201
|
Keerthana CK, Rayginia TP, Shifana SC, Anto NP, Kalimuthu K, Isakov N, Anto RJ. The role of AMPK in cancer metabolism and its impact on the immunomodulation of the tumor microenvironment. Front Immunol 2023; 14:1114582. [PMID: 36875093 PMCID: PMC9975160 DOI: 10.3389/fimmu.2023.1114582] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is a key metabolic sensor that is pivotal for the maintenance of cellular energy homeostasis. AMPK contributes to diverse metabolic and physiological effects besides its fundamental role in glucose and lipid metabolism. Aberrancy in AMPK signaling is one of the determining factors which lead to the development of chronic diseases such as obesity, inflammation, diabetes, and cancer. The activation of AMPK and its downstream signaling cascades orchestrate dynamic changes in the tumor cellular bioenergetics. It is well documented that AMPK possesses a suppressor role in the context of tumor development and progression by modulating the inflammatory and metabolic pathways. In addition, AMPK plays a central role in potentiating the phenotypic and functional reprogramming of various classes of immune cells which reside in the tumor microenvironment (TME). Furthermore, AMPK-mediated inflammatory responses facilitate the recruitment of certain types of immune cells to the TME, which impedes the development, progression, and metastasis of cancer. Thus, AMPK appears to play an important role in the regulation of anti-tumor immune response by regulating the metabolic plasticity of various immune cells. AMPK effectuates the metabolic modulation of anti-tumor immunity via nutrient regulation in the TME and by virtue of its molecular crosstalk with major immune checkpoints. Several studies including that from our lab emphasize on the role of AMPK in regulating the anticancer effects of several phytochemicals, which are potential anticancer drug candidates. The scope of this review encompasses the significance of the AMPK signaling in cancer metabolism and its influence on the key drivers of immune responses within the TME, with a special emphasis on the potential use of phytochemicals to target AMPK and combat cancer by modulating the tumor metabolism.
Collapse
Affiliation(s)
- Chenicheri Kizhakkeveettil Keerthana
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.,Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Tennyson Prakash Rayginia
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.,Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, India
| | | | - Nikhil Ponnoor Anto
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Kalishwaralal Kalimuthu
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ruby John Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
202
|
Shah D, Ajazuddin, Bhattacharya S. Role of natural P-gp inhibitor in the effective delivery for chemotherapeutic agents. J Cancer Res Clin Oncol 2023; 149:367-391. [PMID: 36269390 DOI: 10.1007/s00432-022-04387-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/27/2022] [Indexed: 02/03/2023]
Abstract
Multi-drug resistance has shown to be one of the leading threats faced currently in many chemotherapeutic agents. Permeability glycoprotein (P-gp) is an efflux transporter in membrane, an integral part of ATP-binding cassette (ABC) transporters widely distributed in the body for cellular uptake. It is present enormously in cancerous cells and is in charge of generating transporter mediated resistance to treatments of tumorous cells in addition to blocking the entry of chemotherapeutic drugs into the cell. Natural P-gp inhibitors are derived from natural plant sources possessing basic structures like alkaloids, flavonoids, phenolics, terpenoids, saponins, sapogenins, sterols, coumarins and miscellaneous structures acting on P-gp substrate for inhibition of multi-drug resistance via inhibiting the efflux pump. They do not depict their action on the healthy cells and thus it is proven to be more effective and less toxic than synthetic P-gp inhibitor leading to enhancement in bioavailability of chemotherapeutic drugs. The significant objective of the present review is surfing through the impact of natural P-gp inhibitors having basic structures derived from the plant sources and how it inhibits the resistance of chemotherapeutic drugs together with how well it delivers chemotherapy medicines.
Collapse
Affiliation(s)
- Disha Shah
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Ajazuddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences & Research, Khoka-Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India.
| |
Collapse
|
203
|
Sudevan ST, Oh JM, Abdelgawad MA, Abourehab MAS, Rangarajan TM, Kumar S, Ahmad I, Patel H, Kim H, Mathew B. Introduction of benzyloxy pharmacophore into aryl/heteroaryl chalcone motifs as a new class of monoamine oxidase B inhibitors. Sci Rep 2022; 12:22404. [PMID: 36575270 PMCID: PMC9794710 DOI: 10.1038/s41598-022-26929-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
The inhibitory action of fifteen benzyloxy ortho/para-substituted chalcones (B1-B15) was evaluated against human monoamine oxidases (hMAOs). All the molecules inhibited hMAO-B isoform more potently than hMAO-A. Furthermore, the majority of the molecules showed strong inhibitory actions against hMAO-B at 10 μM level with residual activities of less than 50%. Compound B10 has an IC50 value of 0.067 μM, making it the most potent inhibitor of hMAO-B, trailed by compound B15 (IC50 = 0.12 μM). The thiophene substituent (B10) in the A-ring exhibited the strongest hMAO-B inhibition structurally, however, increased residue synthesis did not result in a rise in hMAO-B inhibition. In contrast, the benzyl group at the para position of the B-ring displayed more hMAO-B inhibition than the other positions. Compounds B10 and B15 had relatively high selectivity index (SI) values for hMAO-B (504.791 and 287.600, respectively). Ki values of B10 and B15 were 0.030 ± 0.001 and 0.033 ± 0.001 μM, respectively. The reversibility study showed that B10 and B15 were reversible inhibitors of hMAO-B. PAMPA assay manifested that the benzyloxy chalcones (B10 and B15) had a significant permeability and CNS bioavailability with Pe value higher than 4.0 × 10-6 cm/s. Both compounds were stabilized in protein-ligand complexes by the π-π stacking, which enabled them to bind to the hMAO-B enzyme's active site incredibly effectively. The hMAO-B was stabilized by B10- and B15-hMAO-B complexes, with binding energies of - 74.57 and - 87.72 kcal/mol, respectively. Using a genetic algorithm and multiple linear regression, the QSAR model was created. Based on the best 2D and 3D descriptor-based QSAR model, the following statistics were displayed: R2 = 0.9125, Q2loo = 0.8347. These findings imply that B10 and B15 are effective, selective, and reversible hMAO-B inhibitors.
Collapse
Affiliation(s)
- Sachithra Thazhathuveedu Sudevan
- grid.411370.00000 0000 9081 2061Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041 India
| | - Jong Min Oh
- grid.412871.90000 0000 8543 5345Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922 Republic of Korea
| | - Mohamed A. Abdelgawad
- grid.440748.b0000 0004 1756 6705Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, 72341 Saudi Arabia ,grid.411662.60000 0004 0412 4932Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514 Egypt
| | - Mohammed A. S. Abourehab
- grid.412832.e0000 0000 9137 6644Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, 21955 Saudi Arabia
| | - T. M. Rangarajan
- grid.8195.50000 0001 2109 4999Department of Chemistry, Sri Venketeswara College, University of Delhi, New Delhi, 110021 India
| | - Sunil Kumar
- grid.411370.00000 0000 9081 2061Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041 India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule, 424002 Maharashtra India
| | - Harun Patel
- grid.412233.50000 0001 0641 8393Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405 Maharashtra India
| | - Hoon Kim
- grid.412871.90000 0000 8543 5345Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922 Republic of Korea
| | - Bijo Mathew
- grid.411370.00000 0000 9081 2061Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041 India
| |
Collapse
|
204
|
Wang L, Xu H, Weng L, Sun J, Jin Y, Xiao C. Activation of cancer immunotherapy by nanomedicine. Front Pharmacol 2022; 13:1041073. [PMID: 36618938 PMCID: PMC9814015 DOI: 10.3389/fphar.2022.1041073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the most difficult diseases to be treated in the world. Immunotherapy has made great strides in cancer treatment in recent years, and several tumor immunotherapy drugs have been approved by the U.S. Food and Drug Administration. Currently, immunotherapy faces many challenges, such as lacking specificity, cytotoxicity, drug resistance, etc. Nanoparticles have the characteristics of small particle size and stable surface function, playing a miraculous effect in anti-tumor treatment. Nanocarriers such as polymeric micelles, liposomes, nanoemulsions, dendrimers, and inorganic nanoparticles have been widely used to overcome deficits in cancer treatments including toxicity, insufficient specificity, and low bioavailability. Although nanomedicine research is extensive, only a few nanomedicines are approved to be used. Either Bottlenecks or solutions of nanomedicine in immunotherapy need to be further explored to cope with challenges. In this review, a brief overview of several types of cancer immunotherapy approaches and their advantages and disadvantages will be provided. Then, the types of nanomedicines, drug delivery strategies, and the progress of applications are introduced. Finally, the application and prospect of nanomedicines in immunotherapy and Chimeric antigen receptor T-cell therapy (CAR-T) are highlighted and summarized to address the problems of immunotherapy the overall goal of this article is to provide insights into the potential use of nanomedicines and to improve the efficacy and safety of immunotherapy.
Collapse
Affiliation(s)
- Lijuan Wang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Henan Xu
- The First Hospital of Jilin University, Changchun, China
| | - Lili Weng
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Jin Sun
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Jin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Ye Jin, ; Chunping Xiao,
| | - Chunping Xiao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Ye Jin, ; Chunping Xiao,
| |
Collapse
|
205
|
Cornara L, Sgrò F, Raimondo FM, Ingegneri M, Mastracci L, D’Angelo V, Germanò MP, Trombetta D, Smeriglio A. Pedoclimatic Conditions Influence the Morphological, Phytochemical and Biological Features of Mentha pulegium L. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010024. [PMID: 36616155 PMCID: PMC9824027 DOI: 10.3390/plants12010024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 06/01/2023]
Abstract
In this study, Mentha pulegium leaves and flowers harvested in three different Sicilian areas were investigated from a micromorphological, phytochemical and biological point of view. Light and scanning electron microscopy showed the presence of spherocrystalline masses of diosmin both in the leaf epidermal cells and in thin flower petals. Two different chemotypes were identified (I, kaempferide/rosmarinic acid; II, jaceidin isomer A). Phytochemical screening identified plant from collection site II as the richest in total phenolics (16.74 g GAE/100 g DE) and that from collection site I as the richest in flavonoids (46.56 g RE/100 g DE). Seventy-seven metabolites were identified both in flower and leaf extracts. Plant from site II showed the best antioxidant (0.90-83.72 µg/mL) and anti-inflammatory (27.44-196.31 µg/mL) activity expressed as half-maximal inhibitory concentration (IC50) evaluated by DPPH, TEAC, FRAP, ORAC, BSA denaturation and protease inhibition assays. These data were also corroborated by in vitro cell-based assays on lymphocytes and erythrocytes. Moreover, plant of site II showed the best antiangiogenic properties (IC50 33.43-33.60 µg/mL) in vivo on a chick chorioallantoic membrane. In conclusion, pedoclimatic conditions influence the chemotype and the biological activity of M. pulegium, with chemotype I showing the most promising biological properties.
Collapse
Affiliation(s)
- Laura Cornara
- Department of Earth, Environment and Life Sciences, University of Genova, C.so Europa 26, 16132 Genova, Italy
| | - Federica Sgrò
- Foundation Prof. Antonio Imbesi, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Francesco Maria Raimondo
- PLANTA/Autonomous Center for Research, Documentation and Training, Via Serraglio Vecchio 28, 90123 Palermo, Italy
| | - Mariarosaria Ingegneri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Luca Mastracci
- Pathology Unit, Department of Surgical and Diagnostic Sciences (DISC), University of Genova, 16132 Genova, Italy
- Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16125 Genova, Italy
| | - Valeria D’Angelo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Maria Paola Germanò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
206
|
Dettori T, Sanna G, Cocco A, Serreli G, Deiana M, Palmas V, Onnis V, Pilia L, Melis N, Moi D, Caria P, Secci F. Synthesis and Antiproliferative Effect of Halogenated Coumarin Derivatives. Molecules 2022; 27:molecules27248897. [PMID: 36558029 PMCID: PMC9786284 DOI: 10.3390/molecules27248897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
A series of 6- and 6,8-halocoumarin derivatives have been investigated as potential antiproliferative compounds against a panel of tumor and normal cell lines. Cytotoxic effects were determined by the MTT method. To investigate the potential molecular mechanism involved in the cytotoxic effect, apoptosis assay, cell cycle analysis, reactive oxygen species (ROS), and reduced glutathione analysis were performed. Among the screened compounds, coumarins 6,8-dibromo-2-oxo-2H-chromene-3-carbonitrile 2h and 6,8-diiodo-2-oxo-2H-chromene-3-carbonitrile 2k exhibited the most antiproliferative effect in thyroid cancer-derived cells TPC-1. The apoptosis assay showed that both 2h and 2k induced apoptosis in TPC-1 thyroid cancer cells. According to these experiments, both coumarins induced a slight increase in TPC-1 cells in the G2/M phase and a decrease in the S phase. A significant increase in ROS levels was observed in TPC-1 treated with diiodocoumarin 2k, while the dibromocoumarin 2h induced a decrease in ROS in a dose and time-dependent manner.
Collapse
Affiliation(s)
- Tinuccia Dettori
- Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
| | - Giuseppina Sanna
- Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
| | - Andrea Cocco
- Department of Chemical and Geological Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
| | - Gabriele Serreli
- Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
| | - Monica Deiana
- Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
| | - Vanessa Palmas
- Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
| | - Valentina Onnis
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
| | - Luca Pilia
- Department of Mechanical, Chemical and Material Engineering, University of Cagliari, 09123 Cagliari, CA, Italy
| | - Nicola Melis
- Department of Mechanical, Chemical and Material Engineering, University of Cagliari, 09123 Cagliari, CA, Italy
| | - Davide Moi
- Department of Chemical and Geological Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
- Correspondence: (D.M.); (P.C.); (F.S.)
| | - Paola Caria
- Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
- Correspondence: (D.M.); (P.C.); (F.S.)
| | - Francesco Secci
- Department of Chemical and Geological Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
- Correspondence: (D.M.); (P.C.); (F.S.)
| |
Collapse
|
207
|
Current Pharmacotherapy and Multi-Target Approaches for Alzheimer's Disease. Pharmaceuticals (Basel) 2022; 15:ph15121560. [PMID: 36559010 PMCID: PMC9781592 DOI: 10.3390/ph15121560] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by decreased synaptic transmission and cerebral atrophy with appearance of amyloid plaques and neurofibrillary tangles. Cognitive, functional, and behavioral alterations are commonly associated with the disease. Different pathophysiological pathways of AD have been proposed, some of which interact and influence one another. Current treatment for AD mainly involves the use of therapeutic agents to alleviate the symptoms in AD patients. The conventional single-target treatment approaches do not often cause the desired effect in the disease due to its multifactorial origin. Thus, multi-target strategies have since been undertaken, which aim to simultaneously target multiple targets involved in the development of AD. In this review, we provide an overview of the pathogenesis of AD and the current drug therapies for the disease. Additionally, rationales of the multi-target approaches and examples of multi-target drugs with pharmacological actions against AD are also discussed.
Collapse
|
208
|
Niu ZS, Wang WH, Niu XJ. Recent progress in molecular mechanisms of postoperative recurrence and metastasis of hepatocellular carcinoma. World J Gastroenterol 2022; 28:6433-6477. [PMID: 36569275 PMCID: PMC9782839 DOI: 10.3748/wjg.v28.i46.6433] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 12/08/2022] Open
Abstract
Hepatectomy is currently considered the most effective option for treating patients with early and intermediate hepatocellular carcinoma (HCC). Unfortunately, the postoperative prognosis of patients with HCC remains unsatisfactory, predominantly because of high postoperative metastasis and recurrence rates. Therefore, research on the molecular mechanisms of postoperative HCC metastasis and recurrence will help develop effective intervention measures to prevent or delay HCC metastasis and recurrence and to improve the long-term survival of HCC patients. Herein, we review the latest research progress on the molecular mechanisms underlying postoperative HCC metastasis and recurrence to lay a foundation for improving the understanding of HCC metastasis and recurrence and for developing more precise prevention and intervention strategies.
Collapse
Affiliation(s)
- Zhao-Shan Niu
- Laboratory of Micromorphology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Wen-Hong Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Xiao-Jun Niu
- Department of Internal Medicine, Qingdao Shibei District People's Hospital, Qingdao 266033, Shandong Province, China
| |
Collapse
|
209
|
Aloliqi AA. Therapeutic Potential of 6-Gingerol in Prevention of Colon Cancer Induced by Azoxymethane through the Modulation of Antioxidant Potential and Inflammation. Curr Issues Mol Biol 2022; 44:6218-6228. [PMID: 36547085 PMCID: PMC9776754 DOI: 10.3390/cimb44120424] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
A polyphenolic component of ginger, 6-gingerol, is widely reported to possess antioxidant, anti-inflammatory and anticancer activities. In the current study, it was aimed to investigate the anticancer effects of 6-gingerol (6-Gin) on azoxymethane (AOM)-induced colon cancer in rats. The results reveal that 6-Gin treatment significantly improves the antioxidant status disturbed by AOM intoxication. The 6-Gin treatment animal group showed enhanced activity of catalase (CAT) (46.6 ± 6.4 vs. 23.3 ± 4.3 U/mg protein), superoxide dismutase (SOD) (81.3 ± 7.6 vs. 60.4 ± 3.5 U/mg protein) and glutathione-S-transferase (GST) (90.3 ± 9.4 vs. 53.8 ± 10 mU/mg protein) (p < 0.05) as compared to the disease control group. Furthermore, the results reveal that AOM significantly enhances the inflammatory response and 6-gingerol potentially attenuates this response, estimated by markers, such as tumor necrosis factor-α (TNF-α) (1346 ± 67 vs. 1023 ± 58 pg/g), C-reactive protein (CRP) (1.12 ± 0.08 vs. 0.92 ± 0.7 ng/mL) and interleukin-6 (IL-6) (945 ± 67 vs. 653 ± 33 pg/g). In addition, the lipid peroxidation estimated in terms of malondialdehyde (MDA) provoked by AOM exposure is significantly reduced by 6-gingerol treatment (167 ± 7.5 vs. 128.3 nmol/g). Furthermore, 6-gingerol significantly maintains the colon tissue architecture disturbed by the AOM treatment. Loss of tumor suppressor protein, phosphatase and tensin homolog (PTEN) expression was noticed in the AOM treated group, whereas in the animals treated with 6-gingerol, the positivity of PTEN expression was high. In conclusion, the current findings advocate the health-promoting effects of 6-gingerol on colon cancer, which might be due to its antioxidant and anti-inflammatory potential.
Collapse
Affiliation(s)
- Abdulaziz A Aloliqi
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| |
Collapse
|
210
|
Tuli HS, Garg VK, Bhushan S, Uttam V, Sharma U, Jain A, Sak K, Yadav V, Lorenzo JM, Dhama K, Behl T, Sethi G. Natural flavonoids exhibit potent anticancer activity by targeting microRNAs in cancer: A signature step hinting towards clinical perfection. Transl Oncol 2022; 27:101596. [PMID: 36473401 PMCID: PMC9727168 DOI: 10.1016/j.tranon.2022.101596] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer prevalence and its rate of incidence are constantly rising since the past few decades. Owing to the toxicity of present-day antineoplastic drugs, it is imperative to explore safer and more effective molecules to combat and/or prevent this dreaded disease. Flavonoids, a class of polyphenols, have exhibited multifaceted implications against several diseases including cancer, without showing significant toxicity towards the normal cells. Shredded pieces of evidence suggest that flavonoids can enhance drug sensitivity and suppress proliferation, metastasis, and angiogenesis of cancer cells by modulating several oncogenic or oncosuppressor microRNAs (miRNAs, miRs). They play pivotal roles in regulation of various biological and pathological processes, including various cancers. In the present review, the structure, chemistry and miR targeting efficacy of quercetin, luteolin, silibinin, genistein, epigallocatechin gallate, and cyanidin against several cancer types are comprehensively discussed. miRs are considered as next-generation medicine of recent times, and their targeting by naturally occurring flavonoids in cancer cells could be deemed as a signature step. We anticipate that our compilations related to miRNA-mediated regulation of cancer cells by flavonoids might catapult the clinical investigations and affirmation in the future.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Vivek Kumar Garg
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Sakshi Bhushan
- Department of Botany, Central University Jammu, Jammu and Kashmir 181143, India
| | - Vivek Uttam
- Department of Zoology, Central University of Punjab, Village-Ghudda, Punjab 151401, India
| | - Uttam Sharma
- Department of Zoology, Central University of Punjab, Village-Ghudda, Punjab 151401, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Village-Ghudda, Punjab 151401, India
| | | | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, SE-20213 Malmö, Sweden
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense 32900, Spain,Universidade de Vigo, Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, 32004 Ourense, Spain
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh 243122, India
| | - Tapan Behl
- Department of Pharmacology, School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies, Bidholi, Dehradun, Uttarakhand 248007, India,Corresponding authors.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore,Corresponding authors.
| |
Collapse
|
211
|
Al Kury LT, Taha Z, Mahmod AI, Talib WH. Xanthium spinosum L. Extracts Inhibit Breast Cancer in Mice by Apoptosis Induction and Immune System Modulation. Pharmaceuticals (Basel) 2022; 15:ph15121504. [PMID: 36558955 PMCID: PMC9784301 DOI: 10.3390/ph15121504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Plants have been considered for many years as an important source of medicine to treat different diseases. Xanthium spinosum L. (Asteraceae, Compositae) is known for its diuretic, anti-inflammatory, and sedative effects. It is also used in the treatment of several ailments, such as cancer. In order to evaluate the anticancer and immunomodulatory activities, crude ethanol extract was prepared from the aerial part of X. spinosum and then fractionated using solvents with different polarities. As well, the chemical composition of X. spinosum extract and fractions were identified using LC-MS analysis. The antitumor effect of X. spinosum was assessed in both in vitro and in vivo models. Apoptosis induction was measured in vitro using a caspase-3 activity kit. Lymphocyte proliferation and phagocytosis and pinocytosis induction were used to quantify the effect of the plant extract and fractions on acquired and innate immunity, respectively. The effect of X. spinosum extract, and fractions on the levels of cytokines (IFN-γ, IL-2, IL-4, and IL-10) in murine lymphocytes was determined using a mouse-uncoated TH1/TH2 ELISA kit. Results showed that ethanol extract had the highest antiproliferative activity (IC₅₀ = 2.5 mg mL-1) against EMT6/P cell lines, while the aqueous and chloroform fractions had the highest apoptotic activity with 2.2 and 1.7 folds, respectively. On the other hand, the n-hexane fraction was the most effective in stimulating lymphocyte proliferation, whereas ethanol extract, aq. Methanol and aqueous fractions exhibited the highest phagocytic activity. As well, X. spinosum extract and fractions were able to modulate the expression of IL-2, IL-4, and IFN-γ. A remarkable decrease in tumor size was accomplished following the treatment of tumor-bearing mice with X. spinosum extract and fractions. Both aq. Methanol and chloroform fractions showed the highest percentage change in tumor size with -58 and -55%, respectively. As well, tumor-bearing mice treated with chloroform fraction demonstrated a high curable percentage with a value of 57.1%. Anyway, X. spinosum extract and fractions exhibited no toxic impact on the liver or kidney functions of the mice-treated groups. These findings may confirm that X. spinosum has favorable anticancer and immunomodulatory effects. However, additional studies are required to fully understand the mechanisms of action of this plant and the signaling pathways involved in its effects. Moreover, more testing is needed to have better insight into the apoptotic pathway and to know the exact concentration of active compounds.
Collapse
Affiliation(s)
- Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates
- Correspondence: (L.T.A.K.); (W.H.T.)
| | - Zainab Taha
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931-166, Jordan
| | - Wamidh H. Talib
- Faculty of Allied Medical Sciences, Applied Science Private University, Amman 11931-166, Jordan
- Correspondence: (L.T.A.K.); (W.H.T.)
| |
Collapse
|
212
|
Kuang G, Zhang Q, Jia J, Yu Y. Freezing biological organisms for biomedical applications. SMART MEDICINE 2022; 1:e20220034. [PMID: 39188743 PMCID: PMC11235656 DOI: 10.1002/smmd.20220034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 08/28/2024]
Abstract
Biological organisms play important roles in human health, either in a commensal or pathogenic manner. Harnessing inactivated organisms or living organisms is a promising way to treat diseases. As two types of freezing, cryoablation makes it simple to inactivate organisms that must be in a non-pathogenic state when needed, while cryopreservation is a facile way to address the problem of long-term storage challenged by living organism-based therapy. In this review, we present the latest studies of freezing biological organisms for biomedical applications. To begin with, the freezing strategies of cryoablation and cryopreservation, as well as their corresponding technical essentials, are illustrated. Besides, biomedical applications of freezing biological organisms are presented, including transplantation, tissue regeneration, anti-infection therapy, and anti-tumor therapy. The challenges and prospects of freezing living organisms for biomedical applications are well discussed. We believe that the freezing method will provide a potential direction for the standardization and commercialization of inactivated or living organism-based therapeutic systems, and promote the clinical application of organism-based therapy.
Collapse
Affiliation(s)
- Gaizhen Kuang
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
| | - Qingfei Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
| | - Jinxuan Jia
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
| | - Yunru Yu
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| |
Collapse
|
213
|
Jupudi S, Rajagopal K, Murugesan S, Kumar BK, Raman K, Byran G, Chennaiah J, Muthiah VP, Dasan P B, Sankaran S. Identification of Papain-Like Protease inhibitors of SARS CoV-2 through HTVS, Molecular docking, MMGBSA and Molecular dynamics approach. SOUTH AFRICAN JOURNAL OF BOTANY : OFFICIAL JOURNAL OF THE SOUTH AFRICAN ASSOCIATION OF BOTANISTS = SUID-AFRIKAANSE TYDSKRIF VIR PLANTKUNDE : AMPTELIKE TYDSKRIF VAN DIE SUID-AFRIKAANSE GENOOTSKAP VAN PLANTKUNDIGES 2022; 151:82-91. [PMID: 34876768 PMCID: PMC8639443 DOI: 10.1016/j.sajb.2021.11.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 05/28/2023]
Abstract
Coronaviruses (CoVs) are a large group of enveloped positive sense single-stranded RNA viruses that can cause disease to humans. These are zoonotic having potential to cause large-scale outbreaks of infections widely causing morbidity and mortality. Papain-Like Protease (PLpro) is a cysteine protease, essential for viral replication and proliferation, as a highly conserved enzyme it cleaves peptide linkage between Nsp1, Nsp2, Nsp3, and Nsp4. As a valid therapeutic target, it stops viral reproduction and boosts host immune response thereby halting further spread of infection. In the purpose of identifying inhibitors targeting Papain-Like Proteases (PLpro) we initiated a high throughput virtual screening (HTVS) protocol using a SuperNatural Database. The XP docking results revealed that two compounds SN00334175 and SN00162745 exhibited docking scores of -10.58 kcal/mol and -9.93 kcal/mol respectively. The Further PRIME MMGB-SA studies revealed Van der Waal energy and hydrophobic energy terms as major contributors for total binding free energy. The 100 ns molecular dynamics simulation of SN00334175/7JN2 and SN00162745/7JN2 revealed that these complexes were stabilized with ligand binding forming interactions with Gly266, Asn267, Tyr268, Tyr273, Thr301 and Asp302, Lys157, Leu162, Asp164, Arg166, Glu167, Pro248 and Tyr264.
Collapse
Affiliation(s)
- Srikanth Jupudi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, (A Constituent college of JSS Academy of higher education & Research- deemed University), Ooty 643001, The Nilgiris, Tamilnadu, India
| | - Kalirajan Rajagopal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, (A Constituent college of JSS Academy of higher education & Research- deemed University), Ooty 643001, The Nilgiris, Tamilnadu, India
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani 333031 Rajasthan India
| | - Banoth Karan Kumar
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani 333031 Rajasthan India
| | - Kannan Raman
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, (A Constituent college of JSS Academy of higher education & Research- deemed University), Ooty 643001, The Nilgiris, Tamilnadu, India
| | - Gowramma Byran
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, (A Constituent college of JSS Academy of higher education & Research- deemed University), Ooty 643001, The Nilgiris, Tamilnadu, India
| | - Jayakuamar Chennaiah
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, (A Constituent college of JSS Academy of higher education & Research- deemed University), Ooty 643001, The Nilgiris, Tamilnadu, India
| | - Velayutham Pillai Muthiah
- Department of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education, Krishnankovil 626 126, Tamil Nadu, India
| | - Bharathi Dasan P
- Bio Pharma Laboratories Pvt. Limited., Hyderabad 502 325, Telangana, India
| | - Sathianarayanan Sankaran
- Faculty of Pharmacy, Karpagam Academy of Higher Education, Karpagam University Pollachi Main Road, Eachanari Post, Coimbatore 641021, Tamil Nadu, India
| |
Collapse
|
214
|
Faisal Hamdi AI, How SH, Islam MK, Lim JCW, Stanslas J. Adaptive therapy to circumvent drug resistance to tyrosine kinase inhibitors in cancer: is it clinically relevant? Expert Rev Anticancer Ther 2022; 22:1309-1323. [PMID: 36376248 DOI: 10.1080/14737140.2022.2147671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Cancer is highly adaptable and is constantly evolving against current targeted therapies such as tyrosine kinase inhibitors. Despite advances in recent decades, the emergence of drug resistance to tyrosine kinase inhibitors constantly hampers therapeutic efficacy of cancer treatment. Continuous therapy versus intermittent clinical regimen has been a debate in drug administration of cancer patients. An ecologically-inspired shift in cancer treatment known as 'adaptive therapy' intends to improve the drug administration of drugs to cancer patients that can delay emergence of drug resistance. AREAS COVERED We discuss improved understanding of the concept of drug resistance, the basis of continuous therapy, intermittent clinical regimens, and adaptive therapy will be reviewed. In addition, we discuss how adaptive therapy provides guidance for future cancer treatment. EXPERT OPINION The current understanding of drug resistance in cancer leads to poor prognosis and limited treatment options in patients. Fighting drug resistance mutants is constantly followed by new forms of resistance. In most reported cases, continuous therapy leads to drug resistance and an intermittent clinical regimen vaguely delays it. However, adaptive therapy, conceptually, exploits multiple parameters that can suppress the growth of drug resistance and provides safe treatment for cancer patients in the future.
Collapse
Affiliation(s)
- Amir Imran Faisal Hamdi
- Pharmacotherapeutics Unit, Department of Medicine, Universiti Putra MalaysiaMedicine, 43400, Serdang, Malaysia
| | - Soon Hin How
- Kuliyyah of Medicine, International Islamic University Malaysia, Kuantan Campus, Kuliyyah of Medicine, 25200, Kuantan, Malaysia
| | | | - Jonathan Chee Woei Lim
- Pharmacotherapeutics Unit, Department of Medicine, Universiti Putra MalaysiaMedicine, 43400, Serdang, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutics Unit, Department of Medicine, Universiti Putra MalaysiaMedicine, 43400, Serdang, Malaysia
| |
Collapse
|
215
|
Biological Characterization of Natural Peptide BcI-1003 from Boana cordobae (anura): Role in Alzheimer’s Disease and Microbial Infections. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10472-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
216
|
Plant Spices as a Source of Antimicrobial Synergic Molecules to Treat Bacterial and Viral Co-Infections. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238210. [PMID: 36500303 PMCID: PMC9737474 DOI: 10.3390/molecules27238210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
The COVID-19 pandemic exposed the lack of antiviral agents available for human use, while the complexity of the physiological changes caused by coronavirus (SARS-CoV-2) imposed the prescription of multidrug pharmacotherapy to treat infected patients. In a significant number of cases, it was necessary to add antibiotics to the prescription to decrease the risk of co-infections, preventing the worsening of the patient's condition. However, the precautionary use of antibiotics corroborated to increase bacterial resistance. Since the development of vaccines for COVID-19, the pandemic scenario has changed, but the development of new antiviral drugs is still a major challenge. Research for new drugs with synergistic activity against virus and resistant bacteria can produce drug leads to be used in the treatment of mild cases of COVID-19 and to fight other viruses and new viral diseases. Following the repurposing approach, plant spices have been searched for antiviral lead compounds, since the toxic effects of plants that are traditionally consumed are already known, speeding up the drug discovery process. The need for effective drugs in the context of viral diseases is discussed in this review, with special focus on plant-based spices with antiviral and antibiotic activity. The activity of plants against resistant bacteria, the diversity of the components present in plant extracts and the synergistic interaction of these metabolites and industrialized antibiotics are discussed, with the aim of contributing to the development of antiviral and antibiotic drugs. A literature search was performed in electronic databases such as Science Direct; SciELO (Scientific Electronic Library Online); LILACS (Latin American and Caribbean Literature on Health Sciences); Elsevier, SpringerLink; and Google Scholar, using the descriptors: antiviral plants, antibacterial plants, coronavirus treatment, morbidities and COVID-19, bacterial resistance, resistant antibiotics, hospital-acquired infections, spices of plant origin, coronaviruses and foods, spices with antiviral effect, drug prescriptions and COVID-19, and plant synergism. Articles published in English in the period from 2020 to 2022 and relevant to the topic were used as the main inclusion criteria.
Collapse
|
217
|
Ciernikova S, Sevcikova A, Stevurkova V, Mego M. Tumor microbiome - an integral part of the tumor microenvironment. Front Oncol 2022; 12:1063100. [PMID: 36505811 PMCID: PMC9730887 DOI: 10.3389/fonc.2022.1063100] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
The tumor microenvironment (TME) plays a significant role in tumor progression and cancer cell survival. Besides malignant cells and non-malignant components, including immune cells, elements of the extracellular matrix, stromal cells, and endothelial cells, the tumor microbiome is considered to be an integral part of the TME. Mounting evidence from preclinical and clinical studies evaluated the presence of tumor type-specific intratumoral bacteria. Differences in microbiome composition between cancerous tissues and benign controls suggest the importance of the microbiome-based approach. Complex host-microbiota crosstalk within the TME affects tumor cell biology via the regulation of oncogenic pathways, immune response modulation, and interaction with microbiota-derived metabolites. Significantly, the involvement of tumor-associated microbiota in cancer drug metabolism highlights the therapeutic implications. This review aims to summarize current knowledge about the emerging role of tumor microbiome in various types of solid malignancies. The clinical utility of tumor microbiome in cancer progression and treatment is also discussed. Moreover, we provide an overview of clinical trials evaluating the role of tumor microbiome in cancer patients. The research focusing on the communication between the gut and tumor microbiomes may bring new opportunities for targeting the microbiome to increase the efficacy of cancer treatment and improve patient outcomes.
Collapse
Affiliation(s)
- Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Bratislava, Slovakia,*Correspondence: Sona Ciernikova,
| | - Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viola Stevurkova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, Bratislava, Slovakia
| |
Collapse
|
218
|
Health benefits of bioactive components in pungent spices mediated via the involvement of TRPV1 channel. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
219
|
Jasso de Rodríguez D, Torres-Moreno H, López-Romero JC, Vidal-Gutiérrez M, Villarreal-Quintanilla JÁ, Carrillo-Lomelí DA, Robles-Zepeda RE, Vilegas W. Antioxidant, anti-inflammatory, and antiproliferative activities of Flourensia spp. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
220
|
Yu Q, Chen Z, Liu M, Meng Y, Li X, Li B, Du J. Exploring the potential targets of Sanshimao formula for hepatocellular carcinoma treatment by a method of network pharmacology combined with molecular biology. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115531. [PMID: 35840058 DOI: 10.1016/j.jep.2022.115531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/24/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Sanshimao (SSM) formula is an effective prescription for hepatocellular carcinoma (HCC) therapy in the clinical setting. This prescription is made up of four herbals, Maorenshen, Shijianchuan, Shishangbai and Shidachuan, which are used for detoxification and removing blood stasis. However, its mechanism in the treatment of HCC remains ambiguous. AIM OF THE STUDY To explore the potential targets of SSM against HCC by network pharmacology analysis and verify the data using molecular biological methods. MATERIALS AND METHODS We screened active components and potential targets by data mining, constructed a network, and performed functional analysis and pathway enrichment to explore the therapeutic targets of SSM for HCC treatment. Then, the effects of SSM on HCC cells were studied to validate the data from network pharmacology analysis. RESULTS Eighty-eight common targets were obtained by mapping 932 HCC-related genes, and 325 targets corresponded to 11 active components of SSM. They were enriched in various biological processes, such as the response to inorganic substances, response to toxic substances and apoptotic signalling pathway, and multi-pathways involved pathways in cancer, EGFR tyrosine kinase inhibitor resistance, and AGE-RAGE signalling pathway in diabetic complications, as evaluated by the analysis of advanced functions and pathways. TP53, JUN, HSP90AA1, EGFR, AR and MAPK1 might be the core targets closely related to the effects of SSM on HCC according to PPI analysis. Treatment with SSM decreased cell viability and migration, promoted apoptosis and inhibited the EGFR/FAK/AKT signalling pathway. CONCLUSION This research preliminarily indicates that SSM treats HCC via multiple components and pathways. EGFR/FAK/AKT are promising therapeutic targets of SSM for HCC treatment. This provides objective evidence for further mechanistic research and the future development and clinical application of SSM in HCC patients.
Collapse
Affiliation(s)
- Qin Yu
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Military Medical University, Shanghai, China; Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhe Chen
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Naval Military Medical University, Shanghai, China
| | - Minglin Liu
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Military Medical University, Shanghai, China
| | - Yongbin Meng
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Military Medical University, Shanghai, China
| | - Xiaoyan Li
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Military Medical University, Shanghai, China
| | - Bai Li
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Naval Military Medical University, Shanghai, China.
| | - Juan Du
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Military Medical University, Shanghai, China.
| |
Collapse
|
221
|
Rajendran G, Bhanu D, Aruchamy B, Ramani P, Pandurangan N, Bobba KN, Oh EJ, Chung HY, Gangadaran P, Ahn BC. Chalcone: A Promising Bioactive Scaffold in Medicinal Chemistry. Pharmaceuticals (Basel) 2022; 15:ph15101250. [PMID: 36297362 PMCID: PMC9607481 DOI: 10.3390/ph15101250] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022] Open
Abstract
Chalcones are a class of privileged scaffolds with high medicinal significance due to the presence of an α,β-unsaturated ketone functionality. Numerous functional modifications of chalcones have been reported, along with their pharmacological behavior. The present review aims to summarize the structures from natural sources, synthesis methods, biological characteristics against infectious and non-infectious diseases, and uses of chalcones over the past decade, and their structure–activity relationship studies are detailed in depth. This critical review provides guidelines for the future design and synthesis of various chalcones. In addition, this could be highly supportive for medicinal chemists to develop more promising candidates for various infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Gayathri Rajendran
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE–AMGT), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
| | - Deepu Bhanu
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE–AMGT), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
| | - Baladhandapani Aruchamy
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE–AMGT), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
| | - Prasanna Ramani
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE–AMGT), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
- Correspondence: (P.R.); (B.-C.A.)
| | - Nanjan Pandurangan
- Department of Sciences, Amrita School of Arts and Sciences, Mysuru Campus, Amrita Vishwa Vidyapeetham, Mysuru 570026, India
| | - Kondapa Naidu Bobba
- Department of Radiology and Biomedical Imaging, University of California (San Francisco), San Francisco, CA 94143, USA
| | - Eun Jung Oh
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea
| | - Ho Yun Chung
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea
| | - Byeong-Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea
- Correspondence: (P.R.); (B.-C.A.)
| |
Collapse
|
222
|
Singh N, Yadav SS. Ethnomedicinal uses of Indian spices used for cancer treatment: A treatise on structure-activity relationship and signaling pathways. Curr Res Food Sci 2022; 5:1845-1872. [PMID: 36276240 PMCID: PMC9579211 DOI: 10.1016/j.crfs.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/19/2022] [Accepted: 10/06/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer is among the major cause of demise worldwide. Though the array of anticancer chemical medications is available but unfortunately, they are also associated with negative health effects. The invaluable therapeutic potential of spices makes them an integral part of our daily diet. Therefore, the present work focuses on the traditional uses of 46 spices and the phytochemical analysis of 31 spices. Out of them, only 29 spices are explored for their cytotoxicity against different cancer cell lines. The pre-clinical and clinical anticancer studies of spices along with their toxicity, mechanism of actions like Wnt/β-catenin, phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), JAK/STAT, mitogen-activated protein kinase (MAPK), Notch-mediated pathways and Quantitative structure-activity relationship (QSAR) studies were also focused. Curcumin was found as one of the most explored bioactive in every aspect such as in-vitro, in-vivo, clinical as well as SAR anticancer studies while some other bioactive such as 1,8-Cineole, trans-Anethole, Diosgenin, Trigonelline are either unexplored or least explored for their clinical and SAR studies. In fact, traditional medicinal uses of spices also provide solid shreds of evidence for the new leads towards the invention of novel anticancer agents. Therefore, further research can be designed for the anticancer marketed formulation from spices after having their placebo and related toxicological data.
Collapse
Affiliation(s)
- Neetu Singh
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Surender Singh Yadav
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
223
|
Wang F, Duan H, Xu W, Sheng G, Sun Z, Chu H. Light-activated nanomaterials for tumor immunotherapy. Front Chem 2022; 10:1031811. [PMID: 36277335 PMCID: PMC9585221 DOI: 10.3389/fchem.2022.1031811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022] Open
Abstract
Tumor immunotherapy mainly relies on activating the immune system to achieve antitumor treatment. However, the present tumor immunotherapy used in the clinic showed low treatment efficacy with high systematic toxicity. To overcome the shortcomings of traditional drugs for immunotherapy, a series of antitumor immunotherapies based on nanomaterials have been developed to enhance the body’s antitumor immune response and reduce systematic toxicity. Due to the noninvasiveness, remote controllability, and high temporal and spatial resolution of light, photocontrolled nanomaterials irradiated by excitation light have been widely used in drug delivery and photocontrolled switching. This review aims to highlight recent advances in antitumor immunotherapy based on photocontrolled nanomaterials. We emphasized the advantages of nanocomposites for antitumor immunotherapy and highlighted the latest progress of antitumor immunotherapy based on photoactivated nanomaterials. Finally, the challenges and future prospects of light-activated nanomaterials in antitumor immunity are discussed.
Collapse
Affiliation(s)
- Fang Wang
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Huijuan Duan
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Weizhe Xu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Gang Sheng
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Zhaogang Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Hongqian Chu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
- *Correspondence: Hongqian Chu,
| |
Collapse
|
224
|
Zheng M, Okawa S, Bravo M, Chen F, Martínez-Chantar ML, del Sol A. ChemPert: mapping between chemical perturbation and transcriptional response for non-cancer cells. Nucleic Acids Res 2022; 51:D877-D889. [PMID: 36200827 PMCID: PMC9825489 DOI: 10.1093/nar/gkac862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/08/2022] [Accepted: 09/25/2022] [Indexed: 01/30/2023] Open
Abstract
Prior knowledge of perturbation data can significantly assist in inferring the relationship between chemical perturbations and their specific transcriptional response. However, current databases mostly contain cancer cell lines, which are unsuitable for the aforementioned inference in non-cancer cells, such as cells related to non-cancer disease, immunology and aging. Here, we present ChemPert (https://chempert.uni.lu/), a database consisting of 82 270 transcriptional signatures in response to 2566 unique perturbagens (drugs, small molecules and protein ligands) across 167 non-cancer cell types, as well as the protein targets of 57 818 perturbagens. In addition, we develop a computational tool that leverages the non-cancer cell datasets, which enables more accurate predictions of perturbation responses and drugs in non-cancer cells compared to those based onto cancer databases. In particular, ChemPert correctly predicted drug effects for treating hepatitis and novel drugs for osteoarthritis. The ChemPert web interface is user-friendly and allows easy access of the entire datasets and the computational tool, providing valuable resources for both experimental researchers who wish to find datasets relevant to their research and computational researchers who need comprehensive non-cancer perturbation transcriptomics datasets for developing novel algorithms. Overall, ChemPert will facilitate future in silico compound screening for non-cancer cells.
Collapse
Affiliation(s)
| | | | - Miren Bravo
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Bizkaia, Spain
| | - Fei Chen
- German Research Center for Artificial Intelligence (DFKI), 66123 Saarbrücken, Germany
| | - María-Luz Martínez-Chantar
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Bizkaia, Spain
| | - Antonio del Sol
- To whom correspondence should be addressed. Tel: +352 46 66 44 6982;
| |
Collapse
|
225
|
Gao S, Jiang X, Wang L, Jiang S, Luo H, Chen Y, Peng C. The pathogenesis of liver cancer and the therapeutic potential of bioactive substances. Front Pharmacol 2022; 13:1029601. [PMID: 36278230 PMCID: PMC9581229 DOI: 10.3389/fphar.2022.1029601] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Liver cancer is the third most common cause of cancer-related deaths in the world and has become an urgent problem for global public health. Bioactive substances are widely used for the treatment of liver cancer due to their widespread availability and reduced side effects. This review summarizes the main pathogenic factors involved in the development of liver cancer, including metabolic fatty liver disease, viral infection, and alcoholic cirrhosis, and focuses on the mechanism of action of bioactive components such as polysaccharides, alkaloids, phenols, peptides, and active bacteria/fungi. In addition, we also summarize transformation methods, combined therapy and modification of bioactive substances to improve the treatment efficiency against liver cancer, highlighting new ideas in this field.
Collapse
Affiliation(s)
- Song Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xingyue Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liang Wang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shanshan Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hanyuan Luo
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yan Chen, ; Cheng Peng,
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yan Chen, ; Cheng Peng,
| |
Collapse
|
226
|
Wu L, Zhang Y, Wang Z, Zhang Y, Zou J, Qiu L. Aptamer-Based Cancer Cell Analysis and Treatment. ChemistryOpen 2022; 11:e202200141. [PMID: 36264016 PMCID: PMC9583543 DOI: 10.1002/open.202200141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
Aptamers are a class of single-stranded DNA or RNA oligonucleotides that can exclusively bind to various targets with high affinity and selectivity. Regarded as "chemical antibodies", aptamers possess several intrinsic advantages, including easy synthesis, convenient modification, high programmability, and good biocompatibility. In recent decades, many studies have demonstrated the superiority of aptamers as molecular tools for various biological applications, particularly in the area of cancer theranostics. In this review, we focus on recent progress in developing aptamer-based strategies for the precise analysis and treatment of cancer cells.
Collapse
Affiliation(s)
- Limei Wu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering College of Biology, Aptamer Engineering Center of Hunan ProvinceHunan UniversityChangsha, Hunan410082P. R. China
| | - Yutong Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering College of Biology, Aptamer Engineering Center of Hunan ProvinceHunan UniversityChangsha, Hunan410082P. R. China
| | - Zhimin Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering College of Biology, Aptamer Engineering Center of Hunan ProvinceHunan UniversityChangsha, Hunan410082P. R. China
| | - Yue Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering College of Biology, Aptamer Engineering Center of Hunan ProvinceHunan UniversityChangsha, Hunan410082P. R. China
| | - Jianmei Zou
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and BioengineeringGuilin University of TechnologyGuilin, Guangxi541004P. R. China
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering College of Biology, Aptamer Engineering Center of Hunan ProvinceHunan UniversityChangsha, Hunan410082P. R. China
| |
Collapse
|
227
|
Chaudhry F, Munir R, Ashraf M, Mehr-un-Nisa, Huma R, Malik N, Hussain S, Ali Munawar M, Ain Khan M. Exploring Facile Synthesis and Cholinesterase Inhibiting Potential of Heteroaryl Substituted Imidazole Derivatives for the Treatment of Alzheimer’s Disease. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
228
|
Abdelgawad MA, Oh JM, Parambi DG, Kumar S, Musa A, Ghoneim MM, Nayl A, El-Ghorab AH, Ahmad I, Patel H, Kim H, Mathew B. Development of bromo- and fluoro-based α, β-unsaturated ketones as highly potent MAO-B inhibitors for the treatment of Parkinson's disease. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
229
|
Spices Volatilomic Fingerprinting—A Comprehensive Approach to Explore Its Authentication and Bioactive Properties. Molecules 2022; 27:molecules27196403. [PMID: 36234940 PMCID: PMC9570555 DOI: 10.3390/molecules27196403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Volatile organic metabolites (VOMs) present in different spices can provide distinct analytical biosignatures related to organoleptic properties and health benefits. This study aimed to establish the volatilomic fingerprint of six of the most consumed spices all over the world (saffron (Crocus sativus L.), cinnamon (Cinnamomum verum), cumin (Cuminum cyminum L.), black pepper, (Piper nigrum L.), sweet paprika (Capsicum annuum L.), and curry (a mix of different herbs and spices)). Based on headspace solid phase microextraction (HS-SPME) followed by gas chromatography-mass spectrometry (GC-MS) analysis, this is a powerful strategy to explore and establish the spice’s volatile pattern and unravel the potential health benefits related to the most important VOMs identified in each spice. This comprehensive knowledge will help in the definition of their authenticity, while simultaneously protecting against potential frauds and adulterations. A total of 162 VOMs were identified. Semi-quantitative assessments revealed that terpenoids and sesquiterpenoids amounted to the major volatile class in the investigated spices, except for cinnamon, where carbonyl compounds are the major group. Most of the studied spices comprised key characteristics of aroma and health bioactive compounds, e.g., dihydrojuneol in saffron, cinnamaldehyde in cinnamon, cuminaldehyde in cumin and curry, and caryophyllene in black pepper. The principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) successfully discriminated the investigated spices, being α-cubebene, 3-methyl butanal, β-patchoulene and β-selinene, the most important VOMs (highest VIP’s) that contributed to its discrimination. Moreover, some VOMs have a high influence on the spice’s bioactive potential, helping to prevent certain diseases including cancer, inflammatory-related diseases, diabetes, and cardiovascular diseases.
Collapse
|
230
|
Devan AR, Pavithran K, Nair B, Murali M, Nath LR. Deciphering the role of transforming growth factor-beta 1 as a diagnostic-prognostic-therapeutic candidate against hepatocellular carcinoma. World J Gastroenterol 2022; 28:5250-5264. [PMID: 36185626 PMCID: PMC9521521 DOI: 10.3748/wjg.v28.i36.5250] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/30/2022] [Accepted: 08/16/2022] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor-beta (TGF-β) is a multifunctional cytokine that performs a dual role as a tumor suppressor and tumor promoter during cancer progression. Among different ligands of the TGF-β family, TGF-β1 modulates most of its biological outcomes. Despite the abundant expression of TGF-β1 in the liver, steatosis to hepatocellular carcinoma (HCC) progression triggers elevated TGF-β1 levels, contributing to poor prognosis and survival. Additionally, elevated TGF-β1 levels in the tumor microenvironment create an immunosuppressive stage via various mechanisms. TGF-β1 has a prime role as a diagnostic and prognostic biomarker in HCC. Moreover, TGF-β1 is widely studied as a therapeutic target either as monotherapy or combined with immune checkpoint inhibitors. This review provides clinical relevance and up-to-date information regarding the potential of TGF-β1 in diagnosis, prognosis, and therapy against HCC.
Collapse
Affiliation(s)
- Aswathy R Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India
| | - Keechilat Pavithran
- Department of Medical Oncology and Hematology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India
| | - Maneesha Murali
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India
| |
Collapse
|
231
|
Gao Y, Lu Y, Zhang N, Udenigwe CC, Zhang Y, Fu Y. Preparation, pungency and bioactivity of gingerols from ginger ( Zingiber officinale Roscoe): a review. Crit Rev Food Sci Nutr 2022; 64:2708-2733. [PMID: 36135317 DOI: 10.1080/10408398.2022.2124951] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ginger has been widely used for different purposes, such as condiment, functional food, drugs, and cosmetics. Gingerols, the main pungent component in ginger, possess a variety of bioactivities. To fully understand the significance of gingerols in the food and pharmaceutical industry, this paper first recaps the composition and physiochemical properties of gingerols, and the major extraction and synthesis methods. Furthermore, the pungency and bioactivity of gingerols are reviewed. In addition, the food application of gingerols and future perspectives are discussed. Gingerols, characterized by a 3-methoxy-4-hydroxyphenyl moiety, are divided into gingerols, shogaols, paradols, zingerone, gingerdiones and gingerdiols. At present, gingerols are extracted by conventional, innovative, and integrated extraction methods, and synthesized by chemical, biological and in vitro cell synthesis methods. Gingerols can activate transient receptor potential vanilloid type 1 (TRPV1) and induce signal transduction, thereby exhibiting its pungent properties and bioactivity. By targeted mediation of various cell signaling pathways, gingerols display potential anticancer, antibacterial, blood glucose regulatory, hepato- and renal-protective, gastrointestinal regulatory, nerve regulatory, and cardiovascular protective effects. This review contributes to the application of gingerols as functional ingredients in the food and pharmaceutical industry.
Collapse
Affiliation(s)
- Yuge Gao
- College of Food Science, Southwest University, Chongqing, China
- Westa College, Southwest University, Chongqing, China
| | - Yujia Lu
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, China
| |
Collapse
|
232
|
Inhibition of Cholinesterases by Benzothiazolone Derivatives. Processes (Basel) 2022. [DOI: 10.3390/pr10091872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Thirteen benzothiazolone derivatives (M1–M13) were synthesized and evaluated for their inhibitory activity against cholinesterases (ChEs) and monoamine oxidases (MAOs). All the compounds inhibited ChEs more effectively than MAOs. In addition, most of the compounds showed higher inhibitory activities against butyrylcholinesterase (BChE) than acetylcholinesterase (AChE). Compound M13 most potently inhibited BChE with an IC50 value of 1.21 μM, followed by M2 (IC50 = 1.38 μM). Compound M2 had a higher selectivity index (SI) value for BChE over AChE (28.99) than M13 (4.16). The 6-methoxy indole group of M13 was expected to have a greater effect on BChE inhibitory activity than the other groups. Kinetics and reversibility tests showed that M13 was a reversible noncompetitive BChE inhibitor with a Ki value of 1.14 ± 0.21 μM. In a docking simulation, M13 is predicted to form a hydrogen bond with the backbone carbonyl group of Ser287 of BChE through its methoxy indole moiety and π−π interactions between its benzothiazolone group and the side chain of Trp82 with the five-membered pyrrole ring and with the six-membered benzene ring. From these results, it is suggested that M13 is a BChE inhibitor and a potential candidate agent for the treatment of Alzheimer’s disease.
Collapse
|
233
|
Development of Halogenated-Chalcones Bearing with Dimethoxy Phenyl Head as Monoamine Oxidase-B Inhibitors. Pharmaceuticals (Basel) 2022; 15:ph15091152. [PMID: 36145373 PMCID: PMC9503132 DOI: 10.3390/ph15091152] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Two series of dimethoxy-halogenated chalcones (DM1−DM20) were synthesized and tested for their ability to inhibit monoamine oxidase (MAOs). Compound DM2 exhibited the most significant inhibition against MAO-B with an IC50 value of 0.067 µM, followed by compound DM18 (IC50 = 0.118 µM), with selectivity index (SI) values of 93.88 and >338.98, respectively. However, none of the substances successfully inhibited MAO-A. The MAO-B inhibitors DM2 and DM18 were competitive and reversible, with Ki values of 0.032 ± 0.004 and 0.045 ± 0.001 µM, respectively. DM2 was non-toxic below 100 µg/mL in the cytotoxic test using the Vero epithelial cell line by the MTT method. According to molecular docking studies, DM2 and DM18 formed very similar conformations within the MAO-B binding pocket, with the ortho-chlorine and ortho-fluorine aromatic rings sandwiched between F168 and Y326. These conformations were predicted to show better interactions with the targeted MAO-B than MAO-A. In particular, the induced-fit docking of the dimethoxy phenyl ring of DM2 facing the hydrophobic pocket made up of FAD, Y398, and Y435 had an impact on F168 in the docking pocket. Taken together, DM2 and DM18 may be suitable candidates for treating neurodegenerative conditions such as Parkinson’s disease.
Collapse
|
234
|
Investigation of Anti-Liver Cancer Activity of the Herbal Drug FDY003 Using Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5765233. [PMID: 36118098 PMCID: PMC9481369 DOI: 10.1155/2022/5765233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022]
Abstract
Globally, liver cancer (LC) is the sixth-most frequently occurring and the second-most fatal malignancy, responsible for 0.83 million deaths annually. Although the application of herbal drugs in cancer therapies has increased, their anti-LC activity and relevant mechanisms have not been fully studied from a systems perspective. To address these issues, we conducted a system-perspective network pharmacological investigation into the activity and mechanisms underlying the action of the herbal drug. FDY003 reduced the viability of human LC treatment. FDY003 reduced the viability of human LC cells and elevated their chemosensitivity. There were a total of 16 potential bioactive chemical components in FDY003 and they had 91 corresponding targets responsible for the pathological processes in LC. These FDY003 targets were functionally involved in regulating the survival, proliferation, apoptosis, and cell cycle of LC cells. Additionally, we found that FDY003 may target key signaling cascades connected to diverse LC pathological mechanisms, namely, PI3K-Akt, focal adhesion, IL-17, FoxO, MAPK, and TNF pathways. Overall, this study contributed to integrative mechanistic insights into the anti-LC potential of FDY003.
Collapse
|
235
|
Wang M, Liu X, Chen T, Cheng X, Xiao H, Meng X, Jiang Y. Inhibition and potential treatment of colorectal cancer by natural compounds via various signaling pathways. Front Oncol 2022; 12:956793. [PMID: 36158694 PMCID: PMC9496650 DOI: 10.3389/fonc.2022.956793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is a common type of malignant digestive tract tumor with a high incidence rate worldwide. Currently, the clinical treatment of CRC predominantly include surgical resection, postoperative chemotherapy, and radiotherapy. However, these treatments contain severe limitations such as drug side effects, the risk of recurrence and drug resistance. Some natural compounds found in plants, fungi, marine animals, and bacteria have been shown to inhibit the occurrence and development of CRC. Although the explicit molecular mechanisms underlying the therapeutic effects of these compounds on CRC are not clear, classical signaling transduction pathways such as NF-kB and Wnt/β-catenin are extensively regulated. In this review, we have summarized the specific mechanisms regulating the inhibition and development of CRC by various types of natural compounds through nine signaling pathways, and explored the potential therapeutic values of these natural compounds in the clinical treatment of CRC.
Collapse
Affiliation(s)
- Mingchuan Wang
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianjun Liu
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Tong Chen
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianbin Cheng
- Department of Thyroid Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Huijie Xiao
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianglong Meng
- Department of Burns Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yang Jiang
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Yang Jiang,
| |
Collapse
|
236
|
Mukherjee AG, Wanjari UR, Namachivayam A, Murali R, Prabakaran DS, Ganesan R, Renu K, Dey A, Vellingiri B, Ramanathan G, Doss C. GP, Gopalakrishnan AV. Role of Immune Cells and Receptors in Cancer Treatment: An Immunotherapeutic Approach. Vaccines (Basel) 2022; 10:1493. [PMID: 36146572 PMCID: PMC9502517 DOI: 10.3390/vaccines10091493] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 12/07/2022] Open
Abstract
Cancer immunotherapy moderates the immune system's ability to fight cancer. Due to its extreme complexity, scientists are working to put together all the puzzle pieces to get a clearer picture of the immune system. Shreds of available evidence show the connection between cancer and the immune system. Immune responses to tumors and lymphoid malignancies are influenced by B cells, γδT cells, NK cells, and dendritic cells (DCs). Cancer immunotherapy, which encompasses adoptive cancer therapy, monoclonal antibodies (mAbs), immune checkpoint therapy, and CART cells, has revolutionized contemporary cancer treatment. This article reviews recent developments in immune cell regulation and cancer immunotherapy. Various options are available to treat many diseases, particularly cancer, due to the progress in various immunotherapies, such as monoclonal antibodies, recombinant proteins, vaccinations (both preventative and curative), cellular immunotherapies, and cytokines.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arunraj Namachivayam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - D. S. Prabakaran
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 28644, Korea
- Department of Biotechnology, Ayya Nadar Janaki Ammal College (Autonomous), Srivilliputhur Main Road, Sivakasi 626124, Tamil Nadu, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - George Priya Doss C.
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
237
|
Yücel Ç, Karatoprak GŞ, Açıkara ÖB, Akkol EK, Barak TH, Sobarzo-Sánchez E, Aschner M, Shirooie S. Immunomodulatory and anti-inflammatory therapeutic potential of gingerols and their nanoformulations. Front Pharmacol 2022; 13:902551. [PMID: 36133811 PMCID: PMC9483099 DOI: 10.3389/fphar.2022.902551] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Ginger (Zingiber officinale Roscoe), a member of the Zingiberaceae family, is one of the most popular spices worldwide, known since ancient times, and used both as a spice and a medicinal plant. The phenolic compounds found in ginger are predominantly gingerols, shogaols, and paradols. Gingerols are the major phenolic compounds found in fresh ginger and contain mainly 6-gingerol as well as 4-, 5-, 8-, 10-, and 12-gingerols. Gingerols possess a wide array of bioactivities, such as antioxidant and anticancer, among others. Regarding the different array of biological activities and published data on the mechanisms underlying its action, the complex interaction between three key events, including inflammation, oxidative stress, and immunity, appears to contribute to a plethora of pharmacological activities of this compound. Among these, the immunomodulatory properties of these compounds, which attract attention due to their effects on the immune system, have been the focus of many studies. Gingerols can alleviate inflammation given their ability to inhibit the activation of protein kinase B (Akt) and nuclear factor kappa B (NF-κB) signaling pathways, causing a decrease in proinflammatory and an increase in anti-inflammatory cytokines. However, given their low bioavailability, it is necessary to develop new and more effective strategies for treatment with gingerols. In order to overcome this problem, recent studies have addressed new drug delivery systems containing gingerols. In this review, the immunomodulatory activities of gingerol and its underlying mechanisms of action combined with the contributions of developed nanodrug delivery systems to this activity will be examined.
Collapse
Affiliation(s)
- Çiğdem Yücel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | | | | | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
- *Correspondence: Esra Küpeli Akkol, ; Eduardo Sobarzo-Sánchez,
| | - Timur Hakan Barak
- Department of Pharmacognosy, Faculty of Pharmacy, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Eduardo Sobarzo-Sánchez
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
- *Correspondence: Esra Küpeli Akkol, ; Eduardo Sobarzo-Sánchez,
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Park Avenue Bronx, NY, United States
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
238
|
Doelman W, van Kasteren SI. Synthesis of glycopeptides and glycopeptide conjugates. Org Biomol Chem 2022; 20:6487-6507. [PMID: 35903971 PMCID: PMC9400947 DOI: 10.1039/d2ob00829g] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/07/2022] [Indexed: 12/16/2022]
Abstract
Protein glycosylation is a key post-translational modification important to many facets of biology. Glycosylation can have critical effects on protein conformation, uptake and intracellular routing. In immunology, glycosylation of antigens has been shown to play a role in self/non-self distinction and the effective uptake of antigens. Improperly glycosylated proteins and peptide fragments, for instance those produced by cancerous cells, are also prime candidates for vaccine design. To study these processes, access to peptides bearing well-defined glycans is of critical importance. In this review, the key approaches towards synthetic, well-defined glycopeptides, are described, with a focus on peptides useful for and used in immunological studies. Special attention is given to the glycoconjugation approaches that have been developed in recent years, as these enable rapid synthesis of various (unnatural) glycopeptides, enabling powerful carbohydrate structure/activity studies. These techniques, combined with more traditional total synthesis and chemoenzymatic methods for the production of glycopeptides, should help unravel some of the complexities of glycobiology in the near future.
Collapse
Affiliation(s)
- Ward Doelman
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Sander I van Kasteren
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| |
Collapse
|
239
|
Kuriakose A, Nair B, Abdelgawad MA, Adewum AT, Soliman MES, Mathew B, Nath LR. Evaluation of the active constituents of Nilavembu Kudineer for viral replication inhibition against SARS-CoV-2: An approach to targeting RNA-dependent RNA polymerase (RdRp). J Food Biochem 2022; 46:e14367. [PMID: 35994404 PMCID: PMC9539176 DOI: 10.1111/jfbc.14367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 12/29/2022]
Abstract
The World Health Organization has declared the novel coronavirus (COVID-19) outbreak a global pandemic and emerging threat to people in the 21st century. SARS-CoV-2 constitutes RNA-Dependent RNA Polymerase (RdRp) viral proteins, a critical target in the viral replication process. No FDA-approved drug is currently available, and there is a high demand for therapeutic strategies against COVID-19. In search of the anti-COVID-19 compound from traditional medicine, we evaluated the active moieties from Nilavembu Kudineer (NK), a poly-herbal Siddha formulation recommended by AYUSH against COVID-19. We conducted a preliminary docking analysis of 355 phytochemicals (retrieved from PubChem and IMPPAT databases) present in NK against RdRp viral protein (PDB ID: 7B3B) using COVID-19 Docking Server and further with AutoDockTool-1.5.6. MD simulation studies confirmed that Orientin (L1), Vitexin (L2), and Kasuagamycin (L3) revealed better binding activity against RdRp (PDB ID: 7B3B) in comparison with Remdesivir. The study suggests a potential scaffold for developing drug candidates against COVID-19. PRACTICAL APPLICATIONS: Nilavembu Kudineer is a poly-herbal Siddha formulation effective against various diseases like cough, fever, breathing problems, etc. This study shows that different phytoconstituents identified from Nilavembu Kudineer were subjected to in silico and ADME analyses. Out of the former 355 phytochemical molecules, Orientin (L1), Vitexin (L2), and Kasuagamycin (L3) showed better binding activity against RdRp viral protein (PDB ID: 7B3B) in comparison with the synthetic repurposed drug. Our work explores the search for an anti-COVID-19 compound from traditional medicine like Nilavembu Kudineer, which can be a potential scaffold for developing drug candidates against COVID-19.
Collapse
Affiliation(s)
- Anisha Kuriakose
- Department of PharmacognosyAmrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences CampusKochiIndia,Department of PharmacologyAmrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences CampusKochiIndia
| | - Bhagyalakshmi Nair
- Department of PharmacognosyAmrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences CampusKochiIndia,Department of PharmacologyAmrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences CampusKochiIndia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical ChemistryCollege of Pharmacy, Jouf UniversitySakakaAl JoufSaudi Arabia
| | - Adeniyi T. Adewum
- Molecular Bio‐Computation and Drug Design LaboratorySchool of Health Sciences, University of KwaZulu‐Natal, Westville CampusDurbanSouth Africa
| | - Mahmoud E. S. Soliman
- Molecular Bio‐Computation and Drug Design LaboratorySchool of Health Sciences, University of KwaZulu‐Natal, Westville CampusDurbanSouth Africa
| | - Bijo Mathew
- Department of Pharmaceutical ChemistryAmrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences CampusKochiIndia
| | - Lekshmi R. Nath
- Department of PharmacognosyAmrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences CampusKochiIndia
| |
Collapse
|
240
|
A M A, C M SS, Nair KR, V S A, Arumugam T, P UD, Sk K. Large Cardamom Extract Enhances Ramipril's Vasoprotective Action in the Aorta by Modulating Endothelial Redox Biology. An Evaluation based on In-silico and In-vitro Research. Curr Comput Aided Drug Des 2022; 18:CAD-EPUB-125708. [PMID: 35996271 DOI: 10.2174/1573409918666220820160834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/02/2022] [Accepted: 06/17/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The mechanisms that cause a patient's blood pressure to rise are diverse. Controlling blood pressure with monotherapy acting through a single pathway may be unachievable. Combining a clinically used medication with herbal medicine can result in an antihypertensive effect that is two to five times greater than monotherapy. METHOD This study examined the effects of aqueous extracts of large cardamom and ramipril on the redox biology of nitric oxide and vascular reactivity in the isolated aorta incubated with a nitro-L-arginine methyl ester. Molecular docking study was performed to predict the affinity of constituents of large cardamom extracts with the NOX 2 gene. RESULTS Nitric oxide (NO) levels, disordered antioxidant enzymes (glutathione and catalase), NADPH oxidase and lipid peroxidation were recovered when aqueous extract of large cardamom and ramipril were combined. A gradual increase in the percentage relaxation of acetylcholine in phenylephrine pre-contracted aorta indicates that the combination therapy prevents endothelial damage. The molecular docking study reveals the important phytoconstituents present in the large cardamom that can effectively bind with the NADPH oxidase for its antioxidant activity. Consculsion: According to our findings, it was evidenced that the large cardamom extract's vasoprotective action was mostly related to its ability to restore endothelial redox biology by suppressing NADPH oxidase activity. Our findings suggest that ramipril's direct impact on the eNOS/NO system, along with the antioxidant properties of AELC, could have a synergetic benefit in the treatment of hypertension, as well as lessen ramipril's existing side effects.
Collapse
Affiliation(s)
- Amritha A M
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India-682041
| | - Shakhi Shylesh C M
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India-682041
| | - Kavyanjana R Nair
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, , India-682041
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, , India-682041
| | - Arya V S
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India-682041
| | - Thennavan Arumugam
- Central Lab Animal Facility, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India-682041
| | - Uma Devi P
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India-682041
| | - Kanthlal Sk
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India-682041
| |
Collapse
|
241
|
A systematic review of anti-cancer roles and mechanisms of kaempferol as a natural compound. Cancer Cell Int 2022; 22:260. [PMID: 35986346 PMCID: PMC9392350 DOI: 10.1186/s12935-022-02673-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/02/2022] [Indexed: 12/13/2022] Open
Abstract
It has been shown in multiple experimental and biological investigations that kaempferol, an edible flavonoid generated from plants, may be used as an anti-cancer drug and has been shown to have anti-cancer properties. Many signaling pathways are altered in cancer cells, resulting in cell growth inhibition and death in various tumor types. Cancer is a multifaceted illness coordinated by multiple external and internal mechanisms. Natural extracts with the fewest side effects have piqued the attention of researchers in recent years, attempting to create cancer medicines based on them. An extensive array of natural product-derived anti-cancer agents have been examined to find a successful method. Numerous fruits and vegetables have high levels of naturally occurring flavonoid kaempferol, and its pharmacological and biological effects have been studied extensively. Certain forms of cancer are sensitive to kaempferol-mediated anti-cancer activity, although complete research is needed. We have endeavored to concentrate our review on controlling carcinogenic pathways by kaempferol in different malignancies. Aside from its extraordinary ability to modify cell processes, we have also discussed how kaempferol has the potential to be an effective therapy for numerous tumors.
Collapse
|
242
|
Chitosan and its derivatives as polymeric anti-viral therapeutics and potential anti-SARS-CoV-2 nanomedicine. Carbohydr Polym 2022; 290:119500. [PMID: 35550778 PMCID: PMC9020865 DOI: 10.1016/j.carbpol.2022.119500] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 01/07/2023]
Abstract
The coronavirus pandemic, COVID-19 has a global impact on the lives and livelihoods of people. It is characterized by a widespread infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), where infected patients may develop serious medical complications or even face death. Development of therapeutic is essential to reduce the morbidity and mortality of infected patients. Chitosan is a versatile biomaterial in nanomedicine and exhibits anti-microbial, anti-cancer and immunomodulatory properties. This review highlights the progress in chitosan design and application pertaining to the anti-viral effects of chitosan and chitosan derivatives (hydroxypropyl trimethylammonium, sulfate, carboxymethyl, bromine, sialylglycopolymer, peptide and phosphonium conjugates) as a function of molecular weight, degree of deacetylation, type of substituents and their degree and site of substitution. The physicochemical attributes of these polymeric therapeutics are identified against the possibility of processing them into nanomedicine which can confer a higher level of anti-viral efficacy. The designs of chitosan for the purpose of targeting SARS-CoV-2, as well as the ever-evolving strains of viruses with a broad spectrum anti-viral activity to meet pandemic preparedness at the early stages of outbreak are discussed.
Collapse
|
243
|
siRNA targeting PD-L1 delivered with attenuated Salmonella enhanced the anti-tumor effect of lenvatinib on mice bearing Hepatocellular carcinoma. Int Immunopharmacol 2022; 111:109127. [PMID: 35964407 DOI: 10.1016/j.intimp.2022.109127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022]
Abstract
Hepatocellular carcinoma (HCC) is a primary liver cancer representing serious harm to human health. The effective treatment of HCC is challenging. Lenvatinib is an inhibitor of polytyrosine kinase that exerts an effect against HCC by blocking the VEGF signaling pathway. However, its efficacy in most patients remains unsatisfactory. The factors influencing tumorigenesis are diverse; thus, combined treatment is an important strategy against tumors. Programmed death ligand-1 (PD-L1), which binds to programmed death-1 (PD-1), significantly compromises the anti-tumor effect of T cells. Therefore, we designed a siRNA-PD-L1 and delivered it using attenuated Salmonella, and its synergistic effects with Lenvatinib against HCC were evaluated. The results showed that the combination of Lenvatinib and siRNA-PD-L1 inhibited tumor growth in H22 tumor-bearing mice, arrested cell proliferation, and increased cell apoptosis in the tumor. The combination treatment synergistically inhibited the expression of VEGF and PD-L1 and contributed to the increase in T-cell infiltration in the tumor tissues and the ratio of T cells in the spleen. Furthermore, the combination treatment increased the number of granzyme B+ T cells, indicating a significantly improved anti-tumor immunity in mice. Therefore, this combination might be a potential novel strategy for HCC treatment.
Collapse
|
244
|
Application of mRNA Technology in Cancer Therapeutics. Vaccines (Basel) 2022; 10:vaccines10081262. [PMID: 36016150 PMCID: PMC9415393 DOI: 10.3390/vaccines10081262] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
mRNA-based therapeutics pose as promising treatment strategies for cancer immunotherapy. Improvements in materials and technology of delivery systems have helped to overcome major obstacles in generating a sufficient immune response required to fight a specific type of cancer. Several in vivo models and early clinical studies have suggested that various mRNA treatment platforms can induce cancer-specific cytolytic activity, leading to numerous clinical trials to determine the optimal method of combinations and sequencing with already established agents in cancer treatment. Nevertheless, further research is required to optimize RNA stabilization, delivery platforms, and improve clinical efficacy by interacting with the tumor microenvironment to induce a long-term antitumor response. This review provides a comprehensive summary of the available evidence on the recent advances and efforts to overcome existing challenges of mRNA-based treatment strategies, and how these efforts play key roles in offering perceptive insights into future considerations for clinical application.
Collapse
|
245
|
Prasher P, Sharma M, Singh SK, Gulati M, Jha NK, Gupta PK, Gupta G, Chellappan DK, Zacconi F, de Jesus Andreoli Pinto T, Chan Y, Liu G, Paudel K, Hansbro PM, George Oliver BG, Dua K. Targeting mucus barrier in respiratory diseases by chemically modified advanced delivery systems. Chem Biol Interact 2022; 365:110048. [PMID: 35932910 DOI: 10.1016/j.cbi.2022.110048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 11/26/2022]
Abstract
Mucus gel constitutes of heavily cross-linked mucin fibers forming a viscoelastic, dense porous network that coats all the exposed epithelia not covered with the skin. The layer provides protection to the underlying gastrointestinal, respiratory, and female reproductive tracts, in addition to the organs such as the surface of eye by trapping the pathogens, irritants, environmental fine particles, and potentially hazardous foreign matter. However, this property of mucus gel poses a substantial challenge for realizing the localized and sustained drug delivery across the mucosal surfaces. The mucus permeating particles that spare the protective properties of mucus gel improve the therapeutic potency of the drugs aimed at the management of diseases, including sexually transmitted infections, lung cancer, irritable bowel disease, degenerative eye diseases and infections, and cystic fibrosis. As such, the mucoadhesive materials conjugated with drug molecules display a prolonged retention time in the mucosal gel that imparts a sustained release of the deliberated drug molecules across the mucosa. The contemporarily developed mucus penetrating materials for drug delivery applications comprise of a finer size, appreciable hydrophilicity, and a neutral surface to escape the entrapment within the cross-inked mucus fibers. Pertaining to the mucus secretion as a first line of defence in respiratory tract in response to the invading physical, chemical, and biological pathogens, the development of mucus penetrating materials hold promise as a stalwart approach for revolutionizing the respiratory drug delivery paradigm. The present review provides an epigrammatic collation of the mucus penetrating/mucoadhesive materials for achieving a controlled/sustained release of the cargo pharmaceutics and drug molecules across the respiratory mucus barrier.
Collapse
Affiliation(s)
- Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun, 248007, India
| | - Mousmee Sharma
- Department of Chemistry, Uttaranchal University, Dehradun, 248007, India
| | - Sachin Kumar Singh
- School of Pharmacy and Pharmaceutical Science, Lovely Professional University, India
| | - Monica Gulati
- School of Pharmacy and Pharmaceutical Science, Lovely Professional University, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, 201310, UP, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | - Dinesh Kumar Chellappan
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Flavia Zacconi
- Departamento de Quimica Organica, Facultad de Quimica y de Farmacia, Pontificia Universidad Catolica de Chile, Av. Vicuna Mackenna 4860, Macul, Santiago, 7820436, Chile; Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | - Terezinha de Jesus Andreoli Pinto
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Professor Lineu Prestes Street, São Paulo, 05508-000, Brazil
| | - Yinghan Chan
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Gang Liu
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Keshav Paudel
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Brian Gregory George Oliver
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| |
Collapse
|
246
|
Rendić SP, Crouch RD, Guengerich FP. Roles of selected non-P450 human oxidoreductase enzymes in protective and toxic effects of chemicals: review and compilation of reactions. Arch Toxicol 2022; 96:2145-2246. [PMID: 35648190 PMCID: PMC9159052 DOI: 10.1007/s00204-022-03304-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2022]
Abstract
This is an overview of the metabolic reactions of drugs, natural products, physiological compounds, and other (general) chemicals catalyzed by flavin monooxygenase (FMO), monoamine oxidase (MAO), NAD(P)H quinone oxidoreductase (NQO), and molybdenum hydroxylase enzymes (aldehyde oxidase (AOX) and xanthine oxidoreductase (XOR)), including roles as substrates, inducers, and inhibitors of the enzymes. The metabolism and bioactivation of selected examples of each group (i.e., drugs, "general chemicals," natural products, and physiological compounds) are discussed. We identified a higher fraction of bioactivation reactions for FMO enzymes compared to other enzymes, predominately involving drugs and general chemicals. With MAO enzymes, physiological compounds predominate as substrates, and some products lead to unwanted side effects or illness. AOX and XOR enzymes are molybdenum hydroxylases that catalyze the oxidation of various heteroaromatic rings and aldehydes and the reduction of a number of different functional groups. While neither of these two enzymes contributes substantially to the metabolism of currently marketed drugs, AOX has become a frequently encountered route of metabolism among drug discovery programs in the past 10-15 years. XOR has even less of a role in the metabolism of clinical drugs and preclinical drug candidates than AOX, likely due to narrower substrate specificity.
Collapse
Affiliation(s)
| | - Rachel D Crouch
- College of Pharmacy and Health Sciences, Lipscomb University, Nashville, TN, 37204, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| |
Collapse
|
247
|
Network analysis and ligand-based pharmacophore modeling for discovery of small molecule against glioblastoma multiforme. Future Med Chem 2022; 14:1203-1218. [PMID: 35912955 DOI: 10.4155/fmc-2022-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: This study uses network pharmacology to design a c-Src inhibitor followed by pharmacophore modeling to combat glioblastoma multiforme. These in silico approaches are suitable for designing and developing new molecules of interest. Materials & methods: The authors performed virtual screening, pharmacophore analysis and validation of results using various in silico tools and reliable data from different types of literature and databases. Results: The in silico pipeline the authors followed produced reliable chemical information to combat glioblastoma. The authors identified a chemical template against the c-Src protein, which was validated statistically and computationally. Conclusion: The authors have successfully identified a chemical template against c-Src, which will be developed into a promising inhibitor in future studies.
Collapse
|
248
|
Cheng-Sánchez I, Moya-Utrera F, Porras-Alcalá C, López-Romero JM, Sarabia F. Antibody-Drug Conjugates Containing Payloads from Marine Origin. Mar Drugs 2022; 20:md20080494. [PMID: 36005497 PMCID: PMC9410405 DOI: 10.3390/md20080494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/10/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are an important class of therapeutics for the treatment of cancer. Structurally, an ADC comprises an antibody, which serves as the delivery system, a payload drug that is a potent cytotoxin that kills cancer cells, and a chemical linker that connects the payload with the antibody. Unlike conventional chemotherapy methods, an ADC couples the selective targeting and pharmacokinetic characteristics related to the antibody with the potent cytotoxicity of the payload. This results in high specificity and potency by reducing off-target toxicities in patients by limiting the exposure of healthy tissues to the cytotoxic drug. As a consequence of these outstanding features, significant research efforts have been devoted to the design, synthesis, and development of ADCs, and several ADCs have been approved for clinical use. The ADC field not only relies upon biology and biochemistry (antibody) but also upon organic chemistry (linker and payload). In the latter, total synthesis of natural and designed cytotoxic compounds, together with the development of novel synthetic strategies, have been key aspects of the consecution of clinical ADCs. In the case of payloads from marine origin, impressive structural architectures and biological properties are observed, thus making them prime targets for chemical synthesis and the development of ADCs. In this review, we explore the molecular and biological diversity of ADCs, with particular emphasis on those containing marine cytotoxic drugs as the payload.
Collapse
Affiliation(s)
- Iván Cheng-Sánchez
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Correspondence:
| | - Federico Moya-Utrera
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; (F.M.-U.); (C.P.-A.); (J.M.L.-R.); (F.S.)
| | - Cristina Porras-Alcalá
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; (F.M.-U.); (C.P.-A.); (J.M.L.-R.); (F.S.)
| | - Juan M. López-Romero
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; (F.M.-U.); (C.P.-A.); (J.M.L.-R.); (F.S.)
| | - Francisco Sarabia
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; (F.M.-U.); (C.P.-A.); (J.M.L.-R.); (F.S.)
| |
Collapse
|
249
|
Son JA, Lee SK, Park J, Jung MJ, An SE, Yang HJ, Son SH, Kim KR, Park KK, Chung WY. Platycodin D Inhibits Vascular Endothelial Growth Factor-Induced Angiogenesis by Blocking the Activation of Mitogen-Activated Protein Kinases and the Production of Interleukin-8. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1645-1661. [PMID: 35848124 DOI: 10.1142/s0192415x22500690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Platycodin D is a major constituent in the root of Platycodon grandiflorum and has diverse pharmacologic activities, including anti-inflammatory, anti-allergic, and antitumor activities. Vascular endothelial growth factor (VEGF) and interleukin-8 (IL-8) are potent angiogenic factors and contribute to tumor angiogenesis by directly and indirectly promoting angiogenic processes, including the proliferation, adhesion, migration, and tube formation of endothelial cells. Here, we found that platycodin D at noncytotoxic concentrations inhibited VEGF-induced proliferation, adhesion to the extracellular matrix proteins fibronectin and vitronectin, chemotactic motility, and tube formation of human umbilical vein endothelial cells (HUVECs). Platycodin D reduced the phosphorylation of extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK) and the secretion of IL-8 in VEGF-stimulated HUVECs. Moreover, platycodin D inhibited tube formation and the phosphorylation of ERK and p38 in IL-8-stimulated HUVECs. The in vitro anti-angiogenic activity of platycodin D was confirmed by in vivo experimental models. Platycodin D inhibited the formation of new blood vessels into mouse Matrigel plugs with VEGF or IL-8. In mice injected with MDA-MB-231 human breast cancer cells, orally administered platycodin D inhibited tumor growth, the number of CD34 [Formula: see text]vessels, and the expression of VEGF and IL-8. Taken together, platycodin D directly and indirectly prevents VEGF-induced and IL-8-induced angiogenesis by blocking the activation of mitogen-activated protein kinases (MAPKs). Platycodin D may be beneficial for the prevention or treatment of tumor angiogenesis and angiogenesis-related human diseases.
Collapse
Affiliation(s)
- Ju-Ah Son
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Sun Kyoung Lee
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Junhee Park
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Min Ju Jung
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul 03722, Republic of Korea
| | - So-Eun An
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul 03722, Republic of Korea
| | - Hye Ji Yang
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul 03722, Republic of Korea
| | - Seung Hwa Son
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Ki Rim Kim
- Department of Dental Hygiene, College of Science and Engineering, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Kwang-Kyun Park
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Won-Yoon Chung
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
250
|
Lauer UM, Beil J. Oncolytic viruses: challenges and considerations in an evolving clinical landscape. Future Oncol 2022; 18:2713-2732. [PMID: 35818970 DOI: 10.2217/fon-2022-0440] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite advances in treatment, cancer remains a leading cause of death worldwide. Although treatment strategies are continually progressing, cancers have evolved many mechanisms for evading therapies and the host immune system. Oncolytic viruses (OVs) could provide a much-needed option for cancers that are resistant to existing treatments. OVs can be engineered to specifically target and kill cancer cells, while simultaneously triggering an immune response at the site of infection. This review will focus on the challenges of developing a successful OV and translation to clinical practice, discussing the innovative strategies that are being used to optimize the potential of OVs. Here, we will also explore the current clinical landscape and the prospects of OVs in early clinical development.
Collapse
Affiliation(s)
- Ulrich M Lauer
- Department of Internal Medicine VIII, Virotherapy Center Tübingen, Medical Oncology & Pneumology, Medical University Hospital Tübingen, Otfried-Mueller-Str. 10, Tübingen, 72076, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Tübingen, Otfried-Mueller-Str. 10, Tübingen, 72076, Germany
| | - Julia Beil
- Department of Internal Medicine VIII, Virotherapy Center Tübingen, Medical Oncology & Pneumology, Medical University Hospital Tübingen, Otfried-Mueller-Str. 10, Tübingen, 72076, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Tübingen, Otfried-Mueller-Str. 10, Tübingen, 72076, Germany
| |
Collapse
|