right ventricular systolic pressure (54±5 versus 25±2 mm Hg; P<0.01) and right ventricular hypertrophy (0.58±0.16 versus 0.26±0.05; P<0.01). Transgenic vascular endothelial-cadherin Cre recombinase or Tie-2 Cre mice were intercrossed with mTomato/mGreen fluorescent protein double-fluorescent Cre reporter mice to achieve endothelial genetic lineage marking with membrane-targeted green fluorescent protein. In control mice, few endothelial lineage-marked cells lining the lumen of small pulmonary arteries demonstrate expression of smooth muscle α-actin. Concurrent with the development of pulmonary hypertension, endothelial lineage-marked cells are prominent in the neointima and exhibit expression of smooth muscle α-actin and smooth muscle myosin heavy chain. Human pulmonary arterial hypertension neointimal lesions contain cells that coexpress endothelial CD31 or von Willebrand antigen and smooth muscle α-actin. CONCLUSION Neointimal cells in pulmonary hypertension include contributions from the endothelial genetic lineage with induced expression of smooth muscle α-actin and smooth muscle myosin heavy chain.
Collapse
Affiliation(s)
- Lina Qiao
- Division of Pulmonary and Critical Care Medicine (T.N., L.S., D.S., A.T., P.N.K.) and the Departments of Pathology (G.J.B.) and Anesthesiology (J.R.T., R.G.P.), Stanford University Medical Center, Stanford, CA; and Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, China (L.Q.)
| | | | | | | | | | | | | | | | | |
Collapse
|
2417
|
Huang P, Chiu YT, Chen C, Wang Y, Liu-Chen LY. A G protein-coupled receptor (GPCR) in red: live cell imaging of the kappa opioid receptor-tdTomato fusion protein (KOPR-tdT) in neuronal cells. J Pharmacol Toxicol Methods 2013; 68:340-5. [PMID: 23856011 PMCID: PMC3954113 DOI: 10.1016/j.vascn.2013.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/04/2013] [Indexed: 12/21/2022]
Abstract
INTRODUCTION In contrast to green fluorescent protein and variants (GFPs), red fluorescent proteins (RFPs) have rarely been employed for the generation of GPCR fusion proteins, likely because of formation of aggregates and cell toxicity of some RFPs. Among all the RFPs, tdTomato (tdT), one of the non-aggregating RFP, has the highest brightness score (about 3 times that of eGFP) and unsurpassed photostability. METHODS We fused tdT to the KOPR C-terminus. The KOPR-tdT cDNA construct was transfected into a Neuro2A mouse neuroblastoma cell line (Neuro2A cells) and rat cortical primary neurons for characterization of pharmacological properties and imaging studies on KOPR trafficking. RESULTS KOPR-tdT retained KOPR properties (cell surface expression, ligand binding, agonist-induced signaling and internalization) when expressed in Neuro2A cells and rat primary cortical neurons. Live cell imaging of KOPR-tdT enables visualization of the time course of agonist-induced internalization of KOPR in real time for 60 min, without photobleaching and apparent cell toxicity. U50,488H-induced KOPR internalization occurred as early as 4min and plateaued at about 30 min. A unique pattern of internalized KOPR in processes of primary neurons was induced by U50,488H. DISCUSSION tdT is an alternative to, or even a better tool than, GFPs for fusion to GPCR for trafficking studies, because tdT has higher brightness and thus better resolution and less photobleaching problems due to the reduced laser power used. It also has advantages associated with its longer-wavelength emission including spectral separation from autofluorescence and GFPs, reduced cell toxicity that the laser may impose, and greater tissue penetration. These advantages of tdT over GPFs may be critical for live cell imaging studies of GPCRs in vitro and for studying GPCRs in vivo because of their low abundance.
Collapse
Key Words
- 17,17′-(dicyclopropylmethyl)-6,6′,7,7′-6,6′-imino-7,7′-bimorphinan-3,4′,14,14′-tetrol
- DYKDDDDK epitope tag
- Dynorphin A (1-17)
- FLAG tag
- G protein-coupled receptor
- GFP
- GFPs
- GPCR
- H-Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Ile-Arg-Pro-Lys-Leu-Lys-Trp-Asp-Asn-Gln-OH
- KOPR
- Live cell imaging
- MAPK
- Neurons
- RFP
- Red fluorescent protein
- U50,488H
- eGFP
- enhanced green fluorescent protein
- green fluorescent protein and its spectral variants
- kappa opioid receptor
- mKOPR
- mitogen-activated protein kinase
- mouse kappa opioid receptor
- norbinaltorphimine
- red fluorescent protein
- tdT
- tdTomato
- trans-(±)-3,4-Dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide methanesulfonate salt
Collapse
Affiliation(s)
- Peng Huang
- Center for Substance Abuse Research and Department of Pharmacology,
Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Yi-Ting Chiu
- Center for Substance Abuse Research and Department of Pharmacology,
Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Chongguang Chen
- Center for Substance Abuse Research and Department of Pharmacology,
Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Yujun Wang
- Center for Substance Abuse Research and Department of Pharmacology,
Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Lee-Yuan Liu-Chen
- Center for Substance Abuse Research and Department of Pharmacology,
Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| |
Collapse
|
2418
|
Gautron L, Rutkowski JM, Burton MD, Wei W, Wan Y, Elmquist JK. Neuronal and nonneuronal cholinergic structures in the mouse gastrointestinal tract and spleen. J Comp Neurol 2013; 521:3741-67. [PMID: 23749724 PMCID: PMC4081472 DOI: 10.1002/cne.23376] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 01/08/2013] [Accepted: 05/23/2013] [Indexed: 12/31/2022]
Abstract
Accumulating evidence demonstrates that acetylcholine can directly modulate immune function in peripheral tissues including the spleen and gastrointestinal tract. However, the anatomical relationships between the peripheral cholinergic system and immune cells located in these lymphoid tissues remain unclear due to inherent technical difficulties with currently available neuroanatomical methods. In this study, mice with specific expression of the tdTomato fluorescent protein in choline acetyltransferase (ChAT)-expressing cells were used to label preganglionic and postganglionic cholinergic neurons and their projections to lymphoid tissues. Notably, our anatomical observations revealed an abundant innervation in the intestinal lamina propria of the entire gastrointestinal tract principally originating from cholinergic enteric neurons. The aforementioned innervation frequently approached macrophages, plasma cells, and lymphocytes located in the lamina propria and, to a lesser extent, lymphocytes in the interfollicular areas of Peyer's patches. In addition to the above innervation, we observed labeled epithelial cells in the gallbladder and lower intestines, as well as Microfold cells and T-cells within Peyer's patches. In contrast, we found only a sparse innervation in the spleen consisting of neuronal fibers of spinal origin present around arterioles and in lymphocyte-containing areas of the white pulp. Lastly, a small population of ChAT-expressing lymphocytes was identified in the spleen including both T- and B-cells. In summary, this study describes the variety of cholinergic neuronal and nonneuronal cells in a position to modulate gastrointestinal and splenic immunity in the mouse.
Collapse
Affiliation(s)
- Laurent Gautron
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75235
- Division of Hypothalamic Research, The University of Texas Southwestern Medical Center, Dallas, Texas 75235
| | - Joseph M. Rutkowski
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75235
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75235
| | - Michael D. Burton
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75235
- Division of Hypothalamic Research, The University of Texas Southwestern Medical Center, Dallas, Texas 75235
| | - Wei Wei
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas 75235
| | - Yihong Wan
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas 75235
| | - Joel K. Elmquist
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75235
- Division of Hypothalamic Research, The University of Texas Southwestern Medical Center, Dallas, Texas 75235
| |
Collapse
|
2419
|
Carofino BL, Ayanga B, Justice MJ. A mouse model for inducible overexpression of Prdm14 results in rapid-onset and highly penetrant T-cell acute lymphoblastic leukemia (T-ALL). Dis Model Mech 2013; 6:1494-506. [PMID: 24046360 PMCID: PMC3820272 DOI: 10.1242/dmm.012575] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 08/30/2013] [Indexed: 01/02/2023] Open
Abstract
PRDM14 functions in embryonic stem cell (ESC) maintenance to promote the expression of pluripotency-associated genes while suppressing differentiation genes. Expression of PRDM14 is tightly regulated and typically limited to ESCs and primordial germ cells; however, aberrant expression is associated with tumor initiation in a wide variety of human cancers, including breast cancer and leukemia. Here, we describe the generation of a Cre-recombinase-inducible mouse model for the spatial and temporal control of Prdm14 misexpression [ROSA26 floxed-stop Prdm14 (R26PR)]. When R26PR is mated to either of two Cre lines, Mx1-cre or MMTV-cre, mice develop early-onset T-cell acute lymphoblastic leukemia (T-ALL) with median overall survival of 41 and 64 days for R26PR;Mx1-cre and R26PR;MMTV-cre, respectively. T-ALL is characterized by the accumulation of immature single-positive CD8 cells and their widespread infiltration. Leukemia is preceded by a dramatic expansion of cells resembling hematopoietic stem cells and lymphoid-committed progenitors prior to disease onset, accompanied by a blockage in B-cell differentiation at the early pro-B stage. Rapid-onset PRDM14-induced T-ALL requires factors that are present in stem and progenitor cells: R26PR;dLck-cre animals, which express Prdm14 starting at the double-positive stage of thymocyte development, do not develop disease. PRDM14-induced leukemic cells contain high levels of activated NOTCH1 and downstream NOTCH1 targets, including MYC and HES1, and are sensitive to pharmacological inhibition of NOTCH1 with the γ-secretase inhibitor DAPT. Greater than 50% of human T-ALLs harbor activating mutations in NOTCH1; thus, our model carries clinically relevant molecular aberrations. The penetrance, short latency and involvement of the NOTCH1 pathway will make this hematopoietic R26PR mouse model ideal for future studies on disease initiation, relapse and novel therapeutic drug combinations. Furthermore, breeding R26PR to additional Cre lines will allow for the continued development of novel cancer models.
Collapse
Affiliation(s)
- Brandi L. Carofino
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Bernard Ayanga
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Monica J. Justice
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
2420
|
Packard A, Georgas K, Michos O, Riccio P, Cebrian C, Combes AN, Ju A, Ferrer-Vaquer A, Hadjantonakis AK, Zong H, Little MH, Costantini F. Luminal mitosis drives epithelial cell dispersal within the branching ureteric bud. Dev Cell 2013; 27:319-30. [PMID: 24183650 DOI: 10.1016/j.devcel.2013.09.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/26/2013] [Accepted: 09/03/2013] [Indexed: 10/26/2022]
Abstract
The ureteric bud is an epithelial tube that undergoes branching morphogenesis to form the renal collecting system. Although development of a normal kidney depends on proper ureteric bud morphogenesis, the cellular events underlying this process remain obscure. Here, we used time-lapse microscopy together with several genetic labeling methods to observe ureteric bud cell behaviors in developing mouse kidneys. We observed an unexpected cell behavior in the branching tips of the ureteric bud, which we term "mitosis-associated cell dispersal." Premitotic ureteric tip cells delaminate from the epithelium and divide within the lumen; although one daughter cell retains a basal process, allowing it to reinsert into the epithelium at the site of origin, the other daughter cell reinserts at a position one to three cell diameters away. Given the high rate of cell division in ureteric tips, this cellular behavior causes extensive epithelial cell rearrangements that may contribute to renal branching morphogenesis.
Collapse
Affiliation(s)
- Adam Packard
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2421
|
Interstitial cells of Cajal integrate excitatory and inhibitory neurotransmission with intestinal slow-wave activity. Nat Commun 2013; 4:1630. [PMID: 23535651 DOI: 10.1038/ncomms2626] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 02/20/2013] [Indexed: 12/27/2022] Open
Abstract
The enteric nervous system contains excitatory and inhibitory neurons, which control contraction and relaxation of smooth muscle cells as well as gastrointestinal motor activity. Little is known about the exact cellular mechanisms of neuronal signal transduction to smooth muscle cells in the gut. Here we generate a c-Kit(CreERT2) knock-in allele to target a distinct population of pacemaker cells called interstitial cells of Cajal. By genetic loss-of-function studies, we show that interstitial cells of Cajal, which generate spontaneous electrical slow waves and thus rhythmic contractions of the smooth musculature, are essential for transmission of signals from enteric neurons to gastrointestinal smooth muscle cells. Interstitial cells of Cajal, therefore, integrate excitatory and inhibitory neurotransmission with slow-wave activity to orchestrate peristaltic motor activity of the gut. Impairment of the function of interstitial cells of Cajal causes severe gastrointestinal motor disorders. The results of our study show at the genetic level that these disorders are not only due to loss of slow-wave activity but also due to disturbed neurotransmission.
Collapse
|
2422
|
Shiota C, Prasadan K, Guo P, El-Gohary Y, Wiersch J, Xiao X, Esni F, Gittes GK. α-Cells are dispensable in postnatal morphogenesis and maturation of mouse pancreatic islets. Am J Physiol Endocrinol Metab 2013; 305:E1030-40. [PMID: 23982158 DOI: 10.1152/ajpendo.00022.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucagon-producing α-cells are the second-most abundant cell type in the islet. Whereas α-cells make up less than 20% of the cells in a mature mouse islet, they occupy a much larger proportion of the pancreatic endocrine cell population during the early postnatal period, the time when morphological and functional maturation occurs to form adult islets. To determine whether α-cells have a role in postnatal islet development, a diphtheria toxin-mediated α-cell ablation mouse model was established. Rapid and persistent depletion of α-cells was achieved by daily injection of the toxin for 2 wk starting at postnatal day 1 (P1). Total pancreatic glucagon content in the α-cell-ablated mice was undetectable at P14 and still less than 0.3% of that of the control mice at 4 mo of age. Histological analyses revealed that formation of spherical islets occurred normally, and the islet size distribution was not changed despite the near-total lack of α-cells. Furthermore, there were no differences in expression of β-cell maturation marker proteins, including urocortin 3 and glucose transporter 2, in the α-cell-ablated islets at P14. Mice lacking α-cells grew normally and appeared healthy. Both glucose and insulin tolerance tests demonstrated that the α-cell-ablated mice had normal glucose homeostasis. These results indicate that α-cells do not play a critical role in postnatal islet morphogenesis or functional maturation of β-cells.
Collapse
Affiliation(s)
- Chiyo Shiota
- Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | | | | | | | | | | | | |
Collapse
|
2423
|
Yuan S, Zheng H, Zheng Z, Yan W. Proteomic analyses reveal a role of cytoplasmic droplets as an energy source during epididymal sperm maturation. PLoS One 2013; 8:e77466. [PMID: 24155961 PMCID: PMC3796460 DOI: 10.1371/journal.pone.0077466] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/02/2013] [Indexed: 11/29/2022] Open
Abstract
A small portion of cytoplasm is generally retained as the cytoplasmic droplet (CD) on the flagellum of spermatozoa after spermiation in mice. CDs are believed to play a role in osmoadaptation by allowing water entrance or exit. However, many lines of evidence suggest that CDs may have roles beyond osmoregulation. To gain more insights, we purified CDs from murine epididymal spermatozoa and conducted proteomic analyses on proteins highly enriched in CDs. Among 105 proteins identified, 71 (68%) were enzymes involved in energy metabolism. We also found that sperm mitochondria underwent a reactivation process and glycolytic enzymes were further distributed and incorporated into different regions of the flagellum during epididymal sperm maturation. Both processes appeared to require CDs. Our data suggest that the CD represents a transient organelle that serves as an energy source essential for epididymal sperm maturation.
Collapse
Affiliation(s)
- Shuiqiao Yuan
- Department of Laboratory Animal Medicine, China Medical University, Shenyang, China
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Zhihong Zheng
- Department of Laboratory Animal Medicine, China Medical University, Shenyang, China
| | - Wei Yan
- Department of Laboratory Animal Medicine, China Medical University, Shenyang, China
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
- * E-mail:
| |
Collapse
|
2424
|
Brzezinski JA, Uoon Park K, Reh TA. Blimp1 (Prdm1) prevents re-specification of photoreceptors into retinal bipolar cells by restricting competence. Dev Biol 2013; 384:194-204. [PMID: 24125957 DOI: 10.1016/j.ydbio.2013.10.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/02/2013] [Accepted: 10/04/2013] [Indexed: 12/14/2022]
Abstract
During retinal development, photoreceptors and bipolar cells express the transcription factor Otx2. Blimp1 is transiently expressed in Otx2+ cells. Blimp1 deletion results in excess bipolar cell formation at the expense of photoreceptors. In principle, Blimp1 could be expressed only in Otx2+ cells that are committed to photoreceptor fate. Alternatively, Blimp1 could be expressed broadly in Otx2+ cells and silenced to allow bipolar cell development. To distinguish between these alternatives, we followed the fate of Blimp1 expressing cells using Blimp1-Cre mice and Lox-Stop-Lox reporter strains. We observed that Blimp1+ cells gave rise to all photoreceptors, but also to one third of bipolar cells, consistent with the latter alternative: that Blimp1 inhibits bipolar competence in Otx2+ cells and must be silenced to allow bipolar cell generation. To further test this hypothesis, we looked for transitioning rod photoreceptors in Blimp1 conditional knock-out (CKO) mice carrying the NRL-GFP transgene, which specifically labels rods. Control animals lacked NRL-GFP+ bipolar cells. In contrast, about half of the precociously generated bipolar cells in Blimp1 CKO mice co-expressed GFP, suggesting that rods become re-specified as bipolar cells. Birthdating analyses in control and Blimp1 CKO mice showed that bipolar cells were birthdated as early as E13.5 in Blimp1 CKO mice, five days before this cell type was generated in the wild-type retina. Taken together, our data suggest that early Otx2+ cells upregulate photoreceptor and bipolar genes, existing in a bistable state. Blimp1 likely forms a cross-repressive network with pro-bipolar factors such that the winner of this interaction stabilizes the photoreceptor or bipolar state, respectively.
Collapse
Affiliation(s)
- Joseph A Brzezinski
- Department of Ophthalmology. University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | | | | |
Collapse
|
2425
|
Dougherty SE, Hollimon JJ, McMeekin LJ, Bohannon AS, West AB, Lesort M, Hablitz JJ, Cowell RM. Hyperactivity and cortical disinhibition in mice with restricted expression of mutant huntingtin to parvalbumin-positive cells. Neurobiol Dis 2013; 62:160-71. [PMID: 24121117 DOI: 10.1016/j.nbd.2013.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 09/20/2013] [Accepted: 10/02/2013] [Indexed: 11/18/2022] Open
Abstract
Recent evidence suggests that interneurons are involved in the pathophysiology of Huntington Disease (HD). Abnormalities in the function of interneurons expressing the calcium buffer parvalbumin (PV) have been observed in multiple mouse models of HD, although it is not clear how PV-positive interneuron dysfunction contributes to behavioral and synaptic deficits. Here, we use the cre-lox system to drive expression of mutant huntingtin (mthtt) in parvalbumin (PV)-positive neurons and find that mutant mice exhibit diffuse mthtt immunoreactivity in PV-rich areas at 10months of age and mthtt aggregates in PV-positive processes at 24months of age. At midlife, mutant mice are hyperactive and display impaired GABA release in the motor cortex, characterized by reduced miniature inhibitory events and severely blunted responses to gamma frequency stimulation, without a loss of PV-positive interneurons. In contrast, 24month-old mutant mice show normalized behavior and responses to gamma frequency stimulation, possibly due to compensatory changes in pyramidal neurons or the formation of inclusions with age. These data indicate that mthtt expression in PV-positive neurons is sufficient to drive a hyperactive phenotype and suggest that mthtt-mediated dysfunction in PV-positive neuronal populations could be a key factor in the hyperkinetic behavior observed in HD. Further clarification of the roles for specific PV-positive populations in this phenotype is warranted to definitively identify cellular targets for intervention.
Collapse
Affiliation(s)
- S E Dougherty
- Neuroscience Graduate Program, University of Alabama at Birmingham, 35294, USA; Department of Psychiatry & Behavioral Neurobiology, University of Alabama at Birmingham, 35294, USA
| | - J J Hollimon
- Department of Psychiatry & Behavioral Neurobiology, University of Alabama at Birmingham, 35294, USA
| | - L J McMeekin
- Department of Psychiatry & Behavioral Neurobiology, University of Alabama at Birmingham, 35294, USA
| | - A S Bohannon
- Department of Psychiatry & Behavioral Neurobiology, University of Alabama at Birmingham, 35294, USA
| | - A B West
- Department of Neurology, University of Alabama at Birmingham, 35294, USA
| | - M Lesort
- Department of Psychiatry & Behavioral Neurobiology, University of Alabama at Birmingham, 35294, USA
| | - J J Hablitz
- Department of Neurobiology, University of Alabama at Birmingham, 35294, USA
| | - R M Cowell
- Department of Psychiatry & Behavioral Neurobiology, University of Alabama at Birmingham, 35294, USA.
| |
Collapse
|
2426
|
Stange DE, Koo BK, Huch M, Sibbel G, Basak O, Lyubimova A, Kujala P, Bartfeld S, Koster J, Geahlen JH, Peters PJ, van Es JH, van de Wetering M, Mills JC, Clevers H. Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell 2013; 155:357-68. [PMID: 24120136 PMCID: PMC4094146 DOI: 10.1016/j.cell.2013.09.008] [Citation(s) in RCA: 416] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 07/05/2013] [Accepted: 09/05/2013] [Indexed: 12/16/2022]
Abstract
Proliferation of the self-renewing epithelium of the gastric corpus occurs almost exclusively in the isthmus of the glands, from where cells migrate bidirectionally toward pit and base. The isthmus is therefore generally viewed as the stem cell zone. We find that the stem cell marker Troy is expressed at the gland base by a small subpopulation of fully differentiated chief cells. By lineage tracing with a Troy-eGFP-ires-CreERT2 allele, single marked chief cells are shown to generate entirely labeled gastric units over periods of months. This phenomenon accelerates upon tissue damage. Troy(+) chief cells can be cultured to generate long-lived gastric organoids. Troy marks a specific subset of chief cells that display plasticity in that they are capable of replenishing entire gastric units, essentially serving as quiescent "reserve" stem cells. These observations challenge the notion that stem cell hierarchies represent a "one-way street."
Collapse
Affiliation(s)
- Daniel E. Stange
- Hubrecht Institute for Developmental Biology and Stem Cell Research & University Medical Centre Utrecht, 3584 CT Utrecht, The Netherlands
- Department of General, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, University of Dresden, 01307 Dresden, Germany
| | - Bon-Kyoung Koo
- Hubrecht Institute for Developmental Biology and Stem Cell Research & University Medical Centre Utrecht, 3584 CT Utrecht, The Netherlands
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| | - Meritxell Huch
- Hubrecht Institute for Developmental Biology and Stem Cell Research & University Medical Centre Utrecht, 3584 CT Utrecht, The Netherlands
| | - Greg Sibbel
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Onur Basak
- Hubrecht Institute for Developmental Biology and Stem Cell Research & University Medical Centre Utrecht, 3584 CT Utrecht, The Netherlands
| | - Anna Lyubimova
- Hubrecht Institute for Developmental Biology and Stem Cell Research & University Medical Centre Utrecht, 3584 CT Utrecht, The Netherlands
- Department of Physics & Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Pekka Kujala
- Division of Cell Biology II, Antoni van Leeuwenhoek Hospital/Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Sina Bartfeld
- Hubrecht Institute for Developmental Biology and Stem Cell Research & University Medical Centre Utrecht, 3584 CT Utrecht, The Netherlands
| | - Jan Koster
- Department of Oncogenomics. Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, The Netherlands
| | - Jessica H. Geahlen
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Peter J. Peters
- Division of Cell Biology II, Antoni van Leeuwenhoek Hospital/Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Johan H. van Es
- Hubrecht Institute for Developmental Biology and Stem Cell Research & University Medical Centre Utrecht, 3584 CT Utrecht, The Netherlands
| | - Marc van de Wetering
- Hubrecht Institute for Developmental Biology and Stem Cell Research & University Medical Centre Utrecht, 3584 CT Utrecht, The Netherlands
| | - Jason C. Mills
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cell Research & University Medical Centre Utrecht, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
2427
|
Lafkas D, Rodilla V, Huyghe M, Mourao L, Kiaris H, Fre S. Notch3 marks clonogenic mammary luminal progenitor cells in vivo. ACTA ACUST UNITED AC 2013; 203:47-56. [PMID: 24100291 PMCID: PMC3798243 DOI: 10.1083/jcb.201307046] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Notch3 expression characterizes a highly clonogenic and transiently quiescent luminal progenitor population in the mammary gland, the expansion of which is restricted by Notch3 receptor activity. The identity of mammary stem and progenitor cells remains poorly understood, mainly as a result of the lack of robust markers. The Notch signaling pathway has been implicated in mammary gland development as well as in tumorigenesis in this tissue. Elevated expression of the Notch3 receptor has been correlated to the highly aggressive “triple negative” human breast cancer. However, the specific cells expressing this Notch paralogue in the mammary gland remain unknown. Using a conditionally inducible Notch3-CreERT2SAT transgenic mouse, we genetically marked Notch3-expressing cells throughout mammary gland development and followed their lineage in vivo. We demonstrate that Notch3 is expressed in a highly clonogenic and transiently quiescent luminal progenitor population that gives rise to a ductal lineage. These cells are capable of surviving multiple successive pregnancies, suggesting a capacity to self-renew. Our results also uncover a role for the Notch3 receptor in restricting the proliferation and consequent clonal expansion of these cells.
Collapse
Affiliation(s)
- Daniel Lafkas
- Institut Curie, Centre de Recherche, 75248 Paris, Cedex 05, France
| | | | | | | | | | | |
Collapse
|
2428
|
Abstract
The kidney is a complex organ with over 30 different cell types, and understanding the lineage relationships between these cells is challenging. During nephrogenesis, a central question is how the coordinated morphogenesis, growth, and differentiation of distinct cell types leads to development of a functional organ. In mature kidney, understanding cell division and fate during injury, regeneration and aging are critical topics for understanding disease. Genetic lineage tracing offers a powerful tool to decipher cellular hierarchies in both development and disease because it allows the progeny of a single cell, or group of cells, to be tracked unambiguously. Recent advances in this field include the use of inducible recombinases, multicolor reporters, and mosaic analysis. In this review, we discuss lineage-tracing methods focusing on the mouse model system and consider the impact of these methods on our understanding of kidney biology and prospects for future application.
Collapse
|
2429
|
Zheng W, Zhang H, Gorre N, Risal S, Shen Y, Liu K. Two classes of ovarian primordial follicles exhibit distinct developmental dynamics and physiological functions. Hum Mol Genet 2013; 23:920-8. [PMID: 24087793 PMCID: PMC3900105 DOI: 10.1093/hmg/ddt486] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the mammalian ovary, progressive activation of primordial follicles serves as the source of fertilizable ova, and disorders in the development of primordial follicles lead to various ovarian diseases. However, very little is known about the developmental dynamics of primordial follicles under physiological conditions, and the fates of distinct populations of primordial follicles also remain unclear. In this study, by generating the Foxl2-CreER(T2) and Sohlh1-CreER(T2) inducible mouse models, we have specifically labeled and traced the in vivo development of two classes of primordial follicles, the first wave of simultaneously activated follicles after birth and the primordial follicles that are gradually activated in adulthood. Our results show that the first wave of follicles exists in the ovaries for ∼3 months and contributes to the onset of puberty and to early fertility. The primordial follicles at the ovarian cortex gradually replace the first wave of follicles and dominate the ovary after 3 months of age, providing fertility until the end of reproductive life. Moreover, by tracing the time periods needed for primordial follicles to reach various advanced stages in vivo, we were able to determine the exact developmental dynamics of the two classes of primordial follicles. We have now revealed the lifelong developmental dynamics of ovarian primordial follicles under physiological conditions and have clearly shown that two classes of primordial follicles follow distinct, age-dependent developmental paths and play different roles in the mammalian reproductive lifespan.
Collapse
Affiliation(s)
- Wenjing Zheng
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | | | | | | | | | | |
Collapse
|
2430
|
Engert S, Burtscher I, Kalali B, Gerhard M, Lickert H. The Sox17CreERT2 knock-in mouse line displays spatiotemporal activation of Cre recombinase in distinct Sox17 lineage progenitors. Genesis 2013; 51:793-802. [PMID: 24038996 DOI: 10.1002/dvg.22714] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 11/06/2022]
Abstract
The HMG-box transcription factor Sox17 is essential for endoderm formation, vascular development, and definitive hematopoiesis. To investigate the fate of distinct Sox17-expressing progenitor cells in a spatiotemporal manner, we generated a hormone-inducible CreERT2 knock-in mouse line. By homologous recombination we fused a codon improved, ligand-dependent estrogen receptor Cre recombinase by an intervening viral T2A sequence for co-translational cleavage to the 3' coding region of Sox17. Induction of Cre activity by administration of tamoxifen at defined time points of early mouse development and subsequent genetic lineage tracing confirmed the inducibility and tissue specificity of Cre recombination. Furthermore, Cre activity could be selectively induced in extra-embryonic and embryonic endoderm lineages, the primitive gut tube, and in endothelial cells of the vascular system as well as in the hemogenic endothelium of the dorsal aorta. The Sox17CreERT2 mouse line therefore represents a new tool for genetic lineage tracing in a tissue-specific manner and in addition enables lineage-restricted functional analysis.
Collapse
Affiliation(s)
- Silvia Engert
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany; Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | | | | | | | | |
Collapse
|
2431
|
Crish J, Conti MA, Sakai T, Adelstein RS, Egelhoff TT. Keratin 5-Cre-driven excision of nonmuscle myosin IIA in early embryo trophectoderm leads to placenta defects and embryonic lethality. Dev Biol 2013; 382:136-148. [PMID: 23911870 PMCID: PMC4186751 DOI: 10.1016/j.ydbio.2013.07.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 11/21/2022]
Abstract
In studies initially focused on roles of nonmuscle myosin IIA (NMIIA) in the developing mouse epidermis, we have discovered that a previously described cytokeratin 5 (K5)-Cre gene construct is expressed in early embryo development. Mice carrying floxed alleles of the nonmuscle myosin II heavy chain gene (NMHC IIA(flox/flox)) were crossed with the K5-Cre line. The progeny of newborn pups did not show a Mendelian genotype distribution, suggesting embryonic lethality. Analysis of post-implantation conceptuses from embryonic day (E)9.5 to E13.5 revealed poorly developed embryos and defective placentas, with significantly reduced labyrinth surface area and blood vessel vascularization. These results suggested the novel possibility that the bovine K5 promoter-driven Cre-recombinase was active early in trophoblast-lineage cells that give rise to the placenta. To test this possibility, K5-Cre transgenic mice were crossed with the mT/mG reporter mouse in which activation of GFP expression indicates Cre transgene expression. We observed activation of K5-Cre-driven GFP expression in the ectoplacental cone, in the extraembryonic ectoderm, and in trophoblast giant cells in the E6.5 embryo. In addition, we observed GFP expression at E11.5 to E13.5 in both the labyrinth of the placenta and the yolk sac. NMIIA expression was detected in these same cell types in normal embryos, as well as in E13.5 yolk sac and labyrinth. These findings taken together suggest that NMHC IIA may play critical roles in the early trophoblast-derived ectoplacental cone and extraembryonic ectoderm, as well as in the yolk sac and labyrinth tissues that form later. Our findings are consistent with phenotypes of constitutive NMIIA knockout mice made earlier, that displayed labyrinth and yolk sac-specific defects, but our findings extend those observations by suggesting possible NMIIA roles in trophoblast lineages as well. These results furthermore demonstrate that K5-Cre gene constructs, previously reported to be activated starting at approximately E12.5 in the forming epidermis, may be widely useful as drivers for activation of cre/lox based gene excision in early embryo extraembronic trophoblast tissues as well.
Collapse
Affiliation(s)
- James Crish
- Department of Cellular and Molecular Medicine NC10, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195
| | - Mary Anne Conti
- Laboratory of Molecular Cardiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Takao Sakai
- Department of Biomedical Engineering, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195
| | - Robert S. Adelstein
- Laboratory of Molecular Cardiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Thomas T. Egelhoff
- Department of Cellular and Molecular Medicine NC10, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195
| |
Collapse
|
2432
|
Devi S, Wang Y, Chew WK, Lima R, A-González N, Mattar CNZ, Chong SZ, Schlitzer A, Bakocevic N, Chew S, Keeble JL, Goh CC, Li JLY, Evrard M, Malleret B, Larbi A, Renia L, Haniffa M, Tan SM, Chan JKY, Balabanian K, Nagasawa T, Bachelerie F, Hidalgo A, Ginhoux F, Kubes P, Ng LG. Neutrophil mobilization via plerixafor-mediated CXCR4 inhibition arises from lung demargination and blockade of neutrophil homing to the bone marrow. ACTA ACUST UNITED AC 2013; 210:2321-36. [PMID: 24081949 PMCID: PMC3804935 DOI: 10.1084/jem.20130056] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The CXCR4 antagonist plerixafor augments frequency of circulating neutrophils via release from the lung and prevents neutrophil homing to the bone marrow. Blood neutrophil homeostasis is essential for successful host defense against invading pathogens. Circulating neutrophil counts are positively regulated by CXCR2 signaling and negatively regulated by the CXCR4–CXCL12 axis. In particular, G-CSF, a known CXCR2 signaler, and plerixafor, a CXCR4 antagonist, have both been shown to correct neutropenia in human patients. G-CSF directly induces neutrophil mobilization from the bone marrow (BM) into the blood, but the mechanisms underlying plerixafor-induced neutrophilia remain poorly defined. Using a combination of intravital multiphoton microscopy, genetically modified mice and novel in vivo homing assays, we demonstrate that G-CSF and plerixafor work through distinct mechanisms. In contrast to G-CSF, CXCR4 inhibition via plerixafor does not result in neutrophil mobilization from the BM. Instead, plerixafor augments the frequency of circulating neutrophils through their release from the marginated pool present in the lung, while simultaneously preventing neutrophil return to the BM. Our study demonstrates for the first time that drastic changes in blood neutrophils can originate from alternative reservoirs other than the BM, while implicating a role for CXCR4–CXCL12 interactions in regulating lung neutrophil margination. Collectively, our data provides valuable insights into the fundamental regulation of neutrophil homeostasis, which may lead to the development of improved treatment regimens for neutropenic patients.
Collapse
Affiliation(s)
- Sapna Devi
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2433
|
Nrf2 acts cell-autonomously in endothelium to regulate tip cell formation and vascular branching. Proc Natl Acad Sci U S A 2013; 110:E3910-8. [PMID: 24062466 DOI: 10.1073/pnas.1309276110] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Angiogenesis, in which new blood vessels form via endothelial cell (EC) sprouting from existing vessels, is a critical event in embryonic development and multiple disease processes. Many insights have been made into key EC receptors and ligands/growth factors that govern sprouting angiogenesis, but intracellular molecular mechanisms of this process are not well understood. NF-E2-related factor 2 (Nrf2) is a transcription factor well-known for regulating the stress response in multiple pathologic settings, but its role in development is less appreciated. Here, we show that Nrf2 is increased and activated during vascular development. Global deletion of Nrf2 resulted in reduction of vascular density as well as EC sprouting. This was also observed with specific deletion of Nrf2 in ECs, but not with deletion of Nrf2 in the surrounding nonvascular tissue. Nrf2 deletion resulted in increased delta-like ligand 4 (Dll4) expression and Notch activity in ECs. Blockade of Dll4 or Notch signaling restored the vascular phenotype in Nrf2 KOs. Constitutive activation of endothelial Nrf2 enhanced EC sprouting and vascularization by suppression of Dll4/Notch signaling in vivo and in vitro. Nrf2 activation in ECs suppressed Dll4 expression under normoxia and hypoxia and inhibited Dll4-induced Notch signaling. Activation of Nrf2 blocked VEGF induction of VEGFR2-PI3K/Akt and downregulated HIF-2α in ECs, which may serve as important mechanisms for Nrf2 inhibition of Dll4 and Notch signaling. Our data reveal a function for Nrf2 in promoting the angiogenic sprouting phenotype in vascular ECs.
Collapse
|
2434
|
Lung epithelial branching program antagonizes alveolar differentiation. Proc Natl Acad Sci U S A 2013; 110:18042-51. [PMID: 24058167 DOI: 10.1073/pnas.1311760110] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mammalian organs, including the lung and kidney, often adopt a branched structure to achieve high efficiency and capacity of their physiological functions. Formation of a functional lung requires two developmental processes: branching morphogenesis, which builds a tree-like tubular network, and alveolar differentiation, which generates specialized epithelial cells for gas exchange. Much progress has been made to understand each of the two processes individually; however, it is not clear whether the two processes are coordinated and how they are deployed at the correct time and location. Here we show that an epithelial branching morphogenesis program antagonizes alveolar differentiation in the mouse lung. We find a negative correlation between branching morphogenesis and alveolar differentiation temporally, spatially, and evolutionarily. Gain-of-function experiments show that hyperactive small GTPase Kras expands the branching program and also suppresses molecular and cellular differentiation of alveolar cells. Loss-of-function experiments show that SRY-box containing gene 9 (Sox9) functions downstream of Fibroblast growth factor (Fgf)/Kras to promote branching and also suppresses premature initiation of alveolar differentiation. We thus propose that lung epithelial progenitors continuously balance between branching morphogenesis and alveolar differentiation, and such a balance is mediated by dual-function regulators, including Kras and Sox9. The resulting temporal delay of differentiation by the branching program may provide new insights to lung immaturity in preterm neonates and the increase in organ complexity during evolution.
Collapse
|
2435
|
Ma A, Wang L, Gao Y, Chang Z, Peng H, Zeng N, Gui YS, Tian X, Li X, Cai B, Zhang H, Xu KF. Tsc1 deficiency-mediated mTOR hyperactivation in vascular endothelial cells causes angiogenesis defects and embryonic lethality. Hum Mol Genet 2013; 23:693-705. [PMID: 24129405 DOI: 10.1093/hmg/ddt456] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
This is a study on the role of tuberous sclerosis complex1 (TSC1) mutation and mTOR activation in endothelial cells during angiogenic and embryonic development. Past studies had shown that Tsc1/Tsc2 mutant genes lead to overactivation of mTOR in the regulating pathways in developing fetus. We used conditional Cre-loxp gene knockout approach to delete Tsc1 in mice's endothelial cells in our experimental models. Similarly, activation of mTOR signaling in endothelial cells of these embryos (Tie2-Cre/Tsc1(-/-)) was found. Majority of Tie2-Cre/Tsc1(-/-) embryos died at embryonic day 14.5 in utero. Cardiovascular defects, subcutaneous edema and hemorrhage were present among them. Whole-mount immunostaining in these embryos revealed a disorganized vascular network, defective sprouting of vessels in yolk sac and thickening of the labyrinth layer in the placenta. A thinner ventricular wall with disorganized trabeculae was present in the hearts of Tie2-Cre/Tsc1(-/-) embryos. Endothelial cells in Tsc1-deficient mice showed defective mitochondrial and endoplasmic reticular morphology, but no significant change was observed in cell junctions. The mutant embryos displayed significantly reduced cell proliferation, increased apoptosis and disturbed expression of angiogenic factors. A cohort of mice was treated prenatally with mTOR inhibitor rapamycin. The offspring of these mutant mice survived up to 22 days after birth. It was concluded that physiological TSC1-mTOR signaling in endothelial cells is crucial for vascular development and embryogenesis. We postulated that disruption of normal angiogenic pathways through hyperactive mTOR signaling maybe the mechanism that lead to deranged vascular pathogenesis in the tuberous sclerosis complex.
Collapse
Affiliation(s)
- Aiping Ma
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2436
|
Tan FE, Vladar EK, Ma L, Fuentealba LC, Hoh R, Espinoza FH, Axelrod JD, Alvarez-Buylla A, Stearns T, Kintner C, Krasnow MA. Myb promotes centriole amplification and later steps of the multiciliogenesis program. Development 2013; 140:4277-86. [PMID: 24048590 PMCID: PMC3787764 DOI: 10.1242/dev.094102] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transcriptional control of primary cilium formation and ciliary motility are beginning to be understood, but little is known about the transcriptional programs that control cilium number and other structural and functional specializations. One of the most intriguing ciliary specializations occurs in multiciliated cells (MCCs), which amplify their centrioles to nucleate hundreds of cilia per cell, instead of the usual monocilium. Here we report that the transcription factor MYB, which promotes S phase and drives cycling of a variety of progenitor cells, is expressed in postmitotic epithelial cells of the mouse airways and ependyma destined to become MCCs. MYB is expressed early in multiciliogenesis, as progenitors exit the cell cycle and amplify their centrioles, then switches off as MCCs mature. Conditional inactivation of Myb in the developing airways blocks or delays centriole amplification and expression of FOXJ1, a transcription factor that controls centriole docking and ciliary motility, and airways fail to become fully ciliated. We provide evidence that MYB acts in a conserved pathway downstream of Notch signaling and multicilin, a protein related to the S-phase regulator geminin, and upstream of FOXJ1. MYB can activate endogenous Foxj1 expression and stimulate a cotransfected Foxj1 reporter in heterologous cells, and it can drive the complete multiciliogenesis program in Xenopus embryonic epidermis. We conclude that MYB has an early, crucial and conserved role in multiciliogenesis, and propose that it promotes a novel S-like phase in which centriole amplification occurs uncoupled from DNA synthesis, and then drives later steps of multiciliogenesis through induction of Foxj1.
Collapse
Affiliation(s)
- Fraser E Tan
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2437
|
Endothelin-2 signaling in the neural retina promotes the endothelial tip cell state and inhibits angiogenesis. Proc Natl Acad Sci U S A 2013; 110:E3830-9. [PMID: 24043815 DOI: 10.1073/pnas.1315509110] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Endothelin signaling is required for neural crest migration and homeostatic regulation of blood pressure. Here, we report that constitutive overexpression of Endothelin-2 (Edn2) in the mouse retina perturbs vascular development by inhibiting endothelial cell migration across the retinal surface and subsequent endothelial cell invasion into the retina. Developing endothelial cells exist in one of two states: tip cells at the growing front and stalk cells in the vascular plexus behind the front. This division of endothelial cell states is one of the central organizing principles of angiogenesis. In the developing retina, Edn2 overexpression leads to overproduction of endothelial tip cells by both morphologic and molecular criteria. Spatially localized overexpression of Edn2 produces a correspondingly localized endothelial response. Edn2 overexpression in the early embryo inhibits vascular development at midgestation, but Edn2 overexpression in developing skin and brain has no discernible effect on vascular structure. Inhibition of retinal angiogenesis by Edn2 requires expression of Endothelin receptor A but not Endothelin receptor B in the neural retina. Taken together, these observations imply that the neural retina responds to Edn2 by synthesizing one or more factors that promote the endothelial tip cell state and inhibit angiogenesis. The response to Edn2 is sufficiently potent that it overrides the activities of other homeostatic regulators of angiogenesis, such as Vegf.
Collapse
|
2438
|
Prigge JR, Wiley JA, Talago EA, Young EM, Johns LL, Kundert JA, Sonsteng KM, Halford WP, Capecchi MR, Schmidt EE. Nuclear double-fluorescent reporter for in vivo and ex vivo analyses of biological transitions in mouse nuclei. Mamm Genome 2013; 24:10.1007/s00335-013-9469-8. [PMID: 24022199 PMCID: PMC3952041 DOI: 10.1007/s00335-013-9469-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 07/05/2013] [Indexed: 12/29/2022]
Abstract
Cre-responsive dual-fluorescent alleles allow in situ marking of cell lineages or genetically modified cells. Here we report a dual-fluorescent allele, ROSA nT-nG , which directs nuclear accumulation of tdTomato in Cre-naïve lineages. Cre converts the allele to ROSA nG , which drives nuclear EGFP accumulation. Conditions were established for analyzing marked nuclei by flow cytometry on the basis of red-green fluorescence and ploidy, with a particular focus on liver nuclei. Hydrodynamic delivery of a Cre-expression plasmid was used to time-stamp arbitrary hepatocytes for lineage tracing. The distinct green fluorescence of nuclei from Cre-exposed lineages facilitated analyses of ploidy transitions within clones. To assess developmental transitions in liver nuclei, ROSA nT-nG was combined with the hepatocyte-specific AlbCre transgene, facilitating discrimination between hepatocyte and nonhepatocyte nuclei. Nuclei extracted from postnatal day 2 (P2) livers were 41 % green and 59 % red and reached a stable level of 84 % green by P22. Until P20, green nuclei were >98 % diploid (2N); at P40 they were ~56 % 2N, 43 % 4N, and <1 % 8N; and by P70 they reached a stable distribution of ~46 % 2N, 45 % 4N, and 9 % 8N. In conclusion, ROSA nT-nG will facilitate in vivo and ex vivo studies on liver and will likely be valuable for studies on tissues like muscle, kidney, or brain in which cells are refractory to whole-cell flow cytometry, or like trophectoderm derivatives or cancers in which cells undergo ploidy transitions.
Collapse
Affiliation(s)
- Justin R Prigge
- Molecular Biosciences, IID, Montana State University, Bozeman, MT, 59718, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2439
|
Ugarte F, Forsberg EC. Haematopoietic stem cell niches: new insights inspire new questions. EMBO J 2013; 32:2535-47. [PMID: 24022369 DOI: 10.1038/emboj.2013.201] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 08/20/2013] [Indexed: 12/31/2022] Open
Abstract
Haematopoietic stem cell (HSC) niches provide an environment essential for life-long HSC function. Intense investigation of HSC niches both feed off and drive technology development to increase our capability to assay functionally defined cells with high resolution. A major driving force behind the desire to understand the basic biology of HSC niches is the clear implications for clinical therapies. Here, with particular emphasis on cell type-specific deletion of SCL and CXCL12, we focus on unresolved issues on HSC niches, framed around some very recent advances and novel discoveries on the extrinsic regulation of HSC maintenance. We also provide ideas for possible paths forward, some of which are clearly within reach while others will require both novel tools and vision.
Collapse
Affiliation(s)
- Fernando Ugarte
- Department of Biomolecular Engineering, Institute for the Biology of Stem Cells, University of California Santa Cruz, Santa Cruz, CA, USA
| | | |
Collapse
|
2440
|
Zangi L, Lui KO, von Gise A, Ma Q, Ebina W, Ptaszek LM, Später D, Xu H, Tabebordbar M, Gorbatov R, Sena B, Nahrendorf M, Briscoe DM, Li RA, Wagers AJ, Rossi DJ, Pu WT, Chien KR. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat Biotechnol 2013; 31:898-907. [PMID: 24013197 DOI: 10.1038/nbt.2682] [Citation(s) in RCA: 491] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/06/2013] [Indexed: 12/15/2022]
Abstract
In a cell-free approach to regenerative therapeutics, transient application of paracrine factors in vivo could be used to alter the behavior and fate of progenitor cells to achieve sustained clinical benefits. Here we show that intramyocardial injection of synthetic modified RNA (modRNA) encoding human vascular endothelial growth factor-A (VEGF-A) results in the expansion and directed differentiation of endogenous heart progenitors in a mouse myocardial infarction model. VEGF-A modRNA markedly improved heart function and enhanced long-term survival of recipients. This improvement was in part due to mobilization of epicardial progenitor cells and redirection of their differentiation toward cardiovascular cell types. Direct in vivo comparison with DNA vectors and temporal control with VEGF inhibitors revealed the greatly increased efficacy of pulse-like delivery of VEGF-A. Our results suggest that modRNA is a versatile approach for expressing paracrine factors as cell fate switches to control progenitor cell fate and thereby enhance long-term organ repair.
Collapse
Affiliation(s)
- Lior Zangi
- 1] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA. [2] Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA. [3] Department of Cardiology, Children's Hospital Boston, Boston, Massachusetts, USA. [4] Immune Disease Institute and Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, Massachusetts, USA. [5] Boston and Harvard Stem Cell Institute, Cambridge, Massachusetts, USA. [6]
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2441
|
Tabler JM, Barrell WB, Szabo-Rogers HL, Healy C, Yeung Y, Perdiguero EG, Schulz C, Yannakoudakis BZ, Mesbahi A, Wlodarczyk B, Geissmann F, Finnell RH, Wallingford JB, Liu KJ. Fuz mutant mice reveal shared mechanisms between ciliopathies and FGF-related syndromes. Dev Cell 2013; 25:623-35. [PMID: 23806618 PMCID: PMC3697100 DOI: 10.1016/j.devcel.2013.05.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 03/29/2013] [Accepted: 05/23/2013] [Indexed: 12/25/2022]
Abstract
Ciliopathies are a broad class of human disorders with craniofacial dysmorphology as a common feature. Among these is high arched palate, a condition that affects speech and quality of life. Using the ciliopathic Fuz mutant mouse, we find that high arched palate does not, as commonly suggested, arise from midface hypoplasia. Rather, increased neural crest expands the maxillary primordia. In Fuz mutants, this phenotype stems from dysregulated Gli processing, which in turn results in excessive craniofacial Fgf8 gene expression. Accordingly, genetic reduction of Fgf8 ameliorates the maxillary phenotypes. Similar phenotypes result from mutation of oral-facial-digital syndrome 1 (Ofd1), suggesting that aberrant transcription of Fgf8 is a common feature of ciliopathies. High arched palate is also a prevalent feature of fibroblast growth factor (FGF) hyperactivation syndromes. Thus, our findings elucidate the etiology for a common craniofacial anomaly and identify links between two classes of human disease: FGF-hyperactivation syndromes and ciliopathies. A genetic model for high arched palate, commonly seen in human craniofacial syndromes In ciliopathic mice, Fgf8 overexpression leads to cranial neural crest hyperplasia Enlargement of the maxillary primordia underlies high arched palate in Fuz mutants An etiological link between ciliopathies and FGF-hyperactivation syndromes
Collapse
Affiliation(s)
- Jacqueline M Tabler
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, London SE1 9RT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2442
|
Rudat C, Norden J, Taketo MM, Kispert A. Epicardial function of canonical Wnt-, Hedgehog-, Fgfr1/2-, and Pdgfra-signalling. Cardiovasc Res 2013; 100:411-21. [PMID: 24000064 DOI: 10.1093/cvr/cvt210] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS The embryonic epicardium is a source of smooth muscle cells and fibroblasts of the coronary vasculature and of the myocardium, but the signalling pathways that control mobilization and differentiation of epicardial cells are only partly known. We aimed to (re-)evaluate the relevance of canonical Wnt-, Hedgehog (Hh)-, Fibroblast growth factor receptor (Fgfr)1/2-, and platelet-derived growth factor receptor alpha (Pdgfra)-signalling in murine epicardial development. METHODS AND RESULTS We used a T-box 18 (Tbx18)(cre)-mediated conditional approach to delete and to stabilize, respectively, the downstream mediator of canonical Wnt-signalling, beta-catenin (Ctnnb1), to delete and activate the mediator of Hh-signalling, smoothened (Smo), and to delete Fgfr1/Fgfr2 and Pdgfra in murine epicardial development. We show that epicardial loss of Ctnnb1, Smo, or Fgfr1/Fgfr2 does not affect cardiac development, whereas the loss of Pdgfra prevents the differentiation of epicardium-derived cells into mature fibroblasts. Epicardial expression of a stabilized version of Ctnnb1 results in the formation of hyperproliferative epicardial cell clusters; epicardial expression of a constitutively active version of Smo leads to epicardial thickening and loss of epicardial mobilization. CONCLUSION Canonical Wnt-, Hh-, and Fgfr1/Fgfr2-signalling are dispensable for epicardial development, but Pdgfra-signalling is crucial for the differentiation of cardiac fibroblasts from epicardium-derived cells.
Collapse
Affiliation(s)
- Carsten Rudat
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str.1, Hannover D-30625, Germany
| | | | | | | |
Collapse
|
2443
|
Dellinger MT, Meadows SM, Wynne K, Cleaver O, Brekken RA. Vascular endothelial growth factor receptor-2 promotes the development of the lymphatic vasculature. PLoS One 2013; 8:e74686. [PMID: 24023956 PMCID: PMC3759473 DOI: 10.1371/journal.pone.0074686] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 08/08/2013] [Indexed: 01/01/2023] Open
Abstract
Vascular endothelial growth factor receptor 2 (VEGFR2) is highly expressed by lymphatic endothelial cells and has been shown to stimulate lymphangiogenesis in adult mice. However, the role VEGFR2 serves in the development of the lymphatic vascular system has not been defined. Here we use the Cre-lox system to show that the proper development of the lymphatic vasculature requires VEGFR2 expression by lymphatic endothelium. We show that Lyve-1wt/Cre;Vegfr2flox/flox mice possess significantly fewer dermal lymphatic vessels than Vegfr2flox/flox mice. Although Lyve-1wt/Cre;Vegfr2flox/flox mice exhibit lymphatic hypoplasia, the lymphatic network is functional and contains all of the key features of a normal lymphatic network (initial lymphatic vessels and valved collecting vessels surrounded by smooth muscle cells (SMCs)). We also show that Lyve-1Cre mice display robust Cre activity in macrophages and in blood vessels in the yolk sac, liver and lung. This activity dramatically impairs the development of blood vessels in these tissues in Lyve-1wt/Cre;Vegfr2flox/flox embryos, most of which die after embryonic day14.5. Lastly, we show that inactivation of Vegfr2 in the myeloid lineage does not affect the development of the lymphatic vasculature. Therefore, the abnormal lymphatic phenotype of Lyve-1wt/Cre;Vegfr2flox/flox mice is due to the deletion of Vegfr2 in the lymphatic vasculature not macrophages. Together, this work demonstrates that VEGFR2 directly promotes the expansion of the lymphatic network and further defines the molecular mechanisms controlling the development of the lymphatic vascular system.
Collapse
Affiliation(s)
- Michael T. Dellinger
- Division of Surgical Oncology, Department of Surgery, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| | - Stryder M. Meadows
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Katherine Wynne
- Division of Surgical Oncology, Department of Surgery, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Rolf A. Brekken
- Division of Surgical Oncology, Department of Surgery, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
2444
|
Pérez-Millán MI, Zeidler MG, Saunders TL, Camper SA, Davis SW. Efficient, specific, developmentally appropriate cre-mediated recombination in anterior pituitary gonadotropes and thyrotropes. Genesis 2013; 51:785-92. [PMID: 23996951 DOI: 10.1002/dvg.22425] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 07/30/2013] [Accepted: 08/05/2013] [Indexed: 11/06/2022]
Abstract
Tissue-specific expression of cre recombinase is a well-established genetic tool to analyze gene function, and it is limited only by the efficiency and specificity of available cre mouse strains. Here, we report the generation of a transgenic line containing a cre cassette with codon usage optimized for mammalian cells (iCre) under the control of a mouse glycoprotein hormone α-subunit (αGSU) regulatory sequences in a bacterial artificial chromosome genomic clone. Initial analysis of this transgenic line, Tg(αGSU-iCre), with cre reporter strains reveals onset of cre activity in the differentiating cells of the developing anterior pituitary gland at embryonic day 12.5, with a pattern characteristic of endogenous αGSU. In adult mice, αGSU-iCre was active in the anterior lobe of the pituitary gland and in the cells that produce αGSU (gonadotropes and thyrotropes) with high penetrance. Little or no activity was observed in other tissues, including skeletal and cardiac muscle, brain, kidney, lungs, testis, ovary, and liver. This αGSU-iCre line is suitable for efficient, specific, and developmentally regulated deletion of floxed alleles in anterior pituitary gonadotropes and thyrotropes.
Collapse
|
2445
|
Shirakawa T, Yaman-Deveci R, Tomizawa SI, Kamizato Y, Nakajima K, Sone H, Sato Y, Sharif J, Yamashita A, Takada-Horisawa Y, Yoshida S, Ura K, Muto M, Koseki H, Suda T, Ohbo K. An epigenetic switch is crucial for spermatogonia to exit the undifferentiated state toward a Kit-positive identity. Development 2013; 140:3565-76. [PMID: 23903187 DOI: 10.1242/dev.094045] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epigenetic modifications influence gene expression and chromatin remodeling. In embryonic pluripotent stem cells, these epigenetic modifications have been extensively characterized; by contrast, the epigenetic events of tissue-specific stem cells are poorly understood. Here, we define a new epigenetic shift that is crucial for differentiation of murine spermatogonia toward meiosis. We have exploited a property of incomplete cytokinesis, which causes male germ cells to form aligned chains of characteristic lengths, as they divide and differentiate. These chains revealed the stage of spermatogenesis, so the epigenetic differences of various stages could be characterized. Single, paired and medium chain-length spermatogonia not expressing Kit (a marker of differentiating spermatogonia) showed no expression of Dnmt3a2 and Dnmt3b (two de novo DNA methyltransferases); they also lacked the transcriptionally repressive histone modification H3K9me2. By contrast, spermatogonia consisting of ~8-16 chained cells with Kit expression dramatically upregulated Dnmt3a2/3b expression and also displayed increased H3K9me2 modification. To explore the function of these epigenetic changes in spermatogonia in vivo, the DNA methylation machinery was destabilized by ectopic Dnmt3b expression or Np95 ablation. Forced Dnmt3b expression induced expression of Kit; whereas ablation of Np95, which is essential for maintaining DNA methylation, interfered with differentiation and viability only after spermatogonia become Kit positive. These data suggest that the epigenetic status of spermatogonia shifts dramatically during the Kit-negative to Kit-positive transition. This shift might serve as a switch that determines whether spermatogonia self-renew or differentiate.
Collapse
Affiliation(s)
- Takayuki Shirakawa
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2446
|
NGUYEN-NGOC KV, EWALD A. Mammary ductal elongation and myoepithelial migration are regulated by the composition of the extracellular matrix. J Microsc 2013; 251:212-23. [PMID: 23432616 PMCID: PMC3978143 DOI: 10.1111/jmi.12017] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 12/13/2012] [Indexed: 12/31/2022]
Abstract
Mammary branching morphogenesis occurs over a period of weeks deep inside an adipocyte-rich stroma. The adipocytes contain light-scattering lipid droplets that limit the depth of penetration of visible light. Organotypic culture methods were developed to enable high-resolution optical monitoring of branching morphogenesis ex vivo. A challenge has been to identify the best culture conditions to model specific developmental events. We recently demonstrated that collagen I induces protrusive invasion in both normal and neoplastic mammary epithelium. In this study, we observed that the abundance of collagen I fibrils correlated strongly with invasive behaviour, even when the collagen I concentration was identical. We found that the extent of fibril assembly was experimentally manipulable by varying the incubation time at 4°C following pH neutralization. We next tested the capacity of collagen I fibrils to induce invasive behaviour when presented in combination with basement membrane proteins (Matrigel). We found that epithelial organoids in mixed gels of collagen I and basement membrane proteins exhibited more extensive branching morphogenesis but did not initiate protrusions into the matrix. Organoids in pure Matrigel produced many small epithelial buds that were bare of myoepithelial cells. Surprisingly, organoids in mixed gels of collagen I and Matrigel produced fewer epithelial buds, the buds elongated further, and the elongating buds remained covered by myoepithelial cells. Our mixed gels therefore provide a more physiologically accurate model of mammary branching morphogenesis. Our results also suggest that changes in the composition of the extracellular matrix could induce migration of epithelial cells past myoepithelial coverage.
Collapse
Affiliation(s)
- K.-V. NGUYEN-NGOC
- Departments of Cell Biology and Oncology, Center for Cell Dynamics, Center for Cancer Nanotechnology Excellence, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - A.J. EWALD
- Departments of Cell Biology and Oncology, Center for Cell Dynamics, Center for Cancer Nanotechnology Excellence, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
2447
|
Vasileva A, Hopkins KM, Wang X, Weisbach MM, Friedman RA, Wolgemuth DJ, Lieberman HB. The DNA damage checkpoint protein RAD9A is essential for male meiosis in the mouse. J Cell Sci 2013; 126:3927-38. [PMID: 23788429 PMCID: PMC3757332 DOI: 10.1242/jcs.126763] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2013] [Indexed: 01/01/2023] Open
Abstract
In mitotic cells, RAD9A functions in repairing DNA double-strand breaks (DSBs) by homologous recombination and facilitates the process by cell cycle checkpoint control in response to DNA damage. DSBs occur naturally in the germline during meiosis but whether RAD9A participates in repairing such breaks is not known. In this study, we determined that RAD9A is indeed expressed in the male germ line with a peak of expression in late pachytene and diplotene stages, and the protein was found associated with the XY body. As complete loss of RAD9A is embryonic lethal, we constructed and characterized a mouse strain with Stra8-Cre driven germ cell-specific ablation of Rad9a beginning in undifferentiated spermatogonia in order to assess its role in spermatogenesis. Adult mutant male mice were infertile or sub-fertile due to massive loss of spermatogenic cells. The onset of this loss occurs during meiotic prophase, and there was an increase in the numbers of apoptotic spermatocytes as determined by TUNEL. Spermatocytes lacking RAD9A usually arrested in meiotic prophase, specifically in pachytene. The incidence of unrepaired DNA breaks increased, as detected by accumulation of γH2AX and DMC1 foci on the axes of autosomal chromosomes in pachytene spermatocytes. The DNA topoisomerase IIβ-binding protein 1 (TOPBP1) was still localized to the sex body, albeit with lower intensity, suggesting that RAD9A may be dispensable for sex body formation. We therefore show for the first time that RAD9A is essential for male fertility and for repair of DNA DSBs during meiotic prophase I.
Collapse
Affiliation(s)
- Ana Vasileva
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St., VC 11-219/220, New York, NY 10032, USA
- Genetics & Development and Obstetrics and Gynecology, The Institute of Human Nutrition, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, Russ Berrie 608, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | - Kevin M. Hopkins
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St., VC 11-219/220, New York, NY 10032, USA
| | - Xiangyuan Wang
- Genetics & Development and Obstetrics and Gynecology, The Institute of Human Nutrition, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, Russ Berrie 608, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | - Melissa M. Weisbach
- Genetics & Development and Obstetrics and Gynecology, The Institute of Human Nutrition, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, Russ Berrie 608, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | - Richard A. Friedman
- Biomedical Informatics Shared Resource of the Herbert Irving Comprehensive Cancer Center and Department of Biomedical Informatics, Columbia University Medical Center, 1130 St. Nicholas Avenue, Room 824, New York, NY 10032, USA
| | - Debra J. Wolgemuth
- Genetics & Development and Obstetrics and Gynecology, The Institute of Human Nutrition, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, Russ Berrie 608, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | - Howard B. Lieberman
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St., VC 11-219/220, New York, NY 10032, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
2448
|
Pimeisl IM, Tanriver Y, Daza RA, Vauti F, Hevner RF, Arnold HH, Arnold SJ. Generation and characterization of a tamoxifen-inducible Eomes(CreER) mouse line. Genesis 2013; 51:725-33. [PMID: 23897762 DOI: 10.1002/dvg.22417] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/26/2013] [Accepted: 07/18/2013] [Indexed: 01/21/2023]
Abstract
Transgenic mouse lines expressing inducible forms of Cre-recombinase in a tissue-specific manner are powerful genetic tools for studying aspects of development and various processes in the adult. The T-box transcription factor eomesodermin (Eomes) plays critical roles for maintenance and differentiation of different pools of stem and progenitor cells from early embryonic stages to adulthood. These include trophoblast stem cells, epiblast cells during the generation of the primary germ layers, neurogenic intermediate progenitor cells in embryonic and adult cortical neurogenesis, and maturing natural killer and T cells. Here, we report on the generation and analysis of an Eomes(CreER) -targeted allele by placing the tamoxifen-activatable Cre-recombinase (CreER) under the control of the Eomes genomic locus. We demonstrate that CreER expression recapitulates endogenous Eomes transcription within different progenitor cell populations. Tamoxifen administration specifically labels Eomes-expressing cells and their progeny as demonstrated by crossing Eomes(CreER) animals to different Cre-inducible reporter strains. In summary, this novel Eomes(CreER) allele can be used as elegant genetic tool that allows to follow the fate of Eomes-positive cells and to genetically manipulate them in a temporal specific manner.
Collapse
Affiliation(s)
- Inga-Marie Pimeisl
- University Medical Centre, Renal Department, Centre for Clinical Research, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
2449
|
Korrapati S, Roux I, Glowatzki E, Doetzlhofer A. Notch signaling limits supporting cell plasticity in the hair cell-damaged early postnatal murine cochlea. PLoS One 2013; 8:e73276. [PMID: 24023676 PMCID: PMC3758270 DOI: 10.1371/journal.pone.0073276] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 07/18/2013] [Indexed: 12/02/2022] Open
Abstract
In mammals, auditory hair cells are generated only during embryonic development and loss or damage to hair cells is permanent. However, in non-mammalian vertebrate species, such as birds, neighboring glia-like supporting cells regenerate auditory hair cells by both mitotic and non-mitotic mechanisms. Based on work in intact cochlear tissue, it is thought that Notch signaling might restrict supporting cell plasticity in the mammalian cochlea. However, it is unresolved how Notch signaling functions in the hair cell-damaged cochlea and the molecular and cellular changes induced in supporting cells in response to hair cell trauma are poorly understood. Here we show that gentamicin-induced hair cell loss in early postnatal mouse cochlear tissue induces rapid morphological changes in supporting cells, which facilitate the sealing of gaps left by dying hair cells. Moreover, we provide evidence that Notch signaling is active in the hair cell damaged cochlea and identify Hes1, Hey1, Hey2, HeyL, and Sox2 as targets and potential Notch effectors of this hair cell-independent mechanism of Notch signaling. Using Cre/loxP based labeling system we demonstrate that inhibition of Notch signaling with a γ- secretase inhibitor (GSI) results in the trans-differentiation of supporting cells into hair cell-like cells. Moreover, we show that these hair cell-like cells, generated by supporting cells have molecular, cellular, and basic electrophysiological properties similar to immature hair cells rather than supporting cells. Lastly, we show that the vast majority of these newly generated hair cell-like cells express the outer hair cell specific motor protein prestin.
Collapse
Affiliation(s)
- Soumya Korrapati
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- Center for Hearing and Balance, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Isabelle Roux
- Department of Otolaryngology, Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- Center for Hearing and Balance, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Elisabeth Glowatzki
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- Department of Otolaryngology, Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- Center for Hearing and Balance, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Angelika Doetzlhofer
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- Department of Otolaryngology, Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- Center for Hearing and Balance, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
2450
|
Yang Y, Akinci E, Dutton JR, Banga A, Slack JMW. Stage specific reprogramming of mouse embryo liver cells to a beta cell-like phenotype. Mech Dev 2013; 130:602-12. [PMID: 23994012 DOI: 10.1016/j.mod.2013.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/08/2013] [Accepted: 08/13/2013] [Indexed: 12/14/2022]
Abstract
We show that cultures of mouse embryo liver generate insulin-positive cells when transduced with an adenoviral vector encoding the three genes: Pdx1, Ngn3 and MafA (Ad-PNM). Only a proportion of transduced cells become insulin-positive and the highest yield occurs in the period E14-16, declining at later stages. Insulin-positive cells do not divide further although they can persist for several weeks. RT-PCR analysis of their gene expression shows the upregulation of a whole battery of genes characteristic of beta cells including upregulation of the endogenous counterparts of the input genes. Other features, including a relatively low insulin content, the expression of genes for other pancreatic hormones, and the fact that insulin secretion is not glucose-sensitive, indicate that the insulin-positive cells remain immature. The origin of the insulin-positive cells is established both by co-immunostaining for α-fetoprotein and albumin, and by lineage tracing for Sox9, which is expressed in the ductal plate cells giving rise to biliary epithelium. This shows that the majority of insulin-positive cells arise from hepatoblasts with a minority from the ductal plate cells.
Collapse
Affiliation(s)
- Ying Yang
- Stem Cell Institute, University of Minnesota, 2001 6th Street SE, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|