201
|
Vascular disease and risk factors are associated with cognitive decline in the alzheimer disease spectrum. Alzheimer Dis Assoc Disord 2015; 29:18-25. [PMID: 24787033 DOI: 10.1097/wad.0000000000000043] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We investigated the relationship between vascular disease and risk factors versus cognitive decline cross-sectionally and longitudinally in normal older control, mild cognitive impairment, and mild Alzheimer disease (AD) dementia subjects. A total of 812 participants (229 normal older control, 395 mild cognitive impairment, 188 AD) underwent cognitive testing, brain magnetic resonance imaging, and clinical evaluations at baseline and over a period of 3 years. General linear, longitudinal mixed-effects, and Cox proportional hazards models were used. Greater homocysteine level and white matter hyperintensity volume were associated with processing speed impairment (homocysteine: P=0.02; white matter hyperintensity: P<0.0001); greater Vascular Index score was associated with memory impairment (P=0.007); and greater number of apolipoprotein E ε4 (APOE4) alleles was associated with global cognitive impairment (P=0.007) at baseline. Apolipoprotein E ε4 was associated with greater rate of increase in global cognitive impairment (P=0.002) and processing speed impairment (P=0.001) over time, whereas higher total cholesterol was associated with greater rate of increase in global cognitive impairment (P=0.02) and memory impairment (P=0.06) over time. These results suggest a significant association of increased vascular disease and risk factors with cognitive impairment at baseline and over time in the AD spectrum in a sample that was selected to have low vascular burden at baseline.
Collapse
|
202
|
Ishii M, Iadecola C. Adipocyte-derived factors in age-related dementia and their contribution to vascular and Alzheimer pathology. Biochim Biophys Acta Mol Basis Dis 2015; 1862:966-74. [PMID: 26546479 DOI: 10.1016/j.bbadis.2015.10.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 12/23/2022]
Abstract
Age-related dementia is increasingly recognized as having a mixed pathology, with contributions from both cerebrovascular factors and pathogenic factors associated with Alzheimer's disease (AD). Furthermore, there is accumulating evidence that vascular risk factors in midlife, e.g., obesity, diabetes, and hypertension, increase the risk of developing late-life dementia. Since obesity and changes in body weight/adiposity often drive diabetes and hypertension, understanding the relationship between adiposity and age-related dementia may reveal common underlying mechanisms. Here we offer a brief appraisal of how changes in body weight and adiposity are related to both AD and dementia on vascular basis, and examine the involvement of two key adipocyte-derived hormones: leptin and adiponectin. The evidence suggests that in midlife increased body weight/adiposity and subsequent changes in adipocyte-derived hormones may increase the long-term susceptibility to dementia. On the other hand, later in life, decreases in body weight/adiposity and related hormonal changes are early manifestations of disease that precede the onset of dementia and may promote AD and vascular pathology. Understanding the contribution of adiposity to age-related dementia may help identify the underlying pathological mechanisms common to both vascular dementia and AD, and provide new putative targets for early diagnosis and therapy. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia, edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.
Collapse
Affiliation(s)
- Makoto Ishii
- Feil Family Brain and Mind Research Institute, Joan and Sanford I. Weill Medical College of Cornell University, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Joan and Sanford I. Weill Medical College of Cornell University, USA.
| |
Collapse
|
203
|
Ishii M, Iadecola C. Metabolic and Non-Cognitive Manifestations of Alzheimer's Disease: The Hypothalamus as Both Culprit and Target of Pathology. Cell Metab 2015; 22:761-76. [PMID: 26365177 PMCID: PMC4654127 DOI: 10.1016/j.cmet.2015.08.016] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is increasingly recognized as a complex neurodegenerative disease beginning decades prior to the cognitive decline. While cognitive deficits remain the cardinal manifestation of AD, metabolic and non-cognitive abnormalities, such as alterations in body weight and neuroendocrine functions, are also present, often preceding the cognitive decline. Furthermore, hypothalamic dysfunction can also be a driver of AD pathology. Here we offer a brief appraisal of hypothalamic dysfunction in AD and provide insight into an underappreciated dual role of the hypothalamus as both a culprit and target of AD pathology, as well as into new opportunities for therapeutic interventions and biomarker development.
Collapse
Affiliation(s)
- Makoto Ishii
- Feil Family Brain and Mind Research Institute, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA.
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA
| |
Collapse
|
204
|
Xia W, Mo H. Potential of tocotrienols in the prevention and therapy of Alzheimer's disease. J Nutr Biochem 2015; 31:1-9. [PMID: 27133418 DOI: 10.1016/j.jnutbio.2015.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/19/2015] [Accepted: 10/23/2015] [Indexed: 02/07/2023]
Abstract
Currently there is no cure for Alzheimer's disease (AD); clinical trials are underway to reduce amyloid generation and deposition, a neuropathological hallmark in brains of AD patients. While genetic factors and neuroinflammation contribute significantly to AD pathogenesis, whether increased cholesterol level is a causative factor or a result of AD is equivocal. Prenylation of proteins regulating neuronal functions requires mevalonate-derived farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). The observation that the levels of FPP and GGPP, but not that of cholesterol, are elevated in AD patients is consistent with the finding that statins, competitive inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, reduce FPP and GGPP levels and amyloid β protein production in preclinical studies. Retrospective studies show inverse correlations between incidence of AD and the intake and serum levels of the HMG CoA reductase-suppressive tocotrienols; tocopherols show mixed results. Tocotrienols, but not tocopherols, block the processing and nuclear localization of sterol regulatory element binding protein-2, the transcriptional factor for HMG CoA reductase and FPP synthase, and enhance the degradation of HMG CoA reductase. Consequently, tocotrienols deplete the pool of FPP and GGPP and potentially blunt prenylation-dependent AD pathogenesis. The antiinflammatory activity of tocotrienols further contributes to their protection against AD. The mevalonate- and inflammation-suppressive activities of tocotrienols may represent those of an estimated 23,000 mevalonate-derived plant secondary metabolites called isoprenoids, many of which are neuroprotective. Tocotrienol-containing plant foods and tocotrienol derivatives and formulations with enhanced bioavailability may offer a novel approach in AD prevention and treatment.
Collapse
Affiliation(s)
- Weiming Xia
- Geriatric Research Education and Clinical Center, ENR Memorial Veterans Hospital, Bedford, MA.
| | - Huanbiao Mo
- Department of Nutrition, Byrdine F. Lewis School of Nursing and Health Professions, Georgia State University, Atlanta, GA; Center for Obesity Reversal, Georgia State University, Atlanta, GA.
| |
Collapse
|
205
|
Daneschvar HL, Aronson MD, Smetana GW. Do statins prevent Alzheimer's disease? A narrative review. Eur J Intern Med 2015; 26:666-9. [PMID: 26342722 DOI: 10.1016/j.ejim.2015.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/13/2015] [Accepted: 08/19/2015] [Indexed: 01/02/2023]
Abstract
Alzheimer's disease is the most common cause of dementia and occurs commonly in patients 65 and older. There is an urgent need to find an effective management that could help prevent or at least slow down the progress of this major public health problem. Cholesterol related pathways might play a role in the pathogenesis of Alzheimer's disease. Treatment with 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors (statins) has been suggested to promote the prevention of Alzheimer's disease. In this review, we discuss potential pathogenetic pathways for the development of Alzheimer's disease and review the evidence regarding the value of statins as a strategy to prevent or delay progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Homayoun L Daneschvar
- Harvard Medical School, Division of General Medicine and Primary Care, Beth Israel Deaconess Medical Center/Shapiro 621C, 330 Brookline Ave, Boston, MA 02215, United States.
| | - Mark D Aronson
- Harvard Medical School, Division of General Medicine and Primary Care, Beth Israel Deaconess Medical Center, Boston, MA, United States.
| | - Gerald W Smetana
- Harvard Medical School, Division of General Medicine and Primary Care, Beth Israel Deaconess Medical Center, Boston, MA, United States.
| |
Collapse
|
206
|
Sato N, Morishita R. The roles of lipid and glucose metabolism in modulation of β-amyloid, tau, and neurodegeneration in the pathogenesis of Alzheimer disease. Front Aging Neurosci 2015; 7:199. [PMID: 26557086 PMCID: PMC4615808 DOI: 10.3389/fnagi.2015.00199] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 10/04/2015] [Indexed: 12/20/2022] Open
Abstract
Diabetes is a risk factor for Alzheimer disease (AD). Apolipoprotein E (ApoE) and several genes related to AD have recently been identified by genome-wide association studies (GWAS) as being closely linked to lipid metabolism. Lipid metabolism and glucose-energy metabolism are closely related. Here, we review the emerging evidence regarding the roles of lipid and glucose metabolism in the modulation of β-amyloid, tau, and neurodegeneration during the pathogenesis of AD. Disruption of homeostasis of lipid and glucose metabolism affects production and clearance of β-amyloid and tau phosphorylation, and induces neurodegeneration. A more integrated understanding of the interactions among lipid, glucose, and protein metabolism is required to elucidate the pathogenesis of AD and to develop next-generation therapeutic options.
Collapse
Affiliation(s)
- Naoyuki Sato
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka UniversitySuita, Japan
- Department of Geriatric Medicine, Graduate School of Medicine, Osaka UniversitySuita, Japan
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka UniversitySuita, Japan
| |
Collapse
|
207
|
High Fat Diet Enhances β-Site Cleavage of Amyloid Precursor Protein (APP) via Promoting β-Site APP Cleaving Enzyme 1/Adaptor Protein 2/Clathrin Complex Formation. PLoS One 2015; 10:e0131199. [PMID: 26414661 PMCID: PMC4587376 DOI: 10.1371/journal.pone.0131199] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/29/2015] [Indexed: 11/19/2022] Open
Abstract
Obesity and type 2 diabetes are risk factors of Alzheimer’s disease (AD). We reported that a high fat diet (HFD) promotes amyloid precursor protein (APP) cleavage by β-site APP cleaving enzyme 1 (BACE1) without increasing BACE1 levels in APP transgenic mice. However, the detailed mechanism had remained unclear. Here we demonstrate that HFD promotes BACE1/Adaptor protein-2 (AP-2)/clathrin complex formation by increasing AP-2 levels in APP transgenic mice. In Swedish APP overexpressing Chinese hamster ovary (CHO) cells as well as in SH-SY5Y cells, overexpression of AP-2 promoted the formation of BACE1/AP-2/clathrin complex, increasing the level of the soluble form of APP β (sAPPβ). On the other hand, mutant D495R BACE1, which inhibits formation of this trimeric complex, was shown to decrease the level of sAPPβ. Overexpression of AP-2 promoted the internalization of BACE1 from the cell surface, thus reducing the cell surface BACE1 level. As such, we concluded that HFD may induce the formation of the BACE1/AP-2/clathrin complex, which is followed by its transport of BACE1 from the cell surface to the intracellular compartments. These events might be associated with the enhancement of β-site cleavage of APP in APP transgenic mice. Here we present evidence that HFD, by regulation of subcellular trafficking of BACE1, promotes APP cleavage.
Collapse
|
208
|
Donohue MC, Moghadam SH, Roe AD, Sun CK, Edland SD, Thomas RG, Petersen RC, Sano M, Galasko D, Aisen PS, Rissman RA. Longitudinal plasma amyloid beta in Alzheimer's disease clinical trials. Alzheimers Dement 2015; 11:1069-79. [PMID: 25301682 PMCID: PMC4387108 DOI: 10.1016/j.jalz.2014.07.156] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/13/2014] [Accepted: 07/05/2014] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Little is known about the utility of plasma amyloid beta (Aβ) in clinical trials of Alzheimer's disease (AD). METHODS We analyzed longitudinal plasma samples from two large multicenter clinical trials: (1) donezepil and vitamin E in mild cognitive impairment (n = 405, 24 months) and (2) simvastatin in mild to moderate AD (n = 225, 18 months). RESULTS Baseline plasma Aβ was not related to cognitive or clinical progression. We observed a decrease in plasma Aβ40 and 42 among apolipoprotein E epsilon 4 (APOE ε4) carriers relative to noncarriers in the mild cognitive impairment trial. Patients treated with simvastatin showed a significant increase in Aβ compared with placebo. We found significant storage time effects and considerable plate-to-plate variation. DISCUSSION We found no support for the utility of plasma Aβ as a prognostic factor or correlate of cognitive change. Analysis of stored specimens requires careful standardization and experimental design, but plasma Aβ may prove useful in pharmacodynamic studies of antiamyloid drugs.
Collapse
Affiliation(s)
- Michael C Donohue
- Alzheimer's Disease Cooperative Study, Department of Neurosciences, University of California San Diego, School of Medicine, San Diego, CA, USA; Department of Family Preventive Medicine, University of California San Diego, School of Medicine, San Diego, CA, USA
| | - Setareh H Moghadam
- Alzheimer's Disease Cooperative Study, Department of Neurosciences, University of California San Diego, School of Medicine, San Diego, CA, USA
| | - Allyson D Roe
- Alzheimer's Disease Cooperative Study, Department of Neurosciences, University of California San Diego, School of Medicine, San Diego, CA, USA
| | - Chung-Kai Sun
- Alzheimer's Disease Cooperative Study, Department of Neurosciences, University of California San Diego, School of Medicine, San Diego, CA, USA
| | - Steven D Edland
- Department of Family Preventive Medicine, University of California San Diego, School of Medicine, San Diego, CA, USA
| | - Ronald G Thomas
- Alzheimer's Disease Cooperative Study, Department of Neurosciences, University of California San Diego, School of Medicine, San Diego, CA, USA; Department of Family Preventive Medicine, University of California San Diego, School of Medicine, San Diego, CA, USA
| | - Ronald C Petersen
- Alzheimer's Disease Cooperative Study, Department of Neurosciences, University of California San Diego, School of Medicine, San Diego, CA, USA; Department of Neurology, Mayo Clinic Alzheimer's Disease Research Center, Department of Health Sciences Mayo Clinic College of Medicine, Research, Rochester, MN, USA
| | - Mary Sano
- Alzheimer's Disease Cooperative Study, Department of Neurosciences, University of California San Diego, School of Medicine, San Diego, CA, USA; Mount Sinai School of Medicine and James J. Peters Veterans Association Medical Center, Bronx, NY, USA
| | - Douglas Galasko
- Alzheimer's Disease Cooperative Study, Department of Neurosciences, University of California San Diego, School of Medicine, San Diego, CA, USA
| | - Paul S Aisen
- Alzheimer's Disease Cooperative Study, Department of Neurosciences, University of California San Diego, School of Medicine, San Diego, CA, USA
| | - Robert A Rissman
- Alzheimer's Disease Cooperative Study, Department of Neurosciences, University of California San Diego, School of Medicine, San Diego, CA, USA.
| |
Collapse
|
209
|
Paul R, Choudhury A, Borah A. Cholesterol - A putative endogenous contributor towards Parkinson's disease. Neurochem Int 2015; 90:125-33. [PMID: 26232622 DOI: 10.1016/j.neuint.2015.07.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/25/2015] [Accepted: 07/27/2015] [Indexed: 01/20/2023]
Abstract
Elevated levels of cholesterol and its metabolites (oxysterols) have been reported to be associated not only with several metabolic syndromes, but also become a prognostic risk factor of neurodegenerative diseases particularly Alzheimer's disease. The incidence and the prospect of Alzheimer's disease with respect to elevated levels of cholesterol have been studied extensively and reviewed earlier. Recently, several interesting findings have shown the occurrence of equivalent Parkinsonian pathologies in cellular neuronal models, mediated by oxysterols or excess exposure to cholesterol. In this regard, oxysterols are particular in causing alpha-synuclein aggregation and destruction of dopamine containing neurons in in vitro models, which is linked to their direct influence on oxidative stress provoking potency. Inspite of the significant in vitro reports, which suggest the relativeness of cholesterol or oxysterol towards Parkinsonism, several prospective clinical reports provided a negative or no correlation. However, few prospective clinical studies showed a positive correlation between plasma cholesterol and incidence of Parkinson's disease (PD). Also, few significant studies have convincingly demonstrated that high fat diet exacerbates parkinsonian pathologies, including loss of dopaminergic neurons and oxidative stress parameters in animal models of PD. The present review brings together all the neuropathological proceedings mediated by excess cholesterol or its metabolites in brain in the light of their contribution towards the onset of PD. Also we have reviewed the possibilities of cholesterol lowering efficacy of statin therapy, in reducing the occurrence of PD.
Collapse
Affiliation(s)
- Rajib Paul
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Amarendranath Choudhury
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India.
| |
Collapse
|
210
|
Hohsfield LA, Daschil N, Orädd G, Strömberg I, Humpel C. Vascular pathology of 20-month-old hypercholesterolemia mice in comparison to triple-transgenic and APPSwDI Alzheimer's disease mouse models. Mol Cell Neurosci 2015; 63:83-95. [PMID: 25447943 DOI: 10.1016/j.mcn.2014.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/02/2014] [Accepted: 10/27/2014] [Indexed: 10/24/2022] Open
Abstract
Several studies have shown that elevated plasma cholesterol levels (i.e. hypercholesterolemia) serve as a risk factor for late-onset Alzheimer's disease (AD). However, it remains unclear how hypercholesterolemia may contribute to the onset and progression of AD pathology. In order to determine the role of hypercholesterolemia at various stages of AD, we evaluated the effects of high cholesterol diet (5% cholesterol) in wild-type (WT; C57BL6) and triple-transgenic AD (3xTg-AD; Psen1, APPSwe, tauB301L) mice at 7, 14, and 20 months. The transgenic APP-Swedish/Dutch/Iowa AD mouse model (APPSwDI) was used as a control since these animals are more pathologically-accelerated and are known to exhibit extensive plaque deposition and cerebral amyloid angiopathy. Here, we describe the effects of high cholesterol diet on: (1) cognitive function and stress, (2) AD-associated pathologies, (3) neuroinflammation, (4) blood–brain barrier disruption and ventricle size, and (5) vascular dysfunction. Our data show that high dietary cholesterol increases weight, slightly impairs cognitive function, promotes glial cell activation and complement-related pathways, enhances the infiltration of blood-derived proteins and alters vascular integrity, however, it does not induce AD-related pathologies. While normal-fed 3xTg-AD mice display a typical AD-like pathology in addition to severe cognitive impairment and neuroinflammation at 20 months of age, vascular alterations are less pronounced. No microbleedings were seen by MRI, however, the ventricle size was enlarged. Triple-transgenic AD mice, on the other hand, fed a high cholesterol diet do not survive past 14 months of age. Our data indicates that cholesterol does not markedly potentiate AD-related pathology, nor does it cause significant impairments in cognition. However, it appears that high cholesterol diet markedly increases stress-related plasma corticosterone levels as well as some vessel pathologies. Together, our findings represent the first demonstration of prolonged high cholesterol diet and the examination of its effects at various stages of cerebrovascular- and AD-related disease.
Collapse
|
211
|
Mendoza-Oliva A, Ferrera P, Fragoso-Medina J, Arias C. Lovastatin Differentially Affects Neuronal Cholesterol and Amyloid-β Production in vivo and in vitro. CNS Neurosci Ther 2015; 21:631-41. [PMID: 26096465 DOI: 10.1111/cns.12420] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/08/2015] [Accepted: 05/22/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND AIMS Epidemiological and experimental studies indicate that high cholesterol may increase susceptibility to age-associated neurodegenerative disorders, such as Alzheimer's disease (AD). Thus, it has been suggested that statins, which are inhibitors of the enzyme 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), may be a useful therapeutic tool to diminish the risk of AD. However, several studies that analyzed the therapeutic benefits of statins have yielded conflicting results. Herein, we investigated the role of lovastatin on neuronal cholesterol homeostasis and its effects on amyloid β protein production in vivo and in vitro. METHODS AND RESULTS Lovastatin effects were analyzed in vitro using differentiated human neuroblastoma cells and in vivo in a lovastatin-fed rat model. We demonstrated that lovastatin can differentially affect the expression of APP and Aβ production in vivo and in vitro. Lovastatin-induced HMGCR inhibition was detrimental to neuronal survival in vitro via a mechanism unrelated to the reduction of cholesterol. We found that in vivo, dietary cholesterol was associated with increased Aβ production in the cerebral cortex, and lovastatin was not able to reduce cholesterol levels. However, lovastatin induced a remarkable increase in the mature form of the sterol regulatory element-binding protein-2 (SREBP-2) as well as its target gene HMGCR, in both neuronal cells and in the brain. CONCLUSIONS Lovastatin modifies the mevalonate pathway without affecting cholesterol levels in vivo and is able to reduce Aβ levels only in vitro.
Collapse
Affiliation(s)
- Aydé Mendoza-Oliva
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F, México
| | - Patricia Ferrera
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F, México
| | - Jorge Fragoso-Medina
- Departmento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México D.F, México
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F, México
| |
Collapse
|
212
|
Gamba P, Testa G, Gargiulo S, Staurenghi E, Poli G, Leonarduzzi G. Oxidized cholesterol as the driving force behind the development of Alzheimer's disease. Front Aging Neurosci 2015; 7:119. [PMID: 26150787 PMCID: PMC4473000 DOI: 10.3389/fnagi.2015.00119] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/03/2015] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD), the most common neurodegenerative disorder associated with dementia, is typified by the pathological accumulation of amyloid Aβ peptides and neurofibrillary tangles (NFT) within the brain. Considerable evidence indicates that many events contribute to AD progression, including oxidative stress, inflammation, and altered cholesterol metabolism. The brain’s high lipid content makes it particularly vulnerable to oxidative species, with the consequent enhancement of lipid peroxidation and cholesterol oxidation, and the subsequent formation of end products, mainly 4-hydroxynonenal and oxysterols, respectively from the two processes. The chronic inflammatory events observed in the AD brain include activation of microglia and astrocytes, together with enhancement of inflammatory molecule and free radical release. Along with glial cells, neurons themselves have been found to contribute to neuroinflammation in the AD brain, by serving as sources of inflammatory mediators. Oxidative stress is intimately associated with neuroinflammation, and a vicious circle has been found to connect oxidative stress and inflammation in AD. Alongside oxidative stress and inflammation, altered cholesterol metabolism and hypercholesterolemia also significantly contribute to neuronal damage and to progression of AD. Increasing evidence is now consolidating the hypothesis that oxidized cholesterol is the driving force behind the development of AD, and that oxysterols are the link connecting the disease to altered cholesterol metabolism in the brain and hypercholesterolemia; this is because of the ability of oxysterols, unlike cholesterol, to cross the blood brain barrier (BBB). The key role of oxysterols in AD pathogenesis has been strongly supported by research pointing to their involvement in modulating neuroinflammation, Aβ accumulation, and cell death. This review highlights the key role played by cholesterol and oxysterols in the brain in AD pathogenesis.
Collapse
Affiliation(s)
- Paola Gamba
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin Orbassano, Torino, Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin Orbassano, Torino, Italy
| | - Simona Gargiulo
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin Orbassano, Torino, Italy
| | - Erica Staurenghi
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin Orbassano, Torino, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin Orbassano, Torino, Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin Orbassano, Torino, Italy
| |
Collapse
|
213
|
A high-cholesterol diet enriched with polyphenols from Oriental plums (Prunus salicina) improves cognitive function and lowers brain cholesterol levels and neurodegenerative-related protein expression in mice. Br J Nutr 2015; 113:1550-7. [DOI: 10.1017/s0007114515000732] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ageing accompanied by a decline in cognitive performance may be a result of the long-term effects of oxidative stress on neurologic processes. It has been shown that high-cholesterol contents in the blood and brain may lead to the deposition of the β-amyloid (Aβ) protein in the brain, which damages brain cells. The present study was designed to observe the effect of polyphenol-rich Oriental plums on cognitive function and cerebral neurodegeneration-related protein expression in mice that were fed a high-cholesterol diet for 5 months. The study consisted of four groups: the control (Ctrl) group, which was fed the American Institute of Nutrition (AIN)-93M diet; the high cholesterol (HC) group, which was fed the AIN-93M diet with 5 % cholesterol; the high cholesterol+low Oriental plum (LOP) group, which was fed the AIN-93M diet with 5 % cholesterol and 2 % Oriental plum powder; and the high cholesterol+high Oriental plum (HOP) group, which was fed the AIN-93M diet with 5 % cholesterol and 5 % Oriental plum powder. Measurements of cognitive function were assessed using the Morris water maze, and the mRNA expression of cholesterol hydroxylase (Cyp46), Aβ and β-secretase 1 (BACE1) were analysed. The results showed that cholesterol concentrations in both the blood and the brain were significantly higher in the HC group than in the Ctrl and HOP groups at the end of the trial. The high-cholesterol diet per se produced significant cognitive deficits, which were accompanied by a significantly increased mRNA expression of Cyp46, BACE1, Aβ and 24-hydroxycholesterol in the brain cortex and hippocampus. However, all of these variables were non-significantly increased in the HOP group as compared to the Ctrl group. In conclusion, incorporating polyphenol-enriched Oriental plum into a high-cholesterol diet can ameliorate some of the symptoms of neurodegenerative conditions.
Collapse
|
214
|
Power MC, Weuve J, Sharrett AR, Blacker D, Gottesman RF. Statins, cognition, and dementia—systematic review and methodological commentary. Nat Rev Neurol 2015; 11:220-9. [PMID: 25799928 PMCID: PMC4458855 DOI: 10.1038/nrneurol.2015.35] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Firm conclusions about whether mid-life or long-term statin use has an impact on cognitive decline and dementia remain elusive. Here, our objective was to systematically review, synthesize and critique the epidemiological literature that examines the relationship between statin use and cognition, so as to assess the current state of knowledge, identify gaps in our understanding, and make recommendations for future research. We summarize the findings of randomized controlled trials (RCTs) and observational studies, grouped according to study design. We discuss the methods for each, and consider likely sources of bias, such as reverse causation and confounding. Although observational studies that considered statin use at or near the time of dementia diagnosis suggest a protective effect of statins, these findings could be attributable to reverse causation. RCTs and well-conducted observational studies of baseline statin use and subsequent cognition over several years of follow-up do not support a causal preventative effect of late-life statin use on cognitive decline or dementia. Given that much of the human research on statins and cognition in the future will be observational, careful study design and analysis will be essential.
Collapse
Affiliation(s)
- Melinda C. Power
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA (M.C.P., A.R.S.). Department of Internal Medicine, Rush Institute for Healthy Aging, 1653 W. Congress Parkway, Chicago, IL, 60612, USA (J.W.) Department of Psychiatry, Harvard Medical School and Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA (D.B.). Department of Neurology, Johns Hopkins School of Medicine, 733 North Broadway, Baltimore, MD, 21205, USA (R.F.G.)
| | - Jennifer Weuve
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA (M.C.P., A.R.S.). Department of Internal Medicine, Rush Institute for Healthy Aging, 1653 W. Congress Parkway, Chicago, IL, 60612, USA (J.W.) Department of Psychiatry, Harvard Medical School and Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA (D.B.). Department of Neurology, Johns Hopkins School of Medicine, 733 North Broadway, Baltimore, MD, 21205, USA (R.F.G.)
| | - A. Richey Sharrett
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA (M.C.P., A.R.S.). Department of Internal Medicine, Rush Institute for Healthy Aging, 1653 W. Congress Parkway, Chicago, IL, 60612, USA (J.W.) Department of Psychiatry, Harvard Medical School and Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA (D.B.). Department of Neurology, Johns Hopkins School of Medicine, 733 North Broadway, Baltimore, MD, 21205, USA (R.F.G.)
| | - Deborah Blacker
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA (M.C.P., A.R.S.). Department of Internal Medicine, Rush Institute for Healthy Aging, 1653 W. Congress Parkway, Chicago, IL, 60612, USA (J.W.) Department of Psychiatry, Harvard Medical School and Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA (D.B.). Department of Neurology, Johns Hopkins School of Medicine, 733 North Broadway, Baltimore, MD, 21205, USA (R.F.G.)
| | - Rebecca F. Gottesman
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA (M.C.P., A.R.S.). Department of Internal Medicine, Rush Institute for Healthy Aging, 1653 W. Congress Parkway, Chicago, IL, 60612, USA (J.W.) Department of Psychiatry, Harvard Medical School and Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA (D.B.). Department of Neurology, Johns Hopkins School of Medicine, 733 North Broadway, Baltimore, MD, 21205, USA (R.F.G.)
| |
Collapse
|
215
|
Kim B, Feldman EL. Insulin resistance as a key link for the increased risk of cognitive impairment in the metabolic syndrome. Exp Mol Med 2015; 47:e149. [PMID: 25766618 PMCID: PMC4351418 DOI: 10.1038/emm.2015.3] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 11/19/2014] [Indexed: 02/07/2023] Open
Abstract
Metabolic syndrome (MetS) is a cluster of cardiovascular risk factors that includes obesity, diabetes, and dyslipidemia. Accumulating evidence implies that MetS contributes to the development and progression of Alzheimer's disease (AD); however, the factors connecting this association have not been determined. Insulin resistance (IR) is at the core of MetS and likely represent the key link between MetS and AD. In the central nervous system, insulin plays key roles in learning and memory, and AD patients exhibit impaired insulin signaling that is similar to that observed in MetS. As we face an alarming increase in obesity and T2D in all age groups, understanding the relationship between MetS and AD is vital for the identification of potential therapeutic targets. Recently, several diabetes therapies that enhance insulin signaling are being tested for a potential therapeutic benefit in AD and dementia. In this review, we will discuss MetS as a risk factor for AD, focusing on IR and the recent progress and future directions of insulin-based therapies.
Collapse
Affiliation(s)
- Bhumsoo Kim
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
216
|
Hawkes CA, Gentleman SM, Nicoll JA, Carare RO. Prenatal high-fat diet alters the cerebrovasculature and clearance of β-amyloid in adult offspring. J Pathol 2015; 235:619-31. [PMID: 25345857 DOI: 10.1002/path.4468] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 10/08/2014] [Accepted: 10/12/2014] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of β-amyloid (Aβ) peptides in the extracellular spaces of the brain as plaques and in the walls of blood vessels as cerebral amyloid angiopathy (CAA). Failure of perivascular drainage of Aβ along cerebrovascular basement membranes contributes to the development of CAA. Mid-life hypercholesterolaemia is a risk factor for the development of AD. Maternal obesity is associated with the development of obesity, hypertension and hypercholesterolaemia in adulthood, suggesting that the risk for AD and CAA may also be influenced by the early-life environment. In the present study, we tested the hypothesis that early-life exposure to a high-fat diet results in changes to the cerebrovasculature and failure of Aβ clearance from the brain. We also assessed whether vascular Aβ deposition is greater in the brains of aged humans with a history of hyperlipidaemia, compared to age-matched controls with normal lipidaemia. Using a mouse model of maternal obesity, we found that exposure to a high-fat diet during gestation and lactation induced changes in multiple components of the neurovascular unit, including a down-regulation in collagen IV, fibronectin and apolipoprotein E, an up-regulation in markers of astrocytes and perivascular macrophages and altered blood vessel morphology in the brains of adult mice. Sustained high-fat diet over the entire lifespan resulted in additional decreases in levels of pericytes and impaired perivascular clearance of Aβ from the brain. In humans, vascular Aβ load was significantly increased in the brains of aged individuals with a history of hypercholesterolaemia. These results support a critical role for early dietary influence on the brain vasculature across the lifespan, with consequences for the development of age-related cerebrovascular and neurodegenerative diseases.
Collapse
Affiliation(s)
- Cheryl A Hawkes
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK
| | | | | | | |
Collapse
|
217
|
Haast RAM, Kiliaan AJ. Impact of fatty acids on brain circulation, structure and function. Prostaglandins Leukot Essent Fatty Acids 2015; 92:3-14. [PMID: 24485516 DOI: 10.1016/j.plefa.2014.01.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 01/03/2014] [Indexed: 12/30/2022]
Abstract
The use of dietary intervention has evolved into a promising approach to prevent the onset and progression of brain diseases. The positive relationship between intake of omega-3 long chain polyunsaturated fatty acids (ω3-LCPUFAs) and decreased onset of disease- and aging-related deterioration of brain health is increasingly endorsed across epidemiological and diet-interventional studies. Promising results are found regarding to the protection of proper brain circulation, structure and functionality in healthy and diseased humans and animal models. These include enhanced cerebral blood flow (CBF), white and gray matter integrity, and improved cognitive functioning, and are possibly mediated through increased neurovascular coupling, neuroprotection and neuronal plasticity, respectively. Contrary, studies investigating diets high in saturated fats provide opposite results, which may eventually lead to irreversible damage. Studies like these are of great importance given the high incidence of obesity caused by the increased and decreased consumption of respectively saturated fats and ω3-LCPUFAs in the Western civilization. This paper will review in vivo research conducted on the effects of ω3-LCPUFAs and saturated fatty acids on integrity (circulation, structure and function) of the young, aging and diseased brain.
Collapse
Affiliation(s)
- Roy A M Haast
- Department of Anatomy, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Amanda J Kiliaan
- Department of Anatomy, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
218
|
Baranello RJ, Bharani KL, Padmaraju V, Chopra N, Lahiri DK, Greig NH, Pappolla MA, Sambamurti K. Amyloid-beta protein clearance and degradation (ABCD) pathways and their role in Alzheimer's disease. Curr Alzheimer Res 2015; 12:32-46. [PMID: 25523424 PMCID: PMC4820400 DOI: 10.2174/1567205012666141218140953] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/16/2014] [Accepted: 12/05/2014] [Indexed: 11/22/2022]
Abstract
Amyloid-β proteins (Aβ) of 42 (Aβ42) and 40 aa (Aβ40) accumulate as senile plaques (SP) and cerebrovascular amyloid protein deposits that are defining diagnostic features of Alzheimer's disease (AD). A number of rare mutations linked to familial AD (FAD) on the Aβ precursor protein (APP), Presenilin-1 (PS1), Presenilin- 2 (PS2), Adamalysin10, and other genetic risk factors for sporadic AD such as the ε4 allele of Apolipoprotein E (ApoE-ε4) foster the accumulation of Aβ and also induce the entire spectrum of pathology associated with the disease. Aβ accumulation is therefore a key pathological event and a prime target for the prevention and treatment of AD. APP is sequentially processed by β-site APP cleaving enzyme (BACE1) and γ-secretase, a multisubunit PS1/PS2-containing integral membrane protease, to generate Aβ. Although Aβ accumulates in all forms of AD, the only pathways known to be affected in FAD increase Aβ production by APP gene duplication or via base substitutions on APP and γ-secretase subunits PS1 and PS2 that either specifically increase the yield of the longer Aβ42 or both Aβ40 and Aβ42. However, the vast majority of AD patients accumulate Aβ without these known mutations. This led to proposals that impairment of Aβ degradation or clearance may play a key role in AD pathogenesis. Several candidate enzymes, including Insulin-degrading enzyme (IDE), Neprilysin (NEP), Endothelin-converting enzyme (ECE), Angiotensin converting enzyme (ACE), Plasmin, and Matrix metalloproteinases (MMPs) have been identified and some have even been successfully evaluated in animal models. Several studies also have demonstrated the capacity of γ-secretase inhibitors to paradoxically increase the yield of Aβ and we have recently established that the mechanism is by skirting Aβ degradation. This review outlines major cellular pathways of Aβ degradation to provide a basis for future efforts to fully characterize the panel of pathways responsible for Aβ turnover.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kumar Sambamurti
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Avenue, BSB 403, Charleston, SC 29425, USA.
| |
Collapse
|
219
|
Lipids in Amyloid-β Processing, Aggregation, and Toxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 855:67-94. [PMID: 26149926 DOI: 10.1007/978-3-319-17344-3_3] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aggregation of amyloid-beta (Aβ) peptide is the major event underlying neuronal damage in Alzheimer's disease (AD). Specific lipids and their homeostasis play important roles in this and other neurodegenerative disorders. The complex interplay between the lipids and the generation, clearance or deposition of Aβ has been intensively investigated and is reviewed in this chapter. Membrane lipids can have an important influence on the biogenesis of Aβ from its precursor protein. In particular, increased cholesterol in the plasma membrane augments Aβ generation and shows a strong positive correlation with AD progression. Furthermore, apolipoprotein E, which transports cholesterol in the cerebrospinal fluid and is known to interact with Aβ or compete with it for the lipoprotein receptor binding, significantly influences Aβ clearance in an isoform-specific manner and is the major genetic risk factor for AD. Aβ is an amphiphilic peptide that interacts with various lipids, proteins and their assemblies, which can lead to variation in Aβ aggregation in vitro and in vivo. Upon interaction with the lipid raft components, such as cholesterol, gangliosides and phospholipids, Aβ can aggregate on the cell membrane and thereby disrupt it, perhaps by forming channel-like pores. This leads to perturbed cellular calcium homeostasis, suggesting that Aβ-lipid interactions at the cell membrane probably trigger the neurotoxic cascade in AD. Here, we overview the roles of specific lipids, lipid assemblies and apolipoprotein E in Aβ processing, clearance and aggregation, and discuss the contribution of these factors to the neurotoxicity in AD.
Collapse
|
220
|
Nguyen JCD, Killcross AS, Jenkins TA. Obesity and cognitive decline: role of inflammation and vascular changes. Front Neurosci 2014; 8:375. [PMID: 25477778 PMCID: PMC4237034 DOI: 10.3389/fnins.2014.00375] [Citation(s) in RCA: 273] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 10/31/2014] [Indexed: 01/02/2023] Open
Abstract
The incidence of obesity in middle age is increasing markedly, and in parallel the prevalence of metabolic disorders including cardiovascular disease and type II diabetes is also rising. Numerous studies have demonstrated that both obesity and metabolic disorders are associated with poorer cognitive performance, cognitive decline, and dementia. In this review we discuss the effects of obesity on cognitive performance, including both clinical and preclinical observations, and discuss some of the potential mechanisms involved, namely inflammation and vascular and metabolic alterations.
Collapse
Affiliation(s)
- Jason C. D. Nguyen
- Discipline of Pharmaceutical Sciences, School of Medical Sciences, Health Innovations Research Institute, RMIT UniversityBundoora, VIC, Australia
| | | | - Trisha A. Jenkins
- Discipline of Pharmaceutical Sciences, School of Medical Sciences, Health Innovations Research Institute, RMIT UniversityBundoora, VIC, Australia
| |
Collapse
|
221
|
Valenti R, Pantoni L, Markus HS. Treatment of vascular risk factors in patients with a diagnosis of Alzheimer's disease: a systematic review. BMC Med 2014; 12:160. [PMID: 25385407 PMCID: PMC4226862 DOI: 10.1186/s12916-014-0160-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 08/20/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increasing evidence suggests vascular risk factors (VRF) play a role in the pathogenesis of Alzheimer's disease (AD). Epidemiological studies have found associations between VRF and risk of AD. Treating VRF in patients with AD offers a potential treatment option but ineffective treatments should be avoided in this group who are frequently on multiple medications and in whom compliance may be challenging. METHODS Studies containing information on the treatment of VRF in patients with a diagnosis of AD were identified using a defined search strategy. Randomised controlled trials and observational studies were included. RESULTS The pre-specified search strategy retrieved 11,992 abstract articles, and 25 papers including those identified on review of reference lists and reviews met the inclusion criteria. Of these, 11 were randomised controlled trials (RCTs) and 14 observational studies. Observational studies suggested that a VRF package and treatment of hypertension and statin therapy may be associated with improved outcome but these studies suffered from potential bias. The few RCTs performed were mostly small with short duration follow-up, and do not provide clear evidence either way. CONCLUSIONS Observational data raises the possibility that treating VRF could alter the rate of decline in AD. However RCT data are not yet available to support this hypothesis and to alter clinical practice. RCTs in larger numbers of individuals with longer follow-up, ideally in the early stages of AD, are required to address this potentially important treatment question.
Collapse
Affiliation(s)
| | | | - Hugh S Markus
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
222
|
Cerebral and blood correlates of reduced functional connectivity in mild cognitive impairment. Brain Struct Funct 2014; 221:631-45. [PMID: 25366971 DOI: 10.1007/s00429-014-0930-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 10/23/2014] [Indexed: 12/15/2022]
Abstract
Growing evidence suggests that decreased functional connectivity in cortical networks precedes clinical stages of Alzheimer's disease (AD), although our knowledge about cerebral and biological correlates of this phenomenon is limited. To shed light on this issue, we have investigated whether resting-state oscillatory connectivity patterns in healthy older (HO) and amnestic mild cognitive impairment (aMCI) subjects are related to anatomical grey matter (GM) and functional (2-[18F]fluoro-2-deoxy-D-glucose (FDG)-PET) changes of neuroelectric sources of alpha rhythms, and/or to changes in plasma amyloid-beta (Aβ) and serum lipid levels, blood markers tied to AD pathogenesis and aging-related cognitive decline. We found that aMCI subjects showed decreased levels of cortical connectivity, reduced FDG-PET intake of the precuneus, and GM atrophy of the thalamus, together with higher levels of Aβ and apolipoprotein B (ApoB) compared to HO. Interestingly, levels of high-density lipoprotein (HDL) cholesterol were positively correlated with the strength of neural-phase coupling in aMCI subjects, and increased triglycerides accompanied bilateral GM loss in the precuneus of aMCI subjects. Together, these findings provide peripheral blood correlates of reduced resting-state cortical connectivity in aMCI, supported by anatomo-functional changes in cerebral sources of alpha rhythms. This framework constitutes an integrated approach to assess functional changes in cortical networks through neuroimaging and peripheral blood markers during early stages of neurodegeneration.
Collapse
|
223
|
Marwarha G, Ghribi O. Does the oxysterol 27-hydroxycholesterol underlie Alzheimer's disease-Parkinson's disease overlap? Exp Gerontol 2014; 68:13-8. [PMID: 25261765 DOI: 10.1016/j.exger.2014.09.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 01/13/2023]
Abstract
Alzheimer's disease (AD), the most common form of dementia, is characterized histopathologically by the deposition of β-amyloid (Aβ) plaques and neurofibrillary tangles-containing hyperphosphorylated tau protein in the brain. Parkinson's disease (PD), the most common movement disorder, is characterized by the aggregation of α-synuclein protein in Lewy body inclusions and the death of dopaminergic neurons in the substantia nigra. Based on their pathological signatures, AD and PD can be considered as two different disease entities. However, a subpopulation of PD patients also exhibit Aβ plaques, and AD patients exhibit α-synuclein aggregates. This overlap between PD and AD suggests that common pathological pathways exist for the two diseases. Identification of factors and cellular mechanisms by which these factors can trigger pathological hallmarks for AD/PD overlap may help in designing disease-modifying therapies that can reverse or stop the progression of AD and PD. For the last decade, work in our laboratory has shown that fluctuations in the levels of cholesterol oxidation products (oxysterols) may correlate with the onset of AD and PD. In this review, we will provide results from our laboratory and data from literature that converge to strongly suggest the involvement of cholesterol and cholesterol oxidation products in the pathogenesis of AD and PD. We will specifically delineate the role of and the underlying mechanisms by which increased levels of the oxysterol 27-hydroxycholesterol contribute to the pathogenesis of AD, PD, and AD/PD overlap.
Collapse
Affiliation(s)
- Gurdeep Marwarha
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
| | - Othman Ghribi
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States.
| |
Collapse
|
224
|
Venturini L, Perna S, Sardi F, Faliva M, Cavagna P, Bernardinelli L, Ricevuti G, Rondanelli M. Alzheimer's Disease: From Genes to Nutrition. EUR J INFLAMM 2014. [DOI: 10.1177/1721727x1401200301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is widely identified as the most common cause of sporadic dementia. Its aetiology is still debated, as despite several hypotheses, different factors seem to play a role in its establishment and development. Recent studies have proposed a possible preventing role of nutrition. The weight loss typical of earlier phase of disease and the finding of malnutrition as a common trait between patients leads to hypothesize that a supplementation of specific nutrients seems to be useful and effective in terms of improvement of cognitive functions. Malnourished patients show also altered parameters when investigating inflammation markers: for example, hyperhomocysteinemia is a typical finding in elderly affected by dementia, and it can be prevented and corrected by using a proper nutrients supplementation. Pro-inflammatory state can be reduced with supplementation of polyunsaturated fatty acids, vitamins of the group B and phosphatidylserine, that can act reducing IL-1β (pro-inflammatory cytokine) and improving IL-10 (anti-inflammatory cytokine) synthesis. While investigating the role of nutrition, it seems to be deeply linked with genetic; a genetic onset AD-related could be latent and can be influenced by nutritional attitude. AD can be considered a sort of latent clinical condition that would disclose or not, depending also on micro-environment and nutritional parameters. The genetic expression can be influenced by assumptions or not of specific nutrients, with the promotion of different pro- or anti-inflammatory settings. The specific role of each micronutrient (in particular vitamins) and trace elements still needs to be punctuated, as they are involved in a pool of different reactions. Also genes acts not independently but in an interconnected pattern, in which the role of a single gene needs to be cleared, depending on others. This complex system of predisposing conditions and a possible role of nutrition as modulator of the inflammatory state is the object of this review.
Collapse
Affiliation(s)
- L. Venturini
- Department of Internal Medicine, Therapeutics, Cellular Phatophysiology and Clinical Immunology Laboratory, Azienda di Servizi alla Persona di Pavia, University of Pavia, Italy
| | - S. Perna
- Department of Public Health, Neuroscience, Experimental and Forensic Medicine, Section of Human Nutrition and Dietetics, Azienda di Servizi alla Persona di Pavia, University of Pavia, Italy
| | - F. Sardi
- Department of Internal Medicine, Therapeutics, Cellular Phatophysiology and Clinical Immunology Laboratory, Azienda di Servizi alla Persona di Pavia, University of Pavia, Italy
| | - M.A. Faliva
- Department of Public Health, Neuroscience, Experimental and Forensic Medicine, Section of Human Nutrition and Dietetics, Azienda di Servizi alla Persona di Pavia, University of Pavia, Italy
| | - P. Cavagna
- DSSAP Department of Applied and Phychic Behavioural Sciences, University of Pavia, Italy
| | - L. Bernardinelli
- DSSAP Department of Applied and Phychic Behavioural Sciences, University of Pavia, Italy
- Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - G. Ricevuti
- Department of Internal Medicine, Therapeutics, Cellular Phatophysiology and Clinical Immunology Laboratory, Azienda di Servizi alla Persona di Pavia, University of Pavia, Italy
| | - M. Rondanelli
- Department of Public Health, Neuroscience, Experimental and Forensic Medicine, Section of Human Nutrition and Dietetics, Azienda di Servizi alla Persona di Pavia, University of Pavia, Italy
| |
Collapse
|
225
|
Matsuzaki K. How do membranes initiate Alzheimer's Disease? Formation of toxic amyloid fibrils by the amyloid β-protein on ganglioside clusters. Acc Chem Res 2014; 47:2397-404. [PMID: 25029558 DOI: 10.1021/ar500127z] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD), a severe neurodegenerative disorder, causes more than half of dementia cases. According to the popular "Aβ hypothesis" to explain the mechanism of this disease, amyloid β-peptides (Aβ) of 39-43 amino acid residues aggregate and deposit onto neurons, igniting the neurotoxic cascade of the disease. Therefore, researchers studying AD would like to elucidate the mechanisms by which essentially water-soluble but hydrophobic Aβ aggregates under pathological conditions. Most researchers have investigated the aggregation of Aβ in aqueous solution, and they concluded that the final aggregation product, the amyloid fibrils, were less toxic than the component peptide oligomers. They consequently shifted their interests to more toxic "soluble oligomers", structures that form as intermediates or off-pathway products during the aggregation process. Some researchers have also investigated artificial oligomers prepared under nonphysiological conditions. In contrast to these "in solution" studies, we have focused on "membrane-mediated" amyloidogenesis. In an earlier study, other researchers identified a specific form of Aβ that was bound to monosialoganglioside GM1, a sugar lipid, in brains of patients who exhibited the early pathological changes associated with AD. This Account summarizes 15 years of our research on this topic. We have found that Aβ specifically binds to GM1 that occurs in clusters, but not when it is uniformly distributed. Clustering is facilitated by cholesterol. Upon binding, Aβ changes its conformation from a random coil to an α-helix-rich structure. A CH-π interaction between the aromatic side chains of Aβ and carbohydrate moieties appended to GM1 appears to be important for binding. In addition, as Aβ accumulates and reaches its first threshold concentration (Aβ/GM1 = ∼0.013), aggregated β-sheets of ∼15 molecules appear and coexist with the helical form. However, this β-structure is stable and does not form larger aggregates. When the disease progresses further and the Aβ/GM1 ratio exceeds ∼0.044, the β-structure converts to a second β-structure that can seed aggregates. The seed recruits monomers from the aqueous phase to form toxic amyloid fibrils that have larger surface hydrophobicity and can contain antiparallel β-sheets. In contrast, amyloid fibrils formed in aqueous solution are less toxic and have parallel β-sheets. The less polar environments of GM1 clusters play an important role in the formation of these toxic fibrils. Membranes that contain GM1 clusters not only accelerate the aggregation of Aβ by locally concentrating Aβ molecules but also generate amyloid fibrils with unique structures and significant cytotoxicity. The inhibition of this aggregation cascade could be a promising strategy for the development of AD-modulating therapies.
Collapse
Affiliation(s)
- Katsumi Matsuzaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29
Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
226
|
Carmichael O. Preventing vascular effects on brain injury and cognition late in life: knowns and unknowns. Neuropsychol Rev 2014; 24:371-87. [PMID: 25085314 DOI: 10.1007/s11065-014-9264-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/23/2014] [Indexed: 12/14/2022]
Abstract
For some researchers, the relationship between prevalent cardiovascular risk factors and late-life cognitive decline is not worthy of further study. It is already known that effective treatment of vascular risk factors lowers risk of such major outcomes as stroke and heart attack, the argument goes; thus, any new information about the relationship between vascular risk factors and another major outcome--late-life cognitive decline--is unlikely to have an impact on clinical practice. The purpose of this review is to probe the logic of this argument by focusing on what is known, and what is not known, about the relationship between vascular risk factors and late-life cognitive decline. The unknowns are substantial: in particular, there is relatively little evidence that current vascular risk factor treatment protocols are adequate to prevent late-life cognitive decline or the clinically silent brain injury that precedes it. In addition, there is relatively little understanding of which factors lead to differential vulnerability or resilience to the effects of vascular risk factors on silent brain injury. Differential effects of different classes of treatments are similarly unclear. Finally, there is limited understanding of the impact of clinically-silent neurodegenerative disease processes on cerebrovascular processes. Further study of the relationships among vascular risk factors, brain injury, and late-life cognitive decline could have a major impact on development of new vascular therapies and on clinical management of vascular risk factors, and there are promising avenues for future research in this direction.
Collapse
Affiliation(s)
- Owen Carmichael
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA,
| |
Collapse
|
227
|
Abo El-Khair DM, El-Safti FENA, Nooh HZ, El-Mehi AE. A comparative study on the effect of high cholesterol diet on the hippocampal CA1 area of adult and aged rats. Anat Cell Biol 2014; 47:117-26. [PMID: 24987548 PMCID: PMC4076418 DOI: 10.5115/acb.2014.47.2.117] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/27/2014] [Accepted: 03/24/2014] [Indexed: 11/27/2022] Open
Abstract
Dementia is one of the most important problems nowadays. Aging is associated with learning and memory impairments. Diet rich in cholesterol has been shown to be detrimental to cognitive performance. This work was carried out to compare the effect of high cholesterol diet on the hippocampus of adult and aged male albino rats. Twenty adult and twenty aged male rats were used in this study. According to age, the rats were randomly subdivided into balanced and high cholesterol diet fed groups. The diet was 15 g/rat/day for adult rats and 20 g/rat/day for aged rats for eight weeks. Serial coronal sections of hippocampus and blood samples were taken from each rat. For diet effect evaluation, Clinical, biochemical, histological, immunohistochemical, and morphometric assessments were done. In compare to a balanced diet fed rat, examination of Cornu Ammonis 1 (CA 1) area in the hippocampus of the high cholesterol diet adult rats showed degeneration, a significant decrease of the pyramidal cells, attenuation and/or thickening of small blood vessels, apparent increase of astrocytes and apparent decrease of Nissl's granules content. Moreover, the high cholesterol diet aged rats showed aggravation of senility changes of the hippocampus together with Alzheimer like pathological changes. In conclusion, the high cholesterol diet has a significant detrimental effect on the hippocampus and aging might pronounce this effect. So, we should direct our attention to limit cholesterol intake in our food to maintain a healthy life style for a successful aging.
Collapse
Affiliation(s)
- Doaa M Abo El-Khair
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | | | - Hanaa Z Nooh
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Abeer E El-Mehi
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| |
Collapse
|
228
|
Barbisin M, Vanni S, Schmädicke AC, Montag J, Motzkus D, Opitz L, Salinas-Riester G, Legname G. Gene expression profiling of brains from bovine spongiform encephalopathy (BSE)-infected cynomolgus macaques. BMC Genomics 2014; 15:434. [PMID: 24898206 PMCID: PMC4061447 DOI: 10.1186/1471-2164-15-434] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 05/07/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prion diseases are fatal neurodegenerative disorders whose pathogenesis mechanisms are not fully understood. In this context, the analysis of gene expression alterations occurring in prion-infected animals represents a powerful tool that may contribute to unravel the molecular basis of prion diseases and therefore discover novel potential targets for diagnosis and therapeutics. Here we present the first large-scale transcriptional profiling of brains from BSE-infected cynomolgus macaques, which are an excellent model for human prion disorders. RESULTS The study was conducted using the GeneChip® Rhesus Macaque Genome Array and revealed 300 transcripts with expression changes greater than twofold. Among these, the bioinformatics analysis identified 86 genes with known functions, most of which are involved in cellular development, cell death and survival, lipid homeostasis, and acute phase response signaling. RT-qPCR was performed on selected gene transcripts in order to validate the differential expression in infected animals versus controls. The results obtained with the microarray technology were confirmed and a gene signature was identified. In brief, HBB and HBA2 were down-regulated in infected macaques, whereas TTR, APOC1 and SERPINA3 were up-regulated. CONCLUSIONS Some genes involved in oxygen or lipid transport and in innate immunity were found to be dysregulated in prion infected macaques. These genes are known to be involved in other neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Our results may facilitate the identification of potential disease biomarkers for many neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Giuseppe Legname
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy.
| |
Collapse
|
229
|
Serum cholesterol and variant in cholesterol-related gene CETP predict white matter microstructure. Neurobiol Aging 2014; 35:2504-2513. [PMID: 24997672 DOI: 10.1016/j.neurobiolaging.2014.05.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 05/21/2014] [Accepted: 05/26/2014] [Indexed: 11/23/2022]
Abstract
Several common genetic variants influence cholesterol levels, which play a key role in overall health. Myelin synthesis and maintenance are highly sensitive to cholesterol concentrations, and abnormal cholesterol levels increase the risk for various brain diseases, including Alzheimer's disease. We report significant associations between higher serum cholesterol (CHOL) and high-density lipoprotein levels and higher fractional anisotropy in 403 young adults (23.8 ± 2.4 years) scanned with diffusion imaging and anatomic magnetic resonance imaging at 4 Tesla. By fitting a multi-locus genetic model within white matter areas associated with CHOL, we found that a set of 18 cholesterol-related, single-nucleotide polymorphisms implicated in Alzheimer's disease risk predicted fractional anisotropy. We focused on the single-nucleotide polymorphism with the largest individual effects, CETP (rs5882), and found that increased G-allele dosage was associated with higher fractional anisotropy and lower radial and mean diffusivities in voxel-wise analyses of the whole brain. A follow-up analysis detected white matter associations with rs5882 in the opposite direction in 78 older individuals (74.3 ± 7.3 years). Cholesterol levels may influence white matter integrity, and cholesterol-related genes may exert age-dependent effects on the brain.
Collapse
|
230
|
Wang H, Blumberg JB, Chen CYO, Choi SW, Corcoran MP, Harris SS, Jacques PF, Kristo AS, Lai CQ, Lamon-Fava S, Matthan NR, McKay DL, Meydani M, Parnell LD, Prokopy MP, Scott TM, Lichtenstein AH. Dietary modulators of statin efficacy in cardiovascular disease and cognition. Mol Aspects Med 2014; 38:1-53. [PMID: 24813475 DOI: 10.1016/j.mam.2014.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/14/2014] [Accepted: 04/14/2014] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease remains the leading cause of morbidity and mortality in the United States and other developed countries, and is fast growing in developing countries, particularly as life expectancy in all parts of the world increases. Current recommendations for the prevention of cardiovascular disease issued jointly from the American Academy of Cardiology and American Heart Association emphasize that lifestyle modification should be incorporated into any treatment plan, including those on statin drugs. However, there is a dearth of data on the interaction between diet and statins with respect to additive, complementary or antagonistic effects. This review collates the available data on the interaction of statins and dietary patterns, cognition, genetics and individual nutrients, including vitamin D, niacin, omega-3 fatty acids, fiber, phytochemicals (polyphenols and stanols) and alcohol. Of note, although the available data is summarized, the scope is limited, conflicting and disparate. In some cases it is likely there is unrecognized synergism. Virtually no data are available describing the interactions of statins with dietary components or dietary pattern in subgroups of the population, particularly those who may benefit most were positive effects identified. Hence, it is virtually impossible to draw any firm conclusions at this time. Nevertheless, this area is important because were the effects of statins and diet additive or synergistic harnessing the effect could potentially lead to the use of a lower intensity statin or dose.
Collapse
Affiliation(s)
- Huifen Wang
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Jeffrey B Blumberg
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - C-Y Oliver Chen
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Sang-Woon Choi
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA.
| | - Michael P Corcoran
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Susan S Harris
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Paul F Jacques
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Aleksandra S Kristo
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Chao-Qiang Lai
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Stefania Lamon-Fava
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Nirupa R Matthan
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Diane L McKay
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Mohsen Meydani
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Laurence D Parnell
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Max P Prokopy
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Tammy M Scott
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Alice H Lichtenstein
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| |
Collapse
|
231
|
Lim WLF, Martins IJ, Martins RN. The involvement of lipids in Alzheimer's disease. J Genet Genomics 2014; 41:261-74. [PMID: 24894353 DOI: 10.1016/j.jgg.2014.04.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 04/11/2014] [Accepted: 04/15/2014] [Indexed: 12/14/2022]
Abstract
It has been estimated that Alzheimer's disease (AD), the most common form of dementia, will affect approximately 81 million individuals by 2040. To date, the actual cause and cascade of events in the progression of this disease have not been fully determined. Furthermore, there is currently no definitive blood test or simple diagnostic method for AD. Considerable efforts have been put into proteomic approaches to develop a diagnostic blood test, but to date these efforts have not been successful. More recently, there has been a stronger focus on lipidomic studies in the hope of increasing our understanding of the underlying mechanisms leading to AD and developing an AD blood test. It is well known that the strongest genetic risk factor for AD is the ε4 variant of apolipoprotein E (APOE). Evidence suggests that the ApoE protein, a major lipid transporter, plays a key role in the pathogenesis of AD, and its role in both normal and aberrant lipid metabolism warrants further extensive investigation. Here, we review ApoE-lipid interactions, as well as the roles that lipids may play in the pathogenesis of AD.
Collapse
Affiliation(s)
- Wei Ling Florence Lim
- School of Medical Sciences, Edith Cowan University, Joondalup 6027, Australia; Centre of Excellence in Alzheimer's Disease Research and Care, Joondalup 6027, Australia
| | - Ian James Martins
- School of Medical Sciences, Edith Cowan University, Joondalup 6027, Australia; Centre of Excellence in Alzheimer's Disease Research and Care, Joondalup 6027, Australia
| | - Ralph Nigel Martins
- School of Medical Sciences, Edith Cowan University, Joondalup 6027, Australia; Centre of Excellence in Alzheimer's Disease Research and Care, Joondalup 6027, Australia; McCusker Foundation for Alzheimer's Disease Research Inc., Suite 22, Hollywood Medical Centre, Nedlands 6009, Australia; School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Nedlands 6009, Australia.
| |
Collapse
|
232
|
Shinohara M, Sato N, Shimamura M, Kurinami H, Hamasaki T, Chatterjee A, Rakugi H, Morishita R. Possible modification of Alzheimer's disease by statins in midlife: interactions with genetic and non-genetic risk factors. Front Aging Neurosci 2014; 6:71. [PMID: 24795626 PMCID: PMC4005936 DOI: 10.3389/fnagi.2014.00071] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 03/30/2014] [Indexed: 12/28/2022] Open
Abstract
The benefits of statins, commonly prescribed for hypercholesterolemia, in treating Alzheimer's disease (AD) have not yet been fully established. A recent randomized clinical trial did not show any therapeutic effects of two statins on cognitive function in AD. Interestingly, however, the results of the Rotterdam study, one of the largest prospective cohort studies, showed reduced risk of AD in statin users. Based on the current understanding of statin actions and AD pathogenesis, it is still worth exploring whether statins can prevent AD when administered decades before the onset of AD or from midlife. This review discusses the possible beneficial effects of statins, drawn from previous clinical observations, pathogenic mechanisms, which include β-amyloid (Aβ) and tau metabolism, genetic and non-genetic risk factors (apolipoprotein E, cholesterol, sex, hypertension, and diabetes), and other clinical features (vascular dysfunction and oxidative and inflammatory stress) of AD. These findings suggest that administration of statins in midlife might prevent AD in late life by modifying genetic and non-genetic risk factors for AD. It should be clarified whether statins inhibit Aβ accumulation, tau pathological features, and brain atrophy in humans. To answer this question, a randomized controlled study using amyloid positron emission tomography (PET), tau-PET, and magnetic resonance imaging would be useful. This clinical evaluation could help us to overcome this devastating disease.
Collapse
Affiliation(s)
- Mitsuru Shinohara
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka UniversitySuita, Japan
- Department of Geriatric Medicine, Graduate School of Medicine, Osaka UniversitySuita, Japan
| | - Naoyuki Sato
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka UniversitySuita, Japan
- Department of Geriatric Medicine, Graduate School of Medicine, Osaka UniversitySuita, Japan
| | - Munehisa Shimamura
- Division of Vascular Medicine and Epigenetics, Department of Child Development, United Graduate School of Child Development, Osaka University Office for University-Industry CollaborationSuita, Japan
| | - Hitomi Kurinami
- Division of Vascular Medicine and Epigenetics, Department of Child Development, United Graduate School of Child Development, Osaka University Office for University-Industry CollaborationSuita, Japan
| | - Toshimitsu Hamasaki
- Department of Biomedical Statistics, Graduate School of Medicine, Osaka UniversitySuita, Japan
| | - Amarnath Chatterjee
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka UniversitySuita, Japan
| | - Hiromi Rakugi
- Department of Geriatric Medicine, Graduate School of Medicine, Osaka UniversitySuita, Japan
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka UniversitySuita, Japan
| |
Collapse
|
233
|
Reed B, Villeneuve S, Mack W, DeCarli C, Chui HC, Jagust W. Associations between serum cholesterol levels and cerebral amyloidosis. JAMA Neurol 2014; 71:195-200. [PMID: 24378418 DOI: 10.1001/jamaneurol.2013.5390] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
IMPORTANCE Because deposition of cerebral β-amyloid (Aβ) seems to be a key initiating event in Alzheimer disease (AD), factors associated with increased deposition are of great interest. Whether elevated serum cholesterol levels act as such a factor is unknown. OBJECTIVE To investigate the association between serum cholesterol levels and cerebral Aβ during life early in the AD process. DESIGN, SETTING, AND PARTICIPANTS A multisite, university medical center-based, cross-sectional analysis of potential associations between contemporaneously assayed total serum cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and cerebral Aβ, measured with carbon C11-labeled Pittsburgh Compound B (PIB) positron emission tomography. Seventy-four persons (mean age, 78 years) were recruited via direct outreach in stroke clinics and community senior facilities following a protocol designed to obtain a cohort enriched for cerebrovascular disease and elevated vascular risk. Three patients had mild dementia. All others were clinically normal (n = 33) or had mild cognitive impairment (n = 38). RESULTS Cerebral Aβ was quantified using a Global PIB Index, which averages PIB retention in cortical areas prone to amyloidosis. Statistical models that controlled for age and the apolipoprotein E ε4 allele revealed independent associations among the levels of LDL-C, HDL-C, and PIB index. Higher LDL-C and lower HDL-C levels were both associated with a higher PIB index. No association was found between the total cholesterol level and PIB index. No association was found between statin use and PIB index, and controlling for cholesterol treatment in the statistical models did not alter the basic findings. CONCLUSIONS AND RELEVANCE Elevated cerebral Aβ level was associated with cholesterol fractions in a pattern analogous to that found in coronary artery disease. This finding, in living humans, is consistent with prior autopsy reports, epidemiologic findings, and animal and in vitro work, suggesting an important role for cholesterol in Aβ processing. Because cholesterol levels are modifiable, understanding their link to Aβ deposition could potentially and eventually have an effect on retarding the pathologic cascade of AD. These findings suggest that understanding the mechanisms through which serum lipids modulate Aβ could offer new approaches to slowing Aβ deposition and thus to reducing the incidence of AD.
Collapse
Affiliation(s)
| | | | - Wendy Mack
- University of Southern California, Los Angeles
| | | | | | | |
Collapse
|
234
|
Gosselet F, Saint-Pol J, Fenart L. Effects of oxysterols on the blood–brain barrier: Implications for Alzheimer’s disease. Biochem Biophys Res Commun 2014; 446:687-91. [DOI: 10.1016/j.bbrc.2013.11.059] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 11/11/2013] [Indexed: 12/31/2022]
|
235
|
Reitz C, Mayeux R. Genetics of Alzheimer's disease in Caribbean Hispanic and African American populations. Biol Psychiatry 2014; 75:534-41. [PMID: 23890735 PMCID: PMC3902050 DOI: 10.1016/j.biopsych.2013.06.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 01/16/2023]
Abstract
Late-onset Alzheimer's disease (LOAD), which is characterized by progressive deterioration in cognition, function, and behavior, is the most common cause of dementia and the sixth leading cause of all deaths, placing a considerable burden on Western societies. Most studies aiming to identify genetic susceptibility factors for LOAD have focused on non-Hispanic white populations. This is, in part related to differences in linkage disequilibrium and allele frequencies between ethnic groups that could lead to confounding. However, in addition, non-Hispanic white populations are simply more widely studied. As a consequence, minorities are genetically underrepresented despite the fact that in several minority populations living in the same community as whites (including African American and Caribbean Hispanics), LOAD incidence is higher. This review summarizes the current knowledge on genetic risk factors associated with LOAD risk in Caribbean Hispanics and African Americans and provides suggestions for future research. We focus on Caribbean Hispanics and African Americans because they have a high LOAD incidence and a body of genetic studies on LOAD that is based on samples with genome-wide association studies data and reasonably large effect sizes to yield generalizable results.
Collapse
Affiliation(s)
- Christiane Reitz
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY,Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY,Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Richard Mayeux
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, New York; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York; Gertrude H. Sergievsky Center, College of Physicians and Surgeons; Department of Epidemiology, Joseph P. Mailman School of Public Health, Columbia University, New York, New York; Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York.
| |
Collapse
|
236
|
Bhat NR, Thirumangalakudi L. Increased tau phosphorylation and impaired brain insulin/IGF signaling in mice fed a high fat/high cholesterol diet. J Alzheimers Dis 2014; 36:781-9. [PMID: 23703152 DOI: 10.3233/jad-2012-121030] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previous studies demonstrated that a high fat/high cholesterol (HFC) diet results in a loss of working memory in mice correlated with neuroinflammatory changes and increased AβPP processing (Thirumangalakudi et al. (2008) J Neurochem 106, 475-485). To further explore the nature of the molecular correlates of cognitive impairment, in this study, we examined changes in tau phosphorylation, insulin/IGF-1 signaling (IIS) including GSK3, and levels of specific synaptic proteins. Immunoblot analysis of hippocampal tissue from C57BL/6 mice fed HFC for 2 months with anti-phospho-tau (i.e., PHF1 and phospho-Thr-231 tau) antibodies demonstrated the presence of hyperphosphorylated tau. The tau phosphorylation correlated with activated GSK3, a prominent tau kinase normally kept inactive under the control of IIS. That IIS itself was impaired due to the hyperlipidemic diet was confirmed by a down-regulation of insulin receptor substrate-1 and phospho-Akt levels. Although no significant changes in the levels of the pre-synaptic protein (i.e., synaptophysin) in response to HFC were apparent in immunoblot analysis, there was a clear down-regulation of the post-synaptic protein, PSD95, and drebrin, a dendritic spine-specific protein, indicative of altered synaptic plasticity. The results, in concert with previous findings with the same model, suggest that high dietary fat/cholesterol elicits brain insulin resistance and altered IIS leading to Alzheimer's disease-like cognitive impairment in 'normal' mice.
Collapse
Affiliation(s)
- Narayan R Bhat
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | |
Collapse
|
237
|
The impact of cholesterol, DHA, and sphingolipids on Alzheimer's disease. BIOMED RESEARCH INTERNATIONAL 2014; 2013:814390. [PMID: 24575399 PMCID: PMC3929518 DOI: 10.1155/2013/814390] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/13/2013] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder currently affecting over 35 million people worldwide. Pathological hallmarks of AD are massive amyloidosis, extracellular senile plaques, and intracellular neurofibrillary tangles accompanied by an excessive loss of synapses. Major constituents of senile plaques are 40–42 amino acid long peptides termed β-amyloid (Aβ). Aβ is produced by sequential proteolytic processing of the amyloid precursor protein (APP). APP processing and Aβ production have been one of the central scopes in AD research in the past. In the last years, lipids and lipid-related issues are more frequently discussed to contribute to the AD pathogenesis. This review summarizes lipid alterations found in AD postmortem brains, AD transgenic mouse models, and the current understanding of how lipids influence the molecular mechanisms leading to AD and Aβ generation, focusing especially on cholesterol, docosahexaenoic acid (DHA), and sphingolipids/glycosphingolipids.
Collapse
|
238
|
Drolle E, Hane F, Lee B, Leonenko Z. Atomic force microscopy to study molecular mechanisms of amyloid fibril formation and toxicity in Alzheimer's disease. Drug Metab Rev 2014; 46:207-23. [PMID: 24495298 DOI: 10.3109/03602532.2014.882354] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease characterized by dementia and memory loss for which no cure or effective prevention is currently available. Neurodegeneration in AD is linked to formation of amyloid plaques found in brain tissues of Alzheimer's patients during post-mortem examination. Amyloid plaques are composed of amyloid fibrils and small oligomers - insoluble protein aggregates. Although amyloid plaques are found on the neuronal cell surfaces, the mechanism of amyloid toxicity is still not well understood. Currently, it is believed that the cytotoxicity is a result of the nonspecific interaction of small soluble amyloid oligomers (rather than longer fibrils) with the plasma membrane. In recent years, nanotechnology has contributed significantly to understanding the structure and function of lipid membranes and to the study of the molecular mechanisms of membrane-associated diseases. We review the current state of research, including applications of the latest nanotechnology approaches, on the interaction of lipid membranes with the amyloid-β (Aβ) peptide in relation to amyloid toxicity. We discuss the interactions of Aβ with model lipid membranes with a focus to demonstrate that composition, charge and phase of the lipid membrane, as well as lipid domains and rafts, affect the binding of Aβ to the membrane and contribute to toxicity. Understanding the role of the lipid membrane in AD at the nanoscale and molecular level will contribute to the understanding of the molecular mechanism of amyloid toxicity and may aid into the development of novel preventive strategies to combat AD.
Collapse
Affiliation(s)
- Elizabeth Drolle
- Department of Biology, University of Waterloo , Waterloo, ON , Canada
| | | | | | | |
Collapse
|
239
|
Reisi P, Dashti GR, Shabrang M, Rashidi B. The effect of vitamin E on neuronal apoptosis in hippocampal dentate gyrus in rabbits fed with high-cholesterol diets. Adv Biomed Res 2014; 3:42. [PMID: 24627850 PMCID: PMC3949347 DOI: 10.4103/2277-9175.125731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 07/08/2012] [Indexed: 01/05/2023] Open
Abstract
Background: Hypercholesterolemia that can increase stress oxidative has destructive effects on brain functions. Vitamin E is a powerful antioxidant and its effects on decrement of oxidative stress in the diseases such as Alzheimer's and hypercholesterolemia are demonstrated. The aim of this study was evaluation of the effects of vitamin E on the level of neuronal apoptosis in granular layer of dentate gyrus in the rabbits that fed with high-cholesterol diet. Materials and Methods: Male New Zealand white rabbits were divided into the control, the Vitamin E (50 mg/kg; gavage), the high-cholesterol diet (containing 2% cholesterol), and the high-cholesterol diet-vitamin E groups. Serum levels of cholesterol, LDL, and HDL, before and after the regimen for 6 weeks, were measured. Then, the rabbits for immunohistochemical staining (TUNEL Test) and evaluation of neuronal apoptosis in dentate gyrus of hippocampal formation were anesthetized and brains were dissected. Results: Results showed that after the regimens, serum levels of cholesterol, LDL, and HDL in the cholesterol receiving groups were increased significantly (P < 0.05). Histological results demonstrated that neuronal apoptosis in the dentate gyrus of the high-cholesterol diet group was increased significantly (P < 0.05) comparing to the control group; however, vitamin E decreased apoptosis as there wasn’t any significant differences between the high-cholesterol diet-vitamin E and control groups. Conclusions: Present results showed that consumption of high-cholesterol diets through hypercholesterolemia and its complication can induce neuronal death in hippocampus and probable resulting cognition disorders; however, vitamin E has neuroprotective effects and prevents neuronal apoptosis significantly.
Collapse
Affiliation(s)
- Parham Reisi
- Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran ; Department of Biosensor Research Center and Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholam Reza Dashti
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Molud Shabrang
- Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahman Rashidi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
240
|
Solomon A, Kivipelto M. Cholesterol-modifying strategies for Alzheimer’s disease. Expert Rev Neurother 2014; 9:695-709. [DOI: 10.1586/ern.09.25] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
241
|
Sato N, Morishita R. Brain alterations and clinical symptoms of dementia in diabetes: aβ/tau-dependent and independent mechanisms. Front Endocrinol (Lausanne) 2014; 5:143. [PMID: 25250014 PMCID: PMC4155814 DOI: 10.3389/fendo.2014.00143] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/15/2014] [Indexed: 12/31/2022] Open
Abstract
Emerging evidence suggests that diabetes affects cognitive function and increases the incidence of dementia. However, the mechanisms by which diabetes modifies cognitive function still remains unclear. Morphologically, diabetes is associated with neuronal loss in the frontal and temporal lobes including the hippocampus, and aberrant functional connectivity of the posterior cingulate cortex and medial frontal/temporal gyrus. Clinically, diabetic patients show decreased executive function, information processing, planning, visuospatial construction, and visual memory. Therefore, in comparison with the characteristics of AD brain structure and cognition, diabetes seems to affect cognitive function through not only simple AD pathological feature-dependent mechanisms but also independent mechanisms. As an Aβ/tau-independent mechanism, diabetes compromises cerebrovascular function, increases subcortical infarction, and might alter the blood-brain barrier. Diabetes also affects glucose metabolism, insulin signaling, and mitochondrial function in the brain. Diabetes also modifies metabolism of Aβ and tau and causes Aβ/tau-dependent pathological changes. Moreover, there is evidence that suggests an interaction between Aβ/tau-dependent and independent mechanisms. Therefore, diabetes modifies cognitive function through Aβ/tau-dependent and independent mechanisms. Interaction between these two mechanisms forms a vicious cycle.
Collapse
Affiliation(s)
- Naoyuki Sato
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Geriatric Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
- *Correspondence: Naoyuki Sato, Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan e-mail:
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
242
|
Abstract
Amyloid-β (Aβ), major constituent of senile plaques in Alzheimer's disease (AD), is generated by proteolytic processing of the amyloid precursor protein (APP) by β- and γ-secretase. Several lipids, especially cholesterol, are associated with AD. Phytosterols are naturally occurring cholesterol plant equivalents, recently been shown to cross the blood-brain-barrier accumulating in brain. Here, we investigated the effect of the most nutritional prevalent phytosterols and cholesterol on APP processing. In general, phytosterols are less amyloidogenic than cholesterol. However, only one phytosterol, stigmasterol, reduced Aβ generation by (1) directly decreasing β-secretase activity, (2) reducing expression of all γ-secretase components, (3) reducing cholesterol and presenilin distribution in lipid rafts implicated in amyloidogenic APP cleavage, and by (4) decreasing BACE1 internalization to endosomal compartments, involved in APP β-secretase cleavage. Mice fed with stigmasterol-enriched diets confirmed protective effects in vivo, suggesting that dietary intake of phytosterol blends mainly containing stigmasterol might be beneficial in preventing AD.
Collapse
|
243
|
Segatto M, Di Giovanni A, Marino M, Pallottini V. Analysis of the protein network of cholesterol homeostasis in different brain regions: an age and sex dependent perspective. J Cell Physiol 2013; 228:1561-7. [PMID: 23280554 DOI: 10.1002/jcp.24315] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/19/2012] [Indexed: 01/03/2023]
Abstract
Although a great knowledge about the patho-physiological roles of cholesterol metabolism perturbation in several organs has been reached, scarce information is available on the regulation of cholesterol homeostasis in the brain where this lipid is involved in the maintenance of several of neuronal processes. Currently, no study is available in literature dealing how and if sex and age may modulate the major proteins involved in the regulatory network of cholesterol levels in different brain regions. Here, we investigated the behavior of 3-hydroxy 3-methylglutaryl coenzyme A reductase (HMGR) and low-density lipoprotein receptor (LDLr) in adult (3-month-old) and aged (12-month-old) male and female rats. The analyses were performed in four different brain regions: cortex, brain stem, hippocampus, and cerebellum which represent brain areas characterized by different neuronal cell types, metabolism, cytoarchitecture and white matter composition. The results show that in hippocampus HMGR is lower (30%) in adult female rats than in age-matched males. Differences in LDLr expression are also observable in old females with respect to age-matched males: the protein levels increase (40%) in hippocampus and decrease (20%) in cortex, displaying different mechanisms of regulation. The mechanism underlying the observed modifications are ascribable to Insig-1 and SREBP-1 modulation. The obtained data demonstrate that age- and sex-related differences in cholesterol homeostasis maintenance exist among brain regions, such as the hippocampus and the prefrontal cortex, important for learning, memory and affection. Some of these differences could be at the root of marked gender disparities observed in clinical disease incidence, manifestation, and prognosis.
Collapse
Affiliation(s)
- Marco Segatto
- Department of Sciences, University of Roma Tre, Rome, Italy
| | | | | | | |
Collapse
|
244
|
Kurata T, Miyazaki K, Kozuki M, Morimoto N, Ohta Y, Ikeda Y, Abe K. Atorvastatin and pitavastatin reduce senile plaques and inflammatory responses in a mouse model of Alzheimer’s disease. Neurol Res 2013; 34:601-10. [DOI: 10.1179/1743132812y.0000000054] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
245
|
Moreira ELG, de Oliveira J, Engel DF, Walz R, de Bem AF, Farina M, Prediger RDS. Hypercholesterolemia induces short-term spatial memory impairments in mice: up-regulation of acetylcholinesterase activity as an early and causal event? J Neural Transm (Vienna) 2013; 121:415-26. [DOI: 10.1007/s00702-013-1107-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/16/2013] [Indexed: 12/23/2022]
|
246
|
Pierrot N, Tyteca D, D'auria L, Dewachter I, Gailly P, Hendrickx A, Tasiaux B, Haylani LE, Muls N, N'Kuli F, Laquerrière A, Demoulin JB, Campion D, Brion JP, Courtoy PJ, Kienlen-Campard P, Octave JN. Amyloid precursor protein controls cholesterol turnover needed for neuronal activity. EMBO Mol Med 2013; 5:608-25. [PMID: 23554170 PMCID: PMC3628100 DOI: 10.1002/emmm.201202215] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/21/2013] [Accepted: 02/06/2013] [Indexed: 01/06/2023] Open
Abstract
Perturbation of lipid metabolism favours progression of Alzheimer disease, in which processing of Amyloid Precursor Protein (APP) has important implications. APP cleavage is tightly regulated by cholesterol and APP fragments regulate lipid homeostasis. Here, we investigated whether up or down regulation of full-length APP expression affected neuronal lipid metabolism. Expression of APP decreased HMG-CoA reductase (HMGCR)-mediated cholesterol biosynthesis and SREBP mRNA levels, while its down regulation had opposite effects. APP and SREBP1 co-immunoprecipitated and co-localized in the Golgi. This interaction prevented Site-2 protease-mediated processing of SREBP1, leading to inhibition of transcription of its target genes. A GXXXG motif in APP sequence was critical for regulation of HMGCR expression. In astrocytes, APP and SREBP1 did not interact nor did APP affect cholesterol biosynthesis. Neuronal expression of APP decreased both HMGCR and cholesterol 24-hydroxylase mRNA levels and consequently cholesterol turnover, leading to inhibition of neuronal activity, which was rescued by geranylgeraniol, generated in the mevalonate pathway, in both APP expressing and mevastatin treated neurons. We conclude that APP controls cholesterol turnover needed for neuronal activity.
Collapse
Affiliation(s)
- Nathalie Pierrot
- Université Catholique de LouvainBrussels, Belgium
- Institute of NeuroscienceBrussels, Belgium
| | - Donatienne Tyteca
- Université Catholique de LouvainBrussels, Belgium
- de Duve InstituteBrussels, Belgium
| | - Ludovic D'auria
- Université Catholique de LouvainBrussels, Belgium
- de Duve InstituteBrussels, Belgium
| | - Ilse Dewachter
- Université Catholique de LouvainBrussels, Belgium
- Institute of NeuroscienceBrussels, Belgium
| | - Philippe Gailly
- Université Catholique de LouvainBrussels, Belgium
- Institute of NeuroscienceBrussels, Belgium
| | - Aurélie Hendrickx
- Université Catholique de LouvainBrussels, Belgium
- Institute of NeuroscienceBrussels, Belgium
| | - Bernadette Tasiaux
- Université Catholique de LouvainBrussels, Belgium
- Institute of NeuroscienceBrussels, Belgium
| | - Laetitia El Haylani
- Université Catholique de LouvainBrussels, Belgium
- Institute of NeuroscienceBrussels, Belgium
| | - Nathalie Muls
- Université Catholique de LouvainBrussels, Belgium
- Institute of NeuroscienceBrussels, Belgium
| | - Francisca N'Kuli
- Université Catholique de LouvainBrussels, Belgium
- de Duve InstituteBrussels, Belgium
| | - Annie Laquerrière
- Department of Pathology, Rouen University Hospital and ERI 28, Institute for Biomedical Research, University of RouenRouen, France
| | | | - Dominique Campion
- Faculty of Medicine, Inserm U614-IFRMPRouen, France
- Department of Research, CHSRSotteville-lès-Rouen, France
| | - Jean-Pierre Brion
- Laboratory of Histology and Neuropathology, Université libre de BruxellesBrussels, Belgium
| | - Pierre J Courtoy
- Université Catholique de LouvainBrussels, Belgium
- de Duve InstituteBrussels, Belgium
| | - Pascal Kienlen-Campard
- Université Catholique de LouvainBrussels, Belgium
- Institute of NeuroscienceBrussels, Belgium
| | - Jean-Noël Octave
- Université Catholique de LouvainBrussels, Belgium
- Institute of NeuroscienceBrussels, Belgium
- *Corresponding author: Tel: +32 2 764 93 41; Fax: +32 2 764 54 60; E-mail:
| |
Collapse
|
247
|
Marquet-de Rougé P, Clamagirand C, Facchinetti P, Rose C, Sargueil F, Guihenneuc-Jouyaux C, Cynober L, Moinard C, Allinquant B. Citrulline diet supplementation improves specific age-related raft changes in wild-type rodent hippocampus. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1589-1606. [PMID: 22918749 PMCID: PMC3776113 DOI: 10.1007/s11357-012-9462-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 07/23/2012] [Indexed: 06/01/2023]
Abstract
The levels of molecules crucial for signal transduction processing change in the brain with aging. Lipid rafts are membrane microdomains involved in cell signaling. We describe here substantial biophysical and biochemical changes occurring within the rafts in hippocampus neurons from aging wild-type rats and mice. Using continuous sucrose density gradients, we observed light-, medium-, and heavy raft subpopulations in young adult rodent hippocampus neurons containing very low levels of amyloid precursor protein (APP) and almost no caveolin-1 (CAV-1). By contrast, old rodents had a homogeneous age-specific high-density caveolar raft subpopulation containing significantly more cholesterol (CHOL), CAV-1, and APP. C99-APP-Cter fragment detection demonstrates that the first step of amyloidogenic APP processing takes place in this caveolar structure during physiological aging of the rat brain. In this age-specific caveolar raft subpopulation, levels of the C99-APP-Cter fragment are exponentially correlated with those of APP, suggesting that high APP concentrations may be associated with a risk of large increases in beta-amyloid peptide levels. Citrulline (an intermediate amino acid of the urea cycle) supplementation in the diet of aged rats for 3 months reduced these age-related hippocampus raft changes, resulting in raft patterns tightly close to those in young animals: CHOL, CAV-1, and APP concentrations were significantly lower and the C99-APP-Cter fragment was less abundant in the heavy raft subpopulation than in controls. Thus, we report substantial changes in raft structures during the aging of rodent hippocampus and describe new and promising areas of investigation concerning the possible protective effect of citrulline on brain function during aging.
Collapse
Affiliation(s)
- Perrine Marquet-de Rougé
- />EA 4466, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Christine Clamagirand
- />INSERM UMR 894, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Patricia Facchinetti
- />INSERM UMR 894, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Christiane Rose
- />INSERM UMR 894, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | | | - Chantal Guihenneuc-Jouyaux
- />EA 4064, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Luc Cynober
- />EA 4466, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
- />Service de Biochimie Hôtel-Dieu et Cochin, AP-HP, Paris, France
| | - Christophe Moinard
- />EA 4466, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Bernadette Allinquant
- />INSERM UMR 894, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| |
Collapse
|
248
|
Immunocytochemical characterization of Alzheimer disease hallmarks in APP/PS1 transgenic mice treated with a new anti-amyloid-β vaccine. BIOMED RESEARCH INTERNATIONAL 2013; 2013:709145. [PMID: 24089686 PMCID: PMC3782057 DOI: 10.1155/2013/709145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/11/2013] [Accepted: 07/02/2013] [Indexed: 01/08/2023]
Abstract
APP/PS1 double-transgenic mouse models of Alzheimer's disease (AD), which overexpress mutated forms of the gene for human amyloid precursor protein (APP) and presenilin 1 (PS1), have provided robust neuropathological hallmarks of AD-like pattern at early ages. This study characterizes immunocytochemical patterns of AD mouse brain as a model for human AD treated with the EB101 vaccine. In this novel vaccine, a new approach has been taken to circumvent past failures by judiciously selecting an adjuvant consisting of a physiological matrix embedded in liposomes, composed of naturally occurring phospholipids (phosphatidylcholine, phosphatidylglycerol, and cholesterol). Our findings showed that administration of amyloid-β1−42 (Aβ) and sphingosine-1-phosphate emulsified in liposome complex (EB101) to APP/PS1 mice before onset of Aβ deposition (7 weeks of age) and/or at an older age (35 weeks of age) is effective in halting the progression and clearing the AD-like neuropathological hallmarks. Passive immunization with EB101 did not activate inflammatory responses from the immune system and astrocytes. Consistent with a decreased inflammatory background, the basal immunological interaction between the T cells and the affected areas (hippocampus) in the brain of treated mice was notably reduced. These results demonstrate that immunization with EB101 vaccine prevents and attenuates AD neuropathology in this type of double-transgenic mice.
Collapse
|
249
|
Lim WLF, Lam SM, Shui G, Mondal A, Ong D, Duan X, Creegan R, Martins IJ, Sharman MJ, Taddei K, Verdile G, Wenk MR, Martins RN. Effects of a high-fat, high-cholesterol diet on brain lipid profiles in apolipoprotein E ɛ3 and ɛ4 knock-in mice. Neurobiol Aging 2013; 34:2217-24. [DOI: 10.1016/j.neurobiolaging.2013.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 02/27/2013] [Accepted: 03/11/2013] [Indexed: 10/26/2022]
|
250
|
Aliev G, Seyidova D, Lamb BT, Obrenovich ME, Siedlak SL, Vinters HV, Friedland RP, LaManna JC, Smith MA, Perry G. Mitochondria and vascular lesions as a central target for the development of Alzheimer's disease and Alzheimer disease-like pathology in transgenic mice. Neurol Res 2013; 25:665-74. [PMID: 14503022 DOI: 10.1179/016164103101201977] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Accumulating evidence strongly suggests that the AD brain is characterized by impairments in energy metabolism, and vascular hypoperfusion, whereby oxidative stress appears to be an especially important contributor to neuronal death and development of AD pathology. We hypothesized that mitochondria play a key role in the generation of reactive oxygen species, resulting in oxidative damage to neuronal cell bodies, as well as other cellular compartments in the AD brain. All of these changes have been found to accompany AD pathology. In this review we have outlined recent evidence from the literature and our own original studies concerning the role of mitochondrial abnormalities and vascular damage in the pathogenesis of AD and AD-like pathology in transgenic mice (as a model for human AD). We examined ultrastructural features of vascular lesions and mitochondria from vascular wall cells in human AD brain biopsies, in human short post-mortem brain tissues and in yeast artificial chromosome (YAC) and C57B6/SJL transgenic positive (Tg+) mice overexpressing amyloid beta precursor protein (A beta PP). In situ hybridization using mitochondrial DNA (mtDNA) probes for human wild type, 5kb deleted and mouse mtDNA was performed along with immunocytochemistry using antibodies against amyloid beta precursor protein (A beta PP), 8-hydroxy-2'-guanosine (8OHG) and cytochrome C oxidase (COX) were studied at the electron microscopic levels. There was a higher degree of amyloid deposition in the vascular walls of the human AD, YAC and C57B6/SJL Tg(+) mice compared to aged-matched controls. In addition, vessels with more severe lesions showed immunopositive staining for APP and possessed large, lipid-laden vacuoles in the cytoplasm of endothelial cells (EC). Significantly more mitochondrial abnormalities were seen in human AD, YAC and C57B6/SJL Tg(+) mouse microvessels where lesions occurred. In situ hybridization using wild and chimera (5 kB) mtDNA probes revealed positive signals in damaged mitochondria from the vascular endothelium and in perivascular cells of lesioned microvessels close to regions of large amyloid deposition. These features were absent in undamaged regions of human AD tissues, YAC and C57B6/SJL Tg(+) mouse tissues and in aged-matched control subjects. In addition, vessels with atherosclerotic lesions revealed endothelium and perivascular cells possessing clusters of wild and deleted mtDNA positive probes. These mtDNA deletions were accompanied by increased amounts of immunoreactive APP, 8OHG and COX in the same cellular compartment. Our observations first time demonstrate that vascular wall cells, especially their mitochondria, appear to be a central target for oxidative stress induced damage.
Collapse
Affiliation(s)
- Gjumrakch Aliev
- Microscopy Research Center, Department of Anatomy, Department of Pathology, Case Western Reserve University, University Hospitals of Cleveland, Cleveland, OH, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|