201
|
Gu Y, Zheng Q, Fan G, Liu R. Advances in Anti-Cancer Activities of Flavonoids in Scutellariae radix: Perspectives on Mechanism. Int J Mol Sci 2022; 23:ijms231911042. [PMID: 36232344 PMCID: PMC9570317 DOI: 10.3390/ijms231911042] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Despite encouraging progresses in the development of novel therapies, cancer remains the dominant cause of disease-related mortality and has become a leading economic and healthcare burden worldwide. Scutellariae radix (SR, Huangqin in Chinese) is a common herb used in traditional Chinese medicine, with a long history in treating a series of symptoms resulting from cancer, like dysregulated immune response and metabolic abnormalities. As major bioactive ingredients extracted from SR, flavonoids, including baicalein, wogonin, along with their glycosides (baicalin and wogonoside), represent promising pharmacological and anti-tumor activities and deserve extensive research attention. Emerging evidence has made great strides in elucidating the multi-targeting therapeutic mechanisms and key signaling pathways underlying the efficacious potential of flavonoids derived from SR in the field of cancer treatment. In this current review, we aim to summarize the pharmacological actions of flavonoids against various cancers in vivo and in vitro. Moreover, we also make a brief summarization of the endeavor in developing a drug delivery system or structural modification to enhance the bioavailability and biological activities of flavonoid monomers. Taken together, flavonoid components in SR have great potential to be developed as adjuvant or even primary therapies for the clinical management of cancers and have a promising prospect.
Collapse
|
202
|
Zhang S, Wan D, Zhu M, Wang G, Zhang X, Huang N, Zhang J, Zhang C, Shang Q, Zhang C, Liu X, Liang F, Zhang C, Kong G, Geng J, Yao L, Lu S, Chen Y, Li Z. CD11b + CD43 hi Ly6C lo splenocyte-derived macrophages exacerbate liver fibrosis via spleen-liver axis. Hepatology 2022; 77:1612-1629. [PMID: 36098707 PMCID: PMC10113005 DOI: 10.1002/hep.32782] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/03/2022] [Accepted: 09/09/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Monocyte-derived macrophages (MoMFs), a dominant population of hepatic macrophages under inflammation, play a crucial role in liver fibrosis progression. The spleen serves as an extra monocyte reservoir in inflammatory conditions; however, the precise mechanisms of involvement of the spleen in the pathogenesis of liver fibrosis remain unclear. APPROACH AND RESULTS By splenectomy and splenocyte transfusion, it was observed that splenic CD11b+ cells accumulated intrahepatically as Ly6Clo MoMFs to exacerbate CCl4 -induced liver fibrosis. The splenocyte migration into the fibrotic liver was further directly visualized by spleen-specific photoconversion with KikGR mice and confirmed by CD45.1+ /CD45.2+ spleen transplantation. Spleen-derived CD11b+ cells purified from fibrotic livers were then annotated by single-cell RNA sequencing, and a subtype of CD11b+ CD43hi Ly6Clo splenic monocytes (sM-1s) was identified, which was markedly expanded in both spleens and livers of mice with liver fibrosis. sM-1s exhibited mature feature with high expressions of F4/80, produced much ROS, and manifested preferential migration into livers. Once recruited, sM-1s underwent sequential transformation to sM-2s (highly expressed Mif, Msr1, Clec4d, and Cstb) and then to spleen-derived macrophages (sMφs) with macrophage features of higher expressions of CX3 CR1, F4/80, MHC class II, and CD64 in the fibrotic hepatic milieu. Furthermore, sM-2s and sMφs were demonstrated capable of activating hepatic stellate cells and thus exacerbating liver fibrosis. CONCLUSIONS CD11b+ CD43hi Ly6Clo splenic monocytes migrate into the liver and shift to macrophages, which account for the exacerbation of liver fibrosis. These findings reveal precise mechanisms of spleen-liver axis in hepatic pathogenesis and shed light on the potential of sM-1 as candidate target for controlling liver diseases.
Collapse
Affiliation(s)
- Shaoying Zhang
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, CHESS-Shaanxi consortium, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Shaanxi International Cooperation Base for Inflammation and Immunity, Xi'an, China
| | - Dan Wan
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, CHESS-Shaanxi consortium, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Shaanxi International Cooperation Base for Inflammation and Immunity, Xi'an, China
| | - Mengchen Zhu
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, CHESS-Shaanxi consortium, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Shaanxi International Cooperation Base for Inflammation and Immunity, Xi'an, China
| | - Guihu Wang
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, CHESS-Shaanxi consortium, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Shaanxi International Cooperation Base for Inflammation and Immunity, Xi'an, China
| | - Xurui Zhang
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, CHESS-Shaanxi consortium, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Shaanxi International Cooperation Base for Inflammation and Immunity, Xi'an, China
| | - Na Huang
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, CHESS-Shaanxi consortium, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jian Zhang
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, CHESS-Shaanxi consortium, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Chongyu Zhang
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, CHESS-Shaanxi consortium, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Shaanxi International Cooperation Base for Inflammation and Immunity, Xi'an, China
| | - Qi Shang
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, CHESS-Shaanxi consortium, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Shaanxi International Cooperation Base for Inflammation and Immunity, Xi'an, China
| | - Chen Zhang
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, CHESS-Shaanxi consortium, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Shaanxi International Cooperation Base for Inflammation and Immunity, Xi'an, China
| | - Xi Liu
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, CHESS-Shaanxi consortium, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Shaanxi International Cooperation Base for Inflammation and Immunity, Xi'an, China
| | - Fanfan Liang
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, CHESS-Shaanxi consortium, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Shaanxi International Cooperation Base for Inflammation and Immunity, Xi'an, China
| | - Chunyan Zhang
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Guangyao Kong
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, CHESS-Shaanxi consortium, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jing Geng
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Shaanxi International Cooperation Base for Inflammation and Immunity, Xi'an, China
| | - Libo Yao
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Shemin Lu
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Shaanxi International Cooperation Base for Inflammation and Immunity, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, China
| | - Yongyan Chen
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Zongfang Li
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, CHESS-Shaanxi consortium, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Shaanxi International Cooperation Base for Inflammation and Immunity, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, China
| |
Collapse
|
203
|
Ieguchi K, Funakoshi M, Mishima T, Takizawa K, Omori T, Nakamura F, Watanabe M, Tsuji M, Kiuchi Y, Kobayashi S, Tsunoda T, Maru Y, Wada S. The Sympathetic Nervous System Contributes to the Establishment of Pre-Metastatic Pulmonary Microenvironments. Int J Mol Sci 2022; 23:ijms231810652. [PMID: 36142564 PMCID: PMC9501257 DOI: 10.3390/ijms231810652] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022] Open
Abstract
Emerging evidence suggests that neural activity contributes to tumor initiation and its acquisition of metastatic properties. More specifically, it has been reported that the sympathetic nervous system regulates tumor angiogenesis, tumor growth, and metastasis. The function of the sympathetic nervous system in primary tumors has been gradually elucidated. However, its functions in pre-metastatic environments and/or the preparation of metastatic environments far from the primary sites are still unknown. To investigate the role of the sympathetic nervous system in pre-metastatic environments, we performed chemical sympathectomy using 6-OHDA in mice and observed a decrease in lung metastasis by attenuating the recruitment of myeloid-derived suppressor cells. Furthermore, we note that neuro-immune cell interactions could be observed in tumor-bearing mouse lungs in conjunction with the decreased expression of Sema3A. These data indicate that the sympathetic nervous system contributes to the preparation of pre-metastatic microenvironments in the lungs, which are mediated by neuro-immune cell interactions.
Collapse
Affiliation(s)
- Katsuaki Ieguchi
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kita-karasuyama, Setagaya, Tokyo 157-8577, Japan
- Department of Pharmacology, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
- Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kita-karasuyama, Setagaya, Tokyo 157-8577, Japan
| | - Masabumi Funakoshi
- Department of Pharmacology, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
- Department of Peripheral Nervous System Research, National Center of Neurology and Psychiatry, National Institute of Neuroscience, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Taishi Mishima
- Department of Pharmacology, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Kohtaro Takizawa
- Department of Biochemistry, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Tsutomu Omori
- Department of Pharmacology, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Fumio Nakamura
- Department of Biochemistry, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Makoto Watanabe
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kita-karasuyama, Setagaya, Tokyo 157-8577, Japan
- Department of Pharmacology, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
- Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Mayumi Tsuji
- Department of Pharmacology, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
- Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Yuji Kiuchi
- Department of Pharmacology, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
- Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Shinichi Kobayashi
- Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kita-karasuyama, Setagaya, Tokyo 157-8577, Japan
| | - Takuya Tsunoda
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Yoshiro Maru
- Department of Pharmacology, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
- Correspondence: (Y.M.); (S.W.); Tel.: +81-3-5269-7417 (Y.M.); +81-3-3300-5257 (S.W.)
| | - Satoshi Wada
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kita-karasuyama, Setagaya, Tokyo 157-8577, Japan
- Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kita-karasuyama, Setagaya, Tokyo 157-8577, Japan
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
- Correspondence: (Y.M.); (S.W.); Tel.: +81-3-5269-7417 (Y.M.); +81-3-3300-5257 (S.W.)
| |
Collapse
|
204
|
Tao S, Wang Y, Yu C, Qiu R, Jiang Y, Jia J, Tao Z, Zhang L, Zou B, Tang D. Gut microbiota mediates the inhibition of lymphopoiesis in dietary-restricted mice by suppressing glycolysis. Gut Microbes 2022; 14:2117509. [PMID: 36049025 PMCID: PMC9450896 DOI: 10.1080/19490976.2022.2117509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Dietary restriction (DR) is one of the most robust interventions shown to extend health-span and remains on the forefront of anti-aging intervention studies, though conflicting results have been shown on its effect on lifespan both in rodents and primates. The severe inhibitory effects on the lymphoid lineage by DR remains one of its major negative downsides which reduces its overall beneficial effects on organismal health. Yet, the underlying mechanism of how DR suppresses the lymphoid system remains to be explored. Here, we show that antibiotic ablation of gut microbiota significantly rescued the inhibition of lymphopoiesis by DR. Interestingly, glycolysis in lymphocytes was significantly down-regulated in DR mice and pharmacological inhibition of glycolysis reverted this rescue effect of lymphopoiesis in DR mice with ablated gut microbiota. Furthermore, DR remarkably reconstructed gut microbiota with a significant increase in butyrate-producing bacterial taxa and in expression of But, a key gene involved in butyrate synthesis. Moreover, supplemental butyrate feeding in AL mice suppressed glycolysis in lymphoid cells and mimicked the inhibition of lymphopoiesis in AL mice. Together, our study reveals that gut microbiota mediates the inhibition on lymphopoiesis via down-regulation of glycolysis under DR conditions, which is associated with increased butyrate-synthesis. Our study uncovered a candidate that could potentially be targeted for ameliorating the negative effects of DR on lymphopoiesis, and therefore may have important implications for the wider application of DR and promoting healthy aging.
Collapse
Affiliation(s)
- Si Tao
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China,Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Yiting Wang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Chenghui Yu
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Rongrong Qiu
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China,Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Yanjun Jiang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Jie Jia
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China,Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Zhendong Tao
- Department of Medical Laboratory Medicine, Jiangxi Province Hospital of Integrated Chinese & Western Medicine, Jiangxi, China
| | - Liu Zhang
- Intensive Care Unit, Peking University People’s Hospital, Beijing, China
| | - Bing Zou
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China,Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Duozhuang Tang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China,CONTACT Duozhuang Tang Department of Hematology, The Second Affiliated Hospital of Nanchang University, Min-De Road. 1, Nanchang, Jiangxi Province330006, China
| |
Collapse
|
205
|
Soares GA, Pereira GM, Romualdo GR, Biasotti GGA, Stoppa EG, Bakuzis AF, Baffa O, Barbisan LF, Miranda JRA. Biodistribution Profile of Magnetic Nanoparticles in Cirrhosis-Associated Hepatocarcinogenesis in Rats by AC Biosusceptometry. Pharmaceutics 2022; 14:pharmaceutics14091907. [PMID: 36145654 PMCID: PMC9504370 DOI: 10.3390/pharmaceutics14091907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Since magnetic nanoparticles (MNPs) have been used as multifunctional probes to diagnose and treat liver diseases in recent years, this study aimed to assess how the condition of cirrhosis-associated hepatocarcinogenesis alters the biodistribution of hepatic MNPs. Using a real-time image acquisition approach, the distribution profile of MNPs after intravenous administration was monitored using an AC biosusceptometry (ACB) assay. We assessed the biodistribution profile based on the ACB images obtained through selected regions of interest (ROIs) in the heart and liver position according to the anatomical references previously selected. The signals obtained allowed for the quantification of pharmacokinetic parameters, indicating that the uptake of hepatic MNPs is compromised during liver cirrhosis, since scar tissue reduces blood flow through the liver and slows its processing function. Since liver monocytes/macrophages remained constant during the cirrhotic stage, the increased intrahepatic vascular resistance associated with impaired hepatic sinusoidal circulation was considered the potential reason for the change in the distribution of MNPs.
Collapse
Affiliation(s)
- Guilherme A. Soares
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
- Correspondence:
| | - Gabriele M. Pereira
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| | - Guilherme R. Romualdo
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
- Department of Strucutral and Functional Biology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| | - Gabriel G. A. Biasotti
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| | - Erick G. Stoppa
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| | - Andris F. Bakuzis
- Institute of Physics, Federal University of Goiás, Goiânia 74690-900, GO, Brazil
| | - Oswaldo Baffa
- Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
| | - Luis F. Barbisan
- Department of Strucutral and Functional Biology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| | - Jose R. A. Miranda
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| |
Collapse
|
206
|
Zhao Y, Zhou R, Guo Y, Chen X, Zhang A, Wang J, Ji F, Qin B, Geng J, Kong G, Li Z. Improvement of gut microbiome and intestinal permeability following splenectomy plus pericardial devascularization in hepatitis B virus-related cirrhotic portal hypertension. Front Immunol 2022; 13:941830. [PMID: 36159870 PMCID: PMC9493484 DOI: 10.3389/fimmu.2022.941830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
The gut microbiome is an essential component of the intestinal mucosal barrier, critical in regulating intestinal permeability. Microbiome dysbiosis and intestinal permeability changes are commonly encountered conditions in patients with cirrhosis and are closely related to its development and further complications. However, alterations in the gut microbiome and intestinal permeability in chronic hepatitis B virus (HBV) patients with cirrhotic portal hypertension after undergoing a splenectomy plus pericardial devascularization (SPD) have not been investigated. This study recruited 22 patients who were measured against themselves on the study parameters before and after an SPD, along with 20 healthy controls. Methodologically, fecal samples were collected for gut microbiome analysis by 16S ribosomal DNA sequencing, and peripheral blood samples were obtained to examine the liver function and intestinal permeability. This study showed that the community structure of the gut microbiomes in patients before the SPD exhibited obvious differences from those in the healthy control group. They also exhibited a decreased bacterial community richness, increased intestinal permeability, and enhanced inflammation compared with the healthy controls. These issues were further aggravated two weeks after the SPD. There was also evidence of significantly higher abundances of Streptococcaceae, Enterobacteriaceae, and Enterococcaceae than those in the healthy control group. However, 12 months after the surgery, 12 of the 16 patient-associated genera recovered, of which 10 reached normal levels. Additionally, the microbiome diversity increased; the bacterial composition was back to a level similar to the healthy controls. Liver function, intestinal permeability, and inflammation levels all improved compared with preoperative levels. Furthermore, correlation analyses indicated that the five recovered bacterial taxa and the Shannon diversity index were correlated with several improved clinical indicators. Altogether, the improvements in the liver function and intestinal permeability in HBV-related cirrhotic patients may be related to the restoration of the gut microbiome after an SPD.
Collapse
Affiliation(s)
- Yang Zhao
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rui Zhou
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ying Guo
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xi Chen
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Aiyu Zhang
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiayin Wang
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Fanpu Ji
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Bowen Qin
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jing Geng
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Guangyao Kong
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zongfang Li
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
207
|
Park E, Song KH, Kim D, Lee M, Van Manh N, Kim H, Hong KB, Lee J, Song JY, Kang S. 2-Amino-1,3,4-thiadiazoles as Glutaminyl Cyclases Inhibitors Increase Phagocytosis through Modification of CD47-SIRPα Checkpoint. ACS Med Chem Lett 2022; 13:1459-1467. [PMID: 36105338 PMCID: PMC9465712 DOI: 10.1021/acsmedchemlett.2c00256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022] Open
Abstract
Glutaminyl cyclases (QC, isoQC) convert N-terminal glutamine or glutamate into pyroglutamate (pGlu) on substrates. IsoQC has recently been demonstrated to promote pGlu formation on the N-terminus of CD47, the SIRPα binding site, contributing to the "don't eat me" cancer immune signaling of CD47-SIRPα. We developed new QC inhibitors by applying a structure-based optimization approach starting from fragments identified through library screening. Screening of metal binding fragments identified 5-(1H-benzimidazol-5-yl)-1,3,4-thiadiazol-2-amine (9) as a potent fragment, and further modification provided 5-(1-(3-methoxy-4-(3-(piperidin-1-yl)propoxy)benzyl)-1H-benzo[d]imidazol-5-yl)-1,3,4-thiadiazol-2-amine (22b) as a potent QC inhibitor. Treatment with 22b in A549 and H1975 lung cancer cells decreased the CD47/αhCD47-CC2C6 interaction, indicative of the CD47/SIRPα interaction, and enhanced the increased phagocytic activity of both THP-1 and U937 macrophages.
Collapse
Affiliation(s)
- Eunsun Park
- College
of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kyung-Hee Song
- Division
of Radiation Biomedical Research, Korea
Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Darong Kim
- New
Drug Development Center, Daegu-Gyeongbuk
Medical Innovation Foundation, Daegu 41061, Republic
of Korea
| | - Minyoung Lee
- Medifron
DBT, 517ho, JEI-Platz,
186, Gasan digital 1-ro, Geumcheon-gu, Seoul 08502, Republic of Korea
| | - Nguyen Van Manh
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hee Kim
- Medifron
DBT, 517ho, JEI-Platz,
186, Gasan digital 1-ro, Geumcheon-gu, Seoul 08502, Republic of Korea
| | - Ki Bum Hong
- New
Drug Development Center, Daegu-Gyeongbuk
Medical Innovation Foundation, Daegu 41061, Republic
of Korea
| | - Jeewoo Lee
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jie-Young Song
- Division
of Radiation Biomedical Research, Korea
Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Soosung Kang
- College
of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
208
|
Islam F, Mitra S, Emran TB, Khan Z, Nath N, Das R, Sharma R, Awadh AAA, Park MN, Kim B. Natural Small Molecules in Gastrointestinal Tract and Associated Cancers: Molecular Insights and Targeted Therapies. Molecules 2022; 27:5686. [PMID: 36080453 PMCID: PMC9457641 DOI: 10.3390/molecules27175686] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 12/22/2022] Open
Abstract
Gastric cancer is one of the most common cancers of the gastrointestinal tract. Although surgery is the primary treatment, serious maladies that dissipate to other parts of the body may require chemotherapy. As there is no effective procedure to treat stomach cancer, natural small molecules are a current focus of research interest for the development of better therapeutics. Chemotherapy is usually used as a last resort for people with advanced stomach cancer. Anti-colon cancer chemotherapy has become increasingly effective due to drug resistance and sensitivity across a wide spectrum of drugs. Naturally-occurring substances have been widely acknowledged as an important project for discovering innovative medications, and many therapeutic pharmaceuticals are made from natural small molecules. Although the beneficial effects of natural products are as yet unknown, emerging data suggest that several natural small molecules could suppress the progression of stomach cancer. Therefore, the underlying mechanism of natural small molecules for pathways that are directly involved in the pathogenesis of cancerous diseases is reviewed in this article. Chemotherapy and molecularly-targeted drugs can provide hope to colon cancer patients. New discoveries could help in the fight against cancer, and future stomach cancer therapies will probably include molecularly formulated drugs.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Zidan Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Nikhil Nath
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Moon Nyeo Park
- Department of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 05254, Korea
| | - Bonglee Kim
- Department of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 05254, Korea
| |
Collapse
|
209
|
Kraiger M, Klein-Rodewald T, Rathkolb B, Calzada-Wack J, Sanz-Moreno A, Fuchs H, Wolf E, Gailus-Durner V, de Angelis MH. Monitoring longitudinal disease progression in a novel murine Kit tumor model using high-field MRI. Sci Rep 2022; 12:14608. [PMID: 36028522 PMCID: PMC9418174 DOI: 10.1038/s41598-022-17880-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/02/2022] [Indexed: 11/09/2022] Open
Abstract
Animal models are an indispensable platform used in various research disciplines, enabling, for example, studies of basic biological mechanisms, pathological processes and new therapeutic interventions. In this study, we applied magnetic resonance imaging (MRI) to characterize the clinical picture of a novel N-ethyl-N-nitrosourea-induced Kit-mutant mouse in vivo. Seven C3H KitN824K/WT mutant animals each of both sexes and their littermates were monitored every other month for a period of twelve months. MRI relaxometry data of hematopoietic bone marrow and splenic tissue as well as high-resolution images of the gastrointestinal organs were acquired. Compared with controls, the mutants showed a dynamic change in the shape and volume of the cecum and enlarged Peyer´s patches were identified throughout the entire study. Mammary tumors were observed in the majority of mutant females and were first detected at eight months of age. Using relaxation measurements, a substantial decrease in longitudinal relaxation times in hematopoietic tissue was detected in mutants at one year of age. In contrast, transverse relaxation time of splenic tissue showed no differences between genotypes, except in two mutant mice, one of which had leukemia and the other hemangioma. In this study, in vivo MRI was used for the first time to thoroughly characterize the evolution of systemic manifestations of a novel Kit-induced tumor model and to document the observable organ-specific disease cascade.
Collapse
Affiliation(s)
- Markus Kraiger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
| | - Tanja Klein-Rodewald
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Birgit Rathkolb
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Julia Calzada-Wack
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Adrián Sanz-Moreno
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Valérie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Experimental Genetics, TUM School of Life Sciences, Technische Universität München, Freising, Germany
| |
Collapse
|
210
|
Xu Q, Sun W, Zhang J, Mei Y, Bao J, Hou S, Zhou X, Mao L. Inflammasome-targeting natural compounds in inflammatory bowel disease: Mechanisms and therapeutic potential. Front Immunol 2022; 13:963291. [PMID: 36090968 PMCID: PMC9451542 DOI: 10.3389/fimmu.2022.963291] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022] Open
Abstract
Inflammatory bowel disease (IBD), mainly including Crohn’s disease and ulcerative colitis, seriously affects human health and causes substantial social and economic burden. The pathogenesis of IBD is still not fully elucidated, whereas recent studies have demonstrated that its development is associated with the dysfunction of intestinal immune system. Accumulating evidence have proven that inflammasomes such as NLRP3 and NLRP6 play a prominent role in the pathogenesis of IBD. Thus, regulating the activation of inflammasomes have been considered to be a promising strategy in IBD treatment. A number of recent studies have provided evidence that blocking inflammasome related cytokine IL-1β can benefit a group of IBD patients with overactivation of NLRP3 inflammasome. However, therapies for targeting inflammasomes with high efficacy and safety are rare. Traditional medical practice provides numerous medical compounds that may have a role in treatment of various human diseases including IBD. Recent studies demonstrated that numerous medicinal herb derived compounds can efficiently prevent colon inflammation in animal models by targeting inflammasomes. Herein, we summarize the main findings of these studies focusing on the effects of traditional medicine derived compounds on colitis treatment and the underlying mechanisms in regulating the inflammasomes. On this basis, we provide a perspective for future studies regarding strategies to improve the efficacy, specificity and safety of available herbal compounds, and to discover new compounds using the emerging new technologies, which will improve our understanding about the roles and mechanisms of herbal compounds in the regulation of inflammasomes and treatment of IBD.
Collapse
Affiliation(s)
- Qiuyun Xu
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Weichen Sun
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Jie Zhang
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Youmin Mei
- Department of Periodontology, Nantong Stomatological Hospital, Nantong, China
| | - Jingyin Bao
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, China
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- *Correspondence: Liming Mao, ; Xiaorong Zhou, ; Shengping Hou,
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
- *Correspondence: Liming Mao, ; Xiaorong Zhou, ; Shengping Hou,
| | - Liming Mao
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, China
- *Correspondence: Liming Mao, ; Xiaorong Zhou, ; Shengping Hou,
| |
Collapse
|
211
|
Liu SQ, Li B, Li JJ, Sun S, Sun SR, Wu Q. Neuroendocrine regulations in tissue-specific immunity: From mechanism to applications in tumor. Front Cell Dev Biol 2022; 10:896147. [PMID: 36072337 PMCID: PMC9442449 DOI: 10.3389/fcell.2022.896147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/27/2022] [Indexed: 11/26/2022] Open
Abstract
Immune responses in nonlymphoid tissues play a vital role in the maintenance of homeostasis. Lots of evidence supports that tissue-specific immune cells provide defense against tumor through the localization in different tissue throughout the body, and can be regulated by diverse factors. Accordingly, the distribution of nervous tissue is also tissue-specific which is essential in the growth of corresponding organs, and the occurrence and development of tumor. Although there have been many mature perspectives on the neuroendocrine regulation in tumor microenvironment, the neuroendocrine regulation of tissue-specific immune cells has not yet been summarized. In this review, we focus on how tissue immune responses are influenced by autonomic nervous system, sensory nerves, and various neuroendocrine factors and reversely how tissue-specific immune cells communicate with neuroendocrine system through releasing different factors. Furthermore, we pay attention to the potential mechanisms of neuroendocrine-tissue specific immunity axis involved in tumors. This may provide new insights for the immunotherapy of tumors in the future.
Collapse
Affiliation(s)
- Si-Qing Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bei Li
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Juan-Juan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Sheng-Rong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Sheng-Rong Sun, ; Qi Wu,
| | - Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Sheng-Rong Sun, ; Qi Wu,
| |
Collapse
|
212
|
Zhang S, Lu S, Li Z. Extrahepatic factors in hepatic immune regulation. Front Immunol 2022; 13:941721. [PMID: 36052075 PMCID: PMC9427192 DOI: 10.3389/fimmu.2022.941721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The liver is a site of complex immune activity. The hepatic immune system tolerates harmless immunogenic loads in homeostasis status, shelters liver function, while maintaining vigilance against possible infectious agents or tissue damage and providing immune surveillance at the same time. Activation of the hepatic immunity is initiated by a diverse repertoire of hepatic resident immune cells as well as non-hematopoietic cells, which can sense "danger signals" and trigger robust immune response. Factors that mediate the regulation of hepatic immunity are elicited not only in liver, but also in other organs, given the dual blood supply of the liver via both portal vein blood and arterial blood. Emerging evidence indicates that inter-organ crosstalk between the liver and other organs such as spleen, gut, lung, adipose tissue, and brain is involved in the pathogenesis of liver diseases. In this review, we present the features of hepatic immune regulation, with particular attention to the correlation with factors from extrahepatic organ. We describe the mechanisms by which other organs establish an immune association with the liver and then modulate the hepatic immune response. We discuss their roles and distinct mechanisms in liver homeostasis and pathological conditions from the cellular and molecular perspective, highlighting their potential for liver disease intervention. Moreover, we review the available animal models and methods for revealing the regulatory mechanisms of these extrahepatic factors. With the increasing understanding of the mechanisms by which extrahepatic factors regulate liver immunity, we believe that this will provide promising targets for liver disease therapy.
Collapse
Affiliation(s)
- Shaoying Zhang
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi International Cooperation Base for Inflammation and Immunity, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Shemin Lu
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi International Cooperation Base for Inflammation and Immunity, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, China
| | - Zongfang Li
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi International Cooperation Base for Inflammation and Immunity, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
213
|
Mranda GM, Xiang ZP, Liu JJ, Wei T, Ding Y. Advances in prognostic and therapeutic targets for hepatocellular carcinoma and intrahepatic cholangiocarcinoma: The hippo signaling pathway. Front Oncol 2022; 12:937957. [PMID: 36033517 PMCID: PMC9411807 DOI: 10.3389/fonc.2022.937957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/13/2022] [Indexed: 01/07/2023] Open
Abstract
Primary liver cancer is the sixth most frequently diagnosed cancer worldwide and the third leading cause of cancer-related death. The majority of the primary liver cancer cases are hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Worldwide, there is an increasing incidence of primary liver cancer cases due to multiple risk factors ranging from parasites and viruses to metabolic diseases and lifestyles. Often, patients are diagnosed at advanced stages, depriving them of surgical curability benefits. Moreover, the efficacy of the available chemotherapeutics is limited in advanced stages. Furthermore, tumor metastases and recurrence make primary liver cancer management exceptionally challenging. Thus, exploring the molecular mechanisms for the development and progression of primary liver cancer is critical in improving diagnostic, treatment, prognostication, and surveillance modalities. These mechanisms facilitate the discovery of specific targets that are critical for novel and more efficient treatments. Consequently, the Hippo signaling pathway executing a pivotal role in organogenesis, hemostasis, and regeneration of tissues, regulates liver cells proliferation, and apoptosis. Cell polarity or adhesion molecules and cellular metabolic status are some of the biological activators of the pathway. Thus, understanding the mechanisms exhibited by the Hippo pathway is critical to the development of novel targeted therapies. This study reviews the advances in identifying therapeutic targets and prognostic markers of the Hippo pathway for primary liver cancer in the past six years.
Collapse
|
214
|
Lin YP, Fu SN, Li XP, Wang MM, Fang QL, Qiao X, Yan Q, Hua Y. Two Novel Flavonoids with Lipid-Lowering Activity from Yi Medicine Shekaqi. Chem Biodivers 2022; 19:e202200363. [PMID: 35934672 DOI: 10.1002/cbdv.202200363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/03/2022] [Indexed: 11/05/2022]
Abstract
Yi medicine Shekaqi is the most attractive traditional ethnic medicine due to its significant and diverse pharmacological activities. Two novel flavonoids, including 5,2'-dihydroxy-6-methoxy-7-decyloxyflavone and tenaxin II-7-O-β-D-glucuronopyranosyl acid butyl ester, along with six known flavonoids, were isolated from Yi medicine Shekaqi. Their structures were elucidated based on the analysis of their comprehensive spectral data. The in vitro lipid-lowering activities of the eight compounds showed that all the compounds significantly inhibited the lipopolysaccharide (LPS)-induced increase in the total cholesterol (TC) level, while compounds 1, 4, 6, 7, and 8 significantly inhibited the LPS-induced increase in the triglyceride (TG) level.
Collapse
Affiliation(s)
- Yu-Ping Lin
- Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Southwest Forestry University, Kunming, 650224, China.,School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Sheng-Nan Fu
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Xin-Ping Li
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Meng-Meng Wang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Qiong-Lian Fang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Xue Qiao
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Qi Yan
- No. 2 Neurosurgery Department, First Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yan Hua
- Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Southwest Forestry University, Kunming, 650224, China
| |
Collapse
|
215
|
Katrinli S, Oliveira NCS, Felger JC, Michopoulos V, Smith AK. The role of the immune system in posttraumatic stress disorder. Transl Psychiatry 2022; 12:313. [PMID: 35927237 PMCID: PMC9352784 DOI: 10.1038/s41398-022-02094-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/14/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) develops in a subset of individuals upon exposure to traumatic stress. In addition to well-defined psychological and behavioral symptoms, some individuals with PTSD also exhibit elevated concentrations of inflammatory markers, including C-reactive protein, interleukin-6, and tumor necrosis factor-α. Moreover, PTSD is often co-morbid with immune-related conditions, such as cardiometabolic and autoimmune disorders. Numerous factors, including lifetime trauma burden, biological sex, genetic background, metabolic conditions, and gut microbiota, may contribute to inflammation in PTSD. Importantly, inflammation can influence neural circuits and neurotransmitter signaling in regions of the brain relevant to fear, anxiety, and emotion regulation. Given the link between PTSD and the immune system, current studies are underway to evaluate the efficacy of anti-inflammatory treatments in those with PTSD. Understanding the complex interactions between PTSD and the immune system is essential for future discovery of diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Seyma Katrinli
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA.
| | - Nayara C. S. Oliveira
- grid.189967.80000 0001 0941 6502Department of Gynecology and Obstetrics, Emory University, Atlanta, GA USA ,National Institute of Woman, Child, and Adolescence Health Fernandes Figueira, Rio de Janeiro, RJ Brazil ,grid.418068.30000 0001 0723 0931Department of Violence and Health Studies Jorge Careli, National School of Public Health, Fiocruz, Rio de Janeiro, RJ Brazil
| | - Jennifer C. Felger
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502The Winship Cancer Institute, Emory University, Atlanta, GA USA
| | - Vasiliki Michopoulos
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA
| | - Alicia K. Smith
- grid.189967.80000 0001 0941 6502Department of Gynecology and Obstetrics, Emory University, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA
| |
Collapse
|
216
|
Wu Y, Fu Y, Fu Y, Li B, Liu C, Pan P, Lan T, Shen X, Guo Q. The interaction between phenylboronic acid derivatives and active ingredients with diphenol structure of traditional Chinese medicine. CHEMICAL PAPERS 2022; 76:4855-4871. [DOI: 10.1007/s11696-022-02132-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/14/2022] [Indexed: 11/03/2022]
Abstract
AbstractMany active ingredients of traditional Chinese medicine with important pharmacological effects always have glycol or diphenol structure, which lays a foundation for the combination with phenylboronic acid (PBA) derivatives to form cyclic boronic esters compounds. Herein, four important pharmacological active ingredients, namely baicalein, baicalin, gallic acid and protocatechuic acid, were chosen to study the interaction with PBA derivatives. Five PBA derivatives of 3-aminophenylboronic acid monohydrate (APBA), 3-acrylaminophenylboronic acid (AAPBA), poly(3-acrylaminophenylboronic acid) (PAAPBA), poly([poly(ethylene glycol) methacrylate-block-3-acrylaminophenylboronic acid]) (PEbPB), and poly[poly(ethylene glycol) methacrylate-random-3-acrylaminophenylboronic acid] (PErPB) were used. The interactions between five PBA derivatives and four active ingredients were explored by fluorescent spectrophotometer using the alizarin red (ARS) method. The fluorescent intensity of PBA derivative-ARS-active ingredient mixture was decreasing with the increasing concentrations of active ingredients. In comparison, the fluorescent intensity of PAAPBA, PEbPB, and PErPB showed an obviously decrease after active ingredients were added, while the fluorescent intensity of APBA and AAPBA showed a gradually decrease after active ingredients were added. These results indicated a stronger interaction between PBA polymers and active ingredients than that of APBA and AAPBA. Simultaneously, PEbPB and PErPB could enhance cellular uptake of baicalin in A549 cells. This research provided new strategies for improving the bioavailability and water solubility, extending the circulation time, and wider application of the active ingredients of traditional Chinese medicine in the prevention and therapy of diseases.
Collapse
|
217
|
Peruzzolo TL, Pinto JV, Roza TH, Shintani AO, Anzolin AP, Gnielka V, Kohmann AM, Marin AS, Lorenzon VR, Brunoni AR, Kapczinski F, Passos IC. Inflammatory and oxidative stress markers in post-traumatic stress disorder: a systematic review and meta-analysis. Mol Psychiatry 2022; 27:3150-3163. [PMID: 35477973 DOI: 10.1038/s41380-022-01564-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/09/2022]
Abstract
Post-traumatic stress disorder (PTSD) has been associated with persistent, low-degree inflammation, which could explain the increased prevalence of autoimmune conditions and accelerated aging among patients. The aim of the present study is to assess which inflammatory and oxidative stress markers are associated with PTSD. We carried out a meta-analytic and meta-regression analysis based on a systematic review of studies comparing inflammatory and oxidative stress markers between patients with PTSD and controls. We undertook meta-analyses whenever values of inflammatory and oxidative stress markers were available in two or more studies. Overall, 28,008 abstracts were identified, and 54 studies were included, with a total of 8394 participants. The Newcastle-Ottawa Quality Assessment Scale was used to evaluate the quality of the studies. Concentrations of C-reactive protein (SMD = 0.64; 95% CI: 0.21 to 1.06; p = 0.0031; k = 12), interleukin 6 (SMD = 0.94; 95% CI: 0.36 to 1.52; p = 0.0014; k = 32), and tumor necrosis factor-α (SMD = 0.89; 95% CI: 0.23 to 1.55; p = 0.0080; k = 24) were significantly increased in patients with PTSD in comparison with healthy controls. Interleukin 1β levels almost reached the threshold for significance (SMD = 1.20; 95% CI: -0.04 to 2.44; p = 0.0569; k = 15). No oxidative stress marker was associated with PTSD. These findings may explain why PTSD is associated with accelerated aging and illnesses in which immune activation has a key role, such as cardiovascular diseases and diabetes. In addition, they pointed to the potential role of inflammatory markers as therapeutic targets.
Collapse
Affiliation(s)
- Tatiana Lauxen Peruzzolo
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Department of Psychiatry, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jairo Vinícius Pinto
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,University Hospital, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Thiago Henrique Roza
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Department of Psychiatry, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Augusto Ossamu Shintani
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Department of Psychiatry, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Paula Anzolin
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Department of Psychiatry, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vanessa Gnielka
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Department of Psychiatry, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Moura Kohmann
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Department of Psychiatry, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Amanda Salvador Marin
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Department of Psychiatry, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vitória Ruschel Lorenzon
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Department of Psychiatry, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Russowsky Brunoni
- Centro de Pesquisas Clínicas e Epidemiológicas, Hospital Universitário, Universidade de São Paulo, São Paulo, Brasil.,Departamentos de Clínica Médica e Psiquiatria, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brasil.,Instituto Nacional de Biomarcadores em Psiquiatria (IMBION), Laboratory of Neurosciences (LIM-27), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brasil
| | - Flávio Kapczinski
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Department of Psychiatry, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Ives Cavalcante Passos
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil. .,Department of Psychiatry, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. .,Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil.
| |
Collapse
|
218
|
Wang L, Feng T, Su Z, Pi C, Wei Y, Zhao L. Latest research progress on anticancer effect of baicalin and its aglycone baicalein. Arch Pharm Res 2022; 45:535-557. [DOI: 10.1007/s12272-022-01397-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 07/11/2022] [Indexed: 11/02/2022]
|
219
|
Farooqi AA, Kapanova G, Kalmakhanov S, Tanbayeva G, Zhakipbekov KS, Rakhmetova VS, Syzdykbayev MK. Regulation of Cell Signaling Pathways and Non-Coding RNAs by Baicalein in Different Cancers. Int J Mol Sci 2022; 23:ijms23158377. [PMID: 35955525 PMCID: PMC9368823 DOI: 10.3390/ijms23158377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Landmark discoveries in molecular oncology have provided a wide-angle overview of the heterogenous and therapeutically challenging nature of cancer. The power of modern ‘omics’ technologies has enabled researchers to deeply and comprehensively characterize molecular mechanisms underlying cellular functions. Interestingly, high-throughput technologies have opened new horizons for the design and scientific fool-proof evaluation of the pharmacological properties of targeted chemical compounds to tactfully control the activities of the oncogenic protein networks. Groundbreaking discoveries have galvanized the expansion of the repertoire of available pharmacopoeia to therapeutically target a myriad of deregulated oncogenic pathways. Natural product research has undergone substantial broadening, and many of the drugs which constitute the backbone of modern pharmaceuticals have been derived from the natural cornucopia. Baicalein has gradually gained attention because of its unique ability to target different oncogenic signal transduction cascades in various cancers. We have partitioned this review into different sub-sections to provide a broader snapshot of the oncogenic pathways regulated by baicalein. In this review, we summarize baicalein-mediated targeting of WNT/β-catenin, AKT/mTOR, JAK/STAT, MAPK, and NOTCH pathways. We also critically analyze how baicalein regulates non-coding RNAs (microRNAs and long non-coding RNAs) in different cancers. Finally, we conceptually interpret baicalein-mediated inhibition of primary and secondary growths in xenografted mice.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan
- Correspondence:
| | - Gulnara Kapanova
- Scientific Center of Anti-Infectious Drugs, 75 al-Faraby Ave, Almaty 050040, Kazakhstan;
- Al-Farabi Kazakh National University, 71 al-Farabi Ave, Almaty 050040, Kazakhstan; (S.K.); (G.T.)
| | - Sundetgali Kalmakhanov
- Al-Farabi Kazakh National University, 71 al-Farabi Ave, Almaty 050040, Kazakhstan; (S.K.); (G.T.)
| | - Gulnur Tanbayeva
- Al-Farabi Kazakh National University, 71 al-Farabi Ave, Almaty 050040, Kazakhstan; (S.K.); (G.T.)
| | - Kairat S. Zhakipbekov
- Department of Organization and Management and Economics of Pharmacy and Clinical Pharmacy, Asfendiyarov Kazakh National Medical University KazNMU, Tole Bi St. 94, Almaty 050000, Kazakhstan;
| | - Venera S. Rakhmetova
- Department Internal Diseases, Astana Medical University, Nur-Sultan 010000, Kazakhstan;
| | - Marat K. Syzdykbayev
- Department of Anesthesiology, Reanimatology and Narcology, Semey Medical University, Semey 071400, Kazakhstan;
| |
Collapse
|
220
|
Zhao F, Li B, Yang W, Ge T, Cui R. Brain-immune interaction mechanisms: Implications for cognitive dysfunction in psychiatric disorders. Cell Prolif 2022; 55:e13295. [PMID: 35860850 PMCID: PMC9528770 DOI: 10.1111/cpr.13295] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 04/28/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022] Open
Abstract
Objectives Cognitive dysfunction has been identified as a major symptom of a series of psychiatric disorders. Multidisciplinary studies have shown that cognitive dysfunction is monitored by a two‐way interaction between the neural and immune systems. However, the specific mechanisms of cognitive dysfunction in immune response and brain immune remain unclear. Materials and methods In this review, we summarized the relevant research to uncover our comprehension of the brain–immune interaction mechanisms underlying cognitive decline. Results The pathophysiological mechanisms of brain‐immune interactions in psychiatric‐based cognitive dysfunction involve several specific immune molecules and their associated signaling pathways, impairments in neural and synaptic plasticity, and the potential neuro‐immunological mechanism of stress. Conclusions Therefore, this review may provide a better theoretical basis for integrative therapeutic considerations for psychiatric disorders associated with cognitive dysfunction.
Collapse
Affiliation(s)
- Fangyi Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
221
|
Geng A, Flint E, Bernsmeier C. Plasticity of monocytes and macrophages in cirrhosis of the liver. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:937739. [PMID: 36926073 PMCID: PMC10013015 DOI: 10.3389/fnetp.2022.937739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/27/2022] [Indexed: 06/06/2023]
Abstract
Cirrhosis of the liver is a systemic condition with raising prevalence worldwide. Patients with cirrhosis are highly susceptible to develop bacterial infections leading to acute decompensation and acute-on-chronic liver failure both associated with a high morbidity and mortality and sparse therapeutic options other than transplantation. Mononuclear phagocytes play a central role in innate immune responses and represent a first line of defence against pathogens. Their function includes phagocytosis, killing of bacteria, antigen presentation, cytokine production as well as recruitment and activation of immune effector cells. Liver injury and development of cirrhosis induces activation of liver resident Kupffer cells and recruitment of monocytes to the liver. Damage- and pathogen-associated molecular patterns promote systemic inflammation which involves multiple compartments besides the liver, such as the circulation, gut, peritoneal cavity and others. The function of circulating monocytes and tissue macrophages is severely impaired and worsens along with cirrhosis progression. The underlying mechanisms are complex and incompletely understood. Recent 'omics' technologies help to transform our understanding of cellular diversity and function in health and disease. In this review we point out the current state of knowledge on phenotypical and functional changes of monocytes and macrophages during cirrhosis evolution in different compartments and their role in disease progression. We also discuss the value of potential prognostic markers for cirrhosis-associated immuneparesis, and future immunotherapeutic strategies that may reduce the need for transplantation and death.
Collapse
Affiliation(s)
- Anne Geng
- Translational Hepatology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Emilio Flint
- Translational Hepatology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Christine Bernsmeier
- Translational Hepatology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| |
Collapse
|
222
|
Lee W, Milewski TM, Dwortz MF, Young RL, Gaudet AD, Fonken LK, Champagne FA, Curley JP. Distinct immune and transcriptomic profiles in dominant versus subordinate males in mouse social hierarchies. Brain Behav Immun 2022; 103:130-144. [PMID: 35447300 DOI: 10.1016/j.bbi.2022.04.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 03/31/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022] Open
Abstract
Social status is a critical factor determining health outcomes in human and nonhuman social species. In social hierarchies with reproductive skew, individuals compete to monopolize resources and increase mating opportunities. This can come at a significant energetic cost leading to trade-offs between different physiological systems. In particular, changes in energetic investment in the immune system can have significant short and long-term effects on fitness and health. We have previously found that dominant alpha male mice living in social hierarchies have increased metabolic demands related to territorial defense. In this study, we tested the hypothesis that high-ranking male mice favor adaptive immunity, while subordinate mice show higher investment in innate immunity. We housed 12 groups of 10 outbred CD-1 male mice in a social housing system. All formed linear social hierarchies and subordinate mice had higher concentrations of plasma corticosterone (CORT) than alpha males. This difference was heightened in highly despotic hierarchies. Using flow cytometry, we found that dominant status was associated with a significant shift in immunophenotypes towards favoring adaptive versus innate immunity. Using Tag-Seq to profile hepatic and splenic transcriptomes of alpha and subordinate males, we identified genes that regulate metabolic and immune defense pathways that are associated with status and/or CORT concentration. In the liver, dominant animals showed a relatively higher expression of specific genes involved in major urinary production and catabolic processes, whereas subordinate animals showed relatively higher expression of genes promoting biosynthetic processes, wound healing, and proinflammatory responses. In spleen, subordinate mice showed relatively higher expression of genes facilitating oxidative phosphorylation and DNA repair and CORT was negatively associated with genes involved in lymphocyte proliferation and activation. Together, our findings suggest that dominant and subordinate animals adaptively shift immune profiles and peripheral gene expression to match their contextual needs.
Collapse
Affiliation(s)
- Won Lee
- Department of Psychology, University of Texas at Austin, Austin, TX, USA; Department of In Vivo Pharmacology Services, The Jackson Laboratory, Sacramento, CA, USA
| | - Tyler M Milewski
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Madeleine F Dwortz
- Department of Psychology, University of Texas at Austin, Austin, TX, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Rebecca L Young
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Andrew D Gaudet
- Department of Psychology, University of Texas at Austin, Austin, TX, USA; Department of Neurology, University of Texas at Austin, Austin, TX, USA
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, USA
| | | | - James P Curley
- Department of Psychology, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
223
|
Zhang ZZ, Yu XH, Tan WH. Baicalein inhibits macrophage lipid accumulation and inflammatory response by activating the PPARγ/LXRα pathway. Clin Exp Immunol 2022; 209:316-325. [PMID: 35749304 PMCID: PMC9521661 DOI: 10.1093/cei/uxac062] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/27/2022] [Accepted: 06/23/2022] [Indexed: 01/23/2023] Open
Abstract
Lipid accumulation and inflammatory response are two major risk factors for atherosclerosis. Baicalein, a phenolic flavonoid widely used in East Asian countries, possesses a potential atheroprotective activity. However, the underlying mechanisms remain elusive. This study was performed to explore the impact of baicalein on lipid accumulation and inflammatory response in THP-1 macrophage-derived foam cells. Our results showed that baicalein up-regulated the expression of ATP binding cassette transporter A1 (ABCA1), ABCG1, liver X receptor α (LXRα), and peroxisome proliferator-activated receptor γ (PPARγ), promoted cholesterol efflux, and inhibited lipid accumulation. Administration of baicalein also reduced the expression and secretion of TNF-α, IL-1β, and IL-6. Knockdown of LXRα or PPARγ with siRNAs abrogated the effects of baicalein on ABCA1 and ABCG1 expression, cholesterol efflux, lipid accumulation as well as pro-inflammatory cytokine release. In summary, these findings suggest that baicalein exerts a beneficial effect on macrophage lipid accumulation and inflammatory response by activating the PPARγ/LXRα signaling pathway.
Collapse
Affiliation(s)
- Zi-Zhen Zhang
- School of Medicine, Hunan Polytechnic of Environment and Biology, Hengyang Hunan, China
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Wei-Hua Tan
- Correspondence: Wei-Hua Tan, Emergency Department, The First Affiliated Hospital of University of South China, Hengyang 421001 Hunan, China.
| |
Collapse
|
224
|
Basso L, Boecking B, Neff P, Brueggemann P, El-Ahmad L, Brasanac J, Rose M, Gold SM, Mazurek B. Negative Associations of Stress and Anxiety Levels With Cytotoxic and Regulatory Natural Killer Cell Frequency in Chronic Tinnitus. Front Psychol 2022; 13:871822. [PMID: 35814090 PMCID: PMC9262102 DOI: 10.3389/fpsyg.2022.871822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/25/2022] [Indexed: 12/04/2022] Open
Abstract
Background Depression and anxiety are known to be associated with stress-induced changes in the immune system. Bothersome tinnitus can be related to stress and often co-occurs with depression and anxiety. This study investigates associations of psychological and audiological tinnitus-related factors with inflammatory parameters and immune cell subsets in chronic tinnitus patients as well as treatment-related effects. Methods This longitudinal study of inpatients treated with compact multimodal tinnitus-specific cognitive behavioral therapy included four repeated measurement sessions: baseline (N = 41), treatment end, 7.8-week (N = 35), and 13.8-week follow-up (N = 34). Data collection included audiometric testing, blood sampling, and psychometric questionnaires: Tinnitus Handicap Inventory (THI), Perceived Stress Questionnaire (PSQ-20), and Hospital Anxiety Depression Scale (HADS). Flow cytometry was used to analyze immune cell subsets. Statistical analyses comprised correlation and network analysis (cross-sectional), and linear mixed effect models (longitudinal). Results Bootstrapped network analysis showed negative averaged cross-sectional associations of cytotoxic natural killer (NKc) cell frequency (CD56 + CD16+) and PSQ-20 (−0.21 [−0.48, 0]) and of regulatory natural killer (NKreg) cell frequency (CD56 + CD16dim/−) and HADS anxiety (−0.14 [−0.38, 0]). No significant treatment effects were found. A negative predictive effect of baseline PSQ-20 scores (β = −6.22 [−12.18, −0.26], p = 0.041) and a positive predictive effect of baseline ferritin levels (β = 8.90 [2.76, 15.03], p = 0.004) on NKc cell frequency across the repeated measurement sessions were observed. Conclusion We observed negative relationships between perceived stress levels and NKc cell frequency and between anxiety levels and NKreg cell frequency in chronic tinnitus patients. These exploratory results suggest stress−/anxiety-related immune alterations in bothersome tinnitus but need to be tested in further confirmatory studies with larger sample sizes. The potential of NK cells as biomarkers of emotional distress in chronic tinnitus should be further investigated.
Collapse
Affiliation(s)
- Laura Basso
- Tinnitus Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Benjamin Boecking
- Tinnitus Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Patrick Neff
- Center for Cognitive Neuroscience and Department of Psychology, University of Salzburg, Salzburg, Austria
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
- Center for Neuroprosthetics, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Petra Brueggemann
- Tinnitus Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Linda El-Ahmad
- Medical Department, Section of Psychosomatic Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jelena Brasanac
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Rose
- Medical Department, Section of Psychosomatic Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan M. Gold
- Medical Department, Section of Psychosomatic Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Birgit Mazurek
- Tinnitus Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
- *Correspondence: Birgit Mazurek,
| |
Collapse
|
225
|
Wang W, Gu W, He C, Zhang T, Shen Y, Pu Y. Bioactive components of Banxia Xiexin Decoction for the treatment of gastrointestinal diseases based on flavor-oriented analysis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115085. [PMID: 35150814 DOI: 10.1016/j.jep.2022.115085] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/23/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Banxia Xiexin Decoction (BXD) was first recorded in a Chinese medical classic, Treatise on Febrile Diseases and Miscellaneous Diseases, which was written in the Eastern Han dynasty of China. This ancient prescription consists of seven kinds of Chinese herbal medicine, namely, Pinellia ternata, Rhizoma Coptidis, Radix scutellariae, Rhizoma Zingiberis, Ginseng, Jujube, and Radix Glycyrrhizaepreparata. In clinic practice, its original application in China mainly has focused on the treatment of chronic gastritis for several hundred years. BXD is also effective in treating other gastrointestinal diseases (GIDs) in modern medical application. Despite available literature support and clinical experience, the treatment mechanisms or their relationships with the bioactive compounds in BXD responsible for its pharmacological actions, still need further explorations in more diversified channels. According to the analysis based on the five-flavor theory of TCM, BXD is traditionally viewed as the most representative prescription for pungent-dispersion, bitter-purgation and sweet-tonification. Consequently, based on the flavor-oriented analysis, the compositive herbs in BXD can be divided into three flavor groups, namely, the pungent, bitter, and sweet groups, each of which has specific active ingredients that are possibly relevant to GID treatment. AIM OF THE REVIEW This paper summarized recent literatures on BXD and its bioactive components used in GID treatment, and provided the pharmacological or chemical basis for the further exploration of the ancient prescription and the relative components. METHOD ology: Relevant literature was collected from various electronic databases such as Pubmed, Web of Science, and China National Knowledge Infrastructure (CNKI). Citations were based on peer-reviewed articles published in English or Chinese during the last decade. RESULTS Multiple components were found in the pungent, bitter, and sweet groups in BXD. The corresponding bioactive components include gingerol, shogaol, stigmasterol, and β-sitosterol in the pungent group; berberine, palmatine, coptisine, baicalein, and baicalin in the bitter group; and ginsenosides, polysaccharides, liquiritin, and glycyrrhetinic acid in the sweet group. These components have been found directly or indirectly responsible for the remarkable effects of BXD on GID. CONCLUSION This review provided some valuable reference to further clarify BXD treatment for GID and their possible material basis, based on the perspective of the flavor-oriented analysis.
Collapse
Affiliation(s)
- Weiwei Wang
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Weiliang Gu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chao He
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yao Shen
- Shanghai Center of Biomedicine Development, Shanghai, 201203, China.
| | - Yiqiong Pu
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
226
|
He K, Liu X, Hoffman RD, Shi RZ, Lv GY, Gao JL. G-CSF/GM-CSF-induced hematopoietic dysregulation in the progression of solid tumors. FEBS Open Bio 2022; 12:1268-1285. [PMID: 35612789 PMCID: PMC9249339 DOI: 10.1002/2211-5463.13445] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 11/06/2022] Open
Abstract
There are two types of abnormal hematopoiesis in solid tumor occurrence and treatment: pathological hematopoiesis, and myelosuppression induced by radiotherapy and chemotherapy. In this review, we primarily focus on the abnormal pathological hematopoietic differentiation in cancer induced by tumor-released granulocyte colony stimulating factor (G-CSF) and granulocyte-macrophage colony stimulating factor (GM-CSF). As key factors in hematopoietic development, G-CSF/GM-CSF are well-known facilitators of myelopoiesis and mobilization of hematopoietic stem cells (HSCs). In addition, these two cytokines can also promote or inhibit tumors, dependent on tumor type. In multiple cancer types, hematopoiesis is greatly enhanced and abnormal lineage differentiation is induced by these two cytokines. Here, dysregulated hematopoiesis induced by G-CSF/GM-CSF in solid tumors and its mechanism are summarized, and the prognostic value of G-CSF/GM-CSF-associated dysregulated hematopoiesis for tumor metastasis is also briefly highlighted.
Collapse
Affiliation(s)
- Kai He
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Xi Liu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Robert D Hoffman
- Yo San University of Traditional Chinese Medicine, Los Angeles, CA, 90066, USA
| | - Rong-Zhen Shi
- Tangqi Branch of Traditional Chinese Medicine Hospital of Yuhang District, Hangzhou, Zhejiang, 311106, China
| | - Gui-Yuan Lv
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University Hangzhou, Zhejiang, 310053, China
| | - Jian-Li Gao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University Hangzhou, Zhejiang, 310053, China
| |
Collapse
|
227
|
Jugait S, Areti A, Nellaiappan K, Narwani P, Saha P, Velayutham R, Kumar A. Neuroprotective Effect of Baicalein Against Oxaliplatin-Induced Peripheral Neuropathy: Impact on Oxidative Stress, Neuro-inflammation and WNT/β-Catenin Signaling. Mol Neurobiol 2022; 59:4334-4350. [DOI: 10.1007/s12035-022-02858-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022]
|
228
|
Friend SF, Nachnani R, Powell SB, Risbrough VB. C-Reactive Protein: Marker of risk for post-traumatic stress disorder and its potential for a mechanistic role in trauma response and recovery. Eur J Neurosci 2022; 55:2297-2310. [PMID: 33131159 PMCID: PMC8087722 DOI: 10.1111/ejn.15031] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/17/2020] [Accepted: 10/06/2020] [Indexed: 01/08/2023]
Abstract
Increasing evidence indicates that inflammation plays a role in PTSD and stress disorder pathophysiology. PTSD is consistently associated with higher circulating inflammatory protein levels. Rodent models demonstrate that inflammation promotes enduring avoidance and arousal behaviors after severe stressors (e.g., predator exposure and social defeat), suggesting that inflammation may play a mechanistic role in trauma disorders. C-reactive protein (CRP) is an innate acute phase reactant produced by the liver after acute infection and chronic disease. A growing number of investigations report associations with PTSD diagnosis and elevated peripheral CRP, CRP gene mutations, and CRP gene expression changes in immune signaling pathways. CRP is reasonably established as a potential marker of PTSD and trauma exposure, but if and how it may play a mechanistic role is unclear. In this review, we discuss the current understanding of immune mechanisms in PTSD with a particular focus on the innate immune signaling factor, CRP. We found that although there is consistent evidence of an association of CRP with PTSD symptoms and risk, there is a paucity of data on how CRP might contribute to CNS inflammation in PTSD, and consequently, PTSD symptoms. We discuss potential mechanisms through which CRP could modulate enduring peripheral and CNS stress responses, along with future areas of investigation probing the role of CRP and other innate immune signaling factors in modulating trauma responses. Overall, we found that CRP likely contributes to central inflammation, but how it does so is an area for further study.
Collapse
Affiliation(s)
- Samantha F. Friend
- Veterans Affairs Center of Excellence for Stress and Mental HealthSan DiegoCAUSA
- Department of PsychiatryUniversity of California San DiegoSan DiegoCAUSA
| | - Rahul Nachnani
- Department of PharmacologyPenn State College of MedicineHersheyPAUSA
| | - Susan B. Powell
- Department of PsychiatryUniversity of California San DiegoSan DiegoCAUSA
- Research ServiceVA San Diego Healthcare SystemSan DiegoCAUSA
| | - Victoria B. Risbrough
- Veterans Affairs Center of Excellence for Stress and Mental HealthSan DiegoCAUSA
- Department of PsychiatryUniversity of California San DiegoSan DiegoCAUSA
| |
Collapse
|
229
|
Role of Plant-Derived Active Constituents in Cancer Treatment and Their Mechanisms of Action. Cells 2022; 11:cells11081326. [PMID: 35456005 PMCID: PMC9031068 DOI: 10.3390/cells11081326] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023] Open
Abstract
Despite significant technological advancements in conventional therapies, cancer remains one of the main causes of death worldwide. Although substantial progress has been made in the control and treatment of cancer, several limitations still exist, and there is scope for further advancements. Several adverse effects are associated with modern chemotherapy that hinder cancer treatment and lead to other critical disorders. Since ancient times, plant-based medicines have been employed in clinical practice and have yielded good results with few side effects. The modern research system and advanced screening techniques for plants’ bioactive constituents have enabled phytochemical discovery for the prevention and treatment of challenging diseases such as cancer. Phytochemicals such as vincristine, vinblastine, paclitaxel, curcumin, colchicine, and lycopene have shown promising anticancer effects. Discovery of more plant-derived bioactive compounds should be encouraged via the exploitation of advanced and innovative research techniques, to prevent and treat advanced-stage cancers without causing significant adverse effects. This review highlights numerous plant-derived bioactive molecules that have shown potential as anticancer agents and their probable mechanisms of action and provides an overview of in vitro, in vivo and clinical trial studies on anticancer phytochemicals.
Collapse
|
230
|
Baicalein Inhibits the SMYD2/RPS7 Signaling Pathway to Inhibit the Occurrence and Metastasis of Lung Cancer. JOURNAL OF ONCOLOGY 2022; 2022:3796218. [PMID: 35432530 PMCID: PMC9012617 DOI: 10.1155/2022/3796218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/23/2022] [Accepted: 03/03/2022] [Indexed: 12/23/2022]
Abstract
Objective This study investigated the potential effects of Baicalein on proliferation, migration, and invasion of human lung cancer A549 and NCI-H1299 cells and its possible mechanisms. Methods The effects of Baicalein on proliferation and invasion of A549 and NCI-H1299 cells were detected by MTT assay, clonogenesis assay, and Transwell assay. A subcutaneous transplanted tumor model was used to evaluate the effects of SMYD2 and Baicalein on the proliferation of lung cancer. Baicalein inhibited in SMYD2/RPS7 signaling pathway in tumor cells was also detected by qRT-PCR. Results Baicalein significantly inhibited the growth of lung cancer cells. In addition, Baicalein significantly reduced the rate of A549 and NCI-H1299 cell invasion and clone formation in a dose-dependent manner. Animal experiments showed that both SMYD2 and Baicalein treatments could inhibit lung cancer tumor proliferation. Mechanism studies suggest that Baicalein inhibits the SMYD2/RPS7 signaling pathway. Conclusion These results indicated that Baicalein could inhibit the proliferation, migration, and invasion of LUNG cancer A549 and NCI-H1299 cells. Baicalein inhibits cell proliferation by downregulating the SMYD2/RPS7 signaling pathway.
Collapse
|
231
|
Noverati N, Bashir-Hamidu R, Halegoua-DeMarzio D, Hann HW. Hepatitis B Virus-Associated Hepatocellular Carcinoma and Chronic Stress. Int J Mol Sci 2022; 23:3917. [PMID: 35409275 PMCID: PMC8999024 DOI: 10.3390/ijms23073917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023] Open
Abstract
The Hepatitis B virus is one of the most significant hepatocarcinogens globally. The carcinogenic mechanisms of this virus are complex, and may include interactions with the host's immune system. Certain factors, such as stress on the body, can also potentiate these mechanisms. Stress, although adaptive in an acute form, is deleterious to health when chronic and can both suppress and activate the host's defense system. In hepatocellular carcinoma, this can lead to tumor initiation and progression. Those that are more prone to stress, or exposed to situations that incite stress, may be at higher risk of developing cancer. Racial disparities, for example, are a source of chronic psychosocial stress in America and predispose minorities to poorer outcomes. As it remains perplexing why some individuals with chronic hepatitis B develop feared complications while others do not, it is important to recognize as many risk factors as possible, including those often overlooked such as chronic stress.
Collapse
Affiliation(s)
- Nicholas Noverati
- Department of Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA; (N.N.); (R.B.-H.); (D.H.-D.)
| | - Rukaiya Bashir-Hamidu
- Department of Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA; (N.N.); (R.B.-H.); (D.H.-D.)
- Division of Gastroenterology and Hepatology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Dina Halegoua-DeMarzio
- Department of Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA; (N.N.); (R.B.-H.); (D.H.-D.)
- Division of Gastroenterology and Hepatology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Hie-Won Hann
- Department of Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA; (N.N.); (R.B.-H.); (D.H.-D.)
- Division of Gastroenterology and Hepatology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| |
Collapse
|
232
|
Hawn SE, Neale Z, Wolf EJ, Zhao X, Pierce M, Fein-Schaffer D, Milberg W, McGlinchey R, Logue M, Miller MW. Methylation of the AIM2 gene: An epigenetic mediator of PTSD-related inflammation and neuropathology plasma biomarkers. Depress Anxiety 2022; 39:323-333. [PMID: 35312143 PMCID: PMC8996332 DOI: 10.1002/da.23247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) is associated with inflammation and various forms of chronic disease. The Absent in Melanoma 2 (AIM2) gene has been implicated in mechanisms of inflammation and anxiety, and methylation at a particular locus in this gene (cg10636246) has previously been shown to influence the association between PTSD and elevated C-reactive protein levels in blood. METHOD We tested if this association might extend to other indicators of inflammation and to plasma-based measures of neuropathology in a cohort of post-9/11 US military veterans. Using a Bayesian approach, mediation models were tested cross-sectionally (n = 478) and longitudinally (n = 298). Peripheral markers of inflammation and neuropathology were measured with ultra-sensitive Single Molecule Array (Simoa®) technology. RESULTS Analyses revealed indirect effects of PTSD symptom severity on peripheral indices of both inflammation (interleukin [IL]6, IL-10, tumor necrosis factor-α; indirect standardized [std.] ß range = 0.018-0.023, all p-values adjusted for multiple testing [padj ] < 0.05) and neuropathology (neurofilament light [NFL]; indirect std. ß = -0.018, padj = 0.02) via AIM2 methylation. This indirect effect was also evident when predicting IL-10 at a follow-up assessment (indirect std. ß = -0.018, padj = 0.04) controlling for baseline IL-10. CONCLUSIONS Given that AIM2 methylation mediated the association between PTSD symptoms and multiple inflammatory and neuropathology markers, our results suggest that AIM2 methylation may offer clinical utility for indexing risk for adverse health outcomes associated with these peripheral indices of inflammation and neuropathology. Results also suggest a possible shared etiology underlying the frequent co-occurrence of inflammation and neuropathology.
Collapse
Affiliation(s)
- Sage E Hawn
- National Center for PTSD at VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Zoe Neale
- National Center for PTSD at VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Erika J Wolf
- National Center for PTSD at VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Xiang Zhao
- National Center for PTSD at VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Meghan Pierce
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Dana Fein-Schaffer
- National Center for PTSD at VA Boston Healthcare System, Boston, Massachusetts, USA
| | - William Milberg
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Regina McGlinchey
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark Logue
- National Center for PTSD at VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Medicine, Biomedical Genetics, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Mark W Miller
- National Center for PTSD at VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
233
|
Hakamata Y, Suzuki Y, Kobashikawa H, Hori H. Neurobiology of early life adversity: A systematic review of meta-analyses towards an integrative account of its neurobiological trajectories to mental disorders. Front Neuroendocrinol 2022; 65:100994. [PMID: 35331780 DOI: 10.1016/j.yfrne.2022.100994] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/23/2022]
Abstract
Adverse childhood experiences (ACEs) may leave long-lasting neurobiological scars, increasing the risk of developing mental disorders in later life. However, no review has comprehensively integrated existing evidence across the fields: hypothalamic-pituitary-adrenal axis, immune/inflammatory system, neuroimaging, and genetics/epigenetics. We thus systematically reviewed previous meta-analyses towards an integrative account of ACE-related neurobiological alterations. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline, a total of 27 meta-analyses until October 2021 were identified. This review found that individuals with ACEs possess blunted cortisol response to psychosocial stressors, low-grade inflammation evinced by increased C-reactive protein levels, exaggerated amygdalar response to emotionally negative information, and diminished hippocampal gray matter volume. Importantly, these alterations were consistently observed in those with and without psychiatric diagnosis. These findings were integrated and discussed in a schematic model of ACE-related neurobiological alterations. Future longitudinal research based on multidisciplinary approach is imperative for ACE-related mental disorders' prevention and treatment.
Collapse
Affiliation(s)
- Yuko Hakamata
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Clinical and Cognitive Neuroscience, School of Medicine, Toyama University, Toyama, Japan.
| | - Yuhki Suzuki
- Department of Clinical and Cognitive Neuroscience, School of Medicine, Toyama University, Toyama, Japan
| | - Hajime Kobashikawa
- Department of Clinical and Cognitive Neuroscience, School of Medicine, Toyama University, Toyama, Japan
| | - Hiroaki Hori
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan.
| |
Collapse
|
234
|
Lai KC, Hong ZX, Hsieh JG, Lee HJ, Yang MH, Hsieh CH, Yang CH, Chen YR. IFIT2-depleted metastatic oral squamous cell carcinoma cells induce muscle atrophy and cancer cachexia in mice. J Cachexia Sarcopenia Muscle 2022; 13:1314-1328. [PMID: 35170238 PMCID: PMC8977969 DOI: 10.1002/jcsm.12943] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Interferon-induced protein with tetratricopeptide repeat 2 (IFIT2) is a reported metastasis suppressor in oral squamous cell carcinoma (OSCC). Metastases and cachexia may coexist. The effect of cancer metastasis on cancer cachexia is largely unknown. We aimed to address this gap in knowledge by characterizing the cachectic phenotype of an IFIT2-depleted metastatic OSCC mouse model. METHODS Genetically engineered and xenograft tumour models were used to explore the effect of IFIT2-depleted metastatic OSCC on cancer cachexia. Muscle and organ weight changes, tumour burden, inflammatory cytokine profiles, body composition, food intake, serum albumin and C-reactive protein (CRP) levels, and survival were assessed. The activation of the IL6/p38 pathway in atrophied muscle was measured. RESULTS IFIT2-depleted metastatic tumours caused marked body weight loss (-18.2% vs. initial body weight, P < 0.001) and a poor survival rate (P < 0.01). Skeletal muscles were markedly smaller in IFIT2-depleted metastatic tumour-bearing mice (quadriceps: -28.7%, gastrocnemius: -29.4%, and tibialis: -24.3%, all P < 0.001). Tumour-derived circulating granulocyte-macrophage colony-stimulating factor (+772.2-fold, P < 0.05), GROα (+1283.7-fold, P < 0.05), IL6 (+245.8-fold, P < 0.001), IL8 (+616.9-fold, P < 0.001), IL18 (+24-fold, P < 0.05), IP10 (+18.8-fold, P < 0.001), CCL2 (+439.2-fold, P < 0.001), CCL22 (+9.1-fold, P < 0.01) and tumour necrosis factor α (+196.8-fold, P < 0.05) were elevated in IFIT2-depleted metastatic tumour-bearing mice. Murine granulocyte colony-stimulating factor (+61.4-fold, P < 0.001) and IL6 (+110.9-fold, P < 0.01) levels were significantly increased in IFIT2-depleted metastatic tumour-bearing mice. Serum CRP level (+82.1%, P < 0.05) was significantly increased in cachectic shIFIT2 mice. Serum albumin level (-26.7%, P < 0.01) was significantly decreased in cachectic shIFIT2 mice. An assessment of body composition revealed decreased fat (-81%, P < 0.001) and lean tissue (-21.7%, P < 0.01), which was consistent with the reduced food intake (-19.3%, P < 0.05). Muscle loss was accompanied by a smaller muscle cross-sectional area (-23.3%, P < 0.05). Muscle atrophy of cachectic IFIT2-depleted metastatic tumour-bearing mice (i.v.-shIFIT2 group) was associated with elevated IL6 (+2.7-fold, P < 0.05), phospho-p38 (+2.8-fold, P < 0.05), and atrogin-1 levels (+2.3-fold, P < 0.05) in the skeletal muscle. Neutralization of IL6 rescued shIFIT2 conditioned medium-induced myotube atrophy (+24.6%, P < 0.01). CONCLUSIONS Our results suggest that the development of shIFIT2 metastatic OSCC lesions promotes IL6 production and is accompanied by the loss of fat and lean tissue, anorexia, and muscle atrophy. This model is appropriate for the study of OSCC cachexia, especially in linking metastasis with cachexia.
Collapse
Affiliation(s)
- Kuo-Chu Lai
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Division of Hematology and Oncology, Department of Internal Medicine, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City, Taiwan
| | - Zi-Xuan Hong
- Masters Program in Pharmacology & Toxicology, Department of Medicine, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Jyh-Gang Hsieh
- Department of Family Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Medical Humanities, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hui-Ju Lee
- Department of Research and Development, Immunwork, Inc., Taipei, Taiwan
| | - Muh-Hwa Yang
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Husu Hsieh
- Division of Hematology and Oncology, Department of Internal Medicine, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City, Taiwan.,Division of Hematology and Oncology, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Cheng-Han Yang
- Deportment of Anatomic Pathology, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Yan-Ru Chen
- Masters Program in Pharmacology & Toxicology, Department of Medicine, School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
235
|
Sharma A, Sinha S, Shrivastava N. Therapeutic Targeting Hypoxia-Inducible Factor (HIF-1) in Cancer: Cutting Gordian Knot of Cancer Cell Metabolism. Front Genet 2022; 13:849040. [PMID: 35432450 PMCID: PMC9008776 DOI: 10.3389/fgene.2022.849040] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/09/2022] [Indexed: 12/20/2022] Open
Abstract
Metabolic alterations are one of the hallmarks of cancer, which has recently gained great attention. Increased glucose absorption and lactate secretion in cancer cells are characterized by the Warburg effect, which is caused by the metabolic changes in the tumor tissue. Cancer cells switch from oxidative phosphorylation (OXPHOS) to aerobic glycolysis due to changes in glucose degradation mechanisms, a process known as “metabolic reprogramming”. As a result, proteins involved in mediating the altered metabolic pathways identified in cancer cells pose novel therapeutic targets. Hypoxic tumor microenvironment (HTM) is anticipated to trigger and promote metabolic alterations, oncogene activation, epithelial-mesenchymal transition, and drug resistance, all of which are hallmarks of aggressive cancer behaviour. Angiogenesis, erythropoiesis, glycolysis regulation, glucose transport, acidosis regulators have all been orchestrated through the activation and stability of a transcription factor termed hypoxia-inducible factor-1 (HIF-1), hence altering crucial Warburg effect activities. Therefore, targeting HIF-1 as a cancer therapy seems like an extremely rational approach as it is directly involved in the shift of cancer tissue. In this mini-review, we present a brief overview of the function of HIF-1 in hypoxic glycolysis with a particular focus on novel therapeutic strategies currently available.
Collapse
Affiliation(s)
- Abhilasha Sharma
- Department of Life Science, University School of Sciences, Gujarat University, Ahmedabad, India
| | | | - Neeta Shrivastava
- Shri B.V. Patel Education Trust, Ahmedabad, India
- *Correspondence: Neeta Shrivastava,
| |
Collapse
|
236
|
Elsherif SA, Alm AS. Role of macrophages in liver cirrhosis: fibrogenesis and resolution. Anat Cell Biol 2022; 55:14-19. [PMID: 35354672 PMCID: PMC8968231 DOI: 10.5115/acb.21.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/20/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022] Open
Abstract
At present, chronic liver disease accounts for approximately 2 million deaths per year worldwide. Liver injury induces a series of events causing inflammation. Chronic inflammation ends in liver fibrosis. A stage of fibrinolysis occurs on stopping insult. Kupffer cells play their role to initiate inflammatory responses, while infiltrating monocyte-derived macrophages have a role both in chronic inflammation and fibrosis and in fibrosis resolution. Ly-6C high expressing monocytes act during fibrogenesis, while Ly-6C low expressing monocytes are restorative macrophages which promote resolution of fibrosis after end of the injury. Recent studies have identified new phenotypes, such as metabolically activated M, oxidized, which may have a role in fatty liver diseases.
Collapse
Affiliation(s)
- Sherine Ahmed Elsherif
- Histology Department, Faculty of Medicine, Sohag University, Sohag, Egypt.,istology Department, Faculty of Medicine, Merit University, Sohag, Egypt
| | - Ahmed Salah Alm
- istology Department, Faculty of Medicine, Merit University, Sohag, Egypt
| |
Collapse
|
237
|
Shi X, Gong X, Xiong H, Zhang J. Cellular distribution of C-C motif chemokine ligand 2 like immunoreactivities in frontal cortex and corpus callosum of normal and lipopolysaccharide treated animal. BMC Neurosci 2022; 23:20. [PMID: 35354428 PMCID: PMC8965573 DOI: 10.1186/s12868-022-00706-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND C-C motif chemokine ligand 2 (CCL2) is reported to be involved in the pathogenesis of various neurological and/or psychiatric diseases. Tissue or cellular expression of CCL2, in normal or pathological condition, may play an essential role in recruiting monocytes or macrophages into targeted organs, and be involved in a certain pathogenic mechanism. However, few studies focused on tissue and cellular distribution of the CCL2 peptide in brain grey and white matters (GM, WM), and the changes of the GM and WM cellular CCL2 level in septic or endotoxic encephalopathy was not explored. Hence, the CCL2 cellular distribution in the front brain cortex and the corpus callosum (CC) was investigated in the present work by using immunofluorescent staining. RESULTS (1) CCL2 like immunoreactivity (CCL2-ir) in the CC is evidently higher than the cortex. When the measurement includes ependymal layer attached to the CC, CCL2-ir intensity is significantly higher than cortex. (2) Structures in perivascular areas, most of them are GFAP positive, contribute major CCL2-ir positive profiles in both GM and WM, but apparently more in the CC, where they are bilaterally distributed in the lateral CC between the cingulate cortex and ventricles. (3) The neuron-like CCL2-ir positive cells in cortex are significantly more than in the CC, and that number is significantly increased in the cortex following systemic lipopolysaccharide (LPS), but not in the CC. (4) In addition to CCL2-ir positive perivascular rings, more CCL2-ir filled cashew shape elements are observed, probably inside of microvasculature, especially in the CC following systemic LPS. (5) Few macrophage/microglia marker-Iba-1 and CCL2-ir co-labeled structures especially the soma is found in normal cortex and CC; the co-localizations are significantly augmented following systemic LPS, and co-labeled amoeba like somata are presented. (6) CCL2-ir and astrocyte marker GFAP or Iba-1 double labeled structures are also observed within the ependymal layer. No accumulation of neutrophils was detected. CONCLUSION There exist differences in the cellular distribution of the CCL2 peptide in frontal cortex GM and subcortical WM-CC, in both the physiological condition and experimental endotoxemia. Which might cause different pathological change in the GM and WM.
Collapse
Affiliation(s)
- Xue Shi
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xinrui Gong
- Department of Anesthesiology, Xiangyang Central Hospital, Affiliated to Hubei University of Arts and Science, 136 Jinzhou Street, Xiangyang, 441021, China.
| | - Huangui Xiong
- Department of Pharmacology and Experiment Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Jingdong Zhang
- Department of Pharmacology and Experiment Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA. .,Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0531, USA.
| |
Collapse
|
238
|
Caballero-Solares A, Umasuthan N, Xue X, Katan T, Kumar S, Westcott JD, Chen Z, Fast MD, Skugor S, Taylor RG, Rise ML. Interacting Effects of Sea Louse (Lepeophtheirus salmonis) Infection and Formalin-Killed Aeromonas salmonicida on Atlantic Salmon Skin Transcriptome. Front Immunol 2022; 13:804987. [PMID: 35401509 PMCID: PMC8987027 DOI: 10.3389/fimmu.2022.804987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Lepeophtheirus salmonis (sea lice) and bacterial co-infection threatens wild and farmed Atlantic salmon performance and welfare. In the present study, pre-adult L. salmonis-infected and non-infected salmon were intraperitoneally injected with either formalin-killed Aeromonas salmonicida bacterin (ASAL) or phosphate-buffered saline (PBS). Dorsal skin samples from each injection/infection group (PBS/no lice, PBS/lice, ASAL/no lice, and ASAL/lice) were collected at 24 h post-injection and used for transcriptome profiling using a 44K salmonid microarray platform. Microarray results showed no clear inflammation gene expression signatures and revealed extensive gene repression effects by pre-adult lice (2,189 down and 345 up-regulated probes) in the PBS-injected salmon (PBS/lice vs. PBS/no lice), which involved basic cellular (e.g., RNA and protein metabolism) processes. Lice repressive effects were not observed within the group of ASAL-injected salmon (ASAL/lice vs. ASAL/no lice); on the contrary, the observed skin transcriptome changes –albeit of lesser magnitude (82 up and 1 down-regulated probes)– suggested the activation in key immune and wound healing processes (e.g., neutrophil degranulation, keratinocyte differentiation). The molecular skin response to ASAL was more intense in the lice-infected (ASAL/lice vs. PBS/lice; 272 up and 11 down-regulated probes) than in the non-infected fish (ASAL/no lice vs. PBS/no lice; 27 up-regulated probes). Regardless of lice infection, the skin’s response to ASAL was characterized by the putative activation of both antibacterial and wound healing pathways. The transcriptomic changes prompted by ASAL+lice co-stimulation (ASAL/lice vs. PBS/no lice; 1878 up and 3120 down-regulated probes) confirmed partial mitigation of lice repressive effects on fundamental cellular processes and the activation of pathways involved in innate (e.g., neutrophil degranulation) and adaptive immunity (e.g., antibody formation), as well as endothelial cell migration. The qPCR analyses evidenced immune-relevant genes co-stimulated by ASAL and lice in an additive (e.g., mbl2b, bcl6) and synergistic (e.g., hampa, il4r) manner. These results provided insight on the physiological response of the skin of L. salmonis-infected salmon 24 h after ASAL stimulation, which revealed immunostimulatory properties by the bacterin with potential applications in anti-lice treatments for aquaculture. As a simulated co-infection model, the present study also serves as a source of candidate gene biomarkers for sea lice and bacterial co-infection.
Collapse
Affiliation(s)
- Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
- *Correspondence: Albert Caballero-Solares,
| | | | - Xi Xue
- Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | - Tomer Katan
- Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | - Surendra Kumar
- Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | | | - Zhiyu Chen
- Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
- Fisheries and Marine Institute, Memorial University, St. John’s, NL, Canada
| | - Mark D. Fast
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Stanko Skugor
- Cargill Aqua Nutrition, Cargill, Sea Lice Research Center (SLRC), Sandnes, Norway
| | | | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| |
Collapse
|
239
|
Wang W, Chen Y, Kuo C, Tsai J, Hsu F, Chung J, Pan P. DNA
damage and
NF‐κB
inactivation implicate glycyrrhizic acid‐induced
G
1
phase arrest in hepatocellular carcinoma cells. J Food Biochem 2022; 46:e14128. [DOI: 10.1111/jfbc.14128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Wei‐Shu Wang
- Department of Medicine National Yang Ming Chiao Tung University Hospital Yilan Taiwan
- School of Medicine National Yang Ming Chiao Tung University Taipei Taiwan
| | - Yu‐Shan Chen
- Department of Radiation Oncology Show Chwan Memorial Hospital Changhua Taiwan
| | - Chen‐Yu Kuo
- Division of Gastroenterology, Department of Medicine National Yang Ming Chiao Tung University Hospital Yilan Taiwan
| | - Jai‐Jen Tsai
- School of Medicine National Yang Ming Chiao Tung University Taipei Taiwan
- Division of Gastroenterology, Department of Medicine National Yang Ming Chiao Tung University Hospital Yilan Taiwan
- Department of Nursing Cardinal Tien Junior College of Healthcare and Management New Taipei City Taiwan
| | - Fei‐Ting Hsu
- Department of Biological Science and Technology China Medical University Taichung Taiwan
| | - Jing‐Gung Chung
- Department of Biological Science and Technology China Medical University Taichung Taiwan
- Department of Medical Laboratory and Biotechnology Asia University Taichung Taiwan
| | - Po‐Jung Pan
- School of Medicine National Yang Ming Chiao Tung University Taipei Taiwan
- Department of Physical Medicine and Rehabilitation National Yang Ming Chiao Tung University Hospital Yilan Taiwan
| |
Collapse
|
240
|
Li C, Li X, Jiang Z, Wang D, Sun L, Li J, Han Y. Flavonoids Inhibit Cancer by Regulating the Competing Endogenous RNA Network. Front Oncol 2022; 12:842790. [PMID: 35371996 PMCID: PMC8971295 DOI: 10.3389/fonc.2022.842790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/22/2022] [Indexed: 01/13/2023] Open
Abstract
Flavonoids are present in a wide range of plants. They have been used in the treatment of cancer, but the mechanism underlying this activity is unclear. In recent years, microRNA (miRNA) and long non-coding RNA (lncRNA) levels have been observed to differ between normal tissues and cancer cells, and both types of RNA have been shown to have a role in tumor treatment. In addition, flavonoids have been proven to regulate miRNAs and LncRNAs in the treatment of cancer. The competing endogenous RNA (ceRNA) network is a complex post-transcriptional regulatory mechanism in cells, in which coding and non-coding RNAs competitively bind miRNAs to regulate messenger RNAs (mRNAs). This review focused on the role of the ceRNA network in the treatment of cancer by flavonoids.
Collapse
Affiliation(s)
- Chengshun Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Xiaolan Li
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Liqun Sun
- Department of Pediatrics, First Hospital of Jilin University, Changchun, China
| | - Jiaqi Li
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yang Han
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
- *Correspondence: Yang Han,
| |
Collapse
|
241
|
Lelou E, Corlu A, Nesseler N, Rauch C, Mallédant Y, Seguin P, Aninat C. The Role of Catecholamines in Pathophysiological Liver Processes. Cells 2022; 11:cells11061021. [PMID: 35326472 PMCID: PMC8947265 DOI: 10.3390/cells11061021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023] Open
Abstract
Over the last few years, the number of research publications about the role of catecholamines (epinephrine, norepinephrine, and dopamine) in the development of liver diseases such as liver fibrosis, fatty liver diseases, or liver cancers is constantly increasing. However, the mechanisms involved in these effects are not well understood. In this review, we first recapitulate the way the liver is in contact with catecholamines and consider liver implications in their metabolism. A focus on the expression of the adrenergic and dopaminergic receptors by the liver cells is also discussed. Involvement of catecholamines in physiological (glucose metabolism, lipids metabolism, and liver regeneration) and pathophysiological (impact on drug-metabolizing enzymes expression, liver dysfunction during sepsis, fibrosis development, or liver fatty diseases and liver cancers) processes are then discussed. This review highlights the importance of understanding the mechanisms through which catecholamines influence liver functions in order to draw benefit from the adrenergic and dopaminergic antagonists currently marketed. Indeed, as these molecules are well-known drugs, their use as therapies or adjuvant treatments in several liver diseases could be facilitated.
Collapse
Affiliation(s)
- Elise Lelou
- INSERM, Université Rennes, INRAE, Institut NuMeCan, Nutrition, Metabolisms and Cancer, F-35000 Rennes, France; (E.L.); (A.C.); (N.N.); (C.R.); (Y.M.); (P.S.)
| | - Anne Corlu
- INSERM, Université Rennes, INRAE, Institut NuMeCan, Nutrition, Metabolisms and Cancer, F-35000 Rennes, France; (E.L.); (A.C.); (N.N.); (C.R.); (Y.M.); (P.S.)
| | - Nicolas Nesseler
- INSERM, Université Rennes, INRAE, Institut NuMeCan, Nutrition, Metabolisms and Cancer, F-35000 Rennes, France; (E.L.); (A.C.); (N.N.); (C.R.); (Y.M.); (P.S.)
- CHU Rennes, Department of Anesthesia and Critical Care, F-35000 Rennes, France
| | - Claudine Rauch
- INSERM, Université Rennes, INRAE, Institut NuMeCan, Nutrition, Metabolisms and Cancer, F-35000 Rennes, France; (E.L.); (A.C.); (N.N.); (C.R.); (Y.M.); (P.S.)
| | - Yannick Mallédant
- INSERM, Université Rennes, INRAE, Institut NuMeCan, Nutrition, Metabolisms and Cancer, F-35000 Rennes, France; (E.L.); (A.C.); (N.N.); (C.R.); (Y.M.); (P.S.)
- CHU Rennes, Department of Anesthesia and Critical Care, F-35000 Rennes, France
| | - Philippe Seguin
- INSERM, Université Rennes, INRAE, Institut NuMeCan, Nutrition, Metabolisms and Cancer, F-35000 Rennes, France; (E.L.); (A.C.); (N.N.); (C.R.); (Y.M.); (P.S.)
- CHU Rennes, Department of Anesthesia and Critical Care, F-35000 Rennes, France
| | - Caroline Aninat
- INSERM, Université Rennes, INRAE, Institut NuMeCan, Nutrition, Metabolisms and Cancer, F-35000 Rennes, France; (E.L.); (A.C.); (N.N.); (C.R.); (Y.M.); (P.S.)
- Correspondence: ; Tel.: +33-2-23-23-48-68
| |
Collapse
|
242
|
Changes in the Serum Levels of Cytokines: IL-1β, IL-4, IL-8 and IL-10 in Depression with and without Posttraumatic Stress Disorder. Brain Sci 2022; 12:brainsci12030387. [PMID: 35326343 PMCID: PMC8946076 DOI: 10.3390/brainsci12030387] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/14/2022] [Accepted: 03/07/2022] [Indexed: 01/20/2023] Open
Abstract
Background: Both depressive disorders (DD) and post-traumatic stress disorders (PTSD) are caused by immune system dysfunction. Affected individuals show increased proinflammatory cytokine concentration levels. Also, it has been hypothesized that DD and PTSD might be associated with a generalized proinflammatory cytokine signature. The study assessed the concentration of IL-1β, IL-4, IL-8 and IL-10 in depression alone and with PTSD. Methods: The study involved 460 participants. Out of them, 420 subjects comprised a study group and 40 subjects comprised a control group. Each study group consisted of 60 patients with mild depression (MD), moderate depression (MOD), severe depression (SeD), MD and PTSD (MD + PTSD), MOD and PTSD (MOD + PTSD), SeD and PTSD (SeD + PTSD), and with PTSD alone. All patients had serum concentration of IL-1β, IL-4, IL-8 and IL-10 measured with ELISA. Results: DD and PTSD are reflected in IL-1β, IL-4, IL-8 and IL-10 concentration levels. It was reported that mean levels of IL-1β, IL-4, IL-8 increase as depression became more severe. A regular decrease in IL-10 concentration levels was noted with the onset and exacerbation of depressive symptoms. Conclusion: The findings might be useful when considering chronic inflammation as a potential target or biomarker in depression and PTSD treatment.
Collapse
|
243
|
Zhang FW, Peng LY, Shi CJ, Li JC, Pang FX, Fu WM, Pan XH, Zhang JF. Baicalein mediates the anti-tumor activity in Osteosarcoma through lncRNA-NEF driven Wnt/β-catenin signaling regulatory axis. J Orthop Translat 2022; 33:132-141. [PMID: 35330943 PMCID: PMC8919235 DOI: 10.1016/j.jot.2021.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 02/02/2023] Open
Abstract
Background Osteosarcoma (OS) is a common type of malignant bone tumor in adolescents with high risk of metastasis. However, the clinical management still remains unsatisfactory. Traditional Chinese medicine (TCM) has been widely considered as an alternative treatment, and their extracts have proved to possess great potential for drug discovery. Baicalein (BA), the active pharmaceutical ingredient of rhizoma coptidis, was proved to have anti-tumor properties in OS, but the mechanism remains poorly understood. Methods The potential anti-cancer effects on cell growth, cell cycle, apoptosis and migration were examined in OS cells. Moreover, the lncRNA-Neighboring Enhancer of FOXA2 (lncRNA-NEF) and Wnt/β-catenin signaling were detected by qPCR and Western blotting assays. The in vivo effect of GA on tumor growth was investigated using a xenograft mice model. Results In the present study, BA was found to significantly suppress tumor growth in vitro and in vivo. And it was also found to inhibit the invasion and metastasis as well. As for the mechanism investigation, lncRNA-NEF was obviously upregulated by BA in OS cells, and thus induced the inactivation of Wnt/β-catenin signaling. Moreover, lncRNA-NEF knockdown partially reversed the BA-induced anti-cancer activities; and successfully compensated the suppressive effect on Wnt/β-catenin signaling. We therefore suggested that BA induced the inactivation of Wnt/β-catenin signaling through promoting lncRNA-NEF expression. Conclusions In conclude, our results demonstrated that BA suppressed tumor growth and metastasis in vitro and in vivo through an lncRNA-NEF driven Wnt/β-catenin regulatory axis, in which lncRNA-NEF was upregulated by BA, and thus induced the inactivation of Wnt/β-catenin signaling. The Translational potential of this article The findings derived from this study validates the anti-cancer activity of BA in OS and provides a novel underlying mechanism, which suggest that BA may be a potential candidate to develop the effective drug for OS patients.
Collapse
Affiliation(s)
- Feng-wei Zhang
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, PR China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Li-yang Peng
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, PR China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Chuan-Jian Shi
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 511458, PR China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Jian-chi Li
- Department of Orthopaedics and Traumatology, Shenzhen Tenth People's Hospital Affiliated to Jinan University, University of Chinese Academy of Sciences Shenzhen Hospital (Guangming), Shenzhen, Guangdong, 518106, PR China
| | - Feng-xiang Pang
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, PR China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Wei-ming Fu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 511458, PR China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Xiao-hua Pan
- Department of Orthopaedics, The Second School of Clinical Medicine, Southern Medical University, The Second Affiliated Hospital of Shenzhen University, The Clinical Medical College of Guangdong Medical University, People's Hospital of Shenzhen Baoan District, Shenzhen, PR China
- Corresponding author. Department of Orthopaedics , The Second School of Clinical Medicine, Southern Medical University, PR China.
| | - Jin-fang Zhang
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, PR China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
- Corresponding author. Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| |
Collapse
|
244
|
Li J, Wang Y, Wu T, Li S, Sun YN, Liu ZH. Baicalein suppresses high glucose-induced inflammation and apoptosis in trophoblasts by targeting the miRNA-17-5p-Mfn1/2-NF-κB pathway. Placenta 2022; 121:126-136. [DOI: 10.1016/j.placenta.2022.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 12/21/2022]
|
245
|
The relations between C-reactive protein and trauma exposure, PTSD and depression symptoms, and PTSD psychotherapy treatment response in treatment seeking veterans and service members. Brain Behav Immun 2022; 101:84-92. [PMID: 34990746 DOI: 10.1016/j.bbi.2021.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/10/2021] [Accepted: 12/29/2021] [Indexed: 12/28/2022] Open
Abstract
While inflammatory markers have been implicated in the link between PTSD and poor health outcomes, there is a paucity of research investigating C-reactive protein (CRP) and psychotherapy treatment response for posttraumatic stress disorder (PTSD). The present study utilized a large, well-characterized sample of veterans and service members (N = 493) engaged in intensive psychotherapy to investigate the associations between CRP, trauma exposure, related variables, and PTSD and depression, as well as investigating if CRP was associated with PTSD psychotherapy treatment response. Bivariate correlation results indicate that CRP was significantly associated with BMI (r = 0.48) and severity of experiences of childhood physical and sexual abuse (r = 0.14 and 0.15, respectively) and was not significantly associated with baseline PTSD total symptom severity, PTSD symptom clusters, or depression symptom severity (rs ranging from -0.03 to 0.04). In multivariate regression models investigating if CRP and related variables were associated with PTSD baseline symptom severity, CRP was not a significant predictor (β = -0.03). Hierarchical linear modeling did not identify CRP as a significant predictor of PTSD psychotherapy outcome. Given that findings indicate that CRP was broadly elevated in this treatment seeking sample but not associated with PTSD and depression symptom severity, results suggest CRP may not be a specific biomarker for PTSD or depression but may be elevated in psychiatric disease more generally.
Collapse
|
246
|
Shi R, Zhang Z, Zhu A, Xiong X, Zhang J, Xu J, Sy MS, Li C. Targeting Type I Collagen for Cancer Treatment. Int J Cancer 2022; 151:665-683. [PMID: 35225360 DOI: 10.1002/ijc.33985] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/07/2022]
Abstract
Collagen is the most abundant protein in animals. Interactions between tumor cells and collagen influence every step of tumor development. Type I collagen is the main fibrillar collagen in the extracellular matrix and is frequently up-regulated during tumorigenesis. The binding of type I collagen to its receptors on tumor cells promotes tumor cell proliferation, epithelial-mesenchymal transition, and metastasis. Type I collagen also regulates the efficacy of tumor therapies, such as chemotherapy, radiotherapy, and immunotherapy. Furthermore, type I collagen fragments are diagnostic markers of metastatic tumors and have prognostic value. Inhibition of type I collagen synthesis has been reported to have anti-tumor effects in animal models. However, collagen has also been shown to possess anti-tumor activity. Therefore, the roles that type I collagen plays in tumor biology are complex and tumor type-dependent. In this review, we discuss the expression and regulation of synthesis of type I collagen, as well as the role up-regulated type I collagen plays in various stages of cancer progression. We also discuss the role of collagen in tumor therapy. Finally, we highlight several recent approaches targeting type I collagen for cancer treatment. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Run Shi
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, Guangzhou, China
| | - Zhe Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, Guangzhou, China
| | - Ankai Zhu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, Guangzhou, China
| | - Xingxing Xiong
- Department of Operating Room, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Jie Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, Guangzhou, China
| | - Jiang Xu
- Department of Stomatology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Man-Sun Sy
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Chaoyang Li
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, Guangzhou, China
| |
Collapse
|
247
|
Kebria MM, Milan PB, Peyravian N, Kiani J, Khatibi S, Mozafari M. Stem cell therapy for COVID-19 pneumonia. MOLECULAR BIOMEDICINE 2022; 3:6. [PMID: 35174448 PMCID: PMC8850486 DOI: 10.1186/s43556-021-00067-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus is a highly contagious microorganism, and despite substantial investigation, no progress has been achieved in treating post-COVID complications. However, the virus has made various mutations and has spread around the world. Researchers have tried different treatments to reduce the side effects of the COVID-19 symptoms. One of the most common and effective treatments now used is steroid therapy to reduce the complications of this disease. Long-term steroid therapy for chronic inflammation following COVID-19 is harmful and increases the risk of secondary infection, and effective treatment remains challenging owing to fibrosis and severe inflammation and infection. Sometimes our immune system can severely damage ourselves in disease. In the past, many researchers have conducted various studies on the immunomodulatory properties of stem cells. This property of stem cells led them to modulate the immune system of autoimmune diseases like diabetes, multiple sclerosis, and Parkinson's. Because of their immunomodulatory properties, stem cell-based therapy employing mesenchymal or hematopoietic stem cells may be a viable alternative treatment option in some patients. By priming the immune system and providing cytokines, chemokines, and growth factors, stem cells can be employed to build a long-term regenerative and protective response. This review addresses the latest trends and rapid progress in stem cell treatment for Acute Respiratory Distress Syndrome (ARDS) following COVID-19.
Collapse
Affiliation(s)
- Maziar Malekzadeh Kebria
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Noshad Peyravian
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Present Address: Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soheil Khatibi
- Babol University of Medical Sciences, Infection Diseases Centre, Mazandaran, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
248
|
Plank AC, Maschke J, Rohleder N, Fasching PA, Beckmann MW, Kornhuber J, Eichler A, Moll GH, Kratz O. Comparison of C-Reactive Protein in Dried Blood Spots and Saliva of Healthy Adolescents. Front Immunol 2022; 12:795580. [PMID: 34975902 PMCID: PMC8716383 DOI: 10.3389/fimmu.2021.795580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/15/2021] [Indexed: 01/08/2023] Open
Abstract
Background/Aim Determining C-reactive protein (CRP) by non-invasive methods is of great interest for research addressing inflammation in young people. However, direct comparisons of such methods applied in children and adolescents are lacking so far. This study aimed to evaluate the association between CRP measured in dried blood spots (DBS CRP) and in saliva (sCRP), two less invasive alternatives to venipuncture, in 12- to 14-year-old adolescents. To evaluate the validity of both measurements in the context of biobehavioral studies, the potential of DBS CRP and sCRP to discriminate between defined BMI subgroups was assessed. Materials and Methods CRP levels in DBS and saliva collected from 87 healthy adolescents (M = 13.25 years, SD = 0.30, 51.7% females) were determined using high sensitive CRP ELISA for serum and salivary CRP ELISA, respectively. Characteristics and correlation of both measurements were assessed for the total sample and for three subgroups classified by BMI percentile ranges (A: ≤ 25; B: 26–74; C: ≥ 75). Results In the total sample, DBS CRP and sCRP were significantly associated (r = 0.59, p < 0.001). Splitting the sample into BMI-dependent subgroups revealed similarly strong associations of DBS CRP with sCRP for all three groups (A: r = 0.51; B: r = 0.61; C: r = 0.53). However, comparing the mean CRP values per BMI subgroup, one-way ANOVA reported significant differences for DBS CRP, but not for sCRP mean values. Conclusions The significant correlation of DBS CRP with sCRP was independent of the investigated BMI range groups, yet BMI-dependent distinction was only provided by DBS CRP mean values. Overall, our results suggest that DBS CRP is likely to reflect systemic inflammation more precisely. Salivary CRP can be alternatively determined in studies with adolescents when conditions require it, given the oral health status is assessed. Considering that DBS CRP and sCRP share only 35% of common variance, further studies should examine their specific validity.
Collapse
Affiliation(s)
- Anne-Christine Plank
- Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Janina Maschke
- Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Nicolas Rohleder
- Department of Psychology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Peter A Fasching
- Department of Obstetrics and Gynecology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias W Beckmann
- Department of Obstetrics and Gynecology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Eichler
- Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Gunther H Moll
- Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver Kratz
- Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
249
|
Keshvari S, Genz B, Teakle N, Caruso M, Cestari MF, Patkar OL, Tse BWC, Sokolowski KA, Ebersbach H, Jascur J, MacDonald KPA, Miller G, Ramm GA, Pettit AR, Clouston AD, Powell EE, Hume DA, Irvine KM. Therapeutic potential of macrophage colony-stimulating factor (CSF1) in chronic liver disease. Dis Model Mech 2022; 15:274391. [PMID: 35169835 PMCID: PMC9044210 DOI: 10.1242/dmm.049387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/08/2022] [Indexed: 11/20/2022] Open
Abstract
Resident and recruited macrophages control the development and proliferation of the liver. We showed previously in multiple species that treatment with a macrophage colony stimulating factor (CSF1)-Fc fusion protein initiated hepatocyte proliferation and promoted repair in models of acute hepatic injury in mice. Here we investigated the impact of CSF1-Fc on resolution of advanced fibrosis and liver regeneration, utilizing a non-resolving toxin-induced model of chronic liver injury and fibrosis in C57BL/6J mice. Co-administration of CSF1-Fc with exposure to thioacetamide (TAA) exacerbated inflammation consistent with monocyte contributions to initiation of pathology. After removal of TAA, either acute or chronic CSF1-Fc treatment promoted liver growth, prevented progression and promoted resolution of fibrosis. Acute CSF1-Fc treatment was also anti-fibrotic and pro-regenerative in a model of partial hepatectomy in mice with established fibrosis. The beneficial impacts of CSF1-Fc treatment were associated with monocyte-macrophage recruitment and increased expression of remodeling enzymes and growth factors. These studies indicate that CSF1-dependent macrophages contribute to both initiation and resolution of fibrotic injury and that CSF1-Fc has therapeutic potential in human liver disease.
Collapse
Affiliation(s)
- Sahar Keshvari
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Berit Genz
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ngari Teakle
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Melanie Caruso
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Michelle F Cestari
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Omkar L Patkar
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Brian W C Tse
- Preclinical Imaging Facility, Translational Research Institute, Brisbane, Queensland, Australia
| | - Kamil A Sokolowski
- Preclinical Imaging Facility, Translational Research Institute, Brisbane, Queensland, Australia
| | - Hilmar Ebersbach
- Novartis Institutes for Biomedical Research (NIBR), Fabrikstrasse 2, Novartis Campus, CH-4056 Basel, Switzerland
| | - Julia Jascur
- Novartis Institutes for Biomedical Research (NIBR), Fabrikstrasse 2, Novartis Campus, CH-4056 Basel, Switzerland
| | | | | | - Grant A Ramm
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Allison R Pettit
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Andrew D Clouston
- Envoi Specialist Pathologists, Brisbane, Qld, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Elizabeth E Powell
- Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - David A Hume
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Katharine M Irvine
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
250
|
Yu CC, Li Y, Cheng ZJ, Wang X, Mao W, Zhang YW. Active Components of Traditional Chinese Medicinal Material for Multiple Myeloma: Current Evidence and Future Directions. Front Pharmacol 2022; 13:818179. [PMID: 35153791 PMCID: PMC8834085 DOI: 10.3389/fphar.2022.818179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by clonal expansion of plasma cells in bone marrow, leading to the overproduction of monoclonal immunoglobulins. The clinical manifestations resulting from monoclonal proteins and malignant cells include signs of end-organ damage, such as hypercalcemia, renal failure, anemia, and bone lesions. Despite improvement in the survival of MM patients with use of myeloma-targeted and immunomodulatory therapies, MM remains an incurable disease. Moreover, patients with relapsed or refractory MM show poor survival outcomes. In recent years, there has been a growing interest in the use of traditional Chinese medicinal materials (TCMMs) for management of a wide spectrum of diseases. The bioactive ingredients derived from TCMMs hold great potential for the development of anticancer drugs. Here we summarize the evidence of the pharmacological effects of the active components in TCMMs on MM, including curcumin, resveratrol, baicalein, berberine, bufalin, cinobufagin, gambogic acid, ginsenoside, icariin, daidzin, formononetin, polysaccharides extracts from Hedyotis difus, and scutellarein. Available evidence indicates that the anti-MM effects of these bioactive ingredients are mediated via regulation of proliferation, apoptosis, autophagy, cell cycle, osteogenic differentiation, and drug resistance. In the future, the underlying mechanisms of the anti-MM effects of these components should be further investigated. Large-scale and well-designed clinical trials are also required to validate the efficacy of these bioactive constituents for MM.
Collapse
Affiliation(s)
- Chao-Chao Yu
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yi Li
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Zhao-Jun Cheng
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xi Wang
- Department of Oncology, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Wei Mao
- Peking University Shenzhen Hospital Hua Wei Clinic, Shenzhen, China
| | - Ying-Wen Zhang
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|