201
|
Mathebula D, Amankwah A, Amouzouvi K, Assamagan KA, Azote S, Fajemisin JA, Fankam Fankame JB, Guga A, Kamwela M, Kanduza MM, Mabote TS, Macucule FF, Muronga A, Njeri A, Oluwole MO, Paulo CM. Modelling the impact of vaccination on COVID-19 in African countries. PLoS Comput Biol 2024; 20:e1012456. [PMID: 39441851 PMCID: PMC11498717 DOI: 10.1371/journal.pcbi.1012456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/04/2024] [Indexed: 10/25/2024] Open
Abstract
The rapid development of vaccines to combat the spread of COVID-19, caused by the SARS-CoV-2 virus, is a great scientific achievement. Before the development of the COVID-19 vaccines, most studies capitalized on the available data that did not include pharmaceutical measures. Such studies focused on the impact of non-pharmaceutical measures such as social distancing, sanitation, use of face masks, and lockdowns to study the spread of COVID-19. In this study, we used the SIDARTHE-V model, an extension of the SIDARTHE model, which includes vaccination rollouts. We studied the impact of vaccination on the severity of the virus, specifically focusing on death rates, in African countries. The SIRDATHE-V model parameters were extracted by simultaneously fitting the COVID-19 cumulative data of deaths, recoveries, active cases, and full vaccinations reported by the governments of Ghana, Kenya, Mozambique, Nigeria, South Africa, Togo, and Zambia. Using South Africa as a case study, our analysis showed that the cumulative death rates declined drastically with the increased extent of vaccination drives. Whilst the infection rates sometimes increased with the arrival of new coronavirus variants, the death rates did not increase as they did before vaccination.
Collapse
Affiliation(s)
- Dephney Mathebula
- Department of Decision Sciences, University of South Africa, Pretoria, South Africa
| | - Abigail Amankwah
- Department of Mathematics, University of Cape Coast, Cape Coast, Ghana
| | - Kossi Amouzouvi
- ScaDS.AI Dresden/Leipzig, TU Dresden, Dresden, Germany
- Department of Mathematics, KNUST, Kumasi, Ghana
| | - Kétévi Adiklè Assamagan
- Brookhaven National Laboratory, Physics Department, Upton, New York, United States of America
| | - Somiealo Azote
- Department of Physics, Syracuse University, Syracuse, New York, United States of America
| | | | | | - Aluwani Guga
- Department of Physics, University of Cape, Cape Town, South Africa
| | - Moses Kamwela
- Pharmacology Department, Lusaka Apex Medical University, Lusaka, Zambia
| | | | - Toivo Samuel Mabote
- Department of Physics and Electronics, Rhodes University, Grahamstown, South Africa
| | | | | | - Ann Njeri
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | | | | |
Collapse
|
202
|
Fang JY, Yamamoto H, Romman AN, Koutrouvelis A, Yamamoto S. Comparative Efficacy of Spinal Cord Stimulation in the Management of Acute Pain and Chronic Pain Related to Failed Back Surgery Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Cureus 2024; 16:e71132. [PMID: 39525214 PMCID: PMC11550870 DOI: 10.7759/cureus.71132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Spinal cord stimulation (SCS) is a well-established treatment for chronic pain. However, its potential in acute pain management requires further investigation. The goal of this review is to assess and compare the effectiveness of SCS for managing acute postoperative pain against chronic pain associated with failed back surgery syndrome (FBSS). A comprehensive search of databases identified randomized controlled trials (RCTs) that examined SCS for both acute and chronic pain associated with FBSS. Pain relief was measured using the Visual Analog Scale (VAS) and Numeric Rating Scale (NRS). Study quality was evaluated using the Jadad score and Cochrane risk of bias tool. Evidence suggests that SCS significantly reduces acute pain, achieving over a 50% reduction in VAS scores. For chronic pain associated with FBSS, SCS demonstrated substantial efficacy, with a mean reduction of -2.45 on pain scales compared to baseline. When compared to optimal medical management (OMM), SCS was more effective, showing a mean reduction of -1.17 in pain scores for FBSS. Overall, SCS offers significant benefits in managing chronic pain, particularly in FBSS, by reducing pain intensity and opioid use. While the initial findings for acute pain relief are promising, further high-quality RCTs are needed to better understand SCS's role in preventing the transition from acute to chronic pain. Continued research into optimizing patient selection and stimulation parameters will be essential to improve therapeutic outcomes in both acute and chronic pain management.
Collapse
Affiliation(s)
- Jaden Y Fang
- Anesthesiology, University of Texas Medical Branch (UTMB), Galveston, USA
| | - Hideaki Yamamoto
- Biological Sciences, University of California San Diego, San Diego, USA
| | - Adam N Romman
- Anesthesiology, University of Texas Medical Branch (UTMB), Galveston, USA
| | | | - Satoshi Yamamoto
- Anesthesiology, University of Texas Medical Branch (UTMB), Galveston, USA
| |
Collapse
|
203
|
Selvam KP, Kosalram K, Chinnaiyan S. Post-COVID pandemic: The new normal and aftermath. J Family Med Prim Care 2024; 13:4308-4314. [PMID: 39629428 PMCID: PMC11610867 DOI: 10.4103/jfmpc.jfmpc_313_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/30/2024] [Accepted: 04/19/2024] [Indexed: 12/07/2024] Open
Abstract
Background The COVID-19 pandemic has brought about unparalleled worldwide transformations, impacting all facets of human existence, including health systems, economies, societal norms, and individual behaviors. Aim The goal is to comprehend the enduring alterations in public health strategies, economic recuperation processes, changes in work and education paradigms, and the psychological consequences for populations globally. Methods and Materials This analysis uses a multidisciplinary approach by incorporating data from healthcare studies, economic reports, educational research, and psychological assessments. It aims to offer a comprehensive perspective on the world after the pandemic. Results The findings suggest that the "New Normal" encompasses a wide range of changes, such as a greater dependence on digital technology, a transition toward remote work and learning, substantial modifications in global supply chains, and a revised outlook on health and wellness. The potential long-term consequences of these changes indicate that some may provide opportunities for innovation and expansion, whereas others present challenges that necessitate strategic planning and policy interventions. Conclusion The aftermath of the COVID-19 pandemic presents a critical moment for global leaders, policymakers, and individuals to navigate the complexities of a transformed world, emphasizing the need for resilience, adaptability, and a renewed commitment to collective well-being.
Collapse
Affiliation(s)
- Keerthi Panneer Selvam
- SRM School of Public Health, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, India
| | - Kalpana Kosalram
- SRM School of Public Health, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, India
| | - Saravanan Chinnaiyan
- SRM School of Public Health, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, India
| |
Collapse
|
204
|
Shirvalkar P. Neuromodulation for Neuropathic Pain Syndromes. Continuum (Minneap Minn) 2024; 30:1475-1500. [PMID: 39445930 DOI: 10.1212/con.0000000000001485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
OBJECTIVE This article reviews the principles, applications, and emerging trends of neuromodulation as a therapeutic approach for managing painful neuropathic diseases. By parsing evidence for possible mechanisms of action and clinical trial outcomes for various diseases, this article focuses on five common therapy modalities: cutaneous, peripheral nerve, spinal cord, and brain stimulation, and intrathecal drug delivery. LATEST DEVELOPMENTS Recent advances in both invasive and noninvasive neuromodulation for pain have introduced personalized and closed-loop techniques, integrating real-time feedback mechanisms and combining therapies to improve physical and psychosocial function. Novel stimulation waveforms may influence distinct neural tissues to rectify pathologic pain signaling. ESSENTIAL POINTS With appropriate patient selection, peripheral nerve stimulation or epidural stimulation of the spinal cord can provide enduring relief for a variety of chronic pain syndromes. Newer technology using high frequencies, unique waveforms, or closed-loop stimulation may have selective advantages, but our current understanding of therapy mechanisms is very poor. For certain diagnoses and patients who meet clinical criteria, neuromodulation can provide profound, long-lasting relief that significantly improves quality of life. While many therapies are supported by data from large clinical trials, there is a risk of bias as most clinical studies were funded by device manufacturers or insurance companies, which increases the importance of real-world data analysis. Emerging methods like invasive or noninvasive brain stimulation may help us dissect basic mechanisms of pain processing and hold promise for personalized therapies for refractory pain syndromes. Finally, intrathecal delivery of drugs directly to segments of the spinal cord can also modify pain signaling to provide therapy for severe pain syndromes.
Collapse
|
205
|
Rader NA, Lee KS, Loes AN, Miller-Stump OA, Cooper M, Wong TY, Boehm DT, Barbier M, Bevere JR, Heath Damron F. Influenza virus strains expressing SARS-CoV-2 receptor binding domain protein confer immunity in K18-hACE2 mice. Vaccine X 2024; 20:100543. [PMID: 39221180 PMCID: PMC11364132 DOI: 10.1016/j.jvacx.2024.100543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease (COVID-19), rapidly spread across the globe in 2019. With the emergence of the Omicron variant, COVID-19 shifted into an endemic phase. Given the anticipated rise in cases during the fall and winter seasons, the strategy of implementing seasonal booster vaccines for COVID-19 is becoming increasingly valuable to protect public health. This practice already exists for seasonal influenza vaccines to combat annual influenza seasons. Our goal was to investigate an easily modifiable vaccine platform for seasonal use against SARS-CoV-2. In this study, we evaluated the genetically modified influenza virus ΔNA(RBD) as an intranasal vaccine candidate for COVID-19. This modified virus was engineered to replace the coding sequence for the neuraminidase (NA) protein with a membrane-anchored form of the receptor binding domain (RBD) protein of SARS-CoV-2. We designed experiments to assess the protection of ΔNA(RBD) in K18-hACE2 mice using lethal (Delta) and non-lethal (Omicron) challenge models. Controls of COVID-19 mRNA vaccine and our lab's previously described intranasal virus like particle vaccine were used as comparisons. Immunization with ΔNA(RBD) expressing ancestral RBD elicited high anti-RBD IgG levels in the serum of mice, high anti-RBD IgA in lung tissue, and improved survival after Delta variant challenge. Modifying ΔNA(RBD) to express Omicron variant RBD shifted variant-specific antibody responses and limited viral burden in the lungs of mice after Omicron variant challenge. Overall, this data suggests that ΔNA(RBD) could be an effective intranasal vaccine platform that generates mucosal and systemic immunity towards SARS-CoV-2.
Collapse
Affiliation(s)
- Nathaniel A. Rader
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Katherine S. Lee
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Andrea N. Loes
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98103, USA
| | - Olivia A. Miller-Stump
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Melissa Cooper
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Ting Y. Wong
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Dylan T. Boehm
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Justin R. Bevere
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - F. Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| |
Collapse
|
206
|
Grajales DB, Kar S. Exploring Monkeypox: prospects for therapeutics through computational-aided drug discovery. Mol Divers 2024; 28:3497-3521. [PMID: 38079063 DOI: 10.1007/s11030-023-10767-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2024]
Abstract
Monkeypox virus (MPXV) has emerged as a significant public health concern due to its potential for human transmission and its severe clinical manifestations. This review synthesizes findings from peer-reviewed articles spanning the last two decades, shedding light on diverse aspects of MPXV research. The exploration commences with an analysis of transmission dynamics, including zoonotic and human-to-human transmission, and potential reservoir hosts. Detailed insights into viral replication mechanisms illuminate its influence on disease progression and pathogenicity. Understanding the genomic and virion structure of MPXV is pivotal for targeted interventions. Genomic characteristics contributing to virulence are examined, alongside recent advancements in virion structure elucidation through cutting-edge imaging techniques. Emphasizing combat strategies, the review lists potential protein targets within the MPXV lifecycle for computer-aided drug design (CADD). The role of protein-ligand interactions and molecular docking simulations in identifying potential drug candidates is highlighted. Despite the absence of approved MPXV medications, the review outlines updates on ongoing small molecules and vaccine development efforts, spanning traditional and innovative platforms. The evolving landscape of computational drug research for MPXV is explored, encompassing advanced algorithms, machine learning, and high-performance computing. In conclusion, this review offers a holistic perspective on MPXV research by integrating insights spanning transmission dynamics to drug design. Equipping researchers with multifaceted understanding underscore the importance of innovative methodologies and interdisciplinary collaborations in addressing MPXV's challenges as research advances.
Collapse
Affiliation(s)
- Daniela Bermeo Grajales
- Chemometrics and Molecular Modeling Laboratory, Department of Chemistry, Kean University, 1000 Morris Avenue, Union, NJ, 07083, USA
| | - Supratik Kar
- Chemometrics and Molecular Modeling Laboratory, Department of Chemistry, Kean University, 1000 Morris Avenue, Union, NJ, 07083, USA.
| |
Collapse
|
207
|
Gupta A, Potty AG. Autologous Peripheral Blood-Derived Orthobiologics for the Management of Hip Osteoarthritis: A Systematic Review of Current Clinical Evidence. Cureus 2024; 16:e70985. [PMID: 39507183 PMCID: PMC11539075 DOI: 10.7759/cureus.70985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Osteoarthritis (OA) of the hip affects millions of people with a sizable health-related economic burden. Conventional treatment modalities are prioritized, turning to surgical intervention only when they have failed. Nevertheless, these approaches have flaws, regularly trying to provide symptomatic pain relief instead of focusing on the underlying etiology. The last two decades have seen a significant increase in the use of autologous peripheral blood-derived orthobiologics (APBOs) for managing musculoskeletal disorders, including OA of the hip. Platelet-rich plasma (PRP) is the most regularly used APBO. Yet, studies have shown its inefficacy in improving pain and function along with a high incidence of reporting bias in systematic reviews and meta-analyses involving PRP injections for hip OA. Thus, the potential of using other APBOs, including platelet lysate (PL), autologous conditioned serum (ACS), gold-induced cytokine (GOLDIC), plasma rich in growth factors (PRGF), autologous protein solution (APS), and hyperacute serum (HS), for managing OA of the hip was investigated. This review summarizes the results of clinical studies involving the mentioned APBOs to manage OA of the hip. Multiple databases (Scopus, Embase, PubMed, and Web of Science) were searched employing terms for these 'APBOs' and 'OA of the hip' for articles published in the English language till September 21, 2024, adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Only two articles fit the scope of our study, and both included articles involved the use of ACS. No clinical studies involving the use of PL, GOLDIC, PRGF, APS, and HS were identified. No ongoing clinical trials were listed on any of the searched registers involving the use of the aforesaid APBOs. Intra-articular administration of ACS is safe and can reduce pain in patients with OA of the hip. Nonetheless, given the dearth of pertinent literature and limitations of included articles, more adequately powered, prospective, multicenter, controlled, open-label or blinded, randomized, and non-randomized trials with extended follow-up are necessary to determine the efficacy of various APBOs for managing hip OA. Further comparative studies to assist clinicians in finding the ideal APBO for the treatment of OA of the hip are needed.
Collapse
Affiliation(s)
- Ashim Gupta
- Regenerative Medicine, Future Biologics, Lawrenceville, USA
| | - Anish G Potty
- Orthopaedics, South Texas Orthopaedic Research Institute, Laredo, USA
| |
Collapse
|
208
|
Vaishya R, Dhall S, Vaish A. Artificial Intelligence (AI): A Potential Game Changer in Regenerative Orthopedics-A Scoping Review. Indian J Orthop 2024; 58:1362-1374. [PMID: 39324081 PMCID: PMC11420425 DOI: 10.1007/s43465-024-01189-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/21/2024] [Indexed: 09/27/2024]
Abstract
Background and Aims Regenerative orthopedics involves approaches like stem cell therapy, platelet-rich plasma (PRP) therapy, the use of biological scaffold implants, tissue engineering, etc. We aim to present a scoping review of the role of artificial intelligence (AI) in different treatment approaches of regenerative orthopedics. Methods Using the PRISMA guidelines, a search for articles for the last ten years (2013-2024) on PubMed was done, using several keywords. We have discussed the state-of-the-art, strengths/benefits, and limitations of the published research, and provide a useful resource for the way ahead in future for researchers working in this area. Results Using the eligibility criteria out of 82 initially screened publications, we included 18 studies for this review. We noticed that the treatment responses to regenerative treatments depend on several factors; hence, to facilitate better comprehensive and patient-specific treatments, AI technology is very useful. Machine learning (ML) and deep learning (DL) are a few of the most frequently used AI techniques. They use a data-driven approach for training models to make human-like decisions. Data are fed to the ML/DL algorithm and the trained model makes classifications or predictions based on its learning. Conclusion The area of regenerative orthopedics is highly sophisticated and significantly aids in providing cost-effective and non-invasive treatments to patients suffering from orthopedic ailments and injuries. Due to its promising future, the use of AI in regenerative orthopedics is an emerging and promising research field; however, its universal clinical applications are associated with some ethical considerations, which need addressing. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s43465-024-01189-1.
Collapse
Affiliation(s)
- Raju Vaishya
- Department of Orthopaedics and Joint Replacement Surgery, Indraprastha Apollo Hospitals, Sarita Vihar, New Delhi, 110076 India
| | - Sakshi Dhall
- Department of Mathematics, Jamia Millia Islamia, Delhi, 110025 India
| | - Abhishek Vaish
- Department of Orthopaedics and Joint Replacement Surgery, Indraprastha Apollo Hospitals, Sarita Vihar, New Delhi, 110076 India
| |
Collapse
|
209
|
Ji T, Yan S, Lu C, Shu H, Sun L. Three-dimensional computerized tomography reconstruction-based morphologic assessment of the coracoid process in an Asian population: Clinical implications for shoulder surgery. J Exp Orthop 2024; 11:e70109. [PMID: 39678020 PMCID: PMC11646546 DOI: 10.1002/jeo2.70109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 12/17/2024] Open
Abstract
Purpose To assess coracoid process morphology in an Asian population using three-dimensional (3D) computed tomography (CT) reconstruction and provide reference values for surgical treatment. Methods Data on demographic and shoulder CT characteristics were collected from 142 patients for 3D-CT-based scapular reconstruction. Ten coracoid morphological indicators and the glenoid width were measured. The morphology of the superior pillar and its undersurface were classified into common shapes. Statistical analyses included intraclass correlation coefficient (ICC) analysis, Cohen's κ value, independent samples t test, Welch's t test, Mann-Whitney U test, Kruskal-Wallis test, Spearman and Pearson correlations, receiver operating characteristic (ROC) curves and area under the curve (AUC) values. Relationships among the measured indicators, patient demographics (i.e., sex, age, height and weight) and superior pillar morphology were ascertained. Results The intraobserver and interobserver ICC values were 0.924-0.980 and 0.906-0.962, respectively. For intraobserver and interobserver agreement, Cohen's κ values were 0.927-0.950 and 0.901-0.937, respectively. Significant sex differences in coracoid measurements were noted. Correlations were observed between the coracoid indicators and glenoid width, sex, height and weight (p < 0.05). ROC curve analysis identified height as a significant predictor of safe distance, with cutoff values of 160.5 and 170.5 cm (AUC = 0.82 and 0.83) for women and men, respectively. The superior pillar morphologies included violin (24.65%), long rod (21.13%), short rod (33.80%), trapezoidal (11.97%) and wedge (8.45%) shapes, with the undersurfaces categorized as straight (16.20%), arched (76.76%) and hooked (7.04%), with significant differences in pillar widths among the different morphological types (p < 0.05). Conclusion Coracoid morphology is crucial in the preoperative planning of given shoulder surgeries, with height and sex serving as key predictors of coracoid graft length. Consideration of variations in the superior pillar shape and undersurface of the coracoid could minimize surgical complications associated with special shoulder surgery. Level of Evidence Level IV case series with no comparison.
Collapse
Affiliation(s)
- Tongyue Ji
- The First Clinical Medical CollegeNanjing University of Chinese MedicineNanjingChina
- Department of OrthopedicsJiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Su Yan
- The First Clinical Medical CollegeNanjing University of Chinese MedicineNanjingChina
- Department of OrthopedicsJiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Chao Lu
- Department of RadiologyJiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Hao Shu
- Department of OrthopedicsJiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Luning Sun
- Department of OrthopedicsJiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
210
|
Priyanka TMC, Gowrisankar A, Banerjee S. Mpox outbreak: Time series analysis with multifractal and deep learning network. CHAOS (WOODBURY, N.Y.) 2024; 34:101103. [PMID: 39413265 DOI: 10.1063/5.0236082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/02/2024] [Indexed: 10/18/2024]
Abstract
This article presents an overview of an mpox epidemiological situation in the most affected regions-Africa, Americas, and Europe-tailoring fractal interpolation for pre-processing the mpox cases. This keen analysis has highlighted the irregular and fractal patterns in the trend of mpox transmission. During the current scenario of public health emergency of international concern due to an mpox outbreak, an additional significance of this article is the interpretation of mpox spread in light of multifractality. The self-similar measure, namely, the multifractal measure, is utilized to explore the heterogeneity in the mpox cases. Moreover, a bidirectional long-short term memory neural network has been employed to forecast the future mpox spread to alert the outbreak as it seems to be a silent symptom for global epidemic.
Collapse
Affiliation(s)
- T M C Priyanka
- Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - A Gowrisankar
- Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Santo Banerjee
- Dipartimento di Scienze Matematiche, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
| |
Collapse
|
211
|
Lana JF, de Brito GC, Kruel A, Brito B, Santos GS, Caliari C, Salamanna F, Sartori M, Barbanti Brodano G, Costa FR, Jeyaraman M, Dallo I, Bernaldez P, Purita J, de Andrade MAP, Everts PA. Evolution and Innovations in Bone Marrow Cellular Therapy for Musculoskeletal Disorders: Tracing the Historical Trajectory and Contemporary Advances. Bioengineering (Basel) 2024; 11:979. [PMID: 39451354 PMCID: PMC11504458 DOI: 10.3390/bioengineering11100979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Bone marrow cellular therapy has undergone a remarkable evolution, significantly impacting the treatment of musculoskeletal disorders. This review traces the historical trajectory from early mythological references to contemporary scientific advancements. The groundbreaking work of Friedenstein in 1968, identifying fibroblast colony-forming cells in bone marrow, laid the foundation for future studies. Caplan's subsequent identification of mesenchymal stem cells (MSCs) in 1991 highlighted their differentiation potential and immunomodulatory properties, establishing them as key players in regenerative medicine. Contemporary research has focused on refining techniques for isolating and applying bone marrow-derived MSCs. These cells have shown promise in treating conditions like osteonecrosis, osteoarthritis, and tendon injuries thanks to their ability to promote tissue repair, modulate immune responses, and enhance angiogenesis. Clinical studies have demonstrated significant improvements in pain relief, functional recovery, and tissue regeneration. Innovations such as the ACH classification system and advancements in bone marrow aspiration methods have standardized practices, improving the consistency and efficacy of these therapies. Recent clinical trials have validated the therapeutic potential of bone marrow-derived products, highlighting their advantages in both surgical and non-surgical applications. Studies have shown that MSCs can reduce inflammation, support bone healing, and enhance cartilage repair. However, challenges remain, including the need for rigorous characterization of cell populations and standardized reporting in clinical trials. Addressing these issues is crucial for advancing the field and ensuring the reliable application of these therapies. Looking ahead, future research should focus on integrating bone marrow-derived products with other regenerative techniques and exploring non-surgical interventions. The continued innovation and refinement of these therapies hold promise for revolutionizing the treatment of musculoskeletal disorders, offering improved patient outcomes, and advancing the boundaries of medical science.
Collapse
Affiliation(s)
- José Fábio Lana
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (G.C.d.B.); (A.K.); (B.B.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (I.D.); (J.P.); (P.A.E.)
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil
- Clinical Research, Anna Vitória Lana Institute (IAVL), Indaiatuba 13334-170, SP, Brazil
- Medical School, Jaguariúna University Center (UniFAJ), Jaguariúna 13820-000, SP, Brazil
| | - Gabriela Caponero de Brito
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (G.C.d.B.); (A.K.); (B.B.)
| | - André Kruel
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (G.C.d.B.); (A.K.); (B.B.)
| | - Benjamim Brito
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (G.C.d.B.); (A.K.); (B.B.)
| | - Gabriel Silva Santos
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (G.C.d.B.); (A.K.); (B.B.)
| | - Carolina Caliari
- Cell Therapy, In Situ Terapia Celular, Ribeirão Preto 14056-680, SP, Brazil;
| | - Francesca Salamanna
- Surgical Sciences and Technologies, IRCCS Instituto Ortopedizo Rizzoli, 40136 Bologna, Italy; (F.S.); (M.S.)
| | - Maria Sartori
- Surgical Sciences and Technologies, IRCCS Instituto Ortopedizo Rizzoli, 40136 Bologna, Italy; (F.S.); (M.S.)
| | | | - Fábio Ramos Costa
- Department of Orthopaedics, FC Sports Traumatology, Salvador 40296-210, BA, Brazil;
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India;
- Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Clinical Research Scientist, Virginia Tech India, Chennai 600095, Tamil Nadu, India
| | - Ignácio Dallo
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (I.D.); (J.P.); (P.A.E.)
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil
- Orthopedics, SportMe Medical Center, 41013 Seville, Spain;
| | | | - Joseph Purita
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (I.D.); (J.P.); (P.A.E.)
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil
| | | | - Peter Albert Everts
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (I.D.); (J.P.); (P.A.E.)
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil
- Gulf Coast Biologics, Fort Myers, FL 33916, USA
| |
Collapse
|
212
|
Zhao L, Ni B, Li J, Liu R, Zhang Q, Zheng Z, Yang W, Yu W, Bi L. Evaluation of the impact of customized serum-free culture medium on the production of clinical-grade human umbilical cord mesenchymal stem cells: insights for future clinical applications. Stem Cell Res Ther 2024; 15:327. [PMID: 39334391 PMCID: PMC11438183 DOI: 10.1186/s13287-024-03949-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The selection of suitable culture medium is critical for achieving good clinical outcomes in cell therapy. To support the commercial application of stem cell therapy, customized culture media not only need to promote stem cell proliferation, but also need to save costs and meet industrial requirements for inter-batch consistency, efficacy, and biosafety. In this study, we developed a series of serum-free media (SFM) and elucidated the effects between different SFM, as well as between SFM and serum-containing meida (SCM), on human umbilical cord mesenchymal stem cells (hUC-MSCs) phenotype and function. We analyze and emphasize from the perspectives of clinical and commercial application why research on customized culture media is critical for the success of enterprises developing novel cellular therapeutics. METHODS We cultured hUC-MSCs with identical cell seeding densities in different formulations of SFM and SCM until passage 10 and examined the changes in cell phenotype and function. We analyzed the results with the commercial application requirments of the cellular therapy industry to assess the potential impact of customized culture media on inter-batch consistency, efficacy, stability, biosafety, and cost-effectiveness of industrial-scale cell production. RESULTS hUC-MSCs cultured in SCM and SFM exhibit consistent cell morphology and surface molecule expression, but hUC-MSCs cultured in SFM demonstrate higher activity, superior proliferative capacity, and greater stability. Furthermore, hUC-MSCs cultured in different SFM exhibit differences in cell activity, proliferative capacity, senescent rate, and S/M ratio of cell cycle, while maintaining a normal karyotype after long-term in vitro cultivation. Moreover, we found that hUC-MSCs cultured in different media exhibit variations in paracrine capacity and in their support of hematopoietic stem cell (HSC) self-renewal. CONCLUSION Considering the substantial funding and time required for cell-based drug development, our results underscore the importances of comprehensively optimizing the composition of medium for the specific disease prior to conducting clinical trials of cell-based therapies. The criteria for selecting culture medium should be based on the requirements of the target disease for cellular function. In addition, we provide a way to formulate different customized SFM, which is beneficial for the development of cell therapy industry.
Collapse
Affiliation(s)
- Lan Zhao
- Guangzhou National Laboratory, Guangzhou, 510005, People's Republic of China
| | - Beibei Ni
- Vaccine Research Institute, Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Jinqing Li
- Division of Hematology and Oncology, Department of Geriatrics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People's Republic of China
| | - Rui Liu
- Guangzhou National Laboratory, Guangzhou, 510005, People's Republic of China
| | - Qi Zhang
- Vaccine Research Institute, Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Zhuangbin Zheng
- Guangzhou National Laboratory, Guangzhou, 510005, People's Republic of China
| | - Wenjuan Yang
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China.
| | - Wei Yu
- Guangzhou National Laboratory, Guangzhou, 510005, People's Republic of China.
| | - Lijun Bi
- Guangzhou National Laboratory, Guangzhou, 510005, People's Republic of China.
| |
Collapse
|
213
|
Marques BDC, Banho CA, Sacchetto L, Negri A, Vasilakis N, Nogueira ML. Impact of Vaccination on Intra-Host Genetic Diversity of Patients Infected with SARS-CoV-2 Gamma Lineage. Viruses 2024; 16:1524. [PMID: 39459859 PMCID: PMC11512383 DOI: 10.3390/v16101524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
The high transmissibility, rapid evolution, and immune escape of SARS-CoV-2 variants can influence the course of infection and, in turn, morbidity and mortality in COVID-19, posing a challenge in controlling transmission rates and contributing to the emergence and spread of new variants. Understanding the factors that shape viral genetic variation is essential for comprehending the evolution and transmission of SARS-CoV-2, especially in vaccinated individuals where immune response plays a role in the progression and spread of this disease. In this context, we evaluated the impact of immunity induced by the CoronaVac vaccine (Butantan/Sinovac) on intra-host genetic diversity, analyzing 118 whole-genome sequences of SARS-CoV-2 from unvaccinated and vaccinated patients infected with the Gamma variant. Vaccination with CoronaVac favors negative selection at the intra-host level in different genomic regions. It prevents greater genetic diversity of SARS-CoV-2, reinforcing the importance of vaccination in reducing the emergence of new mutations and virus transmission.
Collapse
Affiliation(s)
- Beatriz de Carvalho Marques
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, São Paulo, Brazil
| | - Cecília Artico Banho
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, São Paulo, Brazil
| | - Lívia Sacchetto
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, São Paulo, Brazil
| | - Andreia Negri
- Vigilância Epidemiológica, Secretaria de Saúde de São José do Rio Preto, São José do Rio Preto 15090-000, São Paulo, Brazil
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Maurício Lacerda Nogueira
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, São Paulo, Brazil
- Vigilância Epidemiológica, Secretaria de Saúde de São José do Rio Preto, São José do Rio Preto 15090-000, São Paulo, Brazil
| |
Collapse
|
214
|
Kandulu CC, Sahm LJ, Saab MM, O’Driscoll M, McCarthy M, Shorter GW, Berry E, Moore AC, Fleming A. A Scoping Review of Factors Affecting COVID-19 Vaccination Uptake and Deployment in Global Healthcare Systems. Vaccines (Basel) 2024; 12:1093. [PMID: 39460261 PMCID: PMC11511325 DOI: 10.3390/vaccines12101093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Introduction: COVID-19 vaccines were rapidly developed and deployed on a large scale during a global crisis. A range of deployment strategies were used globally to maximize vaccine uptake. In this scoping review, we identify and analyze the main healthcare system and policy factors that guided and influenced COVID-19 vaccination deployment and uptake globally. Materials and Methods: JBI guidelines, Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR), and the population, concept, and context (PCC) framework were applied. Studies on individual COVID-19 vaccination factors, such as vaccine hesitancy, were excluded. The search was last conducted in May 2024 yielding 26,686 articles from PubMed, Embase, CINAHL, Scopus, and COVID-19 websites. A total of 47 articles and 3 guidance documents were included. The results of the thematic analysis were mapped to the Consolidated Framework for Implementation Research (CFIR). Results: The results found the following healthcare system and policy factors as integral to COVID-19 vaccination: types of vaccine products, healthcare workforce capacity, procurement strategies, distribution and cold-chain capacity, partnership, coordination, and leadership, information, communication, and registration strategies, delivery models, organizations, the existing health systems and policies on prioritization of at-risk groups and deployment plans. Discussion: Globally, COVID-19 vaccination programs responded to the pandemic by leveraging and reforming the existing healthcare systems, relying on strong leadership and global cooperation (such as the COVID-19 Vaccines Global Access Initiative). Deployment was enabled by effective communication and adoption of innovative technologies using data-driven policies to create high vaccine demand while overcoming limited vaccine supply and rapidly adapting to uncertainties.
Collapse
Affiliation(s)
- Chikondi C. Kandulu
- Pharmaceutical Care Research Group, University College Cork, College Rd, T12 K8AF Cork, Ireland; (L.J.S.); (M.O.); (A.F.)
| | - Laura J. Sahm
- Pharmaceutical Care Research Group, University College Cork, College Rd, T12 K8AF Cork, Ireland; (L.J.S.); (M.O.); (A.F.)
- Mercy University Hospital, Grenville Place, T12 WE28 Cork, Ireland
| | - Mohamad M. Saab
- Catherine McAuley School of Nursing and Midwifery, University College Cork, Brookfield Health Sciences Complex, T12 AK54 Cork, Ireland; (M.M.S.); (M.M.)
| | - Michelle O’Driscoll
- Pharmaceutical Care Research Group, University College Cork, College Rd, T12 K8AF Cork, Ireland; (L.J.S.); (M.O.); (A.F.)
| | - Megan McCarthy
- Catherine McAuley School of Nursing and Midwifery, University College Cork, Brookfield Health Sciences Complex, T12 AK54 Cork, Ireland; (M.M.S.); (M.M.)
| | - Gillian W Shorter
- School of Psychology, Queen’s University Belfast, Belfast BT9 5BN, UK (E.B.)
| | - Emma Berry
- School of Psychology, Queen’s University Belfast, Belfast BT9 5BN, UK (E.B.)
| | - Anne C. Moore
- School of Biochemistry and Cell Biology, University College Cork, T12 XF62 Cork, Ireland;
- National Institute for Bioprocessing Research and Training, A94 X099 Dublin, Ireland
| | - Aoife Fleming
- Pharmaceutical Care Research Group, University College Cork, College Rd, T12 K8AF Cork, Ireland; (L.J.S.); (M.O.); (A.F.)
- Mercy University Hospital, Grenville Place, T12 WE28 Cork, Ireland
| |
Collapse
|
215
|
Cheers GM, Weimer LP, Neuerburg C, Arnholdt J, Gilbert F, Thorwächter C, Holzapfel BM, Mayer-Wagner S, Laubach M. Advances in implants and bone graft types for lumbar spinal fusion surgery. Biomater Sci 2024; 12:4875-4902. [PMID: 39190323 DOI: 10.1039/d4bm00848k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The increasing prevalence of spinal disorders worldwide necessitates advanced treatments, particularly interbody fusion for severe cases that are unresponsive to non-surgical interventions. This procedure, especially 360° lumbar interbody fusion, employs an interbody cage, pedicle screw-and-rod instrumentation, and autologous bone graft (ABG) to enhance spinal stability and promote fusion. Despite significant advancements, a persistent 10% incidence of non-union continues to result in compromised patient outcomes and escalated healthcare costs. Innovations in lumbar stabilisation seek to mimic the properties of natural bone, with evolving implant materials like titanium (Ti) and polyetheretherketone (PEEK) and their composites offering new prospects. Additionally, biomimetic cages featuring precisely engineered porosities and interconnectivity have gained traction, as they enhance osteogenic differentiation, support osteogenesis, and alleviate stress-shielding. However, the limitations of ABG, such as harvesting morbidities and limited fusion capacity, have spurred the exploration of sophisticated solutions involving advanced bone graft substitutes. Currently, demineralised bone matrix and ceramics are in clinical use, forming the basis for future investigations into novel bone graft substitutes. Bioglass, a promising newcomer, is under investigation despite its observed rapid absorption and the potential for foreign body reactions in preclinical studies. Its clinical applicability remains under scrutiny, with ongoing research addressing challenges related to burst release and appropriate dosing. Conversely, the well-documented favourable osteogenic potential of growth factors remains encouraging, with current efforts focused on modulating their release dynamics to minimise complications. In this evidence-based narrative review, we provide a comprehensive overview of the evolving landscape of non-degradable spinal implants and bone graft substitutes, emphasising their applications in lumbar spinal fusion surgery. We highlight the necessity for continued research to improve clinical outcomes and enhance patient well-being.
Collapse
Affiliation(s)
- Giles Michael Cheers
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Lucas Philipp Weimer
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Carl Neuerburg
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Jörg Arnholdt
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Fabian Gilbert
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Christoph Thorwächter
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Boris Michael Holzapfel
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Susanne Mayer-Wagner
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Markus Laubach
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
216
|
Værøy H, Skar-Fröding R, Hareton E, Fetissov SO. Possible roles of neuropeptide/transmitter and autoantibody modulation in emotional problems and aggression. Front Psychiatry 2024; 15:1419574. [PMID: 39381606 PMCID: PMC11458397 DOI: 10.3389/fpsyt.2024.1419574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/30/2024] [Indexed: 10/10/2024] Open
Abstract
The theoretical foundations of understanding psychiatric disorders are undergoing changes. Explaining behaviour and neuroendocrine cell communication leaning towards immunology represents a different approach compared to previous models for understanding complex central nervous system processes. One such approach is the study of immunoglobulins or autoantibodies, and their effect on peptide hormones in the neuro-endocrine system. In the present review, we provide an overview of the literature on neuropeptide/transmitter and autoantibody modulation in psychiatric disorders featuring emotional problems and aggression, including associated illness behaviour. Finally, we discuss the role of psycho-immunology as a growing field in the understanding of psychiatric disorders, and that modulation and regulation by IgG autoAbs represent a relatively new subcategory in psycho-immunology, where studies are currently being conducted.
Collapse
Affiliation(s)
- Henning Værøy
- R&D Department, Division of Mental Health Services, Akershus University Hospital, Lørenskog, Norway
| | - Regina Skar-Fröding
- R&D Department, Division of Mental Health Services, Akershus University Hospital, Lørenskog, Norway
| | - Elin Hareton
- Department of Multidiciplinary Laboratory Medicine and Medical Biochemistry, (TLMB), Akershus University Hospital, Lørenskog, Norway
| | - Sergueï O. Fetissov
- Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, Inserm UMR1239, University of Rouen Normandie, Rouen, France
| |
Collapse
|
217
|
Чуган ГС, Люндуп АВ, Бондаренко ОН, Галстян ГР. [The application of cell products for the treatment of critical limb ischemia in patients with diabetes mellitus: a review of the literature]. PROBLEMY ENDOKRINOLOGII 2024; 70:4-14. [PMID: 39302860 PMCID: PMC11551799 DOI: 10.14341/probl13481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 09/22/2024]
Abstract
The number of patients with diabetes mellitus (DM) has been progressively increasing worldwide over the past decades, and many international organizations consider DM as a public health emergency of the 21st century.Critical limb ischemia (CLI) is the most severe stage of peripheral arterial disease (PAD) in DM and is characterized by a high risk of limb loss without revascularization. Traditional treatment tactics include open and endovascular revascularization surgical techniques. However, in patients not eligible for revascularization and in cases where performed surgical treatment performed has been ineffective, there are almost no therapeutic alternatives, often leading to amputations and death. As of today, one of the newest non-surgical treatment options is cell therapy. Among different cells, mesenchymal stromal cells (MSCs) are potentially one of the most prospective for use in this patient population.This article provides an overview of clinical trials using cell therapy in patients with CLI.To analyze publications, electronic databases PubMed, SCOPUS, ClinicalTrials, and ScienceDirect were searched to identify published data from clinical trials, research studies, and review articles on cell therapy for critical lower extremity ischemia. After the search, 489 results were received.As a result of systematic selection, 22 clinical trials were analyzed.According to the analyzed literature data, the use of cell products in this category of patients is effective and safe. Cell therapy can stimulate the formation of new vessels and enhances collateral circulation; it is also reported improved distal perfusion, increased pain-free walking distance, decreased amputation rates, and increased survival rates.Nevertheless, further study of the potential use of this category of drugs is needed.
Collapse
Affiliation(s)
- Г. С. Чуган
- Национальный медицинский исследовательский центр эндокринологии
| | - А. В. Люндуп
- Национальный медицинский исследовательский центр эндокринологии; Научно-образовательный ресурсный центр клеточных технологий, Российский университет дружбы народов им. Патриса Лумумбы (РУДН)
| | | | - Г. Р. Галстян
- Национальный медицинский исследовательский центр эндокринологии
| |
Collapse
|
218
|
Paliakkara J, Ellenberg S, Ursino A, Smith AA, Evans J, Strayhorn J, Faraone SV, Zhang-James Y. A Systematic Review of the Etiology and Neurobiology of Intermittent Explosive Disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.12.24313573. [PMID: 39314952 PMCID: PMC11419216 DOI: 10.1101/2024.09.12.24313573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Intermittent Explosive Disorder (IED) is characterized by repeated inability to control aggressive impulses. Although the etiology and neurobiology of impulsive anger and impulse control disorders have been reviewed, no systematic review on these aspects has been published for IED specifically. We conducted a systematic search in seven electronic databases for publications about IED, screened by two authors, and retained twenty-four studies for the review. Our findings highlight a multifactorial etiology and neurobiology of IED, emphasizing the role of the amygdala and orbitofrontal cortex in emotional regulation and impulse control, and supporting interventions that target serotonergic signaling. Research also shows that childhood trauma and adverse family environment may significantly contribute to the development of IED. Yet, genetic studies focusing on IED were largely lacking, despite many examining the genetics underlying aggression as a general trait or other related disorders. Future research using consistently defined IED as a phenotype is required to better understand the etiology and underlying mechanisms and assist in informing the development of more effective interventions for IED.
Collapse
Affiliation(s)
- John Paliakkara
- Norton College of Medicine at SUNY Upstate Medical University, 766 Irving Ave, Syracuse, NY 13210, Syracuse, NY 13210 USA
| | - Stacy Ellenberg
- Norton College of Medicine at Upstate Medical University, Adult Psychiatry Clinic Psychiatry and Behavioral Sciences, 713 Harrison Street, Syracuse, NY 13210 USA
| | - Andrew Ursino
- Norton College of Medicine at Upstate Medical University, Adult Psychiatry Clinic Psychiatry and Behavioral Sciences, 713 Harrison Street, Syracuse, NY 13210 USA
- Clinical & Forensic Psychology, 1101 Erie Blvd. East, Suite 207, Syracuse, NY 13210 USA
| | - Abigail A Smith
- Health Sciences Library, Norton College of Medicine at SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - James Evans
- Health Sciences Library, Norton College of Medicine at SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Joseph Strayhorn
- Norton College of Medicine at Upstate Medical University, Clinical Psychology Psychiatry and Behavioral Sciences, 719 Harrison Street, Syracuse, NY 13210 USA
| | - Stephen V. Faraone
- Norton College of Medicine at SUNY Upstate Medical University, Departments of Psychiatry and Behavioral Sciences and Neuroscience and Physiology, Institute for Human Performance, 505 Irving Ave, Syracuse, NY 13210 USA
| | - Yanli Zhang-James
- Norton College of Medicine at SUNY Upstate Medical University, Department of Psychiatry and Behavioral Sciences, Institute for Human Performance, 505 Irving Ave, Syracuse, NY 13210 USA
| |
Collapse
|
219
|
D'Souza RS, Her YF, Hussain N, Karri J, Schatman ME, Calodney AK, Lam C, Buchheit T, Boettcher BJ, Chang Chien GC, Pritzlaff SG, Centeno C, Shapiro SA, Klasova J, Grider JS, Hubbard R, Ege E, Johnson S, Epstein MH, Kubrova E, Ramadan ME, Moreira AM, Vardhan S, Eshraghi Y, Javed S, Abdullah NM, Christo PJ, Diwan S, Hassett LC, Sayed D, Deer TR. Evidence-Based Clinical Practice Guidelines on Regenerative Medicine Treatment for Chronic Pain: A Consensus Report from a Multispecialty Working Group. J Pain Res 2024; 17:2951-3001. [PMID: 39282657 PMCID: PMC11402349 DOI: 10.2147/jpr.s480559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Purpose Injectable biologics have not only been described and developed to treat dermal wounds, cardiovascular disease, and cancer, but have also been reported to treat chronic pain conditions. Despite emerging evidence supporting regenerative medicine therapy for pain, many aspects remain controversial. Methods The American Society of Pain and Neuroscience (ASPN) identified the educational need for an evidence-based guideline on regenerative medicine therapy for chronic pain. The executive board nominated experts spanning multiple specialties including anesthesiology, physical medicine and rehabilitation, and sports medicine based on expertise, publications, research, and clinical practice. A steering committee selected preliminary questions, which were reviewed and refined. Evidence was appraised using the United States Preventive Services Task Force (USPSTF) criteria for evidence level and degree of recommendation. Using a modified Delphi approach, consensus points were distributed to all collaborators and each collaborator voted on each point. If collaborators provided a decision of "disagree" or "abstain", they were invited to provide a rationale in a non-blinded fashion to the committee chair, who incorporated the respective comments and distributed revised versions to the committee until consensus was achieved. Results Sixteen questions were selected for guideline development. Questions that were addressed included type of injectable biologics and mechanism, evidence in treating chronic pain indications (eg, tendinopathy, muscular pathology, osteoarthritis, intervertebral disc disease, neuropathic pain), role in surgical augmentation, dosing, comparative efficacy between injectable biologics, peri-procedural practices to optimize therapeutic response and quality of injectate, federal regulations, and complications with mitigating strategies. Conclusion In well-selected individuals with certain chronic pain indications, use of injectable biologics may provide superior analgesia, functionality, and/or quality of life compared to conventional medical management or placebo. Future high-quality randomized clinical trials are warranted with implementation of minimum reporting standards, standardization of preparation protocols, investigation of dose-response associations, and comparative analysis between different injectable biologics.
Collapse
Affiliation(s)
- Ryan S D'Souza
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yeng F Her
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nasir Hussain
- Department of Anesthesiology, The Ohio State Wexner Medical Center, Columbus, OH, USA
| | - Jay Karri
- Departments of Orthopedic Surgery and Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael E Schatman
- Department of Anesthesiology, Perioperative Care, & Pain Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Christopher Lam
- Department of Anesthesiology and Pain Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Thomas Buchheit
- Department of Anesthesiology, Duke University, Durham, NC, USA
| | - Brennan J Boettcher
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | | | - Scott G Pritzlaff
- Department of Anesthesiology and Pain Medicine, University of California, Davis, Sacramento, CA, USA
| | | | - Shane A Shapiro
- Department of Orthopedic Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - Johana Klasova
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jay S Grider
- Department of Anesthesiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Ryan Hubbard
- Department of Sports Medicine, Anderson Orthopedic Clinic, Arlington, VA, USA
| | - Eliana Ege
- Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Shelby Johnson
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Max H Epstein
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Eva Kubrova
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Mohamed Ehab Ramadan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Alexandra Michelle Moreira
- Department of Physical Medicine & Rehabilitation, University of Miami/Jackson Memorial Hospital, Miami, FL, USA
| | - Swarnima Vardhan
- Department of Internal Medicine, Yale New Haven Health - Bridgeport Hospital, Bridgeport, CT, USA
| | - Yashar Eshraghi
- Department of Anesthesiology & Critical Care Medicine, Ochsner Health System, New Orleans, LA, USA
| | - Saba Javed
- Department of Pain Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Newaj M Abdullah
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Paul J Christo
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Sudhir Diwan
- Department of Pain Medicine, Advanced Spine on Park Avenue, New York City, NY, USA
| | | | - Dawood Sayed
- Department of Anesthesiology and Pain Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Timothy R Deer
- Department of Anesthesiology and Pain Medicine, West Virginia University School of Medicine, Charleston, WV, USA
| |
Collapse
|
220
|
Borowiec BM, Dyszkiewicz-Konwińska M, Bukowska D, Nowicki M, Budna-Tukan J. Small Extracellular Vesicles and Oral Mucosa: The Power Couple in Regenerative Therapies? Cells 2024; 13:1514. [PMID: 39329698 PMCID: PMC11429515 DOI: 10.3390/cells13181514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Although ongoing debates persist over the scope of phenomena classified as regenerative processes, the most up-to-date definition of regeneration is the replacement or restoration of damaged or missing cells, tissues, organs, or body parts to full functionality. Despite extensive research on this topic, new methods in regenerative medicine are continually sought, and existing ones are being improved. Small extracellular vesicles (sEVs) have gained attention for their regenerative potential, as evidenced by existing studies conducted by independent research groups. Of particular interest are sEVs derived from the oral mucosa, a tissue renowned for its rapid regeneration and minimal scarring. While the individual regenerative potential of both sEVs and the oral mucosa is somewhat understood, the combined potential of sEVs derived from the oral mucosa has not been sufficiently explored and highlighted in the existing literature. Serving as a broad compendium, it aims to provide scientists with essential and detailed information on this subject, including the nature of the materials employed, isolation and analysis methodologies, and clinical applications. The content of this survey aims to facilitate the comparison of diverse methods for working with sEVs derived from the oral mucosa, aiding in the planning of research endeavors and identifying potential research gaps.
Collapse
Affiliation(s)
- Blanka Maria Borowiec
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland (M.N.)
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | | | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland (M.N.)
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland (M.N.)
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
| |
Collapse
|
221
|
Lo HL, Lin SY, Ho CJ, Ming-Kung Y, Lu CC. Effect of lyophilized exosomes derived from umbilical cord stem cells on chronic anterior cruciate ligament cell injury. J Orthop Surg Res 2024; 19:554. [PMID: 39252098 PMCID: PMC11382386 DOI: 10.1186/s13018-024-05029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 08/23/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Facilitating the healing process of injured anterior cruciate ligament (ACL) tissue is crucial for patients to safely return to sports. Stem cell derived exosomes have shown positive effects on enhancing the regeneration of injured tendons/ligaments. However, clinical application of exosomes in terms of storage and pre-assembly is challenging. We hypothesized that lyophilized exosomes derived from human umbilical cord stem cells (hUSC-EX) could enhance the cell activity of chronically injured ACL cells. MATERIALS AND METHODS We harvested the 8 weeks injured ACL cells from rabbit under IACUC (No. 110232) approval. The studied exosomes were purified from the culture medium of human umbilical cord stem cells (IRB approval No. A202205014), lyophilized to store, and hydrated for use. We compared exosome treated cells with non-exosome treated cells (control group) from the same rabbits. We examined the cell viability, proliferation, migration capability and gene expression of type I and III collagen, TGFβ, VEGF, and tenogenesis in the 8 weeks injured ACL cells after hUSC-EX treatment. RESULTS After hydration, the average size of hUSC-EX was 84.5 ± 70.6 nm, and the cells tested positive for the Alix, TSG101, CD9, CD63, and CD81 proteins but negative for the α-Tubulin protein. After 24 h of treatment, hUSC-EX significantly improved the cell viability, proliferation and migration capability of 8 weeks injured ACL cells compared to that of no exosome treatment group. In addition, the expression of collagen synthesis, TGFβ, VEGF, and tenogenesis gene were all significantly increased in the 8 weeks injured ACL cells after 24 h hUSC-EX delivery. DISCUSSION Lyophilized exosomes are easily stored and readily usable after hydration, thereby preserving their characteristic properties. Treatment with lyophilized hUSC-EX improved the activity and gene expression of 8 weeks injured ACL cells. CONCLUSION Lyophilized hUSC-EX preserve the characteristics of exosomes and can improve chronically injured (8 weeks) ACL cells. Lyophilized hUSC-EX could serve as effective and safe biomaterials that are ready to use at room temperature to enhance cell activity in patients with partial ACL tears and after remnant preservation ACL reconstruction.
Collapse
Affiliation(s)
- Hon Lok Lo
- Department of Orthopedics, Kaohsiung Medical University Hospital, No.482, Shanming Rd., Siaogang Dist., Kaohsiung City, 812, Taiwan
- Ph.D. Program in Biomedical Engineering, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sung-Yen Lin
- Department of Orthopedics, Kaohsiung Medical University Hospital, No.482, Shanming Rd., Siaogang Dist., Kaohsiung City, 812, Taiwan
- Department of Orthopedics, School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Jung Ho
- Department of Orthopedics, Kaohsiung Medical University Hospital, No.482, Shanming Rd., Siaogang Dist., Kaohsiung City, 812, Taiwan
- Department of Orthopedics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yeh Ming-Kung
- School of Pharmacy, Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Chang Lu
- Department of Orthopedics, Kaohsiung Medical University Hospital, No.482, Shanming Rd., Siaogang Dist., Kaohsiung City, 812, Taiwan.
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Orthopedics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Orthopedics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
222
|
Krsek A, Ostojic L, Zivalj D, Baticic L. Navigating the Neuroimmunomodulation Frontier: Pioneering Approaches and Promising Horizons-A Comprehensive Review. Int J Mol Sci 2024; 25:9695. [PMID: 39273641 PMCID: PMC11396210 DOI: 10.3390/ijms25179695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
The research in neuroimmunomodulation aims to shed light on the complex relationships that exist between the immune and neurological systems and how they affect the human body. This multidisciplinary field focuses on the way immune responses are influenced by brain activity and how neural function is impacted by immunological signaling. This provides important insights into a range of medical disorders. Targeting both brain and immunological pathways, neuroimmunomodulatory approaches are used in clinical pain management to address chronic pain. Pharmacological therapies aim to modulate neuroimmune interactions and reduce inflammation. Furthermore, bioelectronic techniques like vagus nerve stimulation offer non-invasive control of these systems, while neuromodulation techniques like transcranial magnetic stimulation modify immunological and neuronal responses to reduce pain. Within the context of aging, neuroimmunomodulation analyzes the ways in which immunological and neurological alterations brought on by aging contribute to cognitive decline and neurodegenerative illnesses. Restoring neuroimmune homeostasis through strategies shows promise in reducing age-related cognitive decline. Research into mood disorders focuses on how immunological dysregulation relates to illnesses including anxiety and depression. Immune system fluctuations are increasingly recognized for their impact on brain function, leading to novel treatments that target these interactions. This review emphasizes how interdisciplinary cooperation and continuous research are necessary to better understand the complex relationship between the neurological and immune systems.
Collapse
Affiliation(s)
- Antea Krsek
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Leona Ostojic
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Dorotea Zivalj
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Lara Baticic
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
223
|
SOHAIL S, ARSHAD S, KHALID S, DAR MJ, IQBAL K, SOHAIL H. Development and Evaluation of Methotrexate and Baicalin-Loaded Nanolipid Carriers for Psoriasis Treatment. Turk J Pharm Sci 2024; 21:327-339. [PMID: 39224396 PMCID: PMC11589095 DOI: 10.4274/tjps.galenos.2023.71242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2024]
Abstract
Objectives Psoriasis is a chronic inflammatory, T-lymphocyte immune-mediated skin disease. In this study, skin-permeating nanolipid carriers (NLCs) of Methotrexate (MTX) and Baicalin (BL) were formulated. This further gave formulation of nano-lipid encapsulated carriers for dual-drug delivery of the hydrophilic and hydrophobic drugs through the liposomal gel. Materials and Methods Optimization of the formulation of NLCs was performed and characterized by determining their particle size, drug permeation, skin irritation, drug loading capacity, stability, in vitro drug release behavior, and in vitro cellular viability. Ex vivo skin permeation and in vivo psoriatic efficiency were also evaluated and compared. Results Results revealed that the amount of MTX permeating the skin was 2.4 to 4.4 fold greater for dual-drug s than for single NLCs. The optimized dual-drug loaded NLCs had an average particle size (150.20 ± 3.57 nm) and polydispersity index (0.301 ± 0.01) and high entrapment (86.32 ± 2.78% w/w). The MTX nanoparticles exhibit a positive Zeta potential of 38.6 mV. The psoriasis area and severity index scoring showed the lowest skin erythema, skin thickness and scaling. MTX-BL NLCs were inhibited the expression of inflammatory cytokines (tumor necrosis factor-alpha, and interleukin-17) . Conclusion It can be concluded that newer targeting strategies for NLCs for dual-drug delivery of nano-lipid carriers could be administered topically for the treatment of psoriasis.
Collapse
Affiliation(s)
- Sundus SOHAIL
- University of Lahore (Islamabad Campus) Faculty of Pharmacy, Department of Pharmacy, Islamabad, Pakistan
| | - Saloma ARSHAD
- University of Lahore (Islamabad Campus) Faculty of Pharmacy, Department of Pharmacy, Islamabad, Pakistan
| | - Sidra KHALID
- Drug Regulatory Authority of Pakistan, Islamabad, Pakistan
| | - Muhammad Junaid DAR
- University of Lahore (Islamabad Campus) Faculty of Pharmacy, Department of Pharmacy, Islamabad, Pakistan
| | - Kashif IQBAL
- University of Lahore (Islamabad Campus) Faculty of Pharmacy, Department of Pharmacy, Islamabad, Pakistan
- IBADAT International University Faculty of Pharmacy, Department of Pharmacy, Islamabad, Pakistan
| | - Hassan SOHAIL
- University of Lahore (Islamabad Campus) Faculty of Pharmacy, Department of Pharmacy, Islamabad, Pakistan
| |
Collapse
|
224
|
Sinyavskaya Y, Eritsyan K, Antonova N, Sharin N. Don't say it's over: The perceived epidemic stage and COVID preventive behaviour. J Health Psychol 2024; 29:1150-1163. [PMID: 38288703 DOI: 10.1177/13591053231222338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024] Open
Abstract
Little is known about the perceptions of the COVID-19 pandemic's dynamic and its effect on self-protective behaviour. Using survey data from 1343 university students we explored how the perceived temporal distance to the COVID pandemic peak associates with risk perception and the adherence of preventive behaviours. Results show that individuals differ in their perception of the pandemic stage despite being in the same environment. The belief that the COVID peak is in the past was associated with less perceived risk and decreased self-protection. A high COVID-19 media involvement and trust in the authorities were associated with higher perceived risk and preventive behaviour implementation. Overall, the perception that the pandemic wave is in its final stages could be an independent predictor of more risky behaviour. Thus, the communication of the pandemic dynamic should be provided by policy makers with caution to avoid the possibility of discounting the risk.
Collapse
|
225
|
Gupta A, Viswanath A, Kumar GH. Leukocyte-Poor Platelet-Rich Plasma for the Management of Knee Osteoarthritis: A Retrospective Study With 12 Months of Follow-Up. Cureus 2024; 16:e69662. [PMID: 39429345 PMCID: PMC11488677 DOI: 10.7759/cureus.69662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 10/22/2024] Open
Abstract
Introduction The knee, the most frequently affected joint in osteoarthritis (OA), impacts the life quality of millions of individuals globally, resulting in a considerable healthcare burden. Conservative treatments are preferred, turning to surgical intervention when necessary. Nonetheless, these conventional modalities have drawbacks. Recently, the use of regenerative medicine therapies, including autologous peripheral blood-derived orthobiologics (APBOs), such as leukocyte-poor platelet-rich plasma (LP-PRP), has evolved and demonstrated the ability to manage knee OA. The primary objective of this investigation was to evaluate the efficacy of LP-PRP via widely used patient-reported outcome measures (PROMs) in grade I or II (on the Kellgren-Lawrence scale) knee OA patients. The secondary objective was to characterize the formulated LP-PRP and determine the efficiency of the leukodepletion filter used for leukocyte removal and platelet recovery. Methods This investigation was a retrospective analysis of data collected from patients treated at a single center over a period of 15 months. Data from 40 patients included in this study were intra-articularly injected with 3mL of formulated LP-PRP under ultrasound guidance. PROMs questionnaires, including Kujala and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores, were used and responses were documented at baseline and up to 12 months follow-up. The characterization of the formulated LP-PRP and the efficiency of the leukodepletion filter in removing leukocytes and recovering platelets were assessed via complete blood count (CBC) analysis. Results The intra-articular administration of LP-PRP resulted in statistically significant improvements in Kujala and WOMAC scores in patients with Grade I or II OA of the knee at all follow-up time points (four to 12 months) compared to the respective baseline scores. The subgroup analysis showed significant improvements in Kujala and WOMAC scores in both male and female grade I or II knee OA patients with or without comorbidities, including diabetes and/or hypertension. The characterization of formulated PRP showed platelet concentration to be at least 6x compared to the baseline whole blood levels, the absolute platelet count to be at least 5 billion, and total leukocytes, lymphocytes, neutrophils, and RBCs were depleted by over 88%, 82%, 98%, and 98%, respectively. In addition, the utilization of the PuriBlood leukocyte reduction filter (Puriblood Medical Co. Ltd., Baoshan Township, Taiwan) led to the depletion of approximately 93% of leukocytes and the recovery of about 83% of platelets. Conclusions Administration of LP-PRP resulted in significant improvements in pain and function of patients suffering from grade I or II OA of the knee. In addition, the leukodepletion filter used to formulate LP-PRP, successfully resulted in the depletion of leukocytes while recovering the platelets. More sufficiently powered, multi-center, prospective, non-randomized, and randomized controlled trials with long-term follow-up are needed to further establish the effectiveness of this formulation in knee OA patients.
Collapse
Affiliation(s)
- Ashim Gupta
- Regenerative Medicine, Future Biologics, Lawrenceville, USA
| | | | - G Hari Kumar
- Orthopedics, SP Fort Hospital, Thiruvananthapuram, IND
| |
Collapse
|
226
|
Blum K, Elman I, Han D, Hanna C, Baron D, Gupta A, Kazmi S, Khalsa J, Bagchi D, McLaughlin T, Badgaiyan RD, Modestino EJ, Edwards D, Dennen CA, Braverman ER, Bowirrat A, Sunder K, Murphy K, Jafari N, Zeine F, Carney PR, Gold MS, Lewandowski KU, Sharafshah A, Pollack AR, Thanos PK. The First Pilot Epigenetic Type Improvement of Neuropsychiatric Symptoms in a Polymorphic Dopamine D2 (-DRD2/ANKK (Taq1A)), OPRM1 (A/G), DRD3 (C/T), and MAOA (4R) Compromised Preadolescence Male with Putative PANDAS/CANS: Positive Clinical Outcome with Precision-Guided DNA Testing and Pro-Dopamine Regulation (KB220) and Antibacterial Therapies. OPEN JOURNAL OF IMMUNOLOGY 2024; 14:60-86. [PMID: 39507617 PMCID: PMC11539193 DOI: 10.4236/oji.2024.143006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Pediatric autoimmune neuropsychiatric disorders associated with or without streptococcal and other bacterial infections (PANDAS/CANS) are emerging as a featured pediatric disorder. Although there is some controversy regarding treatment approaches, especially related to the behavioral sequelae, we have hypothesized in other published work that it is characterized by the rapid onset of Reward Deficiency Syndrome (RDS) in children. We propose utilizing a multi-systems biological approach involving the coupling of genetic addiction risk testing and pro-dopamine regulation (KB220/POLYGEN®) to help induce "dopamine homeostasis" in patients with PANDAS, especially those with known DNA-induced hypodopaminergia. This case study examines a 12-year-old Caucasian male with no prior psychiatric issues who presented with a sudden onset of severe anxiety, depression, emotional liability, and suicidal ideation. The patient underwent genotyping and the genetic addiction risk score (GARS) testing, which revealed risk polymorphisms in the dopamine D2 (-DRD2/ANKK (Taq1A), OPRM1 (A/G), DRD3 (C/T), and MAOA (4R) genes. These polymorphisms have been linked to hypodopaminergia. The patient was subsequently placed on research ID-KB220ZPBMPOLY (POLYGEN®), and albeit the possibility of bias, based upon self and parental assessment, a marked rapid improvement in psychiatric symptoms was observed. In the second phase of treatment (102 days utilizing KB220), the patient received standard antibody testing, which was positive for Lyme. Antibacterial therapy started immediately, and KB220z was discontinued to provide a wash-out period. A monotonic trend analysis was performed on each outcome measure, and a consistently decreasing trend was observed utilizing antibacterial therapy. Our recommendation, albeit only one case, is to utilize and further research a combined therapeutic approach, involving precision-guided DNA testing and pro-dopamine regulation along with antibacterial therapy, as well as glutathione to address offensive enhanced cytokines, in patients with suspected PANDAS/CANS.
Collapse
Affiliation(s)
- Kenneth Blum
- Division of Addiction Research & Education, Center for Sports and Mental Health, Western University of Health Sciences, Pomona, CA, USA
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University and Dayton VA Medical Centre, Dayton, OH, USA
- Division of Nutrigenomics, Victory Nutrition International, Lederoch, PA, USA
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Psychiatry, School of Medicine, University of Vermont, Burlington, VT, USA
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX, USA
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
- Division of Neuromodulation Research, Karma Doctors & Karma TMS, Palm Springs, CA, USA
- Division of Personalized Interventions, Peak Logic, Del Mar, CA, USA
- Division of Personalized Medicine, Cross-Cultural Research & Educational Institute, San Clemente, CA, USA
- Awareness Integration Institute, San Clemente, CA, USA
- Division of Personalized Pain Therapy, Center for Advanced Spine Care of Southern Arizona, Tucson, AZ, USA
| | - Igor Elman
- Department of Psychiatry, Harvard School of Medicine, Cambridge, MA, USA
| | - David Han
- Department of Management Science and Statistics, University of Texas, San Antonio, TX, USA
| | - Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - David Baron
- Division of Addiction Research & Education, Center for Sports and Mental Health, Western University of Health Sciences, Pomona, CA, USA
| | | | - Shan Kazmi
- Division of Addiction Research & Education, Center for Sports and Mental Health, Western University of Health Sciences, Pomona, CA, USA
| | - Jag Khalsa
- Department of Microbiology, Immunology, & Tropic Diseases, School of Medicine, Georgetown University, Washington DC, USA
| | - Debasis Bagchi
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas Southern University, Houston, TX, USA
| | - Thomas McLaughlin
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX, USA
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, School of Medicine, Case Western University, Cleveland, OH, USA
| | | | | | - Catherine A. Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA, USA
| | - Eric R. Braverman
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Keerthy Sunder
- Division of Neuromodulation Research, Karma Doctors & Karma TMS, Palm Springs, CA, USA
- Department of Psychiatry, UC Riverside School of Medicine, University California, Riverside, CA, USA
| | - Kevin Murphy
- Division of Personalized Interventions, Peak Logic, Del Mar, CA, USA
| | - Nicole Jafari
- Division of Personalized Medicine, Cross-Cultural Research & Educational Institute, San Clemente, CA, USA
- Department of Human Development, California State University at Long Beach, Long Beach, CA, USA
| | - Foojan Zeine
- Awareness Integration Institute, San Clemente, CA, USA
- Department of Health Science, California State University at Long Beach, Long Beach, CA, USA
| | - Paul R. Carney
- Division Pediatric Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Mark S. Gold
- Department of Psychiatry, School of Medicine, Washington University, St. Louis, MO, USA
| | - Kai-Uwe Lewandowski
- Division of Personalized Pain Therapy, Center for Advanced Spine Care of Southern Arizona, Tucson, AZ, USA
| | - Alireza Sharafshah
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Aryeh R. Pollack
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX, USA
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
227
|
Senesi G, Guerricchio L, Ghelardoni M, Bertola N, Rebellato S, Grinovero N, Bartolucci M, Costa A, Raimondi A, Grange C, Bolis S, Massa V, Paladini D, Coviello D, Pandolfi A, Bussolati B, Petretto A, Fazio G, Ravera S, Barile L, Balbi C, Bollini S. Extracellular vesicles from II trimester human amniotic fluid as paracrine conveyors counteracting oxidative stress. Redox Biol 2024; 75:103241. [PMID: 38901103 PMCID: PMC11253147 DOI: 10.1016/j.redox.2024.103241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/07/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND We previously demonstrated that the human amniotic fluid (hAF) from II trimester of gestation is a feasible source of stromal progenitors (human amniotic fluid stem cells, hAFSC), with significant paracrine potential for regenerative medicine. Extracellular vesicles (EVs) separated and concentrated from hAFSC secretome can deliver pro-survival, proliferative, anti-fibrotic and cardioprotective effects in preclinical models of skeletal and cardiac muscle injury. While hAFSC-EVs isolation can be significantly influenced by in vitro cell culture, here we profiled EVs directly concentrated from hAF as an alternative option and investigated their paracrine potential against oxidative stress. METHODS II trimester hAF samples were obtained as leftover material from prenatal diagnostic amniocentesis following written informed consent. EVs were separated by size exclusion chromatography and concentrated by ultracentrifugation. hAF-EVs were assessed by nanoparticle tracking analysis, transmission electron microscopy, Western Blot, and flow cytometry; their metabolic activity was evaluated by oximetric and luminometric analyses and their cargo profiled by proteomics and RNA sequencing. hAF-EV paracrine potential was tested in preclinical in vitro models of oxidative stress and dysfunction on murine C2C12 cells and on 3D human cardiac microtissue. RESULTS Our protocol resulted in a yield of 6.31 ± 0.98 × 109 EVs particles per hAF milliliter showing round cup-shaped morphology and 209.63 ± 6.10 nm average size, with relevant expression of CD81, CD63 and CD9 tetraspanin markers. hAF-EVs were enriched in CD133/1, CD326, CD24, CD29, and SSEA4 and able to produce ATP by oxygen consumption. While oxidative stress significantly reduced C2C12 survival, hAF-EV priming resulted in significant rescue of cell viability, with notable recovery of ATP synthesis and concomitant reduction of cell damage and lipid peroxidation activity. 3D human cardiac microtissues treated with hAF-EVs and experiencing H2O2 stress and TGFβ stimulation showed improved survival with a remarkable decrease in the onset of fibrosis. CONCLUSIONS Our results suggest that leftover samples of II trimester human amniotic fluid can represent a feasible source of EVs to counteract oxidative damage on target cells, thus offering a novel candidate therapeutic option to counteract skeletal and cardiac muscle injury.
Collapse
Affiliation(s)
- Giorgia Senesi
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino and Laboratories for Traslational Research Ente Ospedaliero Cantonale, CH-6500, Bellinzona, Switzerland; Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera Italiana, CH-6900, Lugano, Switzerland
| | - Laura Guerricchio
- Department of Experimental Medicine (DIMES), University of Genova, 16132, Genova, Italy
| | | | - Nadia Bertola
- IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy
| | - Stefano Rebellato
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, 20900, Monza, Italy; School of Medicine and Surgery, University of Milano-Bicocca, 20900, Monza, Italy
| | - Nicole Grinovero
- Core Facilities - Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, 16147, Genova, Italy
| | - Martina Bartolucci
- Core Facilities - Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, 16147, Genova, Italy
| | - Ambra Costa
- IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy
| | - Andrea Raimondi
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500, Bellinzona, Switzerland
| | - Cristina Grange
- VEXTRA Facility and Department of Medical Sciences, University of Turin, 10126, Turin, Italy
| | - Sara Bolis
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino and Laboratories for Traslational Research Ente Ospedaliero Cantonale, CH-6500, Bellinzona, Switzerland
| | - Valentina Massa
- Department of Health Sciences, University of Milan, 20146, Milan, Italy
| | - Dario Paladini
- Fetal Medicine and Surgery Unit, IRCCS Istituto Giannina Gaslini, 16147, Genova, Italy
| | - Domenico Coviello
- Human Genetics Laboratory, IRCCS Istituto Giannina Gaslini, 16147, Genova, Italy
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara and Center for Advanced Studies and Technology - CAST, 66100, Chieti, Italy
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126, Turin, Italy
| | - Andrea Petretto
- Core Facilities - Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, 16147, Genova, Italy
| | - Grazia Fazio
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, 20900, Monza, Italy; School of Medicine and Surgery, University of Milano-Bicocca, 20900, Monza, Italy
| | - Silvia Ravera
- Department of Experimental Medicine (DIMES), University of Genova, 16132, Genova, Italy
| | - Lucio Barile
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino and Laboratories for Traslational Research Ente Ospedaliero Cantonale, CH-6500, Bellinzona, Switzerland; Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera Italiana, CH-6900, Lugano, Switzerland.
| | - Carolina Balbi
- Center for Molecular Cardiology, University of Zurich, 8952, Schlieren, Switzerland; Department of Internal Medicine, Cantonal Hospital Baden, Baden, Switzerland.
| | - Sveva Bollini
- Department of Experimental Medicine (DIMES), University of Genova, 16132, Genova, Italy; IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy.
| |
Collapse
|
228
|
Östman M, Försth P, Hedenqvist P, Engqvist H, Marcelino L, Ytrehus B, Hulsart-Billström G, Pujari-Palmer M, Öhman-Mägi C, Höglund O, Forterre F. Novel Calcium Phosphate Promotes Interbody Bony Fusion in a Porcine Anterior Cervical Discectomy and Fusion Model. Spine (Phila Pa 1976) 2024; 49:1179-1186. [PMID: 38213106 PMCID: PMC11319082 DOI: 10.1097/brs.0000000000004916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/16/2023] [Indexed: 01/13/2024]
Abstract
STUDY DESIGN Experimental porcine anterior cervical discectomy and fusion (ACDF) model: a proof-of-concept study. OBJECTIVE The effect of monetite synthetic bone graft (SBG) containing calcium pyrophosphate and β-tricalcium phosphate on cervical spinal fusion in a noninstrumented two-level large animal model. SUMMARY OF BACKGROUND DATA ACDF is the gold standard surgical technique for the treatment of degenerative cervical spinal diseases. However, pseudarthrosis associated with increased patient morbidity occurs in ∼2.6% of the surgeries. SBG may enhance bony fusion and subsequently decrease the risk of pseudarthrosis. Recent studies on monetite-based SBGs for use in large cranial defects in humans have shown promising bone healing results, necessitating further investigation of their use in cervical spinal fusion. MATERIALS AND METHODS Four adult female Danish Göttingen minipigs received partial cervical anterior discectomy and intervertebral defects at an upper and lower level. One defect was filled with SBG, and the other was left empty. Bony fusion was evaluated using computed tomography (CT) at three-month intervals for 12 months. Fifteen months postsurgery, the animals were euthanized for further ex vivo qualitative histopathologic and micro-CT evaluations. Fusion rates were compared using the Fisher exact test at each time point. RESULTS Increased interbody bony fusion rates were observed at SBG levels (4/4) compared with control levels (0/4) evaluated by CT at 6 and 9 months postsurgery ( P =0.029). Fusion was observed at all SBG levels 12 months postsurgery and at only one control level. Histopathologic evaluation confirmed high-quality interbody bony fusion at all SBG levels and fusion by spondylosis at one control level. CONCLUSION This proof-of-concept study provides preliminary evidence of a novel, calcium pyrophosphate-containing, and β-tricalcium phosphate-containing monetite SBG that promotes bony fusion compared with a negative control in a clinically relevant porcine model of ACDF.
Collapse
Affiliation(s)
- Maria Östman
- Department of Clinical Veterinary Medicine, Division of Small Animal Surgery, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Peter Försth
- Department of Surgical Sciences, Division of Orthopedics, Uppsala University, Uppsala, Sweden
| | - Patricia Hedenqvist
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Håkan Engqvist
- Department of Materials Science and Engineering, Division of Applied Materials Science, Uppsala University, Uppsala, Sweden
| | - Leticia Marcelino
- University Animal Hospital, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Bjørnar Ytrehus
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Norwegian Veterinary Institute, Ås, Norway
| | - Gry Hulsart-Billström
- Department of Medicinal Chemistry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Michael Pujari-Palmer
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Caroline Öhman-Mägi
- Department of Materials Science and Engineering, Division of Applied Materials Science, Uppsala University, Uppsala, Sweden
| | - Odd Höglund
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Franck Forterre
- Department of Clinical Veterinary Medicine, Division of Small Animal Surgery, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
229
|
Kaidar E, Turgambayeva A, Zhussupov B, Stukas R, Sultangaziyev T, Yessenbayev B. The effects of COVID-19 severity on health status in Kazakhstan: A prospective cohort study. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2024; 29:101761. [DOI: 10.1016/j.cegh.2024.101761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
230
|
Sugden SG, Merlo G, Manger S. Strengthening Neuroplasticity in Substance Use Recovery Through Lifestyle Intervention. Am J Lifestyle Med 2024; 18:648-656. [PMID: 39309323 PMCID: PMC11412380 DOI: 10.1177/15598276241242016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
The incidence of substance use and behavioral addictions continues to increase throughout the world. The Global Burden of Disease Study shows a growing impact in disability-adjusted life years due to substance use. Substance use impacts families, communities, health care, and legal systems; yet, the vast majority of individuals with substance use disorders do not seek treatment. Within the United States, new legislation has attempted to increase the availability of buprenorphine, but the impact of substance use continues. Although medications and group support therapy have been the mainstay of treatment for substance use, lifestyle medicine offers a valuable adjunct therapy that may help strengthen substance use recovery through healthy neuroplastic changes.
Collapse
Affiliation(s)
- Steven G Sugden
- Huntsman Mental Health Institute, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT, USA (SS)
| | - Gia Merlo
- Grossman School of Medicine, New York University, Garwood, NJ, USA (GM)
| | - Sam Manger
- Academic Lead, Lifestyle Medicine, James Cook University, Australia
| |
Collapse
|
231
|
Mehta SK, Pradhan RB. Phytochemicals in antiviral drug development against human respiratory viruses. Drug Discov Today 2024; 29:104107. [PMID: 39032810 DOI: 10.1016/j.drudis.2024.104107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/30/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
This review explores the potential antiviral properties of various plant-based compounds, including polyphenols, phytochemicals, and terpenoids. It emphasizes the diverse functionalities of compounds such as epigallocatechin-3-gallate (EGCG), quercetin, griffithsin (GRFT,) resveratrol, linalool, and carvacrol in the context of respiratory virus infections, including SARS-CoV-2. Emphasizing their effectiveness in modulating immune responses, disrupting viral envelopes, and influencing cellular signaling pathways, the review underlines the imperative for thorough research to establish safety and efficacy. Additionally, the review underscores the necessity of well-designed clinical trials to evaluate the efficacy and safety of these compounds as potential antiviral agents. This approach would establish a robust framework for future drug development efforts focused on bolstering host defense mechanisms against human respiratory viral infections.
Collapse
Affiliation(s)
- Surya Kant Mehta
- Laboratory of Algal Biology, Department of Botany, School of Life Sciences, Mizoram University, Aizawl, PIN 796004, Mizoram, India.
| | - Ran Bahadur Pradhan
- Laboratory of Algal Biology, Department of Botany, School of Life Sciences, Mizoram University, Aizawl, PIN 796004, Mizoram, India
| |
Collapse
|
232
|
Shahsavari A, Liu F. Diagnostic and therapeutic potentials of extracellular vesicles for primary Sjögren's Syndrome: A review. DENTISTRY REVIEW 2024; 4:100150. [PMID: 39310092 PMCID: PMC11416744 DOI: 10.1016/j.dentre.2024.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Primary Sjögren syndrome (pSS) is a chronic autoimmune disease mainly affecting salivary and lacrimal glands. The current pSS biomarkers, serum autoantibodies, are negative in many pSS patients diagnosed with histopathology changes, indicating the need of novel biomarkers. The current therapies of pSS are merely short-term symptomatic relief and can't provide effective long-term remedy. Extracellular vehicles (EVs) are nano-sized lipid bilayer-delimited particles spontaneously released by almost all types of cells and carrying various bioactive molecules to mediate inter-cellular communications. Recent studies found that EVs from salivary gland epithelial cells and immune cells play essential roles in pSS pathogenesis. Correspondingly, EVs and their cargos in plasma and saliva are promising candidate biomarkers for pSS diagnosis. Moreover, EVs from mesenchymal stem cells have shown promises to improve pSS treatment by modulating immune responses. This review summarizes recent findings in roles of EVs in pSS pathogenesis, diagnosis, and treatment of pSS, as well as related challenges and future research directions.
Collapse
Affiliation(s)
- Arash Shahsavari
- Cell Biology and Genetics department, School of Medicine, Texas A&M University, College Station, TX, USA
| | - Fei Liu
- Cell Biology and Genetics department, School of Medicine, Texas A&M University, College Station, TX, USA
| |
Collapse
|
233
|
Savoie Iii FH, Delvadia BP, Tate JP, Winter JE, Williams GH, Sherman WF, O'Brien MJ. Biologics in rotator cuff repair. Bone Joint J 2024; 106-B:978-985. [PMID: 39216849 DOI: 10.1302/0301-620x.106b9.bjj-2024-0513.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Rotator cuff tears are common in middle-aged and elderly patients. Despite advances in the surgical repair of rotator cuff tears, the rates of recurrent tear remain high. This may be due to the complexity of the tendons of the rotator cuff, which contributes to an inherently hostile healing environment. During the past 20 years, there has been an increased interest in the use of biologics to complement the healing environment in the shoulder, in order to improve rotator cuff healing and reduce the rate of recurrent tears. The aim of this review is to provide a summary of the current evidence for the use of forms of biological augmentation when repairing rotator cuff tears.
Collapse
Affiliation(s)
- Felix H Savoie Iii
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Tulane Doctors-Sports Medicine Plus, University Medical Center New Orleans, Lakeside Hospital, Omega Hospital Surgery Center, East Jefferson Hospital, and Slidell Memorial Hospital, Slidell, Louisiana, USA
| | - Bela P Delvadia
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Tulane Doctors-Sports Medicine Plus, University Medical Center New Orleans, Lakeside Hospital, Omega Hospital Surgery Center, East Jefferson Hospital, and Slidell Memorial Hospital, Slidell, Louisiana, USA
| | - Jackson P Tate
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Tulane Doctors-Sports Medicine Plus, University Medical Center New Orleans, Lakeside Hospital, Omega Hospital Surgery Center, East Jefferson Hospital, and Slidell Memorial Hospital, Slidell, Louisiana, USA
| | - Julianna E Winter
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Tulane Doctors-Sports Medicine Plus, University Medical Center New Orleans, Lakeside Hospital, Omega Hospital Surgery Center, East Jefferson Hospital, and Slidell Memorial Hospital, Slidell, Louisiana, USA
| | - Garrett H Williams
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Tulane Doctors-Sports Medicine Plus, University Medical Center New Orleans, Lakeside Hospital, Omega Hospital Surgery Center, East Jefferson Hospital, and Slidell Memorial Hospital, Slidell, Louisiana, USA
| | - William F Sherman
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Tulane Doctors-Sports Medicine Plus, University Medical Center New Orleans, Lakeside Hospital, Omega Hospital Surgery Center, East Jefferson Hospital, and Slidell Memorial Hospital, Slidell, Louisiana, USA
| | - Michael J O'Brien
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Tulane Doctors-Sports Medicine Plus, University Medical Center New Orleans, Lakeside Hospital, Omega Hospital Surgery Center, East Jefferson Hospital, and Slidell Memorial Hospital, Slidell, Louisiana, USA
| |
Collapse
|
234
|
Ahmed SF, Jasim SA, Pallathadka H, Kaur H, Renuka Jyothi S, Bansal P, Abdali H, Mustafa YF, Al-Abdeen SHZ, Zwamel AH. New Therapeutic Strategies for the Inflammatory Rheumatoid Arthritis Disease: Emphasizing Mesenchymal Stem Cells and Associated exo-miRNA or exo-lncRNA. Cell Biochem Biophys 2024; 82:1599-1611. [PMID: 38822204 DOI: 10.1007/s12013-024-01316-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 06/02/2024]
Abstract
The most prevalent inflammatory arthritis and a leading contributor to disability is rheumatoid arthritis (RA). Although it may not have arrived in Europe until the 17th century, it was present in early Native American communities several thousand years ago. Exosomes released by mesenchymal stem cells (MSCs) are highly immunomodulatory due to the origin of the cell. As a cell-free therapy, MSCs-exosomes are less toxic and elicit a weakened immune response than cell-based therapies. Exosomal noncoding RNAs (ncRNAs) are closely associated with a number of biological and functional facets of human health, especially microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). Various exo-miRNAs and lncRNAs such as HAND2-AS1, miR-150-5p, miRNA-124a, and miR-320a lodged with MSC could be appropriate therapeutic ways for RA treatment. These MSC-derived exosomes affect RA disorders via different molecular pathways such as NFK-β, MAPK, and Wnt. The purpose of this review is to review the research that has been conducted since 2020 so far in the field of RA disease treatment with MSC-loaded exo-miRNAs and exo-lncRNAs.
Collapse
Affiliation(s)
- Shadia Faris Ahmed
- Biology Department, College of Science, University of Sulaimani, Sulaymaniyah, Iraq
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Anbar, Iraq.
- Biotechnology Department, College of Applied Science, Fallujah University, Fallujah, Iraq.
| | | | - Harpreet Kaur
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Hussam Abdali
- Department of Medical Engineering, Al-Hadi University College, Baghdad, 10011, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | | | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
235
|
White T, Justiz R, Almonte W, Micovic V, Shah B, Anderson E, Kapural L, Cordner H, El-Naggar A, Fishman M, Eshraghi Y, Kim P, Abd-Elsayed A, Chakravarthy K, Millet Y, Sanapati M, Harrison N, Goff B, Gupta M, Grewal P, Wilkinson M, Bundschu R, Will A, Satija P, Li S, Dulebohn S, Broadnax J, Gekht G, Wu K, Falowski S, Park W, Cedeno DL, Vallejo R. Twelve-month results from a randomized controlled trial comparing differential target multiplexed spinal cord stimulation and conventional spinal cord stimulation in subjects with chronic refractory axial low back pain not eligible for spine surgery. NORTH AMERICAN SPINE SOCIETY JOURNAL 2024; 19:100528. [PMID: 39229594 PMCID: PMC11369449 DOI: 10.1016/j.xnsj.2024.100528] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 09/05/2024]
Abstract
Background Successful treatments for intractable chronic low back pain (CLBP) in patients who are not eligible for surgical interventions are scarce. The superior efficacy of differential target multiplexed spinal cord stimulation (DTM SCS) to conventional SCS (Conv-SCS) on the treatment of CLBP in patients with persistent spinal pain syndrome (PSPS) who have failed surgical interventions (PSPS-T2) motivated the evaluation of DTM SCS versus Conv-SCS on PSPS patients who are non-surgical candidates (PSPS-T1). Methods This is a prospective, open label, crossover, post-market randomized controlled trial in 20 centers across the United States. Eligible patients were randomized to either DTM SCS or Conv-SCS in a 1:1 ratio. Primary endpoint was CLBP responder rate (percentage of subjects with ≥50% CLBP relief) at 3-month in randomized subjects who completed trialing (modified intention-to-treat population). Patients were followed up to 12 months. Secondary endpoints included change of CLBP and leg pain, responder rates, changes in disability, quality of life, patient satisfaction and global impression of change, and safety profile. An optional crossover was available at 6-month to all patients. Results About 121 PSPS-T1 subjects with CLBP and leg pain mostly associated with degenerative disc disease and radiculopathy and who were not eligible for spine surgery were randomized. CLBP responder rate with DTM SCS (93.5%) was superior to Conv-SCS (36.4%) at the primary endpoint. Superior CLBP responder rates (88.1%-90.5%) were obtained with DTM SCS at all other timepoints. Mean CLBP reduction with DTM SCS (6.52 cm) was superior to that with Conv-SCS (3.01 cm) at the primary endpoint. Similar CLBP reductions (6.23-6.43 cm) were obtained with DTM SCS at other timepoints. DTM SCS provided significantly better leg pain reduction and responder rate, improvement of disability and quality of life, and better patient satisfaction and global impression of change. 90.9% of Conv-SCS subjects who crossed over were CLBP responders at completion of the study. Similar safety profiles were observed between the two groups. Conclusion DTM SCS for chronic CLBP in nonsurgical candidates is superior to Conv-SCS. Improvements were sustained and provided significant benefits on the management of these patients.
Collapse
Affiliation(s)
- Thomas White
- Procura Pain and Spine, Pain Management. 111 Vision Park Blvd #100, Shenandoah, TX 77384
| | - Rafael Justiz
- Oklahoma Pain Physicians, Pain Management, 4117 NW 122nd St #C, Oklahoma City, OK 73120
| | - Wilson Almonte
- Victoria Pain and Rehabilitation, Pain Management, 6902 Zac Lentz Parkway, Victoria, TX 77904
| | - Velimir Micovic
- Pain Management Consultants, Pain Management, 7964 Summerlin Lakes Dr, Fort Myers, FL 33907
| | - Binit Shah
- Carolinas Pain Center, Pain Management, 9735 Kincey Ave STE 100, Huntersville, NC 28078
| | - Eric Anderson
- Advanced Pain Institute of Texas, Pain Management, 500 W Main St Suite 230, Lewisville, TX 75057
| | - Leonardo Kapural
- Carolinas Pain Institute, Pain Management, 145 Kimel Park Dr #330, Winston-Salem, NC 27103
| | - Harold Cordner
- Florida Pain Management Associates, Pain Management, 13825 U.S. Hwy 1, Sebastian, FL 32958
| | - Amr El-Naggar
- DREZ One, Pain Management, 75 Hail Knob Rd, Somerset, KY 42503
| | - Michael Fishman
- Center for Interventional Pain and Spine, Pain Management, 160 N Pointe Blvd Suite 208, Lancaster, PA 17604
| | - Yashar Eshraghi
- Ochsner Medical Center, Pain Management, 1514 Jefferson Highway, New Orleans, LA 70121
| | - Philip Kim
- Center for Interventional Pain and Spine, Pain Management, 160 N Pointe Blvd Suite 208, Lancaster, PA 17604
| | - Al Abd-Elsayed
- University of Wisconsin, Pain Management, 102 S Park St 3rd floor, Madison, WI 53715
| | - Krishnan Chakravarthy
- Coastal Research Institute, Pain Management, 6221 Metropolitan Street, Ste. 201, Carlsbad, CA 92009
- VA San Diego Healthcare, Pain Management, 3350 La Jolla Village Drive, San Diego, CA 92161
| | - Yoann Millet
- Procura Pain and Spine, Pain Management. 111 Vision Park Blvd #100, Shenandoah, TX 77384
| | - Mahendra Sanapati
- Global Scientific Innovations, Pain Management, 1101 Professional Blvd, Ste 208, Evansville, IN 47714
| | - Nathan Harrison
- Ochsner Medical Center, Pain Management, 1514 Jefferson Highway, New Orleans, LA 70121
| | - Brandon Goff
- Burkhart Research Institute for Orthopaedics, Pain Management, 400 Concord Plaza Dr, San Antonio, TX, 78216
| | - Mayank Gupta
- Neuroscience Research Center, Pain Management. 10995 Quivira Road, Overland Park, KS 66210
| | - Prabhdeep Grewal
- Burkhart Research Institute for Orthopaedics, Pain Management, 400 Concord Plaza Dr, San Antonio, TX, 78216
| | - Michael Wilkinson
- Pain Medicine Associates Surgery Center, Pain Management, 101 Med Tech Pkwy #200, Johnson City, TN 37604
| | - Richard Bundschu
- Coastal Orthopedics and Sports Medicine and Pain Management, Pain Management, 6202 17th Ave W, Bradenton, FL 34209
| | - Andrew Will
- Twin Cities Pain Clinic; Pain Management, 7235 Ohms Lane, Edina, MN
| | - Pankaj Satija
- Pain & Headache Centers of Texas, Pain Management, 313 La Concha Lane, Suite 120, Houston, TX 77054
| | - Sean Li
- National Spine and Pain Premier Pain Centers, Pain Management, 170 Ave at the Cmns Suite 6, Shrewsbury, NJ 07702
| | - Scott Dulebohn
- Pain Medicine Associates Surgery Center, Pain Management, 101 Med Tech Pkwy #200, Johnson City, TN 37604
| | - John Broadnax
- Advanced Pain Institute of Texas, Pain Management, 500 W Main St Suite 230, Lewisville, TX 75057
| | - Gennady Gekht
- Coastal Orthopedics and Sports Medicine and Pain Management, Pain Management, 6202 17th Ave W, Bradenton, FL 34209
| | - Ken Wu
- Procura Pain and Spine, Pain Management. 111 Vision Park Blvd #100, Shenandoah, TX 77384
| | - Steven Falowski
- Center for Interventional Pain and Spine, Pain Management, 160 N Pointe Blvd Suite 208, Lancaster, PA 17604
| | - Wesley Park
- SGX Medical LLC, Clinical Research, 33 Derby Way, Bloomington, IL 61704
| | - David L. Cedeno
- SGX Medical LLC, Clinical Research, 33 Derby Way, Bloomington, IL 61704
| | - Ricardo Vallejo
- SGX Medical LLC, Clinical Research, 33 Derby Way, Bloomington, IL 61704
| |
Collapse
|
236
|
Xu RD, Li JH, Zhang H, Liang HR, Duan SY, Sun M, Wen H, Zhou XT, Liu HF, Cai ZC. The combined application of pulsed electromagnetic fields and platelet-rich plasma in the treatment of early-stage knee osteoarthritis: A randomized clinical trial. Medicine (Baltimore) 2024; 103:e39369. [PMID: 39213232 PMCID: PMC11365643 DOI: 10.1097/md.0000000000039369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND This study aims to evaluate the therapeutic efficacy of combined treatment with pulsed electromagnetic fields (PEMFs) and platelet-rich plasma (PRP) injection in improving pain and functional mobility among patients with early-stage knee osteoarthritis (KOA). We hypothesize that this combined therapy can yield superior treatment outcomes. METHODS Based on the different treatment regimens, we divided 48 patients diagnosed with Kellgren-Lawrence grades I-III KOA into 3 groups: the PRP group, the PEMFs group, and the PRP + PEMFs group. Each subtype of KOA patients was randomly assigned to different treatment groups. In the PRP group, patients received intra-articular injections of leukocyte-rich platelet-rich plasma once a month for 3 consecutive months. In the PEMFs group, patients receive low-frequency PEMFs irradiation therapy with a frequency of 30 Hz and intensity of 1.5 mT, once daily, 5 times a week, for a consecutive treatment period of 12 weeks. In the PRP + PEMFs group, patients receive both of the aforementioned treatment protocol. The treatment effects on patients are evaluated at baseline and at weeks 4, 8, and 12 post-treatment. Assessment parameters include visual analog scale for pain, Western Ontario and McMaster Universities Osteoarthritis Index, Lequesne Index score, and knee joint range of motion. RESULTS From the 4th to the 12th week of treatment, the visual analog scale scores, Western Ontario and McMaster Universities Osteoarthritis Index scores, and Lequesne index scores of patients in all 3 groups gradually decreased, while knee joint mobility gradually increased (P < .05). At weeks 4, 8, and 12 after treatment, the PRP combined with PEMFs group showed significantly better scores compared to the PRP group and the PEMFs group, with statistically significant differences (P < .05). A total of 7 patients experienced adverse reactions such as knee joint swelling, low-grade fever, and worsening knee joint pain after treatment, all of which disappeared within 1 week after treatment. The incidence of complications did not differ significantly among the 3 groups (P = .67). CONCLUSION PRP, PEMFs, and the combination of PRP and PEMFs therapy all effectively alleviate knee joint pain and improve joint function. However, compared to single treatment modalities, the combined therapy of PRP and PEMFs demonstrates more pronounced efficacy.
Collapse
Affiliation(s)
- Rong-da Xu
- Department of Orthopedics Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| | - Jia-hui Li
- Department of Orthopedics Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| | - He Zhang
- Department of Orthopedics Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| | - Hai-rui Liang
- Department of Orthopedics Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| | - Si-yu Duan
- Department of Orthopedics Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| | - Ming Sun
- Department of Orthopedics Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| | - Hang Wen
- Department of Orthopedics Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| | - Xue-ting Zhou
- Department of Orthopedics Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| | - Han-fei Liu
- Department of Orthopedics Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| | - Zhen-cun Cai
- Department of Orthopedics Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
- Key Laboratory of Human Ethnic Specificity and Phenomics of Critical Illness in Liaoning Province, Shenyang Medical College, Shenyang, China
| |
Collapse
|
237
|
Gazzeri R, Castrucci T, Leoni MLG, Mercieri M, Occhigrossi F. Spinal Cord Stimulation for Intractable Chronic Limb Ischemia: A Narrative Review. J Cardiovasc Dev Dis 2024; 11:260. [PMID: 39330318 PMCID: PMC11431887 DOI: 10.3390/jcdd11090260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Critical limb ischemia (CLI) is the most severe form of peripheral arterial disease, significantly impacting quality of life, morbidity and mortality. Common complications include severe limb pain, walking difficulties, ulcerations and limb amputations. For cases of CLI where surgical or endovascular reconstruction is not possible or fails, spinal cord stimulation (SCS) may be a treatment option. Currently, SCS is primarily prescribed as a symptomatic treatment for painful symptoms. It is used to treat intractable pain arising from various disorders, such as neuropathic pain secondary to persistent spinal pain syndrome (PSPS) and painful diabetic neuropathy. Data regarding the effect of SCS in treating CLI are varied, with the mechanism of action of vasodilatation in the peripheral microcirculatory system not yet fully understood. This review focuses on the surgical technique, new modalities of SCS, the mechanisms of action of SCS in vascular diseases and the parameters for selecting CLI patients, along with the clinical outcomes and complications. SCS is a safe and effective surgical option in selected patients with CLI, where surgical or endovascular revascularization is not feasible.
Collapse
Affiliation(s)
- Roberto Gazzeri
- Interventional and Surgical Pain Management Unit, San Giovanni-Addolorata Hospital, Via Amba Aradam 9, 00184 Rome, Italy
| | | | - Matteo Luigi Giuseppe Leoni
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza University of Rome, 29121 Rome, Italy
| | - Marco Mercieri
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza University of Rome, 29121 Rome, Italy
| | - Felice Occhigrossi
- Interventional and Surgical Pain Management Unit, San Giovanni-Addolorata Hospital, Via Amba Aradam 9, 00184 Rome, Italy
| |
Collapse
|
238
|
Jeyaraman N, Shrivastava S, Ravi VR, Nallakumarasamy A, Pundkar A, Jeyaraman M. Understanding and controlling the variables for stromal vascular fraction therapy. World J Stem Cells 2024; 16:784-798. [PMID: 39219728 PMCID: PMC11362852 DOI: 10.4252/wjsc.v16.i8.784] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/13/2024] [Accepted: 07/25/2024] [Indexed: 08/26/2024] Open
Abstract
In regenerative medicine, the isolation of mesenchymal stromal cells (MSCs) from the adipose tissue's stromal vascular fraction (SVF) is a critical area of study. Our review meticulously examines the isolation process of MSCs, starting with the extraction of adipose tissue. The choice of liposuction technique, anatomical site, and immediate processing are essential to maintain cell functionality. We delve into the intricacies of enzymatic digestion, emphasizing the fine-tuning of enzyme concentrations to maximize cell yield while preventing harm. The review then outlines the filtration and centrifugation techniques necessary for isolating a purified SVF, alongside cell viability assessments like flow cytometry, which are vital for confirming the efficacy of the isolated MSCs. We discuss the advantages and drawbacks of using autologous vs allogeneic SVF sources, touching upon immunocompatibility and logistical considerations, as well as the variability inherent in donor-derived cells. Anesthesia choices, the selection between hypodermic needles vs liposuction cannulas, and the role of adipose tissue lysers in achieving cellular dissociation are evaluated for their impact on SVF isolation. Centrifugation protocols are also analyzed for their part in ensuring the integrity of the SVF. The necessity for standardized MSC isolation protocols is highlighted, promoting reproducibility and successful clinical application. We encourage ongoing research to deepen the understanding of MSC biology and therapeutic action, aiming to further the field of regenerative medicine. The review concludes with a call for rigorous research, interdisciplinary collaboration, and strict adherence to ethical and regulatory standards to safeguard patient safety and optimize treatment outcomes with MSCs.
Collapse
Affiliation(s)
- Naveen Jeyaraman
- Department of Orthopaedics, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
| | - Sandeep Shrivastava
- Department of Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
| | - V R Ravi
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
| | - Arulkumar Nallakumarasamy
- Department of Orthopaedics, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
| | - Aditya Pundkar
- Department of Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
| | - Madhan Jeyaraman
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India.
| |
Collapse
|
239
|
Bina V, Brancato AM, Caliogna L, Berni M, Gastaldi G, Mosconi M, Pasta G, Grassi FA, Jannelli E. Mesenchymal Stem Cells and Secretome as a New Possible Approach to Treat Cartilage Damage: An In Vitro Study. Biomolecules 2024; 14:1068. [PMID: 39334835 PMCID: PMC11430587 DOI: 10.3390/biom14091068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
Introduction: Osteoarthritis is a degenerative condition of the cartilage, often common among the population and occurs frequently with aging. Many factors are decisive for the development of its pathogenesis such as age, obesity, trauma, mechanical load, and modification of synovial biology. The main features of osteoarthritis are chondrocytes and cartilage matrix loss, which lead to pain, loss of function of the whole joint, and disability, representing a relevant health problem. Recently, a new therapeutic approach based on cell therapy has been studying the regenerative ability of mesenchymal stem cells for osteoarthritic chondrocytes. Aim: This in vitro study clarifies the regenerative effects of multipotent adipose-derived stem cells and the pluripotent amniotic epithelial stem cells on arthrosis chondrocytes by performing co-culture experiments. Methods: We studied the regenerative potential of secretome (soluble factors and extracellular vesicles), mesenchymal stem cells, and the adipose stromal vascular fraction. The regenerative effects were evaluated by gene and protein expression analysis of articular cartilage-specific genes and proteins like col2a1, acan, and sox9. Results: Mesenchymal stem cells, secretome, and adipose stromal vascular fractions influenced the cartilage genes and protein expression. Conclusions: The results indicate that the treatment with mesenchymal stem cells could be the best biological approach for cartilage regenerative medicine.
Collapse
Affiliation(s)
- Valentina Bina
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.G.)
| | - Alice Maria Brancato
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (A.M.B.); (M.M.); (G.P.); (F.A.G.); (E.J.)
| | - Laura Caliogna
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (A.M.B.); (M.M.); (G.P.); (F.A.G.); (E.J.)
| | - Micaela Berni
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Giulia Gastaldi
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.G.)
- Centre for Health Technologies, University of Pavia, 27100 Pavia, Italy
| | - Mario Mosconi
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (A.M.B.); (M.M.); (G.P.); (F.A.G.); (E.J.)
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Gianluigi Pasta
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (A.M.B.); (M.M.); (G.P.); (F.A.G.); (E.J.)
| | - Federico Alberto Grassi
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (A.M.B.); (M.M.); (G.P.); (F.A.G.); (E.J.)
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy;
- Centre for Health Technologies, University of Pavia, 27100 Pavia, Italy
| | - Eugenio Jannelli
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (A.M.B.); (M.M.); (G.P.); (F.A.G.); (E.J.)
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
240
|
Chaito L, Stefanoff P, Baruch J, Farah Z, Albuaini M, Ghosn N. Pfizer-BioNTech (BNT162b2) Vaccine Effectiveness against Symptomatic Laboratory-Confirmed COVID-19 Infection among Outpatients in Sentinel Sites, Lebanon, July-December 2021. Vaccines (Basel) 2024; 12:954. [PMID: 39339986 PMCID: PMC11436158 DOI: 10.3390/vaccines12090954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
On 14 February 2021, Lebanon implemented nationwide vaccination, offering the Pfizer-BioNTech (BNT162b2) vaccine to adults over 50 years of age. We estimated the effectiveness of the Pfizer-BioNTech vaccine in preventing symptomatic laboratory-confirmed COVID-19. We conducted a test-negative case-control (TND) study among symptomatic adults aged 50 years and older who presented with influenza-like illness (ILI) or COVID-19-like illness (CLI) in surveillance sentinel sites between 1 July and 31 December 2021. Unvaccinated participants did not receive any vaccine dose before symptom onset. Vaccinated participants received at least one dose within 14 days before onset of symptoms. We estimated vaccine effectiveness against symptomatic laboratory-confirmed COVID-19, adjusted for demographic and behavioral factors, using multivariable logistic regression. Out of 457 participants with symptoms, 150 (33%) were positive and 307 (67%) were negative for SARS-CoV-2. Adjusted vaccine effectiveness was 22% (95% CI: -70-65%) for those partially vaccinated and 44% (95% CI: 6-67%) for those fully vaccinated. Vaccination with two doses of the Pfizer-BioNTech vaccine was effective in preventing COVID-19 symptomatic illness in the older population. Vaccine effectiveness was lower for those partially vaccinated. We recommend enhancing vaccine uptake with at least one dose among risk groups for COVID-19 and keeping general recommendations on contact and droplet precautions in the general population.
Collapse
Affiliation(s)
- Lina Chaito
- Epidemiological Surveillance Program, Ministry of Public Health, Beirut 0127, Lebanon
- Mediterranean and Black Sea Programme in Intervention Epidemiology Training (MediPIET), European Centre for Disease Prevention and Control (ECDC), 171 83 Stockholm, Sweden
| | - Pawel Stefanoff
- Mediterranean and Black Sea Programme in Intervention Epidemiology Training (MediPIET), European Centre for Disease Prevention and Control (ECDC), 171 83 Stockholm, Sweden
| | - Joaquin Baruch
- European Programme for Intervention Epidemiology Training Program (EPIET), European Centre for Disease Prevention and Control (ECDC), 171 83 Stockholm, Sweden
| | - Zeina Farah
- Epidemiological Surveillance Program, Ministry of Public Health, Beirut 0127, Lebanon
| | - Mona Albuaini
- National Influenza Center (NIC), Rafic Hariri University Hospital (RHUH), Beirut 0127, Lebanon
| | - Nada Ghosn
- Epidemiological Surveillance Program, Ministry of Public Health, Beirut 0127, Lebanon
| |
Collapse
|
241
|
Jeyaraman M, Pai SN, Filippo M, Jeyaraman N, Venkatasalam R, Nallakumarasamy A, Khanna M, Patro BP, Sharma S, Rangarajan RV. Informed consent form for platelet rich plasma injections: evidence-based and legally guide for orthopaedic surgeons. Eur J Med Res 2024; 29:422. [PMID: 39152486 PMCID: PMC11330123 DOI: 10.1186/s40001-024-02019-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
Regarding medico-legal malpractice suits, lawyers and insurers focus on informed consent documentation. Unfortunately, there is no standard protocol for obtaining informed consent for platelet-rich plasma (PRP) injections. The objective of the present study was to create a pre-designed, evidence-based informed consent form specifically for PRP injections. The current evidence on the medico-legal implications of PRP injections was accessed, as well as informed consent in general and specifically informed consent in PRP injections. Additionally, we interviewed orthopaedic surgeons and patients who had undergone PRP injections in the past year using a semi-structured approach. A legally valid and evidence-based informed consent form for PRP injections ensures rights, encouraging open communication and transparency between the patient and surgeon. Moreover, if a lawsuit arose, informed consent would be a critical document in surgeons' defence and would withstand scrutiny from lawyers and the judiciary. An evidence-based informed consent form for PRP injections was elaborated and reviewed by a legal expert to ensure adherence to legal proprieties. The final form of the informed consent for PRP injection was administered for one year and validated at our institution.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu, 600077, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli, Tamil Nadu, 620017, India
- Department of Regenerative Medicine, Orange Health Care, Chennai, Tamil Nadu, 600040, India
| | - Satvik N Pai
- Department of Orthopaedics, PES University Institute of Medical Sciences and Research, Bengaluru, Karnataka, 560083, India
| | - Migliorini Filippo
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Medical Centre, Pauwelsstraße 30, 52074, Aachen, Germany.
- Department of Orthopedics and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), 39100, Bolzano, Italy.
- Department of Life Sciences, Health, and Health Professions, Link Campus University, 00165, Rome, Italy.
| | - Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu, 600077, India
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli, Tamil Nadu, 620017, India
| | | | - Arulkumar Nallakumarasamy
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli, Tamil Nadu, 620017, India
- Department of Orthopaedics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Karaikal, Puducherry, 609602, India
| | - Manish Khanna
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
| | - Bishnu Prasad Patro
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
- Department of Orthopaedics, All Indian Institute of Medical Sciences, Bhubaneswar, Odisha, 751019, India
| | - Shilpa Sharma
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ravi Velamor Rangarajan
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli, Tamil Nadu, 620017, India
| |
Collapse
|
242
|
Chu L, Liu X, Xu C. Eat, Sleep, Console model for neonatal opioid withdrawal syndrome: a meta-analysis. Front Pediatr 2024; 12:1416383. [PMID: 39220152 PMCID: PMC11362100 DOI: 10.3389/fped.2024.1416383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Background The rising incidence of drug abuse among pregnant women has rendered neonatal opioid withdrawal syndrome a significant global health concern. Methods Databases including PubMed, Web of Science, the Cochrane Library, Embase, Elton B. Stephens. Company (EBSCO), China National Knowledge Infrastructure (CNKI), and Wanfang were searched for comparative studies of the Eat, Sleep, Console model vs. traditional assessment tools for neonatal opioid withdrawal syndrome. Two reviewers conducted literature searches, screened according to the inclusion criteria, extracted data, and independently verified accuracy. All meta-analyses were conducted using Review Manager Version 5.4. Results In total, 18 studies involving 4,639 neonates were included in the meta-analysis. The Eat, Sleep, Console model demonstrated superior outcomes in assessing neonatal opioid withdrawal syndrome, significantly reducing the need for pharmacological treatment [risk ratio = 0.44, 95% confidence interval (CI) = 0.34-0.56, P < 0.001], decreasing the length of hospital stay [standard mean difference (SMD) = -2.10, 95% CI = -3.43 to -0.78, P = 0.002], and shortening the duration of opioid treatment (SMD = -1.33, 95% CI = -2.22 to -0.45, P = 0.003) compared to the Finnegan Neonatal Abstinence Scoring System. Conclusions The Eat, Sleep, Console model is more effective than the Finnegan Neonatal Abstinence Scoring System in improving the assessment and management of neonatal opioid withdrawal syndrome.
Collapse
Affiliation(s)
- Liangliang Chu
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiaoyi Liu
- School of Nursing, Shandong Academy of Medical Sciences, Shandong First Medical University, Taian, Shandong, China
| | - Cuiping Xu
- Department of Nursing, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
243
|
Darsi SP, Baishya S, Nagati V, Bharani KK, Cheekatla SS, Darsi SK, Kamireddy AR, Barra RR, Devarasetti AK, Surampudi S, Singireddy JR, Kandula SK, Pasupulati AK. Safety assessment of rat embryonic fraction for in vivo regenerative therapy. Biol Open 2024; 13:bio060266. [PMID: 38984587 PMCID: PMC11360137 DOI: 10.1242/bio.060266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
Regenerative therapy is considered a novel option for treating various diseases, whereas a developing embryo is a prime source of molecules that help repair diseased tissue and organs. Organoid culture studies also confirmed the inherent biological functions of several embryonic factors. However, the in vivo safety and efficacy of embryonic protein fraction (EPF) were not validated. In this study, we investigated the effectiveness of EPF on healthy adult rats. We obtained embryos from Sprague-Dawley (SD) female rats of E14, E16, and E19 embryonic days and collected protein lysate. This lysate was administered intravenously into adult SD rats on sequential days. We collected blood and performed hematological and biochemical parameters of rats that received EPF. C-reactive protein levels, interleukin-6, blood glucose levels, serum creatinine, blood urea, total leucocyte counts, and % of neutrophils and lymphocytes were comparable between rats receiving EPF and saline. Histological examination of rats' tissues administered with EPF is devoid of abnormalities. Our study revealed that intravenous administration of EPF to healthy adult rats showed that EPF is non-immunogenic, non-inflammatory, non-tumorigenic, and safe for in vivo applications. Our analysis suggests that EPF or its components could be recommended for validating its therapeutic abilities in organ regenerative therapy.
Collapse
Affiliation(s)
- Sivarama Prasad Darsi
- Department of Biotechnology, School of Life Sciences, Gitam University, Visakhapatnam, AP, India530045
| | - Somorita Baishya
- Department of Biochemistry, University of Hyderabad, Hyderabad, TG, India500046
| | - Veerababu Nagati
- Department of Biochemistry, University of Hyderabad, Hyderabad, TG, India500046
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, P.V. Narasimha Rao University of Veterinary Sciences, Rajendra Nagar, TG, India500030
| | | | - Sujesh Kumar Darsi
- Department of General Medicine, ESI Corporation, Gunadala, Vijayawada, AP, India520004
| | - Adi Reddy Kamireddy
- Department of Internal Medicine, Banner Health Center, Maricopa, AZ, USA85138
| | - Ram Reddy Barra
- Department of Physiology, Apollo Institute of Medical Sciences and Research, Hyderabad, TG 500090, India
| | - Ashok Kumar Devarasetti
- Department of Veterinary Biochemistry, P.V. Narasimha Rao University of Veterinary Sciences, Mamnoor, Warangal, TG, India506166
| | - Sreedhar Surampudi
- Department of Biochemistry, Aware College of Medical Lab Technology, Bairamalguda, Hyderabad 500035, India
| | - Jayaram Reddy Singireddy
- Department of Urology, Hyderabad Kidney & Laparoscopic Centre, Malakpet, Hyderabad, TG 500036, India
| | - Siva Kumar Kandula
- Department of Biotechnology, School of Life Sciences, Gitam University, Visakhapatnam, AP, India530045
| | | |
Collapse
|
244
|
De Matthaeis A, Bianchi M, Putzulu R, Maccauro G. High-Dose Neutrophil-Depleted Platelet-Rich Plasma Therapy for Knee Osteoarthritis: A Retrospective Study. J Clin Med 2024; 13:4816. [PMID: 39200958 PMCID: PMC11355213 DOI: 10.3390/jcm13164816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Background/Objectives: Encouraging results have been reported for Platelet-Rich Plasma (PRP) treatment for knee osteoarthritis (KOA). This study reports the efficacy and safety of a high dose of neutrophile and red-blood-cell-depleted PRP to treat patients with KOA. Methods: A total of 212 consecutive patients diagnosed with Kellgren-Lawrence (KL) grading 1-3 KOA chronic knee pain for at least 1 year were treated with three injections at 15-day intervals with a high dose of neutrophil-depleted PRP (4 billion platelets). Clinical outcomes were retrospectively recorded as the percentage of responders at 3-, 6-, and 12-month follow-up, following the OMERACT-OARSI criteria. Pain, through the VAS score and WOMAC score, was also been recorded. Results: A total of 4 mL of PRP containing 4 × 109 platelets was obtained by single-spin centrifugation and injected intra-articularly into each patient with no preactivation. The overall responder rate of patients responding to the OMERACT-OARSI criteria at 3, 6, and 12 months was 68.9%, 72.7%, and 70.6%, respectively. A significant improvement in VAS and WOMAC scores at 3-, 6-, and 12-month follow-up compared to the pretreatment value (p < 0.01) was observed. The lowest VAS score was observed at 6 months overall and in all three KL-graded groups. The KL2 groups showed the best results regarding pain reduction and their WOMAC score at 6 months (p < 0.01). Conclusions: For KL1-3 KOA, a high dosage of neutrophil-depleted PRP is a successful treatment. It has long-lasting effects that last up to one year, relieves symptoms, and may slow the advancement of the disease.
Collapse
Affiliation(s)
- Andrea De Matthaeis
- Department of Orthopedics and Traumatology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Maria Bianchi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy (R.P.)
| | - Rossana Putzulu
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy (R.P.)
| | - Giulio Maccauro
- Department of Orthopedics and Traumatology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
245
|
Tsampalieros A, Zemek R, Barrowman N, Langlois MA, Arnold C, McGahern C, Plint AC, Pham-Huy A, Bhatt M. Hybrid immunity after BNT162b2 Covid-19 vaccine administration in children aged 5 to 11 years. Vaccine 2024; 42:125981. [PMID: 38789373 DOI: 10.1016/j.vaccine.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND The immune response to coronavirus disease 2019 (COVID-19) vaccination is stronger among adults with prior infection (hybrid immunity). It is important to understand if children demonstrate a similar response to better inform vaccination strategies. Our study investigated the humoral response after BNT162b2 COVID-19 vaccine doses in SARS-CoV-2 naïve and recovered children (5-11 years). METHODS A multi-institutional, longitudinal, prospective cohort study was conducted. Children were enrolled in a case-ascertained antibody surveillance study in Ottawa, Ontario from September/2020-March/2021; at least one household member was severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) positive on RT-PCR. In November 2021, BNT162b2 COVID-19 vaccine was authorized for children aged 5-11 in Canada. Children enrolled in the surveillance study intending to receive two vaccine doses were invited to participate in this study from November 2021-April 2022. Main exposure was prior SARS-CoV-2 infection, defined by positive RT-PCR or SARS-CoV-2 anti-N IgG antibody presence. Primary outcome was spike IgG antibody levels measured following the first vaccine dose (2-3 weeks) and second vaccine dose (3-4 weeks). RESULTS Of the 153 eligible children, 75 participants (median age 8.9 IQR (7.4, 10.2) years; 38 (50.7 %) female; 59 (78.7 %) Caucasian) had complete follow-up. Fifty-four (72 %) children had prior SARS-COV-2 infection. Spike IgG antibody levels are significantly higher in SARS-CoV-2 recovered participants after receiving the first dose (p < 0.001) and the second (p = 0.01) compared to infection naïve children. CONCLUSIONS AND RELEVANCE SARS-CoV-2 recovered children (5-11 years) demonstrated higher antibody levels following first BNT162b2 vaccine dose compared with naïve children. Most reached antibody saturation two to three weeks after the first dose; a second dose didn't change the saturation level. A single vaccine dose in SARS-CoV-2 recovered children may be equivalent or superior to a 2-dose primary series in naïve children. Further research is needed on the durability and quality of a single vaccine dose in this population.
Collapse
Affiliation(s)
- Anne Tsampalieros
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Roger Zemek
- Department of Pediatrics and Emergency Medicine, Children's Hospital of Eastern Omntario, University of Ottawa, Ottawa, Canada
| | - Nick Barrowman
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Corey Arnold
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Candice McGahern
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Amy C Plint
- Department of Pediatrics and Emergency Medicine, Children's Hospital of Eastern Omntario, University of Ottawa, Ottawa, Canada
| | - Anne Pham-Huy
- Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Canada
| | - Maala Bhatt
- Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
246
|
Huang J, Hu Y, Niu Z, Hao W, Ketema H, Wang Z, Xu J, Sheng L, Cai Y, Yu Z, Cai Y, Zhang W. Preclinical Efficacy of Cap-Dependent and Independent mRNA Vaccines against Bovine Viral Diarrhea Virus-1. Vet Sci 2024; 11:373. [PMID: 39195827 PMCID: PMC11359904 DOI: 10.3390/vetsci11080373] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024] Open
Abstract
Bovine viral diarrhea virus (BVDV) is an RNA virus associated with severe economic losses in animal production. Effective vaccination and viral surveillance are urgent for the prevention and control of BVDV infection. However, the application of traditional modified live vaccines and inactivated vaccines is faced with tremendous challenges. In the present study, we describe the preclinical efficacy of two BVDV mRNA vaccines tested in mice and guinea pigs, followed by a field trial in goats, where they were compared to a commercial vaccine (formaldehyde inactivated). The two mRNAs were engineered to express the envelope protein E2 of BVDV-1, the most prevalent subtype across the world, through a 5' cap-dependent or independent fashion. Better titers of neutralizing antibodies against BVDV-1 were achieved using the capped RNA in the sera of mice and guinea pigs, with maximum values reaching 9.4 and 13.7 (by -log2), respectively, on the 35th day post-vaccination. At the same time point, the antibody levels in goats were 9.1 and 10.2 for the capped and capless RNAs, respectively, and there were no significant differences compared to the commercial vaccine. The animals remained healthy throughout the experiment, as reflected by their normal leukogram profiles. Collectively, our findings demonstrate that mRNA vaccines have good safety and immunogenicity, and we laid a strong foundation for the further exploitation of efficient and safe BVDV vaccines.
Collapse
Affiliation(s)
- Jing Huang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.H.); (Z.N.); (H.K.); (Z.W.); (J.X.); (L.S.)
| | - Yaping Hu
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210002, China; (Y.H.); (W.H.); (Z.Y.)
| | - Zikang Niu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.H.); (Z.N.); (H.K.); (Z.W.); (J.X.); (L.S.)
| | - Wei Hao
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210002, China; (Y.H.); (W.H.); (Z.Y.)
| | - Hirpha Ketema
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.H.); (Z.N.); (H.K.); (Z.W.); (J.X.); (L.S.)
| | - Zhipeng Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.H.); (Z.N.); (H.K.); (Z.W.); (J.X.); (L.S.)
| | - Junjie Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.H.); (Z.N.); (H.K.); (Z.W.); (J.X.); (L.S.)
| | - Le Sheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.H.); (Z.N.); (H.K.); (Z.W.); (J.X.); (L.S.)
| | - Yuze Cai
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210002, China;
| | - Zhenghong Yu
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210002, China; (Y.H.); (W.H.); (Z.Y.)
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.H.); (Z.N.); (H.K.); (Z.W.); (J.X.); (L.S.)
| | - Wei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.H.); (Z.N.); (H.K.); (Z.W.); (J.X.); (L.S.)
| |
Collapse
|
247
|
Banerjee S, Saha D, Sharma R, Jaidee W, Puttarak P, Chaiyakunapruk N, Chaoroensup R. Phytocannabinoids in neuromodulation: From omics to epigenetics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118201. [PMID: 38677573 DOI: 10.1016/j.jep.2024.118201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/27/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Recent developments in metabolomics, transcriptomic and epigenetics open up new horizons regarding the pharmacological understanding of phytocannabinoids as neuromodulators in treating anxiety, depression, epilepsy, Alzheimer's, Parkinson's disease and autism. METHODS The present review is an extensive search in public databases, such as Google Scholar, Scopus, the Web of Science, and PubMed, to collect all the literature about the neurobiological roles of cannabis extract, cannabidiol, 9-tetrahydrocannabinol specially focused on metabolomics, transcriptomic, epigenetic, mechanism of action, in different cell lines, induced animal models and clinical trials. We used bioinformatics, network pharmacology and enrichment analysis to understand the effect of phytocannabinoids in neuromodulation. RESULTS Cannabidomics studies show wide variability of metabolites across different strains and varieties, which determine their medicinal and abusive usage, which is very important for its quality control and regulation. CB receptors interact with other compounds besides cannabidiol and Δ9-tetrahydrocannabinol, like cannabinol and Δ8-tetrahydrocannabinol. Phytocannabinoids interact with cannabinoid and non-cannabinoid receptors (GPCR, ion channels, and PPAR) to improve various neurodegenerative diseases. However, its abuse because of THC is also a problem found across different epigenetic and transcriptomic studies. Network enrichment analysis shows CNR1 expression in the brain and its interacting genes involve different pathways such as Rap1 signalling, dopaminergic synapse, and relaxin signalling. CBD protects against diseases like epilepsy, depression, and Parkinson's by modifying DNA and mitochondrial DNA in the hippocampus. Network pharmacology analysis of 8 phytocannabinoids revealed an interaction with 10 (out of 60) targets related to neurodegenerative diseases, with enrichment of ErbB and PI3K-Akt signalling pathways which helps in ameliorating neuro-inflammation in various neurodegenerative diseases. The effects of phytocannabinoids vary across sex, disease state, and age which suggests the importance of a personalized medicine approach for better success. CONCLUSIONS Phytocannabinoids present a range of promising neuromodulatory effects. It holds promise if utilized in a strategic way towards personalized neuropsychiatric treatment. However, just like any drug irrational usage may lead to unforeseen negative effects. Exploring neuro-epigenetics and systems pharmacology of major and minor phytocannabinoid combinations can lead to success.
Collapse
Affiliation(s)
- Subhadip Banerjee
- Medicinal Plant Innovation Center of Mae Fah Luang University, Mae Fah Luang University, ChiangRai, 57100, Thailand
| | - Debolina Saha
- School of Bioscience and Engineering, Jadavpur University, Kolkata, 700032, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Wuttichai Jaidee
- Medicinal Plant Innovation Center of Mae Fah Luang University, Mae Fah Luang University, ChiangRai, 57100, Thailand
| | - Panupong Puttarak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand
| | | | - Rawiwan Chaoroensup
- Medicinal Plant Innovation Center of Mae Fah Luang University, Mae Fah Luang University, ChiangRai, 57100, Thailand; School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, 57100, Thailand.
| |
Collapse
|
248
|
Anastasiou K, Morris M, Akam L, Mastana S. The Genetic Profile of Combat Sport Athletes: A Systematic Review of Physiological, Psychological and Injury Risk Determinants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1019. [PMID: 39200631 PMCID: PMC11353526 DOI: 10.3390/ijerph21081019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024]
Abstract
This systematic review aims to assess the genetic determinants influencing combat sports performance and address potential gaps in previous reviews. Twenty-four selected studies were analysed, investigating genetic influences on physiological performance, psychological traits, psychophysiological factors like pain perception, and injury susceptibility in combat sport athletes. The systematic literature search, using keywords, encompassed PubMed, Scopus, SportDiscus, Medline, and Google Scholar. The Covidence systematic review management software facilitated the screening process and the creation of the PRISMA flow diagram. The quality assessment complied with the PRISMA guidelines, featuring a custom 10-point scale and the STREGA criteria for more reliable study inclusion. Collectively, the 24 studies incorporated 18,989 participants, of which 3323 were combat athletes of majority European ancestry (71.7%) from various combat sports disciplines. Twenty-five unique genetic variants were significantly associated with combat sports performance across diverse domains. These included physiological performance (nine genetic variants), psychological traits (ten genetic variants), psychophysiological factors (one genetic variant), and injury susceptibility (four genetic variants). In conclusion, this systematic review lays the foundation for a more comprehensive exploration of the association between genetics and athletic performance in the demanding arena of combat sports, offering valuable insights for talent identification, training optimisation, and injury prevention.
Collapse
Affiliation(s)
| | | | | | - Sarabjit Mastana
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK; (K.A.); (M.M.); (L.A.)
| |
Collapse
|
249
|
Olewnik Ł, Zielinska N, Karauda P, Piagkou M, Koptas K, Maślanka K, Ruzik K, Triantafyllou G, Balcerzak A, Klejman E, Paulsen F. The quadratus femoris muscle anatomy: Do we know everything? Ann Anat 2024; 255:152284. [PMID: 38830558 DOI: 10.1016/j.aanat.2024.152284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/01/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024]
Abstract
INTRODUCTION The purpose of this study was to characterize the morphological variations in the quadratus femoris muscle (QF) and to create an anatomical classification that could be used in the planning of surgical procedures in this area, radiological imaging, and rehabilitation. MATERIALS AND METHODS Ninety-two lower limbs from 46 cadavers, fixed in 10 % formalin solution, were examined. RESULTS The QF muscle was present in all specimens. According to morphology, the QF muscle was classified into three types. The most common type was Type I, characterized by one muscular belly (78.3 %), while the second most common type was Type II, characterized by two bellies, was observed in 17.4 % of cases. The rarest type was Type III. It was characterized by three bellies and was found in 4.3 % of the cases. CONCLUSIONS The current classification system on quadratus femoris morphological variability is novel. Morphological variants may contribute to clinical issues, such as the ischiofemoral impingement syndrome, that could arise from type I quadratus femoris. Hence, the current study may be applicated to planning surgical procedures, imaging, and rehabilitation.
Collapse
Affiliation(s)
- Łukasz Olewnik
- Department of Clinical Anatomy, Masovian Academy in Płock, Poland.
| | - Nicol Zielinska
- Department of Anatomical Dissection and Donation, Medical University of Lodz, Lodz, Poland
| | - Piotr Karauda
- Department of Anatomical Dissection and Donation, Medical University of Lodz, Lodz, Poland
| | - Maria Piagkou
- Department of Anatomy, School of Medicine, National and Kapodistrian University of Athens, Greece
| | - Krzysztof Koptas
- Department of Anatomical Dissection and Donation, Medical University of Lodz, Lodz, Poland
| | - Krystian Maślanka
- Department of Anatomical Dissection and Donation, Medical University of Lodz, Lodz, Poland
| | - Kacper Ruzik
- Department of Anatomical Dissection and Donation, Medical University of Lodz, Lodz, Poland
| | - George Triantafyllou
- Department of Anatomy, School of Medicine, National and Kapodistrian University of Athens, Greece
| | - Adrian Balcerzak
- Department of Anatomical Dissection and Donation, Medical University of Lodz, Lodz, Poland
| | - Ewa Klejman
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
250
|
Desai N, Chavda V, Singh TRR, Thorat ND, Vora LK. Cancer Nanovaccines: Nanomaterials and Clinical Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401631. [PMID: 38693099 DOI: 10.1002/smll.202401631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/30/2024] [Indexed: 05/03/2024]
Abstract
Cancer nanovaccines represent a promising frontier in cancer immunotherapy, utilizing nanotechnology to augment traditional vaccine efficacy. This review comprehensively examines the current state-of-the-art in cancer nanovaccine development, elucidating innovative strategies and technologies employed in their design. It explores both preclinical and clinical advancements, emphasizing key studies demonstrating their potential to elicit robust anti-tumor immune responses. The study encompasses various facets, including integrating biomaterial-based nanocarriers for antigen delivery, adjuvant selection, and the impact of nanoscale properties on vaccine performance. Detailed insights into the complex interplay between the tumor microenvironment and nanovaccine responses are provided, highlighting challenges and opportunities in optimizing therapeutic outcomes. Additionally, the study presents a thorough analysis of ongoing clinical trials, presenting a snapshot of the current clinical landscape. By curating the latest scientific findings and clinical developments, this study aims to serve as a comprehensive resource for researchers and clinicians engaged in advancing cancer immunotherapy. Integrating nanotechnology into vaccine design holds immense promise for revolutionizing cancer treatment paradigms, and this review provides a timely update on the evolving landscape of cancer nanovaccines.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502285, India
| | - Vivek Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, 380009, India
| | | | - Nanasaheb D Thorat
- Limerick Digital Cancer Research Centre (LDCRC), University of Limerick, Castletroy, Limerick, V94T9PX, Ireland
- Department of Physics, Bernal Institute, Castletroy, Limerick, V94T9PX, Ireland
- Nuffield Department of Women's & Reproductive Health, Medical Science Division, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| |
Collapse
|