201
|
Xiang XN, Zhu SY, He HC, Yu X, Xu Y, He CQ. Mesenchymal stromal cell-based therapy for cartilage regeneration in knee osteoarthritis. Stem Cell Res Ther 2022; 13:14. [PMID: 35012666 PMCID: PMC8751117 DOI: 10.1186/s13287-021-02689-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/07/2021] [Indexed: 02/08/2023] Open
Abstract
Osteoarthritis, as a degenerative disease, is a common problem and results in high socioeconomic costs and rates of disability. The most commonly affected joint is the knee and characterized by progressive destruction of articular cartilage, loss of extracellular matrix, and progressive inflammation. Mesenchymal stromal cell (MSC)-based therapy has been explored as a new regenerative treatment for knee osteoarthritis in recent years. However, the detailed functions of MSC-based therapy and related mechanism, especially of cartilage regeneration, have not been explained. Hence, this review summarized how to choose, authenticate, and culture different origins of MSCs and derived exosomes. Moreover, clinical application and the latest mechanistical findings of MSC-based therapy in cartilage regeneration were also demonstrated.
Collapse
Affiliation(s)
- Xiao-Na Xiang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Si-Yi Zhu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Hong-Chen He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xi Yu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yang Xu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Cheng-Qi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,Rehabilitation Medicine Centre, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
202
|
Li S, Zhu H, Zhao M, Liu W, Wang L, Zhu B, Xie W, Zhao C, Zhou Y, Ren C, Liu H, Jiang X. When stem cells meet COVID-19: recent advances, challenges and future perspectives. Stem Cell Res Ther 2022; 13:9. [PMID: 35012650 PMCID: PMC8744050 DOI: 10.1186/s13287-021-02683-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/11/2021] [Indexed: 02/09/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by the novel severe acute respiratory coronavirus 2 is currently spreading throughout the world with a high rate of infection and mortality and poses a huge threat to global public health. COVID-19 primarily manifests as hypoxic respiratory failure and acute respiratory distress syndrome, which can lead to multiple organ failure. Despite advances in the supportive care approaches, there is still a lack of clinically effective therapies, and there is an urgent need to develop novel strategies to fight this disease. Currently, stem cell therapy and stem cell-derived organoid models have received extensive attention as a new treatment and research method for COVID-19. Here, we discuss how stem cells play a role in the battle against COVID-19 and present a systematic review and prospective of the study on stem cell treatment and organoid models of COVID-19, which provides a reference for the effective control of the COVID-19 pandemic worldwide.
Collapse
Affiliation(s)
- Shasha Li
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, 410008, China
| | - Hecheng Zhu
- Changsha Kexin Cancer Hospital, Changsha, 410205, China
| | - Ming Zhao
- Changsha Kexin Cancer Hospital, Changsha, 410205, China
| | - Weidong Liu
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, 410008, China
| | - Lei Wang
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, 410008, China
| | - Bin Zhu
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, 410008, China
| | - Wen Xie
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, 410008, China
| | - Cong Zhao
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, 410008, China
| | - Yao Zhou
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, 410008, China
| | - Caiping Ren
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, 410008, China.
| | - Hui Liu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Xingjun Jiang
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
203
|
Tang N, Wang X, Zhu J, Sun K, Li S, Tao K. Labelling stem cells with a nanoprobe for evaluating the homing behaviour in facial nerve injury repair. Biomater Sci 2022; 10:808-818. [PMID: 34989358 DOI: 10.1039/d1bm01823j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is crucial and clinically relevant to clarify the homing efficiency and retention of stem cells in different implanting strategies of cell therapy for various injuries. However, the need for a tool for investigating the mechanisms is still unmet. We herein introduce multi-modal BaGdF5:Yb,Tm nanoparticles as a nanoprobe to label adipose-derived stem cells (ADSCs) and detect the homing behavior with a micro-computed tomography (micro-CT) imaging technique. The migration of cells injected locally or intravenously, with or without a chemokine, CXCL 12, was compared. A higher homing efficiency of ADSCs was observed in both intravenously injected groups, in contrast to the low efficiency of cell retention in local implantation. Meanwhile, CXCL 12 promoted the homing of ADSCs, especially in the intravenous route. Nonetheless, the administration of CXCL 12 showed its therapeutic efficacy, whereas intravenous injection of ADSCs almost did not. Our work provided a tool for in vivo imaging of the behavior of implanted cells in preclinical studies of cell therapy, and more importantly, implied that the parameters for implanting stem cells in clinical operation should be carefully considered.
Collapse
Affiliation(s)
- Na Tang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Xueyi Wang
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P. R. China.
| | - Jin Zhu
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P. R. China.
| | - Kang Sun
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Shiting Li
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P. R. China.
| | - Ke Tao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| |
Collapse
|
204
|
Malhotra P, Shukla M, Meena P, Kakkar A, Khatri N, Nagar RK, Kumar M, Saraswat SK, Shrivastava S, Datt R, Pandey S. Mesenchymal stem cells are prospective novel off-the-shelf wound management tools. Drug Deliv Transl Res 2022; 12:79-104. [PMID: 33580481 DOI: 10.1007/s13346-021-00925-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2021] [Indexed: 12/12/2022]
Abstract
Chronic/non-healing cutaneous wounds pose a debilitating burden on patients and healthcare system. Presently, treatment modalities are rapidly shifting pace from conventional methods to advanced wound care involving cell-based therapies. Mesenchymal stem cells (MSCs) have come across as a prospective option due to its pleiotropic functions viz. non-immunogenicity, multipotency, multi-lineage plasticity and secretion of growth factors, cytokines, microRNAs (miRNA), exosomes, and microvesicles as part of their secretome for assisting wound healing. We outline the therapeutic role played by MSCs and its secretome in suppressing tissue inflammation, causing immunomodulation, aiding angiogenesis and assisting in scar-free wound healing. We further assess the mechanism of action by which MSCs contribute in manifesting tissue repair. The review flows ahead in exploring factors that influence healing behavior including effect of multiple donor sites, donor age and health status, tissue microenvironment, and in vitro expansion capability. Moving ahead, we overview the advancements achieved in extending the lifespan of cells upon implantation, influence of genetic modifications aimed at altering MSC cargo, and evaluating bioengineered matrix-assisted delivery methods toward faster healing in preclinical and clinical models. We also contribute toward highlighting the challenges faced in commercializing cell-based therapies as standard of care treatment regimens. Finally, we strongly advocate and highlight its application as a futuristic technology for revolutionizing tissue regeneration.
Collapse
Affiliation(s)
- Poonam Malhotra
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Manish Shukla
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Poonam Meena
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Anupama Kakkar
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Nitin Khatri
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Rakesh K Nagar
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Mukesh Kumar
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Sumit K Saraswat
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Supriya Shrivastava
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Rajan Datt
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Siddharth Pandey
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India.
| |
Collapse
|
205
|
Aguiar Koga BA, Fernandes LA, Fratini P, Sogayar MC, Carreira ACO. Role of MSC-derived small extracellular vesicles in tissue repair and regeneration. Front Cell Dev Biol 2022; 10:1047094. [PMID: 36935901 PMCID: PMC10014555 DOI: 10.3389/fcell.2022.1047094] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/07/2022] [Indexed: 03/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are crucial for tissue homeostasis and repair, secreting vesicles to the extracellular environment. Isolated exosomes were shown to affect angiogenesis, immunomodulation and tissue regeneration. Numerous efforts have been dedicated to describe the mechanism of action of these extracellular vesicles (EVs) and guarantee their safety, since the final aim is their therapeutic application in the clinic. The major advantage of applying MSC-derived EVs is their low or inexistent immunogenicity, prompting their use as drug delivery or therapeutic agents, as well as wound healing, different cancer types, and inflammatory processes in the neurological and cardiovascular systems. MSC-derived EVs display no vascular obstruction effects or apparent adverse effects. Their nano-size ensures their passage through the blood-brain barrier, demonstrating no cytotoxic or immunogenic effects. Several in vitro tests have been conducted with EVs obtained from different sources to understand their biology, molecular content, signaling pathways, and mechanisms of action. Application of EVs to human therapies has recently become a reality, with clinical trials being conducted to treat Alzheimer's disease, retina degeneration, and COVID-19 patients. Herein, we describe and compare the different extracellular vesicles isolation methods and therapeutic applications regarding the tissue repair and regeneration process, presenting the latest clinical trial reports.
Collapse
Affiliation(s)
- Bruna Andrade Aguiar Koga
- Cell and Molecular Therapy Group (NUCEL), School of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Letícia Alves Fernandes
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Paula Fratini
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Mari Cleide Sogayar
- Cell and Molecular Therapy Group (NUCEL), School of Medicine, University of São Paulo, São Paulo, Brazil
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, Brazil
| | - Ana Claudia Oliveira Carreira
- Cell and Molecular Therapy Group (NUCEL), School of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, São Paulo, Brazil
- *Correspondence: Ana Claudia Oliveira Carreira, ,
| |
Collapse
|
206
|
Malekpour K, Hazrati A, Zahar M, Markov A, Zekiy AO, Navashenaq JG, Roshangar L, Ahmadi M. The Potential Use of Mesenchymal Stem Cells and Their Derived Exosomes for Orthopedic Diseases Treatment. Stem Cell Rev Rep 2022; 18:933-951. [PMID: 34169411 PMCID: PMC8224994 DOI: 10.1007/s12015-021-10185-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
Musculoskeletal disorders (MSDs) are conditions that can affect muscles, bones, and joints. These disorders are very painful and severely limit patients' mobility and are more common in the elderly. MSCs are multipotent stem cells isolated from embryonic (such as the umbilical cord) and mature sources (such as adipose tissue and bone marrow). These cells can differentiate into various cells such as osteoblasts, adipocytes, chondrocytes, NP-like cells, Etc. Due to MSC characteristics such as immunomodulatory properties, ability to migrate to the site of injury, recruitment of cells involved in repair, production of growth factors, and large amount production of extracellular vesicles, these cells have been used in many regenerative-related medicine studies. Also, MSCs produce different types of EVs, such as exosomes, to the extracellular environment. Exosomes reflect MSCs' characteristics and do not have cell therapy-associated problems because they are cell-free. These vesicles carry proteins, nucleic acids, and lipids to the host cell and change their function. This review focuses on MSCs and MSCs exosomes' role in repairing dense connective tissues such as tendons, cartilage, invertebrate disc, bone fracture, and osteoporosis treatment.
Collapse
Affiliation(s)
- Kosar Malekpour
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Hazrati
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Marziah Zahar
- Social Security Centre of Excellence, School of Business Management, College of Business, Universiti Utara Malaysia, Sintok Kedah, Malaysia
| | | | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
207
|
Pang QM, Chen SY, Fu SP, Zhou H, Zhang Q, Ao J, Luo XP, Zhang T. Regulatory Role of Mesenchymal Stem Cells on Secondary Inflammation in Spinal Cord Injury. J Inflamm Res 2022; 15:573-593. [PMID: 35115806 PMCID: PMC8802142 DOI: 10.2147/jir.s349572] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022] Open
Affiliation(s)
- Qi-Ming Pang
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Si-Yu Chen
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Sheng-Ping Fu
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Hui Zhou
- The First School of Clinical Medicine, Zunyi Medical University, Zunyi, People’s Republic of China
| | - Qian Zhang
- Department of Human Anatomy, Zunyi Medical University, Zunyi, People’s Republic of China
| | - Jun Ao
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Xiao-Ping Luo
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- Correspondence: Tao Zhang; Qian Zhang, Email ;
| |
Collapse
|
208
|
Ridzuan N, Widera D, Yahaya BH. Isolation and Characterization of Extracellular Vesicles Derived from Human Umbilical Cord Mesenchymal Stem Cells. Methods Mol Biol 2022; 2429:271-280. [PMID: 35507168 DOI: 10.1007/978-1-0716-1979-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The safety and efficacy of mesenchymal stem cells/marrow stromal cells (MSC) have been widely studied. Since they are hypoimmunogenic, MSC can escape immune recognition, thus making them an attractive tool in clinical settings beyond autologous cell-based therapy. Paracrine factors including extracellular vesicles (EVs) released by MSC play a significant role in exerting therapeutic effects of MSC. Since their first discovery, MSC-EVs have been widely studied in an attempt to tackle the mechanisms of their therapeutic effects in various disease models. However, currently there are no standard methods to isolate EVs. Here, we describe a differential centrifugation-based protocol for isolation of EVs derived from human umbilical cord MSC (huc-MSC). In addition, the protocol describes methods for characterization of the EVs using transmission electron microscope, Western blot, and nanoparticle tracking analysis.
Collapse
Affiliation(s)
- Noridzzaida Ridzuan
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Darius Widera
- Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, Reading, UK
| | - Badrul Hisham Yahaya
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia.
| |
Collapse
|
209
|
Dey D, Fischer NG, Dragon AH, Ronzier E, Mutreja I, Danielson DT, Homer CJ, Forsberg JA, Bechtold JE, Aparicio C, Davis TA. Culture and characterization of various porcine integumentary-connective tissue-derived mesenchymal stromal cells to facilitate tissue adhesion to percutaneous metal implants. Stem Cell Res Ther 2021; 12:604. [PMID: 34922628 PMCID: PMC8684200 DOI: 10.1186/s13287-021-02666-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/19/2021] [Indexed: 02/08/2023] Open
Abstract
Background Transdermal osseointegrated prosthesis have relatively high infection rates leading to implant revision or failure. A principle cause for this complication is the absence of a durable impervious biomechanical seal at the interface of the hard structure (implant) and adjacent soft tissues. This study explores the possibility of recapitulating an analogous cellular musculoskeletal-connective tissue interface, which is present at naturally occurring integumentary tissues where a hard structure exits the skin, such as the nail bed, hoof, and tooth. Methods Porcine mesenchymal stromal cells (pMSCs) were derived from nine different porcine integumentary and connective tissues: hoof-associated superficial flexor tendon, molar-associated periodontal ligament, Achilles tendon, adipose tissue and skin dermis from the hind limb and abdominal regions, bone marrow and muscle. For all nine pMSCs, the phenotype, multi-lineage differentiation potential and their adhesiveness to clinical grade titanium was characterized. Transcriptomic analysis of 11 common genes encoding cytoskeletal proteins VIM (Vimentin), cell–cell and cell–matrix adhesion genes (Vinculin, Integrin β1, Integrin β2, CD9, CD151), and for ECM genes (Collagen-1a1, Collagen-4a1, Fibronectin, Laminin-α5, Contactin-3) in early passaged cells was performed using qRT-PCR. Results All tissue-derived pMSCs were characterized as mesenchymal origin by adherence to plastic, expression of cell surface markers including CD29, CD44, CD90, and CD105, and lack of hematopoietic (CD11b) and endothelial (CD31) markers. All pMSCs differentiated into osteoblasts, adipocytes and chondrocytes, albeit at varying degrees, under specific culture conditions. Among the eleven adhesion genes evaluated, the cytoskeletal intermediate filament vimentin was found highly expressed in pMSC isolated from all tissues, followed by genes for the extracellular matrix proteins Fibronectin and Collagen-1a1. Expression of Vimentin was the highest in Achilles tendon, while Fibronectin and Col1agen-1a1 were highest in molar and hoof-associated superficial flexor tendon bone marrow, respectively. Achilles tendon ranked the highest in both multilineage differentiation and adhesion assessments to titanium metal. Conclusions These findings support further preclinical research of these tissue specific-derived MSCs in vivo in a transdermal osseointegration implant model. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02666-2.
Collapse
Affiliation(s)
- Devaveena Dey
- Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.,Henry M Jackson Foundation for Advancement of Military Medicine, Bethesda, USA
| | - Nicholas G Fischer
- Department of Restorative Sciences and MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, MN, USA
| | - Andrea H Dragon
- Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.,Henry M Jackson Foundation for Advancement of Military Medicine, Bethesda, USA
| | - Elsa Ronzier
- Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.,Henry M Jackson Foundation for Advancement of Military Medicine, Bethesda, USA
| | - Isha Mutreja
- Department of Restorative Sciences and MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, MN, USA
| | - David T Danielson
- Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Cole J Homer
- Department of Restorative Sciences and MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, MN, USA.,Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Jonathan A Forsberg
- Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Joan E Bechtold
- Hennepin Healthcare Research Institute, Minneapolis, MN, USA.,Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN, USA.,Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Conrado Aparicio
- Department of Restorative Sciences and MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, MN, USA
| | - Thomas A Davis
- Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
210
|
Hung HS, Yang YC, Kao WC, Yeh CA, Chang KB, Tang CM, Hsieh HH, Lee HT. Evaluation of the Biocompatibility and Endothelial Differentiation Capacity of Mesenchymal Stem Cells by Polyethylene Glycol Nanogold Composites. Polymers (Basel) 2021; 13:polym13234265. [PMID: 34883774 PMCID: PMC8659436 DOI: 10.3390/polym13234265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular Diseases (CVDs) such as atherosclerosis, where inflammation occurs in the blood vessel wall, are one of the major causes of death worldwide. Mesenchymal Stem Cells (MSCs)-based treatment coupled with nanoparticles is considered to be a potential and promising therapeutic strategy for vascular regeneration. Thus, angiogenesis enhanced by nanoparticles is of critical concern. In this study, Polyethylene Glycol (PEG) incorporated with 43.5 ppm of gold (Au) nanoparticles was prepared for the evaluation of biological effects through in vitro and in vivo assessments. The physicochemical properties of PEG and PEG–Au nanocomposites were first characterized by UV-Vis spectrophotometry (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), and Atomic Force Microscopy (AFMs). Furthermore, the reactive oxygen species scavenger ability as well as the hydrophilic property of the nanocomposites were also investigated. Afterwards, the biocompatibility and biological functions of the PEG–Au nanocomposites were evaluated through in vitro assays. The thin coating of PEG containing 43.5 ppm of Au nanoparticles induced the least platelet and monocyte activation. Additionally, the cell behavior of MSCs on PEG–Au 43.5 ppm coating demonstrated better cell proliferation, low ROS generation, and enhancement of cell migration, as well as protein expression of the endothelialization marker CD31, which is associated with angiogenesis capacity. Furthermore, anti-inflammatory and endothelial differentiation ability were both evaluated through in vivo assessments. The evidence demonstrated that PEG–Au 43.5 ppm implantation inhibited capsule formation and facilitated the expression of CD31 in rat models. TUNEL assay also indicated that PEG–Au nanocomposites would not induce significant cell apoptosis. The above results elucidate that the surface modification of PEG–Au nanomaterials may enable them to serve as efficient tools for vascular regeneration grafts.
Collapse
Affiliation(s)
- Huey-Shan Hung
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (H.-S.H.); (W.-C.K.); (C.-A.Y.); (K.-B.C.)
- Translational Medicine Research, China Medical University Hospital, Taichung 40402, Taiwan
| | - Yi-Chin Yang
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan;
| | - Wei-Chien Kao
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (H.-S.H.); (W.-C.K.); (C.-A.Y.); (K.-B.C.)
| | - Chun-An Yeh
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (H.-S.H.); (W.-C.K.); (C.-A.Y.); (K.-B.C.)
| | - Kai-Bo Chang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (H.-S.H.); (W.-C.K.); (C.-A.Y.); (K.-B.C.)
| | - Cheng-Ming Tang
- College of Oral Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Hsien-Hsu Hsieh
- Blood Bank, Taichung Veterans General Hospital, Taichung 407204, Taiwan;
| | - Hsu-Tung Lee
- Cancer Prevention and Control Center, Taichung Veterans General Hospital, Taichung 407204, Taiwan
- College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence:
| |
Collapse
|
211
|
Agostini F, Vicinanza C, Biolo G, Spessotto P, Da Ros F, Lombardi E, Durante C, Mazzucato M. Nucleofection of Adipose Mesenchymal Stem/Stromal Cells: Improved Transfection Efficiency for GMP Grade Applications. Cells 2021; 10:cells10123412. [PMID: 34943920 PMCID: PMC8700287 DOI: 10.3390/cells10123412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022] Open
Abstract
Nucleofection (NF) is a safe, non-viral transfection method, compatible with Good Manufacturing Practice guidelines. Such a technique is useful to improve therapeutic effectiveness of adipose tissue mesenchymal stem cells (ASC) in clinical settings, but improvement of NF efficiency is mandatory. Supernatant rich in growth factors (SRGF) is a clinical-grade medium additive for ASC expansion. We showed a dramatically increased NF efficiency and post-transfection viability in ASC expanded in presence of SRGF (vs. fetal bovine serum). SRGF expanded ASC were characterized by increased vesicle endocytosis but lower phagocytosis properties. SRGF increased n-6/n-3 ratio, reduced membrane lipid raft occurrence, and lowered intracellular actin content in ASC. A statistical correlation between NF efficiency and lipid raft availability on cell membranes was shown, even though a direct relationship could not be demonstrated: attempts to selectively modulate lipid rafts levels were, in fact, limited by technical constraints. In conclusion, we reported for the first time that tuning clinical-grade compatible cell culture conditions can significantly improve ASC transfection efficiency by a non-viral and safe approach. A deep mechanistic characterization is extremely complex, but we can hypothesize that integrated changes in membrane structure and intracellular actin content could contribute to explain SRGF impact on ASC NF efficiency.
Collapse
Affiliation(s)
- Francesco Agostini
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081 Aviano, Italy; (C.V.); (F.D.R.); (E.L.); (C.D.); (M.M.)
- Correspondence: ; Tel.: +39-0434-659095
| | - Carla Vicinanza
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081 Aviano, Italy; (C.V.); (F.D.R.); (E.L.); (C.D.); (M.M.)
| | - Gianni Biolo
- Unit of Internal Medicine, Clinica Medica, Department of Medical Surgical and Health Sciences, University of Trieste, Strada di Fiume 447, 34100 Trieste, Italy;
| | - Paola Spessotto
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081 Aviano, Italy;
| | - Francesco Da Ros
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081 Aviano, Italy; (C.V.); (F.D.R.); (E.L.); (C.D.); (M.M.)
| | - Elisabetta Lombardi
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081 Aviano, Italy; (C.V.); (F.D.R.); (E.L.); (C.D.); (M.M.)
| | - Cristina Durante
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081 Aviano, Italy; (C.V.); (F.D.R.); (E.L.); (C.D.); (M.M.)
| | - Mario Mazzucato
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081 Aviano, Italy; (C.V.); (F.D.R.); (E.L.); (C.D.); (M.M.)
| |
Collapse
|
212
|
Ebrahimi M, Rad MTS, Zebardast A, Ayyasi M, Goodarzi G, Tehrani SS. The critical role of mesenchymal stromal/stem cell therapy in COVID-19 patients: An updated review. Cell Biochem Funct 2021; 39:945-954. [PMID: 34545605 PMCID: PMC8652792 DOI: 10.1002/cbf.3670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 12/20/2022]
Abstract
New coronavirus disease 2019 (COVID-19), as a pandemic disaster, has drawn the attention of researchers in various fields to discover suitable therapeutic approaches for the management of COVID-19 patients. Currently, there are many worries about the rapid spread of COVID-19; there is no approved treatment for this infectious disease, despite many efforts to develop therapeutic procedures for COVID-19. Emerging evidence shows that mesenchymal stromal/stem cell (MSC) therapy can be a suitable option for the management of COVID-19. These cells have many biological features (including the potential of differentiation, high safety and effectiveness, secretion of trophic factors and immunoregulatory features) that make them suitable for the treatment of various diseases. However, some studies have questioned the positive role of MSC therapy in the treatment of COVID-19. Accordingly, in this paper, we will focus on the therapeutic impacts of MSCs and their critical role in cytokine storm of COVID-19 patients.
Collapse
Affiliation(s)
- Mohsen Ebrahimi
- Neonatal and Child Health Research CenterGolestan University of Medical SciencesGorganIran
| | - Mohammad Taha Saadati Rad
- Psychiatric and Behavioral Sciences Research Center, Addiction Research InstituteMazandaran University of Medical SciencesSariIran
| | - Arghavan Zebardast
- Department of Virology, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Mitra Ayyasi
- Critical Care NursingIslamic Azad University, Sari BranchSariIran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of MedicineTehran University of Medical SciencesTehranIran
- Scientific Research CenterTehran University of Medical SciencesTehranIran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of MedicineTehran University of Medical SciencesTehranIran
- Scientific Research CenterTehran University of Medical SciencesTehranIran
| |
Collapse
|
213
|
The Potential of Mesenchymal Stem Cells for the Treatment of Cytokine Storm due to COVID-19. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3178796. [PMID: 34840969 PMCID: PMC8626179 DOI: 10.1155/2021/3178796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/24/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has seriously affected public health and social stability. The main route of the transmission is droplet transmission, where the oral cavity is the most important entry point to the body. Due to both the direct harmful effects of SARS-CoV-2 and disordered immune responses, some COVID-19 patients may progress to acute respiratory distress syndrome or even multiple organ failure. Genetic variants of SARS-CoV-2 have been emerging and circulating around the world. Currently, there is no internationally approved precise treatment for COVID-19. Mesenchymal stem cells (MSCs) can traffic and migrate towards the affected tissue, regulate both the innate and acquired immune systems, and participate in the process of healing. Here, we will discuss and investigate the mechanisms of immune disorder in COVID-19 and the therapeutic activity of MSCs, in particular human gingiva mesenchymal stem cells.
Collapse
|
214
|
Lara-Barba E, Araya MJ, Hill CN, Bustamante-Barrientos FA, Ortloff A, García C, Galvez-Jiron F, Pradenas C, Luque-Campos N, Maita G, Elizondo-Vega R, Djouad F, Vega-Letter AM, Luz-Crawford P. Role of microRNA Shuttled in Small Extracellular Vesicles Derived From Mesenchymal Stem/Stromal Cells for Osteoarticular Disease Treatment. Front Immunol 2021; 12:768771. [PMID: 34790203 PMCID: PMC8591173 DOI: 10.3389/fimmu.2021.768771] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/14/2021] [Indexed: 12/18/2022] Open
Abstract
Osteoarticular diseases (OD), such as rheumatoid arthritis (RA) and osteoarthritis (OA) are chronic autoimmune/inflammatory and age-related diseases that affect the joints and other organs for which the current therapies are not effective. Cell therapy using mesenchymal stem/stromal cells (MSCs) is an alternative treatment due to their immunomodulatory and tissue differentiation capacity. Several experimental studies in numerous diseases have demonstrated the MSCs’ therapeutic effects. However, MSCs have shown heterogeneity, instability of stemness and differentiation capacities, limited homing ability, and various adverse responses such as abnormal differentiation and tumor formation. Recently, acellular therapy based on MSC secreted factors has raised the attention of several studies. It has been shown that molecules embedded in extracellular vesicles (EVs) derived from MSCs, particularly those from the small fraction enriched in exosomes (sEVs), effectively mimic their impact in target cells. The biological effects of sEVs critically depend on their cargo, where sEVs-embedded microRNAs (miRNAs) are particularly relevant due to their crucial role in gene expression regulation. Therefore, in this review, we will focus on the effect of sEVs derived from MSCs and their miRNA cargo on target cells associated with the pathology of RA and OA and their potential therapeutic impact.
Collapse
Affiliation(s)
- Eliana Lara-Barba
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - María Jesús Araya
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Charlotte Nicole Hill
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile.,Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Facultad de Ciencias Biológicas, Millennium Institute for Immunology and Immunotherapy, Santiago, Chile
| | - Felipe A Bustamante-Barrientos
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Alexander Ortloff
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Cynthia García
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Felipe Galvez-Jiron
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Carolina Pradenas
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Noymar Luque-Campos
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Gabriela Maita
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile.,Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roberto Elizondo-Vega
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Farida Djouad
- Institute for Regenerative Medicine and Biotherapy (IRMB), Univ Montpellier, Institut national de la santé et de la recherche médicale (INSERM), Montpellier, France
| | - Ana María Vega-Letter
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile.,IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| |
Collapse
|
215
|
Cargo proteins in extracellular vesicles: potential for novel therapeutics in non-alcoholic steatohepatitis. J Nanobiotechnology 2021; 19:372. [PMID: 34789265 PMCID: PMC8600817 DOI: 10.1186/s12951-021-01120-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are recognized as novel cell-free therapeutics. Non-alcoholic steatohepatitis (NASH) remains a critical health problem. Herein, we show that EVs from pan peroxisome proliferator-activated receptor agonist-primed induced mesenchymal stem cell (pan PPAR-iMSC-EVs) has unique cargo protein signatures, and demonstrate its therapeutic function in NASH. RESULTS A unique protein signatures were identified in pan PPAR-iMSC-EVs against those from non-stimulated iMSC-EVs. NASH mice receiving pan PPAR-iMSC-EVs showed reduced steatotic changes and ameliorated ER stress and mitochondiral oxidative stress induced by inflammation. Moreover, pan PPAR-iMSC-EVs promoted liver regeneration via inhibiting apoptosis and enhancing proliferation. CONCLUSIONS We conclude that our strategy for enriching unique cargo proteins in EVs may facilitate the development of novel therapeutic option for NASH.
Collapse
|
216
|
Sabatier P, Beusch CM, Saei AA, Aoun M, Moruzzi N, Coelho A, Leijten N, Nordenskjöld M, Micke P, Maltseva D, Tonevitsky AG, Millischer V, Carlos Villaescusa J, Kadekar S, Gaetani M, Altynbekova K, Kel A, Berggren PO, Simonson O, Grinnemo KH, Holmdahl R, Rodin S, Zubarev RA. An integrative proteomics method identifies a regulator of translation during stem cell maintenance and differentiation. Nat Commun 2021; 12:6558. [PMID: 34772928 PMCID: PMC8590018 DOI: 10.1038/s41467-021-26879-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 10/25/2021] [Indexed: 12/21/2022] Open
Abstract
Detailed characterization of cell type transitions is essential for cell biology in general and particularly for the development of stem cell-based therapies in regenerative medicine. To systematically study such transitions, we introduce a method that simultaneously measures protein expression and thermal stability changes in cells and provide the web-based visualization tool ProteoTracker. We apply our method to study differences between human pluripotent stem cells and several cell types including their parental cell line and differentiated progeny. We detect alterations of protein properties in numerous cellular pathways and components including ribosome biogenesis and demonstrate that modulation of ribosome maturation through SBDS protein can be helpful for manipulating cell stemness in vitro. Using our integrative proteomics approach and the web-based tool, we uncover a molecular basis for the uncoupling of robust transcription from parsimonious translation in stem cells and propose a method for maintaining pluripotency in vitro.
Collapse
Affiliation(s)
- Pierre Sabatier
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
| | - Christian M Beusch
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
| | - Amir A Saei
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Mike Aoun
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
| | - Noah Moruzzi
- The Rolf Luft Research Center for Diabetes and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, 17176, Sweden
| | - Ana Coelho
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
| | - Niels Leijten
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Magnus Nordenskjöld
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, 171 76, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, 17177, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, 171 76, Sweden
| | - Patrick Micke
- Immunology, Genetics and Pathology, Rudbecklaboratoriet, Uppsala University, Uppsala, 751 85, Sweden
| | - Diana Maltseva
- Faculty of biology and biotechnology, National Research University Higher School of Economics, Myasnitskaya Street, 13/4, Moscow, 117997, Russia
| | - Alexander G Tonevitsky
- Faculty of biology and biotechnology, National Research University Higher School of Economics, Myasnitskaya Street, 13/4, Moscow, 117997, Russia
- Scientific Research Center Bioclinicum, Ugreshskaya str. 2/85, Moscow, 115088, Russia
| | - Vincent Millischer
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, 17177, Sweden
- Translational Psychiatry, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, 171 76, Sweden
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, 1090, Austria
| | - J Carlos Villaescusa
- Neurogenetic Unit, Department of Molecular Medicine and Surgery, Karolinska University Hospital, Stockholm, 171 76, Sweden
- Stem Cell R&D-TRU, Novo Nordisk A/S, Måløv, Denmark
| | - Sandeep Kadekar
- Department of Surgical Sciences, Uppsala University, Uppsala, 752 37, Sweden
| | - Massimiliano Gaetani
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
- Chemical Proteomics Core Facility, Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden
- Chemical Proteomics, Science for Life Laboratory (SciLifeLab), Stockholm, 17 177, Sweden
| | | | - Alexander Kel
- geneXplain GmbH, Am Exer 19B, 38302, Wolfenbuettel, Germany
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, 17176, Sweden
| | - Oscar Simonson
- Department of Surgical Sciences, Uppsala University, Uppsala, 752 37, Sweden
- Department of Cardio-thoracic Surgery and Anesthesiology, Uppsala University Hospital, Uppsala, 751 85, Sweden
| | - Karl-Henrik Grinnemo
- Department of Surgical Sciences, Uppsala University, Uppsala, 752 37, Sweden
- Department of Cardio-thoracic Surgery and Anesthesiology, Uppsala University Hospital, Uppsala, 751 85, Sweden
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
| | - Sergey Rodin
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden.
- Department of Surgical Sciences, Uppsala University, Uppsala, 752 37, Sweden.
- Department of Cardio-thoracic Surgery and Anesthesiology, Uppsala University Hospital, Uppsala, 751 85, Sweden.
| | - Roman A Zubarev
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden.
- Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow, 119146, Russia.
- The National Medical Research Center for Endocrinology, Moscow, 115478, Russia.
| |
Collapse
|
217
|
Ma T, Zhang Z, Chen Y, Su H, Deng X, Liu X, Fan Y. Delivery of Nitric Oxide in the Cardiovascular System: Implications for Clinical Diagnosis and Therapy. Int J Mol Sci 2021; 22:ijms222212166. [PMID: 34830052 PMCID: PMC8625126 DOI: 10.3390/ijms222212166] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Nitric oxide (NO) is a key molecule in cardiovascular homeostasis and its abnormal delivery is highly associated with the occurrence and development of cardiovascular disease (CVD). The assessment and manipulation of NO delivery is crucial to the diagnosis and therapy of CVD, such as endothelial dysfunction, atherosclerotic progression, pulmonary hypertension, and cardiovascular manifestations of coronavirus (COVID-19). However, due to the low concentration and fast reaction characteristics of NO in the cardiovascular system, clinical applications centered on NO delivery are challenging. In this tutorial review, we first summarized the methods to estimate the in vivo NO delivery process, based on computational modeling and flow-mediated dilation, to assess endothelial function and vulnerability of atherosclerotic plaque. Then, emerging bioimaging technologies that have the potential to experimentally measure arterial NO concentration were discussed, including Raman spectroscopy and electrochemical sensors. In addition to diagnostic methods, therapies aimed at controlling NO delivery to regulate CVD were reviewed, including the NO release platform to treat endothelial dysfunction and atherosclerosis and inhaled NO therapy to treat pulmonary hypertension and COVID-19. Two potential methods to improve the effectiveness of existing NO therapy were also discussed, including the combination of NO release platform and computational modeling, and stem cell therapy, which currently remains at the laboratory stage but has clinical potential for the treatment of CVD.
Collapse
|
218
|
Finnoff JT, Awan TM, Borg-Stein J, Harmon KG, Herman DC, Malanga GA, Master Z, Mautner KR, Shapiro SA. American Medical Society for Sports Medicine Position Statement: Principles for the Responsible Use of Regenerative Medicine in Sports Medicine. Clin J Sport Med 2021; 31:530-541. [PMID: 34704973 DOI: 10.1097/jsm.0000000000000973] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 02/02/2023]
Abstract
ABSTRACT Many sports medicine physicians are currently considering introducing regenerative medicine into their practice. Regenerative medicine and the subclassification of orthobiologics are a complicated topic and have produced widely varying opinions. Although there is concern by government regulators, clinicians, scientists, patient advocacy organizations, and the media regarding the use of regenerative medicine products, there is also excitement about the potential benefits with growing evidence that certain regenerative medicine products are safe and potentially efficacious in treating musculoskeletal conditions. Sports medicine physicians would benefit from decision-making guidance about whether to introduce orthobiologics into their practice and how to do it responsibly. The purpose of this position statement is to provide sports medicine physicians with information regarding regenerative medicine terminology, a brief review of basic science and clinical studies within the subclassification of orthobiologics, regulatory considerations, and best practices for introducing regenerative medicine into clinical practice. This information will help sports medicine physicians make informed and responsible decisions about the role of regenerative medicine and orthobiologics in their practice.
Collapse
Affiliation(s)
- Jonathan T Finnoff
- Department of Physical Medicine and Rehabilitation, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Tariq M Awan
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, Michigan
| | - Joanne Borg-Stein
- Division of Sports and Musculoskeletal Rehabilitation, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts
| | - Kimberly G Harmon
- Departments of Family Medicine and Orthopedics and Sports Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Daniel C Herman
- Department of Orthopedics and Rehabilitation, University of Florida, Gainesville, Florida
| | - Gerard A Malanga
- Department of Physical Medicine and Rehabilitation, Rutgers School of Medicine-New Jersey Medical School, Newark, New Jersey
| | - Zubin Master
- Biomedical Ethics Research Program and the Center for Regenerative Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Kenneth R Mautner
- Department of Physical Medicine and Rehabilitation, Emory University, Atlanta, Georgia
- Department of Orthopedics, Emory University, Atlanta, Georgia; and
| | - Shane A Shapiro
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine and Science, Jacksonville, Florida
| |
Collapse
|
219
|
Chitosan for biomedical applications, promising antidiabetic drug delivery system, and new diabetes mellitus treatment based on stem cell. Int J Biol Macromol 2021; 190:417-432. [PMID: 34450151 DOI: 10.1016/j.ijbiomac.2021.08.154] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023]
Abstract
Since chitosan's excellent pharmacokinetic and chemical properties, it is an attractive and promising carbohydrate biopolymer in biomedical applications. Chitosan's beneficial function in the defense and propagation of pancreatic β cells, reducing hyperglycemia, and avoiding diabetes mellitus associated with impaired lipid metabolism has been demonstrated in several studies. Additionally, chitosan has also been used in various nanocarriers to deliver various antidiabetic drugs to reduce glucose levels. Herein, the first to provide the currently available potential benefits of chitosan in diabetes mellitus treatment focuses on chitosan-based nanocarriers for oral administration of various antidiabetic drugs nasal and subcutaneous passages. Moreover, chitosan is used to activate and deliver stem cells and differentiate them into cells similar to pancreatic beta cells as a new type of treatment for type one diabetes mellitus. The results of this review will be helpful in the development of promising treatments and better control of diabetes mellitus.
Collapse
|
220
|
Zhu D, Gao J, Tang C, Xu Z, Sun T. Single-Cell RNA Sequencing of Bone Marrow Mesenchymal Stem Cells from the Elderly People. Int J Stem Cells 2021; 15:173-182. [PMID: 34711696 PMCID: PMC9148839 DOI: 10.15283/ijsc21042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/26/2021] [Accepted: 08/24/2021] [Indexed: 11/09/2022] Open
Abstract
Background and Objectives Bone marrow mesenchymal stem cells (BMSCs) show considerable promise in regenerative medicine. Many studies demonstrated that BMSCs cultured in vitro were highly heterogeneous and composed of diverse cell subpopulations, which may be the basis of their multiple biological characteristics. However, the exact cell subpopulations that make up BMSCs are still unknown. Methods and Results In this study, we used single-cell RNA sequencing (scRNA-Seq) to divide 6,514 BMSCs into three clusters. The number and corresponding proportion of cells in clusters 1 to 3 were 3,766 (57.81%), 1,720 (26.40%), and 1,028 (15.78%). The gene expression profile and function of the cells in the same cluster were similar. The vast majority of cells expressed the markers defining BMSCs by flow cytometry and gene expression analysis. Each cluster had at least 20 differentially expressed genes (DEGs). We conducted Gene Ontology enrichment analysis on the top 20 DEGs of each cluster and found that the three clusters had different functions, which were related to self-renewal, multilineage differentiation and cytokine secretion, respectively. In addition, the function of the top 20 DEGs of each cluster was checked by the National Center for Biotechnology Information gene database to further verify our hypothesis. Conclusions This study indicated that scRNA-Seq can be used to divide BMSCs into different subpopulations, demonstrating the heterogeneity of BMSCs.
Collapse
Affiliation(s)
- Dezhou Zhu
- Department of Orthopaedics, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jie Gao
- Department of Orthopaedics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chengxuan Tang
- Department of Orthopaedics, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zheng Xu
- Department of Outpatient, The First Retired Cadre Sanitarium of Beijing Garrison in Fengtai District, Beijing, China.,School of Clinical Medicine, The Second Military Medical University, Shanghai, China
| | - Tiansheng Sun
- Department of Orthopaedics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
221
|
Yu H, Hua Y, He Y, Wang Y, Hu X, Chen S, Liu J, Yang J, Li H. Sustained Release of MiR-217 Inhibitor by Nanoparticles Facilitates MSC-Mediated Attenuation of Neointimal Hyperplasia After Vascular Injury. Front Cardiovasc Med 2021; 8:739107. [PMID: 34708092 PMCID: PMC8542691 DOI: 10.3389/fcvm.2021.739107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/13/2021] [Indexed: 01/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been proven capable of differentiating into endothelial cells (ECs) and increasing vascular density in mouse ischemia models. However, the therapeutic potential of MSCs in neointimal hyperplasia after vascular injury is still not fully understood. In this study, we proposed that sustained release of miR-217 inhibitor encapsulated by nanoparticles in MSCs can enhance the therapeutic effects of MSCs on alleviating neointimal hyperplasia in a standard mouse wire injury model. We intravenously administered MSCs to mice with injured arteries and examined neointimal proliferation, endothelial differentiation and senescence. We demonstrated that MSCs localized to the luminal surface of the injured artery within 24 h after injection and subsequently differentiated into endothelial cells, inhibited neointimal proliferation and migration of vascular smooth muscle cells. Transfection of MSCs with poly lactic-co-glycolic acid nanoparticles (PLGA-NP) encapsulating an miR-217 agomir abolished endothelial differentiation as well as the therapeutic effect of MSCs. On the contrary, silencing of endogenous miR-217 improved the therapeutic efficacy of MSCs. Our study provides a new strategy of augmenting the therapeutic potency of MSCs in treatment of vascular injury.
Collapse
Affiliation(s)
- Hong Yu
- Department of Otorhinolaryngology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yutao Hua
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yecheng He
- Department of Clinical Medicine, Suzhou Vocational Health College, Suzhou, China
| | - Yin Wang
- Department of Cardiovascular Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xingjian Hu
- Department of Cardiovascular Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Si Chen
- Department of Cardiovascular Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Junwei Liu
- Department of Cardiovascular Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Yang
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Huadong Li
- Department of Cardiovascular Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
222
|
La Noce M, Stellavato A, Vassallo V, Cammarota M, Laino L, Desiderio V, Del Vecchio V, Nicoletti GF, Tirino V, Papaccio G, Schiraldi C, Ferraro GA. Hyaluronan-Based Gel Promotes Human Dental Pulp Stem Cells Bone Differentiation by Activating YAP/TAZ Pathway. Cells 2021; 10:cells10112899. [PMID: 34831122 PMCID: PMC8616223 DOI: 10.3390/cells10112899] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Hyaluronans exist in different forms, accordingly with molecular weight and degree of crosslinking. Here, we tested the capability to induce osteogenic differentiation in hDPSCs (human dental pulp stem cells) of three hyaluronans forms: linear pharmaceutical-grade hyaluronans at high and (HHA) low molecular weight (LHA) and hybrid cooperative complexes (HCC), containing both sizes. METHODS hDPSCs were treated with HHA, LHA, HCC for 7, 14 and 21 days. The effects of hyaluronans on osteogenic differentiation were evaluated by qRT-PCR and WB of osteogenic markers and by Alizarin Red S staining. To identify the involved pathway, CD44 was analyzed by immunofluorescence, and YAP/TAZ expression was measured by qRT-PCR. Moreover, YAP/TAZ inhibitor-1 was used, and the loss of function of YAP/TAZ was evaluated by qRT-PCR, WB and immunofluorescence. RESULTS We showed that all hyaluronans improves osteogenesis. Among these, HCC is the main inducer of osteogenesis, along with overexpression of bone related markers and upregulating CD44. We also found that this biological process is subordinate to the activation of YAP/TAZ pathway. CONCLUSIONS We found that HA's molecular weight can have a relevant impact on HA performance for bone regeneration, and we unveil a new molecular mechanism by which HA acts on stem cells.
Collapse
Affiliation(s)
- Marcella La Noce
- Department of Experimental Medicine, Section of Biotechnology, Molecular Medicine and Medical Histology, University of Campania “L. Vanvitelli”, Via L. de Crecchio 7, 80138 Naples, Italy; (M.L.N.); (A.S.); (V.V.); (M.C.); (V.D.); (V.D.V.); (C.S.)
| | - Antonietta Stellavato
- Department of Experimental Medicine, Section of Biotechnology, Molecular Medicine and Medical Histology, University of Campania “L. Vanvitelli”, Via L. de Crecchio 7, 80138 Naples, Italy; (M.L.N.); (A.S.); (V.V.); (M.C.); (V.D.); (V.D.V.); (C.S.)
| | - Valentina Vassallo
- Department of Experimental Medicine, Section of Biotechnology, Molecular Medicine and Medical Histology, University of Campania “L. Vanvitelli”, Via L. de Crecchio 7, 80138 Naples, Italy; (M.L.N.); (A.S.); (V.V.); (M.C.); (V.D.); (V.D.V.); (C.S.)
| | - Marcella Cammarota
- Department of Experimental Medicine, Section of Biotechnology, Molecular Medicine and Medical Histology, University of Campania “L. Vanvitelli”, Via L. de Crecchio 7, 80138 Naples, Italy; (M.L.N.); (A.S.); (V.V.); (M.C.); (V.D.); (V.D.V.); (C.S.)
| | - Luigi Laino
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania “L. Vanvitelli”, Via L. de Crecchio 6, 80138 Naples, Italy; (L.L.); (G.F.N.); (G.A.F.)
| | - Vincenzo Desiderio
- Department of Experimental Medicine, Section of Biotechnology, Molecular Medicine and Medical Histology, University of Campania “L. Vanvitelli”, Via L. de Crecchio 7, 80138 Naples, Italy; (M.L.N.); (A.S.); (V.V.); (M.C.); (V.D.); (V.D.V.); (C.S.)
| | - Vitale Del Vecchio
- Department of Experimental Medicine, Section of Biotechnology, Molecular Medicine and Medical Histology, University of Campania “L. Vanvitelli”, Via L. de Crecchio 7, 80138 Naples, Italy; (M.L.N.); (A.S.); (V.V.); (M.C.); (V.D.); (V.D.V.); (C.S.)
| | - Giovanni Francesco Nicoletti
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania “L. Vanvitelli”, Via L. de Crecchio 6, 80138 Naples, Italy; (L.L.); (G.F.N.); (G.A.F.)
| | - Virginia Tirino
- Department of Experimental Medicine, Section of Biotechnology, Molecular Medicine and Medical Histology, University of Campania “L. Vanvitelli”, Via L. de Crecchio 7, 80138 Naples, Italy; (M.L.N.); (A.S.); (V.V.); (M.C.); (V.D.); (V.D.V.); (C.S.)
- Correspondence: (V.T.); (G.P.); Tel.: +39-08-1566-4040 (V.T.); +39-08-1566-6014 (G.P.)
| | - Gianpaolo Papaccio
- Department of Experimental Medicine, Section of Biotechnology, Molecular Medicine and Medical Histology, University of Campania “L. Vanvitelli”, Via L. de Crecchio 7, 80138 Naples, Italy; (M.L.N.); (A.S.); (V.V.); (M.C.); (V.D.); (V.D.V.); (C.S.)
- Correspondence: (V.T.); (G.P.); Tel.: +39-08-1566-4040 (V.T.); +39-08-1566-6014 (G.P.)
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology, Molecular Medicine and Medical Histology, University of Campania “L. Vanvitelli”, Via L. de Crecchio 7, 80138 Naples, Italy; (M.L.N.); (A.S.); (V.V.); (M.C.); (V.D.); (V.D.V.); (C.S.)
| | - Giuseppe Andrea Ferraro
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania “L. Vanvitelli”, Via L. de Crecchio 6, 80138 Naples, Italy; (L.L.); (G.F.N.); (G.A.F.)
| |
Collapse
|
223
|
Maughon TS, Shen X, Huang D, Michael AOA, Shockey WA, Andrews SH, McRae JM, Platt MO, Fernández FM, Edison AS, Stice SL, Marklein RA. Metabolomics and cytokine profiling of mesenchymal stromal cells identify markers predictive of T-cell suppression. Cytotherapy 2021; 24:137-148. [PMID: 34696960 DOI: 10.1016/j.jcyt.2021.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/02/2021] [Accepted: 08/17/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) have shown great promise in the field of regenerative medicine, as many studies have shown that MSCs possess immunomodulatory function. Despite this promise, no MSC therapies have been licensed by the Food and Drug Administration. This lack of successful clinical translation is due in part to MSC heterogeneity and a lack of critical quality attributes. Although MSC indoleamine 2,3-dioxygnease (IDO) activity has been shown to correlate with MSC function, multiple predictive markers may be needed to better predict MSC function. METHODS Three MSC lines (two bone marrow-derived, one induced pluripotent stem cell-derived) were expanded to three passages. At the time of harvest for each passage, cell pellets were collected for nuclear magnetic resonance (NMR) and ultra-performance liquid chromatography mass spectrometry (MS), and media were collected for cytokine profiling. Harvested cells were also cryopreserved for assessing function using T-cell proliferation and IDO activity assays. Linear regression was performed on functional data against NMR, MS and cytokines to reduce the number of important features, and partial least squares regression (PLSR) was used to obtain predictive markers of T-cell suppression based on variable importance in projection scores. RESULTS Significant functional heterogeneity (in terms of T-cell suppression and IDO activity) was observed between the three MSC lines, as were donor-dependent differences based on passage. Omics characterization revealed distinct differences between cell lines using principal component analysis. Cell lines separated along principal component one based on tissue source (bone marrow-derived versus induced pluripotent stem cell-derived) for NMR, MS and cytokine profiles. PLSR modeling of important features predicted MSC functional capacity with NMR (R2 = 0.86), MS (R2 = 0.83), cytokines (R2 = 0.70) and a combination of all features (R2 = 0.88). CONCLUSIONS The work described here provides a platform for identifying markers for predicting MSC functional capacity using PLSR modeling that could be used as release criteria and guide future manufacturing strategies for MSCs and other cell therapies.
Collapse
Affiliation(s)
- Ty S Maughon
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, Georgia, USA; Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | - Xunan Shen
- Complex Carbohydrate Research Center and Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Danning Huang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Adeola O Adebayo Michael
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - W Andrew Shockey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Seth H Andrews
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, Georgia, USA; Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | - Jon M McRae
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | - Manu O Platt
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Arthur S Edison
- Complex Carbohydrate Research Center and Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Steven L Stice
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA; Department of Animal and Dairy Sciences, University of Georgia, Athens, Georgia, USA.
| | - Ross A Marklein
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, Georgia, USA; Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
224
|
Yang L, He X, Jing G, Wang H, Niu J, Qian Y, Wang S. Layered Double Hydroxide Nanoparticles with Osteogenic Effects as miRNA Carriers to Synergistically Promote Osteogenesis of MSCs. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48386-48402. [PMID: 34618442 DOI: 10.1021/acsami.1c14382] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inefficient differentiation and poor engraftment hinder the clinical applications of mesenchymal stem cell (MSC)-based cell therapies in regenerative medicine. Layered double hydroxide (LDH) nanoparticles are sheet-like materials with desirable biocompatibility and anion-exchange properties and have been widely applied as drug and nucleotide carriers in the field of tissue repair. However, few studies have focused on the biological effects of LDH itself. In this study, we demonstrated the novel function of LDH in stimulating osteogenic differentiation of bone marrow-derived MSCs (BMSCs). The expression of osteogenic-related genes, alkaline phosphatase (ALP) activity, and calcium deposits were significantly increased after LDH treatment. Mechanistic analysis performed with RNA sequencing revealed that LDH promoted osteogenesis by targeting the LGR5/β-catenin axis. LDH also inactivated IKK/NF-κB signaling under LPS-triggered inflamed conditions, suggesting the dual benefits of LDH in enhancing bone regeneration and alleviating the inflammatory response. Furthermore, we utilized LDH as the transport vehicle of the osteoinductive miRNA let-7d to synergistically regulate BMSCs toward the osteoblastic lineage. The LDH/let-7d complex resulted in a better induction of osteogenesis than LDH alone. For cell transplantation, BMSCs were seeded in LDH/let-7d-incorporated fibrin scaffolds, which proved enhanced osteoinduction capability in the subcutaneous ectopic osteogenesis model in nude mice. Taken together, this study provides a novel strategy for effective and synergistic improvement of osteogenesis via LDH-mediated delivery of miRNA let-7d, thus shedding light on the future application of LDH in regenerative medicine.
Collapse
Affiliation(s)
- Li Yang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolie He
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Guoxin Jing
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hong Wang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jintong Niu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yechang Qian
- Department of Respiratory Disease, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 201900, China
| | - Shilong Wang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
225
|
Exosomes Derived from lncRNA TCTN2-Modified Mesenchymal Stem Cells Improve Spinal Cord Injury by miR-329-3p/IGF1R Axis. J Mol Neurosci 2021; 72:482-495. [PMID: 34623606 DOI: 10.1007/s12031-021-01914-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/04/2021] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs)-derived exosomes play significant roles in alleviating spinal cord injury (SCI). Previous study showed that long non-coding RNA tectonic family member 2 (TCTN2) was able to relieve SCI. Herein, whether TCTN2 exerted its roles in functional recovery after SCI via exosomes derived from MSCs was explored. The SCI model was established in rats, and the neurological function was evaluated using the Basso, Beattie, and Bresnahan (BBB) scoring. Lipopolysaccharide (LPS)-induced differentiated PC12 cells were used as an in vitro model for neurotoxicity research. The expression of genes and proteins was detected by qRT-PCR and Western blot. Exosomes were isolated by ultracentrifugation and qualified by TEM and Western blot. In vitro assays were performed using CCK-8 assay, EdU assay, and flow cytometry, respectively. Dual-luciferase reporter assay and RIP assay were used to confirm the target relationship between miR-329-3p and TCTN2 or insulin-like growth factor1 receptor (IGF1R). TCTN2 expression was down-regulated in SCI model rat and lipopolysaccharide (LPS)-stimulated PC12 cells. MSCs produced exosomes and could package TCTN2 into secreted exosomes. Tail vein injection of TCTN2 exosomes into rats significantly improved functional recovery of SCI. Meanwhile, TCTN2 exosomes treatment alleviated LPS-induced neuronal apoptosis, inflammation, and oxidative stress in vitro. Additionally, TCTN2 targeted miR-329-3p and subsequently regulated the expression of its target IGF1R. Rescue assays suggested that miR-329-3p/IGF1R axis mediated the beneficial effects of TCTN2 exosomes on LPS-treated PC12 cells. In all, exosomes derived from TCTN2-modified MSCs could improve functional recovery of SCI in vivo and attenuate LPS-induced neuronal apoptosis, inflammation, and oxidative stress in vitro via miR-329-3p/IGF1R axis, suggesting a novel insight into the development of MSC-exosomes-based therapy for SCI.
Collapse
|
226
|
Clumps of Mesenchymal Stem Cells/Extracellular Matrix Complexes Generated with Xeno-Free Chondro-Inductive Medium Induce Bone Regeneration via Endochondral Ossification. Biomedicines 2021; 9:biomedicines9101408. [PMID: 34680525 PMCID: PMC8533314 DOI: 10.3390/biomedicines9101408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/04/2021] [Accepted: 09/28/2021] [Indexed: 01/14/2023] Open
Abstract
Three-dimensional clumps of mesenchymal stem cells (MSCs)/extracellular matrix (ECM) complexes (C-MSCs) can be transplanted into tissue defect site with no artificial scaffold. Importantly, most bone formation in the developing process or fracture healing proceeds via endochondral ossification. Accordingly, this present study investigated whether C-MSCs generated with chondro-inductive medium (CIM) can induce successful bone regeneration and assessed its healing process. Human bone marrow-derived MSCs were cultured with xeno-free/serum-free (XF) growth medium. To obtain C-MSCs, confluent cells that had formed on the cellular sheet were scratched using a micropipette tip and then torn off. The sheet was rolled to make a round clump of cells. The cell clumps, i.e., C-MSCs, were maintained in XF-CIM. C-MSCs generated with XF-CIM showed enlarged round cells, cartilage matrix, and hypertrophic chondrocytes genes elevation in vitro. Transplantation of C-MSCs generated with XF-CIM induced successful bone regeneration in the SCID mouse calvaria defect model. Immunofluorescence staining for human-specific vimentin demonstrated that donor human and host mouse cells cooperatively contributed the bone formation. Besides, the replacement of the cartilage matrix into bone was observed in the early period. These findings suggested that cartilaginous C-MSCs generated with XF-CIM can induce bone regeneration via endochondral ossification.
Collapse
|
227
|
Mesenchymal Stromal Cells: an Antimicrobial and Host-Directed Therapy for Complex Infectious Diseases. Clin Microbiol Rev 2021; 34:e0006421. [PMID: 34612662 DOI: 10.1128/cmr.00064-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
There is an urgent need for new antimicrobial strategies for treating complex infections and emerging pathogens. Human mesenchymal stromal cells (MSCs) are adult multipotent cells with antimicrobial properties, mediated through direct bactericidal activity and modulation of host innate and adaptive immune cells. More than 30 in vivo studies have reported on the use of human MSCs for the treatment of infectious diseases, with many more studies of animal MSCs in same-species models of infection. MSCs demonstrate potent antimicrobial effects against the major classes of human pathogens (bacteria, viruses, fungi, and parasites) across a wide range of infection models. Mechanistic studies have yielded important insight into their immunomodulatory and bactericidal activity, which can be enhanced through various forms of preconditioning. MSCs are being investigated in over 80 clinical trials for difficult-to-treat infectious diseases, including sepsis and pulmonary, intra-abdominal, cutaneous, and viral infections. Completed trials consistently report MSCs to be safe and well tolerated, with signals of efficacy against some infectious diseases. Although significant obstacles must be overcome to produce a standardized, affordable, clinical-grade cell therapy, these studies suggest that MSCs may have particular potential as an adjunct therapy in complex or resistant infections.
Collapse
|
228
|
Williams A, Branscome H, Khatkar P, Mensah GA, Al Sharif S, Pinto DO, DeMarino C, Kashanchi F. A comprehensive review of COVID-19 biology, diagnostics, therapeutics, and disease impacting the central nervous system. J Neurovirol 2021; 27:667-690. [PMID: 34581996 PMCID: PMC8477646 DOI: 10.1007/s13365-021-00998-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/17/2021] [Accepted: 07/01/2021] [Indexed: 01/08/2023]
Abstract
The ongoing COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a highly transmissible disease. SARS-CoV-2 is estimated to have infected over 153 million people and to have caused over 3.2 million global deaths since its emergence in December 2019. SARS-CoV-2 is the seventh coronavirus known to infect humans, and like other coronaviruses, SARS-CoV-2 infection is characterized by a variety of symptoms including general flu-like symptoms such as a fever, sore throat, fatigue, and shortness of breath. Severe cases often display signs of pneumonia, lymphopenia, acute kidney injury, cardiac injury, cytokine storms, lung damage, acute respiratory distress syndrome (ARDS), multiple organ failure, sepsis, and death. There is evidence that around 30% of COVID-19 cases have central nervous system (CNS) or peripheral nervous system (PNS) symptoms along with or in the absence of the previously mentioned symptoms. In cases of CNS/PNS impairments, patients display dizziness, ataxia, seizure, nerve pain, and loss of taste and/or smell. This review highlights the neurological implications of SARS-CoV-2 and provides a comprehensive summary of the research done on SARS-CoV-2 pathology, diagnosis, therapeutics, and vaccines up to May 5.
Collapse
Affiliation(s)
- Anastasia Williams
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Heather Branscome
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
- American Type Culture Collection (ATCC), Manassas, VA, USA
| | - Pooja Khatkar
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Gifty A Mensah
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Sarah Al Sharif
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Daniel O Pinto
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
- Immunology Core, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA.
| |
Collapse
|
229
|
Piñeiro-Ramil M, Sanjurjo-Rodríguez C, Rodríguez-Fernández S, Castro-Viñuelas R, Hermida-Gómez T, Blanco-García FJ, Fuentes-Boquete I, Díaz-Prado S. Generation of Mesenchymal Cell Lines Derived from Aged Donors. Int J Mol Sci 2021; 22:10667. [PMID: 34639008 PMCID: PMC8508916 DOI: 10.3390/ijms221910667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/21/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Mesenchymal stromal cells (MSCs) have the capacity for self-renewal and multi-differentiation, and for this reason they are considered a potential cellular source in regenerative medicine of cartilage and bone. However, research on this field is impaired by the predisposition of primary MSCs to senescence during culture expansion. Therefore, the aim of this study was to generate and characterize immortalized MSC (iMSC) lines from aged donors. Methods: Primary MSCs were immortalized by transduction of simian virus 40 large T antigen (SV40LT) and human telomerase reverse transcriptase (hTERT). Proliferation, senescence, phenotype and multi-differentiation potential of the resulting iMSC lines were analyzed. Results: MSCs proliferate faster than primary MSCs, overcome senescence and are phenotypically similar to primary MSCs. Nevertheless, their multi-differentiation potential is unbalanced towards the osteogenic lineage. There are no clear differences between osteoarthritis (OA) and non-OA iMSCs in terms of proliferation, senescence, phenotype or differentiation potential. Conclusions: Primary MSCs obtained from elderly patients can be immortalized by transduction of SV40LT and hTERT. The high osteogenic potential of iMSCs converts them into an excellent cellular source to take part in in vitro models to study bone tissue engineering.
Collapse
Affiliation(s)
- María Piñeiro-Ramil
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain; (M.P.-R.); (C.S.-R.); (S.R.-F.); (R.C.-V.); (I.F.-B.)
- Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain; (T.H.-G.); (F.J.B.-G.)
| | - Clara Sanjurjo-Rodríguez
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain; (M.P.-R.); (C.S.-R.); (S.R.-F.); (R.C.-V.); (I.F.-B.)
- Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain; (T.H.-G.); (F.J.B.-G.)
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Silvia Rodríguez-Fernández
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain; (M.P.-R.); (C.S.-R.); (S.R.-F.); (R.C.-V.); (I.F.-B.)
- Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain; (T.H.-G.); (F.J.B.-G.)
| | - Rocío Castro-Viñuelas
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain; (M.P.-R.); (C.S.-R.); (S.R.-F.); (R.C.-V.); (I.F.-B.)
- Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain; (T.H.-G.); (F.J.B.-G.)
| | - Tamara Hermida-Gómez
- Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain; (T.H.-G.); (F.J.B.-G.)
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario da Coruña (UDC-CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain
| | - Francisco J. Blanco-García
- Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain; (T.H.-G.); (F.J.B.-G.)
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario da Coruña (UDC-CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain
| | - Isaac Fuentes-Boquete
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain; (M.P.-R.); (C.S.-R.); (S.R.-F.); (R.C.-V.); (I.F.-B.)
- Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain; (T.H.-G.); (F.J.B.-G.)
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Silvia Díaz-Prado
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain; (M.P.-R.); (C.S.-R.); (S.R.-F.); (R.C.-V.); (I.F.-B.)
- Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain; (T.H.-G.); (F.J.B.-G.)
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
230
|
Sant'Ana AN, Araújo AB, Gonçalves FDC, Paz AH. Effects of living and metabolically inactive mesenchymal stromal cells and their derivatives on monocytes and macrophages. World J Stem Cells 2021; 13:1160-1176. [PMID: 34630856 PMCID: PMC8474715 DOI: 10.4252/wjsc.v13.i9.1160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/01/2021] [Accepted: 09/03/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are multipotent and self-renewing stem cells that have great potential as cell therapy for autoimmune and inflammatory disorders, as well as for other clinical conditions, due to their immunoregulatory and regenerative properties. MSCs modulate the inflammatory milieu by releasing soluble factors and acting through cell-to-cell mechanisms. MSCs switch the classical inflammatory status of monocytes and macrophages towards a non-classical and anti-inflammatory phenotype. This is characterized by an increased secretion of anti-inflammatory cytokines, a decreased release of pro-inflammatory cytokines, and changes in the expression of cell membrane molecules and in metabolic pathways. The MSC modulation of monocyte and macrophage phenotypes seems to be critical for therapy effectiveness in several disease models, since when these cells are depleted, no immunoregulatory effects are observed. Here, we review the effects of living MSCs (metabolically active cells) and metabolically inactive MSCs (dead cells that lost metabolic activity by induced inactivation) and their derivatives (extracellular vesicles, soluble factors, extracts, and microparticles) on the profile of macrophages and monocytes and the implications for immunoregulatory and reparative processes. This review includes mechanisms of action exhibited in these different therapeutic approaches, which induce the anti-inflammatory properties of monocytes and macrophages. Finally, we overview several possibilities of therapeutic applications of these cells and their derivatives, with results regarding monocytes and macrophages in animal model studies and some clinical trials.
Collapse
Affiliation(s)
- Alexia Nedel Sant'Ana
- Laboratório de Células Tecidos e Genes, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Anelise Bergmann Araújo
- Centro de Processamento Celular, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil.
| | | | - Ana Helena Paz
- Laboratório de Células Tecidos e Genes, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| |
Collapse
|
231
|
Paganelli A, Tarentini E, Benassi L, Scelfo D, Pisciotta A, Rossi E, Magnoni C. Use of confocal microscopy imaging for in vitro assessment of adipose-derived mesenchymal stromal cells seeding on acellular dermal matrices: 3D reconstruction based on collagen autofluorescence. Skin Res Technol 2021; 28:133-141. [PMID: 34555218 PMCID: PMC9292443 DOI: 10.1111/srt.13103] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/21/2021] [Indexed: 12/16/2022]
Abstract
Background Both mesenchymal stromal cells (MSCs) and acellular dermal matrices (ADMs) represent fascinating therapeutic tools in the wound healing scenario. Strategies aimed at combining these two treatment modalities are currently under investigation. Moreover, scarcity of quantitative, nondestructive techniques for quality assessment of engineered tissues poses great limitations in regenerative medicine and collagen autofluorescence‐based imaging techniques are acquiring great importance in this setting. Objective Our goals were to assess the in vitro interactions between ADSCs and ADMs and to analyze extracellular‐matrix production. Methods Adipose‐derived MSCs (ADSC) were plated on 8‐mm punch biopsies of a commercially available ADM (Integra®). Conventional histology with hematoxylin‐eosin staining, environmental scanning electron microscopy, and confocal‐laser scanning microscopy were used to obtain imaging of ADSC‐seeded ADMs. Collagen production by ADSCs was quantified by mean fluorescence intensity (MFI), expressed in terms of positive pixels/field, obtained through ImageJ software processing of three‐dimensional projections from confocal scanning images. Control conditions included: fibroblast‐seeded ADM, ADSC‐ and fibroblast‐induced scaffolds, and Integra® alone. Results ADSCs were efficiently seeded on Integra® and were perfectly incorporated in the pores of the scaffold. Collagen production was revealed to be significantly higher when ADSCs were seeded on ADM rather than in all other control conditions. Collagen autofluorescence was efficiently used as a surrogate marker of ECM production. Conclusions Combined therapies based on MSCs and collagenic ADMs are promising therapeutic options for chronic wounds. Not only ADSCs can be efficiently seeded on ADMs, but ADMs also seem to potentiate their regenerative properties, as highlightable from fluorescence confocal imaging.
Collapse
Affiliation(s)
- Alessia Paganelli
- Surgical, Medical and Dental Department of Morphological Sciences related to Transplant, Oncology and Regenerative Medicine, Division of Dermatology, University of Modena and Reggio Emilia, Modena and Reggio Emilia, Italy.,PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena and Reggio Emilia, Italy
| | - Elisabetta Tarentini
- Surgical, Medical and Dental Department of Morphological Sciences related to Transplant, Oncology and Regenerative Medicine, Division of Dermatology, University of Modena and Reggio Emilia, Modena and Reggio Emilia, Italy
| | - Luisa Benassi
- Surgical, Medical and Dental Department of Morphological Sciences related to Transplant, Oncology and Regenerative Medicine, Division of Dermatology, University of Modena and Reggio Emilia, Modena and Reggio Emilia, Italy
| | - Daniel Scelfo
- Surgical, Medical and Dental Department of Morphological Sciences related to Transplant, Oncology and Regenerative Medicine, Division of Dermatology, University of Modena and Reggio Emilia, Modena and Reggio Emilia, Italy
| | - Alessandra Pisciotta
- Surgical, Medical and Dental Department of Morphological Sciences related to Transplant, Oncology and Regenerative Medicine, Division of Dermatology, University of Modena and Reggio Emilia, Modena and Reggio Emilia, Italy
| | - Elena Rossi
- Surgical, Medical and Dental Department of Morphological Sciences related to Transplant, Oncology and Regenerative Medicine, Division of Dermatology, University of Modena and Reggio Emilia, Modena and Reggio Emilia, Italy
| | - Cristina Magnoni
- Surgical, Medical and Dental Department of Morphological Sciences related to Transplant, Oncology and Regenerative Medicine, Division of Dermatology, University of Modena and Reggio Emilia, Modena and Reggio Emilia, Italy
| |
Collapse
|
232
|
Yuan L, You H, Qin N, Zuo W. Interleukin-10 Modulates the Metabolism and Osteogenesis of Human Dental Pulp Stem Cells. Cell Reprogram 2021; 23:270-276. [PMID: 34491831 DOI: 10.1089/cell.2021.0044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The osteogenic differentiation of mesenchymal stem cells (MSCs) is strongly related with the inflammatory microenvironment. The ability of osteogenic differentiation of MSCs is vital for the bone tissue engineering. Interleukin (IL)-10, a well-known anti-inflammatory factor, plays a key role in tissue repair. Dental pulp stem cells (DPSCs), with the advantage of convenience of extraction, are suitable for the bone tissue engineering. Therefore, it is meaning to explore the effects of IL-10 on the osteogenic differentiation of DPSCs. The proliferation activity of DPSCs were evaluated by MTS assay (CellTiter 96® Aqueous One Solution Cell Proliferation Assay [Promega]) and real-time polymerase chain reaction (RT-PCR). The osteogenic differentiation of DPSCs were determined by Alizarin Red staining, RT-PCR, and alkaline phosphatase activity test. The glucose metabolism was detected by Mito Stress test and glycolysis assay. IL-10 (10 or 20 nM) could enhance the osteogenic differentiation of DPSCs and promoted the metabolic switch from glycolysis to oxidative phosphorylation (OXPHOS), whereas IL-10 (5 and 50 nM) has no obvious effects on the osteogenic differentiation of DPSCs. The OXPHOS inhibitor restrained the promotion of osteogenic differentiation induced by IL-10. These findings show that IL-10 can promote the osteogenesis of DPSCs through the activation of OXPHOS, which provides a potential way for enhancing the osteogenic differentiation of DPSCs in bone tissue engineering.
Collapse
Affiliation(s)
- Li Yuan
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Hongxia You
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Nianhong Qin
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Wenxin Zuo
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| |
Collapse
|
233
|
Zhang X, van Rijt S. 2D biointerfaces to study stem cell-ligand interactions. Acta Biomater 2021; 131:80-96. [PMID: 34237424 DOI: 10.1016/j.actbio.2021.06.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023]
Abstract
Stem cells have great potential in the field of tissue engineering and regenerative medicine due to their inherent regenerative capabilities. However, an ongoing challenge within their clinical translation is to elicit or predict the desired stem cell behavior once transplanted. Stem cell behavior and function are regulated by their interaction with biophysical and biochemical signals present in their natural environment (i.e., stem cell niches). To increase our understanding about the interplay between stem cells and their resident microenvironments, biointerfaces have been developed as tools to study how these substrates can affect stem cell behaviors. This article aims to review recent developments on fabricating cell-instructive interfaces to control cell adhesion processes towards directing stem cell behavior. After an introduction on stem cells and their natural environment, static surfaces exhibiting predefined biochemical signals to probe the effect of chemical features on stem cell behaviors are discussed. In the third section, we discuss more complex dynamic platforms able to display biochemical cues with spatiotemporal control using on-off ligand display, reversible ligand display, and ligand mobility. In the last part of the review, we provide the reader with an outlook on future designs of biointerfaces. STATEMENT OF SIGNIFICANCE: Stem cells have great potential as treatments for many degenerative disorders prevalent in our aging societies. However, an ongoing challenge within their clinical translation is to promote stem cell mediated regeneration once they are transplanted in the body. Stem cells reside within our bodies where their behavior and function are regulated by interactions with their natural environment called the stem cell niche. To increase our understanding about the interplay between stem cells and their niche, 2D materials have been developed as tools to study how specific signals can affect stem cell behaviors. This article aims to review recent developments on fabricating cell-instructive interfaces to control cell adhesion processes towards directing stem cell behavior.
Collapse
|
234
|
Chen X, Wei Q, Sun H, Zhang X, Yang C, Tao Y, Nong G. Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Regulate Macrophage Polarization to Attenuate Systemic Lupus Erythematosus-Associated Diffuse Alveolar Hemorrhage in Mice. Int J Stem Cells 2021; 14:331-340. [PMID: 33906978 PMCID: PMC8429939 DOI: 10.15283/ijsc20156] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/24/2020] [Accepted: 01/28/2021] [Indexed: 01/01/2023] Open
Abstract
Background and Objectives To investigate the effect and the underlying mechanism of exosomes secreted by human umbilical cord mesenchymal stem cells (hUCMSCs) on diffuse alveolar hemorrhage (DAH) in murine lupus. Methods and Results Exosomes were extracted from cultured hUCMSCs by ultracentrifugation. The expressions of exosome markers (Alix, CD63 and TSG101) were measured for identification of hUCMSC-derived exosomes (hUCMSC-exosomes). The alveolar hemorrhage of DAH mice was revealed by H&E staining. The primary alveolar macrophages were isolated from bronchoalveolar lavage fluid (BALF) of DAH mice. The expressions of M1 macrophage markers (iNOS, IL-6, TNF-α and IL-1β) and M2 macrophage markers (Arg1, IL-10, TGF-β and chi3l3) were detected. Flow cytometry measured the ratio of M1/M2 macrophages. ELISA measured the secretion of pro-inflammatory cytokines (IL-6 and TNF-α) and anti-inflammatory cytokines (IL-10 and TGF-β). DAH mice had hemorrhage and small-vessel vasculitis in the lung, with neutrophil and monocyte infiltration observed around the capillary and small artery. Furthermore, increases of IL-6 and TNF-α, and decreases of IL-10 and TGF-β were detected in the BALF of DAH mice. M1 makers were overexpressed in alveolar macrophages of DAH mice while M2 makers were lowly expressed. DAH mice had a higher proportion of M1 macrophages than M2 macrophages. After hUCMSC-exosome or methylprednisolone treatment in DAH mice, the alveolar injuries and inflammatory responses were attenuated, and the proportion of M2 macrophages was increased. Conclusions hUCMSC-exosomes attenuate DAH-induced inflammatory responses and alveolar hemorrhage by regulating macrophage polarization.
Collapse
Affiliation(s)
- Xun Chen
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Qing Wei
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Hongmei Sun
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Xiaobo Zhang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Changrong Yang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Ying Tao
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Guangmin Nong
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| |
Collapse
|
235
|
Zhang LS, Yu Y, Yu H, Han ZC. Therapeutic prospects of mesenchymal stem/stromal cells in COVID-19 associated pulmonary diseases: From bench to bedside. World J Stem Cells 2021; 13:1058-1071. [PMID: 34567425 PMCID: PMC8422925 DOI: 10.4252/wjsc.v13.i8.1058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/10/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
The ongoing outbreak of coronavirus disease 2019 (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 has become a sudden public emergency of international concern and seriously threatens millions of people’s life health. Two current studies have indicated a favorable role for mesenchymal stem/stromal cells (MSCs) in clinical remission of COVID-19 associated pulmonary diseases, yet the systematical elaboration of the therapeutics and underlying mechanism is far from satisfaction. In the present review, we summarize the therapeutic potential of MSCs in COVID-19 associated pulmonary diseases such as pneumonia induced acute lung injury, acute respiratory distress syndrome, and pulmonary fibrosis. Furthermore, we review the underlying mechanism of MSCs including direct- and trans-differentiation, autocrine and paracrine anti-inflammatory effects, homing, and neovascularization, as well as constitutive microenvironment. Finally, we discuss the prospects and supervision of MSC-based cytotherapy for COVID-19 management before large-scale application in clinical practice. Collectively, this review supplies overwhelming new references for understanding the landscapes of MSCs in the remission of COVID-19 associated pulmonary diseases.
Collapse
Affiliation(s)
- Lei-Sheng Zhang
- Qianfoshan Hospital & The First Affiliated Hospital, Shandong First Medical University, Jinan 250014, Shandong Province, China
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- School of Medicine, Nankai University, Tianjin 300071, China
- Precision Medicine Division, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd., Tianjin 301700, China
| | - Yi Yu
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Hao Yu
- School of Medicine, Nankai University, Tianjin 300071, China
- Cell Products of National Engineering Center & National Stem Cell Engineering Research Center, Tianjin IMCELL Stem Cell and Gene Technology Co., Ltd., Tianjin 300457, China
| | - Zhong-Chao Han
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Precision Medicine Division, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd., Tianjin 301700, China
- Cell Products of National Engineering Center & National Stem Cell Engineering Research Center, Tianjin IMCELL Stem Cell and Gene Technology Co., Ltd., Tianjin 300457, China
| |
Collapse
|
236
|
Ikeda Y, Wada A, Hasegawa T, Yokota M, Koike M, Ikeda S. Melanocyte progenitor cells reside in human subcutaneous adipose tissue. PLoS One 2021; 16:e0256622. [PMID: 34432824 PMCID: PMC8386863 DOI: 10.1371/journal.pone.0256622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022] Open
Abstract
Based on the assumption that some progenitor cells in an organ might reside in neighboring adipose tissue, we investigated whether melanocyte progenitor cells reside in human subcutaneous adipose tissue. First, we examined the expression of human melanoma black 45 (HMB45) and microphthalmia-associated transcription factor (MITF) in undifferentiated adipose-derived stem cells (ADSCs) by immunostaining, RT-PCR, and western blotting. These two markers were detected in undifferentiated ADSCs, and their expression levels were increased in differentiated ADSCs in melanocyte-specific culture medium. Other melanocytic markers (Melan A, MATP, Mel2, Mel EM, tyrosinase, KIT, and PAX3) were also detected at variable levels in undifferentiated ADSCs, and the expression of some markers was increased during differentiation into the melanocyte lineage. We further showed that ADSCs differentiated in melanocyte-specific culture medium localized in the basal layer and expressed tyrosinase and HMB45 in a 3D epidermal culture system. Melanin deposits were also induced by ultraviolet-light-B (UVB) irradiation. These results demonstrate that melanocyte progenitor cells reside in human subcutaneous adipose tissue and that these cells might have the potential to differentiate into mature melanocytes. Melanocyte and keratinocyte progenitors residing in human subcutaneous tissue can be used for the treatment of skin diseases and skin rejuvenation in the future.
Collapse
Affiliation(s)
- Yuri Ikeda
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Akino Wada
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Toshio Hasegawa
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Mutsumi Yokota
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
- Advanced Research Institute for Health Sciences and Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Shigaku Ikeda
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
237
|
Biomaterials and Adipose-Derived Mesenchymal Stem Cells for Regenerative Medicine: A Systematic Review. MATERIALS 2021; 14:ma14164641. [PMID: 34443163 PMCID: PMC8400778 DOI: 10.3390/ma14164641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022]
Abstract
The use of biological templates for the suitable growth of adipose-derived mesenchymal stem cells (AD-MSC) and “neo-tissue” construction has exponentially increased over the last years. The bioengineered scaffolds still have a prominent and biocompatible framework playing a role in tissue regeneration. In order to supply AD-MSCs, biomaterials, as the stem cell niche, are more often supplemented by or stimulate molecular signals that allow differentiation events into several strains, besides their secretion of cytokines and effects of immunomodulation. This systematic review aims to highlight the details of the integration of several types of biomaterials used in association with AD-MSCs, collecting notorious and basic data of in vitro and in vivo assays, taking into account the relevance of the interference of the cell lineage origin and handling cell line protocols for both the replacement and repairing of damaged tissues or organs in clinical application. Our group analyzed the quality and results of the 98 articles selected from PubMed, Scopus and Web of Science. A total of 97% of the articles retrieved demonstrated the potential in clinical applications. The synthetic polymers were the most used biomaterials associated with AD-MSCs and almost half of the selected articles were applied on bone regeneration.
Collapse
|
238
|
Zhao Y, Su G, Wang Q, Wang R, Zhang M. The CD200/CD200R mechanism in mesenchymal stem cells' regulation of dendritic cells. Am J Transl Res 2021; 13:9607-9613. [PMID: 34540085 PMCID: PMC8430165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/12/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To investigate the CD200/CD200R pathway mechanism in mesenchymal stem cells' (MSC) regulation of dendritic cells (DC) (MSc). METHODS We collected marrow samples from 40 patients admitted to our hospital from January 2018 to December 2019. The bone marrow MSCs were cultivated, and the peripheral blood mononuclear cells (PBMC) and peripheral blood DC were isolated to establish an in vitro immune response model. The expressions of the CD200 molecule on the surface of MSC were measured. Anti-CD200 blocking antibodies were added to the culture system to observe the effect of the PBMC differentiation and the immature DC (imDC) to mature DC (mDC). Then the impact of the different positive rates of CD200 in the same MSC on imDC maturity was measured. RESULTS After adding mitogen pHA, the IL-4, IL-10, and TNF-α secretions were increased (all P<0.05), and the OD value of the PBMC+pHA group was higher than it was in the PBMC group. After stimulated by pHA, the CD200 of the MSC group was higher than it was in the MSC+PBMC group (P<0.05). The MSC+PBMC group co-culture inhibited the development of imDC to mDC. Adding anti-CD200 antibodies to the MSC+PBMC co-culture system, MSC could still inhibit the differentiation of PBMC to imDC, and MSC had a significant inhibition effect on imDC to mDC maturation (P=0.006). The addition of MSC reduces the maturation markers on the surface of mDC (P<0.05). The addition of MSC inhibited the ability of mDC to stimulate PBMC (POD<0.05) and decreased the IL-12 (PIL-12<0.05) levels. The addition of the anti-CD200 antibody increased the proliferation ability of mDC to stimulate PBMC (POD<0.05), and it also increased the IL-12 levels in mDC (PIL-12<0.05). The expression of the DC mature immune phenotype in the CD200 high expression group was weak (PCD83, CD86<0.05). CONCLUSION The mechanism by which MSC inhibits DC may be achieved through the CD200/CD200R pathway, and the CD200/CD200R pathway mainly acts on the process from imDC to mDC.
Collapse
Affiliation(s)
- Yulei Zhao
- The Second Department of Hematology, Cangzhou Central Hospital 16 West Xinhua Road, Yunhe, Cangzhou, China
| | - Guohong Su
- The Second Department of Hematology, Cangzhou Central Hospital 16 West Xinhua Road, Yunhe, Cangzhou, China
| | - Qing Wang
- The Second Department of Hematology, Cangzhou Central Hospital 16 West Xinhua Road, Yunhe, Cangzhou, China
| | - Ruihuan Wang
- The Second Department of Hematology, Cangzhou Central Hospital 16 West Xinhua Road, Yunhe, Cangzhou, China
| | - Minjuan Zhang
- The Second Department of Hematology, Cangzhou Central Hospital 16 West Xinhua Road, Yunhe, Cangzhou, China
| |
Collapse
|
239
|
Rajasingh S, Sigamani V, Selvam V, Gurusamy N, Kirankumar S, Vasanthan J, Rajasingh J. Comparative analysis of human induced pluripotent stem cell-derived mesenchymal stem cells and umbilical cord mesenchymal stem cells. J Cell Mol Med 2021; 25:8904-8919. [PMID: 34390186 PMCID: PMC8435459 DOI: 10.1111/jcmm.16851] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/19/2021] [Accepted: 07/31/2021] [Indexed: 12/11/2022] Open
Abstract
Generation of induced pluripotent stem cells (iPSCs) and their differentiation into mesenchymal stem/stromal cells (iMSCs) have created exciting source of cells for autologous therapy. In this study, we have compared the therapeutic potential of iMSCs generated from urinary epithelial (UE) cells with the available umbilical cord MSCs (UC‐MSCs). For this, adult UE cells were treated with the mRNA of pluripotent genes (OCT4, NANOG, SOX2, KLF4, MYC and LIN28) and a cocktail of miRNAs under specific culture conditions for generating iPSCs. Our non‐viral and mRNA‐based treatment regimen demonstrated a high reprogramming efficiency to about 30% at passage 0. These UE‐iPSCs were successfully differentiated further into ectoderm, endoderm and mesoderm lineage of cells. Moreover, these UE‐iPSCs were subsequently differentiated into iMSCs and were compared with the UC‐MSCs. These iMSCs were capable of differentiating into osteocytes, chondrocytes and adipocytes. Our qRT‐PCR and Western blot data showed that the CD73, CD90 and CD105 gene transcripts and proteins were highly expressed in iMSCs and UC‐MSCs but not in other cells. The comparative qRT‐PCR data showed that the iMSCs maintained their MSC characteristics without any chromosomal abnormalities even at later passages (P15), during which the UC‐MSCs started losing their MSC characteristics. Importantly, the wound‐healing property demonstrated through migration assay was superior in iMSCs when compared to the UC‐MSCs. In this study, we have demonstrated an excellent non‐invasive and pain‐free method of obtaining iMSCs for regenerative therapy. These homogeneous autologous highly proliferative iMSCs may provide an alternative source of cells to UC‐MSCs for treating various diseases.
Collapse
Affiliation(s)
- Sheeja Rajasingh
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Vinoth Sigamani
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Vijay Selvam
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India
| | - Narasimman Gurusamy
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Shivaani Kirankumar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India
| | - Jayavardini Vasanthan
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India
| | - Johnson Rajasingh
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Medicine-Cardiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
240
|
Sharma HS, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Sahib S, Tian ZR, Bryukhovetskiy I, Manzhulo I, Menon PK, Patnaik R, Wiklund L, Sharma A. Alzheimer's disease neuropathology is exacerbated following traumatic brain injury. Neuroprotection by co-administration of nanowired mesenchymal stem cells and cerebrolysin with monoclonal antibodies to amyloid beta peptide. PROGRESS IN BRAIN RESEARCH 2021; 265:1-97. [PMID: 34560919 DOI: 10.1016/bs.pbr.2021.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Military personnel are prone to traumatic brain injury (TBI) that is one of the risk factors in developing Alzheimer's disease (AD) at a later stage. TBI induces breakdown of the blood-brain barrier (BBB) to serum proteins into the brain and leads to extravasation of plasma amyloid beta peptide (ΑβP) into the brain fluid compartments causing AD brain pathology. Thus, there is a need to expand our knowledge on the role of TBI in AD. In addition, exploration of the novel roles of nanomedicine in AD and TBI for neuroprotection is the need of the hour. Since stem cells and neurotrophic factors play important roles in TBI and in AD, it is likely that nanodelivery of these agents exert superior neuroprotection in TBI induced exacerbation of AD brain pathology. In this review, these aspects are examined in details based on our own investigations in the light of current scientific literature in the field. Our observations show that TBI exacerbates AD brain pathology and TiO2 nanowired delivery of mesenchymal stem cells together with cerebrolysin-a balanced composition of several neurotrophic factors and active peptide fragments, and monoclonal antibodies to amyloid beta protein thwarted the development of neuropathology following TBI in AD, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
241
|
Hung HS, Kung ML, Chen FC, Ke YC, Shen CC, Yang YC, Tang CM, Yeh CA, Hsieh HH, Hsu SH. Nanogold-Carried Graphene Oxide: Anti-Inflammation and Increased Differentiation Capacity of Mesenchymal Stem Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2046. [PMID: 34443877 PMCID: PMC8398640 DOI: 10.3390/nano11082046] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 02/07/2023]
Abstract
Graphene-based nanocomposites such as graphene oxide (GO) and nanoparticle-decorated graphene with demonstrated excellent physicochemical properties have worthwhile applications in biomedicine and bioengineering such as tissue engineering. In this study, we fabricated gold nanoparticle-decorated GO (GO-Au) nanocomposites and characterized their physicochemical properties using UV-Vis absorption spectra, FTIR spectra, contact angle analyses, and free radical scavenging potential. Moreover, we investigated the potent applications of GO-Au nanocomposites on directing mesenchymal stem cells (MSCs) for tissue regeneration. We compared the efficacy of as-prepared GO-derived nanocomposites including GO, GO-Au, and GO-Au (×2) on the biocompatibility of MSCs, immune cell identification, anti-inflammatory effects, differentiation capacity, as well as animal immune compatibility. Our results showed that Au-deposited GO nanocomposites, especially GO-Au (×2), significantly exhibited increased cell viability of MSCs, had good anti-oxidative ability, sponged the immune response toward monocyte-macrophage transition, as well as inhibited the activity of platelets. Moreover, we also validated the superior efficacy of Au-deposited GO nanocomposites on the enhancement of cell motility and various MSCs-derived cell types of differentiation including neuron cells, adipocytes, osteocytes, and endothelial cells. Additionally, the lower induction of fibrotic formation, reduced M1 macrophage polarization, and higher induction of M2 macrophage, as well as promotion of the endothelialization, were also found in the Au-deposited GO nanocomposites implanted animal model. These results suggest that the Au-deposited GO nanocomposites have excellent immune compatibility and anti-inflammatory effects in vivo and in vitro. Altogether, our findings indicate that Au-decorated GO nanocomposites, especially GO-Au (×2), can be a potent nanocarrier for tissue engineering and an effective clinical strategy for anti-inflammation.
Collapse
Affiliation(s)
- Huey-Shan Hung
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (H.-S.H.); (Y.-C.K.); (C.-A.Y.)
- Translational Medicine Research, China Medical University Hospital, Taichung 40402, Taiwan
| | - Mei-Lang Kung
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan;
| | - Fang-Chung Chen
- Department of Photonics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan;
| | - Yi-Chun Ke
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (H.-S.H.); (Y.-C.K.); (C.-A.Y.)
| | - Chiung-Chyi Shen
- Neurological Institute Head of Department of Neurosurgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (C.-C.S.); (Y.-C.Y.)
- Department of Physical Therapy, Hung Kuang University, Taichung 433304, Taiwan
- Basic Medical Education Center, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan
| | - Yi-Chin Yang
- Neurological Institute Head of Department of Neurosurgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (C.-C.S.); (Y.-C.Y.)
| | - Chang-Ming Tang
- Collage of Oral Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Chun-An Yeh
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (H.-S.H.); (Y.-C.K.); (C.-A.Y.)
| | - Hsien-Hsu Hsieh
- Blood Bank, Taichung Veterans General Hospital, Taichung 40705, Taiwan;
| | - Shan-hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
242
|
Jayaraman S, Gnanasampanthapandian D, Rajasingh J, Palaniyandi K. Stem Cell-Derived Exosomes Potential Therapeutic Roles in Cardiovascular Diseases. Front Cardiovasc Med 2021; 8:723236. [PMID: 34447796 PMCID: PMC8382889 DOI: 10.3389/fcvm.2021.723236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Owing to myocardial abnormalities, cardiac ailments are considered to be the major cause of morbidity and mortality worldwide. According to a recent study, membranous vesicles that are produced naturally, termed as "exosomes", have emerged as the potential candidate in the field of cardiac regenerative medicine. A wide spectrum of stem cells has also been investigated in the treatment of cardiovascular diseases (CVD). Exosomes obtained from the stem cells are found to be cardioprotective and offer great hope in the treatment of CVD. The basic nature of exosomes is to deal with the intracellular delivery of both proteins and nucleic acids. This activity of exosomes helps us to rely on them as the attractive pharmaceutical delivery agents. Most importantly, exosomes derived from microRNAs (miRNAs) hold great promise in assessing the risk of CVD, as they serve as notable biomarkers of the disease. Exosomes are small, less immunogenic, and lack toxicity. These nanovesicles harbor immense potential as a therapeutic entity and would provide fruitful benefits if consequential research were focused on their upbringing and development as a useful diagnostic and therapeutic tool in the field of medicine.
Collapse
Affiliation(s)
- Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Dhanavathy Gnanasampanthapandian
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, India
| | - Johnson Rajasingh
- Department of Bioscience Research & Medicine-Cardiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Kanagaraj Palaniyandi
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, India
| |
Collapse
|
243
|
Zhang Y, Pan Y, Liu Y, Li X, Tang L, Duan M, Li J, Zhang G. Exosomes derived from human umbilical cord blood mesenchymal stem cells stimulate regenerative wound healing via transforming growth factor-β receptor inhibition. Stem Cell Res Ther 2021; 12:434. [PMID: 34344478 PMCID: PMC8336384 DOI: 10.1186/s13287-021-02517-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Scar formation is a common consequence of skin wound healing, and no effective treatment exists. Umbilical cord blood mesenchymal stem cells (UCB-MSCs) can improve wound healing; however, the role of UCB-MSCs remains unclear and whether they can ameliorate scar formation has not been fully elucidated. METHODS To determine the function of UCB-MSCs, we examined and compared the therapeutic effects of UCB-MSCs and UCB-MSC-derived exosomes (UCB-MSC-exo) on skin healing in rats. Moreover, UCB-MSC-exo-specific miRNAs were identified and their effects in inhibiting the human dermal fibroblast (HDF) differentiation into myofibroblasts were investigated. RESULTS Both UCB-MSCs and UCB-MSC-exo accelerated wound closure; reduced scar formation; improved the regeneration of skin appendages, nerves, and vessels; and regulated the natural distribution of collagen fibers in wound healing. Additionally, UCB-MSC-exo suppressed the excessive formation of myofibroblasts and collagen I and increased the proliferation and migration of skin cells in vivo and in vitro. Functional analysis showed that UCB-MSC-derived miRNAs were closely related to the transforming growth factor-β (TGF-β) signaling pathway, which could induce myofibroblast differentiation. We identified abundant miRNAs that were highly expressed in UCB-MSC-exo. miR-21-5p and miR-125b-5p were predicted to contribute to TGF-β receptor type II (TGFBR2) and TGF-β receptor type I (TGFBR1) inhibition, respectively. Using miRNA mimics, we found that miR-21-5p and miR-125b-5p were critical for anti-myofibroblast differentiation in the TGF-β1-induced HDF. CONCLUSION The effect of UCB-MSCs in stimulating regenerative wound healing might be achieved through exosomes, which can be, in part, through miR-21-5p- and miR-125b-5p-mediated TGF-β receptor inhibition, suggesting that UCB-MSC-exo might represent a novel strategy to prevent scar formation during wound healing.
Collapse
Affiliation(s)
- Yan Zhang
- Hospital of Stomatology, Jilin University, 1500 Qinghua Rd., Changchun, Jilin, 130021, China
- Jilin Provincial Laboratory of Biomedical Engineering, Jilin University, Changchun, China
| | - Yingjin Pan
- Center of Prosthodontics and Oral Implantology, Foshan Stomatology Hospital, School of Stomatology and Medicine, Foshan University, Foshan, 528000, China
| | - Yanhong Liu
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Xiheng Li
- Hospital of Stomatology, Jilin University, 1500 Qinghua Rd., Changchun, Jilin, 130021, China
- Jilin Provincial Laboratory of Biomedical Engineering, Jilin University, Changchun, China
| | - Liang Tang
- Hospital of Stomatology, Jilin University, 1500 Qinghua Rd., Changchun, Jilin, 130021, China
- Jilin Provincial Laboratory of Biomedical Engineering, Jilin University, Changchun, China
| | - Mengna Duan
- Hospital of Stomatology, Jilin University, 1500 Qinghua Rd., Changchun, Jilin, 130021, China.
| | - Jiang Li
- Hospital of Stomatology, Jilin University, 1500 Qinghua Rd., Changchun, Jilin, 130021, China.
- Affiliated Stomatology Hospital of Guangzhou Medical University, 39 Huangsha Ave., Guangzhou, 510080, Guangdong, China.
| | - Guokun Zhang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, 1345 Pudong Rd., Changchun, Jilin, 130600, China.
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences (CAAS), 4899 Juye St., Changchun, Jilin, 130112, China.
| |
Collapse
|
244
|
Henckes NAC, Faleiro D, Chuang LC, Cirne-Lima EO. Scaffold strategies combined with mesenchymal stem cells in vaginal construction: a review. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:26. [PMID: 34337675 PMCID: PMC8326237 DOI: 10.1186/s13619-021-00088-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/17/2021] [Indexed: 11/10/2022]
Abstract
Tissue engineering has provided new treatment alternatives for tissue reconstruction. Advances in the tissue engineering field have resulted in mechanical support and biological substitutes to restore, maintain or improve tissue/organs structures and functions. The application of tissue engineering technology in the vaginal reconstruction treatment can not only provide mechanical requirements, but also offer tissue repairing as an alternative to traditional approaches. In this review, we discuss recent advances in cell-based therapy in combination with scaffolds strategies that can potentially be adopted for gynaecological transplantation.
Collapse
Affiliation(s)
- Nicole Andréa Corbellini Henckes
- Programa de Pós-Graduação em Ciências da Saúde-Ginecologia e Obstetrícia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| | - Dalana Faleiro
- Programa de Pós-Graduação em Ciências da Saúde-Ginecologia e Obstetrícia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Laura Chao Chuang
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Elizabeth Obino Cirne-Lima
- Programa de Pós-Graduação em Ciências da Saúde-Ginecologia e Obstetrícia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
245
|
A COVID-19 Overview and Potential Applications of Cell Therapy. Biologics 2021. [DOI: 10.3390/biologics1020011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The COVID-19 pandemic has already reaped thousands of lives, although many scientific studies already showed the possibility of this scenario. Currently, further attention is provided to patients depicting comorbidities such as respiratory or immunocompromised diseases, hypertension, and diabetes, as these individuals show a worse prognosis. Cell therapies using stem cells and/or defense cells, combined or not with traditional treatment, could be an outstanding strategy for COVID-19 management since these treatments can act by modulating the immune system, reducing proliferation, and favoring the complete elimination of the virus. In this review, we highlight the main molecular characteristics of this novel coronavirus, as well as the main pathognomonic signs of COVID-19. Furthermore, possible cell therapies are pointed out to show alternative treatments against COVID-19 and its sequels.
Collapse
|
246
|
Moradinasab S, Pourbagheri-Sigaroodi A, Zafari P, Ghaffari SH, Bashash D. Mesenchymal stromal/stem cells (MSCs) and MSC-derived extracellular vesicles in COVID-19-induced ARDS: Mechanisms of action, research progress, challenges, and opportunities. Int Immunopharmacol 2021; 97:107694. [PMID: 33932694 PMCID: PMC8079337 DOI: 10.1016/j.intimp.2021.107694] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/11/2021] [Accepted: 04/17/2021] [Indexed: 02/06/2023]
Abstract
In late 2019, a novel coronavirus (SARS-CoV-2) emerged in Wuhan city, Hubei province, China. Rapidly escalated into a worldwide pandemic, it has caused an unprecedented and devastating situation on the global public health and society economy. The severity of recent coronavirus disease, abbreviated to COVID-19, seems to be mostly associated with the patients' immune response. In this vein, mesenchymal stromal/stem cells (MSCs) have been suggested as a worth-considering option against COVID-19 as their therapeutic properties are mainly displayed in immunomodulation and anti-inflammatory effects. Indeed, administration of MSCs can attenuate cytokine storm and enhance alveolar fluid clearance, endothelial recovery, and anti-fibrotic regeneration. Despite advantages attributed to MSCs application in lung injuries, there are still several issues __foremost probability of malignant transformation and incidence of MSCs-related coagulopathy__ which should be resolved for the successful application of MSC therapy in COVID-19. In the present study, we review the historical evidence of successful use of MSCs and MSC-derived extracellular vesicles (EVs) in the treatment of acute respiratory distress syndrome (ARDS). We also take a look at MSCs mechanisms of action in the treatment of viral infections, and then through studying both the dark and bright sides of this approach, we provide a thorough discussion if MSC therapy might be a promising therapeutic approach in COVID-19 patients.
Collapse
Affiliation(s)
- Susan Moradinasab
- Iranian Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Zafari
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
247
|
Cho HM, Cho JY. Cardiomyocyte Death and Genome-Edited Stem Cell Therapy for Ischemic Heart Disease. Stem Cell Rev Rep 2021; 17:1264-1279. [PMID: 33492627 PMCID: PMC8316208 DOI: 10.1007/s12015-020-10096-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 01/14/2023]
Abstract
Massive death of cardiomyocytes is a major feature of cardiovascular diseases. Since the regenerative capacity of cardiomyocytes is limited, the regulation of their death has been receiving great attention. The cell death of cardiomyocytes is a complex mechanism that has not yet been clarified, and it is known to appear in various forms such as apoptosis, necrosis, etc. In ischemic heart disease, the apoptosis and necrosis of cardiomyocytes appear in two types of programmed forms (intrinsic and extrinsic pathways) and they account for a large portion of cell death. To repair damaged cardiomyocytes, diverse stem cell therapies have been attempted. However, despite the many positive effects, the low engraftment and survival rates have clearly limited the application of stem cells in clinical therapy. To solve these challenges, the introduction of the desired genes in stem cells can be used to enhance their capacity and improve their therapeutic efficiency. Moreover, as genome engineering technologies have advanced significantly, safer and more stable delivery of target genes and more accurate deletion of genes have become possible, which facilitates the genetic modification of stem cells. Accordingly, stem cell therapy for damaged cardiac tissue is expected to further improve. This review describes myocardial cell death, stem cell therapy for cardiac repair, and genome-editing technologies. In addition, we introduce recent stem cell therapies that incorporate genome-editing technologies in the myocardial infarction model. Graphical Abstract.
Collapse
Affiliation(s)
- Hyun-Min Cho
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Gwanak-ro1, Gwanak-gu, Seoul, 151-742, South Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Gwanak-ro1, Gwanak-gu, Seoul, 151-742, South Korea.
| |
Collapse
|
248
|
Mesenchymal Stem Cell-Based Therapy as an Alternative to the Treatment of Acute Respiratory Distress Syndrome: Current Evidence and Future Perspectives. Int J Mol Sci 2021; 22:ijms22157850. [PMID: 34360616 PMCID: PMC8346146 DOI: 10.3390/ijms22157850] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) represents a current challenge for medicine due to its incidence, morbidity and mortality and, also, the absence of an optimal treatment. The COVID-19 outbreak only increased the urgent demand for an affordable, safe and effective treatment for this process. Early clinical trials suggest the therapeutic usefulness of mesenchymal stem cells (MSCs) in acute lung injury (ALI) and ARDS. MSC-based therapies show antimicrobial, anti-inflammatory, regenerative, angiogenic, antifibrotic, anti-oxidative stress and anti-apoptotic actions, which can thwart the physiopathological mechanisms engaged in ARDS. In addition, MSC secretome and their derived products, especially exosomes, may reproduce the therapeutic effects of MSC in lung injury. This last strategy of treatment could avoid several safety issues potentially associated with the transplantation of living and proliferative cell populations and may be formulated in different forms. However, the following diverse limitations must be addressed: (i) selection of the optimal MSC, bearing in mind both the heterogeneity among donors and across different histological origins, (ii) massive obtention of these biological products through genetic manipulations of the most appropriate MSC, (iii) bioreactors that allow their growth in 3D, (iv) ideal culture conditions and (v) adequate functional testing of these obtaining biological products before their clinical application.
Collapse
|
249
|
Petryk N, Shevchenko O. Anti-inflammatory Activity of Mesenchymal Stem Cells in λ-Carrageenan-Induced Chronic Inflammation in Rats: Reactions of the Blood System, Leukocyte-Monocyte Ratio. Inflammation 2021; 43:1893-1901. [PMID: 32462547 DOI: 10.1007/s10753-020-01262-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The variety of chronic diseases caused by a chronic inflammatory process is an unresolved problem in developed countries. Due to this, modern medicine lacks effective, pathogenetic mechanisms of treatment or at least improvement of the quality of life of people with so-called diseases of civilization. The purpose of this study was to investigate the anti-inflammatory and immunomodulatory ability of mesenchymal stem cells (MSCs) in a model of λ-carrageenan secondary chronic inflammation in rats. MSCs derived from rat femoral epiphysis were used. At the current level of medicine, many highly specific markers of chronic inflammation are available that will also be studied later (α-TNF, IL 6, C-reactive protein); however, this article will consider the study of the most accessible but at the same time very informative indicators of the inflammatory process-a common total blood count-leukocytes, leukocyte formula, and LMR. The study was performed on 132 male Wistar rats weighing 180-200 g, which were divided into 12 groups. The inflammation was caused by the introduction of 10 mg λ-carrageenan intramuscular in right hip. After induction of edema, the experimental groups of rats were administered MSCs into the inflamed site, in the amount of 1-2 million cells once. Blood sampling was performed from 6 h to 28 days. With one-way ANOVA followed by Tukey-Kramer multiple comparisons test, p < 0.05, we compared our groups of animals. In the detailed dynamics of inflammation, from the 6th hour to the 28th day (ten terms), the reactions of the blood system and their mechanisms were investigated. There were intact rats-6 animals without any interventions, as well as rats administered MSCs without causing inflammation (6 animals) in experiment. In this experiment, the lymphocyte-monocyte ratio in rats is described for the first time, demonstrating the suppression of chronic inflammation by means of MSCs.
Collapse
Affiliation(s)
- Nataliia Petryk
- Department of Pathology, Kharkiv National Medical University, Kharkiv, Ukraine.
| | | |
Collapse
|
250
|
Miranda JP, Solá S. Editorial: The 11 th Edition of the International Meeting of the SPCE-TC: Advances in Stem Cells and Cell Therapies. Front Cell Dev Biol 2021; 9:720554. [PMID: 34336868 PMCID: PMC8323738 DOI: 10.3389/fcell.2021.720554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Joana P. Miranda
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal
| | - Susana Solá
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|