201
|
Sakr S, Wang M, Dédaldéchamp F, Perez-Garcia MD, Ogé L, Hamama L, Atanassova R. The Sugar-Signaling Hub: Overview of Regulators and Interaction with the Hormonal and Metabolic Network. Int J Mol Sci 2018; 57:2367-2379. [PMID: 30149541 DOI: 10.1093/pcp/pcw157] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/07/2018] [Accepted: 09/05/2016] [Indexed: 05/25/2023] Open
Abstract
Plant growth and development has to be continuously adjusted to the available resources. Their optimization requires the integration of signals conveying the plant metabolic status, its hormonal balance, and its developmental stage. Many investigations have recently been conducted to provide insights into sugar signaling and its interplay with hormones and nitrogen in the fine-tuning of plant growth, development, and survival. The present review emphasizes the diversity of sugar signaling integrators, the main molecular and biochemical mechanisms related to the sugar-signaling dependent regulations, and to the regulatory hubs acting in the interplay of the sugar-hormone and sugar-nitrogen networks. It also contributes to compiling evidence likely to fill a few knowledge gaps, and raises new questions for the future.
Collapse
Affiliation(s)
- Soulaiman Sakr
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Ming Wang
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Fabienne Dédaldéchamp
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Maria-Dolores Perez-Garcia
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Laurent Ogé
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Latifa Hamama
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Rossitza Atanassova
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| |
Collapse
|
202
|
Fan C, Yao H, Qiu Z, Ma H, Zeng B. Genome-wide analysis of Eucalyptus grandis WRKY genes family and their expression profiling in response to hormone and abiotic stress treatment. Gene 2018; 678:38-48. [PMID: 30077764 DOI: 10.1016/j.gene.2018.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/26/2018] [Accepted: 08/01/2018] [Indexed: 11/30/2022]
Abstract
The WRKY transcription factors, a large family of proteins in plants, are involved in multiple developmental and biological processes including response to phytohormones and abiotic stress. However, little information is available regarding the WRKY family in Eucalyptus, which has been the most widely planted hardwood trees in tropical and subtropical areas. In this study, a total of 79 WRKY genes (named as EgrWRKY1-79) were identified from the Eucalyptus grandis genome and classified into three main groups according to the phylogenetic analysis, which was further supported by their gene structure and conserved motifs. Of which, 28 EgrWRKYs were involved in tandem duplication but none for segmental duplication, indicating that tandem duplication was the main cause for the expansion of WRKY gene family in E. grandis. Subsequently, expression profiles of EgrWRKY genes in eight different tissues and in response to treatments of three hormones (SA, JA, and BR) and two abiotic stresses (salt and cold) were analyzed. The results revealed that the EgrWRKY genes had differential expression in their transcript abundance and they were differentially expressed in response to plant hormones and salt and cold stresses, suggesting their contributions to plant developmental processes as well as abiotic stresses with the involvement of hormone signaling transduction. Taken together, these findings will increase our understanding of EgrWRKY gene family involved in abiotic stresses and hormone signaling transduction, and also will provide some stress-responsive candidate EgrWRKY genes for further characterization of their functions in Eucalyptus.
Collapse
Affiliation(s)
- Chunjie Fan
- Key Laboratory of State Forestry Administration on Tropical Forest Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, People's Republic of China; State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, People's Republic of China
| | - Hairong Yao
- Key Laboratory of State Forestry Administration on Tropical Forest Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, People's Republic of China; College of Environment and Plant Protection, Hainan University, Haikou 570208, People's Republic of China
| | - Zhenfei Qiu
- Key Laboratory of State Forestry Administration on Tropical Forest Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, People's Republic of China; State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, People's Republic of China
| | - Haibin Ma
- Key Laboratory of State Forestry Administration on Tropical Forest Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, People's Republic of China
| | - Bingshan Zeng
- Key Laboratory of State Forestry Administration on Tropical Forest Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, People's Republic of China.
| |
Collapse
|
203
|
Zhang L, Cheng J, Sun X, Zhao T, Li M, Wang Q, Li S, Xin H. Overexpression of VaWRKY14 increases drought tolerance in Arabidopsis by modulating the expression of stress-related genes. PLANT CELL REPORTS 2018; 37:1159-1172. [PMID: 29796948 DOI: 10.1007/s00299-018-2302-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/14/2018] [Indexed: 05/17/2023]
Abstract
Overexpression of VaWRKY14 increases drought tolerance in Arabidopsis by modulating the expression of stress-related genes, including COR15A, COR15B, COR413, KIN2, and RD29A. The WRKY family is one of a largest transcription factors in plants, and it is a key component of multiple stress responses. In this study, the drought- and cold-induced WRKY family gene VaWRKY14 was isolated and characterized. Phylogenetic analysis indicated that VaWRKY14 belongs to the WRKY IIa subfamily, of which several members participate in biotic and abiotic stress responses in plants. Fluorescence observation from Arabidopsis mesophyll protoplasts transformed with the VaWRKY14::eGFP fusion vector suggested that VaWRKY14 was localized in the nucleus. The VaWRKY14 in yeast cells did not display any transcriptional activity. The expression of VaWRKY14 could be induced by exogenous phytohormones, including salicylic acid (SA) and abscisic acid (ABA). Overexpression of VaWRKY14 enhanced the drought tolerance of transgenic Arabidopsis. Compared with wild-type Arabidopsis, the VaWRKY14-OE lines exhibited higher water content and antioxidant enzyme activities in leaves after drought treatment. RNA sequencing analysis revealed that several stress-related genes, including COR15A, COR15B, COR413, KIN2, and RD29A, were upregulated in transgenic plants relative to their expression in wild-type Arabidopsis under normal conditions. Several genes (3 upregulated and 49 down-regulated) modulated by VaWRKY14 were also affected by drought stress in wild-type plants. These data suggest that VaWRKY14 responds to drought and cold stresses and that drought tolerance may be enhanced by regulating the expression of stress-related genes in Arabidopsis.
Collapse
Affiliation(s)
- Langlang Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jun Cheng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
| | - Xiaoming Sun
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
| | - Tingting Zhao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Qingfeng Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
| | - Haiping Xin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
204
|
Xie T, Chen C, Li C, Liu J, Liu C, He Y. Genome-wide investigation of WRKY gene family in pineapple: evolution and expression profiles during development and stress. BMC Genomics 2018; 19:490. [PMID: 29940851 PMCID: PMC6019807 DOI: 10.1186/s12864-018-4880-x] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 06/18/2018] [Indexed: 11/17/2022] Open
Abstract
Background WRKY proteins comprise a large family of transcription factors that play important roles in many aspects of physiological processes and adaption to environment. However, little information was available about the WRKY genes in pineapple (Ananas comosus), an important tropical fruits. The recent release of the whole-genome sequence of pineapple allowed us to perform a genome-wide investigation into the organization and expression profiling of pineapple WRKY genes. Results In the present study, 54 pineapple WRKY (AcWRKY) genes were identified and renamed on the basis of their respective chromosome distribution. According to their structural and phylogenetic features, the 54 AcWRKYs were further classified into three main groups with several subgroups. The segmental duplication events played a major role in the expansion of pineapple WRKY gene family. Synteny analysis and phylogenetic comparison of group III WRKY genes provided deep insight into the evolutionary characteristics of pineapple WRKY genes. Expression profiles derived from transcriptome data and real-time quantitative PCR analysis exhibited distinct expression patterns of AcWRKY genes in various tissues and in response to different abiotic stress and hormonal treatments. Conclusions Fifty four WRKY genes were identified in pineapple and the structure of their encoded proteins, their evolutionary characteristics and expression patterns were examined in this study. This systematic analysis provided a foundation for further functional characterization of WRKY genes with an aim of pineapple crop improvement. Electronic supplementary material The online version of this article (10.1186/s12864-018-4880-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tao Xie
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, China.,College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Chengjie Chen
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, China.,College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Chuhao Li
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, China.,College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jiarou Liu
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, China.,College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Chaoyang Liu
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, China. .,College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| | - Yehua He
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, China. .,College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
205
|
Pandey B, Grover A, Sharma P. Molecular dynamics simulations revealed structural differences among WRKY domain-DNA interaction in barley (Hordeum vulgare). BMC Genomics 2018; 19:132. [PMID: 29433424 PMCID: PMC5810047 DOI: 10.1186/s12864-018-4506-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/29/2018] [Indexed: 12/29/2022] Open
Abstract
Background The WRKY transcription factors are a class of DNA-binding proteins involved in diverse plant processes play critical roles in response to abiotic and biotic stresses. Genome-wide divergence analysis of WRKY gene family in Hordeum vulgare provided a framework for molecular evolution and functional roles. So far, the crystal structure of WRKY from barley has not been resolved; moreover, knowledge of the three-dimensional structure of WRKY domain is pre-requisites for exploring the protein-DNA recognition mechanisms. Homology modelling based approach was used to generate structures for WRKY DNA binding domain (DBD) and its variants using AtWRKY1 as a template. Finally, the stability and conformational changes of the generated model in unbound and bound form was examined through atomistic molecular dynamics (MD) simulations for 100 ns time period. Results In this study, we investigated the comparative binding pattern of WRKY domain and its variants with W-box cis-regulatory element using molecular docking and dynamics (MD) simulations assays. The atomic insight into WRKY domain exhibited significant variation in the intermolecular hydrogen bonding pattern, leading to the structural anomalies in the variant type and differences in the DNA-binding specificities. Based on the MD analysis, residual contribution and interaction contour, wild-type WRKY (HvWRKY46) were found to interact with DNA through highly conserved heptapeptide in the pre- and post-MD simulated complexes, whereas heptapeptide interaction with DNA was missing in variants (I and II) in post-MD complexes. Consequently, through principal component analysis, wild-type WRKY was also found to be more stable by obscuring a reduced conformational space than the variant I (HvWRKY34). Lastly, high binding free energy for wild-type and variant II allowed us to conclude that wild-type WRKY-DNA complex was more stable relative to variants I. Conclusions The results of our study revealed complete dynamic and structural information about WRKY domain-DNA interactions. However, no structure base information reported to date for WRKY variants and their mechanism of interaction with DNA. Our findings highlighted the importance of selecting a sequence to generate newer transgenic plants that would be increasingly tolerance to stress conditions. Electronic supplementary material The online version of this article (10.1186/s12864-018-4506-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bharati Pandey
- Plant Biotechnology Unit, ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, India.,Present address: Department of Biotechnology, Panjab University Chandigarh, Chandigarh, 160014, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pradeep Sharma
- Plant Biotechnology Unit, ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, India.
| |
Collapse
|
206
|
Yu Y, Wang L, Chen J, Liu Z, Park CM, Xiang F. WRKY71 Acts Antagonistically Against Salt-Delayed Flowering in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2018; 59:414-422. [PMID: 29272465 DOI: 10.1093/pcp/pcx201] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Indexed: 05/06/2023]
Abstract
Soil salinity affects various aspects of plant growth and development including flowering. Usually, plants show a delayed flowering phenotype under high salinity conditions, whereas some plants will risk their life to continue to grow, thereby escaping serious salt stress to achieve reproductive success. However, the molecular mechanisms of the escape strategies are not clear yet. In this work, we report that the transcription factor WRKY71 helps escape salt stress in Arabidopsis. The expression of the WRKY71 wild-type (WT) allele was salinity inducible. Compared with Col-0, high salt stress caused only a marginal delay in the flowering time of the activation-tagged mutant WRKY71-1D. However, flowering in the RNA interference (RNAi)-based multiple WRKY knock-out mutant (w71w8 + 28RNAi) was dramatically later than in the WT under high salinity conditions. Meanwhile, expression of FLOWERING LOCUS T (FT) and LEAFY (LFY) was greater in WRKY71-1D than in the WT, and lower in w71w8 + 28RNAi under salinity-stressed conditions. The suggestion is that WRKY71 activity hastens flowering, thereby providing a means for the plant to complete its life cycle in the presence of salt stress.
Collapse
Affiliation(s)
- Yanchong Yu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan 250100, China
- Shandong Key Laboratory of Plant Biotechnology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Long Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Jiacai Chen
- Shandong Key Laboratory of Plant Biotechnology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhenhua Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Chung-Mo Park
- Molecular Signaling Laboratory, Department of Chemistry, Seoul National University, Seoul 151-742, Korea
| | - Fengning Xiang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan 250100, China
| |
Collapse
|
207
|
Gu L, Li L, Wei H, Wang H, Su J, Guo Y, Yu S. Identification of the group IIa WRKY subfamily and the functional analysis of GhWRKY17 in upland cotton (Gossypium hirsutum L.). PLoS One 2018; 13:e0191681. [PMID: 29370286 PMCID: PMC5784973 DOI: 10.1371/journal.pone.0191681] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 01/09/2018] [Indexed: 01/01/2023] Open
Abstract
WRKY transcription factors play important roles in plant defense, stress response, leaf senescence, and plant growth and development. Previous studies have revealed the important roles of the group IIa GhWRKY genes in cotton. To comprehensively analyze the group IIa GhWRKY genes in upland cotton, we identified 15 candidate group IIa GhWRKY genes in the Gossypium hirsutum genome. The phylogenetic tree, intron-exon structure, motif prediction and Ka/Ks analyses indicated that most group IIa GhWRKY genes shared high similarity and conservation and underwent purifying selection during evolution. In addition, we detected the expression patterns of several group IIa GhWRKY genes in individual tissues as well as during leaf senescence using public RNA sequencing data and real-time quantitative PCR. To better understand the functions of group IIa GhWRKYs in cotton, GhWRKY17 (KF669857) was isolated from upland cotton, and its sequence alignment, promoter cis-acting elements and subcellular localization were characterized. Moreover, the over-expression of GhWRKY17 in Arabidopsis up-regulated the senescence-associated genes AtWRKY53, AtSAG12 and AtSAG13, enhancing the plant’s susceptibility to leaf senescence. These findings lay the foundation for further analysis and study of the functions of WRKY genes in cotton.
Collapse
Affiliation(s)
- Lijiao Gu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - Libei Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - Junji Su
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - Yaning Guo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
- College of Agronomy, Northwest A&F University, Yangling, Shanxi, China
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
- * E-mail:
| |
Collapse
|
208
|
Yang X, Li H, Yang Y, Wang Y, Mo Y, Zhang R, Zhang Y, Ma J, Wei C, Zhang X. Identification and expression analyses of WRKY genes reveal their involvement in growth and abiotic stress response in watermelon (Citrullus lanatus). PLoS One 2018; 13:e0191308. [PMID: 29338040 PMCID: PMC5770075 DOI: 10.1371/journal.pone.0191308] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/02/2018] [Indexed: 12/16/2022] Open
Abstract
Despite identification of WRKY family genes in numerous plant species, a little is known about WRKY genes in watermelon, one of the most economically important fruit crops around the world. Here, we identified a total of 63 putative WRKY genes in watermelon and classified them into three major groups (I-III) and five subgroups (IIa-IIe) in group II. The structure analysis indicated that ClWRKYs with different WRKY domains or motifs may play different roles by regulating respective target genes. The expressions of ClWRKYs in different tissues indicate that they are involved in various tissue growth and development. Furthermore, the diverse responses of ClWRKYs to drought, salt, or cold stress suggest that they positively or negatively affect plant tolerance to various abiotic stresses. In addition, the altered expression patterns of ClWRKYs in response to phytohormones such as, ABA, SA, MeJA, and ETH, imply the occurrence of complex cross-talks between ClWRKYs and plant hormone signals in regulating plant physiological and biological processes. Taken together, our findings provide valuable clues to further explore the function and regulatory mechanisms of ClWRKY genes in watermelon growth, development, and adaption to environmental stresses.
Collapse
Affiliation(s)
- Xiaozhen Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Hao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Yongchao Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Wenshan Academy of Agricultural Sciences, Wenshan, China
| | - Yongqi Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Hanzhong City Agro-technology Extension Center, Hanzhong, China
| | - Yanling Mo
- Yangtze Normal University, Fuling, China
| | - Ruimin Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Yong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Jianxiang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Chunhua Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- * E-mail: (CHW); (XZ)
| | - Xian Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- * E-mail: (CHW); (XZ)
| |
Collapse
|
209
|
Yang Y, Zhou Y, Chi Y, Fan B, Chen Z. Characterization of Soybean WRKY Gene Family and Identification of Soybean WRKY Genes that Promote Resistance to Soybean Cyst Nematode. Sci Rep 2017; 7:17804. [PMID: 29259331 PMCID: PMC5736691 DOI: 10.1038/s41598-017-18235-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 12/08/2017] [Indexed: 12/03/2022] Open
Abstract
WRKY proteins are a superfamily of plant transcription factors with important roles in plants. WRKY proteins have been extensively analyzed in plant species including Arabidopsis and rice. Here we report characterization of soybean WRKY gene family and their functional analysis in resistance to soybean cyst nematode (SCN), the most important soybean pathogen. Through search of the soybean genome, we identified 174 genes encoding WRKY proteins that can be classified into seven groups as established in other plants. WRKY variants including a WRKY-related protein unique to legumes have also been identified. Expression analysis reveals both diverse expression patterns in different soybean tissues and preferential expression of specific WRKY groups in certain tissues. Furthermore, a large number of soybean WRKY genes were responsive to salicylic acid. To identify soybean WRKY genes that promote soybean resistance to SCN, we first screened soybean WRKY genes for enhancing SCN resistance when over-expressed in transgenic soybean hairy roots. To confirm the results, we transformed five WRKY genes into a SCN-susceptible soybean cultivar and generated transgenic soybean lines. Transgenic soybean lines overexpressing three WRKY transgenes displayed increased resistance to SCN. Thus, WRKY genes could be explored to develop new soybean cultivars with enhanced resistance to SCN.
Collapse
Affiliation(s)
- Yan Yang
- Department of Horticulture, Zijingang Campus, 866 Yuhangtang Road, Zhejiang University, Hangzhou, 310058, China
| | - Yuan Zhou
- Department of Horticulture, Zijingang Campus, 866 Yuhangtang Road, Zhejiang University, Hangzhou, 310058, China
| | - Yingjun Chi
- Department of Horticulture, Zijingang Campus, 866 Yuhangtang Road, Zhejiang University, Hangzhou, 310058, China
| | - Baofang Fan
- Department of Botany and Plant Pathology and Purdue Center for Plant Biology, 915 W. State Street, Purdue University, West Lafayette, IN, 47907, USA
| | - Zhixiang Chen
- Department of Horticulture, Zijingang Campus, 866 Yuhangtang Road, Zhejiang University, Hangzhou, 310058, China.
- Department of Botany and Plant Pathology and Purdue Center for Plant Biology, 915 W. State Street, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
210
|
Wu B, Li MY, Xu ZS, Wang F, Xiong AS. Genome-wide analysis of WRKY transcription factors and their response to abiotic stress in celery (Apium graveolens L.). BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1413954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Bei Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Olericulture, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Meng-Yao Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Olericulture, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Olericulture, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Olericulture, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Olericulture, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| |
Collapse
|
211
|
Min JH, Ju HW, Yoon D, Lee KH, Lee S, Kim CS. Arabidopsis Basic Helix-Loop-Helix 34 (bHLH34) Is Involved in Glucose Signaling through Binding to a GAGA Cis-Element. FRONTIERS IN PLANT SCIENCE 2017; 8:2100. [PMID: 29321786 PMCID: PMC5732184 DOI: 10.3389/fpls.2017.02100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 11/27/2017] [Indexed: 05/25/2023]
Abstract
The modulation of glucose (Glc) homeostasis and signaling is crucial for plant growth and development. Nevertheless, the molecular signaling mechanism by which a plant senses a cellular Glc level and coordinates the expression of Glc-responsive genes is still incompletely understood. Previous studies have shown that Arabidopsis thaliana plasma membrane Glc-responsive regulator (AtPGR) is a component of the Glc-responsive pathway. Here, we demonstrated that a transcription factor bHLH34 binds to 5'-GAGA-3' element of the promoter region of AtPGR in vitro, and activates beta-glucuronidase (GUS) activity upon Glc treatment in AtPGR promoter-GUS transgenic plants. Gain- and loss-of-function analyses suggested that the bHLH34 involved in the responses to not only Glc, but also abscisic acid (ABA) and salinity. These results suggest that bHLH34 functions as a transcription factor in the Glc-mediated stress responsive pathway as well as an activator of AtPGR transcription. Furthermore, genetic experiments revealed that in Glc response, the functions of bHLH34 are different from that of a bHLH104, a homolog of bHLH34. Collectively, our findings indicate that bHLH34 is a positive regulator of Glc, and may affect ABA or salinity response, whereas bHLH104 is a negative regulator and epistatic to bHLH34 in the Glc response.
Collapse
Affiliation(s)
- Ji-Hee Min
- Department of Plant Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Hyun-Woo Ju
- Department of Plant Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Dayoung Yoon
- Department of Plant Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Kyeong-Hwan Lee
- Department of Rural and Biosystems Engineering, Agricultural Robotics and Automation Research Center, Chonnam National University, Gwangju, South Korea
| | - Sungbeom Lee
- Korea Atomic Energy Research Institute, Daejeon, South Korea
| | - Cheol S. Kim
- Department of Plant Biotechnology, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
212
|
Cai R, Dai W, Zhang C, Wang Y, Wu M, Zhao Y, Ma Q, Xiang Y, Cheng B. The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants. PLANTA 2017; 246:1215-1231. [PMID: 28861611 DOI: 10.1007/s00425-017-2766-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/22/2017] [Indexed: 05/20/2023]
Abstract
We cloned and characterized the ZmWRKY17 gene from maize. Overexpression of ZmWRKY17 in Arabidopsis led to increased sensitivity to salt stress and decreased ABA sensitivity through regulating the expression of some ABA- and stress-responsive genes. The WRKY transcription factors have been reported to function as positive or negative regulators in many different biological processes including plant development, defense regulation and stress response. This study isolated a maize WRKY gene, ZmWRKY17, and characterized its role in tolerance to salt stress by generating transgenic Arabidopsis plants. Expression of the ZmWRKY17 was up-regulated by drought, salt and abscisic acid (ABA) treatments. ZmWRKY17 was localized in the nucleus with no transcriptional activation in yeast. Yeast one-hybrid assay showed that ZmWRKY17 can specifically bind to W-box, and it can activate W-box-dependent transcription in planta. Heterologous overexpression of ZmWRKY17 in Arabidopsis remarkably reduced plant tolerance to salt stress, as determined through physiological analyses of the cotyledons greening rate, root growth, relative electrical leakage and malondialdehyde content. Additionally, ZmWRKY17 transgenic plants showed decreased sensitivity to ABA during seed germination and early seedling growth. Transgenic plants accumulated higher content of ABA than wild-type (WT) plants under NaCl condition. Transcriptome and quantitative real-time PCR analyses revealed that some stress-related genes in transgenic seedlings showed lower expression level than that in the WT when treated with NaCl. Taken together, these results suggest that ZmWRKY17 may act as a negative regulator involved in the salt stress responses through ABA signalling.
Collapse
Affiliation(s)
- Ronghao Cai
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Dai
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Congsheng Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Wang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Min Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yang Zhao
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Qing Ma
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Xiang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Beijiu Cheng
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
213
|
Jiang C, Shen QJ, Wang B, He B, Xiao S, Chen L, Yu T, Ke X, Zhong Q, Fu J, Chen Y, Wang L, Yin F, Zhang D, Ghidan W, Huang X, Cheng Z. Transcriptome analysis of WRKY gene family in Oryza officinalis Wall ex Watt and WRKY genes involved in responses to Xanthomonas oryzae pv. oryzae stress. PLoS One 2017; 12:e0188742. [PMID: 29190793 PMCID: PMC5708796 DOI: 10.1371/journal.pone.0188742] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/13/2017] [Indexed: 11/27/2022] Open
Abstract
Oryza officinalis Wall ex Watt, a very important and special wild rice species, shows abundant genetic diversity and disease resistance features, especially high resistance to bacterial blight. The molecular mechanisms of bacterial blight resistance in O. officinalis have not yet been elucidated. The WRKY transcription factor family is one of the largest gene families involved in plant growth, development and stress response. However, little is known about the numbers, structure, molecular phylogenetics, and expression of the WRKY genes under Xanthomonas oryzae pv. oryzae (Xoo) stress in O. officinalis due to lacking of O. officinalis genome. Therefore, based on the RNA-sequencing data of O. officinalis, we performed a comprehensive study of WRKY genes in O. officinalis and identified 89 OoWRKY genes. Then 89 OoWRKY genes were classified into three groups based on the WRKY domains and zinc finger motifs. Phylogenetic analysis strongly supported that the evolution of OoWRKY genes were consistent with previous studies of WRKYs, and subgroup IIc OoWRKY genes were the original ancestors of some group II and group III OoWRKYs. Among the 89 OoWRKY genes, eight OoWRKYs displayed significantly different expression (>2-fold, p<0.01) in the O. officinalis transcriptome under Xoo strains PXO99 and C5 stress 48 h, suggesting these genes might play important role in PXO99 and C5 stress responses in O. officinalis. QRT-PCR analysis and confirmation of eight OoWRKYs expression patterns revealed that they responded strongly to PXO99 and C5 stress 24 h, 48 h, and 72 h, and the trends of these genes displaying marked changes were consistent with the 48 h RNA-sequencing data, demonstrated these genes played important roles in response to biotic stress and might even involved in the bacterial blight resistance. Tissue expression profiles of eight OoWRKY genes revealed that they were highly expressed in root, stem, leaf, and flower, especially in leaf (except OoWRKY71), suggesting these genes might be also important for plant growth and organ development. In this study, we analyzed the WRKY family of transcription factors in O.officinalis. Insight was gained into the classification, evolution, and function of the OoWRKY genes, revealing the putative roles of eight significantly different expression OoWRKYs in Xoo strains PXO99 and C5 stress responses in O.officinalis. This study provided a better understanding of the evolution and functions of O. officinalis WRKY genes, and suggested that manipulating eight significantly different expression OoWRKYs would enhance resistance to bacterial blight.
Collapse
Affiliation(s)
- Chunmiao Jiang
- Biotechnology & Genetic Germplasm Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, P.R. China
- School of Life Sciences, Yunnan University, Kunming, Yunnan, P.R. China
| | - Qingxi J. Shen
- School of Life Sciences, University of Nevada, Las Vegas, USA
| | - Bo Wang
- Biotechnology & Genetic Germplasm Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, P.R. China
| | - Bin He
- Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, P.R. China
| | - Suqin Xiao
- Biotechnology & Genetic Germplasm Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, P.R. China
| | - Ling Chen
- Biotechnology & Genetic Germplasm Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, P.R. China
| | - Tengqiong Yu
- Biotechnology & Genetic Germplasm Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, P.R. China
| | - Xue Ke
- Biotechnology & Genetic Germplasm Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, P.R. China
| | - Qiaofang Zhong
- Biotechnology & Genetic Germplasm Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, P.R. China
| | - Jian Fu
- Biotechnology & Genetic Germplasm Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, P.R. China
| | - Yue Chen
- Biotechnology & Genetic Germplasm Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, P.R. China
| | - Lingxian Wang
- Biotechnology & Genetic Germplasm Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, P.R. China
| | - Fuyou Yin
- Biotechnology & Genetic Germplasm Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, P.R. China
| | - Dunyu Zhang
- Biotechnology & Genetic Germplasm Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, P.R. China
| | - Walid Ghidan
- Rice Research & Training Center, Field Crops Research Institute, Agricultural Research Center (ARC), Sakha, Kafr Elsheikh, Egypt
| | - Xingqi Huang
- Biotechnology & Genetic Germplasm Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, P.R. China
- School of Life Sciences, Yunnan University, Kunming, Yunnan, P.R. China
- * E-mail: (XH); (ZC)
| | - Zaiquan Cheng
- Biotechnology & Genetic Germplasm Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, P.R. China
- * E-mail: (XH); (ZC)
| |
Collapse
|
214
|
Silva Monteiro de Almeida D, Oliveira Jordão do Amaral D, Del-Bem LE, Bronze dos Santos E, Santana Silva RJ, Peres Gramacho K, Vincentz M, Micheli F. Genome-wide identification and characterization of cacao WRKY transcription factors and analysis of their expression in response to witches' broom disease. PLoS One 2017; 12:e0187346. [PMID: 29084273 PMCID: PMC5662177 DOI: 10.1371/journal.pone.0187346] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 10/18/2017] [Indexed: 12/01/2022] Open
Abstract
Transcriptional regulation, led by transcription factors (TFs) such as those of the WRKY family, is a mechanism used by the organism to enhance or repress gene expression in response to stimuli. Here, we report on the genome-wide analysis of the Theobroma cacao WRKY TF family and also investigate the expression of WRKY genes in cacao infected by the fungus Moniliophthora perniciosa. In the cacao genome, 61 non-redundant WRKY sequences were found and classified in three groups (I to III) according to the WRKY and zinc-finger motif types. The 61 putative WRKY sequences were distributed on the 10 cacao chromosomes and 24 of them came from duplication events. The sequences were phylogenetically organized according to the general WRKY groups. The phylogenetic analysis revealed that subgroups IIa and IIb are sister groups and share a common ancestor, as well as subgroups IId and IIe. The most divergent groups according to the plant origin were IIc and III. According to the phylogenetic analysis, 7 TcWRKY genes were selected and analyzed by RT-qPCR in susceptible and resistant cacao plants infected (or not) with M. perniciosa. Some TcWRKY genes presented interesting responses to M. perniciosa such as Tc01_p014750/Tc06_p013130/AtWRKY28, Tc09_p001530/Tc06_p004420/AtWRKY40, Tc04_p016130/AtWRKY54 and Tc10_p016570/ AtWRKY70. Our results can help to select appropriate candidate genes for further characterization in cacao or in other Theobroma species.
Collapse
Affiliation(s)
- Dayanne Silva Monteiro de Almeida
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, km 16, Ilhéus-BA, Brazil
| | - Daniel Oliveira Jordão do Amaral
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, km 16, Ilhéus-BA, Brazil
| | - Luiz-Eduardo Del-Bem
- Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brasil
| | - Emily Bronze dos Santos
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, km 16, Ilhéus-BA, Brazil
| | - Raner José Santana Silva
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, km 16, Ilhéus-BA, Brazil
| | | | - Michel Vincentz
- Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brasil
| | - Fabienne Micheli
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, km 16, Ilhéus-BA, Brazil
- CIRAD, UMR AGAP, Montpellier, France
- * E-mail:
| |
Collapse
|
215
|
Wu M, Liu H, Han G, Cai R, Pan F, Xiang Y. A moso bamboo WRKY gene PeWRKY83 confers salinity tolerance in transgenic Arabidopsis plants. Sci Rep 2017; 7:11721. [PMID: 28916739 PMCID: PMC5601430 DOI: 10.1038/s41598-017-10795-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 08/15/2017] [Indexed: 11/24/2022] Open
Abstract
The WRKY family are transcription factors, involved in plant development, and response to biotic and abiotic stresses. Moso bamboo is an important bamboo that has high ecological, economic and cultural value and is widely distributed in the south of China. In this study, we performed a genome-wide identification of WRKY members in moso bamboo and identified 89 members. By comparative analysis in six grass genomes, we found the WRKY gene family may have experienced or be experiencing purifying selection. Based on relative expression levels among WRKY IIc members under three abiotic stresses, PeWRKY83 functioned as a transcription factor and was selected for detailed analysis. The transgenic Arabidopsis of PeWRKY83 showed superior physiological properties compared with the WT under salt stress. Overexpression plants were less sensitive to ABA at both germination and postgermination stages and accumulated more endogenous ABA under salt stress conditions. Further studies demonstrated that overexpression of PeWRKY83 could regulate the expression of some ABA biosynthesis genes (AtAAO3, AtNCED2, AtNCED3), signaling genes (AtABI1, AtPP2CA) and responsive genes (AtRD29A, AtRD29B, AtABF1) under salt stress. Together, these results suggested that PeWRKY83 functions as a novel WRKY-related TF which plays a positive role in salt tolerance by regulating stress-induced ABA synthesis.
Collapse
Affiliation(s)
- Min Wu
- National Engineering Laboratory of Crop Stresses Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China
| | - Huanlong Liu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Guomin Han
- National Engineering Laboratory of Crop Stresses Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China
| | - Ronghao Cai
- National Engineering Laboratory of Crop Stresses Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China
| | - Feng Pan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Xiang
- National Engineering Laboratory of Crop Stresses Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China. xiangyanahau.@sina.com.,Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China. xiangyanahau.@sina.com
| |
Collapse
|
216
|
Li D, Liu P, Yu J, Wang L, Dossa K, Zhang Y, Zhou R, Wei X, Zhang X. Genome-wide analysis of WRKY gene family in the sesame genome and identification of the WRKY genes involved in responses to abiotic stresses. BMC PLANT BIOLOGY 2017; 17:152. [PMID: 28893196 PMCID: PMC5594535 DOI: 10.1186/s12870-017-1099-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/05/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND Sesame (Sesamum indicum L.) is one of the world's most important oil crops. However, it is susceptible to abiotic stresses in general, and to waterlogging and drought stresses in particular. The molecular mechanisms of abiotic stress tolerance in sesame have not yet been elucidated. The WRKY domain transcription factors play significant roles in plant growth, development, and responses to stresses. However, little is known about the number, location, structure, molecular phylogenetics, and expression of the WRKY genes in sesame. RESULTS We performed a comprehensive study of the WRKY gene family in sesame and identified 71 SiWRKYs. In total, 65 of these genes were mapped to 15 linkage groups within the sesame genome. A phylogenetic analysis was performed using a related species (Arabidopsis thaliana) to investigate the evolution of the sesame WRKY genes. Tissue expression profiles of the WRKY genes demonstrated that six SiWRKY genes were highly expressed in all organs, suggesting that these genes may be important for plant growth and organ development in sesame. Analysis of the SiWRKY gene expression patterns revealed that 33 and 26 SiWRKYs respond strongly to waterlogging and drought stresses, respectively. Changes in the expression of 12 SiWRKY genes were observed at different times after the waterlogging and drought treatments had begun, demonstrating that sesame gene expression patterns vary in response to abiotic stresses. CONCLUSIONS In this study, we analyzed the WRKY family of transcription factors encoded by the sesame genome. Insight was gained into the classification, evolution, and function of the SiWRKY genes, revealing their putative roles in a variety of tissues. Responses to abiotic stresses in different sesame cultivars were also investigated. The results of our study provide a better understanding of the structures and functions of sesame WRKY genes and suggest that manipulating these WRKYs could enhance resistance to waterlogging and drought.
Collapse
Affiliation(s)
- Donghua Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Road, Wuhan, 430062 China
| | - Pan Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Road, Wuhan, 430062 China
| | - Jingyin Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Road, Wuhan, 430062 China
| | - Linhai Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Road, Wuhan, 430062 China
| | - Komivi Dossa
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Road, Wuhan, 430062 China
- Centre d’Etudes Régional pour l’Amélioration de l’Adaptation à la Sécheresse (CERAAS), BP 3320 Route de Khombole, Thiès, Sénégal
| | - Yanxin Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Road, Wuhan, 430062 China
| | - Rong Zhou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Road, Wuhan, 430062 China
| | - Xin Wei
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Road, Wuhan, 430062 China
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234 China
| | - Xiurong Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Road, Wuhan, 430062 China
| |
Collapse
|
217
|
He C, Teixeira da Silva JA, Tan J, Zhang J, Pan X, Li M, Luo J, Duan J. A Genome-Wide Identification of the WRKY Family Genes and a Survey of Potential WRKY Target Genes in Dendrobium officinale. Sci Rep 2017; 7:9200. [PMID: 28835632 PMCID: PMC5569039 DOI: 10.1038/s41598-017-07872-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/30/2017] [Indexed: 12/19/2022] Open
Abstract
The WRKY family, one of the largest families of transcription factors, plays important roles in the regulation of various biological processes, including growth, development and stress responses in plants. In the present study, 63 DoWRKY genes were identified from the Dendrobium officinale genome. These were classified into groups I, II, III and a non-group, each with 14, 28, 10 and 11 members, respectively. ABA-responsive, sulfur-responsive and low temperature-responsive elements were identified in the 1-k upstream regulatory region of DoWRKY genes. Subsequently, the expression of the 63 DoWRKY genes under cold stress was assessed, and the expression profiles of a large number of these genes were regulated by low temperature in roots and stems. To further understand the regulatory mechanism of DoWRKY genes in biological processes, potential WRKY target genes were investigated. Among them, most stress-related genes contained multiple W-box elements in their promoters. In addition, the genes involved in polysaccharide synthesis and hydrolysis contained W-box elements in their 1-k upstream regulatory regions, suggesting that DoWRKY genes may play a role in polysaccharide metabolism. These results provide a basis for investigating the function of WRKY genes and help to understand the downstream regulation network in plants within the Orchidaceae.
Collapse
Affiliation(s)
- Chunmei He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | | | - Jianwen Tan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.,College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianxia Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xiaoping Pan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Mingzhi Li
- Genepioneer Biotechnologies Co. Ltd, Nanjing, 210014, China
| | - Jianping Luo
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jun Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
218
|
Li L, Mu S, Cheng Z, Cheng Y, Zhang Y, Miao Y, Hou C, Li X, Gao J. Characterization and expression analysis of the WRKY gene family in moso bamboo. Sci Rep 2017; 7:6675. [PMID: 28751687 PMCID: PMC5532226 DOI: 10.1038/s41598-017-06701-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 06/16/2017] [Indexed: 12/11/2022] Open
Abstract
The WRKY family of transcription factors (TFs) is one of the ten largest families of TFs in higher plants and has been implicated in multiple biological processes. Here, we identified 121 WRKY TFs in moso bamboo, including five novel members that were not annotated in the Phyllostachys edulis genomic database. Estimation of the divergence time of paralogous gene pairs revealed an important role of the recent whole-genome duplication in the expansion of the WRKY family. Expression analysis based on quantitative reverse-transcription polymerase chain reaction (qRT-PCR) data revealed that a large number of PheWRKY genes varied significantly under cold or drought stress treatments, which could be defined as abiotic stress-responsive genes. The overexpression of PheWRKY72-2 in Arabidopsis resulted in a decreased sensitivity to drought stress during early seedling growth. PheWRKY72-2 may enhance plant tolerance to stress by functioning as a positive regulator of stoma closure. Our study provides a theoretical foundation and some experimental evidence for further functional verification of the PheWRKY family of TFs.
Collapse
Affiliation(s)
- Long Li
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, 100102, People's Republic of China.,College of Forestry, Northwest Agriculture & Forestry University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Shaohua Mu
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, 100102, People's Republic of China
| | - Zhanchao Cheng
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, 100102, People's Republic of China
| | - Yuanwen Cheng
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, 100102, People's Republic of China
| | - Ying Zhang
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, 100102, People's Republic of China
| | - Ying Miao
- Center for Molecular Cell and Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Chenglin Hou
- Department of Microbiology, College of Life Science, Capital Normal University, Beijing, 100048, People's Republic of China
| | - Xueping Li
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, 100102, People's Republic of China.
| | - Jian Gao
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, 100102, People's Republic of China.
| |
Collapse
|
219
|
Fan ZQ, Tan XL, Shan W, Kuang JF, Lu WJ, Chen JY. BrWRKY65, a WRKY Transcription Factor, Is Involved in Regulating Three Leaf Senescence-Associated Genes in Chinese Flowering Cabbage. Int J Mol Sci 2017; 18:ijms18061228. [PMID: 28594365 PMCID: PMC5486051 DOI: 10.3390/ijms18061228] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/29/2017] [Accepted: 06/05/2017] [Indexed: 11/23/2022] Open
Abstract
Plant-specific WRKY transcription factors (TFs) have been implicated to function as regulators of leaf senescence, but their association with postharvest leaf senescence of economically important leafy vegetables, is poorly understood. In this work, the characterization of a Group IIe WRKY TF, BrWRKY65, from Chinese flowering cabbage (Brassica rapa var. parachinensis) is reported. The expression of BrWRKY65 was up-regulated following leaf chlorophyll degradation and yellowing during postharvest senescence. Subcellular localization and transcriptional activation assays showed that BrWRKY65 was localized in the nucleus and exhibited trans-activation ability. Further electrophoretic mobility shift assay (EMSA) and transient expression analysis clearly revealed that BrWRKY65 directly bound to the W-box motifs in the promoters of three senescence-associated genes (SAGs) such as BrNYC1 and BrSGR1 associated with chlorophyll degradation, and BrDIN1, and subsequently activated their expressions. These findings demonstrate that BrWRKY65 may be positively associated with postharvest leaf senescence, at least partially, by the direct activation of SAGs. Taken together, these findings provide new insights into the transcriptional regulatory mechanism of postharvest leaf senescence in Chinese flowering cabbage.
Collapse
Affiliation(s)
- Zhong-Qi Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Xiao-Li Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Jian-Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
220
|
Huang Z, Zhang X, Jiang S, Qin M, Zhao N, Lang L, Liu Y, Tian Z, Liu X, Wang Y, Zhang B, Xu A. Analysis of cold resistance and identification of SSR markers linked to cold resistance genes in Brassica rapa L. BREEDING SCIENCE 2017; 67:213-220. [PMID: 28744174 PMCID: PMC5515308 DOI: 10.1270/jsbbs.16161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/19/2017] [Indexed: 05/26/2023]
Abstract
Currently, cold temperatures are one of the main factors threatening rapeseed production worldwide; thus, it is imperative to identify cold-resistant germplasm and to cultivate cold-resistant rapeseed varieties. In this study, the cold resistance of four Brassica rapa varieties was analyzed. The cold resistance of Longyou6 and Longyou7 was better than that of Tianyou2 and Tianyou4. Thus, an F2 population derived from Longyou6 and Tianyou4 was used to study the correlation of cold resistance and physiological indexes. Our results showed that the degree of frost damage was related to the relative conductivity and MDA content (r1 = 0.558 and r2 = 0.447, respectively). In order to identify the markers related to cold resistance, 504 pairs of SSR (simple sequence repeats) primers were used to screen the two parents and F2 population. Four and five SSR markers had highly significant positive correlation to relative conductivity and MDA, respectively. In addition, three of these SSR markers had a highly significant positive correlation to both of these two indexes. These three SSR markers were subsequently confirmed to be used to distinguish between cold-resistant and non-cold-resistant varieties. The results of this study will lay a solid foundation for the mapping of cold-resistant genes and molecular markers assisted selection for the cold-resistance.
Collapse
Affiliation(s)
- Zhen Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University,
Yangling, Shaanxi, 712100,
China
| | - Xuexian Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University,
Yangling, Shaanxi, 712100,
China
| | - Shouhua Jiang
- Huai an Academy of Agricultural Sciences,
Huai an, Jiangsu, 223001,
China
| | - Mengfan Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University,
Yangling, Shaanxi, 712100,
China
| | - Na Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University,
Yangling, Shaanxi, 712100,
China
| | - Lina Lang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University,
Yangling, Shaanxi, 712100,
China
| | - Yaping Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University,
Yangling, Shaanxi, 712100,
China
| | - Zhengshu Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University,
Yangling, Shaanxi, 712100,
China
| | - Xia Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University,
Yangling, Shaanxi, 712100,
China
| | - Yang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University,
Yangling, Shaanxi, 712100,
China
| | - Binbin Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University,
Yangling, Shaanxi, 712100,
China
| | - Aixia Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University,
Yangling, Shaanxi, 712100,
China
| |
Collapse
|
221
|
Ning P, Liu C, Kang J, Lv J. Genome-wide analysis of WRKY transcription factors in wheat ( Triticum aestivum L.) and differential expression under water deficit condition. PeerJ 2017; 5:e3232. [PMID: 28484671 PMCID: PMC5420200 DOI: 10.7717/peerj.3232] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/27/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND WRKY proteins, which comprise one of the largest transcription factor (TF) families in the plant kingdom, play crucial roles in plant development and stress responses. Despite several studies on WRKYs in wheat (Triticum aestivum L.), functional annotation information about wheat WRKYs is limited. RESULTS Here, 171 TaWRKY TFs were identified from the whole wheat genome and compared with proteins from 19 other species representing nine major plant lineages. A phylogenetic analysis, coupled with gene structure analysis and motif determination, divided these TaWRKYs into seven subgroups (Group I, IIa-e, and III). Chromosomal location showed that most TaWRKY genes were enriched on four chromosomes, especially on chromosome 3B. In addition, 85 (49.7%) genes were either tandem (5) or segmental duplication (80), which suggested that though tandem duplication has contributed to the expansion of TaWRKY family, segmental duplication probably played a more pivotal role. Analysis of cis-acting elements revealed putative functions of WRKYs in wheat during development as well as under numerous biotic and abiotic stresses. Finally, the expression of TaWRKY genes in flag leaves, glumes, and lemmas under water-deficit condition were analyzed. Results showed that different TaWRKY genes preferentially express in specific tissue during the grain-filling stage. CONCLUSION Our results provide a more extensive insight on WRKY gene family in wheat, and also contribute to the screening of more candidate genes for further investigation on function characterization of WRKYs under various stresses.
Collapse
Affiliation(s)
- Pan Ning
- College of Science, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Congcong Liu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jingquan Kang
- College of Life Science, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Jinyin Lv
- College of Life Science, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
222
|
Genome-wide identification and characterization of the WRKY gene family in potato ( Solanum tuberosum ). BIOCHEM SYST ECOL 2017. [DOI: 10.1016/j.bse.2017.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
223
|
Jiang J, Ma S, Ye N, Jiang M, Cao J, Zhang J. WRKY transcription factors in plant responses to stresses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:86-101. [PMID: 27995748 DOI: 10.1111/jipb.12513] [Citation(s) in RCA: 572] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/16/2016] [Indexed: 05/20/2023]
Abstract
The WRKY gene family is among the largest families of transcription factors (TFs) in higher plants. By regulating the plant hormone signal transduction pathway, these TFs play critical roles in some plant processes in response to biotic and abiotic stress. Various bodies of research have demonstrated the important biological functions of WRKY TFs in plant response to different kinds of biotic and abiotic stresses and working mechanisms. However, very little summarization has been done to review their research progress. Not just important TFs function in plant response to biotic and abiotic stresses, WRKY also participates in carbohydrate synthesis, senescence, development, and secondary metabolites synthesis. WRKY proteins can bind to W-box (TGACC (A/T)) in the promoter of its target genes and activate or repress the expression of downstream genes to regulate their stress response. Moreover, WRKY proteins can interact with other TFs to regulate plant defensive responses. In the present review, we focus on the structural characteristics of WRKY TFs and the research progress on their functions in plant responses to a variety of stresses.
Collapse
Affiliation(s)
- Jingjing Jiang
- State Key Laboratory of Agrobiotechnology Shenzhen Base, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Shenghui Ma
- State Key Laboratory of Agrobiotechnology Shenzhen Base, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Nenghui Ye
- State Key Laboratory of Agrobiotechnology Shenzhen Base, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Ming Jiang
- Ecology Key Discipline of Zhejiang Province, College of Life Science, Taizhou University, Jiaojiang 318000, China
| | - Jiashu Cao
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Jianhua Zhang
- State Key Laboratory of Agrobiotechnology Shenzhen Base, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
224
|
Ma J, Gao X, Liu Q, Shao Y, Zhang D, Jiang L, Li C. Overexpression of TaWRKY146 Increases Drought Tolerance through Inducing Stomatal Closure in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2017; 8:2036. [PMID: 29225611 PMCID: PMC5706409 DOI: 10.3389/fpls.2017.02036] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 11/14/2017] [Indexed: 05/02/2023]
Abstract
As a superfamily of transcription factors, the tryptophan-arginine-lysine-tyrosine (WRKY) transcription factors have been found to be essential for abiotic and biotic stress responses in plants. Currently, only 76 WRKY transcription factors in wheat could be identified in the NCBI database, among which only a few have been functionally analyzed. Herein, a total of 188 WRKY transcription factors were identified from the wheat genome database, which included 123 full-length coding sequences, and all of them were used for detailed evolution studies. By bioinformatics analysis, a WRKY transcription factor, named TaWRKY146, was found to be the homologous gene of AtWRKY46, overexpression of which leads to hypersensitivity to drought and salt stress in Arabidopsis. Consequently, the full length of TaWRKY146 was cloned, and the expression levels of TaWRKY146 were found significantly up-regulated in the leaves and roots of wheat seedlings, which were subjected to osmotic stress. Overexpression of TaWRKY146 in Arabidopsis was shown to enhance drought tolerance by the induction of stomatal closure that reduced the transpiration rate. All these results provide a firm foundation for further identification of WRKY transcription factors with important functions in wheat.
Collapse
Affiliation(s)
| | | | | | | | | | - Lina Jiang
- *Correspondence: Chunxi Li, ; Lina Jiang,
| | - Chunxi Li
- *Correspondence: Chunxi Li, ; Lina Jiang,
| |
Collapse
|
225
|
Wang K, Wu YH, Tian XQ, Bai ZY, Liang QY, Liu QL, Pan YZ, Zhang L, Jiang BB. Overexpression of DgWRKY4 Enhances Salt Tolerance in Chrysanthemum Seedlings. FRONTIERS IN PLANT SCIENCE 2017; 8:1592. [PMID: 28959270 PMCID: PMC5604078 DOI: 10.3389/fpls.2017.01592] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/30/2017] [Indexed: 05/21/2023]
Abstract
High salinity seriously affects the production of chrysanthemum, so improving the salt tolerance of chrysanthemum becomes the focus and purpose of our research. The WRKY transcription factor (TF) family is highly associated with a number of processes of abiotic stress responses. We isolated DgWRKY4 from Dendranthema grandiflorum, and a protein encoded by this new gene contains two highly conserved WRKY domains and two C2H2 zinc-finger motifs. Then, we functionally characterized that DgWRKY4 was induced by salt, and DgWRKY4 overexpression in chrysanthemum resulted in increased tolerance to high salt stress compared to wild-type (WT). Under salt stress, the transgenic chrysanthemum accumulated less malondialdehyde, hydrogen peroxide (H2O2), and superoxide anion ([Formula: see text]) than WT, accompanied by more proline, soluble sugar, and activities of antioxidant enzymes than WT; in addition, a stronger photosynthetic capacity and a series of up-regulated stress-related genes were also found in transgenic chrysanthemum. All results demonstrated that DgWRKY4 is a positive regulatory gene responding to salt stress, via advancing photosynthetic capacity, promoting the operation of reactive oxygen species-scavenging system, maintaining membrane stability, enhancing the osmotic adjustment, and up-regulating transcript levels of stress-related genes. So, DgWRKY4 can serve as a new candidate gene for salt-tolerant plant breeding.
Collapse
|
226
|
Cheng MN, Huang ZJ, Hua QZ, Shan W, Kuang JF, Lu WJ, Qin YH, Chen JY. The WRKY transcription factor HpWRKY44 regulates CytP450-like1 expression in red pitaya fruit ( Hylocereus polyrhizus). HORTICULTURE RESEARCH 2017; 4:17039. [PMID: 28785415 PMCID: PMC5539414 DOI: 10.1038/hortres.2017.39] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/19/2017] [Accepted: 06/26/2017] [Indexed: 05/07/2023]
Abstract
Red pitaya (Hylocereus polyrhizus) fruit is a high-value, functional food, containing a high level of betalains. Several genes potentially related to betalain biosynthesis, such as cytochrome P450-like (CytP450-like), have been identified in pitaya fruit, while their transcriptional regulation remains unclear. In this work, the potential involvement of a WRKY transcription factor, HpWRKY44, in regulating CytP450-like1 expression in pitaya fruit was examined. HpWRKY44, a member of the Group 1 WRKY family, contains two conserved WRKY motifs and is localized in the nucleus. HpWRKY44 also exhibits trans-activation ability. Gene expression analysis showed that the expression of HpCytP450-like1 and HpWRKY44 increased steadily during pitaya fruit coloration, which corresponded with the production of elevated betalain levels in the fruit. HpWRKY44 was also demonstrated to directly bind to and activate the HpCytP450-like1 promoter via the recognition of the W-box element present in the promoter. Collectively, our findings indicate that HpWRKY44 transcriptionally activates HpCytP450-like1, which perhaps, at least in part, contributes to betalain biosynthesis in pitaya fruit. The information provided in the current study provides novel insights into the regulatory network associated with betalain biosynthesis during pitaya fruit coloration.
Collapse
Affiliation(s)
- Mei-nv Cheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zi-juan Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Qing-zhu Hua
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jian-fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wang-jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yong-hua Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jian-ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
227
|
Kumar M, Gho YS, Jung KH, Kim SR. Genome-Wide Identification and Analysis of Genes, Conserved between japonica and indica Rice Cultivars, that Respond to Low-Temperature Stress at the Vegetative Growth Stage. FRONTIERS IN PLANT SCIENCE 2017; 8:1120. [PMID: 28713404 PMCID: PMC5491850 DOI: 10.3389/fpls.2017.01120] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/09/2017] [Indexed: 05/14/2023]
Abstract
Cold stress is very detrimental to crop production. However, only a few genes in rice have been identified with known functions related to cold tolerance. To meet this agronomic challenge more effectively, researchers must take global approaches to select useful candidate genes and find the major regulatory factors. We used five Gene expression omnibus series data series of Affymetrix array data, produced with cold stress-treated samples from the NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/), and identified 502 cold-inducible genes common to both japonica and indica rice cultivars. From them, we confirmed that the expression of two randomly chosen genes was increased by cold stress in planta. In addition, overexpression of OsWRKY71 enhanced cold tolerance in 'Dongjin,' the tested japonica cultivar. Comparisons between japonica and indica rice, based on calculations of plant survival rates and chlorophyll fluorescence, confirmed that the japonica rice was more cold-tolerant. Gene Ontology enrichment analysis indicate that the 'L-phenylalanine catabolic process,' within the Biological Process category, was the most highly overrepresented under cold-stress conditions, implying its significance in that response in rice. MapMan analysis classified 'Major Metabolic' processes and 'Regulatory Gene Modules' as two other major determinants of the cold-stress response and suggested several key cis-regulatory elements. Based on these results, we proposed a model that includes a pathway for cold stress-responsive signaling. Results from our functional analysis of the main signal transduction and transcription regulation factors identified in that pathway will provide insight into novel regulatory metabolism(s), as well as a foundation by which we can develop crop plants with enhanced cold tolerance.
Collapse
Affiliation(s)
- Manu Kumar
- Department of Life Sciences, Sogang UniversitySeoul, South Korea
| | - Yun-Shil Gho
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee UniversityYongin, South Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee UniversityYongin, South Korea
- *Correspondence: Seong-Ryong Kim, Ki-Hong Jung,
| | - Seong-Ryong Kim
- Department of Life Sciences, Sogang UniversitySeoul, South Korea
- *Correspondence: Seong-Ryong Kim, Ki-Hong Jung,
| |
Collapse
|
228
|
Wu J, Chen J, Wang L, Wang S. Genome-Wide Investigation of WRKY Transcription Factors Involved in Terminal Drought Stress Response in Common Bean. FRONTIERS IN PLANT SCIENCE 2017; 8:380. [PMID: 28386267 PMCID: PMC5362628 DOI: 10.3389/fpls.2017.00380] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/06/2017] [Indexed: 05/03/2023]
Abstract
WRKY transcription factor plays a key role in drought stress. However, the characteristics of the WRKY gene family in the common bean (Phaseolus vulgaris L.) are unknown. In this study, we identified 88 complete WRKY proteins from the draft genome sequence of the "G19833" common bean. The predicted genes were non-randomly distributed in all chromosomes. Basic information, amino acid motifs, phylogenetic tree and the expression patterns of PvWRKY genes were analyzed, and the proteins were classified into groups 1, 2, and 3. Group 2 was further divided into five subgroups: 2a, 2b, 2c, 2d, and 2e. Finally, we detected 19 WRKY genes that were responsive to drought stress using qRT-PCR; 11 were down-regulated, and 8 were up-regulated under drought stress. This study comprehensively examines WRKY proteins in the common bean, a model food legume, and it provides a foundation for the functional characterization of the WRKY family and opportunities for understanding the mechanisms of drought stress tolerance in this plant.
Collapse
Affiliation(s)
- Jing Wu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences,Beijing, China
| | - Jibao Chen
- College of Agricultural Engineering, Nanyang Normal University,Nanyang, China
| | - Lanfen Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences,Beijing, China
| | - Shumin Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences,Beijing, China
- *Correspondence: Shumin Wang,
| |
Collapse
|
229
|
Putative WRKYs associated with regulation of fruit ripening revealed by detailed expression analysis of the WRKY gene family in pepper. Sci Rep 2016; 6:39000. [PMID: 27991526 PMCID: PMC5171846 DOI: 10.1038/srep39000] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/16/2016] [Indexed: 11/25/2022] Open
Abstract
WRKY transcription factors play important roles in plant development and stress responses. Here, global expression patterns of pepper CaWRKYs in various tissues as well as response to environmental stresses and plant hormones were systematically analyzed, with an emphasis on fruit ripening. The results showed that most CaWRKYs were expressed in at least two of the tissues tested. Group I, a subfamily of the entire CaWRKY gene family, had a higher expression level in vegetative tissues, whereas groups IIa and III showed relatively lower expression levels. Comparative analysis showed that the constitutively highly expressed WRKY genes were conserved in tomato and pepper, suggesting potential functional similarities. Among the identified 61 CaWRKYs, almost 60% were expressed during pepper fruit maturation, and the group I genes were in higher proportion during the ripening process, indicating an as-yet unknown function of group I in the fruit maturation process. Further analysis suggested that many CaWRKYs expressed during fruit ripening were also regulated by abiotic stresses or plant hormones, indicating that these CaWRKYs play roles in the stress-related signaling pathways during fruit ripening. This study provides new insights to the current research on CaWRKY and contributes to our knowledge about the global regulatory network in pepper fruit ripening.
Collapse
|
230
|
Lu X, Cao X, Li F, Li J, Xiong J, Long G, Cao S, Xie S. Comparative transcriptome analysis reveals a global insight into molecular processes regulating citrate accumulation in sweet orange (Citrus sinensis). PHYSIOLOGIA PLANTARUM 2016; 158:463-482. [PMID: 27507765 DOI: 10.1111/ppl.12484] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 05/25/2016] [Accepted: 06/02/2016] [Indexed: 05/07/2023]
Abstract
Citrate, the predominant organic acid in citrus, determines the taste of these fruits. However, little is known about the synergic molecular processes regulating citrate accumulation. Using 'Dahongtiancheng' (Citrus sinensis) and 'Bingtangcheng' (C. sinensis) with significant difference in citrate, the objectives of this study were to understand the global mechanisms of high-citrate accumulation in sweet orange. 'Dahongtiancheng' and 'Bingtangcheng' exhibit significantly different patterns in citrate accumulation throughout fruit development, with the largest differences observed at 50-70 days after full bloom (DAFB). Comparative transcriptome profiling was performed for the endocarps of both cultivars at 50 and 70 DAFB. Over 34.5 million clean reads per library were successfully mapped to the reference database and 670-2630 differentially expressed genes (DEGs) were found in four libraries. Among the genes, five transcription factors were ascertained to be the candidates regulating citrate accumulation. Functional assignments of the DEGs indicated that photosynthesis, the citrate cycle and amino acid metabolism were significantly altered in 'Dahongtiancheng'. Physiological and molecular analyses suggested that high photosynthetic efficiency and partial impairment of citrate catabolism were crucial for the high-citrate trait, and amino acid biosynthesis was one of the important directions for citrate flux. The results reveal a global insight into the gene expression changes in a high-citrate compared with a low-citrate sweet orange. High accumulating efficiency and impaired degradation of citrate may be associated with the high-citrate trait of 'Dahongtiancheng'. Findings in this study increase understanding of the molecular processes regulating citrate accumulation in sweet orange.
Collapse
Affiliation(s)
- Xiaopeng Lu
- Department of Horticulture, College of Horticulture and Landscape, Hunan Agricultural University, Changsha, China
- National Centre for Citrus Improvement, Changsha, China
| | - Xiongjun Cao
- Department of Horticulture, College of Horticulture and Landscape, Hunan Agricultural University, Changsha, China
- National Centre for Citrus Improvement, Changsha, China
| | - Feifei Li
- Department of Horticulture, College of Horticulture and Landscape, Hunan Agricultural University, Changsha, China
- Institute of Horticulture, Hunan Academy of Agricultural Science, Changsha, China
| | - Jing Li
- Department of Horticulture, College of Horticulture and Landscape, Hunan Agricultural University, Changsha, China
- National Centre for Citrus Improvement, Changsha, China
| | - Jiang Xiong
- Department of Horticulture, College of Horticulture and Landscape, Hunan Agricultural University, Changsha, China
- National Centre for Citrus Improvement, Changsha, China
| | - Guiyou Long
- Department of Horticulture, College of Horticulture and Landscape, Hunan Agricultural University, Changsha, China
- National Centre for Citrus Improvement, Changsha, China
| | - Shangyin Cao
- Zhengzhou Fruit Research Institute, Chinese academy of Agricultural Sciences, Zhengzhou, China
| | - Shenxi Xie
- Department of Horticulture, College of Horticulture and Landscape, Hunan Agricultural University, Changsha, China
- National Centre for Citrus Improvement, Changsha, China
| |
Collapse
|
231
|
Liu J, Dong L, Liu H, Li Y, Zhang K, Gao S, Zhang T, Zhang S. Molecular characters and different expression of WRKY1 gene from Gossypium barbadense L. and Gossypium hirsutum L. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1214082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Jianfeng Liu
- Department of Bioengineering, College of Life Science, Hebei University , Baoding, Hebei, P.R. China
| | - Lijun Dong
- Department of Bioengineering, College of Life Science, Hebei University , Baoding, Hebei, P.R. China
| | - Haoran Liu
- Department of Bioengineering, College of Life Science, Hebei University , Baoding, Hebei, P.R. China
| | - Yanli Li
- Department of Bioengineering, College of Life Science, Hebei University , Baoding, Hebei, P.R. China
| | - Kaijian Zhang
- Department of Bioengineering, College of Life Science, Hebei University , Baoding, Hebei, P.R. China
| | - Suwei Gao
- Department of Bioengineering, College of Life Science, Hebei University , Baoding, Hebei, P.R. China
| | - Tonghui Zhang
- Department of Bioengineering, College of Life Science, Hebei University , Baoding, Hebei, P.R. China
| | - Shuling Zhang
- Department of Bioengineering, College of Life Science, Hebei University , Baoding, Hebei, P.R. China
| |
Collapse
|
232
|
Zhang Y, Yu H, Yang X, Li Q, Ling J, Wang H, Gu X, Huang S, Jiang W. CsWRKY46, a WRKY transcription factor from cucumber, confers cold resistance in transgenic-plant by regulating a set of cold-stress responsive genes in an ABA-dependent manner. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 108:478-487. [PMID: 27592172 DOI: 10.1016/j.plaphy.2016.08.013] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/12/2016] [Accepted: 08/15/2016] [Indexed: 05/17/2023]
Abstract
Plant WRKY transcription factors are trans-regulatory proteins that are involved in plant immune responses, development and senescence; however, their roles in abiotic stress are still not well understood, especially in the horticultural crop cucumber. In this study, a novel cucumber WRKY gene, CsWRKY46 was cloned and identified, which was up-regulated in response to cold stress and exogenous abscisic acid (ABA) treatment. CsWRKY46 is belonging to group II of the WRKY family, CsWRKY46 was found exclusively in the nucleus, as indicated by a transient expression assay. Yeast one-hybrid assay shown that CsWRKY46 interact with the W-box in the promoter of ABI5. Transgenic Arabidopsis lines over-expressing CsWRKY46, WRK46-OE1 and WRK46-OE5 had higher seedling survival rates upon freezing treatment compared with that of the wild-type. The above over-expression lines also showed much a higher proline accumulation, less electrolyte leakage and lower malondialdehyde (MDA) levels. Furthermore, the CsWRKY46 overexpression lines were hypersensitive to ABA during seed germination, but the seedlings were not. Quantitative RT-PCR analyses revealed that the expression levels of the ABA-responsive transcription factor ABI5 were higher in the WRKY46-OE lines than in wild-type and that the overexpression of CsWRKY46 increased the expression of stress-inducible genes, including RD29A and COR47. Taken together, our results demonstrated that CsWRKY46 from cucumber conferred cold tolerance to transgenic plants and positively regulated the cold signaling pathway in an ABA-dependent manner.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Haidian District, Beijing 100081, China; College of Life Science, Shenyang Normal University, 253 Huanghe North Street, Huanggu District, Shenyang, Liaoning 110034, China
| | - Hongjun Yu
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Xueyong Yang
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Qiang Li
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Jian Ling
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Hong Wang
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Xingfang Gu
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Sanwen Huang
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Weijie Jiang
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Haidian District, Beijing 100081, China; Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China.
| |
Collapse
|
233
|
Huang Y, Li MY, Wu P, Xu ZS, Que F, Wang F, Xiong AS. Members of WRKY Group III transcription factors are important in TYLCV defense signaling pathway in tomato (Solanum lycopersicum). BMC Genomics 2016; 17:788. [PMID: 27717312 PMCID: PMC5055730 DOI: 10.1186/s12864-016-3123-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 09/26/2016] [Indexed: 01/18/2023] Open
Abstract
Background Transmitted by the whitefly Bemisia tabaci, tomato yellow leaf curly virus (TYLCV) has posed serious threats to plant growth and development. Plant innate immune systems against various threats involve WRKY Group III transcription factors (TFs). This group participates as a major component of biological processes in plants. Results In this study, 6 WRKY Group III TFs (SolyWRKY41, SolyWRKY42, SolyWRKY53, SolyWRKY54, SolyWRKY80, and SolyWRKY81) were identified, and these TFs responded to TYLCV infection. Subcellular localization analysis indicated that SolyWRKY41 and SolyWRKY54 were nuclear proteins in vivo. Many elements, including W-box, were found in the promoter region of Group III TFs. Interaction network analysis revealed that Group III TFs could interact with other proteins, such as mitogen-activated protein kinase 5 (MAPK) and isochorismate synthase (ICS), to respond to biotic and abiotic stresses. Positive and negative expression patterns showed that WRKY Group III genes could also respond to TYLCV infection in tomato. The DNA content of TYLCV resistant lines after SolyWRKY41 and SolyWRKY54 were subjected to virus-induced gene silencing (VIGS) was lower than that of the control lines. Conclusions In the present study, 6 WRKY Group III TFs in tomato were identified to respond to TYLCV infection. Quantitative real-time–polymerase chain reaction (RT-qPCR) and VIGS analyses demonstrated that Group III genes served as positive and negative regulators in tomato–TYLCV interaction. WRKY Group III TFs could interact with other proteins by binding to cis elements existing in the promoter regions of other genes to regulate pathogen-related gene expression. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3123-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ying Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Meng-Yao Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Peng Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Feng Que
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
234
|
Bi C, Xu Y, Ye Q, Yin T, Ye N. Genome-wide identification and characterization of WRKY gene family in Salix suchowensis. PeerJ 2016; 4:e2437. [PMID: 27651997 PMCID: PMC5018666 DOI: 10.7717/peerj.2437] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/13/2016] [Indexed: 11/20/2022] Open
Abstract
WRKY proteins are the zinc finger transcription factors that were first identified in plants. They can specifically interact with the W-box, which can be found in the promoter region of a large number of plant target genes, to regulate the expressions of downstream target genes. They also participate in diverse physiological and growing processes in plants. Prior to this study, a plenty of WRKY genes have been identified and characterized in herbaceous species, but there is no large-scale study of WRKY genes in willow. With the whole genome sequencing of Salix suchowensis, we have the opportunity to conduct the genome-wide research for willow WRKY gene family. In this study, we identified 85 WRKY genes in the willow genome and renamed them from SsWRKY1 to SsWRKY85 on the basis of their specific distributions on chromosomes. Due to their diverse structural features, the 85 willow WRKY genes could be further classified into three main groups (group I–III), with five subgroups (IIa–IIe) in group II. With the multiple sequence alignment and the manual search, we found three variations of the WRKYGQK heptapeptide: WRKYGRK, WKKYGQK and WRKYGKK, and four variations of the normal zinc finger motif, which might execute some new biological functions. In addition, the SsWRKY genes from the same subgroup share the similar exon–intron structures and conserved motif domains. Further studies of SsWRKY genes revealed that segmental duplication events (SDs) played a more prominent role in the expansion of SsWRKY genes. Distinct expression profiles of SsWRKY genes with RNA sequencing data revealed that diverse expression patterns among five tissues, including tender roots, young leaves, vegetative buds, non-lignified stems and barks. With the analyses of WRKY gene family in willow, it is not only beneficial to complete the functional and annotation information of WRKY genes family in woody plants, but also provide important references to investigate the expansion and evolution of this gene family in flowering plants.
Collapse
Affiliation(s)
- Changwei Bi
- College of Information Science and Technology, Nanjing Forestry University , Nanjing, Jiangsu , China
| | - Yiqing Xu
- College of Information Science and Technology, Nanjing Forestry University , Nanjing, Jiangsu , China
| | - Qiaolin Ye
- College of Information Science and Technology, Nanjing Forestry University , Nanjing, Jiangsu , China
| | - Tongming Yin
- College of Forest Resources and Environment, Nanjing Forestry University , Nanjing, Jiangsu , China
| | - Ning Ye
- College of Information Science and Technology, Nanjing Forestry University , Nanjing, Jiangsu , China
| |
Collapse
|
235
|
Sen S, Dutta SK. A potent bidirectional promoter from the monocot cereal Eleusine coracana. PHYTOCHEMISTRY 2016; 129:24-35. [PMID: 27460530 DOI: 10.1016/j.phytochem.2016.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 04/12/2016] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Abstract
Ragi bifunctional α-amylase-trypsin inhibitor (RBI) of Eleusine coracana (L.) Gaertn. (finger millet) simultaneously inhibits α-amylase and trypsin. In continuation of previous work on the cloning, expression and characterization of RBI, a bidirectional promoter from finger millet was explored on the basis of experimental observations. Two trypsin inhibitors were identified while purifying RBI from a trypsin-Sepharose column eluent. Using an FPLC gel filtration column, these three inhibitors were purified to homogeneity and subjected to MALDI-TOF-TOF-MS/MS analysis and N-terminal sequencing. Both ragi trypsin inhibitors (RTIs) showed the same N-terminal sequence and considerable sequence similarity to RBI, indicating the presence of a multigene protease inhibitor family in finger millet. To gain insight into the evolution of these genes, the upstream region of RBI was explored by Genome Walking. Interestingly, on sequencing, a genome walking product of ∼1 Kb showed presence of an N-terminal RBI specific primer sequence twice but in opposite directions and leaving an intervening region of ∼0.9 Kb. The intervening region was presumed to represent an E. coracana bidirectional promoter (EcBDP), intuitively having a divergent RBI-RTI gene pair at two sides. For assaying the bidirectionality of promoter activity, a dual reporter GUS-GFP vector construct was made for plant expression containing the reporter genes at two ends of EcBDP, which was used to transform Agrobacterium tumefaciens LBA 4404. Transient plant transformation by recombinant Agrobacterium cells was carried out in onion scale epidermal cells and finger millet seedling leaves. Simultaneous expression of GUS and GFP under EcBDP established it as a potent natural bidirectional promoter from monocot origin, thereby potentially having vast application in cereal gene manipulations. In addition, inducibility of the EcBDP by either abscisic acid or cold treatment, as determined by transient transformation in onion, would substantiate more precise control of gene expression to mitigate the effects of adverse environmental conditions.
Collapse
Affiliation(s)
- Saswati Sen
- Drug Development/Diagnostics and Biotechnology Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700 032, India.
| | - Samir Kr Dutta
- Drug Development/Diagnostics and Biotechnology Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700 032, India
| |
Collapse
|
236
|
Wei W, Hu Y, Han YT, Zhang K, Zhao FL, Feng JY. The WRKY transcription factors in the diploid woodland strawberry Fragaria vesca: Identification and expression analysis under biotic and abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 105:129-144. [PMID: 27105420 DOI: 10.1016/j.plaphy.2016.04.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/02/2016] [Accepted: 04/08/2016] [Indexed: 05/07/2023]
Abstract
WRKY proteins comprise a large family of transcription factors that play important roles in response to biotic and abiotic stresses and in plant growth and development. To date, little is known about the WRKY gene family in strawberry. In this study, we identified 62 WRKY genes (FvWRKYs) in the wild diploid woodland strawberry (Fragaria vesca, 2n = 2x = 14) accession Heilongjiang-3. According to the phylogenetic analysis and structural features, these identified strawberry FvWRKY genes were classified into three main groups. In addition, eight FvWRKY-GFP fusion proteins showed distinct subcellular localizations in Arabidopsis mesophyll protoplasts. Furthermore, we examined the expression of the 62 FvWRKY genes in 'Heilongjiang-3' under various conditions, including biotic stress (Podosphaera aphanis), abiotic stresses (drought, salt, cold, and heat), and hormone treatments (abscisic acid, ethephon, methyl jasmonate, and salicylic acid). The expression levels of 33 FvWRKY genes were upregulated, while 12 FvWRKY genes were downregulated during powdery mildew infection. FvWRKY genes responded to drought and salt treatment to a greater extent than to temperature stress. Expression profiles derived from quantitative real-time PCR suggested that 11 FvWRKY genes responded dramatically to various stimuli at the transcriptional level, indicating versatile roles in responses to biotic and abiotic stresses. Interaction networks revealed that the crucial pathways controlled by WRKY proteins may be involved in the differential response to biotic stress. Taken together, the present work may provide the basis for future studies of the genetic modification of WRKY genes for pathogen resistance and stress tolerance in strawberry.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Yang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yong-Tao Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kai Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Feng-Li Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jia-Yue Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| |
Collapse
|
237
|
Chung MS, Lee S, Min JH, Huang P, Ju HW, Kim CS. Regulation of Arabidopsis thaliana plasma membrane glucose-responsive regulator (AtPGR) expression by A. thaliana storekeeper-like transcription factor, AtSTKL, modulates glucose response in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 104:155-64. [PMID: 27031427 DOI: 10.1016/j.plaphy.2016.03.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 03/22/2016] [Indexed: 05/08/2023]
Abstract
Biochemical, genetic, physiological, and molecular research in plants has demonstrated a central role of glucose (Glc) in the control of plant growth, metabolism, and development, and has revealed networks that integrate light, stresses, nutrients, and hormone signaling. Previous studies have reported that AtPGR protein as potential candidates for Glc signaling protein. In the present study, we characterized transcription factors that bind to the upstream region of the AtPGR gene isolated using the yeast one-hybrid screening with an Arabidopsis cDNA library. One of the selected genes (AtSTKL) appeared to confer elevated sensitivity to Glc response. Overexpression of AtSTKLs (AtSTKL1 and AtSTKL2) increased the sensitivity to Glc during the post-germination stages. In contrast, atstkl1 and atstkl2 antisense lines displayed reduced sensitivity to high Glc concentration during the early seedling stage. Furthermore, we showed that the two AtSTKLs bind to the 5'-GCCT-3' element of the upstream promoter region of the AtPGR gene in vitro and repress the beta-glucuronidase (GUS) activity in AtPGR promoter-GUS (P999-GUS) transgenic plants. Green fluorescent protein (GFP)-tagged AtSTKLs were localized in the nuclei of transgenic Arabidopsis cells. Collectively, these results suggest that AtSTKL1 and AtSTKL2 function both as repressors of AtPGR transcription and as novel transcription factors in the Glc signaling pathway.
Collapse
Affiliation(s)
- Moon-Soo Chung
- Korea Atomic Energy Research Institute, Jeollabuk-do 580-185, South Korea; Department of Plant Biotechnology, Chonnam National University, Gwangju 500-757, South Korea
| | - Sungbeom Lee
- Korea Atomic Energy Research Institute, Jeollabuk-do 580-185, South Korea
| | - Ji-Hee Min
- Department of Plant Biotechnology, Chonnam National University, Gwangju 500-757, South Korea
| | - Ping Huang
- Department of Plant Biotechnology, Chonnam National University, Gwangju 500-757, South Korea
| | - Hyun-Woo Ju
- Department of Plant Biotechnology, Chonnam National University, Gwangju 500-757, South Korea
| | - Cheol Soo Kim
- Department of Plant Biotechnology, Chonnam National University, Gwangju 500-757, South Korea.
| |
Collapse
|
238
|
Yu Y, Wang N, Hu R, Xiang F. Genome-wide identification of soybean WRKY transcription factors in response to salt stress. SPRINGERPLUS 2016; 5:920. [PMID: 27386364 PMCID: PMC4927560 DOI: 10.1186/s40064-016-2647-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 06/22/2016] [Indexed: 01/23/2023]
Abstract
Members of the large family of WRKY transcription factors are involved in a wide range of developmental and physiological processes, most particularly in the plant response to biotic and abiotic stress. Here, an analysis of the soybean genome sequence allowed the identification of the full complement of 188 soybean WRKY genes. Phylogenetic analysis revealed that soybean WRKY genes were classified into three major groups (I, II, III), with the second group further categorized into five subgroups (IIa-IIe). The soybean WRKYs from each group shared similar gene structures and motif compositions. The location of the GmWRKYs was dispersed over all 20 soybean chromosomes. The whole genome duplication appeared to have contributed significantly to the expansion of the family. Expression analysis by RNA-seq indicated that in soybean root, 66 of the genes responded rapidly and transiently to the imposition of salt stress, all but one being up-regulated. While in aerial part, 49 GmWRKYs responded, all but two being down-regulated. RT-qPCR analysis showed that in the whole soybean plant, 66 GmWRKYs exhibited distinct expression patterns in response to salt stress, of which 12 showed no significant change, 35 were decreased, while 19 were induced. The data present here provide critical clues for further functional studies of WRKY gene in soybean salt tolerance.
Collapse
Affiliation(s)
- Yanchong Yu
- />The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, 250100 Shandong China
- />Shandong Key Laboratory of Plant Biotechnology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 Shandong China
| | - Nan Wang
- />The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, 250100 Shandong China
| | - Ruibo Hu
- />Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road No. 189, Qingdao, 266101 Shandong China
| | - Fengning Xiang
- />The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, 250100 Shandong China
| |
Collapse
|
239
|
Xu H, Watanabe KA, Zhang L, Shen QJ. WRKY transcription factor genes in wild rice Oryza nivara. DNA Res 2016; 23:311-23. [PMID: 27345721 PMCID: PMC4991837 DOI: 10.1093/dnares/dsw025] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 05/18/2016] [Indexed: 11/26/2022] Open
Abstract
The WRKY transcription factor family is one of the largest gene families involved in plant development and stress response. Although many WRKY genes have been studied in cultivated rice (Oryza sativa), the WRKY genes in the wild rice species Oryza nivara, the direct progenitor of O. sativa, have not been studied. O. nivara shows abundant genetic diversity and elite drought and disease resistance features. Herein, a total of 97 O. nivara WRKY (OnWRKY) genes were identified. RNA-sequencing demonstrates that OnWRKY genes were generally expressed at higher levels in the roots of 30-day-old plants. Bioinformatic analyses suggest that most of OnWRKY genes could be induced by salicylic acid, abscisic acid, and drought. Abundant potential MAPK phosphorylation sites in OnWRKYs suggest that activities of most OnWRKYs can be regulated by phosphorylation. Phylogenetic analyses of OnWRKYs support a novel hypothesis that ancient group IIc OnWRKYs were the original ancestors of only some group IIc and group III WRKYs. The analyses also offer strong support that group IIc OnWRKYs containing the HVE sequence in their zinc finger motifs were derived from group Ia WRKYs. This study provides a solid foundation for the study of the evolution and functions of WRKY genes in O. nivara.
Collapse
Affiliation(s)
- Hengjian Xu
- School of Life Sciences, Shandong University of Technology, Zibo 255000, Shandong Province, People's Republic of China School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Kenneth A Watanabe
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Liyuan Zhang
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Qingxi J Shen
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| |
Collapse
|
240
|
He Y, Mao S, Gao Y, Zhu L, Wu D, Cui Y, Li J, Qian W. Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors under Multiple Stresses in Brassica napus. PLoS One 2016; 11:e0157558. [PMID: 27322342 PMCID: PMC4913915 DOI: 10.1371/journal.pone.0157558] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/01/2016] [Indexed: 11/25/2022] Open
Abstract
WRKY transcription factors play important roles in responses to environmental stress stimuli. Using a genome-wide domain analysis, we identified 287 WRKY genes with 343 WRKY domains in the sequenced genome of Brassica napus, 139 in the A sub-genome and 148 in the C sub-genome. These genes were classified into eight groups based on phylogenetic analysis. In the 343 WRKY domains, a total of 26 members showed divergence in the WRKY domain, and 21 belonged to group I. This finding suggested that WRKY genes in group I are more active and variable compared with genes in other groups. Using genome-wide identification and analysis of the WRKY gene family in Brassica napus, we observed genome duplication, chromosomal/segmental duplications and tandem duplication. All of these duplications contributed to the expansion of the WRKY gene family. The duplicate segments that were detected indicated that genome duplication events occurred in the two diploid progenitors B. rapa and B. olearecea before they combined to form B. napus. Analysis of the public microarray database and EST database for B. napus indicated that 74 WRKY genes were induced or preferentially expressed under stress conditions. According to the public QTL data, we identified 77 WRKY genes in 31 QTL regions related to various stress tolerance. We further evaluated the expression of 26 BnaWRKY genes under multiple stresses by qRT-PCR. Most of the genes were induced by low temperature, salinity and drought stress, indicating that the WRKYs play important roles in B. napus stress responses. Further, three BnaWRKY genes were strongly responsive to the three multiple stresses simultaneously, which suggests that these 3 WRKY may have multi-functional roles in stress tolerance and can potentially be used in breeding new rapeseed cultivars. We also found six tandem repeat pairs exhibiting similar expression profiles under the various stress conditions, and three pairs were mapped in the stress related QTL regions, indicating tandem duplicate WRKYs in the adaptive responses to environmental stimuli during the evolution process. Our results provide a framework for future studies regarding the function of WRKY genes in response to stress in B. napus.
Collapse
Affiliation(s)
- Yajun He
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Shaoshuai Mao
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Yulong Gao
- Yunnan Academy of Tobacco Agricultural Sciences, Yuxi 653100, China
| | - Liying Zhu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Daoming Wu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Yixin Cui
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Jiana Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Wei Qian
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- * E-mail:
| |
Collapse
|
241
|
Meng D, Li Y, Bai Y, Li M, Cheng L. Genome-wide identification and characterization of WRKY transcriptional factor family in apple and analysis of their responses to waterlogging and drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 103:71-83. [PMID: 26970718 DOI: 10.1016/j.plaphy.2016.02.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 05/23/2023]
Abstract
As one of the largest transcriptional factor families in plants, WRKY genes play significant roles in various biotic and abiotic stress responses. Although the WRKY gene family has been characterized in a few plant species, the details remain largely unknown in the apple (Malus domestica Borkh.). In this study, we identified a total of 127 MdWRKYs from the apple genome, which were divided into four subgroups according to the WRKY domains and zinc finger motif. Most of them were mapped onto the apple's 17 chromosomes and were expressed in more than one tissue, including shoot tips, mature leaves, fruit and apple calli. We then contrasted WRKY expression patterns between calli grown in solid medium (control) and liquid medium (representing waterlogging stress) and found that 34 WRKY genes were differentially expressed between the two growing conditions. Finally, we determined the expression patterns of 10 selected WRKY genes in an apple rootstock, G41, in response to waterlogging and drought stress, which identified candidate genes involved in responses to water stress for functional analysis. Our data provide interesting candidate MdWRKYs for future functional analysis and demonstrate that apple callus is a useful system for characterizing gene expression and function in apple.
Collapse
Affiliation(s)
- Dong Meng
- Department of Horticulture, Cornell University, 134A Plant Science, Ithaca, NY 14853, USA
| | - Yuanyuan Li
- Department of Horticulture, Cornell University, 134A Plant Science, Ithaca, NY 14853, USA; College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Yang Bai
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Mingjun Li
- Department of Horticulture, Cornell University, 134A Plant Science, Ithaca, NY 14853, USA; College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lailiang Cheng
- Department of Horticulture, Cornell University, 134A Plant Science, Ithaca, NY 14853, USA.
| |
Collapse
|
242
|
Computational analysis of atpB gene promoter from different Pakistani apple varieties. Comput Biol Chem 2016; 64:1-8. [PMID: 27213556 DOI: 10.1016/j.compbiolchem.2016.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 04/27/2016] [Accepted: 05/05/2016] [Indexed: 11/20/2022]
Abstract
Apple is the fourth most important fruit crop grown in temperate areas of the world belongs to the family Rosaceae. In the present study, the promoter (∼1000bp) region of atpB gene was used to evaluate the genetic diversity and phylogeny of six local apple varieties. atpB gene is one of the large chloroplastic region which encodes β-subunit of ATP synthase and previously it had been used largely in phylogenetic studies. During the present study, atpB promoter was amplified, sequenced and analyzed using various bioinformatics tools including Place Signal Scan, MEGA6 and BLASTn. During the phylogenetic analysis, obtained phylogram divided the studied varieties into two clusters revealing the monophyletic origin of studied apple varieties. Pairwise distance revealed moderate genetic diversity that ranges from 0.047-0.170 with an average of 0.101. While identifying different cis-acting elements present in the atpB promoter region, results exhibited the occurrence of 56 common and 20 unique cis-regulatory elements among studied varieties. The identified cis-acting regulatory elements were mapped as well. It was observed that Kala Kulu has the highest unique features with reference to the availability of cis-acting elements. Moreover, the possible functions of all regulatory elements present on the promoter sequence of atpB gene were predicted based on already reported information regarding their in vivo role.
Collapse
|
243
|
Involvement of CmWRKY10 in Drought Tolerance of Chrysanthemum through the ABA-Signaling Pathway. Int J Mol Sci 2016; 17:ijms17050693. [PMID: 27187353 PMCID: PMC4881519 DOI: 10.3390/ijms17050693] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/15/2016] [Accepted: 04/28/2016] [Indexed: 12/30/2022] Open
Abstract
Drought is one of the important abiotic factors that adversely affects plant growth and production. The WRKY transcription factor plays a pivotal role in plant growth and development, as well as in the elevation of many abiotic stresses. Among three major groups of the WRKY family, the group IIe WRKY has been the least studied in floral crops. Here, we report functional aspects of group IIe WRKY member, i.e., CmWRKY10 in chrysanthemum involved in drought tolerance. The transactivation assay showed that CmWRKY10 had transcriptional activity in yeast cells and subcellular localization demonstrated that it was localized in nucleus. Our previous study showed that CmWRKY10 could be induced by drought in chrysanthemum. Moreover, the overexpression of CmWRKY10 in transgenic chrysanthemum plants improved tolerance to drought stress compared to wild-type (WT). High expression of DREB1A, DREB2A, CuZnSOD, NCED3A, and NCED3B transcripts in overexpressed plants provided strong evidence that drought tolerance mechanism was associated with abscisic acid (ABA) pathway. In addition, lower accumulation of reactive oxygen species (ROS) and higher enzymatic activity of peroxidase, superoxide dismutase and catalase in CmWRKY10 overexpressed lines than that of WT demonstrates its role in drought tolerance. Together, these findings reveal that CmWRKY10 works as a positive regulator in drought stress by regulating stress-related genes.
Collapse
|
244
|
Genome-Wide Analysis of the Expression of WRKY Family Genes in Different Developmental Stages of Wild Strawberry (Fragaria vesca) Fruit. PLoS One 2016; 11:e0154312. [PMID: 27138272 PMCID: PMC4854424 DOI: 10.1371/journal.pone.0154312] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/12/2016] [Indexed: 11/19/2022] Open
Abstract
WRKY proteins play important regulatory roles in plant developmental processes such as senescence, trichome initiation and embryo morphogenesis. In strawberry, only FaWRKY1 (Fragaria × ananassa) has been characterized, leaving numerous WRKY genes to be identified and their function characterized. The publication of the draft genome sequence of the strawberry genome allowed us to conduct a genome-wide search for WRKY proteins in Fragaria vesca, and to compare the identified proteins with their homologs in model plants. Fifty-nine FvWRKY genes were identified and annotated from the F. vesca genome. Detailed analysis, including gene classification, annotation, phylogenetic evaluation, conserved motif determination and expression profiling, based on RNA-seq data, were performed on all members of the family. Additionally, the expression patterns of the WRKY genes in different fruit developmental stages were further investigated using qRT-PCR, to provide a foundation for further comparative genomics and functional studies of this important class of transcriptional regulators in strawberry.
Collapse
|
245
|
Kumar K, Srivastava V, Purayannur S, Kaladhar VC, Cheruvu PJ, Verma PK. WRKY domain-encoding genes of a crop legume chickpea (Cicer arietinum): comparative analysis with Medicago truncatula WRKY family and characterization of group-III gene(s). DNA Res 2016; 23:225-39. [PMID: 27060167 PMCID: PMC4909309 DOI: 10.1093/dnares/dsw010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/20/2016] [Indexed: 11/16/2022] Open
Abstract
The WRKY genes have been identified as important transcriptional modulators predominantly during the environmental stresses, but they also play critical role at various stages of plant life cycle. We report the identification of WRKY domain (WD)-encoding genes from galegoid clade legumes chickpea (Cicer arietinum L.) and barrel medic (Medicago truncatula). In total, 78 and 98 WD-encoding genes were found in chickpea and barrel medic, respectively. Comparative analysis suggests the presence of both conserved and unique WRKYs, and expansion of WRKY family in M. truncatula primarily by tandem duplication. Exclusively found in galegoid legumes, CaWRKY16 and its orthologues encode for a novel protein having a transmembrane and partial Exo70 domains flanking a group-III WD. Genomic region of galegoids, having CaWRKY16, is more dynamic when compared with millettioids. In onion cells, fused CaWRKY16-EYFP showed punctate fluorescent signals in cytoplasm. The chickpea WRKY group-III genes were further characterized for their transcript level modulation during pathogenic stress and treatments of abscisic acid, jasmonic acid, and salicylic acid (SA) by real-time PCR. Differential regulation of genes was observed during Ascochyta rabiei infection and SA treatment. Characterization of A. rabiei and SA inducible gene CaWRKY50 showed that it localizes to plant nucleus, binds to W-box, and have a C-terminal transactivation domain. Overexpression of CaWRKY50 in tobacco plants resulted in early flowering and senescence. The in-depth comparative account presented here for two legume WRKY genes will be of great utility in hastening functional characterization of crop legume WRKYs and will also help in characterization of Exo70Js.
Collapse
Affiliation(s)
- Kamal Kumar
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vikas Srivastava
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Savithri Purayannur
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - V Chandra Kaladhar
- School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Purnima Jaiswal Cheruvu
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
246
|
Ye YJ, Xiao YY, Han YC, Shan W, Fan ZQ, Xu QG, Kuang JF, Lu WJ, Lakshmanan P, Chen JY. Banana fruit VQ motif-containing protein5 represses cold-responsive transcription factor MaWRKY26 involved in the regulation of JA biosynthetic genes. Sci Rep 2016; 6:23632. [PMID: 27004441 PMCID: PMC4804309 DOI: 10.1038/srep23632] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/11/2016] [Indexed: 11/09/2022] Open
Abstract
Most harvested fruits and vegetables are stored at low temperature but many of them are highly sensitive to chilling injury. Jasmonic acid (JA), a plant hormone associated with various stress responses, is known to reduce chilling injury in fruits. However, little is known about the transcriptional regulation of JA biosynthesis in relation to cold response of fruits. Here, we show the involvement of a Group I WRKY transcription factor (TF) from banana fruit, MaWRKY26, in regulating JA biosynthesis. MaWRKY26 was found to be nuclear-localized with transcriptional activation property. MaWRKY26 was induced by cold stress or by methyl jasmonate (MeJA), which enhances cold tolerance in banana fruit. More importantly, MaWRKY26 transactivated JA biosynthetic genes MaLOX2, MaAOS3 and MaOPR3 via binding to their promoters. Further, MaWRKY26 physically interacted with a VQ motif-containing protein MaVQ5, and the interaction attenuated MaWRKY26-induced transactivation of JA biosynthetic genes. These results strongly suggest that MaVQ5 might act as a repressor of MaWRKY26 in activating JA biosynthesis. Taken together, our findings provide new insights into the transcriptional regulation of JA biosynthesis in response to cold stress and a better understanding of the molecular aspects of chilling injury in banana fruit.
Collapse
Affiliation(s)
- Yu-Jie Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Yun-Yi Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Yan-Chao Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhong-Qi Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Qun-Gang Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Jian-Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Prakash Lakshmanan
- Sugar Research Australia, 50 Meiers Road, Indooroopilly, Brisbane 4068, Queensland, Australia
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
247
|
Li MY, Xu ZS, Tian C, Huang Y, Wang F, Xiong AS. Genomic identification of WRKY transcription factors in carrot (Daucus carota) and analysis of evolution and homologous groups for plants. Sci Rep 2016; 6:23101. [PMID: 26975939 PMCID: PMC4792144 DOI: 10.1038/srep23101] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 03/01/2016] [Indexed: 11/24/2022] Open
Abstract
WRKY transcription factors belong to one of the largest transcription factor families. These factors possess functions in plant growth and development, signal transduction, and stress response. Here, we identified 95 DcWRKY genes in carrot based on the carrot genomic and transcriptomic data, and divided them into three groups. Phylogenetic analysis of WRKY proteins from carrot and Arabidopsis divided these proteins into seven subgroups. To elucidate the evolution and distribution of WRKY transcription factors in different species, we constructed a schematic of the phylogenetic tree and compared the WRKY family factors among 22 species, which including plants, slime mold and protozoan. An in-depth study was performed to clarify the homologous factor groups of nine divergent taxa in lower and higher plants. Based on the orthologous factors between carrot and Arabidopsis, 38 DcWRKY proteins were calculated to interact with other proteins in the carrot genome. Yeast two-hybrid assay showed that DcWRKY20 can interact with DcMAPK1 and DcMAPK4. The expression patterns of the selected DcWRKY genes based on transcriptome data and qRT-PCR suggested that those selected DcWRKY genes are involved in root development, biotic and abiotic stress response. This comprehensive analysis provides a basis for investigating the evolution and function of WRKY genes.
Collapse
Affiliation(s)
- Meng-Yao Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Chang Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Ying Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| |
Collapse
|
248
|
Chen M, Tan Q, Sun M, Li D, Fu X, Chen X, Xiao W, Li L, Gao D. Genome-wide identification of WRKY family genes in peach and analysis of WRKY expression during bud dormancy. Mol Genet Genomics 2016; 291:1319-32. [PMID: 26951048 PMCID: PMC4875958 DOI: 10.1007/s00438-016-1171-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/18/2016] [Indexed: 01/05/2023]
Abstract
Bud dormancy in deciduous fruit trees is an important adaptive mechanism for their survival in cold climates. The WRKY genes participate in several developmental and physiological processes, including dormancy. However, the dormancy mechanisms of WRKY genes have not been studied in detail. We conducted a genome-wide analysis and identified 58 WRKY genes in peach. These putative genes were located on all eight chromosomes. In bioinformatics analyses, we compared the sequences of WRKY genes from peach, rice, and Arabidopsis. In a cluster analysis, the gene sequences formed three groups, of which group II was further divided into five subgroups. Gene structure was highly conserved within each group, especially in groups IId and III. Gene expression analyses by qRT-PCR showed that WRKY genes showed different expression patterns in peach buds during dormancy. The mean expression levels of six WRKY genes (Prupe.6G286000, Prupe.1G393000, Prupe.1G114800, Prupe.1G071400, Prupe.2G185100, and Prupe.2G307400) increased during endodormancy and decreased during ecodormancy, indicating that these six WRKY genes may play a role in dormancy in a perennial fruit tree. This information will be useful for selecting fruit trees with desirable dormancy characteristics or for manipulating dormancy in genetic engineering programs.
Collapse
Affiliation(s)
- Min Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China
| | - Qiuping Tan
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China
| | - Mingyue Sun
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China
| | - Dongmei Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China
| | - Xiling Fu
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China
| | - Xiude Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China
| | - Wei Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China. .,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China. .,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China.
| | - Dongsheng Gao
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China. .,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China. .,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China.
| |
Collapse
|
249
|
Fan Q, Song A, Jiang J, Zhang T, Sun H, Wang Y, Chen S, Chen F. CmWRKY1 Enhances the Dehydration Tolerance of Chrysanthemum through the Regulation of ABA-Associated Genes. PLoS One 2016; 11:e0150572. [PMID: 26938878 PMCID: PMC4777562 DOI: 10.1371/journal.pone.0150572] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/17/2016] [Indexed: 01/09/2023] Open
Abstract
WRKY transcription factors serve as antagonistic or synergistic regulators in a variety of abiotic stress responses in plants. Here, we show that CmWRKY1, a member of the group IIb WRKY family isolated from Chrysanthemum morifolium, exhibits no transcriptional activation in yeast cells. The subcellular localization examination showed that CmWRKY1 localizes to the nucleus in vivo. Furthermore, CmWRKY1-overexpressing transgenic lines exhibit enhanced dehydration tolerance in response to polyethylene glycol (PEG) treatment compared with wild-type plants. We further confirmed that the transgenic plants exhibit suppressed expression levels of genes negatively regulated by ABA, such as PP2C, ABI1 and ABI2, and activated expression levels of genes positively regulated by ABA, such as PYL2, SnRK2.2, ABF4, MYB2, RAB18, and DREB1A. Taken together, our results indicate that CmWRKY1 plays an important role in the response to drought in chrysanthemum through an ABA-mediated pathway.
Collapse
Affiliation(s)
- Qingqing Fan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & Equipment, Nanjing, 210095, China
| | - Aiping Song
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiafu Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ting Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hainan Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yinjie Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & Equipment, Nanjing, 210095, China
- * E-mail:
| |
Collapse
|
250
|
Zhou M, Memelink J. Jasmonate-responsive transcription factors regulating plant secondary metabolism. Biotechnol Adv 2016; 34:441-449. [PMID: 26876016 DOI: 10.1016/j.biotechadv.2016.02.004] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 01/24/2023]
Abstract
Plants produce a large variety of secondary metabolites including alkaloids, glucosinolates, terpenoids and phenylpropanoids. These compounds play key roles in plant-environment interactions and many of them have pharmacological activity in humans. Jasmonates (JAs) are plant hormones which induce biosynthesis of many secondary metabolites. JAs-responsive transcription factors (TFs) that regulate the JAs-induced accumulation of secondary metabolites belong to different families including AP2/ERF, bHLH, MYB and WRKY. Here, we give an overview of the types and functions of TFs that have been identified in JAs-induced secondary metabolite biosynthesis, and highlight their similarities and differences in regulating various biosynthetic pathways. We review major recent developments regarding JAs-responsive TFs mediating secondary metabolite biosynthesis, and provide suggestions for further studies.
Collapse
Affiliation(s)
- Meiliang Zhou
- Institute of Biology, Leiden University, Sylvius Laboratory, P.O. Box 9505, 2300 RA, Leiden, The Netherlands; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Johan Memelink
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|